Spline Surface

A spline surface has a parametrization

$$
D_{\tau}^{n} \ni\left(t_{1}, t_{2}\right) \mapsto\left(p_{1}(t), p_{2}(t), p_{3}(t)\right)
$$

with components p_{ν} in a bivariate spline space S_{τ}^{n} of degree (n_{1}, n_{2}) and with knot sequences $\tau_{\nu}: \tau_{\nu, 0}, \ldots, \tau_{\nu, m_{\nu}+n_{\nu}}(\nu=1,2)$. This means

$$
p(t)=\sum_{k_{1}=0}^{m_{1}-1} \sum_{k_{2}=0}^{m_{2}-1} c_{k} b_{k, \tau}^{n}(t), \quad \tau_{\nu, n_{\nu}} \leq t_{\nu} \leq \tau_{\nu, m_{\nu}}
$$

with control points $\left(c_{k, 1}, c_{k, 2}, c_{k, 3}\right) \in \mathbb{R}^{3}$.

Connecting neighboring control points, we obtain a control net for the surface, which provides a qualitative model of the geometric shape.

Connecting neighboring control points, we obtain a control net for the surface, which provides a qualitative model of the geometric shape.
Closed (partially closed) surfaces are modeled by periodic parametrizations in both (one) parameter directions.

Connecting neighboring control points, we obtain a control net for the surface, which provides a qualitative model of the geometric shape.
Closed (partially closed) surfaces are modeled by periodic parametrizations in both (one) parameter directions.
More generally, we can define rational spline surfaces with parametrizations of the form

$$
r=\frac{p}{q}=\frac{\sum_{k_{1}} \sum_{k_{2}}\left(c_{k} w_{k}\right) b_{k}}{\sum_{k_{1}} \sum_{k_{2}} w_{k} b_{k}} .
$$

