
Approximating the Visible Region of a Point on a Terrain∗

Boaz Ben-Moshe† Paz Carmi‡ Matthew J. Katz§

Abstract

Given a terrain T and a point p on or above it, we wish
to compute the region Rp that is visible from p. We
present a generic radar-like algorithm for computing an
approximation of Rp. The algorithm extrapolates the
visible region between two consecutive rays (emanating
from p) whenever the rays are close enough; that is,
whenever the difference between the sets of visible
segments along the cross sections in the directions
specified by the rays is below some threshold. Thus
the density of the sampling by rays is sensitive to the
shape of the visible region. We suggest a specific way to
measure the resemblance (difference) and to extrapolate
the visible region between two consecutive rays. We also
present an alternative algorithm, which uses circles of
increasing radii centered at p instead of rays emanating
from p. Both algorithms compute a representation
of the (approximated) visible region that is especially
suitable for visibility from p queries. Finally, we
report on the experiments that we performed with these
algorithms and with their corresponding fixed versions,
using a natural error measure. Our main conclusion is
that the radar-like algorithm is significantly better than
the others.

1 Introduction

Let T be a triangulation representing a terrain (i.e.,
there is a height (z-coordinate) associated with each
triangle vertex). We are interested in the following
well known problem. Given a point p on (or above)
T , compute the region Rp of T that is visible from p.
A point q on T is visible from p if and only if the line
segment pq lies above T (in the weak sense). Thus Rp

∗Research by Ben-Moshe and Katz is partially supported by
grant no. 2000160 from the U.S.-Israel Binational Science Foun-
dation, and by the MAGNET program of the Israel Ministry of
Industry and Trade (LSRT consortium). Research by Carmi is
partially supported by a Kreitman Foundation doctoral fellow-
ship.

†Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, benmoshe@cs.bgu.ac.il.

‡Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il.

§Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il.

consists of all points on T that are visible from p.
The problem of computing the visible region of a

point arises as a subproblem in numerous applications
(see, e.g., [3, 7, 9, 11]), and, as such, has been studied
extensively [2, 3, 4, 5, 7]. For example, the coverage area
of an antenna for which line of sight is required may be
approximated by clipping the region that is visible from
the tip of the antenna with an appropriate disk centered
at the antenna.

Since the combinatorial complexity of Rp might be
Ω(n2) [3, 6], where n is the number of triangles in T , it
is desirable to also have fast approximation algorithms,
i.e., algorithms that compute an approximation of Rp.
Moreover, a good approximation of the visible region is
often sufficient, especially when the triangulation itself
is only a rough approximation of the underlying terrain.
Note that in this paper we are assuming that the
terrain representation (i.e., the triangulation T ) is fixed
and cannot be modified. Simplifying the triangulation
can of course result in a significant decrease in the
actual running time of any algorithm for computing the
visible region. This approach was studied in a previous
paper [1]. See, e.g., [8] for more information on terrain
simplification.

We present a generic radar-like algorithm for com-
puting an approximation of Rp. The algorithm com-
putes the visible segments along two rays ρ1, ρ2 emanat-
ing from p, where the angle between the rays is not too
big. (I.e., each of the rays specifies a direction, and the
algorithm computes the (projections of the) visible por-
tions of the cross section of T in this direction.) It then
has to decide whether the two sets of visible segments
(one per ray) are close enough so that it can extrapolate

the visible region of p within the wedge defined by ρ1

and ρ2, or whether an intermediate ray is needed. In the
latter case the algorithm will now consider the smaller
wedge defined by ρ1 and the intermediate ray. Thus a
nice property of the algorithm is that the density of the
sample rays varies and depends on the shape of Rp.

In order to use this generic algorithm one must
provide (i) a measure of resemblance for two sets of
visible segments, where each set consists of the visible
segments along some ray from p, and (ii) an algorithm
to extrapolate the visible region between two rays
whose corresponding sets were found similar enough.



In Section 2 we describe in more detail the generic
algorithm and provide the missing ingredients.

In Section 3 we present several other algorithms for
computing the visible region Rp. The first algorithm
computes Rp exactly. Since we need such an algorithm
for the experimental evaluation of our approximate
algorithms, we decided to devise one that is based on
the general structure of the radar-like algorithm. Our
exact algorithm is rather simple and is based on known
results; nevertheless it seems useful. Specifically, the
algorithm repeatedly computes the portion of Rp within
a slice, defined by a pair of rays passing through vertices
of the terrain, that does not contain a vertex of T in its
interior. This computation can be done efficiently as is
shown in [5].

The second algorithm (called the expanding

circular-horizon algorithm or ECH for short) is in some
sense orthogonal to the radar-like algorithm; it uses cir-
cles of increasing radii centered at the view point p in-
stead of rays emanating from p. It is influenced by the
exact algorithm described by De Floriani and P. Magillo
[5]. The algorithm approximates the visible region Rp

by maintaining the (approximate) viewing angles cor-
responding to a set of sample points on the expanding
circular front (see Section 3). This allows us to parti-
tion the current front into maximal visible and invisible
arcs. We now examine the sets of visible arcs on the
current and previous fronts. If they are close enough,
then the portion of Rp within the annulus defined by
the two circles is approximated. Otherwise, we com-
pute the visible arcs on a circle of intermediate radius
and repeat.

Both the radar-like algorithm and the expanding
circular-horizon algorithm have corresponding fixed ver-
sions, that play an important role in the experiments
that were performed, see below. In the fixed version of
the radar-like algorithm, the angle between two consec-
utive rays is fixed and we approximate the portion of
Rp in the sector defined by the rays in any case, even
if they are not close enough. In the fixed version of
the expanding circular-horizon algorithm, the increase
in radius between two consecutive circles is fixed and
again we approximate the portion of Rp in the annulus
defined by the circles in any case.

In Section 4 we suggest a natural way to measure
the error in an approximation R′

p of Rp produced by
one of our algorithms. The error associated with R′

p

is the area of the XOR of R′

p and Rp, divided by the
area of the disk of radius l, where l is the range of sight
that is in use. Using this error measure (and the exact
algorithm), we performed a collection of experiments
(described in Section 4) with the radar-like and expand-
ing circular-horizon algorithms and their corresponding

fixed versions. Our main conclusions from these experi-
ments are that (i) the sensitive versions are significantly
better than their corresponding fixed versions (when the
total number of slices / annuli composing the final ap-
proximation is the same in both versions), and (ii) the
radar-like algorithm is significantly better than the ex-
panding circular-horizon algorithm. In Section 4 we of-
fer some explanations to these findings.

2 The Radar-Like Algorithm

In this section we first present our radar-like generic
algorithm. Next we describe the measure of resemblance
and the extrapolation algorithm that we devised, and
that are needed in order to transform the generic
algorithm into an actual algorithm.

The generic algorithm is presented in the frame
below. The basic operation that is used is the cross-
section operation, denoted cross-section(T, p, θ), which
computes the visible segments along the ray emanating
from p and forming an angle θ with the positive x-
axis. More precisely, cross-section(T, p, θ) computes
the (projections of the) visible portions of the cross
section of T in the direction specified by this ray.
Roughly speaking, the generic algorithm sweeps the
terrain T counter clockwise with a ray ρ emanating
from p, performing the cross-section operation whenever
the pattern of visible segments on ρ is about to change
significantly with respect to the pattern that was found
by the previous call to cross-section. The algorithm
then extrapolates, for each pair of consecutive patterns,
the visible region of p within the wedge defined by the
corresponding locations of ρ.

Given a triangulation T representing a terrain
(i.e., with heights associated with the triangle
vertices), and a view point p on or above T :

θ ← 0 .
α← some constant angle, say, π/45 .
S1 ← cross-section(T, p, θ) .
S2 ← cross-section(T, p, θ + α) .
while (θ ≤ 360)

if (S1 is close-enough to S2)
extrapolate(S1, S2);
θ ← S2.angle;
S1 ← S2;
S2 ← cross-section(T, p, min(θ + α, 360));

else
µ← (S1.angle + S2.angle)/2;
S2 ← cross-section(T, p, µ);



(a) (b)

Figure 1: Grey marks visible and black marks invisible. (a) The close-enough threshold function: δ times the
relative length of the XOR of S1 and S2. (b) The extrapolate function.

In order to obtain an actual algorithm we must pro-
vide precise definitions of close-enough and extrap-

olate.
Close-enough: A threshold function that checks
whether two patterns S1, S2 are similar, where each of
the patterns corresponds to the set of visible segments
on some ray from p. There are of course many ways
to define close-enough. We chose the following defini-
tion. In practice, the rotating ray is actually a rotating
segment of an appropriate length. Let l denote this
length. We refer to l as the range of sight. Now rotate
the ray containing S2 clockwise until it coincides with
the ray containing S1. See Figure 1 (a). Next compute
the length of the XOR of S1 and S2, that is, the to-
tal length covered by only one of the sets S1, S2. This
length is then divided by l. Denote by v the value that
was computed, and let δ be the angle between S1 and
S2. If δ · v ≤ C, where C is some constant, then return
TRUE else return FALSE. The role of δ in the above for-
mula is to force close-enough to return TRUE when
the angle between the rays is small, even if the patterns
that are being compared still differ significantly.
Extrapolate: Given two patterns S1, S2 which are
close-enough, we need to compute an approximation
of the portion of the visible region of p that is contained
in the corresponding wedge. We do this as follows.
Consider Figure 1 (b). For each ‘event point’ (i.e., start
or end point of a visible segment) on one of the two
horizontal rays, draw a vertical segment that connects
it with the corresponding point on the other ray. For
each rectangle that is obtained color it as follows, where
grey means visible and black means invisible. If the
horizontal edges of a rectangle are either both visible

from p or both invisible from p, then, if both are visible,
color it grey, else color it black. If, however, one of
the horizontal edges is visible and the other is invisible,
divide the rectangle into four pieces by drawing the two
diagonals. The color of the upper and lower pieces is
determined by the color of the upper and lower edges,
respectively, and the color of the left and right pieces
is determined by the color of the rectangles on the left
and on the right, respectively. Assuming there are no
two event points such that one of them is exactly above
the other, the coloring procedure is well defined. That
is, the odd numbered rectangles will be colored with a
single color, and the even numbered rectangles will be
divided.
Remark 1. The representation of the (approximated)
visible region R′

p that is computed by the radar-like
algorithm is especially suitable for queries of the form:
Given a query point q on T , determine whether q is
visible from p, or, more precisely, determine whether
(the projection of) q lies in R′

P . We first verify that q is
within the range of sight l, i.e., that q lies within the disk
of radius l centered at p. Next we determine whether q
lies in R′

p, in logarithmic time, by two binary searches.
The first search locates the sector of the disk in which
q lies, and the second locates the ‘rectangle’ within the
sector in which q lies. Finally, it remains to check in
which of the at most four triangles corresponding to
this rectangle q lies.
Remark 2. One can think of alternative definitions for
close-enough and extrapolate. However, it seems
reasonable to require the following two properties: (i)
A small change in the set of visible segments along
a ray should only cause small changes in the close-



enough measure and in the visible region computed by
extrapolate (within the appropriate wedge), and (ii)
If there are no “surprises” between two close enough
rays, then the visible region computed by extrapolate

within the wedge should be very similar to the real

visible region. In addition, the definitions should remain
simple and easy to implement.

3 Other Algorithms

In this section we present several other algorithms
for computing the visible region. The first algorithm
computes the visible region exactly; its general structure
is similar to that of the radar-like algorithm. The
second algorithm (called the expanding circular-horizon

algorithm or ECH for short) is influenced by the exact
algorithm of De Floriani and Magillo [5]. It computes
an approximation of the visible region using circles of
increasing radii (instead of rays) and similar definitions
of close-enough and extrapolate. Towards the end of this
section we mention the fixed versions of the radar-like
and expanding circular-horizon algorithms.

The algorithms presented in this section are part
of our testing environment for the radar-like algorithm.
However, we believe that the exact algorithm and the
expanding circular-horizon algorithm are of indepen-
dent interest.

3.1 The exact algorithm. Since we need an exact
algorithm (i.e., an algorithm that computes the visible
region Rp exactly) for the experimental evaluation of
our approximate algorithms, we decided to devise one
that is based on the general structure of the radar-like
algorithm, instead of using one of the known algorithms.
Our exact algorithm is rather simple. It repeatedly
computes the (exact) portion of Rp within a slice that
is defined by a pair of rays passing through vertices of
the terrain T , and that does not contain a vertex of
T in its interior; see Figure 2. This can be done in
time O(m log m), where m is the number of edges of
the terrain that cross the slice, as is shown in [5].
Remark. The radar-like algorithm can be modified
accordingly, so that whenever the slice under consid-
eration does not contain a vertex of T in its interior,
the portion of Rp within the slice is computed exactly,
rather than calling close-enough (possibly more than
once) and then extrapolate.

3.2 The expanding circular-horizon algorithm.

This algorithm is in some sense orthogonal to the radar-

like algorithm; it uses circles of increasing radii centered
at the view point p instead of rays emanating from p.

For a point q on T , let θq be the minimum view-
ing angle (from p) at which a vertical pole of infinite

height based at q can be seen from p; θq is the viewing

angle corresponding to q. Our algorithm approximates
the visible region Rp, by maintaining the (approximate)
viewing angles corresponding to the points on the ex-
panding circular horizon. More precisely, the algorithm
only considers the points on the circular horizon at di-
rections α, 2α, 3α, . . . with respect to p, where α is a
parameter of the algorithm. Initially, the circular hori-
zon is the point p itself, and the corresponding viewing
angle is −π/2.

���
�

���
�

���
�

���
�

��	
	 

�

�

p

q

q’

q
q’

p

Figure 3: Left: θq = φq and q is visible; Right: θq = θq′

and q is invisible.

The (approximate) viewing angles for the current
circular horizon are computed from those of the previous
circular horizon (by resolve-viewing-angles) as follows
(see Figure 3). Let q be a point on the current horizon
at direction iα with respect to p, and let q′ be the point
on the previous horizon at the same direction. Let φq be
the angle between pq and the horizontal plane through
p, then θq ← max{θq′ , φq}, and q is said to be visible

from p if and only if θq = φq .
After applying resolve-viewing-angles to the current

horizon C, we partition C into maximal visible and
invisible arcs as follows. An arc of C between two
consecutive sample points (i.e., points at direction iα
and (i + 1)α with respect to p) is called a primitive

arc. We first consider each of the primitive arcs a. If
both endpoints of a are visible (resp., invisible), then
we assume all points in a are visible (resp., invisible).
If however one of the endpoints qi is visible and the
other qi+1 is invisible, we assume all points in the half
of a adjacent to qi are visible and all points in the half
adjacent to qi+1 are invisible. We now can partition C
into maximal visible and invisible arcs.

We consider the current and previous horizons C2

(of radius r2) and C1 of radius (r1), respectively. As
in the radar-like algorithm, we must decide whether
the two sets of visible arcs are close-enough. If yes,
we call extrapolate to approximate the portion of Rp

that is contained in the annulus defined by C1 and C2.
If no, we generate the intermediate horizon C of radius
(r1+r2)/2, and repeat for the pair C1, C. We use similar
definitions of close-enough and extrapolate as in the
radar-like algorithm.



��

���
�

���
�

���
�

Figure 2: Left: the exact algorithm draws a ray through each vertex of T ; Right: a slice that is defined by two
consecutive rays, the corresponding cross sections, and the exact portion of Rp within the slice.

Given a triangulation T representing a terrain
(i.e., with heights associated with the triangle
vertices), and a view point p on or above T :

α← some constant angle, say π/180.
d← some constant distance, say, 10 meters.
r1 ← rmin.
C1 ← determine the viewing angles corresponding
to the 2π/α sample points on the circle of radius r1.
C2 ← resolve-viewing-angles(T, p, C1, r1 + d).
while (r1 ≤ rmax)

if (C1 is close-enough to C2)
extrapolate(C1, C2);
r1 ← C2.radius;
C1 ← C2;
r ← min(r1 + d, rmax);
C2 ← resolve-viewing-angles(T, p, C1, r);

else
r ← (C1.radius + C2.radius)/2;
C2 ← resolve-viewing-angles(T, p, C1, r);

3.3 The corresponding fixed versions. Both the
radar-like algorithm and the expanding circular-horizon
algorithm have corresponding fixed versions. In the
fixed version of the radar-like algorithm the angle be-
tween two consecutive rays is fixed and we approximate
the portion of Rp in the sector defined by the rays in any
case, even if they are not close-enough; see Figure 4.
In the fixed version of the expanding circular-horizon al-
gorithm, the increase in radius between two consecutive

circles is fixed and again we approximate the portion of
Rp in the annulus defined by the circles in any case, see
Figure 5.

4 Experimental Results

In this section we report on the experiments that we per-
formed with the approximation algorithms described in
Sections 2 and 3. Namely, the radar-like algorithm, the
expanding circular-horizon algorithm (ECH), and their
corresponding fixed versions. We have also implemented
the exact algorithm (Section 3.1), which is needed for
the error computation.

4.1 The error measure. In our experiments we use
the following natural error measure. Let R′

p be an
approximation of Rp obtained by some approximation
algorithm, where Rp is the region visible from p. Then
the error associated with R′

p is the area of the XOR of
R′

p and Rp, divided by the area of the disk of radius l,
where l is the range of sight that is in use. See Figure 6.

4.2 The experiments. Ten input terrains represent-
ing ten different and varied geographic regions were
used. Each input terrain covers a rectangular area of
approximately 15 × 10 km2, and consists of approxi-
mately 5,000-10,000 triangle vertices. For each terrain
we picked several view points (x, y coordinates) ran-
domly. For each view point p we applied each of the
four approximation algorithms (as well as the exact al-
gorithm) 20 times: once for each combination of height
(either 1, 10, 20, or 50 meters above the surface of T )
and range of sight (either 500, 1000, 1500, 2500, or 3500
meters). For each (approximated) region that was ob-
tained, we computed the associated error, according to



Figure 4: The visible region computed by the radar-like algorithm (left) and by its corresponding fixed version
(right), each composed of 72 slices.

Figure 5: The visible region computed by the expanding circular-horizon algorithm (left) and by its corresponding
fixed version (right).



Figure 6: Left: the exact region Rp; Middle: the approximate region R′

p computed by the radar-like algorithm;
Right: XOR(R′

p, Rp).

the error measure above. All this was repeated three
times; once per each of three levels of sampling (see be-
low).

The level of sampling is determined by the number
of calls to extrapolate that are issued during the
execution of an algorithm. We used three levels of
sampling: 80, 140, and 220. Since the extrapolation
between two consecutive rays is comparable to the
extrapolation between two circular horizons, this seems
a fair basis for comparison. (In order to achieve a
specific level of sampling when running one of the non-
fixed versions, we repeated the computation several
times, with different values of the constant C, until the
desired level of sampling was reached.)

Accuracy level: 80 l=500 l=1000 l=1500 l=2500 l=3500

Fixed ECH 4.53 3.97 3.87 3.88 3.75

ECH 3.71 3.49 3.40 3.29 3.35

Fixed radar-like 2.09 1.36 1.19 1.08 0.97

Radar-like 1.37 0.91 0.78 0.65 0.62

Table 1: Results for sampling level 80.

Accuracy level: 140 500 1000 1500 2500 3500

Fixed ECH 2.71 2.35 2.12 2.16 2.12

ECH 2.30 2.09 1.88 1.88 1.94

Fixed radar-like 1.21 0.97 0.91 0.81 0.72

Radar-like 0.89 0.71 0.62 0.59 0.53

Table 2: Results for sampling level 140.

4.3 The results. Our results are presented in the
following two sets of tables. The first three tables show
the error for each of the four algorithms as a function
of the sampling level and the range of sight. Consider,

Accuracy level: 220 500 1000 1500 2500 3500

Fixed ECH 1.36 1.30 1.18 1.19 1.20

ECH 1.22 1.15 1.13 1.09 1.13

Fixed radar-like 0.79 0.63 0.59 0.51 0.40

Radar-like 0.53 0.41 0.37 0.29 0.28

Table 3: Results for sampling level 220.

for example, the first table. This table contains our
results for sampling level 80. The first line in this
table corresponds to the fixed version of the expanding
circular-horizon algorithm (ECH). The first entry in this
line (4.53) is the average error (in percents) obtained
when running ECH with accuracy level 80 and range of
sight 500 for each of the view points (over all terrains)
and each of the four possible heights.

Tables 4 and 5 show the amount of work needed
in order to reach a certain level of accuracy. In Ta-
ble 4 the amount of work is measured by the num-
ber of calls to cross-section (alternatively, resolve-

viewing-angles), and in Table 5 the amount of work is
measured by the total running time. For example, us-
ing the fixed radar-like algorithm, the average number
of calls to cross-section needed to obtain an error of 1
percent was 80, and, using the ECH algorithm, the av-
erage running time needed to obtain an error of 0.5 per-
cent was 1648 milliseconds. All experiments were per-
formed on the following platform: Pentium 4, 2.4GHz,
512MB, Linux 8.1, Java 1.4.

4.4 Conclusions. Based on the results above the
radar-like approach is significantly better than the ex-

panding circular-horizon approach. For each of the sam-
pling levels, the regions computed by the two radar-like
algorithms were more accurate than those computed by
the two ECH algorithms for any range of sight (see Ta-



Error: 1.00 0.75 0.50

Fixed ECH 263 616 1009

ECH 231 522 893

Fixed radar-like 80 140 220

Radar-like 61 103 174

Table 4: Average number of calls to cross-section

(alternatively, resolve-viewing-angles) by accuracy
level.

Error: 1.00 0.75 0.50

Fixed ECH 597 1045 1648

ECH 579 1012 1591

Fixed radar-like 112 192 301

Radar-like 101 168 274

Table 5: Average running time (in milliseconds) by
accuracy level.

bles 1-3). Moreover, for each level of accuracy, the ECH
algorithms had to work much harder than the radar-
like algorithms (according to both measures) in order
to reach the desired level of accuracy (see Tables 4-5).

A possible explanation for the better performance of
the radar-like algorithms is that in the ECH algorithms
the computation of the visible arcs on the current
circular horizon is only an approximation, while in the
radar-like algorithms the visible segments on a ray are
computed exactly. Referring to Figure 7, if the ECH
algorithms miss a ridge like the one in the left picture
(drawn as a narrow rectangle), then all subsequent
circles will miss it and therefore might conclude that
the corresponding arcs are visible while they are not.
On the other hand, a ridge like the one in the right
picture that is missed by the radar-like algorithms does
not affect subsequent computations leading to smaller
errors.

Another clear conclusion is that the adaptive (i.e.,
non-fixed) versions are more accurate than their corre-
sponding fixed versions. For each sampling level, the
regions computed by the adaptive versions were signif-
icantly more accurate than those of the fixed versions
(see Tables 1-3). This advantage of the adaptive ver-
sions is especially noticeable when the sampling level is
low.

As expected, the adaptive versions are somewhat
slower than the corresponding fixed versions for a given
sampling level, since the adaptive versions perform more
cross-section (alternatively, resolve-viewing-angles) op-
erations. Actually, we found that on average the radar-
like algorithm issues about 9 percent more calls to cross-

section than the fixed radar-like algorithm. However,

when taking into consideration the improved accuracy
of the adaptive version, we see (Table 5) that the the
adaptive version is on average about 10 percent faster
than the corresponding fixed versions.

Figure 7: ECH vs. the radar-like algorithm.

Finally, we recently performed some experiments
with the two radar-like algorithms using somewhat
larger terrains consisting of approximately 40,000 ver-
tices and covering a rectangular area of approximately
20 × 20 km2. In general, the errors that we got were
somewhat smaller (using the same levels of sampling
and ranges of sight), and the adaptive version remained
more accurate than the fixed version. The smaller errors
are probably due to the higher resolution, although, in
general, the nature of the terrain can significantly affect
the accuracy of the approximations.

Acknowledgment. The authors wish to thank Ofir
Ganani and Maor Mishkin who helped implementing
the radar-like and the expanding circular-horizon algo-
rithms, and Joe Mitchell for helpful discussions.

References

[1] B. Ben-Moshe, M.J. Katz, J.S.B. Mitchell and Y. Nir.
Visibility preserving terrain simplification. Proc. 18th

ACM Sympos. Comput. Geom. 303–311, 2002.
[2] D. Cohen-Or and A. Shaked. Visibility and dead-zones

in digital terrain maps. Computer Graphics Forum

14(3):171–179, 1995.
[3] R. Cole and M. Sharir. Visibility problems for poly-

hedral terrains. J. of Symbolic Computation 7:11–30,
1989.

[4] L. De Floriani and P. Magillo. Visibility algorithms on
triangulated digital terrain model. Internat. J. of GIS

8(1):13–41, 1994.
[5] L. De Floriani and P. Magillo. Representing the visibil-

ity structure of a polyhedral terrain through a horizon
map. Internat. J. of GIS 10:541–562, 1996.

[6] F. Devai. Quadratic bounds for hidden line elimination.
Proc. 2nd ACM Sympos. Comput. Geom. 269–275,
1986.



[7] R. Franklin, C.K. Ray and S. Mehta. Geometric algo-
rithms for siting of air defense missile batteries. Tech.

Report, 1994.
[8] P.S. Heckbert and M. Garland. Fast polygonal approx-

imation of terrains and height fields. Report CMU-CS-
95-181, Carnegie Mellon University, 1995.

[9] M.F. Goodchild and J. Lee. Coverage problems and
visibility regions on topographic surfaces. Annals of

Operation Research 18:175–186, 1989.
[10] N. Greene, M. Kass and G. Miller. Hierarchical z-buffer

visibility. Computer Graphics Proc., Annu. Conference

Series 273–278, 1993.
[11] A.J. Stewart. Fast horizon computation at all points of

a terrain with visibility and shading applications. IEEE

Trans. Visualization Computer Graphics 4(1):82–93,
1998.


