An Integral Identity from Physics (Open)

Summary: Prove \frac{\pi^2}{6} = \zeta(2) = \int_0^{\infty} \frac{dx}{x} \int_0^{x} \frac{dy}{y} \{\cos(x-y)-\cos x\}.

Classification: Primary, Classical Analysis; Secondary, Integrals

Z. K. Silagadze
Budker Institute of Nuclear Physics and
Novosibirsk State University
630 090, Novosibirsk, Russia
Email: silagadze@inp.nsk.su

Renew SIAM · Contact Us · Site Map · Join SIAM · My Account
Facebook Twitter Youtube