
Approximating the True Evolutionary Distance Between Two Genomes

Krister M. Swenson∗ Mark Marron∗ Joel V. Earnest-DeYoung∗

Bernard M.E. Moret∗

Abstract

As more and more genomes are sequenced, evolutionary bi-

ologists are becoming increasingly interested in evolution

at the level of whole genomes, in scenarios in which the

genome evolves through insertions, duplications, deletions,

and movements of genes along its chromosomes. In the

mathematical model pioneered by Sankoff and others, a

unichromosomal genome is represented by a signed permuta-

tion of a multiset of genes; Hannenhalli and Pevzner showed

that the edit distance between two signed permutations of

the same set can be computed in polynomial time when all

operations are inversions. El-Mabrouk extended that result

to allow deletions and a limited form of insertions (which

forbids duplications); in turn we extended it to compute a

nearly optimal edit sequence between an arbitrary genome

and the identity permutation. In this paper we extend and

improve our previous work in two major ways. We gener-

alize our approach to handle duplications as well as inser-

tions and thus enable the computation of distances between

two arbitrary genomes; and our new algorithm approximates

true evolutionary distances, as opposed to the less useful edit

distances. We present experimental results showing that our

algorithm produces excellent estimates of the true evolution-

ary distance up to a (high) threshold of saturation; indeed,

the distances thus produced are good enough to enable a sim-

ple neighbor-joining procedure to reconstruct our test trees

with high accuracy.

1 Introduction

Gene-content and gene-order data are becoming more
common and are increasingly used in the study of evolu-
tion (see [12]) and in comparative genomics (see [1]). We
can compare genomes from various species under the as-
sumption that certain biologically plausible operations
have, through time, shaped their current conformation
from a single common original genome. Changes to
genomic content or to gene order are of particular inter-
est, as they arise infrequently and so offer the potential
for reconstructing very old evolutionary events as well
as computing pairwise evolutionary distances between
distantly related modern genomes (see [5, 13, 14, 15]).

∗Department of Computer Science, University of New Mexico,

Albuquerque, NM 87131, USA, {kswenson,moret}@cs.unm.edu

Biologists can observe the ordering and stranded-
ness of genes on each chromosome, thereby producing a
gene order for each chromosome, a sequence of signed
integers in which each integer represents a gene (the
same gene may appear multiple times in the sequence)
and the sign indicates the strandedness. In turn, evolu-
tionary events can be couched in terms of operations on
such signed orders: inversions, insertions, duplications,
and deletions all have simple representations in this
model. The model then leads naturally to the problem
of defining the distance between two genomes in terms
of these operations. The distance one would want is
simply the actual number of evolutionary events (from
the list of allowed operations) that took place to evolve
one genome into the other—what is known as the
true evolutionary distance. Not only is that distance
of biological interest, but knowledge of the pairwise
true evolutionary distances is sufficient to reconstruct
the true phylogeny [17]. Since that value cannot be
computed exactly, however, computational biologists
have instead developed algorithms to compute the
edit distance, i.e., the smallest number of evolutionary
events needed to transform one genome into the other.
An edit distance has the advantage of presenting
a clearly defined minimization problem; but it also
underestimates the true evolutionary distance. Thus
computational biologists have developed methods for
correcting the edit distance (according to an empirical
model) in order to produce an estimate of the true evo-
lutionary distance. Such correction methods introduce
problems of their own, however, particularly a variance
in the estimator that grows as the distance grows, to the
point where, beyond a certain threshold known as the
saturation value, the estimate is too noisy to be useful.

However, even computing an edit distance is a very
complex problem for whole genomes. Simply finding
the edit distance between two unsigned permutations
with only inversions allowed (no change in content and
no duplicate genes) is NP-hard[3]; the same problem
with signed permutations is solvable in polynomial time
thanks to the results of Hannenhalli and Pevzner [8]—in
fact, the edit distance can then be computed in linear
time [2]. On the other hand, computing the minimal
edge lengths for a tree of just three taxa under this

Subject -2-1 23 -6-5 34

Target 12 34 56

Figure 1: A minimal cover.

model (the so-called median problem) is NP-hard
even for signed permutations [4]. Computing the edit
distance for genomes with unequal content is barely
touched but conjectured to be NP-hard; El-Mabrouk [7]
showed how to extend the theory of Hannenhalli and
Pevzner to include deletions, but her results assume
no duplicate genes, obviously a major limitation in
practice.

In previous work [10], we gave a polynomial-time
approximation algorithm for the computation of the
minimum edit distance from any genome to the iden-
tity permutation 1, 2, . . . , n. Our method relied on the
construction of a mapping between duplicates in the
genomes, yielding a partial map we called a cover. This
cover associates substrings of genes that exist in both
subject and target genomes (modulo an inversion); any
genes not included in the cover are then treated as dele-
tions from the subject or insertions into the target. A
minimal cover is one that uses the fewest substrings;
Figure 1 illustrates the concept: the target is the iden-
tity permutation 1, 2, 3, 4, 5, 6, while the subject, -2,-
1, 2, 3,-6,-5, 3, 4, includes duplicates of genes 1, 2, and 3.
The cover consists of three substrings, namely 1, 2, 3, 4,
and 5, 6; concatenated, these substrings produce the tar-
get string, while separately they can be found in the sub-
ject string as -2,-1, 3, 4, and -6,-5. The third and fourth
genes in the subject string (forming the substring 2, 3)
are then viewed as lost in the evolution to the target.

Here we generalize this approach to compute the
distance between two arbitrary genomes, aiming to
reconstruct a sequence of operations that reflects the
true evolutionary distance (as ascertained through sim-
ulations) rather than the edit distance. Our algorithm
computes distances between two genomes in the pres-
ence of insertions (including duplications), deletions,
and inversions; in our simulations, the distance com-
puted very closely approximates the true evolutionary
distance up to a (high) saturation level. As we show,
the approximation is so good that we have been able to
use the distance matrix produced on a set of genomes
with the simple neighbor-joining method to reconstruct
trees of reasonable sizes (up to 100 genomes) and very
large pairwise distances with high accuracy.

The rest of the paper is organized as follows.
Section 2 reviews the problem and past results and
establishes notation. Section 3 discusses the difficulties

faced when using two arbitrary genomes and how we
solve them to recover a solution in the spirit of our
earlier results; it outlines our method for producing a
cover in quadratic time. Finally, Section 4 presents the
design of our two studies while Section 5 shows how our
constructed cover performs when estimating pairwise
tree distances and how these distances can be used in
tree reconstruction.

2 Background

2.1 The problem We consider the problem of
approximating the true evolutionary distance (as
determined through simulations) from an arbitrary
subject genome to an arbitrary target genome. The
operations that we consider are inversions, in which the
order of a substring of genes is reversed and the sign of
each gene in the substring flipped; deletions, in which a
substring of genes is removed; and insertions (including
duplications), in which substrings of genes (including
entirely new genes not found anywhere else) are added.
All duplicates of one gene form a gene family ; and
all genes bearing the same identifier are known as
homologs—that is, they are considered to have been
derived from a common ancestral gene through various
cascades of evolutionary events (that include both
duplications and nucleotide-level changes).

2.2 The cover Our solution attempts to assign each
duplicate gene in the subject to a particular homolog
in the target; that is, it creates a maximum matching
between the corresponding gene families of the two
genomes. However, some matchings are clearly prefer-
able to others because they reduce the number of inser-
tions, deletions, and rearrangement operations required
to transform one genome into the other. We say that
a cover is optimal if the correspondence it establishes
leads to a minimum number of operations (inversions,
insertions, and deletions) in the shortest sequence
required to transform the subject into the target while
respecting the map. Computing such a cover appears to
require exponential time, however, so we define a min-
imum cover to be a cover that maps the subject to the
target with the fewest substrings. The effect of renam-
ing according to a minimal cover is to yield a breakpoint
graph [8] with maximum number of cycles of length 2.

2.3 Difficulties with an arbitrary target The
main difference between our previous work [10] and
our new algorithm is the presence of duplications in
the target (unrestricted insertions). When building the
cover with the identity permutation as the target [10],
all candidate cover elements from the subject are
immediately apparent because of the unique correlation

between their identity and their index in the target
genome. In the case of an arbitrary target, however,
this correlation no longer exists. Moreover a cover may
no longer cover all genes from one or the other genome:
clearly, if genome A has more duplicates of gene x

than genome B, and genome B has more duplicates
of gene y than genome A, then any matching between
these two genomes must leave some duplicates of gene
x unassigned in A and some duplicates of gene y unas-
signed in B. For example, with subject 1, 2, 3,-5,-2 and
the identity permutation 1, 2, 3, 4, 5 as target, we have a
cover for indices 1 through 3, one for index 5, and one for
index 2 of the target; but for the same subject and for
target -7, 1, 2, 3, 5,-3, we obtain partial covers for indices
2 through 4 or for indices 5 through 6 of the target.

3 Constructing a (Nearly) Minimum Cover

The algorithm used in [10] looks for the longest match-
ing substring. As long as such a longest match is unique,
there is no difficulty beyond identifying such matches as
quickly as possible. (A näıve cubic-time algorithm will
do, although, as we shall see, the same job can be done
in quadratic time.) When the longest match is not
unique, however, finding a minimum cover may require
an exploration of the alternatives and thus exponential
time. Instead, we use a greedy heuristic to break ties.

We have tried several tie-breaking heuristics (and
compared them to breaking ties at random). One
heuristic is based on identifying a possible extension of
the match (to one or the other side). If the substring
to one side of the match is the inverse of the substring
to the same side of the match in the other genome, for
instance, if we had substrings 1, 2,-4,-2 in the target and
1, 2, 2, 4 in the subject, we may prefer to match these
substrings to each other (even though there may be an-
other 1, 2 elsewhere in both sequences) because they are
only a single inversion from each other. Another heuris-
tic is to minimize the interaction between matches.
The longer the match we make at each iteration, the
fewer potential matches may be needed overall, so we
may want to choose the match with a range of indices
that crosses the smallest number of other match ranges.

To find the longest match, we begin by find-
ing all possible maximal matching substrings and
then repeatedly pick the next largest substring, do-
ing necessary bookkeeping to reflect our successive
choices. Let M be the set of all maximal matching
substrings between the subject and the target that
have not yet been picked. For instance, if we start
with target genome 1, 2, 1, 3, 4, 5, 6, 7, 8 and subject
genome 6, 7, 3, 4, 5, 6, 1, 2, 3, 6, 7, 8, we initially have
M = {“6, 7”, “3, 4, 5, 6”, “1, 2”, “6, 7, 8”}. We say that
two matches overlap if their indices in the target

intersect. By picking the longest match l, we cover a
part of the target that may overlap with some number
s of other matches, call them o1, o2, . . . , os ∈ M . In
our example, match “3, 4, 5, 6” would be chosen first,
covering the 6 from matches “6, 7” and “6, 7, 8” and
the 3 from match “1, 2, 3”. The overlapping portion of
each match oi, 1 ≤ i ≤ s is then removed, resulting in
shorter matches. Thus, each of those matches in our
example will be shortened by 1 yielding “7”, “7, 8”, and
“1, 2”. The resulting algorithm is described in Figure 2.

Theorem 3.1. At the end of each iteration, M con-
tains all unmatched maximal substrings common to both
sequences.

Proof. By induction on the number of iterations. After
0 iterations this is true from the definition of M .
Assume that this is true after i iterations. In the i + 1st

iteration the longest match, say m, is removed from M .
Only those portions of the matches in M that overlap
with m are removed. Since all portions of matches that
have not been covered remain in M , we know that all
remaining maximal matches are in M .

Theorem 3.2. Algorithm COVER can be imple-
mented to run in quadratic time.

We represent M by a list arranged by match length. We
keep an auxiliary data structure, the index reference,
to maintain the set M through each iteration. This
index reference is an array of lists, one for each index
of target; each such list, an index list, contains the
matches that have an endpoint on that target index.
For instance, in our example three such matches would
be “3, 4, 5, 6”, “6, 7”, and “6, 7, 8”. These matches are
associated with indices 3 through 6, 6 through 7, and
6 through 8 of the target. Thus index 6 of the target
would have three members to its index list, because
the matches “3, 4, 5, 6”, “6, 7”, and “6, 7, 8” all have 6
as an endpoint. Index 7, however, would have a single
match “6, 7”, because “6, 7, 8” does not have 7 as an
endpoint. A simple way to find all possible maximal
matches in quadratic time is to slide the subject over
the target, comparing all possible combinations of
indices between the two. Each match found is placed in
M and the index lists for its endpoints. The key to this
implementation is the efficient update of overlapping
matches. With the index lists we can find all o ∈ M

that overlap a given m ∈ M by examining each list that
corresponds to an index that m spans. When the match
m that spans indices i through k is chosen, we can
shorten each oi that overlaps from the left by relocating
it from the index list for j, i ≥ j ≥ k, to the index list
for i − 1. Similarly, each ok that overlaps m from the
right can be relocated to the index list for k + 1.

Algorithm COVER:

C = ∅.
M = { s : s is a maximal substring of the Subject and Target }.
while C cannot cover the Target do:

Add longest l ∈ M to C.

M = M\{l}.
foreach o ∈ M that overlaps l do:

u = o without the substring common to o and l.

M = M\{o} ∪ {u}.
return C

Figure 2: Choosing a nearly minimal cover.

Lemma 3.1. The maximum number of matches that
can have an endpoint at a given index of the target
is bounded by 4n, where n is the length of the longer
genome.

Proof. Each index in subject or target can be of two
types: a left or right endpoint of a match. All four com-
binations of endpoint types can occur for a given pair of
indices. If there were more than one match per pairing
of endpoint types then one of them could not be maxi-
mal. Therefore there can be at most four distinct maxi-
mal matches associated with every pair of indices. Since
there are n indices in the subject, there can be at most
4n matches associated with a single index of the target.

It follows immediately that the number of maximal
matches between two genomes, the larger of which has
size n, is O(n2).

Lemma 3.2. Initialization of M and of the index refer-
ence takes quadratic time.

Proof. We know that the number of maximal matches
is O(n2) and that the length of a match is bounded by
the size of the genomes. We can add a match to a list
organized by length in constant time through direct
indexing. Likewise, addition to the end of a given
index list can be done in constant time. Since there are
O(n2) matches and placement into the index reference
is O(1), we can build these lists in quadratic time.

Lemma 3.3. A match can be relocated between in-
dex lists at most twice before being removed from
consideration.

Proof. It is sufficient to show that a match e will not be
encroached upon from the same side twice. Assume that
e is shortened from one direction by match m and later

from the same direction by match m′ without being cov-
ered. Because m was picked by the algorithm first, m′

must not stretch past the opposite end of m. Therefore,
either m′ covers less than e or e must now be removed
from consideration—a contradiction in either case.

We are finally ready to prove Theorem 3.2.

Proof. (of Theorem 3.2) Initialization takes quadratic
time (Lemma 3.2). Each match in each index list
is visited a constant number of times (Lemma 3.3).
When visited, each match is shortened, removed from
consideration or relocated to the index list at the edge
of the most recently chosen match, and then relocated
in the length list. Since each of these operations runs
in constant time, the running time is bounded by the
total number of matches visited. Since each index list
is visited at most once and the length of that list is at
most linear (Lemmata 3.1 and 3.3), the running time
is O(n2).

Theorem 3.3. The distance function can be computed
in O(n2) time.

Proof. The cover can be generated and applied in
O(n2) time. Then the algorithm presented in [10] or [7]
can be applied. Both methods run in O(n2) time.

4 Experimental Design

We used two types of tests to assess the accuracy and
utility of our tree distance algorithm. The first set
of tests were designed to determine if our distance
function accurately modeled the true pairwise tree
(true evolutionary) distances. The second set of tests
were used to evaluate the effectiveness of our dis-
tance function within the most simple distance-based
phylogenetic reconstruction algorithm.

4.1 Pairwise Error For this experiment, we gener-
ated evolutionary trees with known edge lengths and
compared the pairwise distances between the leaves
with those computed by our algorithm. Variance in
topology of the tree matters little here; in fact, since
we want a large range of pairwise tree distances, a
perfectly balanced tree is best.

In the following tests we used a simplistic method
for choosing the matches for the duplicated substrings of
genes. The algorithm picks the largest match to make
and in the case of ties picks one of the tied matches
at random. Clearly other information is present in the
genomes that could provide a better choice of match
and thus lead to a more accurate distance score. How-
ever, all of the heuristic methods that we used failed
to have a noticeable impact on the accuracy of the dis-
tance value returned. Furthermore, in experiments with
a large number of random restarts, we found that most
of the values clustered around the true value with a
small number of outliers; we also found that averaging
over a smaller number of random restarts and discard-
ing any substantially outlying points provided a dis-
tance estimate that was nearly indistinguishable from
the distance estimate computed with the use of our best
heuristics. While the use of biological information to se-
lect the best match could prove effective in generating
more biologically plausible evolutionary paths, the cur-
rent method seems to perform quite well in terms of
distance computations.

4.2 Tree Reconstruction We tested the perfor-
mance of our distance functions using neighbor-
joining, the canonical distance-based tree reconstruction
method. Due to the dearth of real-world trees recon-
structed using biological techniques, we had to generate
model trees that would exercise our algorithm over a
wide range of plausible models of gene-order evolution.
(We conducted one study using real data with very large
numbers of insertions and deletions; partial results to
date show promise [6].) We generated one thousand
trees using a minor variation on the birth-death model
that yielded the requisite diversity of tree topologies.
The only constraint that was placed on the operations
was that the expected number of inserted elements was
equal to the expected number of deleted elements, in or-
der to keep all sequences within a general range. (Cases
where certain genomes are much smaller than others,
due, e.g., to symbiosis, certainly exist, but the variation
generated by our mechanism nearly encompasses that
case already.) Three random restarts of our distance
algorithm were used for each pair of nodes to produce
the pairwise distance matrix.

Within the thousand trees the percentage of

inversions varied from 50% to 90%. The remaining
percentages were split evenly between insertions
(duplicating and non-duplicating) and deletions. Non-
duplicating insertion and duplication percentages were
varied over three different tests, in which each received
a quarter, a half, and three quarters of the percentage.
The expected Gaussian distributed length of each
operation filled a range of combinations from 5 to 30
operations per operation type. Finally, the expected
number of event upon an edge was 20 with a Gaussian
distributed variance of 10 operations.

To generate a tree we began with the identity
sequence on 800 genes and performed 200 evolutionary
operations on it using the same parameters that are
specified for generating the tree. This sequence was
then used as the root of the tree. For each node we
checked if it should become a child, based on the
maximum depth allowed and a random choice, if not we
stopped. Otherwise we created each of the two children
by performing the randomly selected operations (as
specified in the previous paragraph) on the parent.
Each type of operation (inversion, non-duplicating
insertion, duplication, and deletion) was selected at
random according to a fixed distribution. The interval
over which an operation acts is produced with one
endpoint selected at random and a length drawn from
a Gaussian distribution. For duplications, the interval
to be duplicated is selected and then inserted at an
index chosen uniformly at random in the sequence.

5 Experimental Results

5.1 Pairwise Error Due to space limitations, we
present results for only one of the mixes of operations
used in our simulations. This particular data set used
a mix of 70% inversions, 16% deletions, 7% insertions,
and 7% duplications. The inversions had a mean length
of 20 and a standard deviation of 10. The deletions,
insertions, and duplications all had a mean length of 10
with a standard deviation of 5. Most of our tests were
conducted with a root genome of 800 genes on a tree
of depth 4; such a tree has 16 leaves and thus 120 pairs
of genomes with paths from 2 to a maximum of 8 edges
between genomes. We created four such trees with 10,
20, 40, and 60 expected operations per tree edge; these
choices can result in very large pairwise distances—up
to an expected 480 operations (on just 800 genes)
for the most distant pairs. For these four trees, our
algorithm was run with 10 random restarts and simple
randomization for the selection of the matchings.

Figures 3 through 6 show the results (as a scatter
plot of the 120 data points for each experiment) for these
four datasets. In each figure, the left-hand plot shows
the estimated tree distance on the ordinate against the

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-40

-20

 0

 20

 40

 0 20 40 60 80 100

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 3: Experimental results for 800 genes with expected edge length 10. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.

 0

 50

 100

 150

 200

 0 50 100 150 200

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-40

-20

 0

 20

 40

 0 50 100 150 200

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 4: Experimental results for 800 genes with expected edge length 20. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
e

Generated Tree Distance

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 5: Experimental results for 800 genes with expected edge length 40. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 6: Experimental results for 800 genes with expected edge length 60. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.

true evolutionary distance (from the simulation) on the
abscissa. A perfect result would simply trace the 1:1
diagonal, which is lightly marked on each plot to aid
in evaluating the results. The right-hand plot displays
the deviation from the 1:1 ideal as a function of the
true evolutionary distance, plotting largest and smallest
differences between computed values and the true value,
for each true value.

These plots show that our distance estimator tracks
the true evolutionary distance very closely up to a satu-
ration threshold, where it starts lagging seriously behind
the true value. Such saturation is of course expected;
what is surprising is how high that saturation threshold
is. On genomes of roughly 800 genes, saturation appears
to occur only around 250 evolutionary events and our
estimator tracks very accurately to at least 200 events.
Moreover, the smaller plots indicate that the variance
is very small up to 200 events and remains reasonable
up to 250 events.

These results are not limited to small trees. We ran
another series of tests involving trees of 50 leaves; while
the main purpose of these tests was to assess the quality
of tree reconstruction using our distance computations,
we checked the computed distances against the true
distances for these trees as well. Figure 7 shows the
same two scatter plots (this time on roughly 1,250 data
points) for one such tree. For these larger trees, we used
a root genome of 1,200 genes in order to prevent early
saturation; the example reported in the figure used an
expected edge length of 20 evolutionary events. With
the larger number of genes, saturation now does not
occur until we reach at least 350 evolutionary events.
The error plot shows that the error remains sharply
bounded throughout the range of values tested.

5.2 Tree Reconstruction Since our distance com-
putation tracks tree distances so accurately and since
distance-based methods are guaranteed to do well when
given distances that are close to the true evolutionary
distances, we also ran a series of tests designed to as-
certain the quality of tree reconstruction obtained with
the simplest distance-based reconstruction method, the
popular neighbor-joining (NJ) method. The NJ method
runs in low cubic time and thus is applicable to large
datasets, but, like all distance-based methods, it is
known to produce poor results when the range of tree
distances gets large. We evaluated results using the
standard Robinson-Foulds (RF) distance [16], which is
simply (in the case of binary trees, as in our series of ex-
periments) the number of edges (or bipartitions) present
in one tree, but not in the other. In several cases, we
present the RF error rate, which is the RF distance nor-
malized by the number of taxa in the tree. In terms of
the latter measure, most systematists will consider rates
above 10% to be unacceptable and rates below 5% to
be very good.

The tree reconstruction performed very well on
the generated trees. Approximately 65% of the recon-
structed trees had a Robinson-Foulds error rate of less
than 5% and only 15% of the trees had an error above
10%. This reconstruction was done without any use of
error correction, variances, or knowledge of the under-
lying model that generated the trees; it also used the
simplest form of neighbor-joining. Thus, it would be
easy to improve these results by refining the reconstruc-
tion method.

As an additional check, we also compared how well
our method performs with respect to simply equalizing
copied content and applying El-Mabrouk’s method [7].

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 7: Experimental results for 1,200 genes with expected edge length 20. Left: generated distance vs.
reconstructed distance; right: the variance of computed distances per generated distance.

This comparison also gives us an indication of how
we handle duplicated gene content and how important
it is to handle duplication in estimating true tree
distances. We computed a distance matrix for each
tree by pairwise removal of all duplicate content and
running El-Mabrouk’s method on each pair of taxa;
these data were then passed to the NJ solver. Over all
thousand trees the equalized El-Mabrouk reconstruction
had a lower RF error rate than ours on only 14% of
the trees; furthermore, in three quarters of those cases,
the overall RF error rate for both methods was lower
than 10%—that is, these were relatively easy cases.
Our method thus does better on the harder cases. The
average difference in RF error rate on the trees where
our method did worse on was 1.2, while the average
difference in RF error rate on the trees our method did

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T

es
t C

as
es

RF Error Rate (in %)5 10

Figure 8: The histogram of RF error rates for recon-
structions based on our distance computation.

better on was 3.5. Our method thus makes significant
improvements on the state of the art. Furthermore, the
low error rate in most of the 14% of cases where our
method was not the best suggests that our randomized
selection may be to blame, so that further work on
heuristics will reduce this problem.

To examine how well our technique handled copies,
we compared (for every test run) the RF distances
of our reconstruction with those of the El-Mabrouk
method running on equalized content as a function of
the total number of duplications. Figure 9, a scatter
plot of the differences in RF distance, indicates that,
as the number of duplicates increases, our method does
correspondingly better at reconstructing the tree.

-5

 0

 5

 10

 15

 0 20 40 60 80 100 120

D
if

fe
re

nc
e

in
 R

F
D

is
ta

nc
e

Expected # of Duplicates Per Edge

Figure 9: The difference in RF distance between El-
Mabrouk’s and our method as a function of the number
of duplicates on an edge.

6 Conclusion and Future Directions

We have outlined a method that accurately computes
tree distances (true evolutionary distances) under the
full range of evolutionary operations between two arbi-
trary genomes. Our experimental results indicate that
the accuracy is excellent up to saturation, which is
reached remarkably late—for instance, with genomes
of roughly 800 genes, our distance computation re-
mains highly accurate up to 200 evolutionary events and
reasonably accurate to 250 such operations. Indeed,
these distances are accurate enough that the simplest
distance-based method for phylogenetic reconstruction,
neighbor-joining, reconstructed our test trees with high
accuracy. These findings open up the possibility of
reconstructing phylogenies from whole-genome nuclear
data, as opposed to the organellar data that have been
used so far. However, in order to use more sophisticated
methods than neighbor-joining for such reconstructions,
the problem of computing good medians must be ad-
dressed. While our experiments shows that our distance
computation is accurate, the accompanying sequence of
evolutionary events is only one of many possible se-
quences (it uses a “canonical form” [10]); hence our
level of confidence in the correctness of reconstructed
ancestral genomes is low. In order to reconstruct good
ancestral genomes, we will need additional biological in-
formation, such as boundary constraints (centromere,
origin of replication, etc.) and sequence data around
each gene.

7 Acknowledgments

This work is supported by the National Science Foun-
dation under grants DEB 01-20709 (on a subcontract to
U. Texas at Austin), IIS 01-13095, IIS 01-21377, ANI
02-03584. and EF 03-31654, and by the National Insti-
tutes of Health under grant 2R01GM056120-05A1 (on
a subcontract to U. Arizona).

References

[1] G. Andelfinger, C. Hitte, L. Etter, R. Guyon,
G. Bourque, G. Tesler, P. Pevzner, E. Kirkness, F. Gal-
ibert, and D.W. Benson. Detailed four-way compar-
ative mapping and gene order analysis of the canine
ctvm locus reveals evolutionary chromosome rearrange-
ments. Genomics 83:1053–1062, 2004.

[2] D.A. Bader, B.M.E. Moret, and M. Yan. A fast
linear-time algorithm for inversion distance with an
experimental comparison. J. Comput. Biol., 8(5):483–
491, 2001.

[3] A. Caprara. Sorting by reversals is difficult. In Proc.

1st Int’l Conf. on Comput. Mol. Biol. RECOMB’97,
pages 75–83. ACM Press, 1997.

[4] A. Caprara. Formulations and hardness of multiple
sorting by reversals. In Proc. 3rd Int’l Conf. on

Comput. Mol. Biol. RECOMB’99, pages 84–93. ACM
Press, 1999.

[5] S. Downie and J. Palmer. Use of chloroplast DNA
rearrangements in reconstructing plant phylogeny. In
P. Soltis, D. Soltis, and J. Doyle, editors, Plant Molecu-

lar Systematics, pages 14–35. Chapman and Hall, 1992.
[6] J. Earnest-DeYoung and E. Lerat and B.M.E. Moret.

Reversing gene erosion: reconstructing ancestral bac-
terial genomes from gene-content and gene-order data.
In Proc. 4th Workshop on Algs. in Bioinformatics

WABI’04, volume 3240 of Lecture Notes in Computer

Science, pages 1–13. Springer-Verlag, 2004.
[7] N. El-Mabrouk. Genome rearrangement by reversals

and insertions/deletions of contiguous segments. In
Proc. 11th Ann. Symp. Combin. Pattern Matching

CPM’00, volume 1848 of Lecture Notes in Computer

Science, pages 222–234. Springer-Verlag, 2000.
[8] S. Hannenhalli and P. Pevzner. Transforming cabbage

into turnip (polynomial algorithm for sorting signed
permutations by reversals). In Proc. 27th Ann. Symp.

Theory of Computing STOC’95, pages 178–189. ACM
Press, 1995.

[9] W.-H. Li and D. Graur. Fundamentals of Molecular
Evolution Sinauer and Associates

[10] M. Marron, K. Swenson, and B.M.E. Moret. Genomic
distances under deletions and insertions. Theoretical

Computer Science, 325(3):347–360, 2004.
[11] B.M.E. Moret and J. Tang, and L.S. Wang and

T. Warnow. Steps toward accurate reconstruction of
phylogenies from gene-order data. J. Comput. Syst.

Sci., 65, 3(2002), 508-525
[12] B.M.E. Moret, J. Tang, and T. Warnow. Reconstruct-

ing phylogenies from gene-content and gene-order data.
In O. Gascuel, editor, Mathematics of Evolution and

Phylogeny. pages 321–352, Oxford U. Press, 2005.
[13] R. Olmstead and J. Palmer. Chloroplast DNA system-

atics: a review of methods and data analysis. Amer.

J. Bot., 81:1205–1224, 1994.
[14] J. Palmer. Chloroplast and mitochondrial genome

evolution in land plants. In R. Herrmann, editor, Cell

Organelles, pages 99–133. Springer Verlag, 1992.
[15] L. Raubeson and R. Jansen. Chloroplast DNA evi-

dence on the ancient evolutionary split in vascular land
plants. Science, 255:1697–1699, 1992.

[16] D.R. Robinson and L.R. Foulds. Comparison of phy-
logenetic trees. Mathematical Biosciences, 53:131–147,
1981.

[17] D.L. Swofford and G.J. Olsen and P.J. Waddell and
D.M. Hillis. Phylogenetic inference. In D.M. Hillis
and B.K. Mable and C. Moritz, editors, Molecular

Systematics, pages 407–514. Sinauer Assoc., 1996.

