Assembly of the Ritz-Galerkin System

The entries of the matrix and right side of the Ritz-Galerkin system are computed by adding the contributions from each grid cell:

```
\(\tilde{G}=0, \tilde{F}=0\)
for \(D_{\ell} \subseteq R\)
    for \(k \sim \ell\)
        \(\tilde{f}_{k}=\tilde{f}_{k}+\lambda_{k, \ell}\)
        for \(k^{\prime} \sim \ell\)
            \(\tilde{g}_{k, k^{\prime}-k}=\tilde{g}_{k, k^{\prime}-k}+a_{k, k^{\prime}, \ell}\)
end
    end
end
```


Multiplication by the Ritz-Galerkin matrix

Assume that the matrix $\left(g_{k, k^{\prime}}\right)_{k, k^{\prime} \sim R}$ is stored in an array $\left(\tilde{g}_{k, s}\right)_{k \sim R,\left|s_{\nu}\right| \leq n}$ with the second index s corresponding to the offsets $k^{\prime}-k$. Then, for a vector $\left(u_{k}\right)_{k \sim R}$, the product $V=G U$ can be computed with the following algorithm:

$$
\begin{aligned}
& V=0 \\
& \text { for } s \in\{-n, \ldots, n\}^{d} \\
& \quad \text { for } k \sim R \\
& \quad v_{k}=v_{k}+\tilde{g}_{k, s} u_{k+s} \\
& \text { end }
\end{aligned}
$$

where entries u_{k+s} with indices $\nsim R$ are set to zero.

