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Abstract

We introduce a novel model for “flows over time” which
captures the behavior of cars traveling through a road
network better than previous models. We show that
computing an optimal solution in the new model is
NP-hard and present an LP-based algorithm which we
evaluate with several experiments on real world data of
road networks and generated requests. Among other
things we compare the quality of the solutions with
solutions generated by an FPTAS for a related but
considerably less realistic model.

1 Introduction

The recent years have witnessed a revival of the flows
over time model (also referred to as dynamic flows)
which was already introduced by Ford and Fulkerson
in the late 1950s. A host of papers considering diverse
facettes and extensions of the problem have appeared.
Indeed, flow variation over time is an important fea-
ture in network flow problems arising in numerous ap-
plications such as road or air traffic control, evacuation
problems, production systems, communication networks
(e.g. the Internet), and financial flows. The survey ar-
ticles by Aronson [2] and Powell et al. [23] as well as the
book published by Ran and Boyce [25] contain further
examples and detailed descriptions of possible applica-
tions.

In the model introduced by Ford and Fulkerson [9,
10] the individual edges of a network have associated
constant transit times, determined by the speed at
which flow traverses them. The flow rates into the edges
may vary over time and are bounded by given capacities.
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In [8] an FPTAS for the multicommodity quickest flow
problem—where the objective is to send given demands
from their sources to their sinks as quickly as possible—
was proposed. The problem was later shown to be N'P-
hard [13].

When considering road traffic (and many other
settings as well, for that matter) it is apparent that
the assumption of having constant transit times is
quite unrealistic. The speed at which traffic travels
heavily depends on the current situation, e.g. during
rush hour it is much slower than at four o’clock at
night. There have been a few attempts to incorporate
such flow-dependent transit times into the flows over
time model, see e.g. [4, 19, 14]. They have in common
though that the assumptions made are unrealistic in
one way or another. We will give details in the next
section, where the so called inflow-dependent and load-
dependent settings will be described.

There are common approaches to study traffic prob-
lems other than the flows over time model, such as traffic
simulation (see e.g. [21, 3]) and models based on fluid
dynamics [24] and variational inequalities [7]. While
simulation is a powerful tool to evaluate traffic scenar-
ios, it misses the optimization potential—i.e. the objec-
tive to send flow as quickly as possible through the net-
work. On the other hand, fluid models and other mod-
els based on differential equations capture very well the
dynamical behaviour of traffic as a continuous quantity,
but currently cannot handle large networks.

Contributions, Outline of the Paper. The
main contribution of this paper is the proposition of a
new approach to model the dependence of travel speed
on the current flow situation and a heuristic algorithm
for this setting. The idea of the rate-dependent model
is quite straightforward: the maximal possible speed at
any position on an edge, at any point in time always
directly depends on the current flow rate. Put simply,
the higher the current flow rate, the slower the flow
can move. After a detailed description of the flows over
time problem and the two aforementioned variations in
the next section we introduce the rate-dependent model
in Section 3, which finishes with a qualitative compari-
son of the different models. In Section 4 we then prove



NP-hardness of the rate-dependent model. We proceed
to introduce a heuristic for the quickest flow problem
in Section 5. Finally, the paper concludes with an ex-
perimental comparison of the heuristic algorithm with
an FPTAS presented in [14] for the inflow-dependent
model.

2 Preliminaries

We consider network flow problems in a directed graph
G = (V,E) with n := |V]| nodes and m := |E| edges.
For an edge e = (v,w) we write tail(e) := v and
head(e) := w. For a node v € V we denote by 67 (v)
and 6~ (v) the outgoing edges of v (i.e. tail(e) = v) and
the incoming edges of v (i.e. head(e) = v) respectively.

We start with giving some notation for classical
static flow problems, then we move on to the flows over
time setting with constant transit times, as introduced
by Ford and Fulkerson. Finally, we briefly describe
two generalizations where the transit times depend on
the current flow situation: inflow-dependent and load-
dependent transit times.

2.1 Static Flows. We are given edge capacities u, €
R*, for e € F, and a set of commodities K = {1, ..., k}.
For each commodity ¢ € K there is a source s; € V,
a sink ¢; € V, and a demand d; € RT. A static
multicommodity flow © in G assigns every edge—com-
modity pair e € E, i € K a flow value z.; € RT
such that flow conservation holds: Zeeﬁ(v) Te,i
Decs— (v) Te = 0, for all v € V\ {s;, ¢;}. If additionally
2865,(ti) Tei — Zeeﬁ(ti) Ze,; = d; holds for all i € K,
the flow x satisfies the demands. Finally, x is said to
be feasible if it obeys the capacity constraints x. :=
Yoick Tei < Ue, foralle € E.

2.2 Flows over Time

2.2.1 Constant Transit Times. As in static flows
we are given a directed graph G = (V, E) with edge
capacities and a set of commodities K = {1,...,k}
with sources, sinks, and demands. New in the flows
over time setting is that each edge e € F is associated
with a (constant) transit time 7. € RT.

A multicommodity flow over time f in G with
time horizon T is given by Lebesgue-measurable func-
tions fe;:[0,7) — RT, fore € E and i € K. The value
fe,i(0) gives the rate of flow (per time unit) of commod-
ity i entering e at time 6. This rate reaches head(e) at
time € + 7.. The edges have to be empty from time T'
on, that is we require f.;(6) = 0, for 0 € [T — 7., T).
For ease of exposition, we sometimes use f.;(0) for
0 & 10,T). In such cases we assume f ;(0) = 0.

When generalizing the notion of flow conservation

we distinguish two cases: either storage of flow at
intermediate nodes is allowed, or it is not. Intuitively,
we could describe the problem as follows: in the first
case flow can only leave the node if it has previously
entered the node, i.e. it can wait for an abritrary period
of time at the node before it flows on. In the second
case the total amount of flow that has left a node up to
a given point in time must be equal to the total amount
that has entered the node until that time. To formalize
this we define

D;Z(g) = 2665*(1}) fq’i fe,i(e - Te) do
DY (€)= Yeese (v Ji fei(0)dB

and
(2.1)

to be the total inflow (outflow) of commodity i € K
into (out of) node v € V until time & € [0,7]. The
generalized flow conservation constraints then amount
to:

With storage — Dji(&) =D, ,(6) <0
(2.2) Without storage,
orif & =T — D:i(f) - D, ;(§) =0,

for all £ € [0,T],i € K, and v € V\{s;,t;}. Generally,
flow must not remain in any node other than the sinks at
time T'. Therefore, we also require that equality holds
at time & = T for the case with storage. We assume
w.l.o.g. that sources have only outgoing and sinks only
incoming edges, implying D, ;(§) = Dzl(f) = 0, for
£ €[0,T),i € K. The flow over time f satisfies the
multicommodity demands if

Dy (T) [”f) D;tﬂ)} 4

for every commodity ¢ € K. Finally, a flow over time f
is called feasible if the rate of flow entering an edge e
is upper bounded by the capacity ue, i.e. fe(f) :=
> ick fei(8) < ue, at any point in time 6 € [0, 7). This
is in contrast to the static case where the capacities
bound the actual flow amount.

2.2.2 Inflow-Dependent Transit Times. In this
more general setting introduced by Carey and Subrah-
manian [4], the transit time of edge e € F may depend
on the rate of flow entering e, i.e. it is given by a left-
continuous Lebesgue-measurable function 7. : [0, ue] —
R*. Then the flow at rate f.(6) entering e at time 6
arrives at head(e) at time 6 + 7.(f.(#)). To adapt the
definitions from the constant transit times case, only the
expression given for D (§) in (2.1) needs to be adjusted
accordingly. An FPTAS and a proof of N'P-hardness for
this setting were peresented in [14].



Remark. The speed at which units of flow traverse
the edge (i.e. their transit time) is fixed when they
enter the edge. Therefore flow entering at low rate
might overtake flow which previously entered the edge at
higher rate. Since the edge capacities are only ensured
when entering the edge (f.(0) < u.), the edge capacities
may be exceeded arbitrarily when units of flow overtake
each other.

2.2.3 Load-Dependent Transit Times. Kohler
and Skutella [19] propose a variation of the problem
where the transit time of edge e € FE depends on
the current load l.(f) of that edge. The load l.(f) is
the cumulative inflow into the edge e until 8 € [0,7)

(i.e. foe fe(§) d€) minus the cumulative outflow out of e
until 6.

At any point in time 6 € [0,7) all flow on the
edge travels with the same speed, namely the inverse
of the ‘current transit time’ 7.(l.(#)). In this case it
is more appropriate to speak of the (again Lebesgue-
measurable) functions 7, : Rt — R™ as giving the
current pace of the flow, rather than its transit time.
In [19] a 2-approximation algorithm is presented for the
problem with only one commodity.

Remark. In this setting units of flow cannot over-
take each other, since at any point in time all units
of flow presently on an edge travel at the same pace.
Thus the abovementioned problem of exceeded capac-
ities does not occur here. Units of flow already on an
edge may be slowed down though by additional units
of flow entering the edge later (and thereby increasing
the load). This is quite an unrealistic peculiarity when
considering traffic flows.

2.2.4 Problem Definitions. For constant or flow-
dependent transit times one can consider the following
problem variations: In the multicommodity flow over
time problem one seeks to find a feasible flow over time f
with time horizon T that satisfies all demands. The
quickest multicommodity flow problem is to additionally
minimize the time horizon 7.

Moreover, costs c.; can be associated with each
edge—commodity pair giving the cost of sending one
unit of flow of commodity ¢ € K via edge e € E.
Now, a further objective could be to consider only flows
whose costs are within a given budget C. Note that for
simplicity we did not include costs in the definition of
the rate-dependent setting below. Both the model and
the subsequently proposed heuristic can be modified in
a straightforward way though to incoporate costs ce
per unit of flow, for i € K and e € F.

3 The Rate-Dependent Model

As motivated above, now we introduce a model which
we believe reflects behavior of real world traffic better
than both the load-dependent and the inflow-dependent
models described in the previous section. As a first step
we refine the notion of a flow over time by defining
it not only via inflow rate functions over time into
the edges (i.e. fe;(f)) but via flow rate functions
over time and for any point on an edge. To be
more precise: a multicommodity flow over time f in G
with time horizon T is given by Lebesgue-measurable
functions f.; : [0,7)x[0,1] —» R*, fore € Eandi € K;
again, we sometimes use fe ;(6,-) for 6 ¢ [0,T) in which
case we assume a value of 0. The second parameter
gives the relative position on the edge. For instance,
fe,i(6,0) would be the inflow rate f.;(f) as defined
in the previous section, the other extreme—f, ;(6,1)—
denotes the outflow rate. It is obvious that both the
load-dependent and the inflow-dependent model lend
themselves to natural definitions of f.;(0,p), for 6 €
[0,7) and p € [0, 1], assuming that the functions fe ;(0)
are given, for § € [0,T), e € E, and ¢ € K: simply
let the flow rates “move across the edge” in a way
that is compatible with the corresponding assumptions
concerning the transit times, see also Figure 2.

Extending the definition of a flow over time in such a
way will make it possible to introduce a certain coupling
constraint between the flow rate and the pace at which
flow travels for all positions on the edge. But first, we
need a few preliminary definitions. Let
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(3.3) Dei(€.p) = / fui(6,p) d

denote the total amount of flow arriving at position
p € [0,1] of e € K until time £ € [0,T), where i € K.
Then

and

D;z(&) = 2665’(11) De,i(g, 1)

(3.4)
D:z(g) = Eeeé+(v) De,i(§7 0)
are the total inflow and outflow respectively until time
& € [0,T) of commodity ¢ € K at node v € V.
These modified definitions allow us to adopt the flow
conservation constraint for the nodes as in (2.2). Since
the flow f is now defined for all points on the edge (and
could be given by arbitrary functions), we have to make
sure that flow conservation also holds on the edges.
Flow Conservation for Edges. First we demand
D, (T,p) = D.;(T,0) to hold for p € [0,1] and i € K,
i.e. no flow traverses the network from time 7" on. We
now take a closer look at a cumulative flow amount
D € [0,D.;(T,0)] of commodity i« € K and consider



when this amount D reaches a position p € [0,1] on e:

(35)  tei(D,p) :=min{{|D.i(&,p) = D}.

Note that this is well defined since D.;(&,p) is con-
tinuous and weakly increasing (non-decreasing) in &,
for fixed p € [0,1]. This follows from the definition
of D.;(§,p) and from f(-,-) > 0. Moreover, since
D, ;(0,p) =0and D, ;(T,p) = Dei(T,0) the value D is
reached at some point in time &.

For flow conservation to hold for a flow f, t. (D, p)
must be weakly increasing and once differentiable in p,
for fixed D.

Pace. Let f.(0,p) = > .cx fei(f,p) and corre-
spondingly D¢ (§,p) = > ek De,i(§,p), for p € [0,1] and
0, € [0,T). Analoguous to above, given a cumulative
flow amount D € [0, D (T, 0)], let

te(D, p) := min{{|Dc(§,p) = D}

be the first point in time when the amount D (of all
commodities) reaches position p € [0,1] on e. Again,
we focus on flows over time f for which t.(D,p) is
weakly increasing and once differentiable in p, for fixed
D. Given 6 € [0,T) and p € [0, 1] we define the current
pace

if 3D s.t. t.(D,p) =6,

o (0.p) = Ote(D,p)/Op
e 00 otherwise.

Note: the pace is “time divided by distance”, i.e. the
inverse of the velocity. Example: the pace 7.(6,0)
describes the time it would take an infinitesimal unit
of flow entering e at time 6 to reach the other end of e,
if the pace stays constant during the traversal of the
edge.

Feasibility. A flow over time f is feasible, if

(fé(ovp)aTE(eala) € Fe,

for all € [0,T), p € [0,1], and e € E. Where F, is
a certain closed feasibility region giving which combi-
nations of pace and flow rate can occur. This is the
aforementioned coupling constraint. Figure 1 shows an
example of such a region adapted from a model of pace—
flow rate interrelation suggested by Greenshields [12].
Intuitively speaking, at first an increase in pace (i.e. less
speed) allows cars to move closer to each other and thus
the flow rate can increase. From a certain point on
though, when cars move closer and closer the decrease
in distance cannot compensate for the increase in pace
anymore: the flow rate starts decreasing again. In the
extreme, the cars are bumper to bumper and do not
move at all, i.e. the flow rate is 0 and the pace co. In
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Figure 1: The relationship between pace and flow rate as
given by Greenshields. As feasibility region we propose
the area to the left of the curve (between ordinate and
curve). The additionally depicted unbounded region
permits arbitrary storage of flow. The free flow pace
is the pace at which an infinitesimal unit of flow can
travel, if it is not disturbed by any other units of flow.
The capacity is an upper bound for the flow rate f.(-,-).
Both are normalized to 1.

other words Greenshields model takes into account traf-
fic jam behavior occurring in the real world.

Allowing pace—flow rate combinations from a whole
region (e.g. left of the curve depicted in Figure 1)
basically amounts to permitting flow to travel slower
than the maximum possible speed but also not too
slow, considering the current flow rate. This is novel
compared to the models described in the previous
section, where the transit times are fixed (constant,
or depending on the inflow-rate or load). This more
flexible approach could potentially be helpful when
minimizing the time horizon. In practice, imagine
situations where a route guidance system or changable
speed limit signs advise drivers to slow down in order to
avoid a potential traffic jam. Of course this flexibility
could be simulated by allowing intermediate storage
of flow at nodes. This situation is however not very
realistic in road networks, as it assumes an infinite
storage capacity at each node (road crossing).

Figure 1 also shows a possible unbounded feasibility
region. In this case flow can be stored arbitrarily on an
edge, which is analogous to allowing storage of flow at
nodes in the other settings. Other well known pace—
flow rate relations were for instance suggested by the
U.S. Bureau of Public Roads or Davidson, see e.g. [5]
for details. For our heuristic algorithm below we will
make the natural restriction that the feasibility region



must be convex for flow rates > 0.

In principal, we treat the feasibility region F, of
each edge e € E as part of the input. In practice, it
makes sense to consider only one normalized region as
shown in Figure 1. For different edge lengths, this region
could simply be scaled individually for each edge e in
such a way that the free flow pace equals a given transit
time 7. Similarly, the region could be scaled to meet a
given capacity ue.

3.1 Comparison of Models. Figure 2 shows a com-
parison of how a certain flow given as an edge inflow-rate
function could traverse the edge in the four models de-
scribed. In the load-dependent setting one can see that
the first units of flow entering the edge start at higher
speed than in the constant transit times case, but then
are slowed down as more flow arrives on the edge. In the
inflow-dependent case the first two blocks of flow enter-
ing at low rates can move away. Similarly, the last two
blocks of flow (low rates) overtake the large block of flow
in the center that entered at a high rate. In the second
and third snapshot this might lead to a violation of the
edge capacities, as mentioned before. In the example
shown for the rate-dependent setting again the first two
blocks of flow move away, since their low flow rates per-
mit smaller paces. But here the two last blocks of flow
do not overtake the central high rate block. This would
lead to infeasible flow rate and pace combinations. In
this example the two last blocks simply slow down and
merge with the block of higher rate flow.

Note: Another way of defining a more realistic
model similar to the rate-dependent model would be
to consider either the load-dependent or the inflow-
dependent models and to subdivide each edge into many
small edges, possibly investigating the limit.

4 NP-Hardness

The following theorem can be shown by a reduction of
the flows over time problem with constant transit times
to the rate-dependent setting. The former has been
proven to be N'P-hard already for two commodities or
series-parallel graphs in [13].

THEOREM 4.1. The multicommodity flow over time
problem with rate-dependent transit times is N'P-hard
for two or more commodities, or alternatively for series-
parallel graphs and an arbitrary number of commodities.

Proof. Given an instance for the setting with constant
transit times—i.e. a graph G = (V| E), capacities u.,
transit times 7., for e € FE, and commodities K,
assuming that intermediate storage of flow at nodes is
allowed—construct an instance of the rate-dependent
model as follows. Copy the graph and the commodities

G = (V,E) := (V,E). For the rest of the proof we
fix e € E as an arbitrary edge (with € € E as its copy)
and ¢ € K as an arbitrary commodity. Let €’s feasibility
region be given by:

Foi={(u,7)|u < Ue, T > 7o}

Since these regions are unbounded we may assume for
simplicity that intermediate storage of flow at nodes is
also permitted in the rate-dependent setting. Otherwise
it could be simulated on the outgoing edges of the
individual nodes.

Let f (f) denote a flow over time in G (G) with con-
stant transit times (rate-dependent transit times). For
clarity we write Dz ;(-,-) and D, /Jr(-) when referring
to the expressions given in (3.3) and (3.4) respectively.
Now we prove that given a flow f in G, a flow f in G
with the same time horizon can be derived and vice
versa.

Given a flow f with time horizon T let

fai(eap) = f&i(e —D- Te)a

It is easy to see that by construction tz;(D,p) =
tzi(D,0) + p - T, which is continuous and strictly
increasing in p € [0,1] for fixed D € [0, De:(T,0)].
Hence, flow conservation holds on the edges. Now
we have to show that flow conservation also holds at
each node ¥ € V and each point in time ¢ € [0,T):
from fg;(0,1) = fei(6 — 7) and (2.1), (3.4) it follows
directly that Dy ,(€) = D, ;(€). Obviously D ,(€) =
Dj) ;(€) holds as well and f is a feasible flow over time,

for 6 € 10,T), p€]0,1).

thus flow conservation (2.2) also holds for f.

Analogously we obtain tz(D, p) = ts(D,0)+p-7., for
D € [0, Dz(T,0)] and p € [0, 1]. Thus the pace 7=(6, p) €
{Te,00} at any time 6 € [0,7) and for any relative
position p € [0,1]." Feasibility follows from f ;(6,p) =
fei(0 —p-71) < u, for 8 € [0,T) and p € [0,1].
Because f clearly has the same time horizon T as f
this completes the first direction of the proof.

For the other direction, let f be a feasible rate-de-
pendent flow with time horizon T. We set f to

fei(0) = Fe,(0.0).
Below we will argue that
(4.6) tzi(D,1) > tz,(D,0) + 7,

for D € [0, Dz;(T,0)). This is helpful for proving that
flow conservation (2.2) holds for f, since it implies a

IBy definition the pace is 7e, if flow is “passing” p at time 6

(i-e. there is D such that tz(D,p) = 6). Otherwise the pace is co.



| Constant | Load-Dependent

| Inflow-Dependent |

Rate-Dependent |

Figure 2: A comparison of different models incorporating flow-dependent transit times. Time is increased step-
wise from one row to the next. The black region in each cell shows f.;(6,p) for a fixed 6, for all p € [0,1], and
a specific model. The dotted lines indicate the flow rate functions for two recent time-steps. The incoming flow
rates are the same for all four models. Note that the flow shown for the rate-dependent model is only one of

infinitely many possible solutions.

transit time of 7. for every infinitesimal unit of flow
in f on edge €. Formally, by f’s construction and (4.6)

3
(4.7) /O fei(0)dO = Dz (&,0) > Dz (&€ + 7e, 1),

for &€ € [0,T). To see the inequality, consider that
by (4.6) any fixed amount of flow D € [0, Dz (T, 0)]
reaches head(e) at least 7. units of time later than it
arrived at tail(e).
Consider a node v € V and a point in time £ €
[0,T). Plugging (4.7) into (2.1) we obtain D_,(§) >
2.

Dy (§). With D (€) = ﬁ;l(ﬁ) flow conservation (2.2

for f follows, since flow conservation holds for f.

From the definition of the feasibility region F% it
follows directly that fe;(0) = fz;(6,0) < ue, for €
[0,T). Therefore, f is feasible.

To conclude the proof it remains to show that (4.6)
holds. We need a special property of the problem in-
stances used in the NP-hardness proofs in [13]: the
edges with non-zero transit times (for the others (4.6)
is trivial) all transport flow of only one distinct com-
modity during the entire time horizon. Let e be such
an edge. Since tz;(D,p) = tz(D,p), its first derivative
with respect to p and for fixed D is at least 7. (by con-
struction of the feasibility region F%). Inequality (4.6)
follows immediately, which concludes the proof of the
theorem. &

~

5 Computation of Rate-Dependent Flows over
Time

We start this section by describing the useful notion
of time-expanded graphs for the constant transit times
setting, then we make a suggestion for deriving a
graph with constant transit times from a rate-depen-
dent instance. Time-expansion of this graph and some
subsequently presented modifications will result in a
“diamond graph”. We then move on to show how a
rate-dependent flow over time in the original instance
can be obtained from a static flow—which adheres to
certain coupling constraints—in the diamond graph.
We conclude this section by presenting our heuristic
algorithm for the quickest flow problem for the rate-
dependent setting.

5.1 Time-Expanded Graphs. Many flow over time
problems can be solved by static flow algorithms in
time-expanded graphs, which were introduced in [9, 10].
Given a graph G = (V, E) with integral edge transit
times and an integral time horizon T, the T-time-
expanded graph of G, denoted G”, is obtained by
creating T' copies of V, labeled V| through Vpr_;, with
the Oth copy of node v denoted v(6), § = 0,...,T — 1.
For every edge e = (v,w) € Eand § =0,...,T—1—r,
there is an edge e(f) from v(f) to w(f + 7.) with
the same capacity and costs as edge e. Additionally,
if intermediate storage of flow is allowed, there is an
infinite capacity holdover edge from v(6) to v(6 + 1),
forallv € V.and § = 0,...,T — 2, which models the



possibility of holding flow at node v during the time
interval [0,0 + 1).

Any static flow z in this time-expanded network
corresponds to a flow over time f: interpret the static
flow on edge e(f) as the flow over time through edge
e = (v,w) that starts at node v in the time interval
[0,0 + 1). Formally, we set fe (&) := x¢(),; for i € K,
£€lf,0+1),and 0 € {0,...,T—1}. Similarly, any flow
over time completed by time T corresponds to a static
flow in GT of the same value, obtained by mapping
the total flow over time entering e in the time interval
[0,041) to static flow on edge e(¢). Thus, we may solve
a flow over time problem by solving the corresponding
static flow problem in the time-expanded network. See
Figure 3 for an example of the correspondence of flow
over time in G and static flow in G

One drawback of this approach is that the size of
G" depends linearly on T so that if T is not bounded by
a polynomial in the input size, this is not a polynomial-
time method. However, the following useful observation
can be found in [8]: if all transit times and T are
multiples of some large number A > 0, then, instead
of using the T-time-expanded graph, we may rescale
time and use a A-condensed time-expanded graph that
contains only T/A copies of V. Since in this setting
every edge corresponds to a time interval of length A,
capacities are multiplied by A.

With the help of A-condensed time-expansion it is
possible to devise FPTASs for the constant transit times
and even the inflow-dependent transit times settings,
presented in [8] and [14] respectively. To obtain an
inflow-dependent flow the latter replaces each edge by a
“bow” of edges, each having a constant transit time. By
adding certain coupling constraints on flow traversing
the various edges of a bow it is possible to deduce an
inflow-dependent flow over time from a flow over time
in this reformulation with constant transit time bow
edges. We use a similar technique for our rate-depen-
dent heuristic.

5.2 Bow Graph. Given a rate-dependent instance
G = (V, E) with feasibility regions F,, for e € E, we
construct a bow graph GB = (VB EP) with constant
transit times: let VB = V and for each original
edge e € E add a bow of edges EZ = {eg,e1,...}
“simulating” the original edge. The transit time of e; is
given by 7., = i - A, where A is chosen in such a way
that L := T/A, the number of levels, is polynomial in
the input size. Since we are looking for a flow over
time with time horizon 7', we only consider L bow
edges, i.e. |[EP| = L. The capacity of e; is given by
Ue; = A -max{u|(u,i-A) € F.}.

5.3 Diamond Graph. The diamond graph GP =
(VP EP) is obtained by first doing a A-condensed
time-expansion of the bow graph G¥ and then adding
crossing nodes to VP. Consider an edge e = (v,w) €
E, its bow EB, and the time-expansion of the bow,
say EI. Imagine the depiction of EI in the plane,
v(0) at position (6,0) and w(#) at position (0, 1), where
6 € {0,A,...,T — A}. Each edge ¢/ € ET translates
into a straight line in the plane (Figure 3 shows such a
depiction for several edges combined). For each pair
of crossing edges ¢’,¢” € EI we now add a node
to VP that represents this crossing (and modify EP
correspondingly). ILe. if ¢/ = (v(0),w(0’ + 7)) and
e’ = (v(0"),w(0"” + 7)), this crossing node represents
the point in time and space (6, p) for which 6 = 6’ +p -
T = 0" 4+ p- 7. It basically enables flow to change its
pace from 7./ to Te or vice versa at position p on the
original edge.

Now our aim is to derive a rate-dependent flow over
time in G from a static flow z in G (computed by
using an LP formulation). To ensure feasibility we add
a coupling of flow values on edges in EP (= all edges
in EP corresponding to an edge e € F), if these edges
represent overlapping areas in time and space.

5.3.1 Coupling Constraints, LP Formulation.
Let e = (v(61),w(f2)) € EP denote an edge in
the diamond graph, which corresponds to a pace Te.
Let p1 € [0,1] (p2 € [0,1]) be the position of v(6;)
(w(f2)) on the original edge. Note that v(61) (w(2))
could be a crossing node. The edge e represents a
diamond shaped area in time and space

{0, p)lp € [p1,p2],0 € [, £+ A),
with £ := 61 4+ (p—p1) - Te}-

A, =

For € € EP let Us := {e € EP|e,e resulted from the
same bow, A, N Az # 0} denote the set of edges whose
areas overlap the area of € We can now state our
additional coupling constraints posed on a static flow x
in GP:

(5.8) fore e EP.

Z Ae 1= Z Tefue <1,

ecUs ecUs

In other words, the sum of the per capacity flow rates
Ae of overlapping edges must not exceed one. Below
we prove that this ensures feasibility under a certain
assumption concerning the feasibility regions.

It is simple to compute a flow which adheres to
these constraints. Just add them to a standard LP
formulation for static flows in GP. Note that the
objective of this static flow problem is to satisfy all
demands, i.e. to send d; units of flow from any s;(f)



G GT
A
0=t+2
& | o
| 1 |
| |
| ] |
f=t+1 u(t +2) v(t + 2)@w(t + 2)
>
- |, IS u(t +1) eu(t+ ew(t + 1)
u(t) Qu(t) Qu(t)
| | |
o1 , , ,
g g—»o ®

Figure 3: Simple example of how a flow over time corresponds to a static flow in the time-expanded graph. The
two “boxes” entering edge (u,v) are flow amounts arriving over time. The respective heights of the boxes give
the rate of flow. The corresponding boxes in G” represent the same flow amounts, here as static flow.

to any t;(9), 8 € {0, A, ...,
1€ K.

T — A}, for each commodity

5.3.2 Deriving a Rate-Dependent Flow over

Time. Given a static flow z in GP adhering to (5.8) the

corresponding flow over time f is easy to state. Consider

an edge ¢’ € F in the original graph and a point in time

and space (6,p) € [0,T) x [0,1]. Let

(5.9) E:={ec E|0,p) € A}

denote all edges in the diamond graph whose area

contains this point. The flow rate of commodity i € K

is then given by
fe/ 7

Zx“/A

e€E

It is easy to see that flow conservation at nodes and on
edges holds by construction.? For f to be feasible we
need the following assumption.

Convexity Assumption. The intersection F, N
{(u,7)]u > 0,7 >= 0} is convex for all e € E. This
holds e.g. for the unbounded region shown in Figure 1.

The Greenshields region could be modified to be convex

2Tt helps our intuition if we consider the depiction of G in the
plane with the flow values of x associated to the corresponding,
partially overlapping edge areas. This image directly represents
the flow f traveling through the network. Flow conservation at
the (crossing and original) nodes follows from x being a valid
static flow. For flow conservation on the edges it needs to be
checked that the conditions on the expression given in (3.5) hold
(strictly increasing, continuous, and once differentiable). This is
straightforward calculus.

by cutting of the top part at a tangent without losing
too much of the region and, more importantly, thereby
restricting to flows which are also feasible for the original
region.

THEOREM 5.1. The flow f is feasible under the convez-
1ty assumplion

Proof. Consider an edge ¢/ € E and a point in time
and space (¢,p) € [0,T) x [0,1]. Let E be defined as
n (5.9). Note that E C U, for any € € E. With this
and (5.8) we have ) .z A < 1. We will prove below
that the following inequality results for the flow rate
on ¢ at (0,p):

(510) fe’(97p) = er/A Z)‘ ue/A
e€F ecE
S eGZE ZeEE UE/A)

The pace is given as the weighted sum of the paces on
the individual overlapping edges.

The point (u, 7) is clearly a linear combination of points
in the feasibility region F.., see the definition of the
bow EL above. Hence, (u,7) € F./ and because of the
inequality for u also (fer(0,p), 7 (0,p) € Fer.

It remains to prove inequality (5.10). As a first step
we can assume w.l.o.g. that > .5 Ae = 1. If this is not
the case, we can multiply the A\, by a corresponding



factor; this would only increase the right hand side of
the first line in (5.10). We now want to show that

Zx\e-ue < Zﬁue

e€F e€E
Shue € Stele
e — ZEGE Ae - Ug
eckE eeFE
2
(Srcu) < St
e€F e€E
Let y := Y e de - uZ — (Xocm Ae - ue)Q. In order to

show that y > 0 we consider the partial derivatives with
respect to ue:
9y
0 U,

=2\ ue—2( e )

ecE

for e € E. Setting all partial derivatives to zero we
obtain ue = ) -5 Ae - ug, for e € E. This holds iff u.
is set to a constant ¢, for e € E, since YoecEAe = 1. At
these extremal points u, = ¢, for e € E, we get y = 0.
Since 0y/0% ue = 2\, — 2)2 > 0 (note that A\, < 1) we
know that these extremal points are minima and that
for all other points y > 0 holds. This completes the

proof. O

5.4 Quickest Flow Heuristic. To summarise, we
now plug together the methods described in the previous
section and present our heuristic for the quickest flow
problem in the rate-dependent setting. The algorithm
is given the number of levels L as input parameter,
telling it how fine granular the time horizon should be
subdivided.

HEURISTIC: RATE-DEPENDENT QUICKEST FLOW

1. Minimize T with geometric mean binary search:
repeat the following steps for the different—guess-
ed—values of T until the change of T' is within given
bounds.

2. Set A := T/L. Construct the diamond graph GP
from G with respect to T" and A.

3. Compute a static flow x in GP adhering to (5.8)
and satisfying all demands. If it exists, derive a
rate-dependent flow over time f in G as described
above.

6 Implementation and Experiments

We implemented both our heuristic for the rate-depen-
dent case and the FPTAS presented in [14] for the

inflow-dependent case where intermediate storage of
flow at nodes is allowed.® For both a column genera-
tion approach was used to solve the corresponding LP
formulations. Also in the case of our heuristic a new
column can still be found by one shortest path com-
putation even though the additional constraints (5.8)
are present. In our experiments the column generation
performed very well. It has the further advantage that
additional constraints can be posed on the flow carrying
paths in a simple manner. Such a constraint could be,
for instance, to restrict flow paths to a limited length:
e.g. for commodity ¢ € K paths cannot be longer than ¢
times the shortest path between s; and t;. Such a re-
striction would be well received in practice, e.g. in route
guidance systems, where it would ensure that individ-
uals are not forced to make long detours only for the
good of others. Incorporating this amounts to solving a
constraint shortest path problem each time a new col-
umn is generated. This problem is described as being
NP-complete in Garey and Johnson already [11], but
fully polynomial approximation schemes have also been
suggested in [22, 15, 26]. A standard algorithm for con-
strained shortest paths which we found to work well
in practice is a generalized or labeling Dijkstra algo-
rithm [1, 6, 18].

To yield results that we can compare to other
models, we chose the unbounded setting shown in
Figure 1 for both the feasibility regions and the inflow-
dependent transit time functions of our heuristic and
the FPTAS respectively. As instances we are given
road networks with edge lengths. We use these lengths
to scale the region / transit time function in Figure
1 appropriately (the free flow pace then equals the
given length). For the rate-dependent setting as a
preprocessing step we subdivide long edges into several
short ones with free flow pace less or equal to A. This
turned out to be helpful since hereby the first few edges
created for each bow EZ have greater differences in
capacity and transit time.

Here presented algorithms were implemented in
C++ using using Intel c++ compiler version 8.0 [17] on
a Linux 2.6 system (SuSE 9.1). All computations were
done on a 32bit Intel Pentium IV processor, 2.80GHz,
2GB memory. CPLEX version 9.0 [16] was used for
solving the LPs.

6.1 Setup of Experiments. Most experiments were
conducted on a small graph with 166 nodes and 238
edges, respresenting the center of Berlin. For each data
point we did seven runs of randomly generated requests

3For the load-dependent model so far only an algorithm for

the single commodity case has been proposed.



and show the mean and standard deviation of these
runs, unless stated otherwise.

A Run. In asingle run we generate a given number
of commodities at random, i.e. we select a random
source and a random sink for each. Two measures
are taken in order to assure that no single commodity
dominates the time horizon: first, we ensure that the
shortest paths of all commodities are about the same
length (i.e. to be within certain bounds). Second, the
demand of a commodity is assessed according to the
bottleneck capacity along its shortest path.

For each run a flow over time is computed by
the heuristic and the FPTAS algorithm. The time
horizons of both are divided by a lower bound computed
for the inflow-dependent setting (this can be done
with a slight modification of the FPTAS) in order
to normalize the data, unless stated otherwise. For
all three computations—heuristic, FPTAS, and lower
bound—the same number of levels L is chosen.

6.2 Results and Discussion. In this section we
describe each of the experiments conducted and discuss
the results. The constraint shortest path factor ¢ is
set to a very large number except for the experiments
concerning the variation of c. IL.e. the flow of commodity
1 € K can take arbitrary paths and is not restricted to
paths shorter than ¢ times the length of the shortest s;,
ti path

6.2.1 Number of Bow Edges. Early experiments
revealed that the number of edges created for each
bow EP (which are then time-expanded in G”) can be
kept small. Even restricting to the two edges of EZ with
the shortest transit times yields very good results, as
hinted in Figure 4. This is mainly due to the subdivision
of edges in the preprocessing step of the rate-dependent
heuristic.

Because of the good performance for two edges per
bow and the considerably smaller size of G in the
following we concentrate on the setting with two edges.

6.2.2 Number of Levels L. Obviously, it is an in-
teresting question to ask how coarse a discretization of
time can be while still providing good results. In Figure
5 on the left the number of levels L is varied from 12
to 40. For this setting from about 30 levels on the im-
provements are quite small. As L tends to infinity the
normalized time horizon given by the FPTAS (“Inflow-
dep. t.h. / 1b.” in the figure) tends to 1, since the
lower and upper bound come arbitrarly close. It seems
very promising that the time horizon of the rate-depen-
dent flow over time computed by our heuristic is only
about 1.5 times larger than the one computed by the

FPTAS for the considerably less realistic model. The
runtimes of the two algorithms are on what appear to
be parallel lines in a logarithmic scale. This would im-
ply a constant factor between the two, which can be ex-
pected, and an exponential runtime. The runtime is not
asymptotical however, at least if a standard LP formula-
tion (without column generation and constraint shortest
path computations) is used to solve the instances.

6.2.3 Number of Commodities k. Another natu-
ral question is to ask how much the (normalized) time-
horizon computed by the two algorithms (and the corre-
sponding runtime) varies with the number of commodi-
ties sent through the network. Figure 5 on the right
shows some experimental results where the demand was
increased from 1 to 100 commodities with the number
of levels L set to 30. The time horizon normalized by
the lower bound (otherwise it would be of course in-
creasing) looks quite stable from 50 commodities on,
this is probably the point when the network becomes
congested. Interestingly again, also for higher number
of commodities the ratio of the rate-dependent flow’s
time horizon to the inflow-dependent flow’s time hori-
zon is about 1.5. As observered already when varying
the levels, the runtimes of the two algorithms appear to
be a constant factor apart.

In an attempt to assess the quality and the degree
of realism of the two different types of flows over time,
we also measured the “smoothness” of the flows and
how much the edge capacities are potentially violated;
both also in dependence of the number of commodities.
Smoothness we measure as the average of the absolute
change of flow rates over time on an edge. By construc-
tion in the inflow-dependent flows over time computed
by the FPTAS the flow values on an edge change fre-
quently. This is confirmed by the experimental results
shown in Figure 6 on the left. The per capacity flow
rates of the inflow-dependent flows change a lot more
than the rates of the rate-dependent flows. In applica-
tions concerning road traffic it might be more desireable
that a flow is rather smoothly spread out instead of hav-
ing rapid oscilations between flow peaks and no or little
traffic.

An obviously large drawback of the inflow-depen-
dent setting is that theoretically the flow rates along the
edge could arbitrarily exceed its capacity, as pointed out
in Section 2. In Figure 6 on the right it can be seen that
this actually happens in practice, when computing flows
with the FPTAS. For more than 10 commodities the
maximum factor by which a capacity is violated is larger
than 4, which is rather high. It is also very interesting
to note that the average flow rates in the rate-depen-
dent setting are considerably less than the ones in the
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inflow-dependent setting. This means that in the flows
computed by the heuristic the risk of congestion and
traffic jams will be a lot less, if the flow routes were to
be used for a route guidance system.

6.2.4 Constrained Shortest Paths. For Figure 7,
left, the factor was varied by which the length of a flow
path for commodity ¢ € K can exceed the length of
the shortest s;, t; path. It is quite interesting that if
commodities are only allowed to take detours of length
at most 1.6 times their shortest path, the resulting flows
over time have about the same time horizons as when
the paths are not constrained. This is very promising
concerning the degree of acceptance of potential route
guidance systems based on such approaches.

6.2.5 Large Instances. To see how our heuristic
performs on larger instances we ran it on eight differ-
ent graphs representing increasingly bigger portions of

Berlin; their sizes (the number of nodes in the second
line, the number of edges in the third):

1 2 3 4 5 6 7 8
56 | 166 | 320 | 538 | 749 | 1095 | 3500 | 4000
72 | 238 | 472 | 867 | 1224 | 1801 | 8745 | 8745

The resulting time horizons are shown in Figure 7 on
the right. The runtime increases drastically, but note
that e.g. the diamond graph created for graph number 8
has 90 million edges and the total computation time
for the flow is 17 hours, which seems quite acceptable
for instances this large. Since there is still plenty of
room for improvements and optimizations concerning
the code we consider these results very promising.

7 Conclusion

We introduced the rate-dependent model for flows over
time which more realistically captures the behavior
of road traffic than previous approaches. In several
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experiments we compare a heuristic we proposed with
an FPTAS for the considerably less realistic inflow-
dependent setting (among other things, it turns out
that the FPTAS actually computes flows which violate
edge capacities). The flows derived by the heuristic are
“smoother”—i.e. the flow is spread out more evenly—
which might lead to less congested traffic flows, when
applied in practice. Nevertheless, the time horizons
of the flows computed by the heuristic come close to
lower bounds computed for the inflow-dependent model
and already now, relatively large instances are possible.
Optimizations as for instance not creating the whole
diamond graph explicitly (but rather “on demand”
when flow is to be routed along a path) could further
increase the performance significantly.

For future work it is planned to cooperate with the
group of Kai Nagel (ETH Zurich/ TU Berlin) with the
goal of feeding flow paths obtained by the heuristic into
their large scale traffic simulator MATSIM [20]. From

a theoretical point of view it would be of great interest
to find approximation algorithms for the quickest flow
problem in the rate-dependent model and to investigate
whether the model could possibly be enhanced to in-
corporate the “first in first out” characteristic of single
lane roads. Currently flow of different commodities can
overtake each other (which is also called the freeway
model).
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