Index

Abramowitz function
computed by Clenshaw’s method, 74
absolute error, 356
Airy function
contour integral for, 166
Airy functions
algorithm, 359
asymptotic estimate of, 18
asymptotic expansions, 81, 360
Chebyshev expansions, 80, 85
computing
complex arguments, 359
Gauss quadrature, 145
scaled functions, 359
zeros, 224
connection formulas, 360, 361
contour integral for, 264
differential equation, 249, 359
relation with hypergeometric function, 28
used in uniform asymptotic expansion, 250
Airy-type asymptotic expansion
for modified Bessel functions of
purely imaginary order, 375
for parabolic cylinder functions, 378
for prolate spheroidal harmonics, 364
for Scorer functions, 361
for toroidal harmonics, 366
of Remes, 290
analytic continuation of generalized hypergeometric function, 27
anomalous behavior of recursions, 118
a warning, 122
confluent hypergeometric functions, 120
exponential integrals, 121
first order inhomogeneous equation, 121
modified Bessel functions, 118
anti-Miller algorithm, 110, 112
associated Legendre functions
computation for \(\Re z > 0 \), 363
asymptotic expansion
uniform, 237
asymptotic expansions
alternative asymptotic representation for \(\Gamma(z) \), 49
alternative expansion for \(\Gamma(z) \), 49
for \(\Gamma(a, z) \), 47
convergent asymptotic representation, 46
converging factor, 40
exponentially improved, 39
for \(\Gamma(a, z) \), 39
exponentially small remainders, 38
hyperasymptotics, 40
of exponential integral, 37, 38
of incomplete gamma function
\[\Gamma(a, z) \] 37
of modified Bessel function \(K_\nu(z) \) 43
of Poincaré type, 34
of the exponential integral, 34
Stokes phenomenon, 40
to compute zeros, 199, 200
of Airy functions, 224
of Bessel functions, 233
of Bessel functions with
McMahon expansions, 200
of error functions, 229
of orthogonal polynomials, 234
of parabolic cylinder functions, 233
of Scorer functions, 227
transforming into factorial series,
uniform, 239
for the incomplete gamma
functions, 240
upper bound for remainder, 39
for \(\log \Gamma(z) \), 39
Wagner’s modification, 48
Watson’s lemma, 36
asymptotic inversion
of distribution functions, 317
of incomplete beta functions, 318
of incomplete gamma functions,
312
of the incomplete beta function
error function case, 322
incomplete gamma function
case, 324
symmetric case, 319
backsubstitution in Olver’s method, 117
backward recurrence algorithm, see also
Miller algorithm
for computing continued fractions, 181
backward sweep, 215
base-2 floating-point arithmetic, 356
Bernoulli numbers and polynomials,
131, 331
order estimate, 336
Bessel functions
Airy-type expansions, 250
algorithms for computing, 369
computing zeros, 197, 204, 385
asymptotic expansions, 200, 233
asymptotic expansions of Airy
type, 204
eigenvalue problems, 208, 212
McMahon expansions, 200, 204
differential equation, 19, 24
\(J_0(x) \) computation
Chebyshev expansion, 83
numerical inversion of Laplace
transform, 349
the trapezoidal rule, 128
\(J_\nu(z) \) as hypergeometric function,
28
Neumann function \(Y_\nu(z) \), 25
recurrence relations, 96
recursion for \(J_\nu(z) \) and \(Y_\nu(z) \), 87
series expansion for \(J_\nu(z) \), 24
Wronskian, 255
Bessel polynomials, 348
best approximation, 51
Jackson’s theorem, 63
polynomial, 290
versus Chebyshev series, 291
rational, 290
oscillations of the error curve,
290
binomial coefficient
gamma functions, 27
Pochhammer symbol, 27
bisecion method, 191, 193, 195
order of convergence, 194
Bolzano’s theorem, 193
Boole’s summation method, 336
boundary value problem
for differential equations in the
complex plane
Taylor-series method, 293
Bühring’s analytic continuation formula
for hypergeometric functions, 31
Carlson’s symmetric elliptic integrals, 345
Casorati determinant, 89
its use in anti-Miller algorithm, 110
Cauchy’s form for the remainder of
Taylor’s formula, 16
Cauchy’s inequality, 16
Cauchy–Riemann equations, 162
chaotic behavior in the complex plane,
197
characteristic equation, 92
Chebyshev equioscillation theorem, 63
Chebyshev expansion
computing coefficients, 69
convergence properties, 68
analytic functions, 68
for Airy functions, 80, 85
for error function, 83
for J-Bessel functions, 83
for Kummer U-function, 84
of a function, 66
Chebyshev interpolation, 62
computing the polynomial, 64
of the second kind, 65
Chebyshev polynomial, 56, 140
Chebyshev polynomials
as particular case of Jacobi
polynomials, 62
discrete orthogonality relation, 59
economization of power series, 80
equidistant zeros and extrema, 61
expansion of a function, 66
minimax approximation, 58
of the first kind, 56
of the second, third, and fourth
kinds, 60
orthogonality relation, 59
polynomial representation, 59
shifted polynomial $T_n^*(x)$, 60
Chebyshev sum
evaluated by Clenshaw’s method,
75
Christoffel numbers for Gauss
quadrature, 136
classical orthogonal polynomials, 140
Clenshaw’s method
for evaluating a Chebyshev sum,
65, 75
calculated by numerical inversion
of Laplace transform, 350
error analysis, 76
for solving differential equations,
70
for the Abramowitz function, 74
for the J-Bessel function, 72
Clenshaw–Curtis quadratures, 62, 296,
297
compact operator in a Hilbert space, 209
complementary error function
as normal distribution function, 242
computed by numerical inversion
of Laplace transform, 350
contour integral, 350
in uniform asymptotic
approximations, 242
complex Gauss quadrature formula, 348
nodes and weights, 349
complex orthogonal polynomials, 348
compound trapezoidal rule, 126
condition of TTRRs, 88
confluent hypergeometric functions
anomalous behavior of recursion,
120
Chebyshev expansion for
U—function, 84
differential equation, 19
integral representation for
$U(a, c, z)$, 43
M in terms of hypergeometric
function, 28
recurrence relations, 96, 99
conical functions
computing zeros, 211, 223
recurrence relation, 103, 211
conjugate harmonic functions, 162
continued fraction, 173
computing, 181
backward recurrence algorithm, 181
forward recurrence algorithm, 181

forward series recurrence algorithm, 181
modified Lentz algorithm, 183
Steed’s algorithm, 181
contractions, 175
convergence, 175, 179
equivalence transformations, 175
even and odd part, 175
for incomplete beta function, 189
for incomplete gamma function, 176
for incomplete gamma function $\Gamma(a, z)$, 186
for ratios of Gauss hypergeometric function, 187
for special functions, 185
Jacobi fraction, J-fraction, 179
linear transformations, 174
nth convergent, nth approximant, 174
numerical evaluation, 181
of Gauss, 188
recursion for convergents, 174
relation with
 ascending power series, 178, 179
Padé approximant, 278
Padé approximants, 179
three-term recurrence relation, 95
Stieltjes fraction, S-fraction, 178
theorems on convergence, 180
value of the, 174
contour integrals in the complex plane
quadrature for, 157
convergence properties
Chebyshev expansion, 68
analytic functions, 68
continued fraction, 175
convergent power series, 15
converging factor for asymptotic expansion, 40
Coulomb wave functions
recurrence relations, 98
cylinder functions, 233, see also Bessel functions
Index

for compact infinite matrix, 210
for conical functions, 211
for minimal solutions of three-term recurrence relations, 207
for orthogonal polynomials, 205
elliptic integral
other forms, 347
elliptic integrals
Carlson’s symmetric forms, 345
incomplete of the first kind, 344
incomplete of the second kind, 344
of Legendre, 344
of the third kind, 345
epsilon algorithm of Wynn, 278
equidistant interpolation
Runge phenomenon, 54
equioscillation property, 67
error
absolute, relative, 356
bound for fixed point method, 194
error functions
Chebyshev expansion, 83
computing zeros by using asymptotic expansions, 229
inversion, 330
Euler–Maclaurin formula, 131
relation with the trapezoidal rule, 130
Euler’s summation formula, 331
limitations, 336
exponential function
Padé approximants, 280
exponential integral
anomalous behavior of recursion, 121
as solution of an inhomogeneous linear first order difference equations, 115
asymptotic expansions, 37, 38
expansion as factorial series, 45
sequence transformations, 288
exponentially improved asymptotic expansions, 39
factorial series, 44
condition for convergence, 44
for exponential integral, 45
for incomplete gamma function Γ(a, z), 45
Fadeeva function, 229
fast cosine transforms, 67
fast Fourier transform, 69, 298
Fejér quadrature, 296
first rule, 297
second rule, 297
Filon’s method for oscillatory integrals, 303
first order linear inhomogeneous difference equations, 87
fixed point method, 192, 193, 196
based on global strategies, 213
error bound, 194
Newton–Raphson method, 195
order of convergence, 194
fixed point theorem, 193
floating-point
IEEE formats, 356
IEEE-754 standard for base-2 arithmetic, 356
numbers, 356
forward differences, 53
forward elimination in Olver’s method, 117
forward recurrence algorithm for computing continued fractions, 181
forward series recurrence algorithm for computing continued fractions, 181
fractal, 197
Frobenius method, 22
fundamental Lagrange interpolation polynomial, 52
fundamental system of solutions, 21
gamma function
alternative asymptotic representation, 49
asymptotic expansion, 243
numerical algorithm based on recursion, 246
Gauss hypergeometric functions, 28
Bühring’s analytic continuation formula, 31
corvergence domains of power series, 31
deriving the continued fraction for a ratio of, 187
differential equation, 18
Norlünd’s continued fraction, 105
other power series, 30
Padé approximants, 283
recurrence relations in all directions, 104
recursion for power series coefficients, 29
removable singularities, 33
special cases, 29
value at \(z = 1 \), 29
Gauss quadrature, 132, 135, 191
Christoffel numbers, 136
computing zeros and weights, 133, 141, 145
example for Legendre polynomials, 145
for computing Airy functions, 360
for computing the Airy function in the complex plane, 145
Gauss–Kronrod, 299
Gauss–Lobatto, 299
Gauss–Radau, 299
generalized Hermite polynomials, 141
Golub–Welsch algorithm, 133, 141, 145
Hermite polynomials, 145
Jacobi matrix
nonorthonormal case, 144
orthonormal case, 142
Jacobi polynomials, 145
Kronrod nodes, 300
Laguerre polynomials, 145
Meixner–Pollaczek polynomials, 141
orthonormal polynomials, 134
other rules, 298
Patterson, 301

recursion for orthogonal polynomials, 143
Stieltjes procedure, 139
Gegenbauer polynomial, 140
and Gauss–Kronrod quadrature, 300
generalized hypergeometric function, 27
analytic continuation, 27
terminating series, 27
Laguerre polynomial, 140
global fixed point methods, 213
global strategies for finding zeros, 213
Golub–Welsch algorithm for Gauss quadrature, 133, 141, 145
Gram–Schmidt orthogonalization, 134

Hadamard-type expansions for modified Bessel function \(I_\nu(z) \), 41
Hankel transforms, 303
Hermite
interpolation, 53, 54, 136
Hermite polynomial and Gauss–Kronrod quadrature, 300
Hermite polynomials
differential equation, 19
Gauss quadrature, 145
generalized for Gauss quadrature, 141
special case of parabolic cylinder functions, 102
zeros, 102
hyperasymptotics, 40
for the gamma function, 40
hypergeometric functions, see Gauss hypergeometric functions
hypergeometric series, 26

IEEE floating-point, see floating-point ill-conditioned problem, 357
incomplete beta function
asymptotic inversion, 318
error function case, 322

From "Numerical Methods for Special Functions" by Amparo Gil, Javier Segura, and Nico Temme
Index

incomplete gamma function
 case, 324
 symmetric case, 319
deriving the continued fraction, 189
in terms of the Gauss hypergeometric function, 189

incomplete gamma functions
 as solution of inhomogeneous linear first order difference equation, 114
 asymptotic expansions, 237
 alternative representation, 47
 for \(\Gamma(a, z) \), 37, 238
 simpler uniform expansions, 247
 uniform, 242
 asymptotic inversion, 312, 329
 continued fraction, 176
 computing \(\Gamma(a, z) \), 177, 181, 182
 for \(\Gamma(a, z) \), 186
 expansion as factorial series, 45
 normalized functions \(P(a, z) \) and \(Q(a, z) \), 241
 numerical algorithm based on uniform expansion, 245
 Padé approximant, 284
indicial equation, 22

inhomogeneous
 Airy functions, 359
 linear difference equations, 112
 linear first order difference equation
 condition of the recursion, 113
 for exponential integrals, 115
 for incomplete gamma function, 114
 minimal and dominant solutions, 113
 linear first order difference equations, 112
 second order difference equations, 115
 example, 115
 Olver’s method, 116
 subdominant solution, 115
 superminimal solution, 115
initial value problem
 for differential equations in the complex plane
 Taylor-series method, 292
inner product of polynomials method, 133
interpolation
 by orthogonal polynomials, 65
 Chebyshev, 62
 of the second kind, 65
 Hermite, 53, 54, 136
 Lagrange, 52, 54
 Runge phenomenon, 54
interpolation polynomial
 fundamental Lagrange, 52
inversion
 of complementary error function, 309
 of error function, 330
 of incomplete beta functions, 318
 of incomplete gamma functions, 312, 329
irregular singular point of a differential equation, 19
Jackson’s theorem, 63
Jacobi continued fraction, 179
Jacobi matrix, 205
 Gauss quadrature
 nonorthonormal case, 144
 used in Gauss quadrature, 142
Jacobi polynomial, 60, 140
 as hypergeometric series, 60
 Gauss quadrature, 145
 zeros, 191
Julia set, 197

Kummer functions, see confluent hypergeometric functions

Lagrange
 interpolation, 52
 formula for the error, 125
 fundamental polynomials, 124
 polynomial, 54
 remainder of Taylor’s formula, 16

From "Numerical Methods for Special Functions" by Amparo Gil, Javier Segura, and Nico Temme
Laguerre polynomial, 140
computing zeros, 221
Laguerre polynomials
Gauss quadrature, 145
Lambert’s W-function, 312
Laplace transform
inversion by using Padé approximations, 352
numerical inversion, 347, 349
Lebesgue constants for Fourier series, 291
Legendre functions
associated functions, 363
associated functions \(P^\mu_\nu(z), Q^\mu_\nu(z) \), 363
differential equation, 19, 363
oblate spheroidal harmonics, 363
prolate spheroidal harmonics, 363
recurrence relations, 103
for conical functions, 103
with respect to the degree, 104
with respect to the order, 103
toroidal harmonics, 363
Legendre polynomial, 140
example for Gauss quadrature, 145
Legendre’s elliptic integrals, 344
Levin’s sequence transformation, 287
linear
differential equations
regular and singular points, 19
solved by Taylor expansion, 291
homogeneous three-term recurrence relation, 87
independent solutions of a recurrence relation, 89
inhomogeneous first order difference equations, 87
Liouville–Green approximation, 26
Liouville transformation, 25
local strategies for finding zeros, 197
logarithmic derivative of the gamma function, 33
Longman’s method for computing oscillatory integrals, 303
machine-\(\epsilon \), 356
Maclaurin series, 16
mathematical libraries for computing special functions, 355
McMahon expansions for zeros of Bessel functions, 200, 204
Meixner–Pollaczek polynomials, 141
method of Taylor series for differential equations in the complex plane, 292
Miller algorithm
condition for convergence, 108
estimating starting value \(N \), 110
for computing modified Bessel functions \(I_{n+1/2}(x) \), 106
numerical stability, 109
numerical stability of the normalizing sum, 109
when a function value is known, 105
with a normalizing sum, 107
minimal solution of a recurrence relation, 90
how to compute by backward recursion, 105
minimax approximation, 51
Jackson’s theorem, 63
modified Bessel functions
algorithm, 370
anomalous behavior of recursion, 118
asymptotic expansion for \(K_{\alpha}(z) \), 43
Chebyshev expansions for \(K_0(x) \) and \(K_1(x) \), 370
differential equation, 370
expansion for \(K_{\alpha}(z) \) in terms of confluent hypergeometric functions, 43
of integer and half-integer orders, 370
of purely imaginary order, 372
Airy-type asymptotic expansions, 375
algorithms for \(K_{\alpha}(x) \), \(L_{\alpha}(x) \), 372
asymptotic expansions, 374
Index

continued fraction for $K_\nu(x)$, 373
differential equation, 372
nonoscillating integral representations, 375
scaled functions, 372
series expansions, 373
Wronskian relation, 372
Padé approximants to $K_\nu(x)$, 352
recurrence relation, 97, 370
spherical, 370
algorithm, 371
notation, 370
recurrence relation, 371
trapezoidal rule for $K_0(x)$, 153
modified Lentz algorithm for computing continued fractions, 183
modulus of continuity, 63
monic orthogonal polynomials, 134
orthonormal polynomials, 134

Newton’s binomial formula, 27
Newton’s divided difference formula, 53
Newton–Raphson method, 191, 193, 195
high order inversion, 196, 327
order of convergence, 195
nodes of a quadrature rule, 124
nonlinear differential equations, 25
Norlund’s continued fraction for Gauss hypergeometric functions, 105
normalized incomplete gamma function asymptotic estimate, 42
normalized incomplete gamma functions asymptotic estimate for $P(a, z)$, 41
Hadamard-type expansions, 41
relation with chi-square probability functions, 240
uniform asymptotic expansions, 242
numerical condition, 357
numerical inversion of Laplace transforms, 347, 349
by deforming the contour, 350
complex Gauss quadrature formula, 348
to compute Bessel function $J_0(x)$, 349
to compute the complementary error function, 350
numerical stability, 357
numerically unstable method, 357

oblate spheroidal harmonics, 363
algorithm, 365
recurrence relations, 365
scaled functions, 364
Olver’s method for inhomogeneous second order difference equations, 116
order of convergence
asymptotic error constant, 194
fixed point methods, 194
ordinary differential equation, see differential equation
orthogonal basis with respect to inner product, 134
orthogonal polynomials
computing zeros by using asymptotic expansions, 234
on complex contour, 348
zeros, 135
orthogonality with respect to inner product, 134
oscillatory integrals, 301
asymptotic expansion, 301
convergence acceleration schemes, 303
Filon’s method, 303
general forms, 303
Hankel transforms, 303
Longman’s method for computing, 303
overflow threshold, 356

Padé approximants, 276
continued fractions, 278
diagonal elements in the table, 277
generating the lower triangular part in the table, 278
how to compute, 278
by Wynn's cross rule, 278
Luke's examples for special
functions, 283
normality, 277
relation with continued fractions,
179
table, 277
to the exponential function, 280
to the Gauss hypergeometric
function, 283
to the incomplete gamma functions,
284
to the modified Bessel function
$K_\nu(z)$, 352
Wynn's cross rule for, 278
parabolic cylinder functions, 377
algorithm, 378
Maclaurin series, 379
regions in (a,x)-plane, 378
asymptotic expansions for large x,
380
computing zeros by using
asymptotic expansions, 233
contour integral for, 168
definition, 101
differential equation, 19, 377
integral representations, 384
oscillatory behavior, 102
recurrence relation for $U(a,x)$, 385
relation with Hermite polynomials,
102
scaled functions, 377
three-term recurrence relations, 101
uniform Airy-type asymptotic
expansion, 383
uniform asymptotic expansions in
elementary functions, 381
Wronskian relation, 101
Perron's theorem, 92, 93
intuitive form, 92
Pincherle's theorem, 95
plasma-dispersion function, 229
Pochhammer symbol, 27
polynomial
Stieltjes, 300
polynomial approximation
minimax, 51
Jackson's theorem, 63
poorly conditioned problem, 357
power series
of Bessel function $J_\nu(z)$, 24, 28
of confluent hypergeometric
M-function, 28
of Gauss hypergeometric functions,
28
of hypergeometric type, 26
of the Airy functions, 18
of the exponential function, 17
primal algorithm
for computing toroidal harmonics,
366
prolate spheroidal harmonics, 363
algorithm, 364
recurrence relation for $P_n^m(x)$, 365
recurrence relation for $Q_n^m(x)$, 365
scaled functions, 364
quadrature
characteristic function for the error,
149
Clenshaw–Curtis, 296, 297
degree of exactness, 124
double exponential formulas, 156
tanh-rule, 154
Fejér, 296
first rule, 297
second rule, 297
for contour integrals in the complex
plane, 157
Gauss–Kronrod, 299
Gauss–Lobatto, 299
Gauss–Radau, 299
other Gauss rules, 298
Patterson, 301
Romberg quadrature, 294
simple trapezoidal rule, 124
Simpson’s rule, 295
tanh-rule, 154
the trapezoidal rule on \mathbb{R}, 147
transforming the variable, 153

From "Numerical Methods for Special Functions" by Amparo Gil, Javier Segura, and Nico Temme
weight function, 132
weights, 124
quotient-difference algorithm, 178

recurrence relation
for Bessel functions, 96
for computing modified Bessel function $K_\nu(z)$, 100
for confluent hypergeometric functions, 99
in all directions, 99
in the $(+ +)$ direction, 100
in the $(+ 0)$ direction, 99
in the $(0 +)$ direction, 100
for Coulomb wave functions, 98
for Legendre functions, 103
for modified Bessel functions, 97, 370
for modified spherical Bessel functions, 371
for parabolic cylinder functions, 101, 385
for prolate spheroidal harmonics $P_n^m(x)$, 365
for prolate spheroidal harmonics $Q_n^m(x)$, 365
for toroidal harmonics, 367
recurrent trapezoidal rule, 129
regular point a differential equation, 19
regular singular point of a differential equation, 19
relative error, 356
Remes’ second algorithm of, 290
repeated nodes in Hermite interpolation, 54
reverting asymptotic series, 226
Riccati–Bessel functions
difference-differential system, 213
zeros, 213
Romberg quadrature, 294
Runge phenomenon, 54
saddle point method, 158
saddle point, 158
scalar product of polynomials, 133
scaling functions, 358
to enlarge the domain of computation, 358
to obtain higher accuracy, 358
Schwarzian derivative, 26
Scorer functions
algorithm for $H_\nu(z)$, 361
asymptotic expansion for $G_\nu(z)$, 362
asymptotic expansion for $H_\nu(z)$, 362
computation for complex arguments, 359
computing scaled functions, 359, 363
computing zeros by using asymptotic expansions, 227
connection formulas for $G_\nu(z)$, 362
integral representation for $H_\nu(z)$, 361
power series for $G_\nu(z)$, 362
secant method, 191
second algorithm of Remes, 290
second order homogeneous linear difference equation, 87
sequence transformations, 286
for asymptotic expansion of exponential integral, 288
Levin’s transformation, 287
numerical examples, 288
of asymptotic series, 288
of power series, 288
Weniger’s transformation, 287
with remainder estimates, 287
Simpson’s rule, 125, 295
software survey for computing special functions, 355
sources of errors
due to discretization, 357
due to fixed-length representations, 357
due to truncation, 357
in computations, 357
special functions computing
Airy functions of complex arguments, 359
mathematical libraries, 355
Index

- **ratios of Bessel functions**, 218
- **Scorer functions of complex arguments**, 359
- **software survey**, 355
- **stability of a numerical method**, 357
- **Steed’s algorithm** for computing continued fractions, 181
- **steepest descent path**, 158
- **Stieltjes continued fraction**, 178
- **procedure for recurrence relations**, 139
- **Stirling numbers**
 - **definitions**, 337
 - **explicit representations**, 337
 - **generating functions**, 337
 - **of the first kind**
 - **uniform asymptotic expansion**, 343
 - **of the second kind**, 44
 - **uniform asymptotic expansion**, 338
- **Stokes phenomenon**, 40
- **subdominant solution** of inhomogeneous second order difference equation, 115
- **superminimal solution** of inhomogeneous second order difference equations, 115
- **symmetric elliptic integrals**, 345
- **Taylor series**
 - **Cauchy’s formula for remainder**, 16
 - **Lagrange’s formula for remainder**, 16
 - **Taylor’s formula for remainder**, 16
 - **Taylor-series method** for boundary value problem in the complex plane, 293
 - **for initial value problem in the complex plane**, 292
- **testing of software**
 - **for computing functions**, 358
 - **by comparison with existing algorithms**, 358
 - **by extended precision algorithms**, 358
 - **by verification of functional relations**, 358
 - **consistency between different methods**, 358
 - **three-term recurrence relation, see also recurrence relation anomalous behavior**, 118
 - **confluent hypergeometric functions**, 120
 - **exponential integrals**, 121
 - **modified Bessel functions**, 118
 - **backward recursion**, 91
 - **condition of**, 88
 - **dominant solution**, 90
 - **forward recursion**, 91
 - **linear homogeneous**, 87
 - **linearly independent solutions**, 89
 - **minimal solution**, 89, 90
 - **relation with continued fractions**, 95
 - **scaled form**, 94
 - **with constant coefficients**, 92
- **toroidal harmonics**, 363
 - **algorithm**, 366
 - **asymptotic expansion for** \(P_{-1/2}^M(x) \), 368
 - **dual algorithm**, 369
 - **primal algorithm**, 366
 - **recurrence relation**, 367
 - **relation with elliptic integrals**, 367
 - **scaled functions**, 364
 - **series expansion for** \(P_{-1/2}^M(x) \), 367
- **trapezoidal rule**, 350
 - **simple rule**, 124
 - **compound rule**, 126
 - **Euler’s summation formula**, 130
 - **for computing Scorer functions**, 362
 - **for computing the Bessel function** \(J_0(x) \), 128
 - **for computing the Bessel function** \(K_0(x) \), 153
 - **for computing the complementary error function**, 350

From "Numerical Methods for Special Functions" by Amparo Gil, Javier Segura, and Nico Temme
Index

asymptotic approximations, 197, 200
Bessel functions, 204, 233, 385
complex zeros, 197
eigenvalue problem, 208, 212
from Airy-type asymptotic expansions, 204
McMahon expansions, 200, 204
bisection method, 191, 193
complex zeros, 197
computation based on asymptotic approximations, 199
conical functions, 211, 223
cylinder functions, 233
eigenvalue problem for orthogonal polynomials, 205
error functions, 229
fixed point method, 193
fixed point methods and asymptotics, 199
global strategies, 204, 213
Jacobi polynomials, 191
Laguerre polynomials, 221
local strategies, 197
matrix methods, 204
Newton–Raphson method, 191, 193
orthogonal polynomials, 135, 234
parabolic cylinder functions, 233
Riccati–Bessel functions, 213
Scorer functions, 227
secant method, 191

on R, 147
recursive computation, 129
with exponentially small error, 151
TTRR, see three-term recurrence relation
turning point of a differential equation, 249
underflow threshold, 356
Wagner’s modification of asymptotic expansions, 48
Watson’s lemma, 36
weight function for numerical quadrature, 132
weights of a quadrature rule, 124
Weniger’s sequence transformation, 287
Whittaker functions
differential equation, 19
WKB approximation, 26
Wronskian, 21
for Airy functions, 254
for Bessel functions, 255
for modified Bessel functions of purely imaginary order, 372
for parabolic cylinder functions, 101
Wynn’s cross rule
for Padé approximants, 278
Wynn’s epsilon algorithm, 278
zeros of functions, 191
Airy functions, 224