Assembly of the Ritz-Galerkin System

The entries of the matrix and right side of the Ritz–Galerkin system are computed by adding the contributions from each grid cell:

$$\begin{split} \tilde{G} &= 0, \ \tilde{F} = 0 \\ \text{for } D_\ell \subseteq R \\ & \text{for } k \sim \ell \\ & \tilde{f}_k = \tilde{f}_k + \lambda_{k,\ell} \\ & \text{for } k' \sim \ell \\ & \tilde{g}_{k,k'-k} = \tilde{g}_{k,k'-k} + a_{k,k',\ell} \\ & \text{end} \\ & \text{end} \\ & \text{end} \\ \end{split}$$

Multiplication by the Ritz-Galerkin matrix

Assume that the matrix $(g_{k,k'})_{k,k'\sim R}$ is stored in an array $(\tilde{g}_{k,s})_{k\sim R,|s_{\nu}|\leq n}$ with the second index *s* corresponding to the offsets k' - k. Then, for a vector $(u_k)_{k\sim R}$, the product V = GU can be computed with the following algorithm:

$$V = 0$$

for $s \in \{-n, \dots, n\}^d$
for $k \sim R$
 $v_k = v_k + \tilde{g}_{k,s}u_{k+s}$
end
end

where entries u_{k+s} with indices $\not\sim R$ are set to zero.