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Abstract

A number of recent papers have considered the influence of
modern computer memory hierarchies on the performance
of hashing algorithms [1, 2, 3]. Motivation for these papers
is drawn from recent technology trends that have produced
an ever-widening gap between the speed of CPUs and the
latency of dynamic random access memories. The result is
an emerging computing folklore which contends that inferior
hash functions, in terms of the number of collisions they pro-
duce, may in fact lead to superior performance because these
collisions mainly occur in cache rather than main memory.
This line of reasoning is the antithesis of that used to jus-
tify most of the improvements that have been proposed for
open address hashing over the past forty years. Such im-
provements have generally sought to minimize collisions by
spreading data elements more randomly through the hash
table.
vey this notion [12].

Indeed the name “hashing” itself is meant to con-
However, the very act of spreading
the data elements throughout the table negatively impacts
their degree of spatial locality in computer memory, thereby
increasing the likelihood of cache misses during long probe
sequences. In this paper we study the performance trade-
offs that exist when implementing open address hash func-
tions on contemporary computers. Experimental analyses
are reported that make use of a variety of different hash
functions, ranging from linear probing to highly “chaotic”
forms of double hashing, using data sets that are justified
through information-theoretic analyses. Our results, con-
trary to those in a number of recently published papers, show
that the savings gained by reducing collisions (and therefore
probe sequence lengths) usually compensate for any increase
in cache misses. That is, linear probing is usually no better
than, and in some cases performs far worse than double hash

functions that spread data more randomly through the table.

We wish to thank to Bernard Moret for suggesting this topic
to us.

Thus, for general-purpose use, a practitioner is well-advised
to choose double hashing over linear probing. Explanations
are provided as to why these results differ from those previ-
ously reported.

1 Introduction.

In the analysis of data structures and algorithms, an
abstract view is generally taken of computer memory,
treating it as a linear array with uniform access times.
Given this assumption, one can easily judge two com-
peting algorithms for solving a particular problem—the
superior algorithm is the one that executes fewer in-
structions. In real computer architectures, however, the
assumption that every memory access has the same cost
is not valid. We will consider the general situation of a
memory hierarchy that consists of cache memory, main
memory, and secondary storage that is utilized as vir-
tual memory. As one moves further from the CPU in
this hierarchy, the memory devices become slower as
their capacity become larger. Currently, the typical sit-
uation involves cache memory that is roughly 100 times
faster than main memory, and main memory that is
roughly 10,000 times faster than secondary storage [10].
In our model of the memory hierarchy, we will treat
cache memory as a unified whole, making no distinc-
tion between L1 and L2 cache.

It is well known that the manner in which memory
devices are utilized during the execution of a program
can dramatically impact the performance of the pro-
gram. That is, it is not just the raw quantity of memory
accesses that determines the running time of an algo-
rithm, but the nature of these memory accesses is also
important. Indeed, it is possible for an algorithm with
a lower instruction count that does not effectively use
cache memory to actually run slower than an algorithm
with a higher instruction count that does make efficient



use of cache. A number of recent papers have considered
this issue [1, 2, 13, 14], and the topic of “cache-aware”
programming is gaining in prominence [4, 6, 15].

In this paper we conduct analyses of open address
hashing algorithms, taking into account the memory ac-
cess patterns that result from implementing these algo-
rithms on modern computing architectures. We begin in
Section 2 with a description of open address hashing in
general, and then we present three specific open address
hashing algorithms, including linear probing, linear dou-
ble hashing, and exponential double hashing. We dis-
cuss the memory access patterns that each of these algo-
rithms should produce when implemented, with particu-
lar considerations given to interactions with cache mem-
ory. These access patterns have a high degree of spatial
locality in the case of linear probing, and a much lower
degree of spatial locality in the case of double hashing.
Indeed, the exponential double hashing algorithm that
we describe creates memory access patterns very simi-
lar to those of uniform hashing, which tends to produce
the optimal situation in terms of memory accesses, but
is also the worst case in terms of spatial locality.

In Section 3 previous research results dealing with
open addressing hashing are presented. First we de-
scribe theoretical results that show double hashing
closely approximates uniform hashing, under the as-
sumption that data elements are uniformly distributed.
It was subsequently shown experimentally that the per-
formance of linear double hashing diverges significantly
from that of uniform hashing when skewed data dis-
tributions are used, and that in the case of exponen-
tial double hashing this divergence is not as severe [20].
Thus, exponential double hashing is the best choice if
the goal is to minimize the raw number of memory ac-
cesses. These results, however, do not consider how
cache memory may impact performance. Thus in Sec-
tion 3 we also review a number of recent experimental
results that have been used to make the case that, due to
modern computer architectures, linear probing is gen-
erally a better choice than double hashing. We provide
detailed analyses of these studies, pointing out the flaws
that lead to this erroneous conclusion.

It is important to note that dynamic dictionary data
sets are often too small to be directly used to test cache
effects. For example, the number of unique words in
the largest data set available in the DIMACS Dictionary
Tests challenge, joyce.dat, will fit in the cache memory
of most modern computers. Thus, in Section 4 we de-
scribe an information-theoretic technique that allows us
to create large synthetic data sets that are based on real
data sets such as joyce.dat. These data sets are there-
fore realistic, yet large enough to create the cache effects
necessary to study the performance of linear probing

and double hashing on modern architectures. This is
followed in Section 5 by a description of a set of exper-
iments that used these synthetic data sets to measure
the actual performance of the aforementioned hashing
algorithms. Three important performance factors con-
sidered are the number of probes (and therefore memory
accesses) required during the search process, the num-
ber of cache misses generated by the particular probe
sequence, and the load factor of the hash table. In ad-
dition, we also consider how the size of the hash table,
and the size of the data elements stored in the hash ta-
ble affect performance. In general, hash functions that
produce highly random probe sequences lead to shorter
searches, as measured by the number of memory ac-
cesses, but are also more likely to produce cache misses
while processing these memory access requests. Our ex-
periments were aimed at quantifying the net affects of
these competing phenomena, along with the impact of
the other performance factors we have just mentioned,
on the overall performance of open address hashing algo-
rithms. The results, presented in Section 5, show that it
is difficult to find cases, either real or contrived, whereby
linear probing outperforms double hashing. However, it
is easy to find situations where linear probing performs
far worse than double hashing, particularly when real-
istic data distributions are considered.

2 Open Address Hashing.

We assume hashing with open addressing used to resolve
collisions. The data elements stored in the hash table
are assumed to be from the dynamic dictionary D. Each
data element z € D has a key value k,, taken from the
universe U of possible key values, that is used to identify
the data element. The dynamic dictionary operations
of interest include:

e Find(k,D). Returns the element x € D such that
k. = k, if such an element exists.

e Insert(x,D). Adds element x to D using k.

e Delete(k,D). Removes the element z € D that
satisfies k, = k, if such an element exists.

When implementing these operations using a hash table
with m slots, a table index is computed from the key
value using a ordinary hash function, h, that performs
the mapping h : U — Z,,, where Z,, denotes the set
{0,1,...,m —1}.

Hashing with open addressing uses the mapping H :
UXZ — Z,, where Z = {0,1,2, ...}, and produces the
probe sequence < H(0,k),H(1,k), H(2,k),... > [18].
For a hash table containing m slots, there can be at
most m unique elements in a probe sequence. A full
length probe sequence visits all m hash table locations
using only m probes. One of the key factors affecting the



length of a probe sequence needed to implement any of
the dynamic dictionary operations is the load factor,
a, of the hash table, which is defined as the ratio of
the number of data elements stored in the table to the
number of slots, m, in the hash table.

Next, we describe three specific probing strategies.
For each of these, we first describe the generic family
of hash functions associated with the strategy, and then
we consider the particular implementations used in our
experiments.

2.1 Linear Probing. The family of linear hash func-
tions (linear probing) can be expressed as

(2.1) Hp(k,i) = (h(k) + ¢i) mod m,

where h(k) is an ordinary hash function that maps a
key to an initial location in the table, © = 0,1,... is the
probe number, and c¢ is a constant. This technique is
known as linear probing because the argument of the
modulus operator is linearly dependent on the probe
number. In general, ¢ needs to be chosen so that it is
relatively prime to m in order to guarantee full-length
probe sequences. For the most common case, when ¢ =
1, this hash function will simply probe the sequential
locations < h(k) mod m, (h(k) + 1) mod m,...,m —
1,0,1,..., (h(k) —2) mod m, (h(k) —1) mod m > in the
hash table. Whenever we use H, in this paper we are
assuming ¢ = 1.

The ordinary hash function h(-) used in equa-
tion (2.1) has a dramatic impact on the performance
of linear probing. A common choice is

(2.2) h(k) = k mod m.

Furthermore, if the keys are uniformly distributed, then
statistically this ordinary hash function is optimal in
the sense that it will minimize collisions. This is be-
cause for each key the initial probe into the hash table
will follow the uniform distribution. When using equa-
tion (2.2) with linear probing, performance degrades
rapidly as the key distribution diverges from the uni-
form distribution. Two approaches are commonly used
to address this problem. First, one can apply a random-
izing transformation to the keys prior to supplying them
to equation (2.2). This is actually a natural step to take
in many applications. For example, consider compiler
symbol tables, where strings must be converted into nu-
meric key values in order to “hash” them into the table.
One such popular algorithm, called hashPJW(), takes
a string as input, and output an integer in the range
[0,232 — 1] [1]. The transformation performed by hash-
PJW() tends to do a good job of producing numbers
that appear uniform over [0, m], even when the strings
being hashed are very similar.

A second approach involves using a more compli-
cated ordinary hash function A(-) so that the initial
probe into the hash table is more random. In addi-
tion, by randomizing the choice of h(-) itself we can
guarantee good average-case performance (relative to
any fixed ordinary hash function) through the use of
universal hashing [5]. A family of ordinary hash func-
tions 7 is said to be universal if for each pair of distinct
keys ko, ks € U, the number of hash functions h € 7,
for which h(k,) = h(kg) is at most |n|/m. For example,
the following is a universal hash function

(2.3) h(k) = ((ak + b) mod p) mod m

where a € Z; and b € Z, are chosen at random,
Z,, denotes the set {1,2,...,p — 1}, and p is a prime
number large enough so that every possible k& € U is in
[0,p — 1]. Thus, for fixed p and m, there are p(p — 1)
different hash functions in this family. We will make
use of this family of universal ordinary hash functions
in subsequent experiments.

The limitations of linear probing are well known—
namely that it tends to produce primary and secondary
clustering. Note, however, that this clustering problem
is counterbalanced by the fact that when ¢ = 1, the
probing that must be performed when implementing
any of the dynamic dictionary operations will be to
successive locations, modulo m, in the hash table. Thus,
if the hash table is implemented in the standard way,
using a data structure that maps hash table locations
to successive locations in computer memory, then the
memory accesses associated with these probes should
lead to a high percentage of cache hits.

2.2 Linear Double Hashing. Given two ordinary
hash functions h(k) and g(k), the family of linear double
hash functions can be written as

(2.4) Hpp(k,i) = (h(k) + ig(k)) mod m.

For a particular key k, the values of h(k) and g(k) in the
previous equation can be thought of as constants. That
is, once a key is selected for use in probing the hash
table, the probe sequence is determined by Hyp(k,i) =
(cn + icg) mod m, where ¢, = h(k) and ¢, = g(k).
This is the same form as linear probing described in
equation (2.1). Thus, if ¢, is relatively prime to m, all
probe sequences are guaranteed to be full length. That
is, g(k) should be chosen in such a way that the values it
produces are always relatively prime to m. The easiest
way to assure this is to choose m as a prime number
so that any value of g(k) in the range [0, m — 1] will be
relatively prime to m.

The key advantage of linear double hashing over
linear probing is that it is possible for both h(k) and



g(k) to vary with k. Thus, in Hzp the probe sequence
depends on k through both h(k) and g¢(k), and is
linear in h(k) and g(k). A widely used member of
H;p proposed by Knuth [12] is h(k) = k mod m and
g(k) = kmod (m — 2), with m prime. In this paper
we will assume the use of these ordinary hash functions
with m prime whenever we mention H,p.

2.3 Exponential Double Hashing. The exponen-
tial double hashing family was initially proposed by
Smith, Heileman, and Abdallah [20], and subsequently
improved by Luo and Heileman [17]. The improved ver-
sion that we will consider is given by

(2.5) Hg(k,i) = (h(k) +a'g(k)) mod m,

where a is a constant. It has been shown that if m
is prime, and a is a primitive root of m, then all
probe sequences produced by this hash function are
guaranteed to be full length [17]. A member of Hg that
performs well is obtained by choosing the ordinary hash
functions h(k) = k mod m and g(k) = k mod (m —2) in
equation (2.5), with m once again prime. In this paper
we will assume the use of these ordinary hash functions
with m prime whenever we mention He.

Let us consider the types of memory access pat-
terns that should result from the proper implementa-
tion of hash functions from the families Hy, H;/p and
H¢. Specifically, members of H, will probe succes-
sive locations in a hash table, and therefore on average
should produce more cache hits per probe than mem-
bers from the other two hash function families. Fur-
thermore, members of Hg tend to produce more ran-
dom probe sequences than members of Hyp. Thus, of
the three families of hash functions considered, members
of Hg should produce the fewest number of cache hits
per probe. The randomness of the probe sequences pro-
duced by these hash function families is more rigorously
considered in [17].

3 Previous Research.

Before discussing our experimental design and results,
it is important to consider some of the previous results
on this topic that have appeared in the open literature.
We start in Section 3.1 by describing results dealing
with the randomness of double hashing. These results
focus solely on the average probe length of double
hashing algorithms, ignoring cache effects. Given the
complexities associated with the analysis of programs
executing on real computers, particularly when the
memory hierarchy is considered, it is difficult to arrive at
meaningful theoretical results that include cache effects.
Thus, in Section 3.2 we describe some experimental
results that measure how the use of cache memory

affects the performance of open address hash functions.
We previously described the important trade-off that
should be used to evaluate results in this area. That
is, whether the savings gained through the reduction
in average probe sequence length due to the use of
a more “‘random” hash function is lost due to the
corresponding increase in the number of cache misses
per probe. Both of the experimental studies described
in Section 3.2 seem to validate this claim, thereby
leading to the previously mentioned computing folklore
regarding linear probing; however, we also describe in
Section 3.2 the flaws in these experiments that have led
to erroneous conclusions.

3.1 Randomness of Double Hashing. We have al-
ready mentioned that if the goal is to minimize the total
number of memory accesses, ignoring cache effects, then
from a probabilistic perspective, the ideal case for open
address hashing is uniform hashing [21, 22]. A uniform
hash function always produces probe sequences of length
m (in the table space), with each of the m! possible
probe sequences being equally likely. The obvious way
of implementing a uniform hash function involves the
generation of independent random permutations over
the table space for each key k € U; however, the compu-
tational costs associated with this strategy make it com-
pletely impractical. Thus, practical approximations to
uniform hashing have been sought. With this in mind,
Knuth [12] noted that any good hash function should:
(1) be easy to compute, involving only a few simple op-
erations, and (2) spread the elements in random fashion
throughout the table space. Only those hash functions
satisfying these two conditions will be practical for use
in implementing dynamic dictionaries. It is not difficult
to see that these two conditions are conflicting—it is
in general difficult to satisfy one while simultaneously
maintaining the other. Knuth [12] has noted that the
double hashing strategy, and in particular the one de-
scribed by equation (2.4), strikes a reasonable balance
between these competing conditions. Furthermore, it
has been shown through probabilistic analyses that this
hash function offers a reasonable approximation to uni-
form hashing [9, 16]. Let us consider these results in
more detail.

It can be shown (see [12]) that the average probe
length for uniform hashing is 72—+ O (). Guibas and
Szemeredi [9] showed that the average probe length for
double hashing is asymptotically equivalent to that of
uniform hashing for load factors up to approximately
0.319. Later, Lueker and Molodowitch [16] extended
this result to load factors arbitrarily close to 1. Both of
these results are only valid under a strong uniformity



assumption. Specifically, they assume that for any key
keU

1
(36)  Pr{(hk).g(k) = (.9)) = ooy
for all (i,7), with 0 < 4,57 < m — 1. Thus, these
results only hold under the assumption that the keys
will produce hash value pairs that are jointly uniformly
distributed over the table space. This is a strong
assumption indeed, that is influenced by both the initial
data distribution, as well as the choices of h(k) and g(k).
Most data sets are far from uniform, and the widely
used choices for h(k) and g(k) e.g., those discussed
previously, would have to be considered poor choices
if our goal is to satisfy equation (3.6).

The exponential double hashing algorithm de-
scribed in Section 2.3, that has been shown through
experimental analysis to be superior to the previously
proposed methods in the linear double family of hash
functions [17, 20]. Specifically, this experimental anal-
ysis demonstrated that linear and exponential double
hashing algorithms perform similarly (as measured by
the average number of collisions) when the data ele-
ments are uniformly distributed, but that exponential
double hashing is superior to linear double hashing when
the data elements are not uniformly distributed.

3.2 Hashing with Cache Effects. First let us con-
sider the experiments described in Binstock [1], which
contains a good description of the practical uses of hash-
ing, along with some references to useful ordinary hash
functions that can be used to convert character strings
into integers. Two experiments were performed, both
involved allocating a large block of memory, and ex-
ecuting as many memory reads as there are bytes in
the block. In the first experiment these bytes are read
randomly, and in the second experiment the bytes are
read sequentially. Predictably, the second experiment
runs significantly faster than the first. The first ex-
periment, however, does not consider the reduction in
average probe length that should accompany the ran-
dom memory reads, and thus no conclusions should be
drawn with regards to the superiority of any one hashing
method based on these experiments.

Black, Martel, and Qi have studied the effects
of cache memory on basic graph and hashing algo-
rithms [2]. In their study of hashing, they considered
three basic collision resolution strategies, two of them
based on open addressing. One of the open addressing
strategies considered was linear probing, as we have de-
scribed it in Section 2.1 with ¢ = 1. The other was a
double hashing algorithm, the details of which are not
provided in their paper. However the authors do refer

to a website containing a link to the full version of the
paper [19], and this paper provides the details of their
double hashing algorithm. Specifically, the authors in-
troduced the hash function

(8.7) Hpao(k,i) = (h(k) + i(c — g(k)) mod m,

with h(k) = kmodm and g(k) = kmodc, where
c is a prime less than m. Note that for ¢ = 1,
this hash function reduces to linear probing. The
authors mention that they experimented with different
values for ¢, finding that small values led to better
performance (we will show later that this choice in fact
leads to poor performance). In all of the experiments
described in the paper, it appears that m was always
selected as some power of 2. Given this double hash
function, the authors’ experimental results indicated
that linear probing tends to outperform double hashing,
particularly when the load factor is less than 80%
and the entire hash table does not fit in L1 cache.
These results are quite different from the results we
obtained using the double hashing functions described
in Section 2.2. The difference is explained by the choice
of the double hash function used in [2]. Specifically,
based on the discussion provided in Section 2 of this
paper, it is clear that a simple way to guarantee
full length probe sequences in the hash function of
equation (3.7) is to make c—g(k) and m relatively prime
to one another. The unfortunate choice of m as a power
of 2, however, means that the condition will be violated
whenever ¢c—g(k) is even. Through experimentation, we
have also found that the choice of ¢ is critical, and that
the performance of hash function (3.7) is worst when
¢ < m, and best when ¢ &~ m. In [2] it was the case
that ¢ < m. For instance, one set of experiments used
c = 43 and m = 2?2, Choosing m prime and ¢ ~ m
should lead to a reduction in the number of collisions
produced by Hpao- Indeed, with these choices it seems
that the performance of Hpag should be very similar
to that of H,p.

In order to demonstrate the severity of the problem
of choosing ¢ small in equation (3.7), we conducted
experiments that measured the number of probes per
insertion generated by Hz, Hyp, He, and Hgargo when
inserting « - m uniformly distributed (i.e., initial probes
are uniform) data elements into an initially empty table
containing m slots. Note that this would be the same
number of probes required to successfully search for all
of these data elements after they have been inserted into
the hash table. The results for m = 400,009 are shown
in Table 1. Each entry was obtained by averaging over
three separate experiments. The column under Hj o

corresponds to a choice of ¢ = 43, while for H};MQ the
choice was ¢ = 400,007. Note that the average number



’ a H H[:‘HCD‘ HS‘HEMQ HgMQ‘

0.1 || 1.06 | 1.06 | 1.06 1.06 1.11
0.2 || 1.12 | 1.12 | 1.12 1.16 1.23
0.3 || 1.21 | 1.20 | 1.20 1.32 1.36
04 ] 1.33 | 1.31 | 1.30 14.89 1.52
0.5 || 1.50 | 1.44 | 1.43 40.78 1.70
0.6 || 1.75 | 1.61 | 1.59 63.67 1.92
0.7 || 2.16 | 1.86 | 1.81 87.23 2.21
0.8 || 298 | 223 | 213 | 117.31 2.62
0.9 || 5.38 | 2.92 | 2.73 | 153.13 3.35

Table 1: A comparison of the average number of probes
per insertion generated by the hash functions H, (using
equation (2.2)), Hyp, Hg, and Hparig on uniformly
distributed data as the load factor, «, ranges from 10%
to 90%. The number of slots in the table for each of
these was m = 400,009. For Hj, o, ¢ = 43, and for

Hf o, € = 400,007

of probes generated by Hj,,o grows rapidly, relative to
H;, Hrp, and He when the load factor exceeds 30%;
however, for H ; Mo the number of probes is similar to
that of H.p, and outperforms linear probing when the
load factor grows above 70%. Furthermore, the choice
of m that we used in these experiments should actually
improve somewhat on the results obtained in [2], as it at
least guarantees full length probe sequences. Thus, even
if cache effects are not taken into account, linear probing
outperforms Hy o, and by taking them into account,
linear probing’s advantage over Hp o increases. For all
of the suitably defined double hash functions, however,
it can be seen from the table that there is a load factor
above which linear probing is inferior in terms of the
number of probes it produces. That is, at load factors
above 30%, Hyp and Hg execute fewer probes per
insertion than H,. For these double hash functions it
makes sense to consider whether or not this advantage is
lost once cache effects are accounted for. In Section 5 we
describe experiments that measure this effect, but first
we must consider how more realistic input distributions
affect the average probe lengths of these hash functions.

4 Data Distributions.

We have already demonstrated in Table 1 that for the
uniform distribution, as the load factor increases, the
average probe length per insertion for linear probing
grows more rapidly than it does for double hashing.
This is a well-known fact, and the reasons for this
performance have already been discussed in Section 2.
However, note that the divergence in the growth rates
of the probe lengths is not too severe—for a 90% load
factor, the average probe length for linear probing

is approximately twice that of exponential hashing.
An important question is how much worse this effect
becomes when more realistic input distributions are
used. A complication arises when attempting to find
realistic data sets the can be used to measure this effect,
along with cache effects. Specifically, if cache effects
are to be measured, then the dynamic dictionary must
be large enough so that it will not fit entirely in cache
memory. Note that in our memory hierarchy model,
there is never an advantage to linear probing if the
entire dynamic dictionary fits in cache memory. All of
the data set that we are aware of that have been used to
test dynamic dictionary applications are too small; they
easily fit in the cache memories of modern computers.
Thus, for our experiments we constructed numerous
synthetic data sets that are large enough to produce
the desired cache effects. In this paper we report only
three: one that is optimal and minimizes cache misses
for linear probing (the uniform distribution previously
considered), and two nonuniform distributions that are
meant to capture that notion of real data sets.

The first of the nonuniform distributions is meant
to be fairly benign, while the second is meant to
demonstrate how poorly linear probing might perform
on certain data sets. Specifically, the first nonuniform
distribution we refer to as the “clipped Gaussian”
distribution N(%, % )(x), where the initial probe into
the table is drawn randomly according to a Gaussian
distribution with mean m/2 and standard deviation
m/4. Furthermore, random initial probes outside the
range [0,m — 1] are discarded. Thus, the tails of the
uniform distribution are discarded, and this clipped
Gaussian distribution somewhat resembles a uniform
distribution in which the probably mass function has
a slight “bulge” in the center of the table. The
more severe nonuniform distribution is the “clustered”
distribution cg(x), where 8 € (0, 1] corresponds to the
fixed percentage of the hash table that all initial probes
will occur to in a random fashion. For example, if
B = 0.5, a contiguous region (modulo the table size)
that corresponds to 50% of the hash table is chosen at
random, and all initial probes will occur uniformly at
random in this region.

Given the questions that invariably arise regarding
data synthetic distributions, and their correspondence
to real data sets, we have sought ways to justify
the choice of the aforementioned data distributions
for experimental purposes. Below we make use of
information theory in order to demonstrate, from a
probabilistic perspective, that these nonuniform data
distributions are in fact reasonable data sets. We
start by presenting some information-theoretic measures
that show how far a particular distribution is from the



uniform distribution. Next we apply these measures
to specific real data sets that have been used in other
studies, and then we demonstrate that the synthetic
data sets we constructed are no worse than these real
data sets.

4.1 Information-theoretic Approach. Let X be
a random variable with alphabet X ={0,1,...,m — 1}
and probability mass function p(z) = Pr{X = z},z €
X. Consider a uniform distribution of data elements
u(z) over a table of size m; that is, X has a uniform
distribution. Then the entropy of X is given by

- > pl@)logp()
zeX
= logm,

Hu(X) =

where all logarithms are assumed to be base 2, and
therefore the units of entropy will be in bits. A
information-theoretic quantity commonly used to mea-
sure the distance between two probability mass func-
tions p(z) and ¢(z) is given by the relative entropy (or
Kullback Leibler distance) [7], defined as

Dla) =3 pa)log 2.

reX q(a:)

We will use relative entropy as a means of comparing
various data distributions with the ideal case of the
uniform distribution.

Consider the clustered distribution cg(z).
entropy, H.,(X), of this distribution is given by

The

He,(X) = =Y plx)logp()
reX

BIXl 4 g
B

=l T
= logf|X|

The relative entropy between cg(x) and the uniform

distribution u is given by
(7)
> <1> log ~1"
pm ()

reX

1 1
= pm (m) ‘o (5)
= —logp.

Thus, the relative entropy between cg5(z) and u is 1
bit, while the relative entropy between ¢ 3(z) and u is
1.74 bits.

The entropy of the clipped Gaussian distribution is
difficult to determine analytically. Thus, we created an

Dics | w) =

experimental entropy measure as follows. For a table of
size m, 4m initial probes were generated according to
the clipped Gaussian distribution. The number of initial
probes to each location in the table was then divided by
the total number of initial probes in order to generate
an experimental probability for each hash table location,
and these experimental probabilities were then used to
calculate what we refer to as the “experimental entropy”
of the distribution. Many of the experiments reported
in this paper used hash tables with m = 100,003
and m = 400,009; for these values the experimental
entropies Hy(m m) are 15.65 and 17.65, respectively,
while the maximum entropies (corresponding to the
uniform distribution) for these table sizes are 16.61 and
18.61, respectively. Furthermore, for both m = 100, 007
and m = 400,009, the experimental relative entropy
D(N (g, %) || w) = 0.96 bits.

4.2 Real Data Sets. In this section we consider a
number of “real” data sets that are used to help justify
the selection of the aforementioned synthetic data sets
that we used in our experiments. For each of the
real data sets described in this section, we considered
the case when duplicate words are ignored, which will
produce more uniform input distributions. In each
experiment, a hash table that is 1.5 times larger than
the number of words in the data set was created, the
function hashPJW() was then used to create a key for
the word, and a storage location was computed using
equation (2.2).! Note that this corresponds to the set
of initial probes that would occur in filling a table up to
a load factor of 66%. As we have described previously,
the number of words that hashed to each location was
then divided by the total number of words in order to
create an experimental probability for that location, and
these experimental probabilities were used to calculate
the experimental entropy of the data set.

The Bible. The Bible was used as a data set in [1].
The version that we tested [11] has 817,401 words in
total, and 13,838 unique words. For |X| = 13,838 x 1.5,
H,(X) = 14.34 bits, Hy(m =)(X) = 13.96 bits, and
H., ,(X) = 12.55 bits. The experimental entropy of
the Bible with no repeated words is 13.18 bits, and the
experimental relative entropy between this data set and
the uniform distribution is 1.16 bits.

United States Constitution. In the United
States Constitution there are 7,671 words in total,
of which 1,436 are unique. For |X| = 1,436 x 1.5,
H,(X) = 11.07 bits, Hy(m m)(X) = 10.69 bits, and

TExperimentally we found that applying universal hashing to

the output produced by hashPJW() has a negligible effect. That
is, hashPJW() does a very good job of transforming skewed input
distributions into distributions that are close to uniform.



H, ,(X) =9.29 bits. The experimental entropy of the
United States Constitution with no repeated words is
9.86 bits, and the experimental relative entropy between
this data set and the uniform distribution is 1.20 bits.

DIMACS Data Set. The largest file in the DI-
MACS data set for dictionaries is joyce.dat [8]. In this
data set, 186,452 dynamic dictionary operations are ap-
plied to 8,580 unique words. For |X| = 8,580 x 1.5,
H,(X) = 13.65 bits, Hy(m =)(X) = 13.28 bits, and
H, ,(X) = 11.86 bits. The experimental entropy of the
unique words in the data set with no repeated words
is 12.49 bits, and the experimental relative entropy be-
tween this data set and the uniform distribution is 1.16
bits.

Thus, from an information-theoretic perspective,
the synthetic data sets Hy(m m)(X) and He, ,(X) do a
good job of modeling the real data sets in the case when
repeated words are not allowed. In particular, for every
one of the real data sets, D(N(%, %) || u) provides a
lower bound for the experimental relative entropy be-
tween the real data set and the uniform distribution,
while D(cg.3 || w) provides an upper bound for the same
quantity. For the case when repeated words are allowed,
note that D(cp.o1 || ©) is less than the experimental rel-
ative entropy between the Bible data set with repeated
words and the uniform distribution, but greater than
the relative entropy between the United States Consti-
tution data set with repeated words and the uniform
distribution. Thus, we will use this distribution to study
the case when repeated words are allowed.

5 Experimental Design and Results.

In this section we compare the performance of linear
probing and double hashing experimentally. From
the previous discussions we know that the average
search time depends on the average number of probes
and the manner in which cache memory is utilized,
and that the average number of probes is dependent
on the data distribution and the hash function used.
Two sets of experiments were designed to measure
how these factors influence the performance of hashing
algorithms. The first set of experiments, described in
Section 5.1, demonstrates how the data distribution
influences the average probe length, while the second set
of experiments, described in Section 5.2, measures the
time required to actually execute these probes on real
machines. Thus, the former experiments do not involve
cache effects, while the latter experiments account for
them.

5.1 Data Distributions Revisited. Table 1 in Sec-
tion 3.2 showed the average number of probes per inser-
tion generated by the hash functions H., H,p, He, and

direct universal
l o l u | N Co.3 u | N | Co.3
0.1 || 1.06 1.08 1.25 | 1.11 | 1.17 1.27
0.2 || 1.12 1.20 2.01 | 1.26 | 1.29 1.61
0.3 || 1.21 1.40 272.18 | 1.45 | 1.50 2.04
0.4 || 1.33 1.80 20220.80 | 1.70 | 1.77 2.62
0.5 || 1.50 3.41 40156.14 | 2.03 | 2.13 3.36
0.6 || 1.75 2170.37 60123.89 | 2.48 | 2.63 4.36
0.7 || 2.16 | 11162.53 80138.41 | 3.17 | 3.37 5.75
0.8 || 2.98 | 23809.26 | 100135.75 | 4.42 | 4.65 7.91
0.9 || 5.38 | 37860.20 | 120125.09 | 7.55 | 8.67 | 12.56

Table 2: A comparison of the average number of probes
per insertion generated by H. using equation (2.2), di-
rect insertion, and equation (2.3), universal hashing, for
the initial probe. Three distributions were tested: the
uniform distribution u, the clipped Gaussian distribu-
tion N (%, }) and the clustered distribution co.3 as the
load factor, «, ranges from 10% to 90%. The number of
slots in the table for each is m = 100, 003.

Hparo on uniformly distributed keys. For tractability
reasons, a uniform data assumption is often used in al-
gorithmic analysis, with the hope that the performance
of an algorithm does not diverge significantly from the
analytical results if this assumption is violated. For in-
stance, a uniformity assumption underlies the theoreti-
cal results described in Section 3.1. Furthermore, since
it is difficult to derive data distributions that capture
the essence of so called “real-world” data sets, uniformly
distributed data is also commonly used in experimental
studies. For example, all of the experiments in Sec-
tion 3.2 used uniformly distributed keys. Again, the
hope is that these experiments demonstrate some per-
formance aspects of the algorithm under consideration
that extend in a reasonable way other distributions, in-
cluding real-world data sets. In terms of minimizing
probe sequence length, it is important to recognize that
a uniform data distribution generally represents the op-
timal stochastic input distribution. In the set of exper-
iments described next, we investigate the performance
losses that accompany nonuniform input distributions.
These nonuniform input distributions are intended to
be more representative of the types of data distributions
encountered in practice.

First let us consider the sensitivity of linear prob-
ing to the input distribution. Table 2 shows the av-
erage number of probes per insertion generated by H,
when using equation (2.2), direct insertion, and equa-
tion (2.3), universal hashing, for the initial probe. The
results were obtained by averaging over 10 different ex-
periments for the direct insertion method, and 50 dif-
ferent experiments for universal hashing. Three distri-



butions were tested. Notice that the best performance
is obtained for the uniform distribution when direct in-
sertion is used; however, when the distribution diverges
from the uniform distribution, the performance of di-
rect insertion suffers dramatically. For the case of the
clipped Gaussian distribution there is an abrupt change
in the average probe length once the load factor exceeds
50%, and for the more severe clustered distribution, a
similar abrupt change occurs when the load factor ex-
ceeds 20%. Next, consider the right side of the table,
where the results for universal hashing are presented.
Notice that for the case of the uniform distribution, uni-
versal hashing, by modifying the input distribution, ac-
tually performs worse than direct insertion; however, as
would be expected, it offers significant improvements for
the nonuniform distributions. Thus, linear probing has
an extreme sensitivity to the input distribution that is
supplied to it. In addition, although the theoretical re-
sults for universal hashing show that on average it leads
to good performance, it also produced the largest vari-
ance in all of the hash functions experiments we con-
ducted (which is why we averaged the results over a
larger number of experiments). For example, for the
clustered distribution cp 3, at a load factor of 60% the
mimimum probe length was 2.60, the maximum probe
length was 14.0, and the standard deviation was 2.20.

Now let us consider similar experiments that in-
clude the double hash functions we have previously dis-
cussed (for comparison, we have also included the best
results for H, from the previous table). Table 3 lists
the average number of probes per insertion generated
by the hash functions Hy, Hep, Hg, and Hpaqg on the
nonuniform hash data distributions N (%, }) and co.3.
Once again, each entry corresponds to the insertion of
a-m data elements into an initially empty table contain-
ing m slots, and the average is taken over 10 indepen-
dent experiments (50 in the case of Hy with universal
hashing). These experiments are more severe in that
they generate a greater number of collisions than the
uniform case previously considered.

Hash function Hpag was included in these experi-
ments in order to demonstrate it sensitivity to the input
distribution if the ¢ parameter is not selected properly.
Notice that Hj,.o has an extreme sensitivity to the
input distribution. As compared to its performance on
the uniform distribution (shown in Table 1), its perfor-
mance on the clipped Gaussian distribution at a 70%
load factor shows a 12-fold increase in probe sequence
length, while for the same load factor the increase in
probe sequence length for the clustered distribution is
91 times that of its performance on the uniform dis-
tribution. Contrast this with H ;; Mo Where at a load
factor of 70%, for both the clipped Gaussian and the

’ e! H He ‘ HE’D‘ Hg‘ Hipmo H;MQ

0.1 | 1.17 | 1.08 | 1.08 1.10 1.15
0.2 || 1.29 | 1.17 | 1.17 1.58 1.32
0.3 || 1.50 | 1.27 | 1.28 15.26 1.52
04 || 1.77 | 1.40 | 1.41 30.11 1.73
0.5 || 2.13 | 1.57 | 1.57 43.99 1.98
0.6 || 2.63 | 1.78 | 1.77 223.88 2.27
0.7 || 3.37 | 2.06 | 2.03 | 1081.87 2.62
0.8 || 4.65 | 2.48 | 2.41 | 2358.50 3.10
0.9 || 8.67 | 3.24 | 3.07 | 3769.16 3.90
(a)
Lo | He| Hep | He | Himo | Himeo
0.1 1.27 1.20 | 1.18 1.51 1.31
0.2 1.61 1.46 | 1.39 22.05 1.61
0.3 2.04 1.83 | 1.63 41.65 1.89
0.4 2.62 2.38 | 1.91 1937.58 2.19
0.5 3.36 3.17 | 2.22 3965.78 2.53
0.6 4.36 4.37 | 2.60 5928.22 2.94
0.7 5.75 5.93 | 3.07 7936.07 3.52
0.8 7.91 7.98 | 3.69 9953.71 4.43
0.9 || 12.56 | 10.69 | 4.66 | 11991.79 6.06
(b)

Table 3: A comparison of the average number of probes
per insertion generated by the hash functions H. (using
equation (2.3)), Hgp, Hg, and Hpamo on (a) the
clipped Gaussian distribution N(%, %) and (b) the
clustered distribution cg 3 as the load factor, «, ranges
from 10% to 90%. The number of slots in the table
for each is m = 400,009. For Hg, o, ¢ = 43, and for

Hf o, € = 400,007

clustered distributions, the probe sequence length is
not even twice that of the uniform distribution. Thus,
H§ v has an extreme sensitivity to the input distribu-

tion, while HZ%MQ does not.

What is most interesting to note about the results
contained in Table 3 is the divergence in probe sequence
lengths between H, and Hg that starts at a load factor
of roughly 50% for both the clipped Gaussian and the
clustered distributions. Furthermore, notice how little
the average probe sequence length grows for He for a
given load factor when compared to the optimal case
of the uniform distribution shown in Table 1. Indeed,
for any «, there is little difference between the probe
sequence lengths for Hg in Tables 1, 3 (a) and 3 (b). The
same cannot be said for H,. It should also be noted that
for the case of linear probing, we are taking great care to
insure that the input distribution is randomized, while
with double hashing, we are supplying even the skewed
data distributions directly to the hashing algorithms



without any preprocessing.

These results clearly show the obstacle that linear
probing must overcome if it is to outperform double
hashing across a wide variety of data distributions—
and the only means it has for doing so is to make
more efficient use of the memory hierarchy. Specifically,
for realistic data distributions, the increase in probe
sequence lengths associated with linear probing must
be counterbalanced with a savings in time due to cache
and page hits that grows with the load factor. Given
current technology, this is possible. For example, if we
assume the worst case for double hashing (every memory
access is a cache miss) and the best case for linear
probing (every memory access is a cache hit) then the
100-fold penalty assigned to each memory access in the
case of double hashing is enough to overcome the raw
number of probes required by linear probing as the load
factor increases. Next we consider exactly how these
counteracting forces play out in real machines.

5.2 Cache Effects. In this section we describe ex-
periments that measure the actual running times of hash
functions under uniform and nonuniform data distribu-
tions. Four different machine configurations were used
in these experiments:

Configuration 1: A Dell Dimension XPS T550
personal computer running the Debian Linux
operating system (kernel version 2.4) with a
550 MHz Intel Pentium III processor, 328 MB
of main memory, a 16 KB L1 data cache and
a 512 KB L2 cache.

Configuration 2: A Sun Blade 1000 workstation
running the Solaris 5.9 operating system with
a 750 MHz 64-bit UltraSPARC III proces-
sor, 1 GB of main memory, a 96 KB L1
cache (32 KB for instructions and 64 KB for
data) and a 8 MB L2 cache.

Configuration 3: A Dell Inspiron 14150 laptop
running the Microsoft Windows XP operating
system with a 1.70 GHz Mobile Intel Pentium
4 processor, 384 MB of main memory, a 8 KB
L1 cache and a 512 KB L2 cache.

Configuration 4: The same computer as in Con-
figuration 3 running the Mandrake Linux op-
erating system (kernel version 2.4).

For the configurations that used the Linux and Solaris
operating systems, the code was compiled using the
GNU GCC compiler (configuration 1 used release 2.95.4,
configuration 2 used release 2.95.3, and configuration 3
used release 3.2.2) with optimization flag -03. For
the Microsoft Windows XP configuration, the code was

compiled using Microsoft Visual C++ 6.0 and optimized
for maximum speed.

As with the previous experiments, these experi-
ments involved inserting « - m data elements into an
initially empty table containing m slots. In this case,
however, the actual time necessary to do so was mea-
sured. This time is influenced by the size (in bytes) of
the hash table, where the size of the hash table is de-
termined by the product of the data record size and the
number of slots m in the table. If the entire hash table
fits into cache memory, then the only thing that matters
is the average number of probes, and we have already
shown that exponential double hashing is the clear win-
ner in this case. If, on the other hand, the entire hash
table does not fit into cache memory, then the size of
the data records becomes very important. If the data
records are made smaller, then more of them will fit si-
multaneously into cache memory, thereby increasing the
probability of cache hits. Thus, in the following experi-
ments we were careful to select hash table/data record
sizes that resulted in hash tables that were large enough,
but not too large. Specifically, we created hash tables
that usually would not fit entirely into cache memory,
but not so large as to lead to a significant number of
page faults during probing.

The first set of experiments, shown in Figure 1, is
the same as those that were used to create the results
shown in Table 1. Specifically, keys were generated ac-
cording to the uniform distribution, and « - m data ele-
ments with these keys were stored in an initially empty
hash table of size m = 400,009. On each machine con-
figuration, 10 independent experiments were conducted,
and the average of these was taken in order to create
the results. Figure 1 shows the results for the four
machine configurations when 8-byte data records were
used. From Table 1 we know that the average num-
ber of probes is fairly similar for all of the hash func-
tions tested in this set of experiments. Furthermore,
Table 1 showed that the average number of probes is
relatively small, even at high load factors. Note in Fig-
ure 1 that for this particular combination of data record
size and hash table size, linear probing gains an advan-
tage over the double hashing algorithms on each of the
machine configurations tested, and that on three of the
four configurations the advantage grows with increasing
load factor. It is worth noting that in configuration 2
shown in Figure 1 (b), which is the Sun system with
8 MB of L2 cache, the advantage of linear probing is
smaller, as one would expect. This particular set of ex-
periments, involving the uniform distribution and small
data records, is the only case we were able to construct
where linear probing consistently outperformed double
hashing over all load factors in terms of the actual time
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Figure 1: The average insertion time for keys distributed according to the uniform distribution using a hash table
of size m = 400,009, and 8-byte data records. Parts (a)—(d) correspond to configurations 1-4, respectively.



taken to perform the dynamic dictionary operations.
Note, however, that for most load factors the advantage
is not very significant, particularly when the time scale
is taken into account. Furthermore, if the size of the
data record is increased to 256 bytes (and with m =
100, 003), our experiments indicate that this advantage
is lost, and for each machine configuration, there is little
performance difference between linear probing and the
suitably defined double hash functions.

Next let us consider experiments that measure the
cache effects related to the data shown previously in
Table 3. Once again we tested the four different machine
configurations on two different hash table/data record
sizes, (1) m = 400,009 with 8-byte data records, and (2)
m = 100,003 with 256-byte data records. Each of the
machine configurations produced fairly similar results,
with machine configuration 2 slightly more favorable to
double hashing due to its larger cache size. Figure 2 we
present the results obtained on machine configuration 3.
Once again, note that when the data record size is
smaller (8 bytes) as in parts (a) and (c), linear probing
with universal hashing does gain a slight advantage
over the double hashing algorithms once the load factor
exceeds approximately 50%. This is due to the larger
number of cache hits per probe that occur in the case
of linear probing. Notice, however, that in parts (b)
and (d), where larger 256-byte records are used, double
hashing tends to slightly outperform linear probing with
universal hashing.

6 Conclusions.

In this paper we considered the performance of open
address hashing algorithms when implemented on con-
temporary computers. An emerging computing folklore
contends that, in practice, linear probing is a better
choice than double hashing, due to linear probing’s more
effective use of cache memory. Specifically, although
linear probing tends to produce longer probe sequences
than double hashing, the fact that the percentage of
cache hits per probe is higher in the case of linear prob-
ing gives it an advantage in practice. Our experimen-
tal analysis demonstrates that, given current technology
and realistic data distributions, this belief is erroneous.
Specifically, for many applications, where the data set
largely fits in cache memory, there is never an advan-
tage to linear probing, even when universal hashing is
used. If a data set is large enough so that it does not
easily fit into cache memory, then linear probing only
has an advantage over suitably defined double hashing
algorithms if the data record size is quite small. How-
ever, it should be noted that one of the most common
types of large data sets is the database, and records are
typically quite large in databases.

The results provided in the open literature support-
ing the superiority of linear probing appear to be largely
reliant on the assumption of a uniform data distribu-
tion. The experimental analysis provided in this paper
showed that indeed, assuming a uniform input distri-
bution, it is possible for linear probing to consistently
outperform double hashing. On the machine configura-
tions we tested we were able to create some scenarios
under which this occurred, but even in these cases, the
advantage was slight. In particular, if the hash table was
made large enough (so that the entire table would not
fit in the cache), and the data records small enough (so
that a large number of them would reside in cache),
then by applying a uniform data distribution, linear
probing could be made to outperform double hashing
across all load factors. However, the performance gain
was not very significant, particularly when this is con-
trasted with the severe performance loss that accom-
panies linear probing for nonuniform data distribution
if the input distribution is not sufficiently randomized.
In addition, it appears that in the case of the uniform
distribution, the distribution itself is largely driving the
performance. That is, by using a uniform distribution,
there is a high probability that for any reasonably de-
fined open address hash function, only one or two probes
will be required to find an empty slot. Thus, the probing
algorithm itself is largely unused. Therefore, as long as
the uniformity of the data is preserved across the initial
probes (this was not the case in one of the double hash-
ing algorithms we considered), any open address hash
function works about as good as any other, particularly
when the load factor is not too large. Only the use of
more realistic nonuniform data distributions causes the
underlying characteristics of the probing algorithms to
become evident. It was demonstrated that in this case
double hashing, and in particular exponential double
hashing, is far superior to linear probing. Indeed, even
for very highly skewed input distributions the perfor-
mance of exponential double hashing was little changed
from that of the uniform input distribution case, while
the running time for linear probing grows more signifi-
cantly.

Although the effects of cache memory were explic-
itly testing in our experiment, we believe that similar
results would be obtained in testing the effects of virtual
memory on open address hashing. In particular, for uni-
form (or nearly uniform) data distributions it should be
possible to construct cases where linear probing slightly
outperforms double hashing due to virtual memory ef-
fects. However, this advantage would rapidly disappear
when more realistic data distributions are applied.
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Figure 2: The average insertion time for keys distributed according to the nonuniform distributions machine
configuration 3. (a) N (%, %) with m = 400,009 and 8-byte data records, (b) N(%,5) with m = 100,003 and
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256-byte data records, (c) co.3 with m = 400,009 and 8-byte data records, and (d) cp.3 with m = 100,003 and

256-byte data records.



In summary, for the practitioner, the use of double
hashing is clearly a good choice for general purpose
use in dynamic dictionary applications that make use
of open address hashing.
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