Contents

Preface xiii
Notation xvii

I Introduction and Overview 1

1 Introduction: Key Themes in Rootfinding 3
1.1 Statement of the Problem 3
1.2 An Elementary Example: Polynomializing Transcendental Functions 4
1.3 The Shakespeare–Weierstrass Principle: A Transcendental Function Is a Polynomial in Disguise 5
1.4 Applications 6
1.5 Key Themes 9
1.6 Extensions and Nonextensions to Multivariate Systems 13

II The Chebyshev-Proxy Rootfinder and Its Generalizations 15

2 The Chebyshev-Proxy/Companion Matrix Rootfinder 17
2.1 A Quick Overview 17
2.2 Introduction 17
2.3 Solve-by-Graph, Local Iterations, and Failure-to-Find: A Taxonomy of Rootfinders 18
2.4 Chebyshev Interpolation: The Shamrock Principle 20
2.5 Chebyshev Convergence Theory 23
2.6 Adaptive Chebyshev Interpolation 25
2.7 Frobenius’s Great Idea: Computing Polynomial Zeros as the Eigenvalues of a “Companion” Matrix 26
2.8 Dynamic Range 27
2.9 Subdivision 28
2.10 Newton-Polishing 29
2.11 The Chebyshev.Proxy Algorithm for Computing the Zeros of a Transcendental Equation: Mechanics 30
2.12 MATLAB and Maple Codes 30
2.13 When f(x) Isn’t Smooth 31
2.14 Roots on an Infinite Real Interval 35
2.15 Slightly Complex Zeros 38
2.16 Parity 39
Contents

2.17 Additional Numerical Examples .. 39
2.18 Rational Proxies .. 44
2.19 Hermite-Padé Approximants ... 46
2.20 Summary ... 47

3 Adaptive Chebyshev Interpolation .. 49
3.1 Introduction: An Overview of Chebyshev Interpolation 49
3.2 Chebyshev Interpolation of a Function $f(x)$: Chebyshev–Lobatto Grid ... 50
3.3 Adaptation without a Priori Knowledge 50
3.4 Truncation and the Roundoff Plateau 53
3.5 Oscillating Coefficients ... 53
3.6 Stopping Criteria, or When Enough Is Enough 57
3.7 Justification of the Stopping Criterion 57
3.8 Dynamic Range Revisited ... 61
3.9 Provable Bounds on Chebyshev Truncation Error for Secular Trigonometric Functions, Exponentials, Bessel Functions, and Other Special $f(x)$... 70
3.10 Mechanics of Newton-Polishing 73
3.11 Summary ... 76

4 Adaptive Fourier Interpolation and Rootfinding 77
4.1 Background ... 77
4.2 Subdivision .. 78
4.3 Fourier Companion Matrices .. 78
4.4 Equivalence of the Trigonometric Cosine Polynomial and Chebyshev Polynomial Rootfinding Problems 80
4.5 Equivalence of the Trigonometric Sine Polynomial and Chebyshev Polynomial Series of the Second Kind 81
4.6 Parity ... 82
4.7 Factorization Theorems of a Trigonometric Polynomial 85
4.8 Chebyshev Series for Trigonometric Functions 87
4.9 Zero-Free Interval Theorems ... 87
4.10 Theorems That an Interval Contains at Least One Zero 90
4.11 History of Fourier Polynomial Zero-Hunting 91

5 Complex Zeros: Interpolation on a Disk, the Delves-Lyness Algorithm, and Contour Integrals 95
5.1 An Overview: Finding All Roots in a Region Ω in the Complex Plane ... 95
5.2 Interpolation in the Complex Plane 96
5.3 Contour Integration .. 98
5.4 Delves and Lyness Algorithm .. 99
5.5 Numerical Illustrations ... 101
5.6 Rectangles Instead of Disks .. 105
5.7 Polynomialization .. 107
5.8 Log and Polynomials .. 109
5.9 Explicit Contour Integral Ratio for a Single Root 111
5.10 Weyl Exclusionary Quadtree Algorithm for Squares in the Complex Plane ... 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>MAG/Complex Plane</td>
<td>112</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary</td>
<td>113</td>
</tr>
</tbody>
</table>

III Fundamentals: Iterations, Bifurcation, and Continuation

6 Newton Iteration and Its Kin

6.1 Newton’s Iteration: The Basic Algorithm | 117
6.2 Geometric Interpretation: Newton’s Iteration as the Tangent Line Approximation | 118
6.3 Digit-Doubling (“Quadratic”) Convergence | 119
6.4 Flaws of Newton’s Iteration | 120
6.5 Higher-Order Roots | 121
6.6 Underrelaxation and Overrelaxation: Newton’s Iteration with Line Search | 121
6.7 Minimizing the Residual Norm: Steepest Descent and the Levenberg-Marquardt Flow | 123
6.8 Quasi-Newton: Cheating on the Derivative | 126
6.9 The Kepler Equation: A Case Study of Newton’s Iteration | 126
6.10 Domains of Convergence | 130
6.11 Higher-Order Proxies: Cauchy, Muller, and Shafer Iterations | 133
6.12 Newton’s Iteration for Newton’s Exemplary Polynomial | 135
6.13 Never-Failing Newton’s Initialization | 137
6.14 Maple and MATLAB Codes | 145

7 Bifurcation Theory

7.1 Connecting the Points | 149
7.2 Bifurcations and Folds | 150
7.3 Bifurcation Points of Higher Codimension | 151
7.4 Computing Bifurcation Points | 155

8 Continuation in a Parameter

8.1 Introduction | 157
8.2 The Predictor-Corrector Framework | 159
8.3 Polynomial and Rational Extrapolation | 160
8.4 Continuation by Differential Equation: The Davidenko Equation | 162
8.5 Artificial Parameter Homotopy Initialization | 166
8.6 Pseudoarclength and Tangent Vector Continuation | 169
8.7 Transcritical Bifurcation Point | 170

IV Polynomials

9 Polynomial Equations and the Irony of Galois Theory

9.1 “The Great Art”: The Quest for Solutions by Radicals | 175
9.2 Ill-Conditioning of Polynomial Roots, I: Multiple Roots | 176
9.3 Ill-Conditioning of Polynomial Roots, II: Vices of the Power Form (Monomial Basis) | 182
9.4 The Ultimate Oracle: The Fundamental Theorem of Algebra | 183
9.5 Discriminant: Identifying Multiple Roots | 184
Contents

9.6 Oracles for Polynomial Equations: Prophecies for the Number of Roots in an Interval or Domain .. 184

9.7 Whittaker’s Root Series .. 186

9.8 When Radicals Fail: Transcendental Formulas for Roots of Any Degree ... 188

9.9 Puiseux Series for Roots of Polynomial Equations of Any Degree ... 188

9.10 Roots of the Quintic .. 189

10 The Quadratic Equation .. 193

10.1 Quadratic Equation .. 193

10.2 Geometry of the Root Surface of the Monic Quadratic 194

10.3 Reduced Quadratic .. 195

10.4 Vieta’s Theorem for the Quadratic .. 195

11 Roots of a Cubic Polynomial ... 197

11.1 Introduction ... 197

11.2 Explicit Solutions .. 198

11.3 Symmetry Theorem for the Reduced Cubic 203

11.4 Dilation Theorems: Reducing the Parameters in the Reduced Cubic ... 204

11.5 The Trigonometric Solution: Derivation and Connection with Chebyshev Polynomials .. 206

11.6 Perturbation Theory .. 208

11.7 Perturbative Expansions around the Discriminant 212

11.8 Surface of the Roots .. 217

11.9 Cubic Equation and the One-Dimensional Advection Equation ... 219

11.10 Phase-Plane Analysis and the Root Surface 221

11.11 Contours ... 221

11.12 Vieta’s Theorem: Sums and Products of Roots 224

12 Roots of a Quartic Polynomial .. 225

12.1 Introduction: Reduction by Translation 225

12.2 Analytic Solution of the Reduced Quartic 225

12.3 Dilation: Doubly Reduced Quartic 226

12.4 The Discriminant and the Swallowtail Catastrophe 226

12.5 Phase-Plane Analysis and the Root Surface 229

12.6 Contours of Constant Root for the Doubly Reduced Quartic ... 230

12.7 Sums and Products of Roots: Vieta’s Theorem 230

12.8 The Reduced Quartic Is Equivalent to Intersecting Conic Sections ... 231

V Analytical Methods ... 233

13 Methods for Explicit Solutions .. 235

13.1 Introduction ... 235

13.2 Polynomials ... 236

13.3 Surds and Radicals .. 236

13.4 Equations Involving Trigonometric Functions 237

13.5 Equations with Hyperbolic Functions 243

13.6 Lambert W-Function ... 244

13.7 Reduction to Quadratures through Riemann–Hilbert Problems ... 247
14 Regular Perturbation Methods for Roots

14.1 Introduction ... 249
14.2 Power Series in ε for a Root of a Scalar-Valued Function 249
14.3 Perturbation Theory in Fractional Powers of ε (Puiseux Series) ... 251
14.4 Perturbation Theory in Inverse Powers 253
14.5 Artificial Perturbation Parameters 256
14.6 Extending the Range: Padé Approximants 256
14.7 Two-Point Padé Approximants 257
14.8 Hermite–Padé Approximants 258
14.9 Newton’s Iteration and Perturbation Theory 259
14.10 Nonperturbative Series: Chebyshev Expansions of Root Branches 260
14.11 Rescaling and Transformation 262
14.12 Choice of Perturbation Parameter 263
14.13 Perturbative Expansion about a Limit Point 264
14.14 Another Example of a Half-Power Expansion about a Limit Point: Lambert W-Function 266
14.15 Expansion about a Triple Point: Kepler Equation 270
14.16 Replacing $f(x)$ by Its Asymptotic Expansion: When the Perturbation Parameter Is Implicitly the Ordinal of the Zero 270
14.17 Case Study: Zeros of the J_0 Bessel Function 274
14.18 Other Perturbative Methods: Lagrange’s Inversion and Adomian’s Decomposition 275
14.19 Case Study: The Zeros of the Stationary Point Equation for the Method of Steepest Descent for Integrals 276
14.20 Case Study: Newton’s Cubic 279

15 Singular Perturbation Methods: Fractional Powers, Logarithms, and Exponential Asymptotics

15.1 Introduction ... 283
15.2 Asymptotics, Superasymptotics, and Hyperasymptotics 284
15.3 A Problem Whose Corrections Lie beyond All Orders 285
15.4 Log and Log-Log Series for Large x for the Lambert W-Function . 288
15.5 Modon Dispersion Relation 293
15.6 The Laplacian Eigenvalue in an Annulus 296
15.7 Approximation for Large N through a Power Series in the Root: Maximum of the Cauchy Factor for Equispaced Polynomial Interpolation .. 298
15.8 Logarithms in ε from Logarithms in the Coordinate: The Charney Baroclinic Instability Problem of Atmospheric Dynamics 301
15.9 Power and Exponential Series in Troesch’s Problem 301
15.10 Summary: General Concepts for Singular Perturbation Theory 306

VI Classics, Special Functions, Inverses, and Oracles

16 Classic Methods for Solving One Equation in One Unknown.................. 311
16.1 Introduction ... 311
16.2 MAG-1D: Rootfinding by Plotting for One Unknown: Real Roots on an Interval .. 312
16.3 MAG-Contour: Tracing Entire Branches of Solutions 313
Contents

20.4 Bivariate Polynomials: Background ... 371
20.5 Resultants .. 372
20.6 Block Companion Matrix Eigenvalues versus Resultants: Numerical Examples ... 379
20.7 Marching Triangles ... 381
20.8 Two-Dimensional Weyl Subdivision .. 382
20.9 Fourier-Enhanced Weyl Exclusionary Subdivision Marching Triangles Bivariate Polynomial Rootfinder: Summary 393
20.10 Homotopy/Continuation for Polynomial Systems 393
20.11 Elimination Methods ... 394
20.12 Summary .. 394

VIII Challenges .. 395

21 Past and Future .. 397

A Companion Matrices .. 401
A.1 Software .. 401
A.2 Why Eigenvalues Are Roots: A Derivation of the One-Dimensional Companion Matrix for General Orthogonal Polynomials 401
A.3 Frobenius Companion Matrix (Monomial Basis) 403
A.4 The Chebyshev Companion Matrix .. 403
A.5 Rational Chebyshev TB, TL, and TM .. 404
A.6 Legendre Companion Matrix ... 405
A.7 Gegenbauer Polynomials and Spherical Harmonics 405
A.8 Hermite Polynomials and Hermite Functions 406
A.9 General Orthogonal Polynomials .. 407
A.10 Fourier Companion Matrices .. 407

B Chebyshev Interpolation and Quadrature .. 411
B.1 Mapping \(x \in [A,B] \) to \(\xi \in [-1,1] \) ... 411
B.2 Chebyshev Interpolation of a Function \(f(x) \) 411
B.3 Rational Chebyshev Interpolation on a Semi-infinite Domain \((T_L) \) .. 415
B.4 Rational Chebyshev Interpolation on an Infinite Domain \((TB) \) .. 415
B.5 Clenshaw–Curtis Adaptive Chebyshev Quadrature 416

C Marching Triangles .. 419
C.1 Bivariate Linear Interpolation ... 419
C.2 Properties of Bivariate Linear Interpolation 420
C.3 Barycentric Coordinates ... 421
C.4 Contouring of Bivariate Linear Polynomials 421

D Imbricate-Fourier Series and the Poisson Summation Theorem 423

Glossary ... 425

Bibliography ... 433

Index .. 455