
MATLAB support

Here we briefly describe how to use each of the provided MATLAB functions. They are
easy to use; indeed, all that is required of the user is an understanding of how to input
matrices and vectors into MATLAB. Examples are included after each of the programs
is briefly described. The provided examples generally correspond to an example in the
book.

In order to use the below linear algebra programs it is only necessary that that the
user know how to enter a matrix and vector in MATLAB. The entries in each row are
separated by a comma, and each row is separated by a semi-colon. For example, if we have

A=
�

1 2 −3
−3 −6 7

�
, b=

⎛
⎝ 3

2
4

⎞
⎠

then they are entered in MATLAB via the command

»A=[1,2,-3;-3,-6,7];
»b=[3;2;4];

The semi-colon at the end of the line suppresses the output. If it is not present, then the
entered matrix is mirrored. The supplied individual functions are:

• cola: find a basis for the column space of a matrix A by using the command
cola(A)

• deta: find the determinant of a matrix A by using the command deta(A)

• evalsa: find the eigenvalues and associated eigenvectors of a matrix A by using
the command evalsa(A)

• gaussa: find the row reduced echelon form (RREF) of a matrix A by using the
command gaussa(A)

• gaussab: find the RREF of the augmented matrix (A|b) by using the command
gaussab(A,b)

• inva: find the inverse of a matrix A by using the command inva(A)

• nulla: find a basis for the null space of a matrix A by using the commandnulla(A)

• zerop: find the zeros of a polynomial. The input is a row vector which contains
the coefficients of the given polynomial. For example, if the polynomial is

p(x) = 5x4− 3x2+ 6x + 8,

then the associated MATLAB commands are

1



»coef=[5,0,-3,6,8];
»zerop(coef)

The MATLAB code for dfield8b and pplane8b was developed by John Polking
of Rice University. This code is also available off Polking’s web site1, and is provided here
solely for the sake of convenience.

• dfield8b: numerically solves scalar ODEs x ′ = f (t , x) for initial conditions
which can be either inputted via a keyboard, or via the click of a mouse

• pplane8b: numerically solves autonomous planar ODEs x ′ = f (x, y), y ′ = g (x, y)
for initial conditions which can be either inputted via a keyboard, or via the click
of a mouse.

Example 1.10. Consider a linear system for which the coefficient matrix and nonhomo-
geneous term are

A=

⎛
⎝ 1 2 3

4 5 6
7 8 2

⎞
⎠ , b=

⎛
⎝ −1

4
−7

⎞
⎠ .

We will use the provided MATLAB function gaussab to put the augmented matrix into
RREF. We have the sequence of commands:

»A=[1,2,3;4,5,6;7,8,2];
»b=[-1;4;-7];
»gaussab(A,b)
RREF of (A|b):

1.0000 0 0 6.6190
0 1.0000 0 -7.2381
0 0 1.0000 2.2857

Ending each of the first two lines with a semi-colon suppresses the output; otherwise, the
matrix and vector will be mirrored. Note that in the last command line there is no semi-
colon at the end. We interpret the output to say that the linear system is consistent, and
the unique solution is approximately

x∼
⎛
⎝ 6.62
−7.24

2.29

⎞
⎠ .

Example 1.20. We consider an example for which the inverse is computed numerically.
Here A ∈ �3×3, and the calculation will be done using the provided MATLAB function
inva. Using this function for the matrix

A=

⎛
⎝ 1 2 3
−1 2 −3

5 6 7

⎞
⎠ � A= [1,2,3;−1,2,−3;5,6,7];

generates the following output:

1http://math.rice.edu/∼polking/



»inva(A)
Inverse of A:
-1.0000 -0.1250 0.3750
0.2500 0.2500 0
0.5000 -0.1250 -0.1250

In other words, upon using the exact expressions for the numerical approximations we
have

A−1 =
1
8

⎛
⎝ −8 −1 3

2 2 0
4 −1 −1

⎞
⎠ .

It is straightforward to check that AA−1 = I3.

Example 1.26. Consider the homogeneous linear system Ax= 0, where

A=

⎛
⎜⎜⎝

3 4 7 −1
2 6 8 −4
−5 3 −2 −8

7 −2 5 9

⎞
⎟⎟⎠ .

We will use the provided MATLAB command nulla to find a spanning set for Null(A):

»A=[3,4,7,-1;2,6,8,-4;-5,3,-2,-8;7,-2,5,9];
»nulla(A)
Basis for Null(A):

-1 -1
-1 1
1 0
0 1

so that

Null(A) = Span

⎧⎪⎨
⎪⎩

⎛
⎜⎜⎝
−1
−1

1
0

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝
−1

1
0
1

⎞
⎟⎟⎠
⎫⎪⎬
⎪⎭ .

Example 1.29. Consider the linear system Ax= b, where

A=

⎛
⎜⎜⎝

3 4 −7 2
2 6 9 −2
−5 3 2 −13

7 −2 5 16

⎞
⎟⎟⎠ , b=

⎛
⎜⎜⎝

5
27
11
−1

⎞
⎟⎟⎠ .

We will use the provided MATLAB command nulla to find the homogeneous solution,
and the provided MATLAB command gaussab to find a particular solution. Regarding
the null space we have

»A=[3,4,-7,2;2,6,9,-2;-5,3,2,-13;7,-2,5,16];
»b=[5;27;11;-1];
»nulla(A)
Basis for Null(A):

-2
1
0
1



so

Null(A) = Span

⎧⎪⎨
⎪⎩

⎛
⎜⎜⎝
−2

1
0
1

⎞
⎟⎟⎠
⎫⎪⎬
⎪⎭ .

The homogeneous solution is then

xh = t

⎛
⎜⎜⎝
−2

1
0
1

⎞
⎟⎟⎠ , t ∈�.

In order to find the particular solution we do not need to reenter the MATLAB expres-
sions for A and b, so we simply type

»gaussab(A,b)
RREF of (A|b):

1 0 0 2 0
0 1 0 -1 3
0 0 1 0 1
0 0 0 0 0

The particular solution is the last column of the RREF of (A|b),

xp =

⎛
⎜⎜⎝

0
3
1
0

⎞
⎟⎟⎠ .

Example 1.66. We now consider an example for which a basis for Col(A) and Null(A)
are computed numerically. Here A∈�4×4 is given by

A=

⎛
⎜⎜⎝

1 2 3 4
−1 2 1 0

5 6 11 16
2 4 6 8

⎞
⎟⎟⎠ � A= [1,2,3,4;−1,2,1,0;5,6,11,16;2,4,6,8];

Using the provided MATLAB function gaussa generates the output:

»gaussa(A)
RREF of A:

1 0 1 2
0 1 1 1
0 0 0 0
0 0 0 0

From this RREF we see that rank(A) = 2, and dim[Null(A)] = 2. In order to numeri-
cally generate a basis for the column space and null space we use the provided MATLAB
functions cola and nulla, respectively, to get:



»cola(A)
Basis for Col(A):

1 2
-1 2
5 6
2 4

»nulla(A)
Basis for Null(A):

-1 -2
-1 -1
1 0
0 1

As expected, we get as a basis for Col(A) the first two columns of A. As for the null space,

Null(A) = Span

⎧⎪⎨
⎪⎩

⎛
⎜⎜⎝
−1
−1

1
0

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝
−2
−1

0
1

⎞
⎟⎟⎠
⎫⎪⎬
⎪⎭ .

Section 1.10. We now calculate the determinant of a matrix using the provided MAT-
LAB function deta. Using this function for the matrix

A=

⎛
⎝ 1 2 3
−1 2 −3

5 6 7

⎞
⎠ � A= [1,2,3;−1,2,−3;5,6,7];

we have the following output:

»deta(A)
det(A): -32

In other words, det(A) =−32.

Example 1.97. We consider an example for which the eigenvalues and eigenvectors must
be computed numerically. Here A ∈�3×3, which means that pA(λ) is a third-order poly-
nomial. Unless the problem is very special, it is generally the case that it is not possible to
(easily) find the three roots. This calculation will be done using the provided MATLAB
function evalsa. Using this function for the matrix

A=

⎛
⎝ 1 2 3
−1 2 −3

5 6 7

⎞
⎠ � A= [1,2,3;−1,2,−3;5,6,7];

we have the following output:

»evalsa(A)
Eigenvalues:
-0.8576 + 0.0000i 5.4288 + 2.8000i 5.4288 - 2.8000i

Eigenvectors:
-0.8830 + 0.0000i -0.2981 + 0.0209i -0.2981 - 0.0209i
0.1559 + 0.0000i 0.4467 - 0.3709i 0.4467 + 0.3709i
0.4428 + 0.0000i -0.7574 + 0.0000i -0.7574 + 0.0000i



In other words,

λ1 ∼−0.86, v1 ∼
⎛
⎝ −0.88

0.16
0.44

⎞
⎠ ; λ2 ∼ 5.43+ i2.80, v2 ∼

⎛
⎝ −0.30

0.45
−0.76

⎞
⎠+ i

⎛
⎝ 0.02
−0.37

0.00

⎞
⎠ .

The third eigenvalue is the complex-conjugate conjugate of the second, i.e., λ3 = λ2, and
the associated eigenvector is the complex-conjugate of v2, i.e., v3 = v2.

Example 2.15. Let us find the general solution to the scalar ODE,

x ′ =−x + t − 4t 3,

using the method of undetermined coefficients. Since f (t ) = t − 4t 3, which is a third-
order polynomial, we will guess the particular solution to be

xp(t ) = a0+ a1 t + a2 t 2+ a3 t 3.

As seen in the text, this leads to the linear system,

a0+ a1 = 0, a1+ 2a2− 1= 0, a2+ 3a3 = 0, a3+ 4= 0,

which can be rewritten in matrix/vector form as
⎛
⎜⎜⎝

1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1

⎞
⎟⎟⎠a=
⎛
⎜⎜⎝

0
1
0
−4

⎞
⎟⎟⎠ , a=

⎛
⎜⎜⎝

a0
a1
a2
a3

⎞
⎟⎟⎠ .

We use the provided MATLAB function gaussab to solve the linear system via the se-
quence of commands

»A=[1,1,0,0;0,1,2,0;0,0,1,3;0,0,0,1];
»b=[0,1,0,-4];
»gaussab(A,b)
RREF of (A|b):

1 0 0 0 23
0 1 0 0 -23
0 0 1 0 12
0 0 0 1 -4

We conclude

a=

⎛
⎜⎜⎝

23
−23

12
−4

⎞
⎟⎟⎠ ,

so the particular solution is

xp(t ) = 23− 23t + 12t 2− 4t 3.

The general solution is

x(t ) = c1e−t + 23− 23t + 12t 2− 4t 3.



Example 4.3. Consider the third-order ODE

y ′′′ − 3y ′′+ 6y ′+ 9y = 0.

The associated characteristic polynomial is

p(λ) = λ3− 3λ2+ 6λ+ 9.

The roots cannot easily be found analytically. However, they can be found numerically
using the provided MATLAB function zerop. In general, if the characteristic polyno-
mial is

p(λ) = λn + an−1λ
n−1+ · · ·+ a1λ+ a0,

the roots of the polynomial are found by first putting the coefficients into a row vector,
and then calling the command. For our particular example, the sequence of commands

»coef=[1,-3,6,9];
»zerop(coef)
Roots:
-4.6890 + 0.0000i 0.8445 + 1.0983i 0.8445 - 1.0983i

reveals the three roots to be

λ1 ∼−4.69, λ2 ∼ 0.84+ i1.10, λ3 ∼ 0.84− i1.10.

Since the roots must come in complex-conjugate pairs, we know the first root is purely
real. The general solution is

y(t ) = c1e−4.69t + c2e0.84t cos(1.10t )+ c3e0.84t sin(1.10t ).


