Moore's Law

Every 18 months, the speed of your com-
puter is doubled

Every 18 months, the memory on your com-
puter is doubled

At the same time, the cost of your com-
puter goes down - not quite exponentially,
because the box does not become much
cheaper!

A good number to look at

Cost of CPU time

Cost of human time

Rig70 =

1970 is the year

Different CPUs, different humans, etc.



Observation

R1945 >> 1000
R1g960 >> 100
Rigrg 510
Riggo ~ 1
Ro000 << 0.01

Unlike men, not all CPUs are created equal!
But then, most CPUs do not vote...

The thing is not slowing down, though even-
tually . . .

What should we be doing as applied math-
ematicians, numerical analysts, etc.?



Consequences

e Ticket reservations
e Phone systems

e Tactical bombing

e EXperimental science

e Manufacturing



Missing from the list

Philosophy

Theater

Politics

Dealing with teen-age children
Mathematics

Numerical simulation of physical phenom-
ena (777!



Subject of the Talk

Neither the numerical algorithms nor the
paradigms for their application have kept
pace with the developments of the com-
puter hardware

There are identifiable reasons for this, and
to some extent, remedies can be devised
and implemented

In several environments, the results have
been spectacular

The usual message of an extremist: we are
the future, with us or against us, victor or
victim

A somewhat different message for a math-
ematician



Structure of the Talk

Changing paradigm in the numerical use of
computers

Interaction of Moore’'s law with numerical
algorithms

Characteristics of a modern numerical al-
gorithm

Example: Gravitational n-body problem

Pontification



Paradigm as of 1945

Critical mission (Manhattan project, for ex-
ample)

Willingness to expend human time on pro-
gramming (ouch!), debugging of the nu-
merical scheme, interpretation

Limited computer resources: only small-
scale problems can be solved

Extremely uncomfortable programming en-
vironment

Air of heroism and desperation

No difference between theoretical numeri-
cal analysts and practitioners

Numerical approaches appropriate to small-
scale problems

Numerical algorithms usually written from
scratch



Paradigm as of 1970

Mission not necessarily critical (oil explo-
ration, NACA airfoils, more involved air-
dynamics, civil and mechanical engineer-
ing, rocket fuel stoichiometry, . . .)

Willingness to expend human time on pro-
gramming (still pretty uncomfortable), in-
terpretation

Much improved computer capabilities; CPU
time still quite expensive, but the flop rate
IS much higher; one can try running things
at night

The air much less heroic; most applications
IN non-desperate environments

Numerical algorithms appropriate to small-
scale problems

Most numerical codes are written from scratch



Paradigm as of 2000

Mission usually not critical: computer games,
medical imaging, design of fishing rods,
Boeing-767's . . .

Limited willingness to expend human time
on programming (could be fun, though!),
interpretation. . . and most interpreters
are not named Teller, Ulam, or Fermi. . .

Very much improved computer capabilities:
CPU time dirt cheap, and flop rate is about
to become gigaflop rate

Air not heroic at all: lots of applications,
and most in non-desperate environments

Numerical algorithms appropriate to small-
Sscale problems

Most numerical codes are written from scratch



The Purpose of a Modern Numerical
Algorithm

e Produce engineering (physical, biochemi-
cal, etc.) results with a minimum expendi-
ture of human time

e CPU time is irrelevant as long as it is af-
fordable (1)

e Note to the algorithm designer: torpedoes
should not be aimed at the present location
of the ship!



Illustration: Algorithms with CPU time
estimates O(n3), O(n - log(n))

Linear vs, cubic cost

e To a large extent, the choice of the algo-
rithm is determined by the power of one’'s
computer (1)



What do We Want from a
Numerical Algorithm?

Speed, in the asymptotic sense
Adaptivity
Robustness

Rapid convergence and controlled accuracy:
fallacy of the “engineering accuracy’ argu-
ment; high cost of low precision

Surprise: adaptivity implies controlled con-
dition numbers, implies (more or less) inte-
gral vs. differential equations, implies fast
algorithms

Related surprise: in order to be efficient
(or even simply useful), certain algorithms
have to be fairly complicated (think about
modern cars)



Numerical N-Body Problem

The calculation of all pairwise interactions in
a system of N particles requires O(N?) work.



Particle Simulations

> Molecular Dynamics

> Fluid Dynamics

> Plasma Physics

> Dislocations and Plastic Deformation

> Astrophysics



Integral Equations

> Capacitance calculations

> Dielectric interface problems
> Electrodeposition

> Elasticity

> Potential flow

> Incompressible Fluid Dynamics



Alternative Approaches

> Field Methods
(Based on Fast Solvers, FFT)

> Hierarchical Methods
(Based on clustering at varying spatial

scales)

> Wavelet, SVD Methods
(Based on compression of operators)

Critical Issues

e Speed e adaptivity e ease of use



Overview of the Remainder of the Talk

e Analytic Preliminaries

e A simple O(N log N) algorithm

e [ he original FMM

e [ he modern FMM

e Pontification



A simple example

M Targets

V(Q) = 7
jgl 1Q; — Pj“

Direct evaluation requires O(NM) work.

Newton knew how to fix it...



Multipole expansion
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The error in the multipole approximation decays like

(R/1Q)PT1.

—or our simple example, R/|Q| < 1/2, so that setting
» = l0g,(2) yields a precision of e.



Using multipole expansions

> Evaluate multipole coefficients M]* for
et ) R ;|

> Evaluate expansion at target points @y,
for 9 = 1, cawy M

> Total operation count: p? - (N + M) =
(N + M) - log?(%)



The Fast Multipole Method (FMM)

For more general distributions of sources and
targets, FMM couples previous analysis with a
divide & conquer strategy.

> Clustering at various spatial length scales

> Interactions with distant clusters computed
by means of multipole expansions

> Interactions with nearby particles com-
puted directly

> Fully adaptive algorithm
Performance essentially independent of par-
ticle distribution



Step 1: NlogN Scheme




Step 2: Nlog N Scheme




Step M: Nlog N Scheme




Final Step: Nlog N Scheme

Terminate procedure after O(logg(N)) steps.

Total operation count: O(N -logg N - p2),
where p = log, (1) and ¢ = 3/v/3 ~ 1.73.

_______________________________ \
\\\&

Nearest neighbors: O(N) work.



Optimization of constants

Assume that the distribution is uniform and
let s be the number of particles per box at the
finest level.

Multipole expansion work = 189 N p2 logg(N/s).
Nearest neighbor work = O(27N3s).

Optimal value for s is



Adaptive algorithm

II;II
b

Final stage of subdivision process.
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The order O(N) algorithm

i~ Several analytical prereguisites

> Richer structure

= Many possible variants



Translation of multipole expansion
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Construction of local expansion
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Translation of local expansion
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Complexity analysis

why N log N7

> Forming multipole expansions.

I Ewvaluating multipole expansions,

: AR
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Capture far field in local expansions

Leval M boxes

Level M+1
Children

> Use multipole to local translations

> Use translation of local expansion to trans-
mit intormation to children
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The order N algorithm

Upward Pass

> Form multipole expansions at finest level
(from source positions and strengths)

> Form multipole expansions at coarser lev-
els by merging

Downward Pass

> Account for intcractions at cach level by
conversion lemma

> Transmit information to finer levels by
shifting lemma

34



Total operation count

v : _
189 L p* + 2 Np2? 4+ 54N s

=

Setting s = 1.5 1:-2, the total operation count is

200 N p?.

Recall that the optimal Nlog N scheme re-
quired

189 N p2(1 +} log ?:'—;;"E) operations.
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Fast translations I: Rotation
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3p° work is required for each shift, so the total
operation count is

N
189 — 3p° + 2 N p? + 54N s.
Setting s = 3 p3/2, Lhe Llolal operalion count is

351 N p3/2 4+ 2N p2.
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Diagonal translation: (G & R, 1988)

> Based on observation that translations
are nearly convolutional

> Diagonalized by Fourier Transform

> Numerically unstable

> Can be stabilized by substructuring (Board
et al. 1995)

i



Operation count
N N
189 = (2p)2 + 2N p® + 54N s + — p° log p.
5 &
Setting s = 1.5p, the total operation count is

2
550 N p—+ 2N p° + SV plogp.
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> 2D scheme : Hrycak and Rokhlin {1995)
> Based on expansion in plane waves

> Reqguires additional analytical machinery

39



Exponential representation (+ 2)
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> Discretization of a integral: trapezoidal
rule

> Discretization of A integral: Laguerre or
generalized Gaussian quadrature (Yarvin
& Rokhlin, 1996)
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Exponential representation

Precision | p

Exp. Basis Fns.

107% 19
102 |29

103 10

52
258
670
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Exponential Translation
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Operation Count

N v
189 p2 - 2N p? 4+ 54N s 4+ 6— p°.
5 &

Setting s = 2p, the total operation count is

200 N p + 5N p2.
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Reducing the Interaction List

- ————— = - - ==

> Diagonal operators commute
p T =131
> Merge before translation

> Reduces number of interactions per box
to <40
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Sweeping Under the Rug:

> Numerical compression of translation op-
erators

> Harmonics exterior to a truncated cylin-
der, harmonics interior to a truncated cylin-
der, harmonics exterior to union of two
truncated cones, etc.

> Nasty formulae, fairly simple numerical
schemes

> A lot of fuss for a factor of two or so

45



Operation Count

N N .
40 —p? + 2N p° 4+ 54N s + 6— p3.
] &

Setting s = 1.5p, the total operation count is

ot
e

100 N p + 6N p2.
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Random Distribution Inside a Cube

3-digit accuracy, times in seconds on
UltraSPARC 1, 167 Mhz; calculations
performed in single precision

N | Levels | Tmm "

20000
50000
200000
500000
1000000 |

4

4
5
5
6

i, Error
13.3 233 [ 7.9:10*
24.7 1483 | 5.2-1074
158 | 24330 (8.4-10"%
268 | 138380 | 7.0-1074
655 563900 | 7.1.104
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Random Distribution Inside a Cube

6-digit accuracy, calculations performed in
single precision

N

20000
50000

200000

500000
11000000

Covels | Bhm | Tiie Error
3 156 233 |51-10-0
4 69| 1483 |2.8-107
4 198 | 24330 |4.9.10 7
5 586 | 138380 | 4.4 - 10"
5 1245 | 563900 | 4.4 - 10~
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Random Distribution Inside a Cube

9-digit accuracy, calculations performed in
double precision

| N | Levels | Ty | Tyw | Error
20000 3 34| 206 2.8.10°10
50000 3 06 | 1920 1.6-10-10
200000 4 385 | 30800 1.6-10-10
500000 | 4 1219 | 192600 | 1.2- 1010
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Distribution On a Complicated Surface

3-digit accuracy, calculations performed in
single precision

N Levels Ttpm | Tair Error
20880 7 67| 243 |22 .17
51900 8 17| 1539 |27

203280 9 60 | 24730 |3.4-107%
503775 10 164 141060 | 3.3-107%
1007655 10 = 282 568090 | 2.9-1074
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Distribution On a Complicated Surface

6-digit accuracy, calculations performed in
single precision

N JLevels [ Timm | Tuir Error
20880 7 17| 243 |1.3.10°°
51900 8 40| 1539 9.8.-10°%°

203280 9 149 | 24730 1.2.10°7
503775 9 323 | 141060 2.6.10° "
| 1007655 | 10 714 | 568090 2.0-10~7

o1



Distribution On a Complicated Surface

O9-digit accuracy, calculations performed in
double precisian

N

[Levels [ Trnm

IL#.T

20880
51900
203280
aU3 7o

) 46

T 101

a8 342
| 5

309
2020
32050

896 193900

Error

3.6.10" <
1.1.10~10
6.5.10 12
1.0-10"11
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Observations

> For uniform structures (worst case):

> Breakeven point less than 1000 for 3 to
4 digit accuracy

> Breakeven point around 2000 for © digit
accuracy

- Breakeven point around 3000 for 9 digit
accuracy

> No loss of accuracy due to adaptivity
> A black box, as per original plan

» | arge-scale problems manageable on desk-
top computers

b3



Post-Mortem

> A simple formulation (gravitational n-body
problem, integral equations of classical
potential theory)

> Fairly simple incantational solution (early
FMM schemes)

- T he scheme becomes somewhat involved
technically before becoming useful for any-
thing

- Combination of a little mathematics and
a fair amounl of engineering

> Temptation to be a crook

> We were lucky
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Now What 7

[>

A different set of bottlenecks and trade-
offs: discretization, convergence, etc.

Other potentials; Helmholtz, Yukawa, Hea
Wave Equation,...

Helmholtz potentials: at low frequencies
similar to Laplace; at high frequencies
quite different. In all regimes not quite
as simple as Laplace

Different types of equations: parabolic,
hyperbolic, etc.

Black boxes all
Applications, modifications, etc.

There are still some freepies |eft
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