
Chapter 1

Hyperbolic PartialDifferential
Equations

We begin our study of finite difference methods for partial differential equations by con-
sidering the important class of partial differential equations called hyperbolic equations. In
later chapters we consider other classes of partial differential equations, especially parabolic
and elliptic equations. For each of these classes of equations we consider prototypical equa-
tions, with which we illustrate the important concepts and distinguishing features associated
with each class. The reader is referred to other textbooks on partial differential equations
for alternate approaches, e.g., Folland [18], Garabedian [22], and Weinberger [68]. After
introducing each class of differential equations we consider finite difference methods for
the numerical solution of equations in the class.

We begin this chapter by considering the simplest hyperbolic equation and then extend
our discussion to include hyperbolic systems of equations and equations with variable
coefficients. After the basic concepts have been introduced, we begin our discussion of finite
difference schemes. The important concepts of convergence, consistency, and stability are
presented and shown to be related by the Lax–Richtmyer equivalence theorem. The chapter
concludes with a discussion of the Courant–Friedrichs–Lewy condition and related topics.

1.1 Overview of Hyperbolic Partial Differential Equations
The One-WayWave Equation

The prototype for all hyperbolic partial differential equations is the one-way wave equation:

ut + aux = 0, (1.1.1)

where a is a constant, t represents time, and x represents the spatial variable. The
subscript denotes differentiation, i.e., ut = ∂u/∂t. We give u(t, x) at the initial time,
which we always take to be 0—i.e., u(0, x) is required to be equal to a given function
u0(x) for all real numbers x —and we wish to determine the values of u(t, x) for positive
values of t. This is called an initial value problem.

By inspection we observe that the solution of (1.1.1) is

u(t, x) = u0(x − at). (1.1.2)

(Actually, we know only that this is a solution; we prove later that this is the unique solution.)
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2 Chapter 1. Hyperbolic Partial Differential Equations

The formula (1.1.2) tells us several things. First, the solution at any time t0 is a
copy of the original function, but shifted to the right, if a is positive, or to the left, if a is
negative, by an amount |a|t0. Another way to say this is that the solution at (t, x) depends
only on the value of ξ = x − at. The lines in the (t, x) plane on which x − at is constant
are called characteristics. The parameter a has dimensions of distance divided by time
and is called the speed of propagation along the characteristic. Thus the solution of the
one-way wave equation (1.1.1) can be regarded as a wave that propagates with speed a

without change of shape, as illustrated in Figure 1.1.

xt = 0 t > 0 x

t

t = 0 t > 0

Figure 1.1. The solution of the one-way wave equation is a shift.

Second, whereas equation (1.1.1) appears to make sense only if u is differentiable,
the solution formula (1.1.2) requires no differentiability of u0. In general, we allow for
discontinuous solutions for hyperbolic problems. An example of a discontinuous solution
is a shock wave, which is a feature of solutions of nonlinear hyperbolic equations.

To illustrate further the concept of characteristics, consider the more general hyper-
bolic equation

ut + aux + bu = f (t, x),

u(0, x) = u0(x),
(1.1.3)

where a and b are constants. Based on our preceding observations we change variables
from (t, x) to (τ, ξ), where τ and ξ are defined by

τ = t, ξ = x−at.

The inverse transformation is then

t = τ, x = ξ + aτ,

and we define ũ(τ, ξ) = u(t, x), where (τ, ξ) and (t, x) are related by the preceding
relations. (Both u and ũ represent the same function, but the tilde is needed to distinguish
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1.1 Overview of Hyperbolic Equations 3

between the two coordinate systems for the independent variables.) Equation (1.1.3) then
becomes

∂ũ

∂τ
= ∂t

∂τ
ut + ∂x

∂τ
ux

= ut + aux = −bu+ f (τ, ξ + aτ).

So we have
∂ũ

∂τ
= −bũ+ f (τ, ξ + aτ).

This is an ordinary differential equation in τ and the solution is

ũ(τ, ξ) = u0(ξ)e
−bτ +

∫ τ

0
f (σ, ξ + aσ)e−b(τ−σ) dσ.

Returning to the original variables, we obtain the representation for the solution of equation
(1.1.3) as

u(t, x) = u0(x − at)e−bt +
∫ t

0
f
(
s, x − a(t − s)

)
e−b(t−s) ds. (1.1.4)

We see from (1.1.4) that u(t, x) depends only on values of (t ′, x′) such that x′ − at ′ =
x − at, i.e., only on the values of u and f on the characteristic through (t, x) for
0 ≤ t ′ ≤ t.

This method of solution of (1.1.3) is easily extended to nonlinear equations of the
form

ut + aux = f (t, x, u). (1.1.5)

See Exercises 1.1.5, 1.1.4, and 1.1.6 for more on nonlinear equations of this form.

Systems of Hyperbolic Equations

We now examine systems of hyperbolic equations with constant coefficients in one space
dimension. The variable u is now a vector of dimension d.

Definition 1.1.1. A system of the form

ut + Aux + Bu = F(t, x) (1.1.6)

is hyperbolic if the matrix A is diagonalizable with real eigenvalues.

By saying that the matrix A is diagonalizable, we mean that there is a nonsingular
matrix P such that PAP−1 is a diagonal matrix, that is,

PAP−1 =
 a1 0

. . .

0 ad

 = �.
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4 Chapter 1. Hyperbolic Partial Differential Equations

The eigenvalues ai of A are the characteristic speeds of the system. Under the change of
variables w = Pu we have, in the case B = 0,

wt +�wx = PF(t, x) = F̃ (t, x)

or
wi
t + ai w

i
x = f̃ i (t, x),

which is the form of equation (1.1.3). Thus, when matrix B is zero, the one-dimensional
hyperbolic system (1.1.6) reduces to a set of independent scalar hyperbolic equations. If
B is not zero, then in general the resulting system of equations is coupled together, but
only in the undifferentiated terms. The effect of the lower order term, Bu, is to cause
growth, decay, or oscillations in the solution, but it does not alter the primary feature of the
propagation of the solution along the characteristics. The definition of hyperbolic systems
in more than one space dimension is given in Chapter 9.

Example 1.1.1. As an example of a hyperbolic system, we consider the system

ut + 2ux + vx = 0,

vt + ux + 2vx = 0,

which can be written as (
u

v

)
t

+
(

2 1
1 2

)(
u

v

)
x

= 0.

As initial data we take

u(0, x) = u0(x) =
{

1 if |x| ≤ 1,

0 if |x| > 1,

v(0, x) = 0.

By adding and subtracting the two equations, the system can be rewritten as

(u+ v)t + 3(u+ v)x = 0,

(u− v)t + (u− v)x = 0

or

w1
t + 3w1

x = 0, w1(0, x) = u0(x),

w2
t + w2

x = 0, w2(0, x) = u0(x).

The matrix P is
(

1 1

1 −1

)
for this transformation. The solution is, therefore,

w1(t, x) = w1
0(x − 3t),

w2(t, x) = w2
0(x − t)

Copyright © 2004 by the Society for Industrial and Applied Mathematics



1.1 Overview of Hyperbolic Equations 5

or

u(t, x) = 1
2 (w

1 + w2) = 1
2 [u0(x − 3t)+ u0(x − t)] ,

v(t, x) = 1
2 (w

1 − w2) = 1
2 [u0(x − 3t)− u0(x − t)] .

These formulas show that the solution consists of two independent parts, one propagating
with speed 3 and one with speed 1.

Equations with Variable Coefficients

We now examine equations for which the characteristic speed is a function of t and x.

Consider the equation
ut + a(t, x)ux = 0 (1.1.7)

with initial condition u(0, x) = u0(x), which has the variable speed of propagation a(t, x).

If, as we did after equation (1.1.3), we change variables to τ and ξ, where τ = t and ξ

is as yet undetermined, we have

∂ũ

∂τ
= ∂t

∂τ
ut + ∂x

∂τ
ux

= ut + ∂x

∂τ
ux.

In analogy with the constant coefficient case, we set

dx

dτ
= a(t, x) = a(τ, x).

This is an ordinary differential equation for x giving the speed along the characteristic
through the point (τ, x) as a(τ, x). We set the initial value for the characteristic curve
through (τ, x) to be ξ. Thus the equation (1.1.7) is equivalent to the system of ordinary
differential equations

dũ

dτ
= 0, ũ(0, ξ) = u0(ξ),

dx

dτ
= a(τ, x), x(0) = ξ.

(1.1.8)

As we see from the first equation in (1.1.8), u is constant along each characteristic curve,
but the characteristic determined by the second equation need not be a straight line. We
now present an example to illustrate these ideas.

Example 1.1.2. Consider the equation

ut + x ux = 0,

u(0, x) =
{

1 if 0 ≤ x ≤ 1,

0 otherwise.
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6 Chapter 1. Hyperbolic Partial Differential Equations

Corresponding to the system (1.1.8) we have the equations

dũ

dτ
= 0,

dx

dτ
= x, x(0) = ξ.

The general solution of the differential equation for x(τ) is x(τ) = ceτ . Because we
specify that ξ is defined by x(0) = ξ, we have x(τ) = ξ eτ , or ξ = xe−t . The equation
for ũ shows that ũ is independent of τ, so by the condition at τ equal to zero we have
that

ũ(τ, ξ) = u0(ξ).

Thus

u(t, x) = ũ(τ, ξ) = u0(ξ) = u0(xe
−t ).

So we have, for t > 0,

u(t, x) =
{

1 if 0 ≤ x ≤ et ,

0 otherwise.

As for equations with constant coefficients, these methods apply to nonlinear equa-
tions of the form

ut + a(t, x)ux = f (t, x, u), (1.1.9)

as shown in Exercise 1.1.9. Equations for which the characteristic speeds depend on u,

i.e., with characteristic speed a(t, x, u), require special care, since the characteristic curves
may intersect.

Systems with Variable Coefficients

For systems of hyperbolic equations in one space variable with variable coefficients, we
require uniform diagonalizability. (See Appendix A for a discussion of matrix norms.)

Definition 1.1.2. The system

ut + A(t, x) ux + B(t, x)u = F(t, x) (1.1.10)

with

u(0, x) = u0(x)

is hyperbolic if there is a matrix function P(t, x) such that

P(t, x)A(t, x) P−1(t, x) = �(t, x) =
 a1(t, x) 0

. . .

0 ad(t, x)


is diagonal with real eigenvalues and the matrix norms of P(t, x) and P−1(t, x) are
bounded in x and t for x ∈ R, t ≥ 0.
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1.1 Overview of Hyperbolic Equations 7

The characteristic curves for system (1.1.10) are the solutions to the differential
equations

dxi

dt
= ai(t, x), xi(0) = ξ i .

Setting v = P(t, x)u, we obtain the system for v:

vt +�vx = P(t, x) F (t, x)+G(t, x)v,

where
G = (Pt +�Px − PB)P−1.

In terms of directional derivatives this system is equivalent to

dvi

dt

∣∣∣
along xi

= f̃ i (t, x)+
d∑

j=1

gij (t, x)v
j .

This formula is not a practical method of solution for most problems because the ordinary
differential equations are often quite difficult to solve, but the formula does show the
importance of characteristics for these systems.

Exercises
1.1.1. Consider the initial value problem for the equation

ut + aux = f (t, x)

with u(0, x) = 0 and

f (t, x) =
{

1 if x ≥ 0,

0 otherwise.
Assume that a is positive. Show that the solution is given by

u(t, x) =


0 if x ≤ 0,

x/a if x ≥ 0 and x − at ≤ 0,

t if x ≥ 0 and x − at ≥ 0.

1.1.2. Consider the initial value problem for the equation

ut + aux = f (t, x)

with u(0, x) = 0 and

f (t, x) =
{

1 if −1 ≤ x ≤ 1,

0 otherwise.
Assume that a is positive. Show that the solution is given by

u(t, x) =



(x + 1)/a if −1 ≤ x ≤ 1 and x − at ≤ −1,

t if −1 ≤ x ≤ 1 and −1 ≤ x − at,

2/a if x ≥ 1 and x − at ≤ −1,

(1 − x + at)/a if x ≥ 1 and −1 ≤ x − at ≤ 1,

0 otherwise.
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8 Chapter 1. Hyperbolic Partial Differential Equations

1.1.3. Solve the initial value problem for

ut + 1

1 + 1
2 cos x

ux = 0.

Show that the solution is given by u(t, x) = u0(ξ), where ξ is the unique solution
of

ξ + 1
2 sin ξ = x + 1

2 sin x − t.

1.1.4. Show that the initial value problem for (1.1.5) is equivalent to the family of initial
value problems for the ordinary differential equations

dũ

dτ
= f (τ, ξ + aτ, ũ)

with ũ(0, ξ) = u0(ξ). Show that the solution of (1.1.5), u(t, x), is given by u(t, x) =
ũ (t, x − at) .

1.1.5. Use the results of Exercise 1.1.4 to show that the solution of the initial value problem
for

ut + ux = − sin2 u

is given by

u(t, x) = tan−1
(

tan[u0(x − t)]

1 + t tan[u0(x − t)]

)
.

An equivalent formula for the solution is

u(t, x) = cot−1 (cot[u0(x − t)] + t) .

1.1.6. Show that all solutions to
ut + a ux = 1 + u2

become unbounded in finite time. That is, u(t, x) tends to infinity for some x as t

approaches some value t∗, where t∗ is finite.

1.1.7. Show that the initial value problem for the equation

ut +
(

1 + x2
)
ux = 0

is not well defined. Hint: Consider the region covered by the characteristics origi-
nating on the x-axis.

1.1.8. Obtain the solution of the system

ut + ux + vx = 0, u(x, 0) = u0(x),

vt + ux − vx = 0, v(x, 0) = v0(x).
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1.2 Boundary Conditions 9

1.1.9. Show that the initial value problem for (1.1.9) is equivalent to the family of initial
value problems for the system of ordinary differential equations

dũ

dτ
= f (τ, x(τ ), ũ), ũ(0, ξ) = u0(ξ),

dx

dτ
= a(τ, x(τ )), x(0) = ξ.

The solution to (1.1.9) is given by u (t, x(ξ)) = ũ(t, ξ).

1.2 Boundary Conditions
We now consider hyperbolic partial differential equations on a finite interval rather than on
the whole real line. Most applications of partial differential equations involve domains with
boundaries, and it is important to specify data correctly at these locations. The conditions
relating the solution of the differential equation to data at a boundary are called boundary
conditions. A more complete discussion of the theory of boundary conditions for time-
dependent partial differential equations is given in Chapter 11. The problem of determining
a solution to a differential equation when both initial data and boundary data are present
is called an initial-boundary value problem. In this section we restrict the discussion to
initial-boundary value problems for hyperbolic equations in one space variable.

The discussion of initial-boundary value problems serves to illustrate again the im-
portance of the concept of characteristics. Consider the simple equation

ut + aux = 0 with 0 ≤ x ≤ 1, t ≥ 0. (1.2.1)

If a is positive the characteristics in this region propagate from the left to the right, as shown
in Figure 1.2. By examining the characteristics in Figure 1.2, we see that the solution must
be specified on the boundary at x equal to 0, in addition to the initial data, in order to be
defined for all time. Moreover, no data can be supplied at the other boundary or the solution
will be overdetermined.

If we specify initial data u(0, x) = u0(x) and boundary data u(t, 0) = g(t), then
the solution is given by

u(t, x) =
{
u0(x − at) if x − at > 0,

g(t − a−1x) if x − at < 0.

Along the characteristic given by x − at = 0, there will be a jump discontinuity in u if
u0(0) is not equal to g(0). If a is negative, the roles of the two boundaries are reversed.

Now consider the hyperbolic system(
u1

u2

)
t

+
(
a b

b a

)(
u1

u2

)
x

= 0 (1.2.2)

on the interval 0 ≤ x ≤ 1. The eigenvalues, or characteristic speeds, of the system are
easily seen to be a + b and a − b. We consider only the cases where a and b are
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a > 0 a < 0

0 1

x

t

0 1

x

t

Figure 1.2. Characteristics for equation (1.2.1).

positive. If we have 0 < b < a, then both characteristic families propagate to the right,
as shown in Figure 1.3. This means that the entire solution, both components u1 and u2,

must be specified at x equal to 0, and no data should be specified at x equal to 1. Notice
that the slope of the characteristic in these figures is the inverse of the speed. Thus the
characteristics with the slower speed have the greater slope.

The most interesting case is where 0 < a < b, since then the characteristic families
propagate in opposite directions (see the right-hand side in Figure 1.3). If system (1.2.2) is
put into the form (1.1.6), it is(

u1 + u2

u1 − u2

)
t

+
(
a + b 0

0 a − b

)(
u1 + u2

u1 − u2

)
x

= 0. (1.2.3)

Certainly one way to determine the solution uniquely is to specify u1 + u2 at x equal
to 0 and specify u1 − u2 at x equal to 1. However, there are other possible boundary
conditions; for example, any of the form

u1 + u2 = α0(u
1 − u2)+ β0(t) at x = 0,

u1 − u2 = α1(u
1 + u2)+ β1(t) at x = 1,

(1.2.4)

will determine the solution. The coefficients α0 and α1 may be functions of t or constants.
As examples, we have that the boundary conditions

u1(t, 0) = β0(t),

u2(t, 1) = β1(t)
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a + b

a - b

a + b

a - b

0 1

x

t

0 1

x

t

Figure 1.3. Characteristics for system (1.2.3).

can be put in the form

u1(t, 0)+ u2(t, 0) = −(u1(t, 0)− u2(t, 0))+ 2β0(t),

u1(t, 1)+ u2(t, 1) = u1(t, 1)− u2(t, 1) + 2β1(t),

which are equivalent to the conditions in (1.2.4) with α0 and α1 equal to −1 and 1,
respectively.

Boundary conditions that determine a unique solution are said to be well-posed. For
the system (1.2.2) the boundary conditions are well-posed if and only if they are equivalent
to (1.2.4). The boundary conditions (1.2.4) express the value of the characteristic variable
on the incoming characteristic in terms of the outgoing characteristic variable and the data.
By incoming characteristic we mean a characteristic that enters the domain at the boundary
under consideration; an outgoing characteristic is one that leaves the domain. We see then
that specifying u1 or u2 at x equal to 0 is well-posed, and specifying u1 or u2 at x

equal to 1 is also well-posed. However, specifying u1 − u2 at x equal to 0 is ill-posed,
as is specifying u1 + u2 at x equal to 1.

For a hyperbolic initial-boundary value problem to be well-posed, the number of
boundary conditions must be equal to the number of incoming characteristics. The pro-
cedure for determining whether or not an initial-boundary value problem is well-posed is
given in Chapter 11.

Example 1.2.1. To illustrate how the solution to a hyperbolic system is determined by
both the initial and boundary conditions, we consider as an example the system(

u1

u2

)
t

+
( 1

2
3
2

3
2

1
2

)(
u1

u2

)
x

= 0 (1.2.5)
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12 Chapter 1. Hyperbolic Partial Differential Equations

on the interval [0,1] with the initial conditions

u1(0, x) = 0 and u2(0, x) = x.

The eigenvalues of the matrix in (1.2.5) are 2 and −1, so this system requires one
boundary condition on each boundary. We take boundary conditions

u1(t, 0) = t and u1(t, 1) = 0.

The two families of characteristic curves are given by

t − 2x = ξ1 and t + x = ξ2,

where different values of ξ1 and ξ2 give the different characteristic curves. The charac-
teristics are displayed in Figure 1.4.

The system (1.2.5) can be rewritten as(
u1 + u2

u1 − u2

)
t

+
( 2 0

0 −1

)(
u1 + u2

u1 − u2

)
x

= 0 (1.2.6)

and this shows that the characteristic variables w1 and w2 are

w1 = u1 + u2 and w2 = u1 − u2.

The inverse relations are

u1 = w1 + w2

2
and u2 = w1 − w2

2
.

The equations satisfied by w1 and w2 are

w1
t + 2w1

x = 0 and w2
t − w2

x = 0.

The initial conditions for w1 and w2 are

w1(0, x) = x and w2(0, x) = −x.

In the characteristic variables the boundary conditions are

w1(t, 0) = −w2(t, 0)+ 2t and w2(t, 1) = w1(t, 1). (1.2.7)

x

t

1
2

3

4

5

Figure 1.4. Characteristics for Example 1.2.1.
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1.2 Boundary Conditions 13

We now use this data to determine the solution in the interior. In region 1 of Figure
1.4, the solution is determined by the initial conditions. Thus, using the characteristics and
the initial data we obtain

w1(t, x) = w1(0, x − 2t) = x − 2t,

w2(t, x) = w2(0, x + t) = −(x + t) = −x − t.

Using the inverse relations, we have

u1(t, x) = w1(t, x)+ w2(t, x)

2
= −3

2
t,

u2(t, x) = w1(t, x)− w2(t, x)

2
= x − 1

2
t.

In region 2, the values of w1 are determined since the characteristics for w1 enter
from region 1. Thus, the formula for w1 is the same for regions 1 and 2:

w1(t, x) = x − 2t.

The values of w2 in region 2 are determined by the values from the characteristics
emanating from the boundary at x = 1. The boundary condition there is (from (1.2.7))

w2(t, 1) = −w1(t, 1) = −(1 − 2t) = −1 + 2t,

and extending to the interior we have

w2(t, x) = w2(x + t − 1, 1) = −1 + 2(x + t − 1) = −3 + 2x + 2t.

Thus in region 2

u1(t, x) = w1(t, x)+ w2(t, x)

2
= (x − 2t)+ (−3 + 2x + 2t)

2
= −3

2
+ 3

2
x,

u2(t, x) = w1(t, x)− w2(t, x)

2
= (x − 2t)− (−3 + 2x + 2t)

2
= 3

2
− 1

2
x − 2t.

Notice that both u1 and u2 are continuous along the line x + t = 1 between regions 1
and 2.

In region 3, the values of w2 are the same as in region 1:

w2(t, x) = −x − t.

The boundary condition at x = 0 from (1.2.7) is

w1(t, 0) = −w2(t, 0)+ 2t.

Copyright © 2004 by the Society for Industrial and Applied Mathematics



14 Chapter 1. Hyperbolic Partial Differential Equations

Thus at x = 0,
w1(t, 0) = −w2(t, 0)+ 2t = 3t.

Extending this into the interior along the characteristics gives

w1(t, x) = w1
(
t − 1

2
x, 0

)
= 3

(
t − 1

2
x

)
= −3

2
x + 3t.

Thus, from the inverse equations, in region 3

u1(t, x) = − 3
2x + 3t + (−x − t)

2
= −5

4
x + t,

u2(t, x) = − 3
2x + 3t − (−x − t)

2
= −1

4
x + 2t.

In region 4, the values of w1 are determined by the characteristics from region 3,
and the values of w2 are determined by the characteristics from region 2. Thus

w1(t, x) = −3

2
x + 3t,

w2(t, x) = −3 + 2x + 2t,

and so

u1(t, x) = −3

2
+ 1

4
x + 5

2
t,

u2(t, x) = 3

2
− 7

4
x + 1

2
t.

Similar analysis can determine the solution in all the regions for all t.

Periodic Problems

Besides the initial value problem on the whole real line R, we can also consider periodic
problems on an interval. For example, consider the one-way wave equation (1.1.1) on the
interval [0, 1], where the solution satisfies

u(t, 0) = u(t, 1) (1.2.8)

for all nonnegative values of t. Condition (1.2.8) is sometimes called the periodic boundary
condition, but strictly speaking it is not a boundary condition, since for periodic problems
there are no boundaries.

Aperiodic problem for a function u(t, x) with x in the interval [0, 1] is equivalent to
one on the real line satisfying u(t, x) = u(t, x + $) for every integer $. Thus, the function
u(t, x) is determined by its values of x in any interval of length 1, such as [− 1

2 ,
1
2 ].

A periodic problem may also be regarded as being defined on a circle that is coordi-
natized by an interval with endpoints being identified. In this view, there is a boundary in
the coordinate system but not in the problem itself.
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1.2 Boundary Conditions 15

Exercises

1.2.1. Consider system (1.2.2) on the interval [0, 1], with a equal to 0 and b equal to
1 and with the boundary conditions u1 equal to 0 at the left and u1 equal to 1
at the right boundary. Show that if the initial data are given by u1(0, x) = x and
u2(0, x) = 1, then the solution is u1(t, x) = x and u2(t, x) = 1 − t for all (t, x)

with 0 ≤ x ≤ 1 and 0 ≤ t.

1.2.2. Consider system (1.2.2) on the interval [0, 1], with a equal to 0 and b equal to 1
and with the boundary conditions u1 equal to 0 at the left and u1 equal to 1 + t

at the right boundary. Show that if the initial data are given by u1(0, x) = x and
u2(0, x) = 1, then for 0 ≤ x + t ≤ 3 the solution is given by

(
u1(t, x)

u2(t, x)

)
=



(
x

1 − t

)
if 0 ≤ t < 1 − x,(

2x + t − 1
2 − x − 2t

)
if 1 − x ≤ t < 1 + x,(

3x
3(1 − t)

)
if 1 + x ≤ t < 3 − x.

1.2.3. Consider system (1.2.2) on the interval [0, 1], with a equal to 0 and b equal to 1 and
with the boundary conditions u1 equal to 0 at both the left and the right boundaries.
Show that if the initial data are given by u1(0, x) = x and u2(0, x) = 1, then for
0 ≤ t ≤ 1 the solution is given by

(
u1(t, x)

u2(t, x)

)
=


(

x

1 − t

)
if 0 ≤ x < 1 − t,(

x − 1
2 − t

)
if 1 − t ≤ x < 1.

1.2.4. Show that the initial-boundary value problem of Exercise 1.2.3 has the solution for
1 ≤ t ≤ 2 given by

(
u1(t, x)

u2(t, x)

)
=


(

x

3 − t

)
if 0 ≤ x < t − 1,(

x − 1
2 − t

)
if t − 1 < x < 1.

1.2.5. Consider system (1.2.2) on the interval [0, 1], with a equal to 1 and b equal to
2 and with the boundary conditions u1 equal to 0 at the left and u1 equal to 1
at the right boundary. Show that if the initial data are given by u1(0, x) = x and
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16 Chapter 1. Hyperbolic Partial Differential Equations

u2(0, x) = 1, then for 0 ≤ t ≤ 1 + 1
3x the solution is given by

(
u1(t, x)

u2(t, x)

)
=



(
x − t

1 − 2t

)
if 0 ≤ t ≤ min( 1

3x, 1 − x),( 2
3x

1 − 1
3x − t

)
if 1

3x ≤ t ≤ 1 − x,

(
2x − 1

2 − x − 3t

)
if 1 − x ≤ t ≤ 1

3x,(
t + 5

3x − 1

2 − 2t − 4
3x

)
if max( 1

3x, 1 − x) ≤ t ≤ min( 4
3 − x, 1 + 1

3x),( 2
3x + 1

3

2
3 − 1

3x − t

)
if 4

3 − x ≤ t ≤ 1 + 1
3x.

1.3 Introduction to Finite Difference Schemes
We begin our discussion of finite difference schemes by defining a grid of points in the
(t, x) plane. Let h and k be positive numbers; then the grid will be the points (tn, xm) =
(nk, mh) for arbitrary integers n and m as displayed in Figure 1.5. For a function v

defined on the grid we write vnm for the value of v at the grid point (tn, xm). We also use
the notation unm for u(tn, xm) when u is defined for continuously varying (t, x). The
set of points (tn, xm) for a fixed value of n is called grid level n. We are interested in
grids with small values of h and k. In many texts the quantities that we call h and k are
represented by )x and )t, respectively.

h h h h h h

k

k

k

k

Figure 1.5. The finite difference grid.

Copyright © 2004 by the Society for Industrial and Applied Mathematics



1.3 Finite Difference Schemes 17

The basic idea of finite difference schemes is to replace derivatives by finite differ-
ences. This can be done in many ways; as two examples we have

∂u

∂t
(tn, xm) � u (tn + k, xm)− u(tn, xm)

k

� u (tn + k, xm)− u(tn − k, xm)

2k
.

That these are valid approximations is seen from the formulas

∂u

∂t
(t, x) = lim

ε→0

u(t + ε, x)− u(t, x)

ε

= lim
ε→0

u(t + ε, x)− u(t − ε, x)

2ε
,

relating the derivative to the values of u. Similar formulas approximate derivatives with
respect to x.

Using these approximations we obtain the following five finite difference schemes
for equation (1.1.1). Many other schemes are presented later.

vn+1
m − vnm

k
+ a

vnm+1 − vnm

h
= 0, (1.3.1)

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= 0, (1.3.2)

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
= 0, (1.3.3)

vn+1
m − vn−1

m

2k
+ a

vnm+1 − vnm−1

2h
= 0, (1.3.4)

vn+1
m − 1

2

(
vnm+1 + vnm−1

)
k

+ a
vnm+1 − vnm−1

2h
= 0. (1.3.5)

We refer to scheme (1.3.1) as the forward-time forward-space scheme because forward
difference approximations are used for both the time and space derivatives. Similarly,
(1.3.2) and (1.3.3) are referred to as the forward-time backward-space scheme and forward-
time central-space scheme, respectively. The scheme (1.3.4) is called the leapfrog scheme
and (1.3.5) is called the Lax–Friedrichs scheme.

The method of deriving these five schemes is very simple. This is one of the sig-
nificant features of the general method of finite differences, namely, that it is very easy to
derive finite difference schemes for partial differential equations. However, the analysis of
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18 Chapter 1. Hyperbolic Partial Differential Equations

finite difference schemes to determine if they are useful approximations to the differential
equation requires some powerful mathematical tools. Moreover, to develop very efficient
and accurate schemes requires more work than went into obtaining the schemes (1.3.1)–
(1.3.5). Nonetheless, the finite difference method is notable for the great variety of schemes
that can be used to approximate a given partial differential equation.

Given this short list of schemes, we are naturally led to the question of which of them
are useful and which are not, as indeed some are not. This is a basic question, and we spend
some time and care in answering it. In fact, the question can be answered on several levels.
We first answer it on the most primitive level, determining which schemes have solutions
that approximate solutions of the differential equation at all. Later, we determine which
schemes are more accurate than others and also investigate the efficiency of the various
schemes.

Each of the schemes (1.3.1)–(1.3.5) can be written expressing vn+1
m as a linear com-

bination of values of v at levels n and n− 1. For example, scheme (1.3.1) can be written
as

vn+1
m = (1 + aλ) vnm − aλ vnm+1,

where λ = k/h. The quantity λ will appear often in the study of schemes for hyperbolic
equations and will always be equal to k/h. Those schemes that involve v at only two
levels, e.g., n+ 1 and n, are called one-step schemes. Of the schemes just listed all
except the leapfrog scheme (1.3.4) are one-step schemes. Given the initial data v0

m, a
one-step scheme can be used to evaluate vnm for all positive values of n.

The leapfrog scheme (1.3.4) is an example of a multistep scheme. For a multistep
scheme it is not sufficient to specify the values of v0

m in order to determine vnm for all
positive values of n. To specify completely the means of computing a solution to a multistep
scheme, either we must specify v on enough time levels so that the scheme can be employed
or we must specify a procedure for computing the values of v on these initial time levels.
For example, to use the leapfrog scheme we could specify the values of v0

m and v1
m for

all m, or we could specify that scheme (1.3.1) would be used to compute the values of v1
m

from the values v0
m. In either case the leapfrog scheme (1.3.4) would be used to compute

vnm for n greater than 1.
When we refer to the leapfrog scheme we do not always distinguish between these

two ways of initializing the computation. As we show in Section 4.1, many of the properties
of the leapfrog scheme are independent of the method used to initialize the solution. Since
the usual practice is to use a one-step scheme to initialize the first time level, we usually
assume that the initialization is done in this way. This is illustrated in Example 1.3.2. The
subject of how to initialize multistep schemes in general is considered in more detail in
Section 4.1.

Example 1.3.1. Before we proceed with the analysis of finite difference schemes, we
present the results of some computations using two of the schemes just presented. We use
the initial-boundary value problem

ut + ux = 0 on − 2 ≤ x ≤ 3, 0 ≤ t
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1.3 Finite Difference Schemes 19

with initial data

u0(x) =
{

1 − |x| if |x| ≤ 1,

0 if |x| ≥ 1.

On the boundary at x equal to −2, we specify that u is zero.
The first computation uses the Lax–Friedrichs scheme (1.3.5) with λ = 0.8 and h

equal to 0.1. At the right-hand boundary we use the condition vn+1
M = vn+1

M−1, where
xM = 3. For our initial data we take v0

m = u0(xm). The computation proceeds using the
formula

vn+1
m = 1

2

(
vnm+1 + vnm−1

) − 1
2λ

(
vnm+1 − vnm−1

)
to find the values of vn+1

m for all values except those at the endpoints of the interval. A
graph of the solution at t = 1.6 is shown in Figure 1.6. In the figure the exact solution to
the differential equation is given by the solid line and the solution of the scheme is shown
as the curve with the circles. The figure shows that the finite difference scheme computes a
reasonable solution, except that the computed solution does not maintain the sharp corners
of the exact solution. A smaller value of h, with the same value of λ, improves the shape
of the computed solution.

x
-2 -1 0 1 2 3

0

0.5

1

u

Figure 1.6. A solution of the Lax–Friedrichs scheme, λ = 0.8.

A similar calculation but using λ = 1.6 is shown in Figure 1.7 at t = 0.8. The figure
shows that for this case the computed solution is not well behaved. As the computation
proceeds for larger values of t, the behavior becomes worse. Also, if the grid spacing is
decreased, with λ fixed at 1.6, the behavior does not get better and in fact becomes worse.
The explanation for this behavior is given in the next chapter.
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-2 -1 0 1 2 3

0

0.5

1

Figure 1.7. A solution of the Lax–Friedrichs scheme, λ = 1.6.

-2 -1 0 1 2 3

0

0.5

1

Figure 1.8. A solution computed with leapfrog scheme, λ = 0.8.

Example 1.3.2. The leapfrog scheme (1.3.4) with λ = 0.8 gives much better results than
does the Lax–Friedrichs scheme for the same initial-boundary value problem in Example
1.3.1. The computational results are displayed in Figure 1.8. Notice that the resolution of
the peak in the solution is much better in Figure 1.8 than in Figure 1.6. The leapfrog scheme
has a less smooth solution than does the Lax–Friedrichs; however the small oscillations do
not detract significantly from the accuracy. In Section 5.1 we discuss methods of removing
these oscillations. At the right-hand boundary, vn+1

M is computed as it was for the Lax–
Friedrichs scheme.
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1.3 Finite Difference Schemes 21

As discussed before, the leapfrog scheme requires that another scheme be used to
calculate the values at the time level with n equal to 1. For the calculations shown in
Figure 1.8, the forward-time central-space scheme (1.3.3) was used.

Computer Implementation of Finite Difference Schemes

To implement any of the finite difference schemes (1.3.1)–(1.3.5) or similar finite difference
schemes in a computer program, values of the solution vnm should not be stored beyond the
time steps in which they are needed. A simple way to do this is to use two one-dimensional
arrays vold and vnew, each of which is indexed by the spatial grid indices. The values
of vnew(m) and vold(m) correspond to vn+1

m and vnm, respectively. For each value of
n, vnew, corresponding to vn+1, is computed using vold, corresponding to vn. After
vnew has been computed for all m, then vold must be reset to vnew, and the time step
is incremented to the next value. For the leapfrog scheme the array vnew can be used to
store both vn−1 and vn+1.

Any values of the solution that are to be saved or plotted may be written to a file as
they are computed. It is not advisable to save past values beyond the time they are needed
in the computation.

A more convenient way to store the solution for schemes (1.3.1)–(1.3.5) is to use a
two-dimensional array, such as v(nmod,m), where nmod is equal to n modulo 2. The
values of v(0, · ) are used to compute the values of v(1, · ), which are used to compute
v(0, · ), and so on. This method avoids the need to reset arrays such as vold, which was
set equal to vnew in the method described previously.

Here is a sample of pseudocode for the Lax–Friedrichs scheme.

# Supply initial data
now = 0
new = 1
time = 0
loop on m from 0 to M ! Set initial data

v(now,m) = u0(x(m))
end of loop on m
loop for time < TIME MAX

time = time + k ! This is the time being computed.
n time = n time + 1
v(new,0 ) = beta(time) ! Set the boundary value.
loop on m from 1 to M-1

v(new,m) = (v(now, m-1) + v(now,m+1))/2
- a*lambda*( v(now,m+1) - v(now,m-1))/2

end of loop on m
v(new,M ) = v(new,M-1) ! Apply boundary condition.

now = new ! Reset for the next time step.
new = mod(n time, 2)

end of loop on time
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22 Chapter 1. Hyperbolic Partial Differential Equations

For periodic problems on the interval [0, 1] with h = 1/M and grid points xm =
mh, it is useful to store values at x0 and at xM, even though these values represent the
same point in the periodic problem.

Exercises
1.3.1. For values of x in the interval [−1, 3] and t in [0, 2.4], solve the one-way wave

equation
ut + ux = 0,

with the initial data

u(0, x) =
{

cos2 πx if |x| ≤ 1
2 ,

0 otherwise,

and the boundary data u(t,−1) = 0.

Use the following four schemes for h = 1/10, 1/20, and 1/40.

(a) Forward-time backward-space scheme (1.3.2) with λ = 0.8.
(b) Forward-time central-space scheme (1.3.3) with λ = 0.8.
(c) Lax–Friedrichs scheme (1.3.5) with λ = 0.8 and 1.6.
(d) Leapfrog scheme (1.3.4) with λ = 0.8.

For schemes (b), (c), and (d), at the right boundary use the condition vn+1
M =

vn+1
M−1, where xM = 3. For scheme (d) use scheme (b) to compute the solution at
n = 1.

For each scheme determine whether the scheme is a useful or useless scheme.
For the purposes of this exercise only, a scheme will be useless if |vnm| is greater than
5 for any value of m and n. It will be regarded as a useful scheme if the solution
looks like a reasonable approximation to the solution of the differential equations.
Graph or plot several solutions at the last time they were computed. What do you
notice about the “blow-up time” for the useless schemes as the mesh size decreases?
Is there a pattern to these solutions? For the useful cases, how does the error decrease
as the mesh decreases; i.e., as h decreases by one-half, by how much does the error
decrease?

1.3.2. Solve the system

ut + 1
3 (t − 2)ux + 2

3 (t + 1)wx + 1
3u = 0,

wt + 1
3 (t + 1)ux + 1

3 (2t − 1)wx − 1
3w = 0

by the Lax–Friedrichs scheme: i.e., each time derivative is approximated as it is for
the scalar equation and the spatial derivatives are approximated by central differ-
ences. The initial values are

u(0, x) = max(0, 1 − |x|),
w(0, x) = max(0, 1 − 2|x|).
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Consider values of x in [−3, 3] and t in [0, 2]. Take h equal to 1/20 and λ equal
to 1/2. At each boundary set u = 0, and set w equal to the newly computed value
one grid point in from the boundary. Describe the solution behavior for t in the
range [1.5, 2]. You may find it convenient to plot the solution. Solve the system in
the form given; do not attempt to diagonalize it.

1.3.3. Solve the system

ut + 1
3 (t − 2)ux + 2

3 (t + 1)wx = 0,

wt + 1
3 (t + 1)ux + 1

3 (2t − 1)wx = 0

by the Lax–Friedrichs scheme as in Exercise 1.3.2, using the same initial data. An
examination of the computed solution should show how to obtain the analytical
solution to this problem.

1.3.4. Numerically solve the equation in Exercise 1.1.5 using the initial data and intervals
of Exercise 1.3.1. Use the leapfrog scheme with λ = 0.5 and h = 1/10, 1/20, and
1/40. Use the forward-time central-space scheme to compute the first time step.
The boundary condition at x = −1 is u(t,−1) = 0.

1.4 Convergence and Consistency
The most basic property that a scheme must have in order to be useful is that its solutions
approximate the solution of the corresponding partial differential equation and that the
approximation improves as the grid spacings, h and k, tend to zero. We call such a
scheme a convergent scheme, but before formally defining this concept it is appropriate to
extend our discussion to a wider class of partial differential equations than the hyperbolic
equations. We consider linear partial differential equations of the form

P(∂t , ∂x)u = f (t, x),

which are of first order in the derivative with respect to t. We also assume for such equations
or systems of equations that the specification of initial data, u(0, x), completely determines
a unique solution. More is said about this in Chapter 9. The real variable x ranges over
the whole real line or an interval. Examples of equations that are first order in time are the
one-way wave equation (1.1.1) and the following three equations:

ut − buxx + aux = 0,

ut − cutxx + buxxxx = 0,

ut + cutx + aux = 0.

(1.4.1)

Definition 1.4.1. A one-step finite difference scheme approximating a partial differential
equation is a convergent scheme if for any solution to the partial differential equation,
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24 Chapter 1. Hyperbolic Partial Differential Equations

u(t, x), and solutions to the finite difference scheme, vnm, such that v0
m converges to

u0(x) as mh converges to x, then vnm converges to u(t, x) as (nk,mh) converges to
(t, x) as h, k converge to 0.

This definition is not complete until we clarify the nature of the convergence of vnm,

defined on the grid, to u(t, x) defined for continuously varying (t, x). We discuss this
convergence completely in Chapter 10. For multistep schemes the definition assumes that
some initializing procedure is used to compute the first several time levels necessary to
employ the multistep scheme. For the case that the data are specified on these first time
levels, the definition is altered to require v

j
m for 0 ≤ j ≤ J to converge to u0(xm).

As illustrated by Figures 1.6 and 1.8, the Lax–Friedrichs scheme and the leapfrog
scheme with λ equal to 0.8 are convergent schemes. These figures show that the solution
of the difference scheme is a reasonable approximation to the solution of the differential
equation. As h and k are decreased, the solutions of the schemes become better ap-
proximations. The Lax–Friedrichs scheme with λ = 1.6 is not convergent. As h and k

decrease, with λ equal to 1.6, the solution of the scheme does not approach the solution
of the differential equation in any sense. As can be seen in Figure 1.7, the behavior of a
nonconvergent scheme can be quite poor.

The convergence of the Lax–Friedrichs scheme is also illustrated in Figure 1.9, which
shows a portion of Figure 1.6 along with the results for h = 1/20 and h = 1/40. The three
plots show that as h gets smaller, with λ = 0.8, the solution of the finite difference scheme
approaches the solution of the differential equation.

Proving that a given scheme is convergent is not easy in general, if attempted in a
direct manner. However, there are two related concepts that are easy to check: consistency
and stability. First, we define consistency.

1 2
0.5

1

Figure 1.9. Lax–Friedrichs scheme convergence.
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Definition 1.4.2. Given a partial differential equation, Pu = f, and a finite difference
scheme, Pk,hv = f, we say that the finite difference scheme is consistent with the partial
differential equation if for any smooth function φ(t, x)

Pφ − Pk,hφ → 0 as k, h → 0,

the convergence being pointwise convergence at each point (t, x).

For some schemes we may have to restrict the manner in which k and h tend to zero
in order for it to be consistent (see Example 1.4.2). When we refer to a smooth function we
mean one that is sufficiently differentiable for the context.

Also, note that the difference operator Pk,h when applied to a function of (t, x) does
not need to be restricted to grid points. Thus, a forward difference in x applied at a point
(t, x) is

φ(t, x + h)− φ(t, x)

h
.

We demonstrate the use of this definition and the notation by presenting two examples,
showing that two of the schemes in the above list are consistent with the equation (1.1.1).

Example 1.4.1. The Forward-Time Forward-Space Scheme. For the one-way wave
equation (1.1.1), the operator P is ∂

∂t
+ a ∂

∂x
so that

Pφ = φt + aφx.

For the forward-time forward-space scheme (1.3.1), the difference operator Pk,h is given
by

Pk,hφ = φn+1
m − φn

m

k
+ a

φn
m+1 − φn

m

h
,

where
φn
m = φ(nk,mh).

We begin with the Taylor series of the function φ in t and x about (tn, xm). We have
that

φn+1
m = φn

m + kφt + 1
2k

2φtt +O(k3),

φn
m+1 = φn

m + hφx + 1
2h

2φxx +O(h3),

where the derivatives on the right-hand side are all evaluated at (tn, xm), and so

Pk,hφ = φt + aφx + 1
2kφtt + 1

2ahφxx +O(k2)+O(h2).

Thus

Pφ − Pk,hφ = − 1
2kφtt − 1

2ahφxx +O(k2)+O(h2)

→ 0 as (k, h) → 0.

Therefore, this scheme is consistent.
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When analyzing consistency it is convenient to use the “big oh” and “little oh” nota-
tion, as we have done in the preceding example. In general, if F and G are functions of
some parameter α, we write

F = O(G) as α → 0,

if ∣∣∣∣FG
∣∣∣∣ ≤ K

for some constant K and all α sufficiently small. We write

F = o(G) as α → 0,

if F/G converges to zero as α tends to zero. In particular, a quantity is O(hr) if it is
bounded by a constant multiple of hr for small h. A quantity is o(1) if it converges to
zero at an unspecified rate.

Example 1.4.2. The Lax–Friedrichs Scheme. For the Lax–Friedrichs scheme the differ-
ence operator is given by

Pk,hφ = φn+1
m − 1

2

(
φn
m+1 + φn

m−1

)
k

+ a
φn
m+1 − φn

m−1

2h
.

We use the Taylor series

φn
m±1 = φn

m ± hφx + 1
2h

2 φxx ± 1
6h

3φxxx +O(h4),

where, as before, the derivatives are evaluated at (tn, xm) and we have

1
2

(
φn
m+1 + φn

m−1

) = φn
m + 1

2h
2 φxx +O(h4)

and
φn
m+1 − φn

m−1

2h
= φx + 1

6h
2 φxxx +O(h4).

Substituting these expressions in the scheme, we obtain

Pk,hφ =φt + a φx + 1
2k φtt − 1

2k
−1h2 φxx

+ 1
6ah

2 φxxx +O
(
h4 + k−1h4 + k2

)
.

So Pk,hφ − Pφ → 0 as h, k → 0; i.e., it is consistent, as long as k−1h2 also tends
to 0.

Consistency implies that the solution of the partial differential equation, if it is smooth,
is an approximate solution of the finite difference scheme. Similarly, convergence means
that a solution of the finite difference scheme approximates a solution of the partial differ-
ential equation. It is natural to consider whether consistency is sufficient for a scheme to
be convergent. Consistency is certainly necessary for convergence, but as the following
example shows, a scheme may be consistent but not convergent.
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Example 1.4.3. Consider the partial differential equation ut + ux = 0 with the forward-
time forward-space scheme (1.3.1):

vn+1
m − vnm

k
+ vnm+1 − vnm

h
= 0.

The scheme may be rewritten as

vn+1
m = vnm − k

h

(
vnm+1 − vnm

)
= (1 + λ) vnm − λ vnm+1,

(1.4.2)

where we have set λ = k/h as usual. In Example 1.4.1 this scheme was shown to be
consistent. As initial conditions for the differential equation we take

u0(x) =
{

1 if −1 ≤ x ≤ 0,

0 elsewhere.

The solution of the partial differential equation is a shift of u0 to the right by t. In particular,
for t greater than 0, there are positive values of x for which u(t, x) is nonzero. This is
illustrated in Figure 1.10.

x

t

u = 0, v = 0u ≠ 0, v ≠ 0

u ≠ 0
v = 0

Figure 1.10. Consistency does not imply convergence.

For the difference scheme take the initial data

v0
m =

{
1 if −1 ≤ mh ≤ 0,

0 elsewhere.
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As equation (1.4.2) shows, the solution of the difference scheme at (tn, xm) depends only
on xm′ for m′ ≥ m at previous times. Thus we conclude that vnm is always 0 for points
xm to the right of 0, that is,

vnm = 0 for m > 0, n ≥ 0.

Therefore, vnm cannot converge to u(t, x), since for positive t and x, the function u is
not identically zero, yet vnm is zero.

Notice that we conclude that the scheme is nonconvergent without specifying the
type of convergence, but clearly, a sequence of functions that are all zero—i.e., the vnm for
m > 0 —cannot converge, under any reasonable definition of convergence, to the nonzero
function u.

Exercises

1.4.1. Show that the forward-time central-space scheme (1.3.3) is consistent with equation
(1.1.1).

1.4.2. Show that the leapfrog scheme (1.3.4) is consistent with the one-way wave equation
(1.1.1).

1.4.3. Show that the following scheme is consistent with the one-way wave equation (1.1.5):

vn+1
m − vnm

k
+ a

2

(
vn+1
m+1 − vn+1

m

h
+ vnm − vnm−1

h

)
= f n

m. (1.4.3)

1.4.4. Show that the following scheme is consistent with the equation ut + cutx+
aux = f :

vn+1
m − vnm

k
+ c

vn+1
m+1 − vn+1

m−1 − vnm+1 + vnm−1

2kh
+ a

vnm+1 − vnm−1

2h
= f n

m.

1.4.5. Interpret the results of Exercise 1.3.1 in light of the definition of convergence. Based
on the cases run in that exercise, decide which of the schemes are convergent.

1.5 Stability
Example 1.4.3 shows that a scheme must satisfy other conditions besides consistency before
we can conclude that it is convergent. The important property that is required is stability.
To introduce this concept we note that, if a scheme is convergent, as vnm converges to
u(t, x), then certainly vnm is bounded in some sense. This is the essence of stability. The
following definition of stability is for the homogeneous initial value problem, that is, one
in which the right-hand-side function f is 0.
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Before giving the definition of stability we need to define a stability region. For many
schemes there are restrictions on the way that h and k should be chosen so that the scheme
is stable, and therefore useful in computation. A stability region is any bounded nonempty
region of the first quadrant of R2 that has the origin as an accumulation point. That is, a
stability region must contain a sequence (kν, hν) that converges to the origin as ν tends to
infinity. A common example is a region of the form {(k, h) : 0 < k ≤ ch ≤ C} for some
positive constants c and C. An example of a stability region is displayed in Figure 1.11.

Λ

h

k

Figure 1.11. Stability region.

Definition 1.5.1. A finite difference scheme Pk,hv
n
m = 0 for a first-order equation is

stable in a stability region � if there is an integer J such that for any positive time T ,

there is a constant CT such that

h

∞∑
m=−∞

|vnm|2 ≤ CT h

J∑
j=0

∞∑
m=−∞

|vjm|2 (1.5.1)

for 0 ≤ nk ≤ T , with (k, h) ∈ �.

Before proceeding with our discussion of stability, we introduce some notation that
will be of use in understanding inequality (1.5.1). We first introduce the notation

‖w‖h =
(
h

∞∑
m=−∞

|wm|2
)1/2

(1.5.2)

for any grid function w. The quantity ‖w‖h is called the L2 norm of the grid function
w and is a measure of the size of the solution (see Appendix B for a discussion of function
norms). In many problems the L2 norm is a measure of a physically significant quantity
such as the energy of the system. With this notation the inequality (1.5.1) can be written as

‖vn‖h ≤
(
CT

J∑
j=0

‖vj‖2
h

)1/2

,
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which is equivalent to

‖vn‖h ≤ C∗
T

J∑
j=0

‖vj‖h (1.5.3)

for some constant C∗
T . Inequalities (1.5.1) and (1.5.3) express the idea that the norm of the

solution at any time t, with 0 ≤ t ≤ T , is limited in the amount of growth that can occur.
The growth is at most a constant multiple of the sum of the norms of the solution on the
first J + 1 steps.

We may take J equal to zero for one-step schemes and also for multistep schemes
incorporating an initializing procedure for computing the solution for the first several time
steps, as discussed earlier in this section. We include the possibility of J being positive to
include multistep schemes with data specified on the first J + 1 levels. It will be shown
that the stability of a multistep scheme is not dependent on the method of initialization.

To demonstrate whether or not the estimate (1.5.1) holds for a particular scheme can
be quite formidable unless we use methods from Fourier analysis, which is discussed in
the next chapter. In Section 2.2 a relatively simple procedure, von Neumann analysis, is
presented for determining the stability of difference schemes.

For certain rather simple schemes we can determine sufficient conditions that ensure
that the scheme is stable. This is done by establishing the stability estimate (1.5.1) directly.

Example 1.5.1. We will prove a sufficient condition for stability for the forward-time
forward-space scheme (1.3.1) by considering schemes of the form

vn+1
m = αvnm + βvnm+1,

of which the forward-time forward-space scheme is a special case. We will show that the
scheme is stable if |α| + |β| ≤ 1. The analysis is similar for the forward-time backward-
space scheme (1.3.2). We have

∞∑
m=−∞

|vn+1
m |2 =

∞∑
m=−∞

|αvnm + βvnm+1|2

≤
∞∑

m=−∞
|α|2|vnm|2 + 2|α||β||vnm||vnm+1| + |β|2|vnm+1|2

≤
∞∑

m=−∞
|α|2|vnm|2 + |α||β|(|vnm|2 + |vnm+1|2)+ |β|2|vnm+1|2,

where we have used the inequality 2xy ≤ x2 + y2. The sum can be split over the terms
with index m and those with index m+ 1 and the index can be shifted so that all terms
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have the index m :

=
∞∑

m=−∞
|α|2|vnm|2 + |α||β||vnm|2 +

∞∑
m=−∞

|α||β||vnm+1|2 + |β|2|vnm+1|2

=
∞∑

m=−∞
|α|2|vnm|2 + |α||β||vnm|2 +

∞∑
m=−∞

|α||β||vnm|2 + |β|2|vnm|2

=
∞∑

m=−∞

(
|α|2 + 2|α||β| + |β|2

)
|vnm|2

= (|α| + |β|)2
∞∑

m=−∞
|vnm|2.

This shows that we have the relation

∞∑
m=−∞

|vn+1
m |2 ≤ (|α| + |β|)2

∞∑
m=−∞

|vnm|2,

and since this applies for all n, we have that

∞∑
m=−∞

|vnm|2 ≤ (|α| + |β|)2n
∞∑

m=−∞
|v0
m|2 .

If |α| + |β| is at most 1 in magnitude, then the scheme will be stable. Thus, schemes of
the form given above are stable if |α| + |β| ≤ 1.

For the forward-time forward-space scheme (1.3.1) the condition |α| + |β| ≤ 1 is
that |1 + aλ| + |aλ| is at most 1. Thus we see that this scheme is stable if −1 ≤ aλ ≤ 0.
In Section 2.2 we show that this is also a necessary condition.

The concept of stability for finite difference schemes is closely related to the concept
of well-posedness for initial value problems for partial differential equations. As before,
we restrict our discussion to equations Pu = f that are of first order with respect to
differentiation in time.

Definition 1.5.2. The initial value problem for the first-order partial differential equation
Pu = 0 is well-posed if for any time T ≥ 0, there is a constant CT such that any solution
u(t, x) satisfies ∫ ∞

−∞
|u(t, x)|2 dx ≤ CT

∫ ∞

−∞
|u(0, x)|2 dx (1.5.4)

for 0 ≤ t ≤ T .
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Adiscussion of the concept of a well-posed initial value problem is given in Chapter 9.
It is shown that only well-posed initial value problems can be used to model the evolution of
physical processes. The methods of Fourier analysis that are introduced in the next chapter
will be useful in the study of well-posed initial value problems.

In Chapter 9 we discuss stability and well-posedness for the inhomogeneous prob-
lems, Pk,hv = f and Pu = f, respectively. As we show, the inhomogeneous equations
can be treated using the estimates (1.5.1) and (1.5.4) by use of Duhamel’s principle. Thus
a scheme is stable for the equation Pk,hv = f if it is stable for the equation Pk,hv = 0.

The Lax–Richtmyer Equivalence Theorem

The importance of the concepts of consistency and stability is seen in the Lax–Richtmyer
equivalence theorem, which is the fundamental theorem in the theory of finite difference
schemes for initial value problems.

Theorem 1.5.1. The Lax–Richtmyer Equivalence Theorem. A consistent finite differ-
ence scheme for a partial differential equation for which the initial value problem is well-
posed is convergent if and only if it is stable.

A proof of this theorem is given in Chapter 10. The Lax–Richtmyer equivalence
theorem is a very useful theorem, since it provides a simple characterization of convergent
schemes. As discussed earlier, determining whether a scheme is convergent or nonconver-
gent can be difficult if we attempt to verify Definition 1.4.1 in a rather direct way. However,
the determination of the consistency of a scheme is quite simple, as we have seen, and de-
termining the stability of a scheme is also quite easy, as we show in Section 2.2. Thus
the more difficult result—convergence—is replaced by the equivalent and easily verifiable
conditions of consistency and stability. It is also significant that the determination of the
consistency and stability of schemes involves essentially algebraic manipulations. A com-
puterized symbolic manipulation language can be useful in determining consistency and
stability. By contrast, a direct proof of convergence would rely on concepts in analysis.
Such a proof would have to begin by considering any solution u of the differential equation
and then it would have to be shown that given any ε, there exist h and k small enough
that the solution of the scheme is within ε of u. The Lax–Richtmyer theorem allows us
to dispense with all this analysis.

The preceding discussion of Theorem 1.5.1 has focused on the half of the theorem
that states that consistency and stability imply convergence. The theorem is useful in the
other direction also. It states that we should not consider any unstable schemes, since none
of these will be convergent. Thus the class of reasonable schemes is precisely delimited as
those that are consistent and stable; no other schemes are worthy of consideration.

The Lax–Richtmyer equivalence theorem is an example of the best type of mathemat-
ical theorem. It relates an important concept that is difficult to establish directly with other
concepts that are relatively easy to verify and establishes this relationship very precisely.
Notice that if we had only the half of the theorem that showed that consistency and stability
implied convergence, then it would be conceivable that there were unstable schemes that
were also convergent. If we had only the other half of the theorem, stating that a consis-
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tent convergent scheme is stable, then we would not know if a stable consistent scheme
is convergent. The usefulness of the Lax–Richtmyer theorem arises both from the ease of
verifying consistency and stability and from the precise relationship established between
these concepts and the concept of convergence.

Exercises
1.5.1. Show that schemes of the form

vn+1
m = αvnm+1 + βvnm−1

are stable if |α| + |β| is less than or equal to 1. Conclude that the Lax–Friedrichs
scheme (1.3.5) is stable if |aλ| is less than or equal to 1.

1.5.2. By multiplying the leapfrog scheme (1.3.4) by vn+1
m + vn−1

m and summing over all
values of m, obtain the relation

∞∑
m=−∞

|vn+1
m |2 + |vnm|2 + aλ(vn+1

m vnm+1 − vn+1
m+1v

n
m)

=
∞∑

m=−∞
|vnm|2 + |vn−1

m |2 + aλ(vnmv
n−1
m+1 − vnm+1v

n−1
m ).

Show that the leapfrog scheme is stable for |aλ| < 1.

1.5.3. By multiplying scheme (1.4.3), with f n
m equal to 0, by vn+1

m + vnm and summing
over all values of m, obtain the relation

∞∑
m=−∞

(
1 − aλ

2

)
|vn+1
m |2 + aλ

2
vn+1
m vn+1

m+1

=
∞∑

m=−∞

(
1 − aλ

2

)
|vnm|2 + aλ

2
vnmv

n
m+1.

Conclude that the scheme is stable for aλ < 1.

1.5.4. By multiplying scheme (1.4.3), with f n
m equal to 0, by vn+1

m+1 + vnm−1 and summing
over all values of m, obtain the relation

∞∑
m=−∞

aλ

2
|vn+1
m |2 +

(
1 − aλ

2

)
vn+1
m vn+1

m+1

=
∞∑

m=−∞

aλ

2
|vnm|2 +

(
1 − aλ

2

)
vnmv

n
m+1.

Conclude that the scheme is stable for aλ > 1.
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1.6 The Courant–Friedrichs–Lewy Condition
The condition that the magnitude of aλ be at most 1 is the stability condition for many
finite difference schemes for hyperbolic systems in one space dimension when λ is a
constant. This has been the stability condition for the Lax–Friedrichs scheme (1.3.5)
(see Exercise 1.5.1) and for the forward-time forward-space scheme (1.3.1) when a is
negative and the forward-time backward-space scheme (1.3.2) when a is positive (see
Example 1.5.1). We now show that this condition is a necessary condition for stability for
many explicit schemes for the equation (1.1.1).

An explicit finite difference scheme is any scheme that can be written in the form

vn+1
m = a finite sum of vn

′
m′ with n′ ≤ n.

All the schemes we considered so far are explicit; we examine implicit (i.e., nonexplicit)
schemes later. We now prove the following result, which covers all the one-step schemes
we have discussed.

Theorem 1.6.1. For an explicit scheme for the hyperbolic equation (1.1.1) of the form
vn+1
m = αvnm−1 + βvnm + γ vnm+1 with k/h = λ held constant, a necessary condition for

stability is the Courant–Friedrichs–Lewy (CFL) condition,

|aλ| ≤ 1.

For systems of equations for which v is a vector and α, β, and γ are matrices, we must
have |aiλ| ≤ 1 for all eigenvalues ai of the matrix A.

Proof. First consider the case of a single equation. If |aλ| > 1, then by considering
the point (t, x) = (1, 0) we see that the solution to the partial differential equation depends
on the values of u0(x) at x = −a. But the finite difference scheme will have vn0 depend
on v0

m only for |m| ≤ n, by the form of the scheme. This situation is illustrated in
Figure 1.12. Since h = λ−1k, we have |m|h ≤ λ−1kn = λ−1, since kn = 1. So vn0
depends on x only for |x| ≤ λ−1 < |a|. Thus vn0 cannot converge to u(1, 0) as h → 0.
This proves the theorem in this case.

For the case of a system of equations, we have that u(1, x) depends on u0(x) for x

in the interval [−a, a], where a is the maximum magnitude of the characteristic speeds
ai. If |aiλ| > 1 for some characteristic speed ai, then we can take initial data that are
zero in [−λ−1, λ−1] but not zero near ai. Then u(1, x) will not be zero, in general, and
yet vn0 with nk = 1 will be zero. Thus vn cannot converge to u(1, ·), and the theorem
is proved.

A similar argument can be used to show that there is no explicit, consistent scheme for
hyperbolic partial differential equations that is stable for all values of λ (with λ constant
as h, k → 0 ). We obtain the following theorem, first proved by Courant, Friedrichs, and
Lewy [11].

Theorem 1.6.2. There are no explicit, unconditionally stable, consistent finite difference
schemes for hyperbolic systems of partial differential equations.
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x

t

t=1

-a -λ-1 aλ-1

Figure 1.12. The grid for an unstable scheme.

The numerical speed of propagation for a scheme of the form considered in Theorem
1.6.1 is h/k = λ−1 since information can propagate one grid spacing in one time step.
The CFL condition can be rewritten as

λ−1 ≥ |a|,

which can be interpreted as stating that the numerical speed of propagation must be greater
than or equal to the speed of propagation of the differential equation. This is the basic idea
of these theorems. If the numerical scheme cannot propagate the solution at least as fast as
the solution of the differential equation, then the solution of the scheme cannot converge to
the solution of the partial differential equation.

We now present two implicit schemes for the one-way wave equation (1.1.1). These
schemes are consistent and stable for all values of λ and thus illustrate that Theorem 1.6.2
does not extend to implicit schemes. The two schemes are the backward-time central-space
scheme

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1

2h
= 0 (1.6.1)

and the backward-time backward-space scheme

vn+1
m − vnm

k
+ a

vn+1
m − vn+1

m−1

h
= 0 (1.6.2)

for a positive. We are not concerned at this point with how to solve for the values vn+1
m

given the values at time level n; this topic is considered in Section 3.5. It is easy to check
that both of these schemes are consistent schemes for (1.1.1). In Section 2.2 we show that
the scheme (1.6.1) is stable for all values of a and λ.
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Example 1.6.1. We now show that the backward-time backward-space scheme (1.6.2) is
stable when a is positive and λ is any positive number. This shows that Theorem 1.6.2
does not extend to implicit schemes.

We first write the scheme (1.6.2) as

(1 + aλ)vn+1
m = vnm + aλ vn+1

m−1.

If we take the square of both sides, we obtain

(1 + aλ)2|vn+1
m |2 ≤ |vnm|2 + 2aλ|vnm| |vn+1

m−1| + (aλ)2|vn+1
m−1|2

≤ (1 + aλ)|vnm|2 + (aλ+ (aλ)2)|vn+1
m−1|2.

Taking the sum over all values of m, we obtain

(1 + aλ)2
∞∑

m=−∞
|vn+1
m |2 ≤ (1 + aλ)

∞∑
m=−∞

|vnm|2 + (aλ+ (aλ)2)

∞∑
m=−∞

|vn+1
m |2.

Subtracting the last expression on the right-hand side from the left-hand side gives the
estimate ∞∑

m=−∞
|vn+1
m |2 ≤

∞∑
m=−∞

|vnm|2,

showing that the scheme is stable for every value of λ when a is positive.

We point out that even though we can choose λ arbitrarily large for scheme (1.6.2)
and still have a stable scheme, the solution will not be accurate unless λ is restricted to
reasonable values. We discuss the accuracy of solutions in Chapter 3, and in Section 5.2
we show that there are advantages to choosing |aλ| small.

Exercises
1.6.1. Show that the following modified Lax–Friedrichs scheme for the one-way wave

equation, ut + aux = f, given by

vn+1
m = 1

2

(
vnm+1 + vnm−1

)− aλ

1 + (aλ)2
(vnm+1 − vnm−1)+ kf n

m

is stable for all values of λ. Discuss the relation of this explicit and unconditionally
stable scheme to Theorem 1.6.2.

1.6.2. Modify the proof of Theorem 1.6.1 to cover the leapfrog scheme.

1.6.3. Show that schemes of the form

αvn+1
m+1 + βvn+1

m−1 = vnm

are stable if
∣∣|α| − |β|∣∣ is greater than or equal to 1. Conclude that the reverse

Lax–Friedrichs scheme,
1
2

(
vn+1
m+1 + vn+1

m−1

)
− vnm

k
+ a

vn+1
m+1 − vn+1

m−1

2h
= 0,

is stable if |aλ| is greater than or equal to 1.
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