Isogeometric Elements

Assume that

\[R \ni t \mapsto x = \varphi(t) \in D \]

is a smooth bijective parametrization of a domain \(D \) over a hyperrectangle \(R \). Then, the B-splines \(b_k \), which span an appropriate subspace of a spline space \(S_{\tau}^{(n, \ldots, n)} \) with parameter hyperrectangle \(D_{\tau}^{(n, \ldots, n)} = R \), can be composed with \(\varphi \) to form so-called isogeometric elements

\[B_k(x) = b_k(\varphi^{-1}(x)), \quad k \in K, \]

on \(D \). The knot sequences \(\tau \) have to be chosen so that essential boundary conditions are satisfied.
Finite Element Integrals

Assume that $u(x) = v(t)$, where the variables are related by a smooth bijective parametrization $R \ni t \mapsto x = \varphi(t) \in D$. Then,

$$
\int_D f(x, \text{grad}_x u, \ldots) \, dx = \int_R f(\varphi(t), (\varphi'(t)^{-1})^t \text{grad}_t v, \ldots) |\text{det } \varphi'(t)| \, dt,
$$

where φ' denotes the Jacobi matrix of φ.