Linear Elasticity

The displacement $\left(u_{1}, u_{2}, u_{3}\right)$ caused by an elastic deformation minimizes the quadratic energy functional

$$
\mathcal{Q}(u)=\frac{1}{2} \int_{D} \sum_{\nu, \nu^{\prime}=1}^{3} \varepsilon_{\nu, \nu^{\prime}}(u) \sigma_{\nu, \nu^{\prime}}(u)-\int_{D} \sum_{\nu=1}^{3} f_{\nu} u_{\nu}, \quad u_{\nu} \in H_{\Gamma}^{1}(D)
$$

where ε is the strain and σ is the stress tensor, defined by

$$
2 \varepsilon_{k, \ell}=\partial_{k} u_{\ell}+\partial_{\ell} u_{k}, \quad \sigma_{k, \ell}=\lambda \operatorname{trace} \varepsilon \delta_{k, \ell}+2 \mu \varepsilon_{k, \ell},
$$

respectively.

Linear Elasticity

The displacement $\left(u_{1}, u_{2}, u_{3}\right)$ caused by an elastic deformation minimizes the quadratic energy functional

$$
\mathcal{Q}(u)=\frac{1}{2} \int_{D} \sum_{\nu, \nu^{\prime}=1}^{3} \varepsilon_{\nu, \nu^{\prime}}(u) \sigma_{\nu, \nu^{\prime}}(u)-\int_{D} \sum_{\nu=1}^{3} f_{\nu} u_{\nu}, \quad u_{\nu} \in H_{\Gamma}^{1}(D),
$$

where ε is the strain and σ is the stress tensor, defined by

$$
2 \varepsilon_{k, \ell}=\partial_{k} u_{\ell}+\partial_{\ell} u_{k}, \quad \sigma_{k, \ell}=\lambda \operatorname{trace} \varepsilon \delta_{k, \ell}+2 \mu \varepsilon_{k, \ell},
$$

respectively. The constants λ and μ are the Lamé coefficients, which describe the elastic properties of the material.

Linear Elasticity

The displacement $\left(u_{1}, u_{2}, u_{3}\right)$ caused by an elastic deformation minimizes the quadratic energy functional

$$
\mathcal{Q}(u)=\frac{1}{2} \int_{D} \sum_{\nu, \nu^{\prime}=1}^{3} \varepsilon_{\nu, \nu^{\prime}}(u) \sigma_{\nu, \nu^{\prime}}(u)-\int_{D} \sum_{\nu=1}^{3} f_{\nu} u_{\nu}, \quad u_{\nu} \in H_{\Gamma}^{1}(D),
$$

where ε is the strain and σ is the stress tensor, defined by

$$
2 \varepsilon_{k, \ell}=\partial_{k} u_{\ell}+\partial_{\ell} u_{k}, \quad \sigma_{k, \ell}=\lambda \operatorname{trace} \varepsilon \delta_{k, \ell}+2 \mu \varepsilon_{k, \ell}
$$

respectively. The constants λ and μ are the Lamé coefficients, which describe the elastic properties of the material.
Via the calculus of variations, the displacement can also be characterized by the Lamé-Navier boundary value problem

$$
-\operatorname{div} \sigma(u)=f \text { in } D, \quad u=0 \text { on } \Gamma, \quad \sigma(u) \eta=0 \text { on } \partial D \backslash \Gamma,
$$

with η the outward unit normal of ∂D.

