Approximation

Univariate spline approximation schemes,

$$
f \mapsto p=\sum_{k=0}^{m-1} c_{k} b_{k}
$$

which can be described by a matrix operation $c=A f$, can be combined to construct approximations with multivariate splines

$$
p=\sum_{k_{1}=0}^{m_{1}-1} \cdots \sum_{k_{d}=0}^{m_{d}-1} c_{k} b_{k, \xi}^{n} \in S_{\xi}^{n},
$$

where $\xi_{\nu}: \xi_{\nu, 0}, \ldots, \xi_{\nu, m_{\nu}+n_{\nu}}$.

Approximation

Univariate spline approximation schemes,

$$
f \mapsto p=\sum_{k=0}^{m-1} c_{k} b_{k}
$$

which can be described by a matrix operation $c=A f$, can be combined to construct approximations with multivariate splines

$$
p=\sum_{k_{1}=0}^{m_{1}-1} \cdots \sum_{k_{d}=0}^{m_{d}-1} c_{k} b_{k, \xi}^{n} \in S_{\xi}^{n},
$$

where $\xi_{\nu}: \xi_{\nu, 0}, \ldots, \xi_{\nu, m_{\nu}+n_{\nu}}$. For a d-dimensional array of data f, the multivariate scheme $f \mapsto p$ is defined by

$$
c_{\left(k_{1}, \ldots, k_{d}\right)}=\sum_{\ell_{1}} \cdots \sum_{\ell_{d}} a_{k_{1}, \ell_{1}}^{1} \cdots a_{k_{d}, \ell_{d}}^{d} f_{\left(\ell_{1}, \ldots, \ell_{d}\right)}
$$

where A^{1}, \ldots, A^{d} are the matrices describing the univariate scheme, based on the knot sequences ξ_{ν} and the degrees n_{ν}.

This amounts to an application of the univariate scheme in each of the components with the indices corresponding to the other components held fixed. More precisely, the B-spline coefficients are computed in d steps:

$$
f=f^{0} \rightarrow f^{1} \rightarrow \cdots \rightarrow f^{d}=c
$$

where

$$
f^{\nu}\left(\ldots, k_{\nu}, \ldots\right)=\sum_{\ell_{\nu}} a_{k_{\nu}, \ell_{\nu}}^{\nu} f^{\nu-1}\left(\ldots, \ell_{\nu}, \ldots\right)
$$

for $\nu=1, \ldots, d$.

Error of Multivariate Spline Approximation

Assume that the local mesh ratio of the knot sequences ξ_{ν} of a spline space S_{ξ}^{n} is bounded by r. Then, any smooth function f can be approximated on the parameter hyperrectangle $R=D_{\xi}^{n}$ with optimal order:

$$
|f(x)-p(x)| \leq c(n, r, d) \sum_{\nu=1}^{d} h_{\nu}(x)^{n_{\nu}+1}\left\|\partial_{\nu}^{n_{\nu}+1} f\right\|_{\infty, R} \quad \forall x \in R
$$

for some multivariate spline $p \in S_{\xi}^{n}$ and with $h_{\nu}(x)$ the width of the grid cell containing x in the ν th coordinate direction.

