Rate of Convergence of General Phase Field Equations in Strongly Heterogeneous Media Toward Their Homogenized Limit

Abstract

Over the last few decades, phase field equations have found increasing applicability in a wide range of mathematical-scientific fields (e.g., geometric PDEs and mean curvature flow, materials science for the study of phase transitions) but also engineering ones (e.g., as a computational tool in chemical engineering for interfacial flow studies). Here, we focus on phase field equations in strongly heterogeneous materials with perforations such as porous media. To the best of our knowledge, we provide the first derivation of error estimates for fourth order, homogenized, and nonlinear evolution equations. Our fourth order problem induces a slightly lower convergence rate, i.e., $\epsilon^{1/4}$, where $\epsilon$ denotes the material's specific heterogeneity, than established for second order elliptic problems (e.g., [V. Zhikov, Dokl. Math., 73 (2006), pp. 96--99, https://doi.org/10.1134/S1064562406010261.]) for the error between the effective macroscopic solution of the (new) upscaled formulation and the solution of the microscopic phase field problem. We hope that our study will motivate new modeling, analytic, and computational perspectives for interfacial transport and phase transformations in strongly heterogeneous environments.

Keywords

  1. upscaling
  2. porous media
  3. phase field
  4. free energy
  5. homogenization

MSC codes

  1. 68Q25
  2. 68R10
  3. 68U05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E. Acerbi, G. Dal Maso, and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal Theor., 18 (1992), pp. 481--496.
2.
N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), pp. 165--205.
3.
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518.
4.
J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility, Math. Comput., 68 (1999), pp. 487--517.
5.
M. Z. Bazant and Z. P. Bazant, Theory of sorption hysteresis in nanoporous solids: Part II Molecular condensation, J. Mech. Phys. Solids, 60 (2012), pp. 1660--1675.
6.
A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.
7.
A. L. Bertozzi, S. Esedoglu, and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), pp. 285--91, http://www.ncbi.nlm.nih.gov/pubmed/17283787.
8.
D. Boda and D. Gillespie, Steady-state electrodiffusion from the Nernst-Planck equation coupled to local equilibrium Monte Carlo simulations, J. Chem. Theory Comput., 8 (2012), pp. 824--829.
9.
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), p. 258, http://link.aip.org/link/JCPSA6/v28/i2/p258/s1&Agg=doi.
10.
G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev, Homogenization: Methods and Applications, AMS, Providence, RI, 2007.
11.
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Ser. Math. Appl., 17, Oxford University Press, Oxford, UK, 1999.
12.
D. Cioranescu, P. Donato, and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.), 63 (2006), pp. 467--496.
13.
S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1969.
14.
C. Eck, M. Fontelos, G. Grün, F. Klingbeil, and O. Vantzos, On a phase-field model for electrowetting, Interface Free Bound., 11 (2009), pp. 259--290, http://www.ems-ph.org/doi/10.4171/IFB/211.
15.
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 (1997), pp. 1028--1047, https://doi.org/10.1137/S0036141095291919.
16.
X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits, Math. Comp., (2004), pp. 541--567.
17.
P. C. Fife, Dynamical Aspects of the Cahn-Hilliard Equation, Barrett Lectures, University of Tennessee, 1991.
18.
P. J. Flory, Thermodynamics of high polymer solutions, J. Phys. Chem., 10 (1942), pp. 51--61, https://doi.org/10.1063/1.1723621.
19.
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Math., Springer, New York, 2001.
20.
J. Guyer, W. Boettinger, J. Warren, and G. McFadden, Phase field modeling of electrochemistry. I. Equilibrium, Phys. Rev. E, 69 (2004), 021603, https://doi.org/10.1103/PhysRevE.69.021603.
21.
J. H. S. Hele-Shaw, The flow of water, Nature, 58 (1898), pp. 34--36.
22.
C. Hih and L. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35 (1971), pp. 85--101.
23.
H. Hillert and L.-I. Staffansson, The regular solution model for stoichiometric phases and ionic melts, Acta Chem. Scand., 24 (1970), pp. 3618--3626.
24.
U. Hornung, Homogenization and Porous Media, Interdiscip. Appl. Math., Springer, 1997, http://books.google.co.uk/books?id=hpoDV4vTdy8C.
25.
L. Huang and P. Somasundaran, Theoretical model and phase behavior surfactant mixtures, Langmuir, 13 (1997), pp. 6683--6688.
26.
P. Jenny, S. H. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187 (2003), pp. 47--67, https://doi.org/10.1016/S0021-9991(03)00075-5.
27.
I. Kosinska, I. Goychuk, M. Kostur, G. Schmid, and P. Hänggi, Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model, Phys. Rev. E, 77 (2008), 031131.
28.
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), pp. 211--228.
29.
P. Malgaretti, I. Pagonabarraga, and M. Rubi, Entropic transport in confined media: A challenge for computational studies in biological and soft-matter systems, Front. Phys., (2013), https://doi.org/10.3389/fphy.2013.00021.
30.
C. C. Mei and B. Vernescu, Homogenization Methods for Multiscale Mechanics, World Scientific, River Edge, NJ, 2010.
31.
A. M. Meirmanov and B. Zaltzman, Global in time solution to the Hele-Shaw problem with a change of topology, European J. Appl. Math., 13 (2002), pp. 431--447, https://doi.org/10.1017/S0956792502004874.
32.
W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., 35 (1964), pp. 444--451, https://doi.org/10.1063/1.1713333.
33.
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608--623.
34.
R. H. Nochetto, A. J. Salgado, and S. W. Walker, A diffuse interface model for electrowetting with moving contact lines, Math. Models Methods Appl. Sci., (2013), pp. 1--45, https://doi.org/10.1142/S0218202513500474.
35.
A. Novick-Cohen, On Cahn-Hilliard type equations, Nonlinear Anal Theor., 15 (1990), pp. 797--814.
36.
O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl. 26, North-Holland, Amsterdam, 1992.
37.
F. Otto and W. E, Thermodynamically driven incompressible fluid mixtures, J. Chem. Phys., 107 (1997), pp. 10177--10184, https://doi.org/10.1063/1.474153.
38.
S. Pastukhova, The Dirichlet problem for elliptic equations with multiscale coefficients operator estimates for homogenization, J. Math. Sci., 193 (2013), pp. 283--300, https://doi.org/10.1007/s10958-013-1453-z.
39.
G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization, Springer, New York, 2008.
40.
R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. R. Soc. Lond. Ser. A, 422 (1989), pp. 261--278, https://doi.org/10.1098/rspa.1989.0027.
41.
Y. Pomeau, Sliding drops in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64 (2001), 061601.
42.
M. Sahimi, Dispersion in flow through porous media, in Flow and Transport in Porous Media and Fractored Rock, 2nd ed., Wiley, Weinheim, Germany, 2011, https://doi.org/10.1002/9783527636693.ch11.
43.
N. Savva and S. Kalliadasis, Two-dimensional droplet spreading over topographical substrates, Phys. Fluids, 21 (2009), 092102.
44.
N. Savva and S. Kalliadasis, Dynamics of moving contact lines: A comparison between slip and precursor film models, Europhys. Lett., 94 (2011), 64004.
45.
N. Savva, S. Kalliadasis, and G. A. Pavliotis, Two-dimensional droplet spreading over random topographical substrates, Phys. Rev. Lett., 104 (2010), 084501.
46.
M. Schmuck, First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations, Z. Angew. Math. Mech., 92 (2012), pp. 304--319.
47.
M. Schmuck, New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials, J. Math. Phys., 54 (2013), 021504, https://doi.org/10.1063/1.4790656.
48.
M. Schmuck and M. Bazant, Homogenization of the Poisson--Nernst--Planck equations for ion transport in charged porous media, SIAM J. Appl. Math., 75 (2015), pp. 1369--1401, https://doi.org/10.1137/140968082.
49.
M. Schmuck and P. Berg, Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells, Appl. Math. Res. Express, 2013 (2013), pp. 57--78, https://doi.org/10.1093/amrx/abs011.
50.
M. Schmuck, G. A. Pavliotis, and S. Kalliadasis, Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies, Appl. Math. Lett., 35 (2014), pp. 12--17.
51.
M. Schmuck, M. Pradas, G. A. Pavliotis, and S. Kalliadasis, Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 3705--3724, https://doi.org/10.1098/rspa.2012.0020.
52.
D. N. Sibley, A. Nold, N. Savva, and S. Kalliadasis, On the moving contact line singularity: Asymptotics of a diffuse-interface model, Eur. Phys. J. E, 36 (2013), 26.
53.
D. N. Sibley, A. Nold, N. Savva, and S. Kalliadasis, The contact line behaviour of solid-liquid-gas diffuse-interface models, Phys. Fluids, 25 (2013), 092111.
54.
H. M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling, Arch. Ration. Mech. Anal., 131 (1995), pp. 139--197, https://doi.org/10.1007/BF00386194.
55.
T. Suslina, Operator error estimates in $l_2$ for homogenization of an elliptic Dirichlet problem, Funct. Anal. Appl., 46 (2012), pp. 234--238.
56.
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., Springer, New York, 1997.
57.
J. D. Van Der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Statist., Phys., 20 (1979), pp. 197--233.
58.
R. Vellingiri, N. Savva, and S. Kalliadasis, Droplet spreading on chemically heterogeneous substrates, Phys. Rev. E, 84 (2011), 036305.
59.
C. Wylock, M. Pradas, B. Haut, P. Colinet, and S. Kalliadasis, Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels, Phys. Fluids, 24 (2012), 032108.
60.
P. Yue, C. Zhou, and J. J. Feng, Sharp interface limit of the Cahn-Hilliard model for moving contact lines, J. Fluid Mech., 645 (2010), pp. 279--294.
61.
V. Zhikov, Some estimates from homogenization theory, Dokl. Math., 73 (2006), pp. 96--99, https://doi.org/10.1134/S1064562406010261.
62.
V. V. Zhikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer, New York, 1994.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1471 - 1492
ISSN (online): 1095-712X

History

Submitted: 13 June 2016
Accepted: 15 March 2017
Published online: 24 August 2017

Keywords

  1. upscaling
  2. porous media
  3. phase field
  4. free energy
  5. homogenization

MSC codes

  1. 68Q25
  2. 68R10
  3. 68U05

Authors

Affiliations

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 247031
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, EP/P011713/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.