Isogeometric Elements

Assume that

$$
R \ni t \mapsto x=\varphi(t) \in D
$$

is a smooth bijective parametrization of a domain D over a hyperrectangle R. Then, the B-splines b_{k}, which span an appropriate subspace of a spline space $S_{\tau}^{(n, \ldots, n)}$ with parameter hyperrectangle $D_{\tau}^{(n, \ldots, n)}=R$, can be composed with φ to form so-called isogeometric elements

$$
B_{k}(x)=b_{k}(\underbrace{\varphi^{-1}(x)}_{t}), \quad k \in K
$$

on D. The knot sequences τ have to be chosen so that essential boundary conditions are satisfied.

Finite Element Integrals

Assume that $u(x)=v(t)$, where the variables are related by a smooth bijective parametrization $R \ni t \mapsto x=\varphi(t) \in D$. Then,
$\int_{D} f\left(x, \operatorname{grad}_{x} u, \ldots\right) d x=\int_{R} f\left(\varphi(t),\left(\varphi^{\prime}(t)^{-1}\right)^{t} \operatorname{grad}_{t} v, \ldots\right)\left|\operatorname{det} \varphi^{\prime}(t)\right| d t$, where φ^{\prime} denotes the Jacobi matrix of φ.

