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Abstract

The market equilibrium problem has a long and distin-
guished history. Its computational version has recently
received significant attention in the theoretical com-
puter science community resulting in a flurry of polyno-
mial time algorithms for computing market equilibria in
various restricted but relevant settings. The most im-
portant special cases arise either when the traders have
utility functions that satisfy a property known as gross
substitutability or when the aggregate demand satisfies
a property known as the weak aziom of revealed prefer-
ences.

In this paper we experimentally compare the perfor-
mance of some of these recent algorithms against that of
the algorithms traditionally used for market equilibrium
problems. In particular, we evaluate the following ap-
proaches: (i) using GAMS/MPSGE, a popular commer-
cial tool for computing market equilibrium, (ii) solving
convex feasibility programs arising from some recently
developed formulations of the market equilibrium prob-
lem, (iii) applying an iterative scheme, known as sequen-
tial joint mazimization, (iv) implementing several dis-
crete versions of a simple iterative price update scheme
called tatonnement. Our primary goals were to inves-
tigate the scalability of the last three approaches and
to compare their performance with the first approach.
Our main observations are:

e The convex programming approach compares fa-
vorably against PATH (the solver used within
GAMS) and seems to be competitive in terms of
scalability.

e The sequential joint maximization algorithm con-
verges rapidly, even for certain instances for which
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its convergence is yet to be theoretically proved.

e The discrete versions of tatonnement scale well
compared to PATH.

1 Introduction

In its exchange version, the market equilibrium problem
consists of finding prices and allocations of goods to
traders such that each trader maximizes her utility
function and the market clears (see below for precise
definitions). A fundamental result in economic theory
states that, under mild assumptions, market clearing
prices exist [1]. This existential result has been the
starting point of the development of effective procedures
for the computation of the equilibrium.

Roughly speaking, we can identify three families of
methods for the solution of general market equilibrium
problems: (i) simplicial methods, (ii) path following
methods or homotopy methods, and (iii) algorithms
based on Newton’s method.

Simplicial methods are techniques to approximate
fixed points of continuous mappings of a simplex into
itself, which have been pioneered by Scarf [38, 39, 14,
22, 26]. These algorithms do not achieve polynomial
running times, and their performance on large size
applications has been superseded by Newton’s methods
and homotopy methods. The global Newton’s method
fully uses the information embedded in the Jacobian of
the excess demand function to guarantee convergence
under very mild assumptions [23, 40, 41]. Homotopy
methods have naturally evolved from simplicial methods
and these follow a path, as a function of a parameter ¢,
from an easy to solve problem (¢ = 0) to the original
problem (¢t = 1) [13, 30, 42]. Both Newton’s methods
and homotopy methods enjoy global convergence, and,
in spite of not being guaranteed to run in polynomial
time, seem to be amenable for tackling real world
applications (see [18], p. 670, and references therein).
For instance, Newton’s method is the main building
block in the PATH solver [17], which is embedded in
GAMS/MPSGE, the modeling language of choice for
experimental work on market equilibrium applications



[6].

For markets with known additional structure, sev-
eral alternative computational approaches have been
considered. The simplest approach is the tatonnement
process which, starting from an arbitrary price vector,
updates it according to the market excess demand gen-
erated by such prices [2, 3]. In its continuous version,
the tatonnement process is known to converge [2] when-
ever the market satisfies weak gross substitutability (see
next section for the definition). However, it need not
converge if the market does not satisfy this property
(see [29], Chapter 17).

A different line of work has attempted to take ad-
vantage of the convexity of the set of equilibrium prices
in certain exchange markets. For example, in [2] it is
shown that when the market satisfies weak gross substi-
tutability, a fundamental inequality holds which defines
a collection of hyperplanes that separates equilibrium
prices from the rest. A stream of work has extended this
characterization to handle settings where the demand
need not be a single-valued function of the prices. These
settings include in particular the case of linear utility
functions (see [33, 34, 35] and the references therein).
Some of these papers build upon the characterization
above to propose Ellipsoid and cutting-plane algorithms
to compute market equilibrium. However, as far as we
can tell, none of these papers succeed in proving polyno-
mial running time for these methods. For a discussion
of this issue, especially pertaining to [33], see [9]. In
[32], it is shown that for arbitrary endowments and lin-
ear utilities, the equilibrium is given as the solution to a
finite convex program; this approach works for certain
non-linear utilities as well.

Another family of computational techniques follow
from Negishi’s characterization of the market equilib-
rium as the solution to a welfare maximization problem,
where the welfare function that is maximized is a lin-
ear combination of individual utility functions obtained
by using certain positive weights [31]. This character-
ization transforms the problem of computing equilib-
rium prices into the problem of computing the weights
of the linear combination mentioned above. For this
computation, there is a natural welfare adjustment pro-
cess or joint mazimization procedure that works in the
space of the weights in a manner that is analogous to
how the tatonnement process works, in the space of
prices. As a result, this process is convergent under
conditions similar to those implying the convergence of
the tatonnement process [28].

Over the last three years, the problem of comput-
ing equilibrium prices has been analyzed with the fo-
cus on its polynomial time solvability. In the process,
some old results from mathematical economics litera-

ture have been rediscovered by computer scientists. For
linear utilities, polynomial time algorithms have been
developed both for the case of collinear endowments [12]
and arbitrary endowments [24, 25, 19]; the approach of
[24] which introduces the same convex programming for-
mulation as [32], works for some non-linear utilities as
well. For homothetic utilities and collinear endowments,
polynomial time algorithms based on convex program-
ming are given in [10]. Convex programs for some CES
utilities and arbitrary endowments are presented in [11].
Polynomial time algorithms that exploit the character-
ization of [2] for markets satisfying weak gross substi-
tutability are presented in [9].

This paper aims to complement the flurry of recent
theoretical advances in the design of polynomial time
algorithms for the market equilibrium problem with an
experimental investigation. The specific goal of this
paper is to comparatively study four approaches to the
problem.

1. The popular software tool based on the model-
ing language GAMS (short for “General Alge-
braic Modeling System”) and specifically its sub-
system MPSGE (short for “Mathematical Pro-
gramming System for General Equilibrium Analy-
sis”). GAMS/MPSGE is the most commonly used
tool for practical applications involving the solu-
tion of market equilibrium problems. The solver we
used for the market equilibrium problem within the
GAMS/MPSGE framework is the Newton-based
solver PATH [17].

2. Solving the recent convex programming formula-
tions for market equilibrium problems, specifically
those derived in [10, 11]. In the experiments re-
ported in this paper, we use the “convex” option
in the general purpose non-linear solver LOQO, in
combination with AMPL, its modeling language.

3. The sequential joint maximization algorithm of
[36]. Note that such an algorithm roughly corre-
sponds to “Algorithm 2” in [25] that computes an
approximate equilibrium in an exchange market by
iteratively solving a special case of exchange which
arises when the initial endowments are collinear
(a.k.a. Fisher’s model). Algorithm 2 in [25] does
not fit perfectly into the framework of sequential
joint maximization because it uses an extra ficti-
tious trader. [25] proves that this algorithm con-
verges in polynomial time for linear utility func-
tions and it is not hard to extend this proof to
whenever the exchange market enjoys weak gross
substitutability and an efficient solver for Fisher’s
instances is available. However, [25] leaves open the



issue of convergence of the simpler scheme without
the extra trader.

4. A version of the titonnement process. The con-
tinuous tatonnement process converges for mar-
kets satisfying weak gross substitutability, and is
particularly attractive due to its simplicity. The
main question is whether the theoretically well un-
derstood continuous tatonnement process can be
turned into a simple discrete algorithm that has
good convergence properties.

Our primary goal was to investigate the scalability of the
last three approaches and to compare their performance
with the first approach.

Prior to this paper, there has been some work ana-
lyzing the practical performance of different algorithms
for the market equilibrium problem. In [7] the perfor-
mance of a distributed implementation of tatonnement
is discussed; in [5] several complementarity solvers are
implemented and their relative merits analyzed, while in
[23] the efficiency of Newton’s method is investigated.
In [4] an approach based on global minimization is illus-
trated, and the outcomes some numerical experiments
are reported. More recently, in [16] the performance of
interior point methods has been analyzed, and compu-
tational data have been obtained for some small scale
benchmarks. A common feature of the experiments re-
ported in these works is that the sizes of the problems
considered were quite small. To the best of our knowl-
edge, this paper provides the fist attempt at an experi-
mental evaluation of different algorithms for large-scale
problems.

Our main observations are:

e The convex programming approach compares fa-
vorably against PATH (the solver used within
GAMS) and seems to be competitive in terms of
scalability.

e The sequential joint maximization algorithm con-
verges rapidly, even for certain instances for which
its convergence is yet to be theoretically proved.

e With an appropriately chosen price update rule,
the discrete version of tatonnement performed re-
markably well and in particular scaled well com-
pared to PATH. In fact, the excellent performance
of tatonnement has motivated a more careful theo-
retical investigation into its running time, resulting
in a proof of polynomial time convergence, reported
in [8].

To ensure reproducibility, we have made available at
http://www.cs.uiowa.edu/"rraman/eq/mkts.html,
many more details of our experiments, including raw
data and source code.

2 Definitions

Let us consider m economic agents which represent
traders of n goods. Let R denote the subset of R"
with all nonnegative coordinates. The j-th coordinate
in R"™ will stand for good j. Each trader i has a concave
utility function w; : R} — Ry, which represents
her preferences for the different bundles of goods, and
an initial endowment of goods w; = (wi1,..., W) €
R’. At given prices 7 € R, trader i will sell
her endowment, and get the bundle of goods z; =
(%i1,---,%in) € R} which maximizes u;(x) subject to
the budget constraint! 7 -2 < 7 -w;. Let W; =3, wij
denote the total amount of good j in the market.

An equilibrium is a vector of prices ™ =
(m1,...,m) € RY at which there is a bundle z; =
(%i1,...,%in) € RY of goods for each trader i such that
the following two conditions hold: (i) For each good j,
> ;%ij < W; and (ii) For each trader i, the vector z;
maximizes u;(z) subject to the constraints 772 < 77 w;
and z € RY.

The celebrated result of Arrow and Debreu [1]
states that, under quite mild assumptions, such an
equilibrium exists. A special case occurs when the
initial endowments are collinear, i.e., when w; = d;w,
d; > 0 and w € R, so that the relative incomes of the
traders are independent of the prices. This special case
is equivalent to the Fisher model, which is a market of
n goods desired by m utility maximizing buyers with
fixed incomes.

In the standard account of the Fisher model, each
buyer has a concave utility function u; : R} — Ry
and an endowment e; > 0 of money. There is a seller
with an amount ¢; > 0 of good j. An equilibrium
in the Fisher setting is a nonnegative vector of prices
7 = (m,...,m,) € R} at which there is a bundle
z; = (Zi1,- .-, Tin) € RY of goods for each buyer i such
that the following two conditions hold:

1. The vector Z; maximizes wu;(z) subject to the
constraints 7 -z < e; and x € R}

2. For each good j, 3, Zij = gj.

Unless otherwise stated, any mention of the Fisher
model refers to this standard account.

For any price vector 7, the vector z;(7) that maxi-
mizes u;(z) subject to the constraints 77z < 77 w; and
z € R} is called the demand ? of trader i at prices .
The excess demand of trader i is z;(w) = z;(7) — w;.

TGiven two vectors x and y, we use z+y or x y to denote their
inner product.

2In the definitions we assume that the demand is a single-
valued function of the prices, which is the case with most of
the commonly used utility functions. The definitions can be



Then Xp(m) = >, zix(m) denotes the market demand
of good k at prices w, and Zp(w) = Xg(n) — Wy =
> Zik(m) the market excess demand of good k at prices
m. The vectors X (7) = (X1(n),..., Xn(w)) and Z(7) =
(Z1(7), ..., Zn(m)) are called market demand (or aggre-
gate demand) and market excess demand, respectively.

When the market is defined in terms of the excess
demand function, the equilibrium is defined as a vector
of prices 7 = (my,...,m,) € R} such that Z;(m) <0,
for each j.

Two properties that play a significant role in the
theory of equilibrium and in related computational
results are gross substitutability (GS) and the weak
aziom of revealed preferences (WARP). A market is said
to satisfy GS (resp. weak GS) if for any two sets of
prices m and 7' such that 0 < m; < =7, for each j,
and 7; < m; for some j, we have that 7, = 7 for any
good k implies Zy(m) < Zg(w') (resp. Zr(m) < Zi(n'")).
That is, increasing the prices for some of the goods while
keeping some others fixed can only cause an increase
(resp. cannot cause a decrease) in demand for the goods
whose price is fixed. The market excess demand is
said to satisfy WARP if for any two sets of prices «
and 7' such that Z(n) # Z(n') either 77 Z(x') > 0 or
(7")T Z(m) > 0. For the connection between WARP and
market equilibrium see [29].

3 An Overview of our Experiments

3.1 Generating Markets An important aspect of
our experiments is the generation of markets with
enough variety so as to represent a wide range of
phenomena. We start by assuming that every agent’s
preferences are represented by the constant elasticity of
substitution (CES) functional form. A CES function is
a concave function defined as

1

n . -

1 2 \o-1

u(z1, T2, ..y Tpn) = ( E ajz] ) ,
i=1

where a; > 0 for each j and ¢ > 0,0 # 1. The
a;’s and o are parameters that can be assigned values
to obtain different utility functions. The parameter
o represents the elasticity of substitution, a natural
measure of the curvature of the indifference curves of
the utility function. We call an elastic market a market
where consumers are highly sensitive to price changes.
In the case of CES functions, this happens when all
the consumers have a utility function with elasticity
of substitution at least one. The CES functions range
from linear utility functions (when ¢ — oo) that are

appropriately generalized to handle the case when the demand
is a multi-valued function, which happens for instance when the
utility functions are linear.

fully elastic to Leontief functions (when o — 0) that
are completely inelastic. When the utility function is
linear, goods are perfect substitutes and when the utility
function is Leontief, goods are perfect complements.
In between, when ¢ — 1, CES functions become the
Cobb-Douglas functions that express a balance between
substitution and complementarity effects. While o
models the elasticity of substitution, the a;’s capture
how much an agent desires good j. CES functions
are ubiquitous in economics literature because of their
power to express a wide variety of substitution and
complementarity effects as well as their mathematical
tractability which allows for explicit computation of the
associated demand function.

Assuming that CES functional forms represent
agent’s preferences, generating a market corresponds to
generating a;’s, o, and the endowments for each agent.
Let m be the number of agents and n the number of
goods. For 1 < i <m, 1< j < n,let a;; denote the

coefficient aji% of the term mJ"Tl in agent i’s utility func-
tion. For notational convenience let A denote the m xn
matrix of the a;;’s. We will call this the desirability ma-
triz since it represents the distribution of agents extent
of desire for different goods. Without loss of general-
ity, we can assume that the a;;’s are normalized so that
the entries in each row in A sum to 1. Let W denote
the m x n matrix of endowments. Without loss of gen-
erality, we assume that endowments are normalized so
that entries in W are are in the range [0,1] and all col-
umn sums are 1. This implies that the total quantity
of each good is one. While the o values for different
agents can be different in general, for our experiments
we typically assume that these are all identical. Thus
generating a market corresponds to generating m x n
matrices A and W and the value 0. We generate ma-
trices A and W independently, using several generators
we have implemented.

Generators for the desirability matrices. We
have implemented three generators for the matrix A.
To guarantee the existence of an equilibrium, we fix an
€ > 0, and make sure every agent desires every good to
an extent of at least e.

Uniform Generator. This constructs matrices A
such that each agent’s desire is uniformly dis-
tributed among the n goods. Specifically, each row
in A is chosen independently and uniformly at ran-
dom from the space of vectors in [0,1]" that sum
up to 1 and each of whose entries is at least e.

Concentrated Generator. This constructs matrices
in which for 1 < i < m, agent ¢ desires a fraction
.8 of good i. That is, ay; = .8. Two goods j;
and j, are chosen at random from among the other



goods. Agent i’s desire for each good outside the
set {i,71,72}, is set to e. The rest of the mass,
0.2 — €(n — 3) is equally distributed between j; and
j2. The goods 71 and j, are chosen at random
with replacement and so they may be identical in
which case the agent’s desire for this good is just
0.2 —e(n — 3). This generator assumes that m < n.

Subset Generator. For each agent ¢, a random subset
Ji of the goods with expected size n/4 is chosen.
Agent i’s desire for each good outside J; is set to €
and the rest of the mass, 1 — €|J;| is distributed
uniformly among the goods in J;. Rows in the
matrix are generated independently of each other.

Generators for the endowment matrices. We
have implemented three generators for the endowment
matrix that are very similar to the generators for the
desirability matrix. Again, for some fixed ¢ > 0,
we make sure that for each good j and each agent
i, the initial endowment of good j to agent i is at
least e. We have a uniform generator and the subset
generator for endowment matrices that are identical
to the corresponding generators for the desirability
matrices, except that now columns are independently
generated, instead of rows. The subset generator for
the endowment matrix assumes that m > n and for each
good j, assigns an amount of .8 to agent (m — j + 1).
Thus the distribution of the goods is concentrated along
the reverse diagonal of the endowment matrix. In all
other ways, this generator is identical to the subset
generator for desirability matrices.

Introducing correlation in desires and in en-
dowments In the description of the uniform genera-
tor and the subset generator above, we mentioned that
rows of the desirability matrix and columns of the en-
dowment matrix are independently generated. We get
matrices with richer structure and asymmetry between
goods by introducing some dependency. We implement
two kinds of dependence.

Replicated desires or endowments. In this case,
after the first row of A is generated the remain-
ing rows are generated by simply copying the first
row. The columns of the matrix W can also be
replicated similarly.

Clustered desires or endowments. In this case,
the agents are randomly partitioned into some k
sets Ajp,As,...,Ar with the stipulation that the
rows for all agents in a set A; are identical. The
columns of the matrix W can also be clustered sim-
ilarly.

By combining the generators for the desirability
matrix with the generators for the endowment matrix,

and by choosing a certain kind of dependence for
the desirability matrix, and independently choosing
a dependence for the endowment matrix, we get a
large number of market generators that we use to
investigate a variety of market equilibrium algorithms.
We believe our market generators are able to provide
to our algorithms input markets with a wide variety of
properties.

3.2 The Two Types of Experiments. Most of our
experiments fall in one of two categories. The first
category of experiments involved estimating the running
time of a variety of market equilibrium algorithms as
a function of the number of agents and the number
of goods. One aim is to get a sense of the rate
of growth of the running times as a function of m
and n, while a second aim is to get a sense of the
absolute running time of these algorithms on fairly large
instances. Specifically, we are interested in knowing how
well the convex programming approach, sequential joint
maximization, and tatonnement scale relative to PATH.

The second category of experiments involved de-
termining how sensitive the running time of these al-
gorithms is with respect to o. The tractability of the
problem of computing market equilibrium for exchange
markets consisting of agents with CES utility functions
depends significantly on the values of o. For example, it
is known that tdtonnement converges if ¢ > 1, but not
necessarily for o < 1 [2]. Also, Codenotti and Varadara-
jan [11] have shown that when the space of prices is
appropriately transformed, the set of equilibrium price
vectors is guaranteed to correspond to a convex set in
the transformed space if ¢ > 1/2. This result com-
plements the example in [21] that shows that for any
o < 1/2, it is possible to construct markets with two
goods and two traders such that have multiple discon-
nected equilibria.

3.3 Computational Environment. We now de-
scribe the computational environment we used to run
our experiments.

¢ GAMS is a modeling system for mathemat-
ical programming problems. It consists of
a language compiler integrated with high-
performance solvers, and it is tailored for complex,
large scale modeling applications (see [6]).
GAMS has been extended to GAMS/MPSGE
by Rutherford [37] to efficiently handle eco-
nomic equilibrium problems. The web site
http://wuw.gams.com/solvers/mpsge/pubs.htm
lists a number of scientific papers which have
been using MPSGE. GAMS uses the PATH solver
for the mized-complementarity representation of



the market equilibrium problem. The GAMS
experiments were performed on a machine with
an AMD Athlon, 64 bit, 2202.865 Mhz processor,
2GB of RAM, and running Red Hat Linux Release
3, Kernel Version - 2.4.21-15.0.4

e The convex programming experiments used the
general nonlinear solver LOQO [43], which is
equipped with a convexr option, which prevents
the solver for calling on special code to handle
non-convexities. For more details on LOQO see
http://www.orfe.princeton.edu/~loqo/. The
experiments that use convex-programming were
performed on a machine with a Pentium III,
997.461 MHz processor, 512 MB of RAM, and run-
ning Red Hat Linux Release 3, Kernel Version -
2.4.21-15.0.4.

e The sequential joint maximization experiments also
used the solver LOQO. These experiments were
also performed on a machine with a Pentium III,
997.461 MHz processor, 512 MB of RAM, and
running Red Hat Linux Release 3, Kernel Version
- 2.4.21-15.0.4.

e The tdtonnement experiments were performed on
a machine with an AMD Athlon, 64 bit, 2202.865
Mhz processor, 2GB of RAM, and running Red Hat
Linux Release 3, Kernel Version - 2.4.21-15.0.4.

4 Experimenting with GAMS/MPSGE

In this section, we present the outcomes of the ex-
periments we have carried out with the PATH solver
available under GAMS/MPSGES3, in order to give in-
dications of the affordable problem sizes, as well as
of the sensitivity of GAMS/MPSGE/PATH to specific
properties of the market, e.g., gross-substitutability and
WARP.

We have tested the performance of PATH against
a variety of input data, and the results did consistently
show a fairly rapid growth of the running time as a
function of the size of the markets. An example is
illustrated in Figure 1, where the input size ranges from
10 to 100. The runs on the other benchmarks lead to
very similar figures. This holds true also for experiments
on markets with collinear endowments, thus hinting at
the fact that PATH is not particularly sensitive to the
WARP property enjoyed by the aggregate demand in
this case.

3The MPSGE subsystem is a preprocessor that provides easy
input to market equilibrium problems in terms of the excess
demand functions. The MPSGE system then converts this input
into GAMS code; we then call PATH on this auto-generated code
to solve the equilibrium problem.
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Figure 1: Running time as a function of problem
size, for a market whose desirability matrix is generated
by the concentrated generator and whose endowment
matrix is generated by the uniform generator.

We have also tested PATH performance with re-
spect to the elasticity of substitution parameter. There
seems to be no dependence of the running time on the
elasticity. Figure 2(a), (b) provide fairly typical indica-
tions of the pattern of indifference of the running time
observed over a greater range of elasticities.

5 Algorithms using the Convex Programming
approach

In this section, we report on an experimental study of
some of the convex-programming based approaches for
computing equilibria in various special cases.

The Fisher Setting. We implemented the convex pro-
gram of Eisenberg [15] for computing the equilibrium in
the Fisher setting when the traders have homogeneous
utility functions. The program has n * m variables for
a market with m traders and n goods, has n linear con-
straints, and a concave objective function. Our interest
is in measuring how well the running time scales with
size. In our experiments, we set n = m. Figure 3(a) de-
picts how the average running time varies with n for a
a typical run where traders having CES utilities with
o = 0.25. We did not run the experiments beyond
n = 50 since the solver LOQO took too long to com-
plete. We suspect that this is because of the number of
variables in the program being n xm, though this claim
needs further investigation.

Exchange with CES utilities. We implemented the
convex feasibility program of Codenotti and Varadara-
jan [11] for computing the equilibrium in an exchange
market with traders who have CES utility functions
with elasticity at least one. The program has n + m
variables for a market with m traders and n goods and
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Figure 2: Running time of GAMS as a function of
the elasticity of substitution, (a) for a market of type
whose desires are produced by a uniform generator and
endowments by a subset generator and (b) for a market
where desires are produced by a concentrated generator
and endowments by a uniform generator. The market
size is 0.

n + m constraints. In our experiments, all the traders
have the same elasticity and n = m. We measured how
well the running time scales with problem size. Fig-
ure 3(b), which is quite typical, depicts how the average
running time varies with n for o = 1.25.

We also measured how the running time varies with
elasticity. For a market with n = 25, we varied the
elasticity from 1 to 20 and found that beyond a certain
point, the running time is stable and increases only
very mildly with the elasticity. We experimented with
different kinds of markets and found this behavior to be
fairly typical.

6 Algorithms derived from tatonnement

In 1874 Léon Walras proposed that an equilibrium price
vector could be reached via a discrete price-adjustment
process that he called tdtonnement. In Samuelson’s
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Figure 3: Running time as a function of size for (a)
the convex program for Fisher instances with ¢ = 0.25,
and (b) for the convex program for exchange instances
with o = 1.25.

(1947) now-standard version of tadtonnement, compet-
itive agents receive a price signal, and report their ex-
cess demands at these prices to the central auction-
eer. The auctioneer then computes aggregate excess
demands, adjusts the prices incrementally in proportion
to the magnitude of excess demands, and announces the
new incrementally adjusted price level. In each round,
agents recalculate their excess demands upon receiving
the newly adjusted price signal and report these to the
auctioneer. The process continues until prices converge
to an equilibrium.

In its continuous version, the tatonnement process
is governed by the differential equation system: dg =
Gi(Z;(m)) for each i = 1,2,...,n where G;() is some
continuous and differentiable, sign-preserving function
and the derivative of 7; is with respect to time. The
continuous version of tatonnement is more amenable to
analysis of convergence and it is this process that is
shown to be convergent by Arrow, Block, and Hurwicz
[2] for weak GS markets.




In our implementation of tatonnement, the starting
price vector is (1,1,...,1). Let 7% be the price vector
after k iterations (price updates). In iteration (k + 1),
the algorithm computes the excess demand vector Z(7*)
and then updates each price using the rule ﬂf“ —
78 + ¢ir - Zi(7*F). One specific choice of ¢; that we
have used in many of our experiments is

k
3

ST may |2,

This choice of ¢; ; ensures that |c; - Z;(7)| < 7 and
therefore 7 continues to remain non-negative. Also
noteworthy is the role of ¢ that ensures that the “step
size” diminishes as the process (hopefully) approach
equilibrium.

Using sixteen different market generators, we gen-
erated markets with n agents and n goods, for n =
5,6,...,14 and ¢ = 0.2,0.4,0.6.0.8,1,1.2 for a total of
960 markets. We ran tatonnement on these markets to
understand how the rate of convergence of tatonnement
changes with elasticity. Similarly, using sixteen dif-
ferent market generators, we generated markets with
n agents and n goods, for n = 10,20,...,100 and
o =0.75,1,1.25.1.5,1.75,2.0. For each market type and
(n, o) pair we generated 20 market instances for a total
of 19,200 markets. We ran tatonnement on these mar-
kets to understand the how the rate of convergence of
tatonnement changes as a function of n. Finally, with
n fixed at 10, using each of 16 market generators, for
o =0.75,1,1.25.1.5,1.75,2.0, and for each e such that
log,0(1/€) =1,1.5,2,2.5,...,5.5,6, we generated 20 in-
stances and ran tatonnement with the aim of investi-
gating the convergence of tdtonnement as a function
of e. These were our three main titonnement exper-
iments. For the first two experiments, we terminated
tatonnement when max; | Z;(7*)| fell below a threshold
value of € = 10™* or when the number of iterations ex-
ceeded 100,000, whichever happened first. For the third
experiment, we increased the limit on the number of
iterations to 10 million.

Our main observations are below.

Convergence as a function of ¢. For the “small”
experiments (with n = 5,6,...,14) as well as for
the “large” experiments (with n = 10,20, ...,100),
our implementation of tdtonnement converged to
within the threshold e = 10~* in less than 100,000
iterations in all cases. There is a clear indication
that the number of iterations to convergence in-
creases slowly with respect to o. This trend is sum-
marized in the table in Figure 4 and further below,
two graphs showing the trend for two distinct mar-
kets are given in Figure 5.

| 0 | mean | max ]
0.2 368.3 2787
0.4 | 642.78125 | 4602
0.6 | 1216.14375 | 5508
0.8 | 1473.48125 | 8038
1.0 | 1923.45625 | 8587
1.2 | 1738.4125 | 7722

Figure 4: Summary of tdtonnement convergence data
from experiments that investigate convergence as a
function of elasticity. For each o, we tested 160
markets. The column label “mean” is the mean number
of iterations and “max” is the maximum number of
iterations over 160 runs.

These observations may seem to contradict theoret-
ical predictions. For example, for small o (o < 1)
the market excess demand does not satisfy weak
GS and therefore, in general, the continuous ver-
sion of tatonnement is not guaranteed to converge.
Examples of markets which force tatonnement into
a non-convergent behavior use fairly specific ini-
tial endowment distributions. In practice and
in experiments such as ours where initial endow-
ments are generated at random, discrete versions
of tatonnement seem to converge even in the ab-
sence of weak GS. Similar observations are reported
in [7], though for far fewer instances, all consist-
ing of markets of size smaller than ours. The “de-
gree” of subsitutability among goods increases with
o. Therefore one could expect, in principle, that
tatonnement converges faster as o increases. We
have instead observed the opposite phenomenon:
the number of iterations slowly increases with o,
provided that o is not too close to zero. This fact
can be explained in terms of the behavior of the
excess demand function, which varies more rapidly
(with respect to prices) as o increases, thus mak-
ing it harder for discrete versions of tdtonnement
to converge.

Convergence as a function of n. Here we report on
experiments that investigate the dependence of the
number of iterations of tadtonnement on the value of
n. For these experiments trends were much harder
to identify and the results were very sensitive to
the type of market. For most of the 16 markets
we used, the number of iterations does not increase
with n and actually seems to fall in some cases.
See Figure 6(a) for an example of such a market
phenomenon. We believe this is because the way
we generate markets leads to “symmetry” among



goods, that is, each good is desired by roughly
the same number of agents to roughly the same
extent; also, each good is endowed to roughly the
same number of agents to roughly the same extent.
This leads to a situation where all components of
an equilibrium price vector are roughly the same
and therefore very close to our starting price vector
(1,1,...,1). Given this, the main determinant of
the number of iterations is the distance between
(1,1,...,1) and an equilibrium price, rather than
n. To get a more reliable estimate of the running
time of tatonnement as a function of n, we ran
tatonnement on markets in which there is clear
asymmetry among goods. For such asymmetric
markets, Figure 6(b) shows a typical plot of the
number of iterations with respect to n.

Convergence as a function of e. The number of it-
erations of tatonnement seems to grow rapidly with
respect to log(%), quite independently of the mar-
ket type. Figures 7(a) and (b) show typical plots.

7 Welfare Adjustment Schemes

In this section we report on some experimental work
for computing equilibria in the exchange model using
the sequential joint mazimization algorithm, which is
based on Negishi’s approach for establishing the exis-
tence of competitive equilibrium [31]. Let R, denote
the subset of R™ with all positive coordinates. Let
a = (a1,...,an,) € R, be any vector. Consider the
allocations that solve the following optimization prob-
lem over z; € R} :

m
Maximize Z aiui(xi)
=1
Subject to z zij < Zwii for each good j.
i i

The optimal allocations #; are called the Negishi
welfare optimum at the welfare weights a;. Let w =
(m1,...,m) € RY, where the “dual price” 7; is the
Lagrangian multiplier associated with the constraint in
the program corresponding to the j-th good. Define
Bi(a) = 7 - w; — 7 - T;, the budget surplus of the i-
th trader at prices m and with allocation Z;. Define
fia) = Bi(a)/ai, and f(a) = (fi(), ..., fm(a)).

Under some standard assumptions on the utility
functions, the following properties hold for the map f :
R, = R™ (see Chapter 7 of the book by Ginsburgh
and Waelbroeck [20] for a systematic exposition.)

1. f(a) is single valued, continuous, and differentiable
at each oo € RT, .

2. >, aifi(a) = 0, which corresponds to Walras’ Law.

3. For any real A > 0, f(Aa) = f(«), which is positive
homogeneity.

4. There exists an o* € R}, such that f(a*) =
0. The corresponding dual prices constitute an
equilibrium for the economy.

Properties (1)-(3) follow from definitions and basic op-
timization theory; property (4) follows from Negishi’s
theorem [31]. This characterization suggests an ap-
proach for finding an equilibrium by a search in the
space of Negishi weights. This approach, which is com-
plementary to the traditional price space search, is elab-
orated in [20, 28, 36]. In particular, Mantel shows [28]
that if the utility functions are strictly concave and log-
homogeneous, and generate an excess demand that sat-
isfies gross substitutability, then we have %ﬁf‘) < 0and
%ﬁ?‘) > 0 for j # 4. This is the analogue of gross sub-
stitﬁtability in the “Negishi space.” He also shows that
a differential welfare-weight adjustment process, which
is the equivalent of tatonnement, converges to the equi-
librium in these situations.

We can define a function g : R}, = R™ in a man-
ner similar to f above, that is, g;(a) = B;(a)/a;, where
B;(a) = 7 - w; — 7 - T;, except that the price vector 7
in the definition of B;(«) is taken to be the equilibrium
price for the Fisher instance that is generated by letting
a; be the income of the i-th trader, and ), w; be the
vector of goods available in the market. Under appro-
priate assumptions on the utility functions, properties
(1)—(4) can be shown to hold for g. Furthermore, a gen-
eralization of an idea due to Jain, Mahdian, and Saberi
[25] shows that, under a gross substitutability assump-
tion on the u;, we also have 8%;") < 0 and 8%5—65;") > 0,
for j # i. Note that the u;’s are not required to be log-
homogeneous for this consequence. For utility functions
representing homothetic preferences, a result of Eisen-
berg [15] implies that f and g are identical.

Using the two characterizations above, we can
conceive of polynomial-time algorithms working in
the Negishi space that correspond to Ellipsoid and
tatonnement-based algorithms (see [9] and [8] for ex-
amples and pointers) in the price space. These would
be polynomial-time analogs of computational methods
(usually called welfare adjustment, or joint mazimiza-
tion methods) that have been well explored [36]. The
second algorithm of Jain, Mahdian, and Saberi [25] may
be seen in this light, although it uses an extra trader and
thus does not fit directly into this framework.

We implemented an algorithm for computing the
equilibrium for an exchange market that uses an algo-
rithm for the Fisher setting as a black box. The algo-



rithm starts off from an arbitrary initial price 7°, and
computes a sequence of prices as follows. Given ¥, the
algorithm sets up a Fisher instance by setting the money
of each trader to be ef = ¥ - w;, where w; is the i-th
trader’s initial endowment. (The goods in the Fisher
instance are obtained by aggregating the initial endow-
ment w; of each trader.) Let 7%t! be the price vector
that is the solution of the Fisher instance. If 7**! is
within a specified tolerance of 7%, we stop and return
wk+1: one can show that 7%t! must be an approximate
equilibrium. Otherwise, we compute 7512 and proceed.

This may be seen as a version of titonnement in
the Negishi space. We are simply performing the step
eFtl b + ebg;(er).

We tested our iterative algorithm for an exchange
economy where traders have CES utility functions.
We used the implementation described in Section 5
to solve the Fisher instance. Quite remarkably, the
algorithm tends to converge fast. For instance, we
ran the algorithm on instances with 10 goods and 10
traders, for elasticities 0.2,0.4,...,1.2. We generated 10
runs for each case, and the algorithm converged (more
precisely, the Euclidean distance between successive
prices became smaller than 0.001) in less than 10
iterations in each case. We also ran the algorithm on
instances with 25 goods and traders, elasticities 0.25 and
1.25, and generated 5 runs of each. In all the instances,
the Euclidean distance between successive prices was
smaller than 0.02 after the 100-th iteration. In one
case, the algorithm terminated earlier since the distance
between successive prices became smaller than 0.001.

The explanation for these convergence results
should be read in the light of the discussion above, which
shows that we are actually performing a welfare adjust-
ment process in the Negishi space.

8 Analysis of the results

The experiments conducted so far suggest that
tatonnement (Section 6) and the convex programming
approach to CES exchange markets (Section 5), where
applicable, are competitive with PATH in terms of scal-
ability. Experiments conducted for large values of n
strengthen this conclusion. The fact that the convex
programming approach does comparatively well should
be encouraging news to researchers working on poly-
time algorithms for equilibrium problems. The perfor-
mance of tatonnement has been, to some extent, an-
ticipated by the observation in [9] that in some cases
tatonnement can be proved to run in pseudo-polynomial
time. More recently, encouraged by the experimen-
tal performance of tatonnement, we have been able to
show polynomial time convergence of tatonnement for
exchange markets that have the weak GS property [8].

The running time of PATH is largely indifferent
to 0. The performance of the CES convex program
grows only mildly with o once ¢ is beyond a thresh-
old. The convergence of tatonnement is sensitive to o
and the number of iterations for convergence increases
with increasing o. This observation seems to contradict
theoretical predictions and deserves further experimen-
tal study. As mentioned in the Section 6, for small o
(o0 < 1) the absence of weak GS seems to be overcome
by properties of the market that are induced by initial
endowments. Also, as ¢ increases there is an increase in
the rate of the change of excess demand relative to prices
and this seems to lead to more iterations. Tatonnement
is also very sensitive to the type of the market, so much
so that this effect sometimes overwhelms the effect that
the size of market has, on its running time.

The fact that the simple algorithm based on itera-
tively solving Fisher (Section 7) tends to converge (even
for markets where gross substitutability is not guaran-
teed to hold) is surprising and merits further study.
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Figure 5: (a) This graph pertains to the market whose
desirability matrix is generated by the concentrated
generator and whose endowment matrix is generated
by the uniform generator. The rows of the desirability
matrix and the columns of the endowment matrix are
generated independently. For each value of o, the
graph shows the running times of 10 runs, one for each
value of n = 5,6,...,14. (b) This graph is similar to
the graph in (a), except that it pertains to a market
whose desirability matrix is generated by the subset
generator and whose endowment matrix is generated
by the concentrated generator. Again, the rows of the
desirability matrix and the columns of the endowment
matrix are generated independently.
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Figure 6: Number of iterations of tatonnement as a
function of n for two distinct markets. (a) In this
market, agents are clustered into 4 equal-sized groups
and agents within each group have identical desires
generated uniformly at random; endowments of goods
is generated by the uniform generator. The value of
o = 1.0. For this market, the number of iterations
seems to fall as n increases. (b) In this market, all agents
have identical desire and this desire is generated using
the subset generator; the endowments are generated
uniformly at random. This market is clearly asymmetric
with about a quarter of the goods highly desired. The
value of ¢ = 0.75. For this market, the number of
iterations seems to increase with increasing n.
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Figure 7: Number of iterations of tdtonnement as a
function of log(1/e). (a) For this market, both agent
desires and good endowments are generated using the
concentrated generators. The value of ¢ = 1.75. (b)
For this market, agent desires were generated with the
subset generator and the endowments of goods were

generated using the uniform generator. The value of
o=1.0.



