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Chapter 13

Kronecker Products

13.1 Definition and Examples
Definition 13.1. Let A ∈ R

m×n, B ∈ R
p×q . Then the Kronecker product (or tensor

product) of A and B is defined as the matrix

A⊗ B =



a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 ∈ R

mp×nq . (13.1)

Obviously, the same definition holds if A and B are complex-valued matrices. We
restrict our attention in this chapter primarily to real-valued matrices, pointing out the
extension to the complex case only where it is not obvious.

Example 13.2.

1. Let A = [ 1 2 3
3 2 1

]
and B = [ 2 1

2 3

]
. Then

A⊗ B =
[

B 2B 3B

3B 2B B

]
=




2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3


 .

Note that B ⊗ A �= A⊗ B.

2. For any B ∈ R
p×q , I2 ⊗ B = [ B 0

0 B

]
.

Replacing I2 by In yields a block diagonal matrix with n copies of B along the
diagonal.

3. Let B be an arbitrary 2× 2 matrix. Then

B ⊗ I2 =




b11 0 b12 0
0 b11 0 b12

b21 0 b22 0
0 b21 0 b22


 .
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140 Chapter 13. Kronecker Products

The extension to arbitrary B and In is obvious.

4. Let x ∈ R
m, y ∈ R

n. Then

x ⊗ y = [
x1y

T , . . . , xmyT
]T

= [x1y1, . . . , x1yn, x2y1, . . . , xmyn]T ∈ R
mn.

5. Let x ∈ R
m, y ∈ R

n. Then

x ⊗ yT = [x1y, . . . , xmy]T

=



x1y1 . . . x1yn

...
. . .

...

xmy1 . . . xmyn




= xyT ∈ R
m×n.

13.2 Properties of the Kronecker Product
Theorem 13.3. Let A ∈ R

m×n, B ∈ R
r×s , C ∈ R

n×p, and D ∈ R
s×t . Then

(A⊗ B)(C ⊗D) = AC ⊗ BD (∈ R
mr×pt ). (13.2)

Proof: Simply verify that

(A⊗ B)(C ⊗D) =



a11B · · · a1nB
...

. . .
...

am1B · · · amnB






c11D · · · c1pD
...

. . .
...

cn1D · · · cnpD




=



∑n
k=1 a1kck1BD · · · ∑n

k=1 a1kckpBD
...

. . .
...∑n

k=1 amkck1BD · · · ∑n
k=1 amkckpBD




= AC ⊗ BD.

Theorem 13.4. For all A and B, (A⊗ B)T = AT ⊗ BT .

Proof: For the proof, simply verify using the definitions of transpose and Kronecker
product.

Corollary 13.5. If A ∈ R
n×n and B ∈ R

m×m are symmetric, then A⊗ B is symmetric.

Theorem 13.6. If A and B are nonsingular, (A⊗ B)−1 = A−1 ⊗ B−1.

Proof: Using Theorem 13.3, simply note that (A⊗ B)(A−1 ⊗ B−1) = I ⊗ I = I.
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Theorem 13.7. If A ∈ R
n×n and B ∈ R

m×m are normal, then A⊗ B is normal.

Proof:

(A⊗ B)T (A⊗ B) = (AT ⊗ BT )(A⊗ B) by Theorem 13.4

= AT A⊗ BT B by Theorem 13.3

= AAT ⊗ BBT since A and B are normal

= (A⊗ B)(A⊗ B)T by Theorem 13.3.

Corollary 13.8. If A ∈ R
n×n is orthogonal and B ∈ R

m×m is orthogonal, then A ⊗ B is
orthogonal.

Example 13.9. Let A = [ cos θ sin θ

− sin θ cos θ

]
and B = [ cos φ sin φ

− sin φ cos φ

]
. Then it is easily seen that

A is orthogonal with eigenvalues e±jθ and B is orthogonal with eigenvalues e±jφ . The 4×4
matrix A⊗ B is then also orthogonal with eigenvalues e±j (θ+φ) and e±j (θ−φ).

Theorem 13.10. Let A ∈ R
m×n have a singular value decomposition UA	AV T

A and let
B ∈ R

p×q have a singular value decomposition UB	BV T
B . Then

(UA ⊗ UB)(	A ⊗	B)(V T
A ⊗ V T

B )

yields a singular value decomposition of A⊗ B (after a simple reordering of the diagonal
elements of 	A ⊗	B and the corresponding right and left singular vectors).

Corollary 13.11. Let A ∈ R
m×n
r have singular values σ1 ≥ · · · ≥ σr > 0 and let B ∈ R

p×q
s

have singular values τ1 ≥ · · · ≥ τs > 0. Then A ⊗ B (or B ⊗ A) has rs singular values
σ1τ1 ≥ · · · ≥ σrτs > 0 and

rank(A⊗ B) = (rankA)(rankB) = rank(B ⊗ A) .

Theorem 13.12. Let A ∈ R
n×n have eigenvalues λi, i ∈ n, and let B ∈ R

m×m have
eigenvalues µj , j ∈ m. Then the mn eigenvalues of A⊗ B are

λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

Moreover, if x1, . . . , xp are linearly independent right eigenvectors of A corresponding
to λ1, . . . , λp (p ≤ n), and z1, . . . , zq are linearly independent right eigenvectors of B

corresponding to µ1, . . . , µq (q ≤ m), then xi ⊗ zj ∈ R
mn are linearly independent right

eigenvectors of A⊗ B corresponding to λiµj , i ∈ p, j ∈ q.

Proof: The basic idea of the proof is as follows:

(A⊗ B)(x ⊗ z) = Ax ⊗ Bz

= λx ⊗ µz

= λµ(x ⊗ z).

If A and B are diagonalizable in Theorem 13.12, we can take p = n and q = m and
thus get the complete eigenstructure of A ⊗ B. In general, if A and B have Jordan form
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decompositions given by P−1AP = JA and Q−1BQ = JB , respectively, then we get the
following Jordan-like structure:

(P ⊗Q)−1(A⊗ B)(P ⊗Q) = (P−1 ⊗Q−1)(A⊗ B)(P ⊗Q)

= (P−1AP)⊗ (Q−1BQ)

= JA ⊗ JB.

Note that JA ⊗ JB , while upper triangular, is generally not quite in Jordan form and needs
further reduction (to an ultimate Jordan form that also depends on whether or not certain
eigenvalues are zero or nonzero).

A Schur form for A ⊗ B can be derived similarly. For example, suppose P and
Q are unitary matrices that reduce A and B, respectively, to Schur (triangular) form, i.e.,
P HAP = TA and QHBQ = TB (and similarly if P and Q are orthogonal similarities
reducing A and B to real Schur form). Then

(P ⊗Q)H(A⊗ B)(P ⊗Q) = (P H ⊗QH)(A⊗ B)(P ⊗Q)

= (P HAP)⊗ (QHBQ)

= TA ⊗ TB.

Corollary 13.13. Let A ∈ R
n×n and B ∈ R

m×m. Then

1. Tr(A⊗ B) = (TrA)(TrB) = Tr(B ⊗ A).

2. det(A⊗ B) = (det A)m(det B)n = det(B ⊗ A).

Definition 13.14. Let A ∈ R
n×n and B ∈ R

m×m. Then the Kronecker sum (or tensor sum)

of A and B, denoted A ⊕ B, is the mn × mn matrix (Im ⊗ A) + (B ⊗ In). Note that, in
general, A⊕ B �= B ⊕ A.

Example 13.15.

1. Let

A =

 1 2 3

3 2 1
1 1 4


 and B =

[
2 1
2 3

]
.

Then

A⊕B = (I2⊗A)+(B⊗I3) =




1 2 3 0 0 0
3 2 1 0 0 0
1 1 4 0 0 0
0 0 0 1 2 3
0 0 0 3 2 1
0 0 0 1 1 4



+




2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
2 0 0 3 0 0
0 2 0 0 3 0
0 0 2 0 0 3




.

The reader is invited to compute B⊕A = (I3⊗B)+ (A⊗I2) and note the difference
with A⊕ B.
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2. Recall the real JCF

J =




M I 0 · · · 0

0 M I 0
...

...
. . . M

. . .
. . .

. . . I 0
...

. . . M I

0 · · · · · · 0 M



∈ R

2k×2k,

where M =
[

α β

−β α

]
. Define

Ek =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . . 0
. . . 1

0 · · · · · · 0



∈ R

k×k.

Then J can be written in the very compact form J = (Ik⊗M)+(Ek⊗I2) = M⊕Ek .

Theorem 13.16. Let A ∈ R
n×n have eigenvalues λi, i ∈ n, and let B ∈ R

m×m have
eigenvalues µj , j ∈ m. Then the Kronecker sum A ⊕ B = (Im ⊗ A) + (B ⊗ In) has mn

eigenvalues

λ1 + µ1, . . . , λ1 + µm, λ2 + µ1, . . . , λ2 + µm, . . . , λn + µm.

Moreover, if x1, . . . , xp are linearly independent right eigenvectors of A corresponding
to λ1, . . . , λp (p ≤ n), and z1, . . . , zq are linearly independent right eigenvectors of B

corresponding to µ1, . . . , µq (q ≤ m), then zj ⊗ xi ∈ R
mn are linearly independent right

eigenvectors of A⊕ B corresponding to λi + µj , i ∈ p, j ∈ q.

Proof: The basic idea of the proof is as follows:

[(Im ⊗ A)+ (B ⊗ In)](z⊗ x) = (z⊗ Ax)+ (Bz⊗ x)

= (z⊗ λx)+ (µz⊗ x)

= (λ+ µ)(z⊗ x).

If A and B are diagonalizable in Theorem 13.16, we can take p = n and q = m and
thus get the complete eigenstructure of A ⊕ B. In general, if A and B have Jordan form
decompositions given by P−1AP = JA and Q−1BQ = JB , respectively, then

[(Q ⊗ In)(Im ⊗ P)]−1[(Im ⊗ A)+ (B ⊗ In)][(Q⊗ In)(Im ⊗ P)]
= [(Im ⊗ P)−1(Q⊗ In)

−1][(Im ⊗ A)+ (B ⊗ In)][(Q⊗ In)(Im ⊗ P)]
= [(Im ⊗ P−1)(Q−1 ⊗ In)][(Im ⊗ A)+ (B ⊗ In)][(Q⊗ In)(Im ⊗ P)]
= (Im ⊗ JA)+ (JB ⊗ In)

is a Jordan-like structure for A⊕ B.
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A Schur form for A⊕B can be derived similarly. Again, suppose P and Q are unitary
matrices that reduce A and B, respectively, to Schur (triangular) form, i.e., P HAP = TA

and QHBQ = TB (and similarly if P and Q are orthogonal similarities reducing A and B

to real Schur form). Then

[(Q⊗ In)(Im ⊗ P)]H [(Im⊗A)+ (B⊗ In)][(Q⊗ In)(Im⊗P)] = (Im⊗TA)+ (TB ⊗ In),

where [(Q⊗ In)(Im ⊗ P)] = (Q⊗ P) is unitary by Theorem 13.3 and Corollary 13.8.

13.3 Application to Sylvester and Lyapunov Equations
In this section we study the linear matrix equation

AX +XB = C, (13.3)

where A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m. This equation is now often called a Sylvester

equation in honor of J.J. Sylvester who studied general linear matrix equations of the form

k∑
i=1

AiXBi = C.

A special case of (13.3) is the symmetric equation

AX +XAT = C (13.4)

obtained by taking B = AT . When C is symmetric, the solution X ∈ R
n×n is easily shown

also to be symmetric and (13.4) is known as a Lyapunov equation. Lyapunov equations
arise naturally in stability theory.

The first important question to ask regarding (13.3) is, When does a solution exist?
By writing the matrices in (13.3) in terms of their columns, it is easily seen by equating the
ith columns that

Axi +Xbi = ci = Axi +
m∑

j=1

bjixj .

These equations can then be rewritten as the mn×mn linear system




A+ b11I b21I · · · bm1I

b12I A+ b22I · · · bm2I
...

. . .
...

b1mI b2mI · · · A+ bmmI






x1
...

xm


 =




c1
...

cm


 . (13.5)

The coefficient matrix in (13.5) clearly can be written as the Kronecker sum (Im ⊗ A) +
(BT ⊗ In). The following definition is very helpful in completing the writing of (13.5) as
an “ordinary” linear system.
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Definition 13.17. Let ci ∈ R
n denote the columns of C ∈ R

n×m so that C = [c1, . . . , cm].
Then vec(C) is defined to be the mn-vector formed by stacking the columns of C on top of

one another, i.e., vec(C) =



c1
...

cm


 ∈ R

mn.

Using Definition 13.17, the linear system (13.5) can be rewritten in the form

[(Im ⊗ A)+ (BT ⊗ In)]vec(X) = vec(C). (13.6)

There exists a unique solution to (13.6) if and only if [(Im⊗A)+ (BT ⊗ In)] is nonsingular.
But [(Im ⊗ A) + (BT ⊗ In)] is nonsingular if and only if it has no zero eigenvalues.
From Theorem 13.16, the eigenvalues of [(Im ⊗ A) + (BT ⊗ In)] are λi + µj , where
λi ∈ �(A), i ∈ n, and µj ∈ �(B), j ∈ m. We thus have the following theorem.

Theorem 13.18. Let A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m. Then the Sylvester equation

AX +XB = C (13.7)

has a unique solution if and only if A and −B have no eigenvalues in common.

Sylvester equations of the form (13.3) (or symmetric Lyapunov equations of the form
(13.4)) are generally not solved using the mn × mn “vec” formulation (13.6). The most
commonly preferred numerical algorithm is described in [2]. First A and B are reduced to
(real) Schur form. An equivalent linear system is then solved in which the triangular form
of the reduced A and B can be exploited to solve successively for the columns of a suitably
transformed solution matrix X. Assuming that, say, n ≥ m, this algorithm takes only O(n3)

operations rather than the O(n6) that would be required by solving (13.6) directly with
Gaussian elimination. A further enhancement to this algorithm is available in [6] whereby
the larger of A or B is initially reduced only to upper Hessenberg rather than triangular
Schur form.

The next few theorems are classical. They culminate in Theorem 13.24, one of many
elegant connections between matrix theory and stability theory for differential equations.

Theorem 13.19. Let A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m. Suppose further that A and B

are asymptotically stable (a matrix is asymptotically stable if all its eigenvalues have real
parts in the open left half-plane). Then the (unique) solution of the Sylvester equation

AX +XB = C (13.8)

can be written as

X = −
∫ +∞

0
etACetB dt. (13.9)

Proof: Since A and B are stable, λi(A) + λj (B) �= 0 for all i, j so there exists a unique
solution to (13.8) by Theorem 13.18. Now integrate the differential equation Ẋ = AX+XB

(with X(0) = C) on [0,+∞):

lim
t→+∞X(t)−X(0) = A

∫ +∞
0

X(t) dt +
(∫ +∞

0
X(t) dt

)
B. (13.10)
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Using the results of Section 11.1.6, it can be shown easily that lim
t→+∞etA = lim

t→+∞etB = 0.

Hence, using the solution X(t) = etACetB fromTheorem 11.6, we have that lim
t→+∞X(t) = 0.

Substituting in (13.10) we have

−C = A

(∫ +∞
0

etACetB dt

)
+
(∫ +∞

0
etACetB dt

)
B

and so X = −
∫ +∞

0
etACetB dt satisfies (13.8).

Remark 13.20. An equivalent condition for the existence of a unique solution to AX +
XB = C is that

[ A C

0 −B

]
be similar to

[ A 0
0 −B

]
(via the similarity

[ I X

0 −I

]
).

Theorem 13.21. Let A, C ∈ R
n×n. Then the Lyapunov equation

AX +XAT = C (13.11)

has a unique solution if and only if A and −AT have no eigenvalues in common. If C is
symmetric and (13.11) has a unique solution, then that solution is symmetric.

Remark 13.22. If the matrix A ∈ R
n×n has eigenvalues λ1, . . . , λn, then −AT has eigen-

values −λ1, . . . ,−λn. Thus, a sufficient condition that guarantees that A and −AT have
no common eigenvalues is that A be asymptotically stable. Many useful results exist con-
cerning the relationship between stability and Lyapunov equations. Two basic results due
to Lyapunov are the following, the first of which follows immediately from Theorem 13.19.

Theorem 13.23. Let A, C ∈ R
n×n and suppose further that A is asymptotically stable.

Then the (unique) solution of the Lyapunov equation

AX +XAT = C

can be written as

X = −
∫ +∞

0
etACetAT

dt. (13.12)

Theorem 13.24. A matrix A ∈ R
n×n is asymptotically stable if and only if there exists a

positive definite solution to the Lyapunov equation

AX +XAT = C, (13.13)

where C = CT < 0.

Proof: Suppose A is asymptotically stable. By Theorems 13.21 and 13.23 a solution to
(13.13) exists and takes the form (13.12). Now let v be an arbitrary nonzero vector in R

n.
Then

vT Xv =
∫ +∞

0
(vT etA)(−C)(vT etA)

T
dt.
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Since −C > 0 and etA is nonsingular for all t , the integrand above is positive. Hence
vT Xv > 0 and thus X is positive definite.

Conversely, suppose X = XT > 0 and let λ ∈ �(A) with corresponding left eigen-
vector y. Then

0 > yHCy = yHAXy + yHXAT y

= (λ+ λ̄)yHXy.

Since yHXy > 0, we must have λ + λ̄ = 2 Re λ < 0. Since λ was arbitrary, A must be
asymptotically stable.

Remark 13.25. The Lyapunov equation AX + XAT = C can also be written using the
vec notation in the equivalent form

[(I ⊗ A)+ (A⊗ I )]vec(X) = vec(C).

A subtle point arises when dealing with the “dual” Lyapunov equation AT X + XA = C.
The equivalent “vec form” of this equation is

[(I ⊗ AT )+ (AT ⊗ I )]vec(X) = vec(C).

However, the complex-valued equation AHX +XA = C is equivalent to

[(I ⊗ AH)+ (AT ⊗ I )]vec(X) = vec(C).

The vec operator has many useful properties, most of which derive from one key
result.

Theorem 13.26. For any three matrices A, B, and C for which the matrix product ABC is
defined,

vec(ABC) = (CT ⊗ A)vec(B).

Proof: The proof follows in a fairly straightforward fashion either directly from the defini-
tions or from the fact that vec(xyT ) = y ⊗ x.

An immediate application is to the derivation of existence and uniqueness conditions
for the solution of the simple Sylvester-like equation introduced in Theorem 6.11.

Theorem 13.27. Let A ∈ R
m×n, B ∈ R

p×q , and C ∈ R
m×q . Then the equation

AXB = C (13.14)

has a solution X ∈ R
n×p if and only if AA+CB+B = C, in which case the general solution

is of the form
X = A+CB+ + Y − A+AYBB+, (13.15)

where Y ∈ R
n×p is arbitrary. The solution of (13.14) is unique if BB+ ⊗ A+A = I .

Proof: Write (13.14) as
(BT ⊗ A)vec(X) = vec(C) (13.16)
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by Theorem 13.26. This “vector equation” has a solution if and only if

(BT ⊗ A)(BT ⊗ A)
+

vec(C) = vec(C).

It is a straightforward exercise to show that (M ⊗N)+ = M+ ⊗ N+. Thus, (13.16) has a
solution if and only if

vec(C) = (BT ⊗ A)((B+)T ⊗ A+)vec(C)

= [(B+B)
T ⊗ AA+]vec(C)

= vec(AA+CB+B)

and hence if and only if AA+CB+B = C.
The general solution of (13.16) is then given by

vec(X) = (BT ⊗ A)
+

vec(C)+ [I − (BT ⊗ A)
+
(BT ⊗ A)]vec(Y ),

where Y is arbitrary. This equation can then be rewritten in the form

vec(X) = ((B+)T ⊗ A+)vec(C)+ [I − (BB+)T ⊗ A+A]vec(Y )

or, using Theorem 13.26,

X = A+CB+ + Y − A+AYBB+.

The solution is clearly unique if BB+ ⊗ A+A = I .

EXERCISES

1. For any two matrices A and B for which the indicated matrix product is defined,
show that (vec(A))T (vec(B)) = Tr(AT B). In particular, if B ∈ R

n×n, then Tr(B) =
vec(In)

T vec(B).

2. Prove that for all matrices A and B, (A⊗ B)+ = A+ ⊗ B+.

3. Show that the equation AXB = C has a solution for all C if A has full row rank and
B has full column rank. Also, show that a solution, if it exists, is unique if A has full
column rank and B has full row rank. What is the solution in this case?

4. Show that the general linear equation

k∑
i=1

AiXBi = C

can be written in the form

[BT
1 ⊗ A1 + · · · + BT

k ⊗ Ak]vec(X) = vec(C).
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5. Let x ∈ R
m and y ∈ R

n. Show that xT ⊗ y = yxT .

6. Let A ∈ R
n×n and B ∈ R

m×m.

(a) Show that ‖A⊗ B‖2 = ‖A‖2‖B‖2.

(b) What is ‖A⊗ B‖F in terms of the Frobenius norms of A and B? Justify your
answer carefully.

(c) What is the spectral radius of A⊗ B in terms of the spectral radii of A and B?
Justify your answer carefully.

7. Let A, B ∈ R
n×n.

(a) Show that (I ⊗ A)k = I ⊗ Ak and (B ⊗ I )k = Bk ⊗ I for all integers k.

(b) Show that eI⊗A = I ⊗ eA and eB⊗I = eB ⊗ I .

(c) Show that the matrices I ⊗ A and B ⊗ I commute.

(d) Show that
eA⊕B = e(I⊗A)+(B⊗I ) = eB ⊗ eA .

(Note: This result would look a little “nicer” had we defined our Kronecker
sum the other way around. However, Definition 13.14 is conventional in the
literature.)

8. Consider the Lyapunov matrix equation (13.11) with

A =
[

1 0
0 −1

]

and C the symmetric matrix [
2 0
0 −2

]
.

Clearly

Xs =
[

1 0
0 1

]
is a symmetric solution of the equation. Verify that

Xns =
[

1 1
−1 1

]

is also a solution and is nonsymmetric. Explain in light of Theorem 13.21.

9. Block Triangularization: Let

S =
[

A B

C D

]
,

where A ∈ R
n×n and D ∈ R

m×m. It is desired to find a similarity transformation
of the form

T =
[

I 0
X I

]
such that T −1ST is block upper triangular.
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(a) Show that S is similar to [
A+ BX B

0 D −XB

]

if X satisfies the so-called matrix Riccati equation

C −XA+DX −XBX = 0.

(b) Formulate a similar result for block lower triangularization of S.

10. Block Diagonalization: Let

S =
[

A B

0 D

]
,

where A ∈ R
n×n and D ∈ R

m×m. It is desired to find a similarity transformation of
the form

T =
[

I Y

0 I

]

such that T −1ST is block diagonal.

(a) Show that S is similar to [
A 0
0 D

]
if Y satisfies the Sylvester equation

AY − YD = −B.

(b) Formulate a similar result for block diagonalization of

S =
[

A 0
C D

]
.
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