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Part |

Fundamentals

Jane M. Booker

1.1 Chapters 1-6

To bridge the gap between probability and fuzzy theories, the first step is to examine and
understand the two sides of the gap. The first part of this book consists of six chapters that
lay the foundations of both theories and provide the fundamental principles for constructing
the bridge.

We (the editors) begin (in Chapter 1) with an introduction to the history of both theories
and the stories describing the formulation of the gap between them. Itis our intent to represent
both “sides,”” but with the tone of reconciliation. There are cases where applications support
one theory more than the other, and these are brought forth in the application chapters in
Part II. There are also cases where either probability or fuzzy theory is useful or a hybrid
approach combining the two is best, particularly when characterizing different kinds of
uncertainties in a complex problem.

Following the philosophical discussion in Chapter 1, Chapters 2 and 3 provide the
foundations of fuzzy theory and probability theory, respectively.

Chapter 4 is devoted to Bayesian probability theory. Bayes’ theorem provides a pow-
erful structure for bridging the gap between fuzzy and probability theory and lays some of
the groundwork for the bridging mechanism. Chapter 5 then completes the building of the
bridge in a mathematical and philosophical sense.

Because data and information in today’s world often reside within the experience and
knowledge of the human mind, Chapter 6 examines the formal use of eliciting and analyzing
expert judgment. That topic comprises an entire book in its own right (Meyer and Booker,
2001). The contents of this chapter not only covers both theories but provides applications,
making it the perfect transition chapter to the applications chapters in Part II.
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2 Part . Fundamentals

.2 Suggested reading

The reader who has little familiarity with either fuzzy or probability theory should review
Chapters 2 and 3, respectively. We highly recommend Chapter 4 for an introductory un-
derstanding of how to bridge the gap between the two theories and recommend Chapter 5
to complete this understanding. Because many uncertainties in complex problem solving
and mass communication are imbedded in the cognitive processes of the human mind, we
suggest a review of the formal methods for handling expert knowledge.
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Chapter 1

Introduction

Timothy J. Ross, Jane M. Booker, and W. Jerry Parkinson

1.1 Some history and initial thoughts

The history of humankind and its relationship to technology is well documented. One such
technology—information technology—has been impacting human thought over at least the
last 400 years.

For example, the 17th century was described by its technology historians as the Age
of Experience, in which many developments from direct observation were realized in fun-
damental astronomy, physics, chemistry, and mathematics despite remaining mysteries in
other fundamental concepts (e.g., sphericity of the planet). The 18th century was perceived
as the Age of Reason—the Renaissance following the Dark Ages in Europe at the end of
the 17th century. From the beginning of the 19th century until about 1950, we had what we
could call the Age of Mathematics—here the arithmetical formalisms of the previous century
were advanced into more formal calculus-based theories. From 1950 to 1980, we had the
Age of Computing—a time where many computational models of physical processes were
developed. This period paralleled the developments in digital computing from the ILLIAC
through the IBM® 360 to the IBM PC. From 1980 to 1995, we had the Age of Knowledge—a
time when, as evidenced in its literature, a great deal of effort was focused on the acquisition
and appropriate use of knowledge. Again, we see a parallel development, this time in hard-
ware, between the areas of symbolic computing (LISP machines, Mathematica) and parallel
computing (CRAY, Connection-Machine, IBM SP). Finally, 1995 to the present is the Age
of Cyberspace—an age of ubiquitous networks and multiple, rapid forms of communication.

Humans cannot be expected to reasonably adjust to today’s rapid technological ad-
vancements. Today humans are in information overload. The engine behind this can be
traced to the individual forces of computer hardware and software; the nascent field of net-
work computing; integration of various engineering fields; new technologies such as GIS
(geographic information systems) and GPS (global positioning systems) producing gigabytes
of information each hour; intelligent databases; complex simulation models; collaborative
engineering; inventive engineering; and new methods to present, distill, and deliver techno-
logical education to distant areas—so-called distance education (Arciszewski, 1999).
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4 Chapter 1. Introduction

Superposed with this development in information technology we had a parallel devel-
opment in the theoretical frameworks for assessing uncertainty in the information. Probabil-
ity concepts date back to the 1500s, the time of Cardano when gamblers recognized the rules
of probability in games of chance and, more important, that avoiding these rules resulted in
a sure loss (i.e., the classic coin toss example of “heads you lose, tails I win,” referred to as
the “Dutch book™). The concepts were still very much in the limelight in 1685, when the
Bishop of Wells wrote a paper that discussed a problem in determining the truth of statements
made by two witnesses who were both known to be unreliable to the extent that they only tell
the truth with probabilities p; and p,, respectively. The Bishop’s answer to this was based
on his assumption that the two witnesses were independent sources of information (Lindley
(1987Db)).

Probability theory was initially developed in the 18th century in such landmark treatises
as Jacob Bernoulli’s Ars Conjectandi (1713) and Abraham DeMoiver’s Doctrine of Chances
(1718; 2nd ed., 1738). Later in that century a small number of articles appeared in the
periodical literature that would have a profound effect on the field. Most notable of these
were Thomas Bayes’ An Essay Towards Solving a Problem in the Doctrine of Chances (1763)
and Pierre Simon Laplace’s formulation of the axioms relating to games of chance, Mémoire
sur la probabilité des causes par les evenemens (1774). Laplace, only 25 years old at the
time he began his work in 1772, wrote the first substantial article in mathematical statistics
prior to the 19th century. Despite the fact that Laplace, at the same time, was heavily engaged
in mathematical astronomy, his memoir was an explosion of ideas that provided the roots
for modern decision theory, Bayesian inference with nuisance parameters (historians claim
that Laplace did not know of Bayes’ earlier work), and the asymptotic approximations of
posterior distributions (Stigler (1986)).

By the time of Newton, physicists and mathematicians were formulating different
theories of probability (see Chapter 3). The most popular ones remaining today are the
relative frequency theory and the subjectivist, or personalistic, theory. The latter theory
was initiated by Thomas Bayes (1763), who articulated his very powerful theorem for the
assessment of subjective probabilities. The theorem specified that a human’s degree of belief
could be subjected to an objective, coherent, and measurable mathematical framework within
the subjective probability theory. In the early days of the 20th century, Rescher developed
a formal framework for a conditional probability theory, and Jan Lukasiewicz developed a
multivalued, discrete logic (circa 1930). In the 1960s, Arthur Dempster developed a theory
of evidence which, for the first time, included an assessment of ignorance, or the absence
of information. In 1965, Zadeh introduced his seminal idea in a continuous-valued logic
called fuzzy set theory. In the 1970s, Glenn Shafer extended Dempster’s work' to produce a
complete theory of evidence dealing with information from more than one source, and Lotfi
Zadeh illustrated a possibility theory resulting from special cases of fuzzy sets. Later, in the
1980s other investigators showed a strong relationship between evidence theory, probability
theory, and possibility theory with the use of what have been called fuzzy measures (Klir
and Folger (1988)).

In the over three decades since its inception by Zadeh, fuzzy set theory (and its logical
counterpart, fuzzy logic) has undergone tremendous growth. Over ten thousand papers,
hundreds of books, almost a dozen journals, and several national and international societies
bear witness to this growth. Table 1.1 shows a count of papers containing the word “fuzzy”
in the title, as cited by INSPEC and MathSciNet databases. (Data for 2001 are not complete.)
To this day, perhaps because the theory is chronologically one of the newest, fuzzy sets and

'We refer to this extension in the text as the Dempster—Shafer theory.
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Table 1.1. Number of papers with the word “fuzzy’ in the title.*

Period INSPEC | MathSciNet
1970-1979 570 441
1980-1989 2,383 2,463
1990-1999 23,121 5,459
2000-2001 5,940 1,670

Totals 32,014 10,033

*Compiled by Camille Wanat, Head, Engineering Library, University of California at Berkeley, June 21, 2002.

fuzzy logic remain steeped in controversy and debate for a variety of reasons. Although
the philosophical and mathematical foundations of fuzzy sets are intuitive, they run counter
to the thousands of years of dependence on binary set theory on which our entire Western
cultural logic resides (first espoused by Aristotle in ancient Greece). In addition, some have
seen fuzzy sets as a competitor to probability theory (the new-kid-on-the-block syndrome)
in a variety of settings, such as in competition for precious page space in journals, for
classes on campuses, for students in graduate classes, and even for consulting opportunities
in industry, to name a few. The statistical societies have even sponsored debates in their
own journals (e.g., Statist. Sci., 1 (1986), pp. 335-358) and conferences on topics ranging
from the mathematical (e.g., the axioms of subjective probability) to the linguistic (e.g.,
communicating better with engineers and scientists (Hoadley and Kettering (1990)) in an
effort to win back “market share,” i.e., to get science and engineering students to take classes
in statistics and probability instead of evidence theory, fuzzy logic, soft computing, and other
new uncertainty technologies.

However, the debate extends far beyond “market share” competitiveness. The core
issues involve the philosophical and theoretical differences between these theories and how
these theories are useful for application in today’s complex, information-based society. Later
in this chapter, there is a lengthy discussion on the running debate between advocates of the
two theories concerning the merits of each theory in terms of modeling uncertainty and
variability.

It is the premise of this book that this perceived tension between probability theory and
fuzzy set theory is precisely the mechanism necessary for scientific advancement. Within
this tension are the searches, trials and errors, and shortcomings that all play a part in the
evolution of any theory and its applications. In this debate between advocates of these two
theories are the iterations necessary to reach a common ground that will one day seem so
intuitive and plausible that it will be difficult to reflect or to remember that there ever was
a debate at all! Our goal in writing this book is to illustrate how naturally compatible and
complementary the two theories are and to help the reader see the power in combining the
two theories to address the various forms of uncertainty that plague most complex problems.
Some of this compatibility can be reached by examining how probability is interpreted. As
will be demonstrated in this book, it is much easier to bridge the gap when a subjective or
personalistic (e.g., Bayesian-based) interpretation of probability is used (see Chapter 3 for a
discussion).

The contributors to this book were chosen for their experience and expertise in both
theories but also for their efforts in and understanding of the compatibility of both fuzzy and
probability theories. Even though some chapters are more fuzzy oriented and some are more

21t should be noted that within the probability community there is an equally intense debate over the interpretation
of probability (i.e., frequentist versus subjective). To our knowledge, the only attempt ever made in resolving that
debate is addressed in Chapter 3.
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6 Chapter 1. Introduction

probability oriented,? the goal for each chapter is to provide some insight into establishing
the common ground, i.e., bridging the gap.

In addition to the motivations for this book as explained above, there is ample evidence
in the literature about the need for more information sharing among groups using various
theories to assess and quantify uncertainty. For example, Laviolette et al. (1995) claim
that “so few statisticians and probabilists have considered the efficacy of fuzzy methods”!
Another observation (Bement (1996)) is that “the reason engineers (e.g., Zadeh) had to devise
their own theory for handling different kinds of uncertainty was because statisticians failed
to respond to the engineering needs.” Thus far, most of the debate about FST (fuzzy set
theory) and probability has appeared in “fuzzy’ journals that “are not frequently read by
statisticians.” This statement rings true in many other works in the literature.

1.2 The great debate
1.2.1 The debate literature

There have been several organized debates at fuzzy conferences, including a recent one at
the annual Joint Statistical Meeting (Anaheim, CA, August 1997); an oral faceoff between
two individuals (G. Klir and P. Cheeseman) at the 8th Maximum Entropy Workshop (August
1-5, 1988, St. John’s College, Cambridge, U.K.; see Klir (1989)); and there exist several
archival collections of written debates. For example, the following citations give an idea
of the activity produced in very well written arguments espousing the virtues of various
uncertainty methods, although most of the debate centers on Bayesian probability or fuzzy
logic:

e Statist. Sci., 2 (1987), pp. 3-44;

e Comput. Intell., 4 (1988), pp. 57-142;

* IEEE Trans. Fuzzy Systems, 2 (1994), pp. 1-45;
* Technometrics, 37 (1995), pp. 249-292.

In addition, numerous articles have been written outside of organized debates that have
been critical of one or the other theory by protagonists of each. These articles include the
following:

* Lindley, Internat. Statist. Rev., 50 (1982), pp. 1-26 (with seven commentaries);

* Cheeseman, in the edited volume Uncertainty in Artificial Intelligence, North-Holland,
Amsterdam, 1986, pp. 85-102;

* Cheeseman, Comput. Intell., 4 (1988), pp. 58—66 (with 22 commentaries);
* Hisdal, Fuzzy Sets Systems, 25 (1988), pp. 325-356;
* Kosko, Internat. J. Gen. Systems, 17 (1990), pp. 211-240;

* Laviolette and Seaman, Math. Sci., 17 (1992), pp. 26—41;

31t is not inconceivable that some problems are more fuzzy oriented and some are more probability oriented
than others.
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* Elkan, in Proceedings of the American Association for Artificial Intelligence, MIT
Press, Menlo Park, CA, 1993, pp. 698-703 (with numerous commentaries in the
subsequent AAAI magazine);

» Zadeh, IEEE Trans. Circuits Systems, 45 (1999), pp. 105-119.

The next section takes many of the points made in the various historical debates and
organizes them into a few classic paradigms that seem to be at the heart of the philosophical
differences between the two theories. While this is merely an attempt to summarize the
debates for the purpose of spawning some thinking about the subsequent chapters of this
book, it can in no way represent a complete montage of all the fine points made by so many
competent scientists. Such a work would be another manuscript in itself.

1.2.2 The issues and controversy

Any attempt to summarize the nearly four decades of debate between the probability and
fuzzy communities is a daunting task, and one that is in danger of further criticism for at least
two reasons: First, we could not possibly include everyone’s arguments (see the brief review
of the many organized debates in the previous section); second, we could be precariously
close to misrepresenting the opinions of those arguments that we do include here if we have
inadvertently taken some arguments out of their originally intended contexts. Therefore, we
apologize in advance for any omissions or possible misrepresentations included herein. It is
important to mention that many of the opinions and arguments presented in this brief review of
the “great debate’” should be taken in their historical perspectives. Some of the individuals
whose quotes are provided here—quotes perhaps made very early in the evolution of the
process—may have changed their minds or changed their perspectives on some of the issues
raised over the past 35 years. In addition, in changing views or perspectives, some of these
individuals, and more not mentioned here, unwittingly have advanced the knowledge in both
fields—fuzzy and probability theories—because it is the debate process, by its very nature,
that has forced a positive evolution in bridging the gap between these two very powerful and
very useful models of uncertainty and variability.

In what follows, we have organized our review of the great debate into some rather
useful, although perhaps arbitrary, epistemological paradigms. We begin with a review
of some of the polemical statements that fueled the fires of many of the original debates.
Although strident in their character, in retrospect these polemics were well timed in terms
of forcing people to look more closely at the side of the debate they were defending. The
polemics tended to be one-sided, opposing fuzzy set theory, this being the new sibling in
the family and requesting equal consideration as a viable theory for assessing uncertainty
alongside its more mature and metaphorically larger brother, probability theory. Very few of
the polemics were aimed in the other direction—probably more as a defensive reaction—and
we will mention some of these.

Next, we organize the debate into some paradigms that seemed to characterize much
of the disagreement. These are

* philosophical issues of chance, ambiguity, crispness, and vagueness;
» membership functions versus probability density functions;
* Bayes’ rule;

* the so-called conjunction fallacy;
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8 Chapter 1. Introduction

¢ the so-called disjunction contradiction;
¢ the excluded-middle laws;
* the infusion of fuzziness into probability theory.

We conclude our summary of the great debate with some rather pithy but positive
statements.

The early polemics

We give first billing to the father of fuzzy logic, Professor Lotfi Zadeh, whose seminal paper
in 1965 obviously started the debate. In a recent paper (Zadeh (1999)), where he discusses
the need for developing methods to compute with words, he recounts a few remarks made
in the early 1970s by two of his colleagues. These remarks revealed, in a very terse and
crude way, a deep-seated proclivity of hard scientists to seriously consider only those things
that are numerical in nature. To preface these remarks, Professor Zadeh cited a statement
attributed to Lord Kelvin in 1883 about the prevailing 19th century respect for numbers and
the utter disrespect for words:

“I often say that when you can measure what you are speaking about and express
it in numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowledge but you have scarcely,
in your thoughts, advanced to the state of science, whatever the matter may be.”

Zadeh goes on to recall that, in 1972, Rudolph Kalman, remarking on Zadeh’s first exposition
on a linguistic variable, had this to say:

“Is Professor Zadeh presenting important ideas or is he indulging in wishful
thinking? No doubt Professor Zadeh’s enthusiasm for fuzziness has been rein-
forced by the prevailing climate in the U.S.—one of unprecedented permissive-
ness. ‘Fuzzification’ is a kind of scientific permissiveness; it tends to result in
socially appealing slogans unaccompanied by the discipline of hard scientific
work and patient observation.”

In a similar vein, in 1975 Zadeh’s colleague at Berkeley, Professor William Kahan, offered
his assessment:

“Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem
that could not be solved better by ordinary logic. What we need is more logical
thinking, not less. The danger of fuzzy theory is that it will encourage the sort
of imprecise thinking that brought us so much trouble.”

These statements, and others similar to them, set the stage for the great debate that,
although continuing today, has calmed in its rhetoric in recent years.

In 1988, Peter Cheeseman excited numerous investigators in the fields of fuzzy set
theory, logic, Dempster—Shafer evidence theory, and other theories with his work “An Inquiry
into Computer Understanding.” In this paper, he made the claim that both fuzzy set theory
and Dempster—Shafer evidence theory violated context dependency, a required property of
any method-assessing beliefs. This statement, and many others included in the paper, such
as his misstatements about possibility distributions (Ruspini (1988)), incited such a debate
that 22 commentaries followed and were published.
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In a series of papers dealing with the expression of uncertainty within artificial intel-
ligence, Dennis Lindley (1982, 1987a, b) perhaps expressed the most vociferous challenge
to fuzzy set theory—or any other non-Bayesian theory—with his comments about the in-
evitability of probability:

“The only satisfactory description of uncertainty is probability. By this is meant
that every uncertainty statement must be in the form of a probability; that several
uncertainties must be combined using the rules of probability, and that the cal-
culus of probabilities is adequate to handle all situations involving uncertainty.
In particular, alternative descriptions of uncertainty are unnecessary. These in-
clude the procedures of classical statistics; rules of combination. .. possibility
statements in fuzzy logic. .. use of upper and lower probabilities. .. and belief
functions.”

In a single paragraph, Lindley’s proclamations were sufficient to not only extend indefinitely
the debate between fuzzy and probability, but also to prolong numerous other debates, such
as those continuing for the past 100 years between frequentists and Bayesians.

Other statements were made that, although inflammatory, appeared to have less sub-
stance. Hisdal (1988a) stated “the fuzzy set group is. .. in the position of having a solution
for which it has not yet found a problem” and “a theory whose formulas must be replaced
by other ad hoc ones whenever it does not agree with experiment is not a finished theory.” A
rather unexplained quote from her, “Fuzziness 7 randomness. . . this is a very strong, and. . .
also a very surprising assertion,” was followed by an even more enigmatic statement: “Fuzzy
set theory has mostly assumed that some mystic agent is at work, making its fuzzy decisions
according to some undefined procedure.” Moreover, in (Hisdal (1988b)), she states of fuzzy
set theory that “This seems to imply the belief, that human thinking is based on inexact,
fuzzily-defined concepts. As I have heard a colleague express it, the theory of fuzzy sets is
no theory at all, it is more like a collection of cooking recipes.”

Laviolette and Seaman (1992) remarked that “fuzzy set theory represents a higher
level of abstraction relative to probability theory” and questioned whether laws exist to
govern the combination of membership values. In a rather curious metaphor explaining the
relationship of the axiomatic differences in the two theories, specifically the fuzzy property
of supersubsethood as articulated by Bart Kosko in 1990, they begin with “The foundation
of probability is both operationally and axiomatically sound. Supersethood alone need not
make one theory more broadly applicable than another in any practical sense. If we wish to
design and construct a building, we need only Newtonian mechanics and its consequences.
The fact that quantum mechanics includes Newtonian mechanics as a subset theory is of no
practical consequence.” Then, in speaking about the operational effectiveness of the two
theories, they further suggest “We have proposed that fuzzy methods be judged by their
sensitivity to changes in an associated probabilistic model. We take for granted that fuzzy
methods are sub-optimal with respect to probabilistic methods. It is important that a method
for judging the efficacy of fuzzy methods be developed and employed, given the widespread
interest in FST.” Finally, they state “... in our opinion, this operational deficiency remains
the chief disadvantage of fuzzy representations of uncertainty.”

From the other side of the argument, Kosko (1994) states that “probability is a very
special case of fuzziness.” In referring to the excluded-middle laws, he states that it “forces
us to draw hard lines between things and non-things. We cannot do that in the real world.
Zoom in close enough and that breaks down.” (See section 2.1.2 in Chapter 2 on excluded-
middle laws for an expansion of these ideas.) Kosko further states that “Our math and world
view might be different today if modern math had taken root in the A-AND-not-A views
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of Eastern culture instead of the A-OR-not-A view of ancient Greece.” To dismiss this as
unfortunate deconstructionism is just to name call and to ignore historical fact. For a long
time the probability view had a monopoly on uncertainty, but now “fuzzy theory challenges
the probability monopoly. .. the probability monopoly is over.”

In his 1990 paper “Fuzziness vs. Probability,” Kosko addresses everything from ran-
domness, to conditional probability, to Bayesian subjective probability. He very eloquently
shows that his subsethood theorem is derived from first principles and, in commenting on
the lack of a derivable expression for conditional probability, remarks that this is the “dif-
ference between showing and telling.”” He remarked that his “subsethood theorem suggests
that randomness is a working fiction akin to the luminiferous ether of nineteenth-century
physics—the phlogiston of thought.” Noting that his derivation of the subsethood theo-
rem had nothing to do with randomness, he states “The identification of relative frequency
with probability is cultural, not logical. That may take some getting used to after hundreds
of years of casting gambling intuitions as matters of probability and a century of building
probability into the description of the universe. It is ironic that to date every assumption
of probability—at least in the relative frequency sense of science, engineering, gambling,
and daily life—has actually been an invocation of fuzziness.” Giving equal attention to the
subjective probability groups, he claims that “Bayesianism is a polemical doctrine.” To jus-
tify this, he shows that Bayes’ rule also stems from the subsethood theorem.* Additionally,
in commenting on Lindley’s argument (Lindley (1987a)) that only probability theory is a
coherent theory and all other characterizations of uncertainty are incoherent, Kosko states
“this polemic evaporates in the face of”’ the subsethood theorem and “ironically, rather than
establish the primacy of axiomatic probability, Lindley seems to argue that it is fuzziness in
disguise.” Kosko finishes his own series of polemics by euphemistically pointing out that
perhaps 100 years from now, “no one. .. will believe that there was a time when a concept
as simple, as intuitive, as expressive as a fuzzy set met with such impassioned denial.”

Kosko’s prediction reflects the nature of change in human cognition and perhaps even
philosophy. Whether that process can be best described as fuzzy or probabilistic in nature
we leave as a mental exercise.

Philosophical issues: Chance, ambiguity, and crispness versus vagueness

Itis sometimes useful to first sit back and ask some fundamental questions about what it is we
are trying to do when we attempt to first characterize various forms of uncertainty, and then
to posit mathematical forms for quantifying them. Philosophers excel at these questions.
The history of humankind’s pondering of this matter is rich, and won’t be replicated here,
but the ideas of a few individuals who have thought about such notions as chance, ambiguity,
crispness, and vagueness are cited here. While we could look at a time in Western culture as
far back as that of Socrates, Descartes, or Aristotle, or revisit the writings of Zen Buddhism,
we shall skip all that and move directly to the 20th century, where a few individuals spoke
profoundly on these matters of uncertainty.

Max Black, in writing his 1937 essay “Vagueness: An exercise in logical analysis,”
first cites remarks made by the ancient philosopher Plato about uncertainty in geometry, then
embellishes on the writings of Bertrand Russell (1923) who emphasized that “all traditional
logic habitually assumes that precise symbols are being employed.” With these great thoughts
prefacing his own arguments, he proceeded to his own, now famous quote:

4While subsethood by itself may not guarantee performance enhancement in practical applications, enhance-
ments to existing solutions from the use of fuzzy systems is illustrated in the applications chapters of Part II of this
book.
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“It is a paradox, whose importance familiarity fails to diminish, that the most
highly developed and useful scientific theories are ostensibly expressed in terms
of objects never encountered in experience. The line traced by a draftsman, no
matter how accurate, is seen beneath the microscope as a kind of corrugated
trench, far removed from the ideal line of pure geometry. And the ‘point-planet’
of astronomy, the ‘perfect gas’ of thermodynamics, or the ‘pure-species’ of ge-
netics are equally remote from exact realization. Indeed the unintelligibility at
the atomic or subatomic level of the notion of a rigidly demarcated boundary
shows that such objects not merely are not but could not be encountered. While
the mathematician constructs a theory in terms of ‘perfect’ objects, the exper-
imental scientist observes objects of which the properties demanded by theory
are and can, in the very nature of measurement, be only approximately true.”

More recently, in support of Black’s work, Quine (1981) states

“Diminish a table, conceptually, molecule by molecule: when is a table not
a table? No stipulations will avail us here, however arbitrary. ... If the term
‘table’ is to be reconciled with bivalence, we must posit an exact demarcation,
exact to the last molecule, even though we cannot specify it. We must hold that
there are physical objects, coincident except for one molecule, such that one is
a table and the other is not.””

Bruno de Finetti, in his landmark 1974 book Theory of Probability, quickly gets his
readers attention by proclaiming “Probability does not exist; it is a subjective description
of a person’s uncertainty. We should be normative about uncertainty and not descriptive.”
He further emphasizes that the frequentist view of probability (objectivist view) “requires
individual trials to be equally probable and stochastically independent.” In discussing the
difference between possibility and probability he states “The logic of certainty furnishes us
with the range of possibility (and the possible has no gradations); probability is an additional
notion that one applies within the range of possibility, thus giving rise to gradations (‘more
or less’ probable) that are meaningless in the logic of uncertainty.” In his book, de Finetti
warns us that: “The calculus of probability can say absolutely nothing about reality”’; and
in referring to the dangers implicit in attempts to confuse certainty with high probability,
he states, “We have to stress this point because these attempts assume many forms and are
always dangerous. In one sentence: to make a mistake of this kind leaves one inevitably
faced with all sorts of fallacious arguments and contradictions whenever an attempt is made
to state, on the basis of probabilistic considerations, that something must occur, or that its
occurrence confirms or disproves some probabilistic assumptions.”’

In a discussion about the use of such vague terms as “very probable,
certain,” or “almost impossible,”” de Finetti states

LR RT3

practically

“The field of probability and statistics is then transformed into a Tower of Ba-
bel, in which only the most naive amateur claims to understand what he says
and hears, and this because, in a language devoid of convention, the funda-
mental distinctions between what is certain and what is not, and between what
is impossible and what is not, are abolished. Certainty and impossibility then
become confused with high or low degrees of a subjective probability, which
is itself denied precisely by this falsification of the language. On the contrary,

SHistorically, a sandpile paradox analogous to Quine’s table was discussed much earlier, perhaps in ancient
Greek culture.
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the preservation of a clear, terse distinction between certainty and uncertainty,
impossibility and possibility, is the unique and essential precondition for mak-
ing meaningful statements (which could be either right or wrong), whereas the
alternative transforms every sentence into a nonsense.”’

Probability density functions versus membership functions

The early debate in the literature surrounding the meaning of probability and fuzzy logic
also dealt with the functions in each theory; i.e., probability density functions (PDFs) and
membership functions (MFs). The early claim by probabilists was that membership functions
were simply probability density functions couched in a different context, especially in the
modeling of subjective probability. The confusion perhaps stemmed from both the similarity
between the functions and the similarity between their applications—to address questions
about uncertainty. However, this confusion still prevails to a limited extent even today.
For example, in the paper (Laviolette et al. (1995)), the authors provide a quote from the
literature that intimated that membership functions are “probabilities in disguise.” When
one looks at the ontological basis for both these functions, it is seen that the only common
feature of an MF and a PDF is that both are nonnegative functions. Moreover, PDFs do not
represent probabilities and, while the maximum membership value allowed by convention
is unity, there is no maximum value for a PDF. On the other hand, a cumulative probability
distribution function (CDF), the integral of the PDF, is a nonnegative functions defined on
the unit interval [0, 1] just as an MF. A CDF is a monotonically increasing function, and an
MF is not. The integral of a PDF (the derivative of the CDF) must equal unity, and the area
under an MF need not equal unity.® Based on these fundamental differences, it is not so
obvious how either function could be a disguise for the other, as claimed by some. However,
we recognize that the attempts to overcome, ignore, or mask the differences may be the result
of wishful thinking, either from wanting to show that one theory is superfluous because its
features can be captured by the other, or wanting to bridge the gap between the two.

One area in which PDFs and MFs have been equated is that of Bayesian probability
analysis (Laviolette (1995), Cheeseman (1988)). In this case, the likelihood function in
Bayes’ rule, the function containing new information and used to update the prior probabil-
ities, need not be a PDF. In Bayes’ rule, there is a normalization taking place that ensures
the posterior distribution (updated prior) will be a PDF, even if the likelihood function is not
a PDF. In many applications of Bayes’ rule, this likelihood function measures a degree of
belief and, by convention, attains a value of unity. Geometrically, the likelihood function
can be used in the same context as an MF. In fact, Laviolette uses this similarity to point
out that fuzzy control can be approached in the same way as probabilistic control (see Chap-
ter 8 for a more definitive discussion of this claim), and Cheeseman uses this similarity to
mistakenly imply that membership functions are simply likelihood functions. But the bot-
tom line is that subjective probabilities—those arising from beliefs rather than from relative
frequencies—still must adhere to the properties mentioned above for PDFs and CDFs. They
cannot be equated with MFs without making extreme assumptions to account for the differ-
ences. Another fundamental difference is that MFs measure degrees of belongingness. They
do not measure likelihood (except in a similarity sense, i.e., likeliness) or degrees of belief
or frequencies, or perceptions of chance, and the area under their curve is not constrained to
a value of unity. They measure something less measurable—set membership in ambiguous

SWhile the area under an MF is not a constraint on these functions, it is a useful metric in some applications
involving defuzzification methods (see Chapter 2).
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or vague sets. Although both membership values and probabilities map to the unit interval
[0, 1], they are axiomatically different (see the discussion in Chapter 5).

James Bezdek gives some excellent examples of the differences between membership
values and probabilities (Bezdek (1993, 1994a, 1994b)). He summarizes much of the de-
bate by pointing out that the probability-only advocates base their arguments on one of two
philosophical themes: (i) nonstatistical uncertainty does not exist, or (ii) maybe nonrandom
uncertainty does exist, but a probability model still is the best choice for modeling all uncer-
tainties. Theme (i) engenders a debate even within the statistical community because there
is a nice variety of choices on which to base a probabilistic approach: relative frequency,
subjectivity, or the axiomatic approach (von Mises (1957)). In theme (ii), it has been argued
by many (e.g., Klir (1989, 1994)) that nonstatistical forms of uncertainty do exist and that
numerous theories address them in very useful ways.

Bezdek (1993) gives the following example that, in turn, has spawned numerous other
examples. Suppose you are very thirsty and have the chance to drink the liquid from one
of two different bottles, A and B. You must decide from which bottle to drink using the
following information: bottle A has 0.91 membership in the set of potable liquids, whereas
bottle B has a probability of 0.91 of being potable. For the sake of illustration, we will define
this probability as a frequentist interpretation. Most people would choose bottle A since
its contents are at least “reasonably similar” to a potable liquid and because bottle B has a
9% chance of being unsavory, or even deadly. Moreover, if both bottles could be tested for
potability, the membership value for bottle A would remain unchanged, while the probability
for bottle B being potable would become either 0 or 1—it is either potable or not potable
after a test.” These two different kinds of information inherently possess philosophically
different notions: fuzzy memberships represent similarities of objects to imprecisely defined
properties, and probabilities convey assessments of relative frequencies.

Some probabilists have claimed that natural language is precise, indeed, and that there
is no need to use a method like fuzzy logic to model linguistic imprecision. An example
dealing with imprecision in natural language is also given by Bezdek (1993). Suppose that
as you approach a red light, you must advise a driving student when to apply the brakes.
Would you say “begin braking 74 feet from the crosswalk,” or would your advice be for the
student to “apply the brakes pretty soon”? As an exercise, think of how you would address
this uncertainty with probability theory.® In this case, precision in the instruction is of little
value. The latter instruction would be used by humans since the first command is too precise
to be implemented in real time. Sometimes, striving for precision can be expensive, or adds
little or no useful information, or both. Many times, such uncertainty cannot be presumed
to be, or adequately assessed as, an element of chance.

Bayes’ rule

Cheeseman (1988) gives an eloquent discussion of the utility of Bayesian probability in
reasoning with subjective knowledge. He and Laviolette (1985) suggest that there is no need
to use fuzzy set theory to model subjective knowledge since Bayesian methods are more
than adequate for this. However, even the subjective interpretation of probability still has
the restrictions of that theory. For example, there is no apparent difference in the way one
would model ignorance that arises from lack of knowledge or ignorance that arises from

7We could argue that the subjective probability would also remain unchanged; however, this is more of a
frequentist interpretation.

8Using probabilities, we could estimate the required distance and then instruct the student to brake where he/she
maximized his/her probability assessment of stopping in time.
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only knowing something about a random process (McDermott (1988)). Moreover, others
still question the utility of Bayesian models in epistemology (Dempster (1988), Dubois and
Prade (1988)).

Shafer (1987) makes the following points about Bayes’ formula P(A|Uy) =
P(UolA)P(A)/P(Up):

“[It] can serve as the symbolic expression of a rule. This rule, the Bayesian
rule of conditioning, says that when new knowledge or evidence tells us that the
correct answer to the question considered by U is in the subset Uy, we should
change our probability for another subset A from P(A) to the new probability
given by this quotient, above. Strictly speaking, this rule is valid only when the
receipt of the information, Uy, is itself a part of our probability model—i.e., it
was foreseen by the protocol. In practice, however, the rule is used more broadly
than this in subjective probability judgment. This broader use is reasonable, but
it must be emphasized that the calculation is only an argument—an argument that
is imperfect because it involves a comparison of the actual evidential situation
with a situation where U, was specified by a protocol, as one of the possibilities
for the set of still possible outcomes at some point in the game of chance. The
protocol is the specification, at each step, of what may happen next, i.e., the
rules of the game of chance.”

Alleged conjunction fallacy

Conjunction in fuzzy logic is modeled with the minimum operator as the smaller of the
membership values between two sets. Woodall (1997) and Osherson and Smith (1981) cite
the conjunction fallacy as one of the frailties of fuzzy logic. Others, such as McNeil and
Freiberger (1993), have called this an intriguing cognitive puzzle that is not a frailty of fuzzy
logic but rather a strength, as it exposes with human reasoning the reality of conjunctive
processes. Basically, the cognitive puzzle can be illustrated with the following example:
The intersection between the set “pet” and the set “fish”” produces a membership value of the
conjunction “pet fish” that is the smaller of the membership values for “pet” and for “fish” for
a particular species of fish in the universe of vertebrates. Osherson and Smith considered that
guppy, as a specific species, should have a higher value in the conjunctive set “pet fish” than
it does in either “pet” or “fish”; it is not a common pet, nor a common fish, they argued, but it
is certainly a strong prototype of the concept “pet fish.” In explaining the minimum operator
as a preferred operator for the conjunction of fuzzy sets, Zadeh (and others, e.g., Oden (1984)
and Rosch (1973)) pointed out that humans normalize in their thinking of concepts, whereas
strict logical operations don’t involve such normalization. Being in the intersection of set
“pet” and set “fish,” i.e., in the set “pets and fish,” is different from being in the set “pet
fish.” A linguistic modification (pet modifies fish) does not equate to a logical conjunction
of concepts (sets). Other, more easily understood examples are “red hair” or “ice cube,”
where the terms “red” and “cube” are altered significantly from their usual meaning. In
thinking about per—fish people normalize; they compare a guppy to other pets and other fish
and the guppy has a low membership, but when they compare it only to other pet—fish, it
grades higher. Such cognitive puzzles, which lead to faulty human reasoning, have long
been discussed in the literature (Tversky and Kahneman (1983)).

Normalization is typical in many uncertainty operations. A conditional probability
is a normalization and, as we have seen in the previous section, Bayes’ rule also involves
normalization. For example, the probability of getting a 3 on one toss of a die is é, but the
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probability changes to % if the result is conditioned (i.e., normalized) on the outcome being
an odd number (i.e., 1, 3, or 5). In their arguments about “pet fish,” Osherson and Smith
implicitly normalized for their example of guppies.

Alleged disjunction contradiction

Another allegation about fuzzy logic suggested by some probabilists in the literature (His-
dal (1988b), Laviolette et al. (1985), Lindley (1987a)) has been termed the “disjunctive
contradiction.” In describing a fuzzy set modeling the heights of people, Hisdal (1988b)
complains that the logical union between the fuzzy sets medium height and tall height should
not be less than unity between the prototypical values of medium and tall. She calls this the
“sharp depression” in the grade of membership curve for two adjacent linguistic labels (see
Figure 1.1).

A medium

tall

Figure 1.1.

In other words, Hisdal’s question is, how could any person’s membership in the set
“medium OR tall”” (which, for fuzzy operations, involves the maximum operator) be less
than the largest membership of either if that person’s height was between the prototype
heights representing medium height and tall? The answer is quite simple. As the figure
shows, a “tall” person can have a low membership in the set “medium.” The set “tall” is
not a subset of the set “medium,” but there is an overlap—there exists a common ground
in which members of both sets coexist with lower membership. Hisdal confused “medium
or tall” with the set “at least medium.” Hence there is no inconsistency in the use of the
maximum operator here for disjunction, as stated by Hisdal, but rather a misinterpretation of
the meaning of disjunction—or logical union. Finally, the argument of Osherson and Smith
(1981) on this issue confuses the operations of “sum’ and “max” in their arguments on the
union operator; the former is an operator on functions and the latter is an operator on sets.

Those controversial excluded-middle laws

For crisp sets, Lindley (1971) showed that the excluded-middle laws result from the three
basic laws of probability theory (convexity, addition, and multiplication) when he surmised
that an event, E, and its negation, not-E, are mutually exclusive and their union exhaustive.
He implicitly assumes that event occurrence is binary—it does or does not occur. Gaines
(1978) showed that a probability theory results only after the law of the excluded-middle
is added as an axiom to a general uncertainty logic. However, in either case, the critical
assumption is that there is no provision for the common ground; as termed by Osherson and
Smith, “there can be no apple that is not an apple.” Lindley is convinced—he claims that
“uncertainties are constrained by the laws of probability”” and thereby ignores vagueness,
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fuzziness, ambiguity, and linguistic imprecision. The laws of probability theory work won-
derfully with sets whose boundaries are clear and unambiguous, but a theory is also needed
for sets with fuzzy boundaries.

On this same matter, Osherson and Smith (1981), and certainly many others at that
time, argued that the “apple that is not an apple” concept is logically empty. Hisdal (1988b)
erroneously termed this the complementation paradox. In fuzzy set theory, locutions of the
type “tomatoes are both fruit and not fruit” can be supported, but in classical Aristotelian
logic they cannot. Basically, how can the complement of a fuzzy set, where the set itself
does not enjoy full membership over its support, be null throughout that support? The only
way to accept the excluded-middle is to accept only “all or nothing” memberships. For
example, if the concept “tall” is vague, then so is the concept “not tall.” In this case, why
would the conjunction “tall and not tall” still not be ambiguous to some degree (i.e., not null
everywhere)? Alternatively, why wouldn’t the disjunction “tall or not tall” have less than
full membership everywhere?

Classical sets deal with sets whose boundaries are crisp, but very few concepts yield
crisp boundaries—in reality, they don’t exist (see Black (1937)). As espoused by Howard
Gardner (1985), the greatest proponents of crispness—Socrates, Locke, Wittgenstein—all
had labored under the deepest illusion!

There are at least two reasons why the law of the excluded-middle might be inappro-
priate for some problems. First, people may have a high degree of belief about a number of
possibilities in a problem. A proposition should not be “crowded out” just because it has a
large number of competing possibilities. The difficulties people have in expressing beliefs
consistent with the axioms of probability logic are sometimes manifested in the rigidity of
the law of the excluded-middle (Wallsten and Budescu (1983)). Second, the law of the
excluded-middle results in an inverse relationship between the informational content of a
proposition and it probability. For example, in a universe of n singletons, as more and more
evidence becomes available on each of the singletons, the relative amount of evidence on
any one diminishes (Blockley (1983)). This makes the excluded-middle laws inappropriate
as a measure of modeling uncertainty in many situations.

Since the law of the excluded-middle (and its dual, the law of contradiction) is respon-
sible for spawning a theory of probability from a general uncertainty theory (see Chapter 5), it
is interesting to consider examples where it proves cumbersome and counterintuitive. David
Blockley, in civil engineering, and Wallsen and Budescu, both in business and management,
all argued in 1983 the points made in the previous paragraph.

Consider a hypothetical example involving several alternatives. A patient goes to two
doctors to get opinions on persistent head pain. Both doctors consider four possible causes:
stress headache (H), concussion (Co), meningitis (M), or a tumor (7"). Prior to asking
the patient to undergo more extensive and expensive tests, both doctors conduct a routine
office examination, at different times and locations, and come to the same conclusions: they
give little weight to meningitis but considerable weight to the other three possible causes.
When pressed to give numerical values for their assessments (their degrees of belief) they
give the following numbers: w(7T) = 0.8, w(H) = 0.8, w(Co) = 0.8, w(M) = 0.1. Of
course, a probabilist would normalize these to obtain probabilities and to get their sum to
equal unity; i.e., p(T) = 0.32, p(H) = 0.32, p(Co) = 0.32, p(M) = 0.04. The problem
arises when the probabilist informs the doctor that the probability that the patient’s pain is
due to something “other than a tumor™ is 0.68 = 1 — p(T'), which is a number higher than
the normalized value for any of the other three possible causes! This runs counter to the
beliefs of the doctors, who feel that a concussion and a headache are also strong possibilities
based on their “limited” diagnosis. Such is the requirement imposed by the excluded-middle
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laws. Based on this information, should the patient spend more money on tests? If the
doctors’ original weights were assigned as possibilities, these weights would not need any
normalization.

On the other hand, Bayesianists would claim that the original weights were simple like-
lihood values obtained by diagnosis to be used to modify prior probabilities of the historical
evidence of the four possible causes of the patient’s head pain. For example, suppose that
the prior probabilities ¢; are ¢ (H) = 0.8, ¢(T) = 0.05, ¢ (M) = 0.01, and ¢ (Co) = 0.30;
then from Bayes’ formula, we can predict for each potential cause of the patient’s head pain
(HP),Ci,

w(H P|C;)p(Ci)
S wHPICHP(Ch)

p(Ci|HP) =

where w(H P|C;) is the likelihood value for the ith possible cause of the head pain, as given
in the previous paragraph. The resulting posterior probabilities (updated priors) would be
calculated as

w(Ci|HP) = w(H|HP) = 0.695,
w(C>|HP) = w(T|HP) = 0.043,
w(Cs|HP) = w(C|HP) = 0.261,
w(Cs|HP) = w(M|HP) = 0.001.

Now the probability that the head pain is due to a tumor is 0.043, slightly higher than
the historical evidence due to the doctors’ rather high weight assigned after a rudimentary
diagnostic exam. However, it remains that the probability (now updated) that it is a cause
other than a tumor is 0.957, a number much higher than the rest of the potential causes.
Therefore, whether one takes the philosophy of a Bayesianist or a frequentist, the excluded-
middle law can be counterintuitive to people’s initial judgments; in this case, the doctors’
original assessments that three of the four possible causes all have a high likelihood hold.
Since the evidence (or degrees of belief, or likelihood values, etc.) comes from humans, it
is not a justification for using probability theory, as is often claimed by Lindley and others,
to suggest that humans must be forced to think in “coherent” terms (the term “coherent”
borrowed by probabilists to describe the additivity axiom of probability theory). Meyer and
Booker (2001) in their formal elicitation methods advocate just the opposite approach. The
highest quality of expert information comes from allowing the experts to express their beliefs
free of such probabilistic constraints. Of course, we expect (or perhaps hope) that humans
exhibit coherence as a linguistic feature of reasoning. However, studies (Meyer and Booker
(2001)) have too often shown this is not the case, and we should not force them to obey the
coherence property of probability theory. More to the point, we also should not force them
to obey a set of axiomatic structures that run counter to their thinking or problem solving
because such restrictions induce cognitive and motivational biases that both degrades the
quality and changes the nature and content of the information given.

Probability theory needs an infusion of fuzzy logic

In a 1998 email communication to colleagues at the University of California at Berkeley,
Lotfi Zadeh stated “probability theory needs an infusion of fuzzy logic to enhance its ability
to deal with real-world problems.” Earlier, in their 1988 series of commentaries on Peter
Cheeseman’s essay on his controversial computer understanding, Enrique Ruspini, Ron
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Yager, and Lotfi Zadeh all made suggestions (Comput. Intell., 4 (1988), pp. 57-142) about
how powerful probability theory would be if it were able to consider notions of overlapping
sets—however, then it wouldn’t be the probability theory that we all know (or think we know)
today. In a 1996 paper, Zadeh alludes to the fact that the historically main contribution—but
not the only one—of fuzzy logic will be its ability to help us develop a new field, computing
with words (CW). Here he states that a frequently asked question is, “What can be done with
fuzzy logic that cannot be done equally well with other methodologies, e.g., predicate logic,
probability theory, neural network theory, Bayesian network, and classical control?” One
such answer involves the nascent field of CW.

In 1999, Zadeh stated that information granulation is associated with an increasing
order of precision: from interval to fuzzy to evidence to random, the granulation goes from
coarse to fine. He cites the successes of precision on monumental scientific tasks involving
the atomic bomb, moon landings, supercomputers, telescopes, and carbon dating of rock.
He also cites failures on more simple tasks: we cannot build robots that can move with the
agility of animals; we cannot automate driving tasks in heavy traffic; we cannot automate
language translation; we cannot summarize nontrivial stories automatically; we cannot model
the behavior of economic systems; and we cannot construct machines that can compete with
children in the performance of simple physical and cognitive tasks. Hoadley and Kettering
(1990) point out that follow-up studies to the Space Shuttle Challenger disaster revealed
that “relevant statistical data had been looked at incorrectly. . . probabilistic-risk assessment
methods were needed to support NASA, and... its staff lacked specialists and engineers
trained in the statistical sciences.” They admit, however, that statistical science does not
seem to deal well with the probabilistic risk assessments of complex engineered systems,
because “there are too little data in the traditional sense.”

The subject of specifically how fuzzy set theory can actually enhance the effectiveness
of probability theory when dealing with some problems has been articulated recently by
Zadeh (1995, 1996). In these works, Zadeh points out that probability theory is very useful
in dealing with the uncertainty inherent in measurements or objects that can be measured;
however, it is not very useful in dealing with the uncertainty imbedded in perceptions by
humans. The former involves crisp sets, while the latter involves fuzzy sets. Examples of
the latter are the following:

1. What is the probability that your tax return will be audited?
2. What is the probability that tomorrow will be a warm day?

3. Team A and Team B played each other 10 times. Team A won the first seven times,
and Team B won the last three times. What is the probability that Team A will win the
next game between the two teams?

4. Most young women are healthy. Mary is young. What is the probability that Mary is
healthy?

In question 1, the difficulty arises from the basic property of conditional probability—
namely, given p(x), all that can be said is that the value of p(x|y) is between O and 1. Thus
if we know that 1% of all tax returns are audited, this tells us little about the probability that
your tax return will be audited, except in a bounding sense that your return is one of the many
from which the audit sample is taken. You may have an estimate of how often you have been
audited, which could be used in a Bayesian probability model, and you can always provide
your subjective belief as a probability for an estimate. If we have more detailed information
about you, e.g., income, age, residence, occupation, etc., a better estimate might be possible
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from IRS data based upon the fraction of returns that are audited in a certain category, but
this detail will never reach the level of a single individual. Probability theory alone cannot
directly handle this question at the appropriate level.

In question 2, the difficulty is that the warmth is a matter of degree. The event “a warm
day”’ cannot be defined precisely; it is a fuzzy event based on personal preference.

In question 3, the difficulty is that we are dealing with a time series drawn from a
nonstationary process. In such cases, probabilities do not exist. In fact, that statement is the
familiar quote attributed to de Finetti (1974) in his discussion about the origins of subjective
probabilities, as enunciated earlier in this debate summary.

In question 4, we have a point of common sense reasoning, and probability theory is
inadequate to handle the uncertainty in concepts such as “most young women” or “healthy.”

To one degree or another, all four questions involve the same theme: the answers to
these questions are not numbers; they are linguistic descriptions of fuzzy perceptions of
probabilities. As pointed out by Zadeh (1999), these kinds of questions can be addressed
by an enhanced version of probability theory—a theory enhanced by a generalization that
accounts for both fuzzification and granulation. Here fuzzy granulation reflects the finite
cognitive ability of humans to resolve detail and store information. Classical probability
theory is much less effective in those fields in which dependencies between variables are
not well defined; the knowledge of probabilities is imprecise and/or incomplete; the systems
are not mechanistic; and human reasoning, perception, and emotion play an important role.
This is the case in many fields ranging from economics to weather forecasting.

Our summary of the debate

In 1997, in discussing the choices available to analysts who are modeling uncertainty in their
systems, Nguyen had this to say:

“Of course, we are free to model mathematically the way we wish, but unless
the modeling is useful for applications, the modeling problem may be simply
a mathematical game. In the axiomatic theory of probability we do not allow
all possible subsets of a sample space to be qualified as events. Instead we
take a sigma-field of subsets of the sample space to be the collection of events
of interest. It is not possible to extend the sigma-additive set-function to the
whole power set of the reals. Acknowledging that randomness and fuzziness
are different types of uncertainties, there is no compelling reason to believe that
their associated calculi are the same.”

The arguments of Lindley (1982) have been countered on mathematical grounds by Good-
man, Nguyen, and Rogers (1991). “Saying that fuzzy sets theory is complementary rather
than competitive does not presume deficiencies in probability.”

Finally, rather than debate what is the correct set of axioms to use (i.e., which logic
structure) for a given problem involving uncertainty, one should look closely at the prob-
lem, determine which propositions are vague or imprecise and which ones are statistically
independent or mutually exclusive, determine which ones are consistent with human cog-
nition, and use these considerations to apply a proper uncertainty logic, with or without
the law of the excluded-middle. By examining a problem so closely as to determine these
relationships, one finds out more about the structure of the problem in the first place. For
example the assumption of a strong truth-functionality (for fuzzy logic) could be viewed
as a computational device that simplifies calculations, and the resulting solutions would be
presented as ranges of values that most certainly bound the true answer if the assumption
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is not reasonable. A choice of whether fuzzy logic is appropriate is, after all, a question of
balancing the model with the nature of the uncertainty contained within it. Problems without
an underlying physical model, problems involving a complicated weave of technical, social,
political, and economic factors, and problems with incomplete, ill-defined, and inconsistent
information where conditional probabilities cannot be supplied or rationally formulated per-
haps are candidates for fuzzy set applications. It has become apparent that the engineering
profession is overwhelmed by these sorts of problems.

The argument, then, appears to be focused on the question, “Which theory is more
practical in assessing the various forms of uncertainty that accompany any problem?”” The
major intent of this book, therefore, is to shed light on this question by comparing just two
of the theories, fuzzy sets and probability, for various applications in different fields. While
we know that this book will not end the philosophical debate (which could be waged for
many more decades), will not convert either the protagonists or antagonists of a particular
theory, and will not lessen the importance or usefulness of any of the theories, it is our hope
that its contents will serve to educate the various audiences about the possibility that the
complementary use of these two theories in addressing uncertainties in many different kinds
of problems can be very powerful indeed. Hence we hope that this book will help “bridge
the gap” between probability theory and other nonprobabilistic alternatives in general, and
fuzzy set theory in particular.

1.3 Fuzzy logic and probability: The best of both worlds

In contrast to the literature cited in section 1.2, there is a growing list of recent papers
illustrating the power of combining the theories. What follows are very brief, very incomplete
descriptions of a few of the works readily available to the editors of this book:

e Cooper and Ross (1998) on subjective knowledge in system safety. The authors de-
scribe a series of mathematical developments combining probability operations and
fuzzy operations in the area of system reliability. They provide sort of a shopping cart
of potential ideas in combining the two methods to assess both modeling and paramet-
ric uncertainty within the context of assessing the safety and reliability of manmade
systems.

* Ross et al. (1999) on system reliability. In this work, the authors discuss a way to
fuse probabilities, using fuzzy norms, to address the fact that real systems contain
components whose interactions are between the extremes of completely independent
and completely dependent. The fuzzy norms are based on Frank’s 7-norms, which
can be shown to contain, as a family of norms, the probabilistic and fuzzy norms.
The paper further shows that memberships and probability density functions can be
combined using the same norms, thus paving the way for an algebraic approach to
fuse both (random and fuzzy) kinds of information.

e Smith et al. (1997, 1998) on uncertainty estimation. In a series of two papers, Smith
et al. used the graphical methods typical in fuzzy control applications to develop
probabilistic density functions of the uncertainties inherent in the working parts of a
system to estimate the systems reliability. In this case, the output MFs in the inference
of a fuzzy control method were used to develop the density functions.

* Zadeh (1999) on computing with words. In this paper, Zadeh shows that a question
of the type “What is the probability of drawing a small ball from an urn of balls
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of various sizes?”’ can be addressed with a combination of probability and fuzzy set
theory. In this work there is a distinction drawn between being able to measure
and manipulate numbers (as done with probabilities) and being able to measure and
manipulate perceptions (linguistic data).

Nikolaidis (1997-1999) on designing under uncertainty. In a sequence of papers
(Nikolaidis et al. (1999) and Maglaras et al. (1997)), a contrast is established between
probability theory and possibility theory in the area of structural design. In this case,
structural failure and survival (safety) usually are taken to be complementary states,
even though the transition between the two is gradual for most systems. In designs
under uncertainty, it is important to understand how each of the two methods max-
imizes the expression of safety. In terms of design optimization against failure, the
probabilistic optimization tries to reduce the probabilities of failure of the modes that
are easiest to control in order to minimize the system failure probability, whereas fuzzy
set optimization simply tries to equalize the possibilities of failure of all failure modes
in minimizing the system failure possibility. They show that fuzzy set methods are
not necessarily more conservative than probabilistic methods when assessing system
failure. They also show that fuzzy set methods yield safer designs than probabilistic
designs when there is limited data.

Rousseeuw (1995) on fuzzy and probabilistic clustering. This work is important be-
cause it shows an application in classification where a fuzzy clustering method is
actually a collaboration of two approaches: fuzzy theory and statistics. The useful-
ness of fuzzy clustering is apparent in that it helps the classification process avoid
convergence only to local minima. In a completely fuzzy approach, each cluster cen-
ter is influenced also by the many objects that essentially belong to other clusters.
This bias may keep the fuzzy method from finding the true clusters. This problem is
overcome by the use of objective functions, which are hybrids of purely fuzzy and
purely probabilistic formalisms and which produce a high contrast clustering method
capable of finding the true clusters in data.

Singpurwalla et al. (2000) on membership and likelihood functions. In this published
laboratory report, Singpurwalla et al. explore how probability theory and fuzzy MFs
can be made to work in concert so that uncertainty of both outcomes and imprecision
can be treated in a unified and coherent manner. In this work, the authors show that the
MF can be interpreted as a likelihood if the fuzzy set takes the role of an observation
and the elements of the fuzzy set take the role of the hypothesis. They show further
that the early work of Zadeh (1968) in defining the probability of a fuzzy event as being
equal to the expected value of the event’s membership function is proportional to the
measure they develop, which is a function of a prior probability of the classification
of the event.

As indicated earlier, technology is moving so fast, in fact, that the systems on which
we rely for our support and our discourse are becoming more, not less, complex. Decision-
making has become so much guesswork under time constraints that analysts rarely have time
to develop well-conceived models of today’s systems. Complexity in the real world gener-
ally arises from uncertainty in various forms. Complexity and uncertainty are features of
problems that have been addressed since humans began thinking abstractly; they are ubiqui-
tous features that imbue most social, technical, and economic problems faced by the human
race. Why is it then that computers, which have been designed by humans, after all, are not
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capable of addressing complex issues, that is, issues characterized by vagueness, ambiguity,
imprecision, and other forms of uncertainty? How can humans reason about real systems
when the complete description of a real system often requires more detailed data than a
human could ever hope to recognize simultaneously and assimilate with understanding? It
is because humans have the capacity to reason approximately, a capability that computers
currently do not have. In reasoning about such systems, humans simply approximate behav-
ior, thereby maintaining only a generic understanding about the problem. Fortunately, for
humans’ ability to understand complex systems, this generality and ambiguity is sufficient.

When we learn more and more about a system, its complexity decreases and our
understanding increases. As complexity decreases, the precision afforded by computational
methods become more useful in modeling the system. For systems with little complexity, and
hence little uncertainty, closed-form mathematical expressions provide precise descriptions
of the systems. For systems that are alittle more complex, but for which significant data exists,
model-free methods, such as artificial neural networks, provide a powerful and robust means
to reduce some uncertainty through learning based on patterns in the available data. Finally,
for the most complex systems, where little numerical data exists and where only ambiguous
or imprecise information may be available, probabilistic or fuzzy reasoning can provide
a way to understand system behavior by allowing us to interpolate approximately between
observed input and output situations and thereby measuring, in some way, the uncertainty and
variability. The imprecision in fuzzy models and the variability in probabilistic predictions
generally can be quite high. The point, however, is to match the model type with the character
of the uncertainty exhibited in the problem. In situations where precision is apparent, for
example, fuzzy systems are not as efficient as more precise algorithms in providing us
with the best understanding of the problem. On the other hand, fuzzy systems can focus on
modeling problems with imprecise or ambiguous information. In systems where the model is
understood but where variability in parameters of the model can be quite high, a probabilistic
model can enrich understanding. Knowledge in using the tools illustrated in the subsequent
chapters of this book will allow readers to address the vast majority of problems that are
characterized either by their complexity or by their lack of a requirement for precision.

Our philosophy in preparing this book for a world of complex problems is to set a tone
of conciliation between fuzzy theory and probability. We admit that there are differences
between them. We do not propose that one is better than the other. We agree that one is
more mature than the other. We admit that some applications are better served by one or the
other. However, we contend that some applications can benefit from a hybrid approach of
the two. Our intent is to help probabilists understand fuzzy set theory and fuzzy logic and to
help fuzzy advocates see that probability theory, in conjunction with fuzzy logic, can be very
powerful for some types of problems. Another objective of this book is to help the user select
the best tool for the problem at hand. Our intended audience is statisticians, probabilists,
and engineers.

1.4 Organization of the book

The book is organized into two major divisions. The chapters in Part I cover fundamental
topics of probability, fuzzy set theory, uncertainty, and expert judgment elicitation. In Part I,
we move from specific explanations of probability theory to more general descriptions of
various forms of uncertainty, culminating in the elicitation of human evaluations and assess-
ments of these uncertainties. Part II includes applications and case studies that illustrate the
uses of fuzzy theory and probability and hybrid approaches.
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Chapter 2 covers fuzzy set theory, fuzzy logic, and fuzzy systems. The origins of
membership sets and functions are included, along with a discussion on the law of the
excluded-middle. Fuzzy relationships and operations are illustrated with examples. Fuzzy
logic and classical logic are compared.

Chapter 3 covers the foundations of probability theory and includes a discussion on the
different interpretations of probability. Topics relating to probability distribution functions
are presented as they relate to uncertainty and to hybrid fuzzy/probability approaches. The
last section of this chapter provides a transition from probability to fuzzy theory by discussing
the concepts of data, knowledge, and information.

One of the probability theories from Chapter 3 has Bayes’ theorem at its core. Details
regarding methods based on this approach to probability are presented in Chapter 4. Interpre-
tations, applications, and issues associated with the Bayesian-based methods are presented.
One reason for the special emphasis on these methods is the link it provides to fuzzy MFs,
as described in the last section of the chapter.

Chapter 5 considers the uses of fuzzy set theory and probability theory. As such, it
covers and compares the topics of vagueness, imprecision, chance, uncertainty, and ambi-
guity as they relate to both theories. Historical development of these topics is discussed,
leading up to recent research work in possibility theory.

The process of defining and understanding the various kinds of uncertainty crosses into
another subjective arena: the elicitation of expert knowledge. Chapter 6 provides guidelines
for eliciting expert judgment in both realms of probability and fuzzy logic. While this chapter
provides many of the elicitation fundamentals, it does so using two different applications for
illustration.

Part II of the book, on applications and case studies, begins with Chapter 7 on image
enhancement processing. This chapter compares image enhancement via the modification of
the PDF of the gray levels with the new techniques that involve the use of knowledge-based
(fuzzy expert) systems capable of mimicking the behavior of a human expert. This chapter
includes some color images.

Chapter 8 provides a brief, basic introduction to engineering process control. It begins
with classical fuzzy process control and introduces the relatively new idea of probabilistic
process control. Two different scenarios of a problem are examined using classical process
control, proportional-integral-derivative (PID) control, and probabilistic control techniques.

Chapter 9 presents a structural safety analysis study for multistory framed structures
using a combined fuzzy and probability approach. The current probabilistic approach in
treating system and human uncertainties and its inadequacy is discussed. The alternative
approach of using fuzzy sets to model and analyze these uncertainties is proposed and illus-
trated with examples. Fuzzy set models for the treatment of some uncertainties in reliability
assessment complement probabilistic models and are readily incorporated into the current
analysis procedure for the safety assessment of structures.

Reliability is usually considered a probabilistic concept. Chapter 10 presents a case
study of the reliability of aircraft structural integrity. The usefulness of fuzzy methods is
demonstrated when insufficient test data are available and when reliance is necessary on the
use of expert judgment.

Chapter 11 presents another case study in reliability. It begins with a complex relia-
bility problem in the automotive industry, carries it through using Bayesian methods, and
finally covers how certain aspects of the problem would benefit from the use of MFs. As in
Chapter 10, here the use of expert judgment is prevalent when it is not feasible or practical
to obtain sufficient test data for traditional reliability calculations.

Statistical process control (SPC) is a long-standing set of probability-based techniques

From "Fuzzy Logic and Probability Applications: Bridging the Gap" Timothy J. Ross, Jane M. Booker, and W. Jerry Parkinson, Editors.

Buy this book from SIAM at www.ec-securehost.com/SIAM/SA11.html



Copyright ©2002 by the Society for Industrial and Applied Mathematics

This electronic version is for personal use and may not be duplicated or distributed.

24 Chapter 1. Introduction

for monitoring the behavior of a manufacturing process. Chapter 12 describes an application
of fuzzy set theory for exposure control in beryllium part manufacturing by adapting and
comparing fuzzy methods to the classical SPC. This very lengthy chapter considers the topic
of fuzzy SPC as sufficiently important and novel (as introduced in the third author’s Ph.D.
dissertation); the chapter is essentially a tutorial on standard SPC extended to incorporate
fuzzy information and fuzzy metrics.

Combining, propagating, and accounting for uncertainties is considered for fault tree
logic models in Chapter 13. This scheme is based on classical (Boolean) logic. Now this
method is expanded to include other logics. Three of the many proposed logics in the
literature considered here are Lukasiewicz, Boolean, and fuzzy. This is a step towards
answering the questions “Which is the most appropriate logic for the given situation?”’ and
“How can uncertainty and imprecision be addressed?”’

Chapter 14 investigates the problem of using fuzzy techniques to quantify information
from experts when test data or a model of the system is unavailable. MFs are useful when
the uncertainty associated with this expertise is expressed as rules. Two examples illustrate
how a fuzzy-probability hybrid technique can be used to develop uncertainty distributions.
One example is for cutting tool wear and the other is for reliability of a simple series system.

Chapter 15 introduces the use of Bayesian belief networks as an effective tool to show
flow of information and to represent and propagate uncertainty based on a mathematically
sound platform. Several illustrations are presented in detecting, isolating, and accommodat-
ing sensor faults. A probabilistic representation of sensor errors and faults is used for the
construction of the Bayesian network. Fuzzy logic forms the basis for a second approach to
sensor networks.

These chapters represent the collective experience of the authors’ and editors’ efforts
and research to bridge the gap between the theories of fuzzy logic and probability. As stated
above, our goal is to continue to develop, support, and promote these techniques for solving
the complex problems of modern information technology.
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