Linear Elasticity
The displacement (u1, up, u3) caused by an elastic deformation minimizes
the quadratic energy functional

3 3
Qu) = %/D Z 6,,,V/(u)a,,7,,/(u)—/DZf,,u,,, u, € HY(D),
v=1

v,v/'=1
where ¢ is the strain and o is the stress tensor, defined by
2ek = Oklp + Opuy, oy = Atraceedy o+ 2uck g,

respectively.
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where ¢ is the strain and o is the stress tensor, defined by

2ek = Oklp + Opuy, oy = Atraceedy o+ 2uck g,

respectively. The constants A and p are the Lamé coefficients, which
describe the elastic properties of the material.
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where ¢ is the strain and o is the stress tensor, defined by
2ek = Oklp + Opuy, oy = Atraceedy o+ 2uck g,

respectively. The constants A and p are the Lamé coefficients, which
describe the elastic properties of the material.
Via the calculus of variations, the displacement can also be characterized
by the Lamé—Navier boundary value problem

—divo(u)=finD, u=0onTl, o(u)p=0o0ndD\l,
with 7 the outward unit normal of 9D.
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