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Abstract in an elegant proof that it is always possible to unfold a chain

This paper studies (pointed, or minimal) pseudd? the plane without seif-intersection [46]. _
triangulations for a given point set in the plane. Pseudo- We define pseqdo-trlan_gulatlons of point §(_ats n Sec_-
triangulations have many properties of triangulations, af@n 2-1. Pseudo-triangulations posses versatility and uni-
have more freedom since polygons with more than thri95Mity properties that make them worthy of study. For in-
vertices are allowed as long as exactly three have an fance, therg IS an edge-fhp operat!on that .applles to any In-
less thanr. In particular, there is a natural flip operation off™@l €dge in a pseudo-triangulation, unlike the edge-flip
every internal edge. We establish fundamental propertie®Bfration in triangulations. In Section 2.2, we show how
pointed pseudo-triangulations. We also present an algoritfmPlement this operation efficiently, and study the graph
to enumerate the pseudo-triangulations of a given point Pseudo-triangulations, inwhich two pseudo-triangulations
based on the greedy flip of Pocchiola and Vegter. Our il adjacer_lt if they differ by a ?'”9'9 edge f|.|p. We shgw that
independent implementations agree, and allow us to exgdfs 9raph is connected, that its diameter is always"),
imentally verify or disprove conjectures on the numbers gfd that it is the graph of an abstract polytope. It has since
pseudo-triangulations and triangulations of a given point SAgEN Proven [43] that this abstract polytope can in fact be ge-
(For example, we establish that the number of triangulatiop@etrically realized, and [9] that its diametei¢n log n).

is less than the number of pseudo-triangulations for all W& then use edge-flips to enumerate all pseudo-
sets of less than 10 points; the proof for alis still to be triangulations of a given point set. There have been many

discovered.) interesting results on counting and enumerating triangula-
) tions for a given set of points in the plane. There have been
1 Introduction a series of upper bounds on the maximum number of tri-

Algorithms that perform computations on sets of poin@9ulations#T'(S), of a givenn-point setS. A count of

in the plane frequently benefit from using the points 7 (S) < 59n+0_(n) by Santos and Seidel [44] recently re-
decompose the plane into simpler regions: triangulatiofé@ced the previous best ¢fT'(S) < 28-12n+0(logn) by
Voronoi diagrams, visibility maps, and Delaunay tesselatioR§"ny and Sohler [16]. There are examples of point sets
are good examples [15]. Decompositions called pseuéﬂﬂlh many Frlangulat|ons that _establlsh a lower bound of
triangulations or geodesic triangulations have been studiéd (5) = 2%n=@(osm) [21]. Aichholzer [3] has a count-
for convex sets and for simple polygons in the plane b9 @lgorithm (that can be executed from a web pages for
cause of their applications to visibility [35, 36], ray shoogMall point sets [2]) and Bespamyatnikh [10] and Ray and
ing [14, 18], and covering and separation [38], stretchabili idel [42] present engmeratlon algonthms.' There remain
of pseudo-lines arrangements [40]. They have been used fi&nentary open questions, such as what point sets have the
number of kinetic data structures (KDSs) for collision deteB10St and the fewest triangulations. (Aichholzer [2] main-
tion among moving objects in the plane [1, 26, 27] becau@ns a list of the leading examples for up to 20 points.)

they can be maintained by edge swaps as points move and-€SS i known about the number of pseudo-
can form a partition of the free space whose size is relatedf{gngulations, #PT(S) of a given point setS. Even
minimum link separators of the objects. Streinu used théfi¢ following conjecture is open:

CONJECTUREL. For any setS of points in general position
*Polytechnic University, CIS, Six Metrotech, Brooklyn NY 11201jn the plane#T(S) < #PT(S) with equality iff the points
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Bespamyatnikh has extended his enumeration to pseudgeudo-triangulations of point sets. One could replace each
triangulations, but has yet to implement it. His algorithmoint p by a disk with centep and radius, for some small
cannot take a fixed sét of edges and enumerate only the > 0, and work within their framework. There are many
pseudo-triangulations which contaid. subtleties involved, however, which warrant a study of the
Our algorithm, presented in Section 3, is based on tbase of point sets in their own right. For instance, disks have
greedy flip algorithm of Pocchiola and Vegter for computinigur bitangents, only three of which can be non-intersecting,
the visibility complex of a scene of convex objects in the and they all map to a single edge of the point set. To ease the
plane [36]. As such, our technique can also enumerate thader’s task and prevent circular dependencies, we do not
pseudo-triangulations that contain a given set of edges. réffierence the case of convex sets except in the proof of the
Section 4, we provide some implementation details; we havigp Property (Theorem 3.1).
produced two independent implementatiéngn Section 5 Pseudo-triangles. A pseudo-triangleis a simple

we present the results of experimen_ts that e_xplore bas?c § nygon in the plane that has exactly three vertices, called
jectures on the number of pseudo-triangulations and trian Biners with internal angle less than. The three corners

Iatlo'r:ls. Bor':h |$plem:;tat|(()jns :grei In thesz_egp(ra]rlmentsof a pseudo-triangle decompose its boundary into three con-
ote that Tutte [47] and others have studied the num ve chains. Lef" be a pseudo-triangle. fangentto T is

of topological embeddings of triangulations and rooted triaQ'Iinel in the plane that goes either through a comnef T

gulations when the locations of vertices are not specified.Aﬂd separates the two edgegdhcident uporp, or through
and Nakano [31] enumerate topologically-distinct triangulg- cornep of T and does not separate the two edgek of

tions with a prescnbed number _Of p0|nt§ on their boundaﬁ{cident uporp. It is not hard to see that there is exactly one
We focus strictly on the geometric questions when the Ve”t%?ﬁgent line to a pseudo-triangle parallel to a given line.
set must be a given set of points in the plane.

This work was begun at a Bellairs workshop on pseudo- Pseudo-triangulations.  Let P be a set ofn points
triangulations organized by lleana Streinu and partially sup-9eneral position (i.e., no three collinear points) and let
ported by the NSF. The published results by the partidi- be the set ofi(n — 1)/2 undirected line segments with
pants include the numbers of pseudo-triangulations of sg8dpoints inP (edges for short). For the purpose of this
cial point configurations [41], the existence of pseud®aper, we assume that there is no two parallel edges, and no
triangulations with bounded degree [23,24], and an analy8fige parallel to the-axis?
of the flip graph [43]. Especially this last work depends on
some of the results on flipping contained in this paper.

2 Graph of pseudo-triangulations

Figure 2: (left) An acyclic planar set of edges. (right) A max-
imal acyclic planar set of edges or, put differently, a pseudo-
triangulation.

A subsetH of F is calledplanarif its edges are pairwise

interior disjoint, and is calledcyclicif for any endpoint of

an edge off there is a line througl that leaves the edges

Figure 1: A pseudo-triangle and its horizontal and vertical tanqf H mCIdefnt uporp_ all on the Same.SIde' .

gents. _ FoIIov_vmg Streinu [46] we dgflne pointed .pseud.o—
triangulatior® of P to be a maximal (for the inclusion
relation), acyclic and planar subset Bf note that the set

2.1 Definitions. Pseudo-triangulations were defined bgf edges of the convex hull @? is included in every pseudo-

Pocchiola and Vegter [37] for the case of 2-dimensiontslangulation. (See Figure 2 for anillustration.) In the sequel,

convex sets. In this paper, we are solely concerned with

2These two restrictions can be lifted, and indeed should be in a good

IThese implementations may be obtained from the sites: implementation. In section 5, we apply the algorithm to the point sets from
http://www.cs.unc.edu/Research/compgeom/pseudoT/ the database of Aichholzer et al. which obey these restrictions.

http://geometry.poly.edu/pstoolkit/ 3“Minimum” pseudo-triangulation in her terminology.



pointed will be omitted since the only pseudo-triangulations
we consider will be the pointed ones.

A link between pseudo-triangulations and pseudo-
triangles is established in the following lemma by consid-
ering the subdivision of the plane induced by a pseudo-
triangulation.

LEMMA 2.1. ([46, THEOREM 3.1]) The bounded faces of
the subdivision of the plane induced by a pseudo-
triangulation of P are pseudo-triangles. Furthermore the
number of pseudo-triangles of the subdivisiomis 2 and

its number of edges & — 3. _ _ . .
Figure 3:Canonical sorted pseudo-triangulation.

Proof. (Adapted from [37, Lemma 2]) Lek be a planar

and acyclic set of edges containing the edges of the CONYEs 4 re yseful tools to study the properties of triangulations
hull of P. Assume that some bounded face of the inducgf ¢, generate them algorithmically [21, 29, 33]. An almost

subdivision is not a pseudo-triangle; from this we shgljonical flip operation is defined for pseudo-triangulations
derive thatR is not maximal. This means that this face ISt disks by Pocchiola and Vegter [36].

not simply connected or that its exterior boundary contains at We now show that edge flips are even nicer in pseudo-

least4 corners. In both cases we add an edgR &s follows. jangulations of point sets, because any edge that is inside
Take a minimal length curve homotopy equivalent to the. ~5nvex hull can be flipped

curve formed by the part of the exterior boundary of the face
that goes through all corners of the exterior boundary but
one. This curve contains an edge nofimnd the addition of
this edge taR does not violate its acyclicity nor its planarity;
henceR is not maximal.

Let R be a pseudo-triangulation and It be the set
P minus its two points whosg-coordinates are extremal.
Since R is acyclic, the map that associates with a pseudo-
triangle of the subdivision induced by the touching point
of its horizontal tangent line is one-to-one; furthermore the
image of this map i) since all bounded faces are pseudo-
triangles. Thus the number of pseudo-trianglesis2. The
last result is then an easy application of Euler’s relation for
planar graphs. a

For points in convex position, the set of pseudo-
triangulations is exactly the set of triangulations; the ex-
ternal angle of each vertex on the convex hull is greater
than, so triangulations are acyclic. We define a canorffigure 4: Four pseudo-quadrangles; the last is degenerate, using
cal sorted pseudo-triangulatioras in Figure 3, for any setb_Oth sides of one segment. Each pseudo-quadrangle has two
of n points in general position by the following construcdi2gonals (gray and dashed segments), one on each shortest paths
tion: sort the points lexicographically by, y) coordinates, that joins opposite corners. Each diagonal form a pair of pseudo-

. . h : triangles, and an edge-flip replaces one diagonal with the other.
and form a triangle with the first three points; then for each g ge-fiprep g

subsequent point in order, add one pseudo-triangle by creat- Consider an edge that is adjacent to two neighboring
ing two tangents to the convex hull (this operation is a Heﬂéeudo-triangles. Each endpointcofs a corner in at least
neberg construction of type | and is connected to the rigidity, o o the neighboring pseudo-triangles, since each vertex
of pseudo-triangulations; read [46] for details). This pseuqqés at most one angle that is greater thasee Figure 4 for
triangulation, called incremental in [1], has been used in C%kamples. We observe that removing edgserges the two
lision detection. See Section 3.4 for an algorithm. neighboring pseudo-triangles into a “pseudo-quadrangle™
2.2 Edge flips in pseudo-triangulations. In a trian- At each endpoint ok either two corners merge into one
gulation, aredge flipreplaces any edge whose adjacent trianerner or one corner merges with an angle greater than
gles form a convex quadrilateral by the opposite diagonalus, the six corners of the original two pseudo-triangles
that quadrilateral. Edge flips, sometimes known as a Lawdmetome the four corners of a pseudo-quadrangle.



We can define aliagonalfor a pseudo-quadrangle byThus, each flip removes an incident non-hull edge from the
connecting opposite corners with a shortest path througghtmost vertex. What remains is a rightmost vertex with
the interior. Such a shortest path coincides with parts tefo hull edges. The corresponding pseudo triangle forms
the boundary except for exactly one straight edge in theconvex chain opposite to the rightmost vertex, which is
interior, which splits the pseudo-quadrangle into two pseudbe same configuration as in the sorted pseudo-triangulation.
triangles. Since there are two pairs of opposite cornersyWa drop the rightmost vertex and continue with the pseudo-
pseudo-quadrangle has two diagonals. triangulation on the remaining — 1 points recursively. This

Now, any non-hull edge is one diagonal of a pseudoprocedure performs a total 6f(n?) flips. |

quadrangle formeq by removing We define tha?dg_e—fllp The graph of pseudo-triangulations has an even stronger
for e as the operation that removesnd replaces it with the e :
onnectivity property. If we consider only the pseudo-

other diagonal. Figure 4 shows four examples. From tfie . .
lagor '9 ) P riangulations that contain a chosen set of edfes F,
preceding discussion, we can observe:

then we get a subgraph induced by the nodes corresponding
LEMMA 2.2. Any non-hull edge in a pseudo-triangulatiorio those pseudo-triangulations, whose arcs join nodes that
can be flipped. The edge-flip operation replaces the ngigrrespond to flips of the edges notq This subgraph is
hull edge and its two incident pseudo-triangles with a nes@nnected. As we will see, this is a simple consequence of
edge and two new pseudo-triangles. Flipping the new edy# enumeration algorithm.
restores the original pseudo-triangulation. Let X be the set of acyclic and planar subset&iahat
] ) contain the set of hull-edges, ordered by reverse inclusion

2.3 Graph of pseudo-triangulations. ~ We now show 4nd augmented with a minimum element (it already has a
that the graph of pseudo-triangulations, in which tWaaximum element, namelff). ThereforeX is a lattice,
pseudo-triangulations are adjacent if they differ by a singdq the edge-flip operation provides the diamond property
edge flip, is connected. _ . _ of abstract polytopes. (See e.g. the article by McMullen [32]

Formally, thegraph of pseudo-triangulatiorfer agiven oy the appendix of [36] for the notions related to abstract
set of points contains a node for each possible pseuggiytopes.) As a consequence of the last observation and of

triangulation. An arc connects two nodes if the two CcOrTgye strong connectivity ak mentioned in the last paragraph,
sponding pseudo-triangulations differ by a single edge flige nave:

The graph is undirected since flips are reversible.

The edge-flip distancebetween any two pseudo{ emma 2.4. The lattice X is an abstract polytope of di-
triangulations is the number of edge flips necessary to changgnsion2n — 3 — h, whereh is the number of edges on
one into the other, i.e., the shortest path between them inghe convex hull. Its set of vertices is the set of pseudo-
graph. We show that the flip graph is connected and boufigngulations of X. Its 1-skeleton is the flip graph of
its diameter. This bound was first published in a workshegeudo-triangulations of. This abstract polytope is sim-
version of this paper in 2001 [13]. We include the origple.
nal proof below for completeness. Since then, Rote, Streinu,
and Santos [43] have extended this result to a beautiful anal- For further developments on the polytofeand espe-
ysis of the flip graph of pseudo-triangulations, showing theiglly for a geometric realization oX, see the paper [43].
it is polytopal, has a geometric embeddingriff*—3 and re- : . -
lating it to minimally rigid graphs. Independently in 2003:,3 Enumerating pseudo-triangulations
Bereg [9] improved the diameter upper boundXg:logn). Our goal is to enumerate the set of pseudo-triangulations

over a given set of points. To this end we are going to
LEMMA 2.3. The graph of pseudo-triangulations is congefine a total ordex on the set of edges and a binary
nected and the edge-flip distance between any two pseuglds of pseudo-triangulations whose leaves considered as
triangulations isO(n?) for a given set of. points. increasing sequences of edges are the pseudo-triangulations

Proof. We show that one can flip from any pseuddgrdered lexicographically; furthermore two adjacent pseudo-

triangulation to the canonical sorted pseudo-trianguIationtl’rli"mgUIat'Ons in the tree are either identical or related by

O(n?) steps. Since flips are reversible, this is sufficient floflip operation. Our enumeration algorithm is a traversal
establish the lemma of this tree guided by the aforementioned total order

For a pseudo-triangulation that is different from thQurtechnique can also be applied to enumerate the pseudo-

sorted pseudo-triangulation, start at the rightmost vertex dHgngulations that contain a given set of edges.

flip all incident non-hull edges using less tharflips. In 3.1 The flip property. We introduce some definitions
the pseudo-quadrangle formed by removing such a non-farid prove a flip property that is essential to prove the
edge, the rightmost vertex is a corner; the flipped edgedorrectness of the enumeration algorithm. For each edge
this pseudo-quadrangle cannot attach to the righmost vertexc E, define©(e) as the angle in0, 7) that the edge



e directed upward makes with the positive (horizontal) suchthat'U{e,...,e;, e} is acyclic and planar. Since two
direction. edges that cross or that share an endpoint are comparable, the
setG(I) is well-defined; that is, the sequeneges, . . ., e

is independent of the choice of the minimal element at each
step.

We would like for G(I) to be a pseudo-triangulation,
and for this it suffices to make sure th@(7) has2n — 3
edges. This is not always possible, however, due to the fact
that we chose the principal determination ®fin [0, ),
therefore introducing a discontinuity in the comparisons,
and forcing the algorithm to stop perhaps too early. To
circumvent this, we replace, in the previous definitions, the
set of edge#’'i by its infinite covelf i = Fi xZ: elements
of Ex are still called edges and the angl¢v) of an edge

Given an acyclic planar subset of edgEsC E, we ¥ = (e, k) of Ex is dgfined to be the re@®(e) + kx. The
denote byEx the set of edges € E that can be used toOPerator ony that increases the angle of an edgeby
completeX to a pseudo-triangulation, i.e., such that {¢} is denoted.. It. is no'F hgrd to see t'hat if is a fllter of
is acyclic and planar. See Figure 5 for an illustration. (Ex, <x) then its projection on the first factdfy is onto,

We define a partial orde ;c on Ej as follows:e < from_whlch we deduce thﬁl([) Is a pseudo-trlangulatlon.
¢ if there exists a sequence of edggs= ¢, co, ..., e, = ¢’ Iq th|§ context we redefine the flip op.erat|on as follows: to
such that; ande; ., share a common endpoint and angldlP ¢ in G(I) means to replaceby .(e) if ¢ € K := K x Z
O(e;) < O(e;r1). According to the general position as® if e is a hull-edge, otherW|§e to perform an edge-fllpeon
sumption, two edges sharing an endpoint have different &Rd assign the angle of the diagonal by adding a multiple of
gles and therefore are comparable. It follows that the edde® fall into the range©(e), ©(e) + ). _
of a pseudo-triangle are pairwise comparable and are en- 1he pseudo-triangulatioi(/y o) is called thehorizon-
countered in increasing order when traversing the bour@lgreedy pseudo-triangulaticand plays a particular role in
ary of the pseudo-triangle counterclockwise, starting frofl €numeration algorithm. Further below, we explain how
its point of horizontal tangency. Following [36, Lemma 7 &fficiently compute this pseudo-triangulation.
we observe that two crossing edgedip are the diagonals
of some pseudo-quadrangle (with edgesin) and conse-
guently they are comparable with respecitg.

A filter for a pose{ X, <) is a subsef of elements such
that for anyx < y, if z € I theny € I. In particular, to
each anglé corresponds a filtefx ¢ of the poset{Ex, <k )
whose elements are the edgésf Ex whose angl®(e’) is
greater thad. Note that/x o = Ex, andly o = E. Gy Gagine

Figure 5: (left) An acyclic and planar subséf of £, (right) the
setEx = {e | K U{e} is acyclic and plang.

G(U(pi/2)\ fe.e'))

Figure 6:Herel = I, ,. (left) The setG([), wherel is a filter of Figure 7:lllustration of the Flip Property for Points
Ek, is not necessarily a pseudo-triangulation. (right) The&gt),
wherel is afilter of Ex, is a pseudo-triangulation
We are now in a position to state ttkp property
) ) This property states that flipping a minimal edge in a
For any filter I of the poset(Ex, <), we define a pseudo-triangulation of the fori@(I) results in a pseudo-

maximal planar acyclic set of edge&) = {e1, e2,...,€x}  triangulation of the formi(.J), and this will be crucial in
recursively: edge; is minimal in/, and, fori > 1, edge oyr enumeration algorithm.

e;+1 IS minimal in the set of edges € T\ {ey,...,¢e;}



THEOREM3.1. (H.IP PROPERTY FORPOINTS) Let] be a the pseudo-quadrangle. Alternatively, one can compute com-
filter of the posetEx, <) and lete be minimal inI. Then mon tangents for the pairs of chains in a pseudo-quadrangle
G(I\ e) is obtained fromG(I) by flippinge. to identify the diagonals. Tangents for two separated chains
can be found irO (log n) time [25, 34]. When computing the
The proof relies on the theory of pseudo-triangulationgsibility graph of a set of convex obstacles, Angelier and
developed for bounded 2-dimensional convex sets in [7, 3BRcchiola [7] use a clever amortization scheme to compute
The heart of the proof is to replace each pgine P by tangentsirO(1) time apiece.

the disk with centep and radiuse, for some smalk > 0 33 The enumeration algorithm.  In this section, we

and to derive' the flip property for points from the “flin, sider the total order on E and E induced by ©.
property for disks™ (cf. [36, 'I_'he<_)rem 12] and [7, Theoremyiq order is compatible with, and linearly exten¢s, <).

5]). There are many subtleties involved, however. For 0R&q,qh we assume general position, the case of parallel
things, disks have four bitangents, only three of which c@fyyes could be handled by considering a linear extension of
be non-intersecting, and they all map to a single edge of

point set. Nevertheless, with a bit of care, it is possible to’ In .the algorithm, we speak of edgesfinas colored red
carry the flip property from the case of disks to the case gf e The red edges are fixed and will not be flipped:
points. We include the full proof in the appendix. the blue edges can be flipped. We now describe the follow-

3.2 Algorithms for edge flip.  In this section we sketching binary tree7 = 7 (P) of {red,blug-colored pseudo-
two implementations of edge flip, assuming that the pseudidangulations of. Each node of the tree corresponds to a
triangulation is stored in a data structure that allows us @glored pseudo-triangulatiafi, and we identify the node of
access its edges in order around a given face. Standhgitree with its pseudo-triangulatidn The tree is defined
structures for planar subdivisions, such as doubly-connecé&dollows:

edge lists or quadedge [15, 19], provide this.

1. The root of 7 is the horizontal greedy pseudo-

Rotational sweep for edge-flip. ~ We can determine triangulationG (I o); all its edges are blue.

the new diagonal obtained by flipping edgeusing a ro-
tational sweep. The algorithm proceeds by rotating paral-2
lel tangents simultaneously along the interiors of the two
pseudo-triangles adjacent to Starting from the edge

that we want to flip, the two tangents initially coincide but
have opposite orientations. If we sweep through the angles,
the two tangents immediately separate and meet again only
when they reach the new diagonal. We can discretize this

sweep because the tangents rotate around vertices until E?é{af @ satisfying 2.(i) is called a blue leaf, and a leaf sat-

are collinear with the next halfedge of a pseudo-triangle, . 2 (i) i led d leaf. Blue | he al
Then they advance to the next vertex. At corners the tang'grfﬁf.lng (i) is calle a red feal. bilue eaves_stop the al-
' orithm from enumerating a pseudo-triangulat@rseveral

changes its orientation with respect to the halfedge orieng?ﬁes_ without stopping for blue leaves, the tree would be in-
tion. The sweep terminates when the tangents again cQ ' '

cide in'te, and each pseudo-triangulation would be reported for
’ every value o with the same remainder moduto
A matroidal flip algorithm.  The predicate in the ro- The algorithm simply explores the trée by a depth-
tational sweep is a test ordering two vectors. One can alget traversal, visiting the left child before the right child,
give an implementation that uses only the orientation prezhd reporting the red leaves in the order in which they are
icateleft _turn( p,q,r), which returns true iff the point discovered.
sequence, q,r forms a left turn. We can call such an al-  The algorithm is fully described once we explain how to
gorithm “matroidal,” in that it only uses information aboutind the minimal blue edge. In the most direct implemen-
the order type of the points [11, 28]. Such algorithms atation, the blue edges are stored in a priority queue, ordered
usually better in that they have fewer degenerate configuog-O. The edgee at the top of the queue is removed upon
tions, lower arithmetic complexity, and generalize to othdescending to either child, and edgés enqueued when de-
matroids. scending to a right child iff its angl®(e’) < 7 (otherwise
The idea behind the algorithm is to identify the flip athe right child is a blue leaf and the recursion stops).
the only diagonal edge on the shortest path connecting the It is not necessary to store the priority queue in the
opposite corners. The funnel algorithm of Lee and Preparegaursion stack if we simply add edgeback to the queue
can be modified [20, 30] to compute shortest paths in liwhen returning to the parent after visiting the right subtree.
ear time and return the unique edge not on the boundaryTbius, the stack grows b9(1) at each recursive call.

. LetG be node of : If either (i) a blue edge off has an
angle>  or (i) all the edges of> are red, theit7 is a
leaf of the tree. Otherwise, letoe a minimal blue edge,
e.g., the blue edge with minimum an@e). The right
child of GG is obtained fromG by flipping e and its left
child is obtained by changing the color ©fo red.



THEOREM 3.2. The set of red leaves Gf(P) ordered from .

left to right (in the order they are reported by the algorithm) AR

is the set of pseudo-triangulations Bfordered lexicograph- .

ically by ©.
@ ® © )

Proof. Let G be a pseudo-triangulation with edges fih

and letGy, G1, ... G, ... Gy be the path in the tree defined

inductively: Gy is the root the tree and;, is the left Figure 8:(a) A point set, (b) its lower and (c) upper horizon trees;

child of G; if the minimal blue edge of3; belongs toG (d) the superimposition of the horizon trees yields pseudo-triangles

otherwiseG, . is its right child. LetK; be the set of red and pseudo-quadrangles.

edges ofGG;, edgee; be the minimal blue edge dF;, and

filter I; = Ix; e(e) Of Ex,. We claim that 3.4 The horizontal greedy triangulation.  We now

(1) K; CG explain how to computé:(1y ). In fact, the algorithm can
) G \_[(i c be adapted by a simple rotation to comp@tél,) for any
@3) G(I) = (G; \ Ki) U o(K;) 6 € [0,7). It is convenient for the exposition (and for the

algorithm) to order the points d@? by lexicographical order,
from which we deduce thdk,, is a red leaf ands = G,. i.e.,p1 <yz D2 <yz **Pn-

Claims (1),(2) and (3) are easily proven by induction on The construction usel®wer and upper horizon trees
i using the Flip Property of the previous section. The proofdefined here as follows. For all poipf with 1 < i < n,
finished by noting that the red leaves of the tree are pseudenote by/(p) the pointp;, for j > ¢, which minimizes
triangulations with edges iB. O the angle©(pp;) € [0,7). Definel(p,) = p,. Since
{"(p) = pn, the set of edges of the forp¥(p) is a tree

h tl'\lotelj[hat the :heor em(;: al§c|) d\{a“d for G}InBOII t?talgrteter whose root ig,, (itis connected because everyhas a path
at 1 a finear extension ok, yielding a well detined tree, pn, and it hasn vertices andh — 1 edges). We call that

7-(P). Since® induces such a total order and is easy E?ee thelower horizon treeand denote it byT) (P).
compute, thanks to the geometry, it is convenient to use it. |, o ice for pointp; with 1 < i < n éenote byu(p)

See Remark 1 below. the pointp;, j < ¢, which minimizes the angl®(pp;) <
THEOREM3.3. The height of the tree/ (P) is at most [7, 2m) (defineu(p1) = p1). The set of edges of the form
n(n—1)/2 pu(p) is also a tree, of roop;, which we call theupper

' horizon treeand denote by, (P).

Remarks. 1. In this formulation, the algorithm de- The following lemma, first observed in [39], forms the

pends on the orde® of the edges, which is not implied byPasis of the algorithm. See Figure 8 for an illustration.

the orientation of all triplets of points. For this reason, trLeEMMA 3.1. Let K — T/(P) U Tu(P) be the set of edges
algorithm as explained here is not matroidal. It is, howev%relonging'to' the horizongtrees w
possible to give a matroidal algorithm, by selectingdany :

blue edge that is minimal for the partial order In this case (1) & contains all the edges of the convex hulFaf
the tree7 (P) isn't uniquely defined, and finding such argz) K decomposes the convex hullinto regions, each of

edge is more difficult, necessitating the maintenance of pich is either a pseudo-triangle or a pseudo-quadrangle.

antichain { in the notation of [7]) associated with the curren 3[( < Glpo).

filter I while traversing the tree. _ _ _ With this lemma, the algorithm is straightforward. This

the notation of [7]) while traversing the tree, where an edggriant of Graham's convex hull algorithm [6]. We need
and its dual have the same color, allows to retriewehen the predicateight _turn (p, g, r) which returns true if the

coming back from the right subtree. Hence instead of storiggint sequence, ¢, » forms a right turn.

a recursive stack to remembepn the way up the tree, the

algorithm can maintain onlg# and its dual. This changes the

space complexity of the algorithm from quadratic to linear.
3. If the root of the tree is replaced by the horizon-* Upn) < pn

tal greedy pseudo-triangulatiafi(Ix,) C Ex associated > for ¢ <~ n —1 downto 1 do

with the planar acyclic set of edgds§ where edges of< J v 1

are red then the algorithm enumerates the set of pseudb- while right _turn (pi; pj, £(p;)) do

triangulations that contaifi. Observe that this proves that > Jei—1

the graph of pseudo-triangulations is strongly connected. 6. Upi) —p;

COMPUTEL OWERHORIZONTREE(P)



Note that the algorithm still produces the correct treeghlity of our algorithm in the low tens (twenties). Thus all of
two edges are parallel, or even if two points have the sathe asymptotic complexities should be taken with a grain of
ordinate (thanks to the lexicographical order). salt. A good implementation will settle for low-complexity

Computingu(p) is performed by a similar algorithm.algorithms as well as simplicity of the code.

After the initial sorting inO(nlogn) time, both algorithms
takeO(n) time. Once the horizon trees have been computedd, Implementation issues
the subdivion can be constructed in linear time, and each

region visited to determine if it is a pseudo-triangle (;IEwo independent implementations based on the above algo-

pseudo-quadrangle. A pseudo-quadrangle can be Sp”{lghm have been developed in order to ensure the correctness
time linear to its number of edges, by computing its twdf the experimental validation of the conjecture.
diagonals and inserting the one with smaller Thus,

once the points are sorted lexicographically, the algorittfft Halfedge data stru(;:turg. BIOth mkl)plemr(]anlt];agons |
computesGi(Zy,o) in linear time. chose to represent pseudo-triangulation by a halfedge data

structure, a.k.a. doubly connected edge list or DCEL. One
3.5 Complexity analysis. The algorithm spend®(n) implementation is based ond@L, and described in [17,22],
time for a flip or a priority queue operation in the worsind the other on an independent halfedge data structure
case, hence tim@®(n) per edge of the tree. Since thelescribed in [12].
number of edges is the same as the number of internal nodes,
which is also half the number of leaves, the algorithm spentl2  Flip algorithm. Since the algorithm needs to exam-
amortized timeD(n) per pseudo-triangulation. ine the flip edge and decide whether to actually perform the
Using a heap for the priority queue reduces the costfiip or not, it is advantageous to implement the rotational
the priority queue operations ©(log n). Moreover, using sweep method.The functicind _pseudo _flip  returns
binary search can reduce the complexity of the flip algorithimvo halfedge handles whose incident vertices form the end-
to O(logn) as well, at the cost of maintaining the corners @foints of the flipped diagonal rotated counterclockwise from
pseudo-triangles (which can be done(il) time after a the old diagonal. The function does not actually flip the di-
flip) and maintaining the boundary of the pseudo-trianglagonal.
as splittable queues as in [36]. We note that it is possible that two pseudo-triangles
Unfortunately, this is the time spent per leaf, countirghare more than the original edgebut then it is easy to
both then, redandthen; blue leaves. The following ratio see that they cannot share more than two). In this case, we
is therefore important for analyzing the complexity of theust be careful that the algorithm does not miss the flip due
algorithm: p = (ny + n,)/n,.. We initially conjectured a to such (unavoidable) degeneracies.
bound of 2 on this ratio, which was disproved by experiments
(see next section). The currently best upper bound we hd&@ Enumeration algorithm. Using the function
is the number of edges of a pseudo-triangulation not on firedl _pseudo flip , itis easy to implement the recursive
convex hull,i.e.2n — 3 — h. variant of the enumeration algorithm. As noted, the only
To conclude, the algorithm is set up in tim¥nlogn) variable to store in the recursion stack is the minimal edge
to compute the horizontal greedy triangulatiGii/; ) and at the current node.
insert its edges in the priority queue. The running time of the Since the number of pseudo-triangulationshgpoints
algorithm per red leaf of the tree (i.e., pseudo-triangulatignows exponentially withz, we will not be able to run the
of P) is upper-bounded by)(pn) = O(n?), and can be algorithm for values of. larger than, say, 20. In fact, =
lowered with more complicated algorithmic machinery to0, with up to 234,160 pseudo-triangulations, is already a
O(plogn) = O(nlogn). All of this is in the worst case.  challenge and takes on the order of the second. This dictates
Note that the average complexity of a pseudo-triangdfew implementation choices.
is O(1), thus on the average the flip will be performed in  First, the priority queue can be a simple vector of edges,
constant time. We expect thatis much smaller tham, sorted by© values, although using a binary heap is not
although not constantp( = O(logn) seems a temptinga penalty and improves the performance slightly. Second,
conjecture, but we do not have a shred of evidence finding the flip without performing it saves a constant time.
support). Thus in practice, we expect that the amortiz&tlird, a non-recursive version of the algorithm eliminates
cost per pseudo-triangulation is much lower tiiam logn), the function call overhead, which contributes a (small) con-
perhapsO(p). In order to state such a result, however, watant factor overall. Fourth, storing the old diagonadn
lack an amortized bound for the flip and an upper bound filve stack when a diagonal is flipped avoids searching for this
p- edge by reverse flipping the edgein order to restore the
Note finally that the number of pseudo-triangulationsriginal pseudo-triangulation. The second and fourth opti-
grows exponentially fast, thus limiting the domain of practimizations combined save 36% in runtime.



5 Experimenta| results #points  lower-bound upper bound

. L i 3 1 1 (1,#)
We started this investigation to support or find a counter- 4 2 3 (1,#2)
example to the conjecture 1. The conjecture is not known 5 5 13 (2,#3)
to be true even for small values ef Our goal is to run 6 14 76 (8, #15)
our enumeration algorithm on Aichholzer et al's compre- ! 42 485 (30, #125)
: . . e 8 132 3555 (150, #2991 and #3199)
hensive database of point sets with cardinatity< 10 [4]. 9 429 27874 (774, #151721)
Our result is that for the over 14 million point sefsin 10 1430 234160 (4550, #13413894

the database up to < 10, we have#T'(S) < #PT(S). and #13812360)
Moreover, we also have computed the maximum number_of _ _ _
pseudo-triangulations (Table 1) which enriches Aichholzef@b!€ 1: Number of pseudo-triangulations found among all the order
dium. Finallv. we have packaaed our software iriﬁjes. Between parentheses#d(S) for the order typeS maximizing
compen o ,y' P ) g . ) T(.S), followed by the index of5 in the database.
a pseudo-triangulation workbench with which we can inter-
actively examine pseudo-triangulations, flip edges, and per-
form various algorithms. This was extremely useful in ex-

ploring other conjectures, including about bounded-degree

. p # points exact lower-bound  upper bound
pseudo-triangulations. 3 T
4 2
5 2.76923 4
6 3.49254 6
7 4.26786 8
8 4.89121 10
9 5.74258 12
10 6.28663 14
11 N/A >6.11959 16
12 N/A >5.709 18
Table 2:Maximum ratiop of (blue and red) leaves to red leaves during the
enumeration. The second column is (a 5-digit approximation of) the exact
number when available. The third column is a lower bound, obtained by
trying random point sets with various distributions, while the fourth column

is the best known upper bound.

Figure 9:Screen shot of using the pseudo-triangulation workbench
to test a conjecture

In order to assert confidence in our implementations, . .
we have independently devised two implementations of the 1aplé 1 shows the minimum and maximum values of
enumeration algorithm, and checked that they agree on evéty . (°) for every value ofn, and table 3 indicates the
point set in the database. The case- 10 took about a running time of our algorithms (both implementations were
month to compute on a cluster of 26 Sun workstations aﬁgﬂparable). The_PO'”t set with mlnlmu#lPT is the point
another eight Pentium processors at 1 Ghz, and about 58hiN convex position for, < 10. This contrasts sharply
days for the independent computation by another co-autféfh the situation on triangulations [2]. In the previous
Luckily, both results agreed! version of this paper [13], we conjectured that the number of

Interestingly, it was observed by Oswin Aichholzertha?,seUdo't“anguIat'ons is minimized for point sets in convex
for n — 8, the maximum#PT was achieved for theame position for any value of.. In fact, this has been proven
two point sets as for the maximugT’, and conjectured that"ecently [5]. )
the same would be true for — 10. Indeed. this is now Forn > 10, we do not have the point set database, nor
verified. But this is not true fon < 8 nor forn = 9. At the computing power, to compute the exact lower and upper
this time, it seems far-fetched to conjecture that, for all evBAUNds. Nevertheless, we can still compute the number of
n > 8, #PT(S) attain its maximum exactly for the pc)impseudo—trlanguIatlons for particular configurations (this is a

setsS which also maximize4T'(S). Nevertheless, we canfurther test of correctness of our algorithm, when the result
state: ’ is known mathematically), and on random point sets.

We conjectured that the ratjpof (blue and red) leaves
FACT 5.1. For any point set withn < 10, we have to red leaves was bounded by 2. Experiments showed that
#T'(S) < #PT(S), with equality iff the point set is in con-this is simply not true. In Table 2, we display some lower
vex position. In that case¢ PT'(.S) is minimal. bounds orp, as well as the best known upper bound.



#points  # point order types  runtime
3 1 <1lsec
4 2 <lsec
5 3 <1sec
6 16 < 1sec
7 135 1sec
8 3315 3min = 0.054 sec/order type
9 158817 990min = 0.374 sec/order type
10 14309547  about 200 days

(3]

[4

—_—

(5]

(6]

Table 3:Runtime results on counting pseudo-triangulations for all order
types of point sets from 3 to 10 points (10 points in sequential time on a

single processor) on a Linux Laptop with a 400 MHz Mobile Pentium Il.17

Program was compiled and optimized wigh+ -O3. Due to the small
space requirements, the amount of main memory is irrelevant.

6 Conclusion

We have presented and implemented a new algorithm

of the greedy flip algorithm.
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enumerate all the pseudo-triangulations of a point set. This

algorithm uses the theory of pseudo-triangulations that wasj
developed for convex obstacles, in particular it makes reuse

(10]

Using the polytopal construction of [43], one could
obtain another algorithm via the reverse-search paradigm

[8]. Our algorithm is more general, however, since with t 1

proper flip algorithm it also applies to matroids (in the dual,

arrangements of pseudo-lines).
The running time per triangulation is in theof}(n?),
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although it should be possible to lower that upper bound by
using amortization of the flip algorithm, as well as better
upper bounds on the ratio of leaves over red leaves. Algg]
the algorithm can be improved in theory using more fancy
data structures, but since it is unlikely to be applied to point

sets larger thafo, this is more of a theoretical exercise.

We independently developed two implementations of

the algorithm, which agree on all point sets for< 10.

(14]

Using these implementation, we verified that Conjecture 1
is true forn < 10. The mathematical proof (even for such

small values ofy) is still waiting to be discovered.
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A Proof of the Flip Property quadrangle obtained by merging the two pseudo-triangles

We briefly recall the terminology and the results of [7, 3é|]10ident uporb in G(1).

needed to our purpose. Léy,O-, ..., 0O, be a collection

of n pairwise disjoint bounded closed convex subsets
the plane with nonempty interiors and regular boundari
(obstacles or disks for short). We assume that there

no line tangent to three disks. Aitangentis a closed according to the Flip Property the mapping that associates
undirected line segment whose supporting line is tangentgn the bitangenb € By the bitangent! € By defined
two disks at its endpoints. Aee bitangent is a bitangentby ('} = G(I\ b) \ G(I) whereb is minimal in I is well-

whose interiqr liesin free space the cpmplement of the dislS4ined (because independentdf one-to-one, and onto;

In the foIIowmg conS|de.rat|ons all bltgngents are free. e bitangent’ is denoteds(b; H).

set of (free) bitangents is callqganar if its elements are  \yg turn now to the proof of the Flip Property for points.
pairwise disjoint.  Apseudo-triangulatior(of the 0;S) IS \yg gplit the proof into several lemmas. The key idea of
a maximal — for the inclusion relation — planar set ge proof is to define an epimorphism of posets to carry the
b|tangent_s. It is known that a pseudo-triangulation contalpﬁ.p Property from the case of disks to the case of points.
3n — 3 bitangents that decomposes the convex hull of tB@ore defining this epimorphism we reformulate the greedy

disks into2n — 2 pseudo-trianglesvhere in this context a yrcedure in terms more suitable for our subsequent analysis.
pseudo-triangle is a simply connected region of the plane

whose boundary consists of three convex curves that shaggima A.1. Let] be afilter ofB; and letF be initial in I,
a tangent at their common endpoint and which is includedijg_,]\p is a filter. ThenG(I) = G(I(F)) wherel (F) is the
the triangle formed by the three endpoints of these conviiter of the poseB ;¢ () defined by (F) = INByue(r)-
curves. A similar result holds when taking, Ex for H andBy.
We denote byB the set of (free) bitangents and we
introduce its infinite cove = B x Z: elements ofB Proof. Since F' is initial G(F') is a subset of7(I) from
are still called bitangents; the angl#(v) of the bitangent which the lemma follows easily. ad
v = (b, k) € Bis defined to be the reél(b)+km whereO(b)
is the angle if0, ) thatb oriented upward makes with theFOr
horizontal positive directio@®zx, and the direction of € B
is the unit vector(cos ©(v),sin O(v)) € S!; the operator
that increases the angle of a bitangentiig denoted.
Given a planar subséf of B we introduce the seBy
of bitangents o3 that cross properly no bitangent &f (thus
H C Bpy). The seBy is endowed with a partial ordet
defined as follows:b <y b’ if there exists a sequence o
bitangentsh; = b,bs,...,br = b in By such thath; and
b;+1 touch the same oriented dfsend ©(b;) < O(b;;1).
Each (proper) filted of (By, <) is associated with its so-
called greedy pseudo-triangulation

TﬁEOREM A.1. (FLIP PROPERTY FORDISKS[7,36]) Let
e minimal in the filterT of the poset{By, <x). Then
gi'il \ b) is obtained fromG(I) by flippingb.

Now we turn to the construction of the epimorphism.

e > 0 let O;(¢) be the disk with centep, and radius

e. Since the points are in general position there exists a
realeg > 0 such that for alle < ¢y no line pierces three

of the disksO;(¢) and no horizontal line pierces two disks.
(Remember that we assumed that no two points have the
same ordinate.) We choose sucheaand we introduce the
FetB of 2n(n — 1) (free) bitangents of th&;(¢)s and we
denote byn the four-to-one mapping that associates with a
bitangen® in B tangent to the disk®; andO; the edge;(b)

of E with endpointsp; andp;. Our first lemma provides

a characterization of acyclicity in terms of the crossing
predicate.

G(I) = {b1ba,...,bsn—s} C LEMMA A.2. Let K be a planar subset of. ThenkK is
acyclic iff for all maximal (for the inclusion relation) planar

defined as follows: (1), is minimal in I, and (2)b;; is 1) one has)(H) = K
] = .

minimal in the subset of bitangents éfcrossing none of SUPSEtH 0f 7
the bitangent$,,b,,...,b;. Since crossing bitangents ar
comparable (cf. [36, Lemma 7]§7(I) is well-defined and
is a superset of the set of minimal elements ofTo flip b
in G(I) means to replacé by «(b) if b € H := H x Z
or if b is a hull bitangent, otherwise to replaéeby the

Proof. The 'if part’ is easy. To prove the 'only if part’ we
show that if there exists an edgec K and a maximal
planar subsetl of =1 (K) such that ¢ n(H) thenK is not
acyclic. Letp andq be the endpoints of and letp™ (resp.
p~) be the set of edges € K such that (1-p is endpoint
of ¢/, i.e,e’ = [p,r] for some point-, and (2-) the triplet of

4An oriented disk is a disk with a “direction”, “sense”, or “orientation”  _. : : : :
assigned to its boundary. An oriented disk and a bitangent touch each oRm%lrntSp’ r, ¢ s oriented counterclockwise (resp. clockwise).

or are tangent to each other if their directions at the point of touching are | N€ assumption thai?_é n(H) _iS equivalent to say that
the same. for all b € n=1(e) there exists a bitangeht of H such that

second diagonal (with the appropriated angle) of the pseudl@ndd’ are crossing. A simple case analysis shows that this



is equivalent to say that the sets U g™, pT™ Ug—,p~ Uq™ subsetsk of E ordered by reverse inclusion. Let =
andp~ U ¢~ are nonempty; from which we deduce thdt 771;1(]). This is clearly valid if K is maximal since in
andp~ (or ¢ andq™) are nonempty and consequently thdhat caseE; = K, By = H and consequently(I) =
K is not acyclic. O I\:I)andG(J) = J\ «(J) from which we deduce that

Our next lemma is the key to the construction of gHG(/)) = G(I). Assume now thaft" is not maximal and

epimorphism from som&y C n~!(Ex) onto E. let e be minimal in7. If e ¢ K we setK’ = K U {e}
) and H = H U G(ng ({e}). According to Lemma A.1,
LEMMA A.3. Let K be an acyclic and planar subset &f 1) = G(I') andG(J) = G(J') whereI’ = I(n5'{e})

and letH be a maximal (for the inclusion relation) planary 4’7/ _ J({e}). One can check that = 57;}(J') from

subset ofy ! (K). Then which the result follows by induction sindé ¢ K’. In case
(1) n(Brr) :I]EK' and ) e € K we replaces by an initial segment of that contains
(2-)ifb < V" thenn(b) =<x 7(b"). exactly one element not iif and proceed similarly. O
Proof. Claim (1) is consequence of Lemma A.2: indeed
let K’ = K U {e} be planar and acyclic and IéI’ O H
be a maximal planar subset gf 1(K’) that containsH.
According to Lemma A.2 applied to the pdii’, H' one has Proof of Theorem 3.1.  Let.J =7, (I) and letF" =
n(H') = K’ and consequently some bitangentjof' (¢) € ny" (e). Note thatF is initial in J sinceJ \ F = 1" (I \ e)
By. Claim (2) is a simple consequence of Claim(1) and tfef. Lemma A.4, Claim 1). Thanks to the Flip Property for
observation that i andd’ touch the same oriented disk wittflisks the setG(J \ F') is obtained fromG(I) by flipping
O(b) < O(1) theny(b) andn(t') share a common endpoim’successwely the bitangents Bf Therefore one has
andO(n(b)) < O(n(b')) with equality iff n(b) = n(¥’). O
In other words, the restrictiomy of n to By is a
mapping ontoEx that preserves the orderings. We shoand consequently, according to Lemma A.4,

thatny preserves also the greedy pseudo-triangulations.
G(I\e)=(GUI)\e)Un(o(F, H)\ F).

We are now ready to carry the Flip Property from the
case of disks to the case of points.

G\ F) = (G)\G(F))U(F; H) \ F

LEMMA A.4. Let K be an acyclic and planar subset 6f

let # be a maximal planar subset gf ' (K), and let! be a Since G(I \ e) and G(I) have the same cardinality,
filter of (Ex, <k ). Then namely2n — 3, it follows thatG (I \ ¢) \ G(I) is reduced to
(1) (1) is afilter of (B, <) a single edge, which is one of the edges)af(F; H) \ F).
(2) n(G(ny' (1)) = G(D). O

Proof. Claim (1) is simple consequence of Lemma A.3.
Claim (2) is proved by induction on the set of planar acyclic



