Abstracts are printed as submitted by the authors.

Society for Industrial and Applied Mathematics
3600 Market Street, 6th Floor
Philadelphia, PA 19104-2688 USA
Telephone: +1-215-382-9800 Fax: +1-215-386-7999
Conference E-mail: meetings@siam.org
Conference web: www.siam.org/meetings/
Membership and Customer Service:
800-447-7426 (US & Canada) or +1-215-382-9800 (worldwide)
IC1
Equilibrium Analysis of Large Populations Dynamics

The first part of the talk will review several applications, including bird flocking, information percolation in social networks, valuation of exhaustible resources, high frequency market making, emissions regulation, for which models of large populations dynamics can be brought to bear. These models will be framed in the context of the theory of mean field games. The second part of the talk will present recent equilibrium existence results, and discuss some of the nagging computational challenges raised by the need for reasonable numerical approximations to these equilibria.

Rene Carmona
Princeton University
rcarmona@princeton.edu

IC2
Solving Stochastic Inverse Problems Using Sigma-Algebras on Contour Maps

We describe recent work on the formulation and numerical solution of stochastic inverse problems for determining parameters in differential equations with stochastic data on output quantities. The new approach involves approximating the generalized contour maps representing set-valued inverse solutions, using the approximate contour maps to define a geometric structure on events in the sigma-algebra for the probability space on the parameter domain, and exploiting the structure to define and approximate probability distributions in the space. We will present various examples, including high-dimensional problems involving spatially varying parameter fields in storm surge models.

Donald Estep
Colorado State University
estep@math.colostate.edu or don.estep@gmail.com

IC3
Computational Biology in the 21st Century: Making Sense out of Massive Data

The last two decades have seen an exponential increase in genomic and biomedical data, which will soon outstrip advances in computing power to perform current methods of analysis. Extracting new science from these massive datasets will require not only faster computers; it will require smarter algorithms. We show how ideas from cutting-edge algorithms, including spectral graph theory and modern data structures, can be used to attack challenges in sequencing, medical genomics and biological networks.

Bonnie Berger
Department of Mathematics
Massachusetts Institute of Technology
bab@theory.lcs.mit.edu

IC4
The Evolution of Combinatorial Solvers for Laplacian Linear Systems

Fast solvers that are based on combinatorial techniques have been investigated for more than two decades now. The most successful of these (at least theoretically) solve symmetric diagonally linear systems, a class that includes Laplacians of graphs. The talk will describe these techniques, starting with Vaidya’s 1991 solver and ending with very recent algorithms by Kelner and others. The talk will focus on how the graph-matrix isomorphism is used in these solvers, on the class of matrices that they can be applied to, and on the gap between theory and practice in this area.

Sivan A. Toledo
Tel Aviv University
stoledo@tau.ac.il

IC5
Optimization Algorithms for Machine Learning

The extraordinary success of search engines, recommendation systems, and speech and image recognition software suggests that future advances in these technologies could have a major impact in our lives. In this talk, we discuss modern intelligent-algorithmic systems based on sophisticated statistical learning models and powerful optimization techniques. One can envision new algorithms that operate in the stochastic or batch settings, and that take full advantage of parallelism. We review our remarkable understanding of classical stochastic approximation techniques, and pose some open questions. The lecture concludes with a discussion of modern neural nets and the demands they impose on optimization methods.

Jorge Nocedal
Department of Electrical and Computer Engineering
Northwestern University
nocedal@eeecs.northwestern.edu

IC6
The Mathematical Problems of Isotropic-Nematic Interface

Liquid crystals represent a vast and diverse class of anisotropic soft matter materials which are intermediate between isotropic liquids and crystalline solids. The various liquid crystal phases can be characterized by the type of ordering; one of the most common liquid crystal phases is the isotropic phase, another is the nematic phase. In this talk, a wide spectrum of mathematical problems of isotropic-nematic interface will be considered. One set of problems to be considered is the relationship between these different levels of modeling, for example how one can make a rigorous passage from molecular/statistical descriptions to continuum theories. Special consideration will be given to the existence, uniqueness and regularity of the solutions of the Landau-de Gennes theory.

Pingwen Zhang
Peking University
pzhang@pku.edu.cn

IC7
The Statistics Behind the Discovery of the Higgs Boson

The standard model of particle physics is a wildly successful theory of fundamental particles and their interactions. The Higgs boson is a particle that was predicted nearly 50 years ago to address a serious theoretical consistency issue in the Standard Model of particle physics, but it has never been observed. The Large Hadron Collider is a multi-national, multi-billion dollar experiment to search for the Higgs boson and other new phenomena. I will discuss
the statistical aspects of the recent discovery of the Higgs boson, including the collaborative statistical modeling of the data and the statistical procedures we employ. With multi-petabyte datasets and complex statistical models, we are arguably pushing a frontier of statistical analysis and quickly outstripping our most advanced tools.

Kyle Cranmer
New York University
kyle.cranmer@nyu.edu

IP2
Big Data, Sparse Information: Bayesian Inference for Large-scale Models, with Application to Inverse Modeling of Antarctic Ice Sheet Dynamics

Predictive models of complex geosystems often contain numerous uncertain parameters. Rapidly expanding volumes of observational data present opportunities to reduce these uncertainties via solution of inverse problems. Bayesian inference provides a systematic framework for inferring model parameters with associated uncertainties from (possibly noisy) data and prior information. However, solution of Bayesian inverse problems via conventional MCMC methods remains prohibitive for expensive models and high-dimensional parameters. Observational data, while large-scale, typically can provide only sparse information on model parameters. Based on this property we design MCMC methods that adapt to the structure of the posterior probability and exploit an effectively-reduced parameter dimension, thereby rendering Bayesian inference tractable for high-dimensional Antarctic ice sheet flow inverse problems.

Omar Ghattas
The University of Texas at Austin
omar@ices.utexas.edu

IP3
Pattern Recognition with Weakly Coupled Oscillatory Networks

One outstanding property of biological neural networks is the ability to perform pattern recognition tasks. To mimic this property with a man-made device that processes information in parallel has been a great challenge. Traditional approaches employ many interconnected units and are inherently difficult to construct. In the lecture, we will focus on neural network models of weakly coupled oscillators with time-dependent coupling. In these models, each oscillator has only one or a few connections to a common support, which makes them predestined for hardware implementation. We will discuss the dynamics of different network architectures, compare their scalability, present experimental realizations of the networks and point out open challenging mathematically problems.

Katharina Krischer
Technische Universität München
krischer@ph.tum.de

IP4
Scientific Computing in Movies and Virtual Surgery

New applications of scientific computing for solid and fluid mechanics problems include simulation of virtual materials for movie special effects and virtual surgery. Both disciplines demand physically realistic dynamics for such materials as water, smoke, fire, and brittle and elastic objects. These demands are different than those traditionally encountered and new algorithms are required. This talk will address the simulation techniques needed in these fields and some recent results including: simulated surgical repair of biomechanical soft tissues, extreme deformation of elastic objects with contact, high resolution incompressible flow, clothing and hair dynamics. Also included is discussion of a new algorithm used for simulating the dynamics of snow in Disneys animated feature film, "Frozen".

Joseph Teran
UCLA
jteran@math.ucla.edu

IP5
Big Data Visual Analysis

We live in an era in which the creation of new data is growing exponentially such that every two days we create as much new data as we did from the beginning of mankind until the year 2003. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most important tools to understand such large and often complex data. In this talk, I will present state-of-the-art visualization techniques,
including ways to visually characterize associated error and uncertainty, applied to Big Data problems in science, engineering, and medicine.

Christopher Johnson
University of Utah
Department of Computer Science
crj@sci.utah.edu

IP6
Virtual Electrophysiology Laboratory
We present the development of a highly innovative patient-specific MRI-based heart modeling environment that represents cardiac functions from molecular processes to electrophysiological and electromechanical interactions at the organ level. This environment is termed "virtual electrophysiology lab". We present our attempts to translate this environment into the clinic and apply it to the non-invasive diagnosis and treatment of heart rhythm and contractile disorders in patients with structural heart disease. This pioneering effort offers to integrate, for the first time, computational modeling of the heart, traditionally a basic-science discipline, within the milieu of contemporary patient care. The robust and inexpensive non-invasive approaches for individualized arrhythmia risk stratification and guidance of electrophysiological therapies presented here are expected to lead to optimized therapy delivery and reduction in health care costs.

Natalia A. Trayanova
Johns Hopkins University
Institute for Computational Medicine
ntrayanova@jhu.edu

IP7
Unilever, Science and eScience: The Challenges Ahead
Unilever is a large multinational and a market leader in the fast moving consumer goods business, with well known products in the sectors of home care, personal care, refreshments and foods. We are embracing new ways of doing R&D to deliver bigger, better, faster innovations to market. The digital revolution, eScience, is already permeating everything we do at home: how could we pay our bills without eBanking, connect with our friends without Facebook, or find our way around without SatNav? The same revolution is helping us move faster at work. But how can we make this digital eScience revolution work for us?

Massimo Noro
Unilever, United Kingdom
Massimo.Noro@Unilever.com

IP8
Evolutionary or Revolutionary? Applied Mathematics for Exascale Computing
The move to exascale computing is expected to be disruptive due to significant changes in computer architectures. Advances in applied mathematics will be necessary to rationalize the full potential of these supercomputers, but will these advances be incremental changes to existing methods or will exascale computing require a substantial rethinking of how we compute? To answer this question, the DOE Advanced Scientific Computing Research Program chartered a working group, which Dr. Hittinger co-chaired. In this talk, he will discuss the findings of the working group: the opportunities for new applied mathematics research that will enable exascale computing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-645318.

Jeffrey A. Hittinger
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
hittinger1@llnl.gov

IP9
Physics-based Animation Sound: Progress and Challenges
Decades of advances in computer graphics have made it possible to convincingly animate a wide range of physical phenomena, such as fracturing solids and splashing water. Unfortunately, our visual simulations are essentially "silent movies" with sound added as an afterthought. In this talk, I will describe recent progress on physics-based sound synthesis algorithms that can help simulate rich multi-sensory experiences where graphics, motion, and sound are synchronized and highly engaging. I will describe work on specific sound phenomena, and highlight the important roles played by precomputation techniques, and reduced-order models for vibration, radiation, and collision processing.

Doug L. James
Cornell University
djames@cs.cornell.edu

SP1
AWM-SIAM Sonia Kovalevsky Lecture: The Evolution of Complex Interactions in Non-Linear Kinetic Systems
Recent developments in statistical transport modeling, ranging from rarefied gas dynamics, collisional plasmas and electron transport in nanostructures, to self-organized or social interacting dynamics, share a common description based in a Markovian framework of birth and death processes. Under the regime of molecular chaos propagation, their evolution is given by kinetic equations of non-linear collisional (integral) Boltzmann type. We will present an overview of analytical issues and novel numerical methods for these equations that preserve the expected conserved properties of the described phenomena, while enabling rigorous stability, convergence and error analysis.

Irene M. Gamba
Department of Mathematics and ICES
University of Texas
gamba@math.utexas.edu

SP2
Fast, Accurate Tools for Physical Modeling in Complex Geometry
During the last two decades, fast algorithms have brought a variety of large-scale physical and biophysical modeling tasks within practical reach. This is particularly true of integral equation approaches to electromagnetics, acoustics, gravitation, elasticity, and fluid dynamics. The practical application of these methods, however, requires analytic representations that lead to well-conditioned linear systems, quadrature methods that permit the accurate evaluation of boundary integrals with singular kernels, and techniques for a posteriori error estimation that permit robust
mesh refinement. I will give an overview of recent progress in these areas with a particular emphasis on wave scattering problems in complex geometry.

Leslie Greengard
Courant Institute
New York University
greengar@cims.nyu.edu

SP3
W. T. and Idalia Reid Prize in Mathematics Lecture: On the Master Equation in Mean Field Theory

One of the major founders of Mean Field Games, P.L. Lions has introduced in his lectures at College de France the concept of Master Equation. It is obtained through a formal analogy with the set of partial differential equations derived for the Nash equilibrium of a differential game with a large number of players. The objective of this lecture is to explain its derivation, not by analogy, but through its interpretation. We do that for both Mean Field Type Control and Mean Field Games. We obtain complete solutions in the linear quadratic case. We analyze the connection with Nash equilibrium.

Alain Bensoussan
The University of Texas, at Dallas
AXB046100@utdallas.edu

SP4
I. E. Block Community Lecture: Search and Discovery in Human Networks

In the past few years, we have seen a tremendous growth in public human communication and self-expression, through blogs, microblogs, and social networks. In addition, we are beginning to see the emergence of a social technology stack on the web, where profile and relationship information gathered by some applications can be used by other applications. This technology shift, and the cultural shift that has accompanied it, offers a great opportunity for computer scientists, artists, and sociologists to study (and organize) people at scale. In this talk I will discuss how the changing web suggests new paradigms for search and discovery. I will discuss some recent projects that use web search to study human nature, and use human nature to improve web search. I will describe the underlying principles behind these projects and suggest how they might inform future work in search, data mining, and social computing.

Sep Kamvar
Massachusetts Institute of Technology, USA
sdkamvar@mit.edu

SP5
Julian Cole Lecture: Growth, Patterning, and Control in Nonequilibrium Systems

Dense-branching morphologies are among the most common forms of microstructural patterning in systems driven out of equilibrium. Prediction and control of the emergent patterns are difficult due to nonlocality, nonlinearity and spatial heterogeneity. Focusing on viscous fingering in a circular Hele-Shaw cell as a paradigm for such phenomena, we use theory and numerics to demonstrate that by controlling the injection rate of the less viscous fluid, we can precisely suppress the evolving interfacial instabilities and control the shape of growing bubbles. Experiments confirm the feasibility of the control strategy. Extensions to other pattern-forming systems will be discussed.

John Lowengrub
Department of Mathematics
University of California at Irvine
lowengrb@math.uci.edu

SP6
Theodore Von Karman Prize Lecture: Materials from Mathematics

We present examples of new materials whose synthesis was guided by some essentially mathematical ideas from pde and the calculus of variations. These materials undergo phase transformations from one crystal structure to another, without diffusion. The underlying mathematical theory was designed to identify alloys that show exceptional reversibility of the transformation. The new alloys do show unprecedented reversibility, but raise fundamental new questions for theory. Some of these alloys convert heat to electricity (without a separate electrical generator), and provide an interesting possible route to recover the vast amounts of energy stored on earth at small temperature difference. The lecture will be mathematically/experimentally nontechnical and suitable for a broad audience. (http://www.aem.umn.edu/ james/research/)

Richard James
Department of Aerospace Engineering and Mechanics
University of Minnesota
james@umn.edu

CP1
Filtering Algorithm For Pod-Based Reduced Order Modeling Techniques

Principal component analysis (PCA) is a technique that can be used to determine the most important components on a set of varying data. PCA algorithms produces statistically independent score variables that determines the importance of each component. In this manuscript, we introduce a new filtering algorithm that can be used to down-select a smaller number of directions from the POD-determined basis in order to render a more effective reduction of dimensionality. The error resulting from this filtering can be upper bounded using a randomized range finding algorithm (RFA), employed in some of our previous developments. A neutron transport model is used to demonstrate the proof of principle and exemplify the implementation and mechanics of the proposed algorithm. The proposed algorithm can be classified as a PCA algorithm, yet, it uses the error metric associated with the RFA to generate a set of principal components with a certain probability.

Hany S. Abdel-Khalik
North Carolina State Univ.
abdelkhalik@ncsu.edu

Bassam A. Khuwaileh
North Carolina State University
bakhxuai@ncsu.edu

CP1
An Efficient Output Error Bound for Reduced Basis Methods Applied to Parametrized Evolution
Equations

We present an efficient a posteriori output error bound for the reduced basis method applied to nonlinear parameterized evolution equations. With the help of a dual system and a simple representation of the residual in the primal system, the output error can be estimated sharply. Such an error bound is successfully applied to reduced order modeling of nonlinear chromatography, and the underlying optimization can be solved efficiently using the reduced model.

Yongjin Zhang
Max Planck Institute for Dynamics of Complex Technical Systems
zhangy@mpi-magdeburg.mpg.de

LiHong Feng
Max Planck Institute for Dynamics of Complex Technical Systems
feng@mpi-magdeburg.mpg.de

Suzhou Li
Max Planck Institute for Dynamics of Complex Technical Systems, Germany
suzhou@mpi-magdeburg.mpg.de

Peter Benner
Max Planck Institute, Magdeburg, Germany
benner@mpi-magdeburg.mpg.de

CP1

Employing Non-Converged Iterates for Reduced Order Modeling

Recently, reduced order modeling (ROM) is being used in various engineering fields. Model-specific basis can be constructed utilizing a randomized range finding algorithm (RFA) where snapshots of the models response are used to construct the basis. However, this process might be computationally taxing. This work proposes an algorithm that utilizes the non-converged iterates of the model of interest to construct the basis. A mathematical proof showed that the resulting subspace in equivalent to that constructed using the converged snapshots. The two subspaces were compared numerically in terms of the dominant angle and an error metric that has been developed in a previous work. Results indicate that the proposed algorithm produces a subspace that is representative and inclusive of the subspace obtained by the converged snapshots. In addition to that, a numerical test is implemented to illustrate the application of the proposed algorithm in nuclear engineering design calculations.

Bassam A. Khuwaildeh
North Carolina State University
bakhuwai@ncsu.edu

Congjian Wang
NCSU
cwang21@ncsu.edu

Youngsuk Bang
Department of Nuclear Engineering, North Carolina State University, P.O.Box 7909, Raleigh, NC 27695, USA
ybang@ncsu.edu

Hany S. Abdel-Khalik
North Carolina State Univ.
CP2
Two-Point Riemann Problem for Inhomogeneous Conservation Laws: Geometric Construction of Solutions

We consider the following conservation law: \(\partial_t u(x, t) + \partial_x f(u(x, t)) = g(u) \) The following boundary conditions are specified: \(u(0, 0, t) = u_{0-} \) and \(u(X + 0, t) = u_{X+} \). In addition, we specify the initial condition \(u(x, 0) = u_{0} \) for \(x \in (0, X) \). Method of characteristics is used to show the evolution of the initial profile and the discontinuities at the boundaries as well as appearance and in some cases disappearance of internal discontinuities. For illustration purposes the function \(f(u) \) will be assumed to have 3 critical points.

Dmitry A. Altshuller
Dassault Systemes
altshuller@ieee.org

Christian Ringhofer
Arizona State University & Technical University Vienna (TU Vienna)
christian.ringhofer@asu.edu

CP2
On Eigenfunction Expansion Solutions for the Start-Up of Fluid Flow

Textbooks describe the process of “subtracting off” the steady state of a linear parabolic PDE as means for obtaining a homogeneous BVP to solve by eigenfunction expansions. While this works for the start-up problem for a Newtonian fluid between parallel plates, it leads to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show this is due to non-rigorous enforcement of the start-up condition, violating the principle of causality.

Ivan C. Christov
Princeton University
christov@alum.mit.edu

CP2
Transport in Confined Structures As a Multiscale Problem and Numerical Results for Nanopores

Charge transport through confined structures such as nanopores differs from transport in bulk. Confined structures give rise to multiscale problems; more precisely, transport and scattering occur in the longitudinal direction, while the particles are confined in the two transversal directions. We have derived a conservation law of the form \(\partial_t \rho(x, \eta, t) + \partial_x F^\rho(x, \eta, t) + \partial_\eta F^\eta(x, \eta, t) = 0 \) from the Boltzmann equation, where \(\rho \) is the concentration, \(\eta \) is energy, and \(F^\rho \) and \(F^\eta \) are fluxes given explicitly by the harmonic confinement potential. We also present several recent numerical results for artificial nanopores and for ion channels such as certain antibiotics.

Clemens F. Heitzinger
Arizona State University & Technical University Vienna (TU Vienna)
Clemens.Heitzinger@asu.edu

Christian Ringhofer
School of Mathematical and Statistical Sciences
Arizona State University (ASU)

CP2
A Free Boundary Approach for Solving a Two-Dimensional Riemann Problem for the Isentropic Gas Dynamics Equations

We consider a two-dimensional Riemann problem for the isentropic gas dynamics equations modeling strong (or transonic) regular reflection. We write the problem in self-similar coordinates and obtain a free mixed boundary problem for the reflected shock and the subsonic state behind the shock. Using the theory of 2nd order elliptic equations with mixed boundary conditions as well as various fixed point arguments, we prove existence of a solution to the above Riemann problem in a neighborhood of the reflection point.

Katarina Jegdic
University of Houston-Downtown
JegdicK@uhd.edu

CP2
Singular Behavior of the Navier Stokes Flow Through a Non-Convex Polyhedral Cylinder

This result is a mathematical background to solve the compressible flow near the sharp edge. We consider the compressible viscous Navier-Stokes equations in a non-convex polyhedral cylinder. We split the edge singularity occurring at the non-convex edge from the velocity vector and show the high regularity for the velocity remainder. The local sound wave is propagated into the region along the streamline emanated from the non-convex edge and its derivatives blow up across the streamline.

Oh Sung Kwon
Postech
jamjjari@gmail.com

Jae Ryong Kweon
POSTECH(Pohang University of Science and Technology)
Korea
kweon@postech.ac.kr

CP2
Higher Order Analyses of Laminated Composite Shells and Plates

The free Vibration analyses of laminated cylindrical shells by using higher order shear deformation theories. Equilibrium equations are formulated using the equations of stress resultants to attain a system of differential equations and are solved for free vibrations. Boundary conditions considered are simply supported and lamination is cross ply. The third orders shear deformation theory of that considers transverse normal stress, shear deformation and rotary inertia has been developed and used. An exact analytical solutions and boundary condition of shell has been obtained. The (first five) natural frequency parameters are reported and compared with previously published research using a first order approximation. Results are also compared with an accurate 3D finite element analyses.

Mohammad Zannon
Central Michigan University
zanno1ms@cmich.edu
Mohamad Qatu
CMU
qatu1ms@cmich.edu

Leela Rakesh
Central Michigan University
Applied Mathematics Group
LRakesh@aol.com

CP3
Pushing and Showing in Hallways and Doorways

We investigate the location of macroscopic equilibrium states, both stable and unstable, in systems of interacting particles, modelling the evolution of flocks, swarms and pedestrian crowds constrained by walls and obstacles. Unstable equilibrium states provide valuable information about qualitative system behaviour, boundaries between stability regions, and transitions between modes of flow. Equation-free methods connecting macroscopic and microscopic descriptions are employed to perform analysis and parameter continuation of equilibria and bifurcation points.

Poul G. Hjorth
Technical Univ of Denmark
Department of Mathematics
pghj@dtu.dk

Kristian Berg Thomsen, Christian Marschler
Technical University of Denmark
Department of Mathematics and Computer Science
kristianbthomsen@gmail.com, chrms@dtu.dk

Jens Starke
Technical University of Denmark
Department of Mathematics
j.starke@mat.dtu.dk

CP3
Spatial Localization in Heterogeneous Systems

We study spatial localization in the generalized Swift-Hohenberg equation

$$u_t = r(x)u - (1 + \partial_{xx})^2 u + N(u)$$

with either quadratic-cubic or cubic-quintic nonlinearity $N(u)$ subject to spatially heterogeneous forcing through the spatially varying parameter $r(x)$. Different types of forcing with different spatial scales are considered and the corresponding localized structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments where departures from spatial homogeneity are unavoidable.

Hsien-Ching Kao
Wolfram Research Inc.
sp000088@gmail.com

Cédric Beaume, Edgar Knobloch
Department of Physics
University of California at Berkeley
ced.beaume@gmail.com, knobloch@physics.berkeley.edu

CP3
Billiard Dynamics of Bouncing Dumbbell

A system of two masses connected with a weightless rod (called dumbbell) interacting with a flat boundary is considered. The sharp bound on the number of collisions with the boundary is found using billiard techniques. In case the ratio is large and the dumbbell rotates fast, an adiabatic invariant is obtained.

Ki Yeun Kim
University of Illinois at Urbana-Champaign
Department of Mathematics
kkin97@illinois.edu

Yuliy Baryshnikov
University of Illinois at Urbana-Champaign
department of Mathematics
ymb@uiuc.edu

Victoria Blumen, Vadim Zharnitsky
University of Illinois at Urbana-Champaign
veblumen@illinois.edu, vzh@illinois.edu

CP3
Solitary Waves and the N-particle Algorithm for a Class of Euler-Poincaré Equations

Nonlinearity arises generically in mathematical models of physical phenomena, and the interplay between nonlinearity and dispersion is thought to be responsible for many of these phenomena, such as the existence of traveling waves. We explore the relation between nonlinearity and dispersion by studying the N-particle system of the Euler-Poincaré differential equations, or the EPDiff equations. In particular, we illustrate the existence and dynamics of traveling wave solutions of the EPDiff equations. Solitary waves for this class of equations can be made to correspond to interacting particles of a finite-degree-of-freedom Hamiltonian system. We analyze the dynamics of two-solitary wave interaction and show that two solitons can either scatter or capture each other. The scattering or capture orbits depend on the singularity level of the solitons, while singularity of a soliton is determined by the power of the linear elliptic operator associated with the EPDiff equations.

Long Lee
Department of Mathematics
University of Wyoming
lllee@uwyo.edu

Roberto Camassa
University of North Carolina
camassa@amath.unc.edu

Dongyang Kuang
University of Wyoming
dkuang@uwyo.edu

CP3
The Gaussian Semiclassical Soliton Ensemble

We study a particular family of perturbed initial data for the focusing nonlinear Schrödinger equation. This family of data arises naturally in the analysis of the zero-dispersion limit. However, the ellipticity of the associated modulation
equations raises questions about the impact of even small perturbations of the data. Remarkably, our experiments show that the rate of convergence of the perturbed data to the true data is propagated to positive times including times after wave breaking.

Gregory Lyng
Department of Mathematics
University of Wyoming
glyng@uwyo.edu

CP3
Phyllotaxis As a Pattern-Forming Front

Some of the most spectacular patterns in the natural world can be found on members of the plant kingdom. Furthermore, the regular configurations of organs on plants, collectively termed phyllotaxis, exhibit a remarkable predisposition for Fibonacci-like progressions. Starting from a biochemical and mechanical growth model, we derive a PDE similar to the classic Swift-Hohenberg equation and find that nearly every property of Fibonacci phyllotaxis can be explained as the propagation of a pushed pattern-forming front.

Matthew Pennybacker
University of New Mexico
pennybacker@math.unm.edu

CP4
Automatic Segmentation of Microscopy Images Based on the Starlet Wavelet Transform

We propose an automatic method based on starlet wavelets to perform the segmentation of photomicrographs. The proposed segmentation method is given applying starlets in an input image, resulting in L detail levels. First and second detail levels are ignored; then, third to last detail levels are summed. From the original image and its Ground Truth, Matthews Correlation Coefficient (MCC) is calculated for each level application. Therefore, the optimal segmentation level has the highest MCC.

Alexandre F. De Siqueira, Flávio Cabrera, Wagner Nakasuga
DFQB - Faculty of Sciences and Technology
UNESP - Univ Estadual Paulista
siqueiraaf@gmail.com, flaviocabrera@yahoo.com.br, wanassa@gmail.com

Aylton Pagamisse
DMC - Faculty of Sciences and Technology
UNESP - Univ Estadual Paulista
aylton@fct.unesp.br

Aldo Job
DFQB - Faculty of Sciences and Technology
UNESP - Univ Estadual Paulista
job@fct.unesp.br

CP4
The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks

We present a new multiscale transform for data on graphs and networks which is a generalization of the classical Haar and Walsh-Hadamard Transforms. Using a recursive partitioning of the graph, the transform generates an overcomplete dictionary of piecewise-constant orthonormal bases. We adapt the best-basis selection algorithm to this setting, allowing us to choose a basis most suitable for the task at hand. We conclude with some results from approximation and classification experiments.

Jeffrey Irion
UC Davis
jlirion@math.ucdavis.edu

Naoki Saito
Department of Mathematics
University of California, Davis
saito@math.ucdavis.edu

CP4
Alternating Direction Approximate Newton (ADAN) Method for Partially Parallel Imaging

ADAN method is developed for problems that arise in partially parallel magnetic resonance image reconstruction (PPI). The reconstruction amounts to solving a problem of the form \(\min \{ \phi(Bu) + 1/2 \| Au - f \|^2 \} \), where \(u \) is the image. It is shown that ADAN converges to a solution of the image reconstruction problem without a line search. It performs at least as well as the recent variable stepsize Bregman operator splitting algorithm (BOSVS), which requires a line search and a suitable choice for many algorithm parameters.

William Hager, Cuong K. Ngo
University of Florida
Department of Mathematics
hager@ufl.edu, ngocuong@ufl.edu

Maryam Yashtini
Department of Mathematics
University of Florida
myashtini@ufl.edu

Hongchao Zhang
Department of Mathematics and CCT
Louisiana State University
hohzhang@math.lsu.edu

CP4
Topology and Numerical Analysis in Molecular Simulations

Topological changes are significant during molecular simulations. Our research focuses upon accurate display of these changes through dynamic visualizations to domain scientists. Most topological characteristics are formulated in terms of infinite precision, raising challenges within the approximations seen for graphics. Problems and partial solutions will be presented.

Thomas J. Peters
University of Connecticut
tpeters@engr.uconn.edu

CP4
Per-Class Pca-Src: Increased Flexibility and Specificity in Sparse Representation-Based Classification

Sparse Representation-based Classification (Wright, et al.) seeks the sparsest decomposition of test samples over the dictionary of training samples. This method assumes that
the number of classes is large and test samples lie in the linear subspaces spanned by their class’ training data. We propose a modification that builds class-specific dictionaries containing approximate bases to points on the class manifold using the ‘local PCA’ technique of Singer, et al. We show our modifications improve performance.

Chelsea Weaver
University of California, Davis
caweaer@math.ucsd.edu

Naoki Saito
Department of Mathematics
University of California, Davis
saito@math.ucsd.edu

CP4
Synchrosqueezed Wave Packet Transforms and Diffeomorphism Based Spectral Analysis for 1D General Mode Decompositions

We develop new theory and algorithms for 1D general mode decompositions. First, we introduce the 1D synchrosqueezed wave packet transform (SSWPT) and prove its ability to estimate the instantaneous information of well-separated modes from their superposition. The SSWPT has a better resolution than the synchrosqueezed wavelet transform. Second, we present a new approach based on diffeomorphisms for the spectral analysis of general shape functions. These two methods lead to a framework for general mode decompositions.

Haizhao Yang
Stanford University
haizhao@math.stanford.edu

CP5
Two Mode Matrix of Urban Structure

We present an urban network that takes into account how streets and neighborhoods interact and influence each other. This two-mode structure presents another approach to analyze urban environments. We use GIS to construct a network map of an American city and then apply network analysis to evaluate how the network structure influences such features as traffic flow, density and housing considerations. Also, given the rise of African cities, where some are being completely designed and developed in lieu of developing organically, the results of this project will make recommendations for effective metropolitan growth structures.

James R. Gatewood
Rensselaer Polytechnic Institute
james.gatewood@usma.edu

CP5
Classifying Contagion Dynamics on a Noisy Network Using Persistent Homology

A contagion can exhibit complicated dynamics on a network and its spread may be constrained by an underlying geometry. We embed nodes of a complex-contagion model on a manifold (e.g. \mathbb{R}^2). We study the extent that a contagion adheres to the underlying geometry with noisy non-geometric edges by embedding the nodes as points in a metric space and analyse the geometrical/topological properties. We leverage our results to obtain insight into nonlinear dimension reduction.

Heather Harrington
University of Oxford
harrington@maths.ox.ac.uk

CP5
On Continuous Time Bounded Confidence Opinion Dynamics with Multidimensional Opinions

In the bounded confidence opinion dynamics model, the opinion of each agent is only affected by other agents whose opinions lie within a confidence bound. In the case of continuous time bounded confidence opinion dynamics model with scalar opinions, trajectories have been proven to reach an equilibrium asymptotically in time. We generalize this result for vector opinions by introducing Dissipation functions and studying omega-limit sets of the trajectories.

Serap Tay, Muruhan Rathinam
University of Maryland, Baltimore County
seratay1@umbc.edu, muruhan@umbc.edu

CP5
Numerical Study on G-Expectation

We will present some numerical methods for the G-Heat equation which is related to the nonlinear expectation, introduced by Shige Peng:

$$u_t - G(D^2 u) = 0, \quad (x, t) \in \mathbb{R}^d \times (0, T); \quad u(x, 0) = \phi(x),$$

where $G(A) = \sup_{Q \in \Theta} (\text{tr}(AQ))$, $\Theta \subset S_+(n) = \{BB^t : B \in \mathbb{R}^{n \times n}\}$. Numerous numerical experiments will be carried out to show the efficiency, accuracy and stability of the proposed methods. The effect of the boundary conditions is also numerically investigated. Some numerical analysis is given to show the convergence of the numerical solutions to the viscous solutions of the G-Heat equation.

Xingye Yue
Soochow University, Suzhou, China
Support System for Mathematical Models Based on Optimization Problems of Economic Agents

This paper presents a support system for economic modeling. It supports development, numerical computations and analytical study of models. It also controls balances and dimensions of a model for correctness and consistency. It was successfully applied to intertemporal equilibrium models of the Russian and the Kazakhstan economies. The system is particularly efficient for structures similar to general economic equilibrium with nonstandard descriptions of agents. The system is supplemented by special procedures of regularization of complementary slackness conditions, subsystem for analysis of stationary (or more exactly self-similar) solutions, based on the dimensions of the system, as well as an algorithm for solving the model as a boundary value problem and its implementation on a supercomputer.

Aleksandra A. Zhukova
Computing Center of RAS
Division of mathematical modelling of economy
sasha.mymail@gmail.com

Igor Pospelov
Computing Center of RAS
na

Mikhail Khokhlov
Yandex LLC
na

Valentin Vrzhesh
Computing Center of RAS
na

Solution of a 2D Electrodiffusion Problem: Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

In screen-printed silicon-crystalline solar cells, the presence of a thin interfacial glass layer of varying thickness between the silicon and silver electrode inhibits electron flow. In this paper we analyze a model for electron transport across the glass, based on the 2D drift-diffusion equations. We solve the model numerically using a spectral method and compare results to asymptotic solutions. We are able to determine the effect of different glass layer topographies on the contact resistance.

Jonathan P. Black, Christopher Breward
University of Oxford
black@maths.ox.ac.uk, breward@maths.ox.ac.uk

Peter D. Howell
University of Oxford
Mathematical Institute
howell@maths.ox.ac.uk

Gareth Fuge
DuPont (UK) Ltd
gareth.fuge@dupont.com

Eigenvalue Problems for Rapidly Growing Operators in Divergence Form

In an Orlicz-Sobolev setting, the spectrum of an exponential type perturbation of the Laplace operator is completely characterized by means of an asymptotic analysis of a class of eigenvalue problems involving the p-Laplacian. This talk is based on joint work with Mihai Mihăilescu (University of Craiova and “Simion Stoilow” Institute of Mathematics of the Romanian Academy, Bucharest, Romania).

Marian Bocea
Loyola University Chicago
mbocea@luc.edu

Simulating Non-Dilute Transport in Porous Media Using a TCAT-Based Model

Predicting the transport of non-dilute species in fluids of variable density in porous media is a challenging problem. We use a thermodynamically constrained averaging theory (TCAT)-based model, which consists of a flow equation, a species transport equation, and closure relations. We rewrite the model as a system of two partial differential-algebraic equations. We use a stiff temporal integrator to perform 1D simulations. The model is nonlinear and non-smooth. We will discuss results and numerical difficulties.

Deena Hannoun Giffen
NCSU
dhannou@ncsu.edu

C.T. Kelley
North Carolina State University
ctk@ncsu.edu

Casey Miller, William Gray, Pamela Schultz
University of North Carolina
casey.miller@unc.edu, wggray@unc.edu, pbs@email.unc.edu

A General Methodology for Approximating the Discrete Chemical Master Equation with Short Range Spatial Correlations in Homogeneous Systems

The chemical master equation is used to describe a wide variety of chemical kinetic processes, however the resulting system is posed in an infinite dimensional space. Often, this system is solved via realizations of stochastic differential equations via kinetic Monte Carlo methods, however these techniques may have high computational cost and require statistical sampling over many realizations. In cases where the system of interest may be assumed to have short range spatial correlations and have translational symmetries, we demonstrate a general methodology of approximating the chemical master equation by a finite dimensional system of ordinary differential equations. We then demonstrate this methodology with a concrete example of surface catalysis and compare our results with those from...
kinetic Monte Carlo simulations.

Gregory J. Herschlag
Department of Mathematics
University of North Carolina at Chapel Hill
gjh@math.duke.edu

CP6
On the Initial-Boundary Value Problem for the Korteweg-De Vries Equation

The Korteweg-de Vries Equation (KdV Equation) is one of the most important nonlinear PDEs of applied mathematics. We will discuss the initial-boundary problem for the PDE and show, depending on boundary conditions, that it can behave like a hyperbolic PDE such as the wave equation and has time reversible solutions, and it can also behave like a parabolic equation such as the heat equation and has smooth solutions that are not time reversible.

Steve Taylor
University of Auckland, New Zealand
taylor@math.auckland.ac.nz

CP6
Transmission Eigenvalues for Regions on a Conducting Surface

We consider the interior transmission problem corresponding to inverse scattering for a bounded isotropic dielectric medium lying on an infinite conducting surface. In particular, we investigate the 2-D scalar case where the dielectric medium is illuminated by time harmonic Transverse-Electric or Transverse-Magnetic polarized electromagnetic waves. In both cases we show that transmission eigenvalues exist and form a discrete set. Numerical results are given showing that real transmission eigenvalues can be found from near field data.

Fan Yang
University of Delaware
jackie@math.udel.edu

Peter B. Monk
Department of Mathematical Sciences
University of Delaware
monk@math.udel.edu

CP7
Robust Dynamic Shaping of Distributed Parameter Systems Via Recursively Updated Empirical Basis Functions

We focus on shaping the dynamic response of distributed parameter systems in the presence of parameter uncertainty using adaptive model order reduction. The problem is addressed by enforcing the desired spatio-temporal dynamics in the closed-loop system via an observer-based robust nonlinear feedback controller specifically designed based on the reduced order model that is refined by recursively updated empirical basis functions. The proposed method is illustrated on the thermal dynamic shaping in a catalytic reactor.

Davood Babaei Pourkargar
Department of Chemical Engineering
The Pennsylvania State University, University Park
dzb158@psu.edu

Antonios Armaou
Department of Chemical Engineering
The Pennsylvania State University
armaou@engr.psu.edu

CP7
Anytime A* for Continuous Optimal Path Planning

Eikonal PDE can be used to find the value function of an isotropic optimal control problem. These PDE can be solved efficiently using the Fast Marching Method, and A* methods provide additional computational savings. We present an Anytime algorithm using FMM and ideas from Weighted A*, quickly producing an initial suboptimal solution that is iteratively improved. This ensures early availability of a suboptimal path before the completion of the search for a globally optimal path.

Zachary D. Clawson
Cornell University
zc227@cornell.edu

Alexander Vladimirsky
Dept. of Mathematics
Cornell University
vlad@math.cornell.edu

CP7
A Proper Orthogonal Decomposition Based Method for Solving Algebraic Riccati Equations

We present a new method to solve algebraic Riccati equations by employing a projection method based on Proper Orthogonal Decomposition. The method only requires simulations of linear systems to compute the solution of a Lyapunov equation. The leading singular vectors of the Lyapunov solution are then used to construct a projector which is employed to produce a reduced order system. Computational results and comparisons to other methods will be discussed.

Boris Kramer
Virginia Tech
bokr@vt.edu

CP7
A New Semi-smooth Newton Multigrid Method for Parabolic PDE Optimal Control Problems

A new semi-smooth Newton (SSN) multigrid algorithm is proposed for solving the discretized first order necessary optimality systems that characterizing the optimal solutions of a class of 2D semi-linear parabolic PDE optimal control problems with control constraints. To achieve a second-order accurate finite difference discretization, we use a leapfrog scheme (with the second-order backward differentiation formula (BDF2)) in time and a standard 5-point stencil in space. The derived well-structured discretized Jacobian matrices greatly facilitate the development of effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the efficiency of the proposed method, which validates the second-order accuracy in solution approximations and the optimal linear complexity in computational time.

Jun Liu
Southern Illinois University
Mingqing Xiao
Southern Illinois University at Carbondale
mxiao@siu.edu

CP7
Computationally-Based Technique for Bifurcation Control

In this paper, a computationally-based methodology to obtain chaos controllers for PWM buck power converters is proposed, developed and proven. The mathematical model of a PWM is highly nonlinear (and non-smooth) and simulations show rich phenomena. The controller is easy to implement with an analog circuit, and it improves the performance of the system. Additionally, it reduces the percentage of regulation error and eliminates non-desired orbits. Computational and experimental results validate the controller design.

Gerard Olivar
Department of Electrical and Electronics Engineering
Universidad Nacional de Colombia, sede Manizales
golivart@unal.edu.co

Daniel Morcillo
Universidad Nacional de Colombia - Manizales
jdmorciillob@unal.edu.co

Daniel Burbano
Universita degli Studi di Napoli
danielalberto.burbano@unina.it

Fabiola Angulo
Department of Electrical and Electronics Engineering
Universidad Nacional de Colombia, sede Manizales
fangulog@unal.edu.co

CP8
Accelerated Hierarchical Stochastic Collocation - Finite Element Methods for PDEs with Random Inputs

The dominant cost of stochastic collocation methods for PDEs with high-dimensional random inputs is the cost of solving large numbers of linear systems. For non-intrusive methods like stochastic collocation, each linear system can be solved separately. Instead we consider global and local, hierarchical, semi-intrusive methods that accelerate the performance of the finite element solvers and look at the conditions under which computational costs can be reduced.

Diego Galindo, Clayton G. Webster, Guannan Zhang
Oak Ridge National Laboratory
galindod@ornl.gov, webstercg@ornl.gov, zhangg@ornl.gov

CP8
Uncertainty Qualification Based on Ranking Fuzzy Numbers

In this paper, we present a new method for uncertainty qualification based on ranking fuzzy number. First, we present a new method for ranking fuzzy numbers. It considers left and right area deviation. The proposed method can overcome the drawback of some existing methods for ranking fuzzy numbers. Then, we apply the proposed method for ranking fuzzy numbers to develop a new method for dealing with fuzzy risk analysis problems.

Tayebeh Hajjari
Department of Mathematics
Firoozkooh Branch of Islamic Azad University
tayebehajjari@yahoo.com

CP8
Reduced Basis Methods for Maxwell’s Equations with Stochastic Coefficients

We consider parametrized partial differential equations in many-query settings. We discuss the Reduced Basis Method (RBM) for time-harmonic Maxwell’s equations under stochastic parameters. The RBM model reduction significantly reduces the system size while preserving a certified accuracy by employing rigorous error estimators. To quantify the statistical outputs like mean and variance for Maxwell’s equations under stochastic uncertainties, we use sparse collocation and weighted RBM. Numerical experiments are performed on 3D models of microwave devices.

Martin W. Hess
Max-Planck-Institute for Dynamics of Complex Technical Systems Magdeburg
hessm@mpi-magdeburg.mpg.de

Peter Benner
Max Planck Institute, Magdeburg, Germany
benner@mpi-magdeburg.mpg.de

CP8
Use of Polynomials of Chaos as Regression Functions for Universal Kriging Models and Application to Numerical Dosimetry

In the computer experiments domain, Universal Kriging and Polynomial Chaos are two widely used metamodeling approaches. Considering a sparse representation of the Polynomial Chaos expansion gathering the most influential polynomials with the Least Angle Regression, this communication proposes to use these polynomials as regression functions in the Universal Kriging model. The optimal performances of the proposed approach are illustrated with several benchmark functions and with a dosimetry example.

Pierric Kersaudy
Orange Labs
pierric.kersaudy@orange.com

Bruno Sudret
ETH Zurich
sudret@ihk.baug.ethz.ch

Odile Picon
Université Paris-Est
odile.picon@univ-mlv.fr

Joe Wiart
Orange Labs
joe.wiart@orange.com

CP8
Quasi Optimal Sparse-Grid Approximations for El-
liptic PDEs with Stochastic Coefficients

Solution of PDEs depending on random coefficients can be conveniently approximated by polynomial expansions on the parameter space, that suffer however from a performance degradation as the number of random parameters increases ("curse of dimensionality" effect). In this talk we will propose an "a-priori/a-posteriori knapsack approach" to minimize such effect for sparse grids approximations. The efficiency of the proposed technique will be supported by theoretical convergence results and numerical tests.

Lorenzo Tamellini
EPFL-Lausanne, Switzerland, lorenzo.tamellini@epfl.ch

Fabio Nobile
EPFL, Switzerland fabio.nobile@epfl.ch

Raul F. Tempone
Mathematics, Computational Sciences & Engineering
King Abdullah University of Science and Technology raul.tempone@kaust.edu.sa

CP9
Subharmonic Response and Threshold of Chirp Driven Microbubbles

Recent experimental results have shown that acoustically driven microbubbles may exhibit an enhanced subharmonic response if driven by nonstationary (chirp) waveforms. However, the previous theory on the subharmonic threshold has been limited to single frequency forcing. We present a method for predicating of the threshold using a energy ratio of the IMFs from a Empirical Mode Decomposition of the scattered acoustic signal. Results are compared for linear and finite elastic models of an encapsulating shell for ultrasound contrast agent microbubble applications.

John S. Allen
University of Hawaii-Manoa allenii@hawaii.edu

Rintaro Hayashi
University of Hawaii at Manoa rintaro@hawaii.edu

CP9
A Global Bifurcation of Mixed-Mode Oscillations

Mixed-mode oscillations (MMOs) are trajectories of dynamical systems in which large and small oscillations occur with a distinct gap between the two. Over two decades ago, Koper first observed the seemingly paradoxical emergence of complex MMOs in a (now canonical) model. We describe the successful detection of an elusive global bifurcation that only now resolves this paradoxical dynamics. Our techniques are based on computation of invariant manifolds and continuation methods.

Ian M. Lizarraga
Center for Applied Mathematics
Cornell University
iml32@cornell.edu

John Guckenheimer
Cornell University
jmg16@cornell.edu

CP9
Mixing and Piecewise Isometries on a Hemisphere

We study chaotic nonlinear dynamics and mixing on a hemispherical surface using piecewise isometries (PWI) motivated by cutting and shuffling in 3-D granular flow. Mapping singularities with simple PWI for different parameters yield a variety of complex patterns on the hemisphere’s surface termed the exceptional set (E). Coarse-grained measures of E suggest that E exhibits properties of fat fractals that may provide deeper insight into mixing by cutting and shuffling.

Paul Park
Northwestern University paul-park@northwestern.edu

Paul Umbanhowar, Julio Ottino
Northwestern University Evanston, IL 60208-3109 umbanhowar@northwestern.edu, jm-ottino@northwestern.edu

Richard M. Lueptow
Northwestern University Department of Mechanical Engineering r-lueptow@northwestern.edu

CP9
Variational Integrators for Interconnected Dirac Mechanical Systems

Dirac mechanics simultaneously generalizes Lagrangian and Hamiltonian mechanics to reveal the geometric structure of systems with forces, constraints and degeneracies. Jacobs and Yoshimura recently elucidated the relationship between the Dirac mechanical structure of an interconnected system and those of its components. The variational integrator construction derives structure-preserving integrators from discrete variational principles, producing symplectic, momentum preserving integrators where applicable. This talk will discuss extensions of existing Dirac variational integrators to accommodate interconnections.

Helen F. Parks
University of Pittsburgh parks.helen@gmail.com

Melvin Leok
University of California, San Diego mleok@ccom.ucsd.edu

CP9
Different Wave Solutions Associated with Singular Lines on Phase Plane

The bifurcation phenomena of a compound K(m,m) equation are investigated. Three singular lines have been found in the associated topological vector field, which may evolve in the phase trajectories of the system. The influence of parameters as well as the singular lines on the properties of the equilibrium points has been explored in details. Transition boundaries have been obtained to divide the parameter space into regions associated with different types of phase trajectories. The existence conditions and related
discussions for different traveling wave solutions have been presented in the end.

Yu V. Wang
York College, The City University of New York
vwang@york.cuny.edu

CP10
A Domain Decomposition Method for Cavitation Computation in Nonlinear Elasticity

A domain decomposition method is applied to compute cavity growth in nonlinear elasticity. The idea is that the material is first tailored into nonoverlapping circular ring sub-domains so that each one is a scaling of the other; then, the standard Dirichlet to Neumann boundary conditions are applied to pass the information from a subproblem to its neighbors; finally, some special measures are taken to stabilize the method. The convergence speed is greatly improved by the method.

Zhiping Li
School of Mathematical Sciences, Peking University
lizp@math.pku.edu.cn

Wulin Luo
School of Mathematical Sciences
Peking University
wulinlovely@gmail.com

CP10
On Strong Ellipticity for Implicit and Strain-Limiting Theories of Elasticity

Implicit constitutive theories for elastic material bodies have received increasing attention in the literature. The theories are used to formulate strain limiting models of elasticity, and to develop nonlinear constitutive relations between linearized strain and stress. We study strong ellipticity for a general class of elastic implicit constitutive relations and apply it to specific examples. For the considered examples, strong ellipticity is shown to hold for sufficiently small strain and fail for suitably large strain.

Tina Mai
Department of Mathematics, Texas A&M University
College Station, TX 77843-3368
mai@math.tamu.edu

Jay R. Walton
Department of Mathematics
Texas A&M
jwalton@math.tamu.edu

CP10
Direct Numerical Simulation of Anti-Plane Shear Fracture in New Class of Elastic Bodies

In this work we study Finite Element Method (FEM) for the problem of anti-plane shear fracture in the setting of a strain-limiting theory of elasticity. Recently Rajagopal and Walton used a new class of such models to study anti-plane strain fracture. Using asymptotic analysis of the model near the tip of crack, they showed that both stress and strain vanish at the crack-tip, and the crack separation displacement has a cusp-shaped profile. The FEM based direct numerical simulation indicates that the present approach removes the classical square root singularity and hence predicts bounded stress and strain at the crack-tip.

Mallikarjunaiah S. Muddamallappa
Department of Mathematics
Texas A&M University
mmallikarjuna@math.tamu.edu

Jay R. Walton
Department of Mathematics
Texas A&M
jwalton@math.tamu.edu

CP10
Peridynamics As a Multiscale Method

The peridynamic theory of solid mechanics is a strongly nonlocal theory that contains a length scale representing the maximum interaction distance between material points. Recent work shows that by varying this length scale, we can achieve a multiscale model of solids within a single theory, without the need to couple dissimilar methods. In this talk I will describe a hierarchical multiscale method based on the peridynamic equations and appropriate coarse graining of material properties.

Stewart Silling
Sandia National Laboratories
sasilli@sandia.gov

CP10
Light Beam Interaction in Nonlinear Optical Media

The dynamics of light beam interaction in Nonlinear Optical Media is studied numerically and analytically. The beam dynamics is simulated by the beam propagation method. The numerical results agree with the results of the analytic model. The results show that the reflection and transmission can be predicted and controlled by the trapped beam at the interface of two nonlinear optical media. Some interesting new results will be presented in this talk.

Rajah P. Varatharajah
North Carolina A&T State University
rajah@ncat.edu

CP11
Variance Reduction in the Simulation of Stochastic Differential Equations

Variance reduction techniques are commonly used to enhance the efficiency of Monte Carlo simulations. This talk focuses on variance reduction for single and coupled systems of stochastic ordinary differential equations. Variance reduction techniques such as antithetic variates and control variates will be described and results presented.

David J. Horntrop
Dept of Mathematical Sciences, Center for Applied Math New Jersey Institute of Technology
david.horntrop@njit.edu

CP11
A Guaranteed Automatic Integration Library for Monte Carlo Simulation

This talk introduce the Guaranteed Automatic Integration Library (GAIL), which was developed within last year. It
contains four algorithms, which perform function approximation, numerical integration (using Monte Carlo method and 1-D trapezoidal rule) and Monte Carlo for evaluating the mean. All routines come with theoretical guarantees of success, something that is missing, say, for MATLAB’s integral.m and nearly all other automatic algorithms. Moreover, GAIL has been carefully designed with a friendly user-interface, thorough documentation, and extensive testing. Also, this talk discusses the theoretical research on the reliable relative error estimation based on the previous work, which comes with the numerical results and proved theorems.

Lan Jiang
Dept. of Applied Mathematics
Illinois Institute of Technology
ljiang14@hawk.iit.edu

CP11
Reliable Error Estimation for Quasi-Monte Carlo Methods

This project aims to build an efficient algorithm based on extensible rank-1 lattice rules for multidimensional integration with guarantees. In order to proceed, we compute the Fast Fourier Transform on the integrand values sampled on an integration lattice and use them to approximate the Fourier coefficients of the integrand. The decay rate of the Fourier coefficients and the assumption that the integrands lie inside a given cone helps us approximate the error.

Lluis Antoni Jimenez Rugama, Fred J. Hickernell
Illinois Institute of Technology
lluisantoni@gmail.com, hickernell@iit.edu

CP11
Split-Step Balanced Milstein Methods for Multi-Channel Stiff Stochastic Differential Systems

We discuss systems of ordinary SDEs with non-commutative multi-channel noise arising in chemical networks that involve reactions at different time scales. Such systems are inherently stiff, both in deterministic and stochastic components, and can change stiffness with uncertainty. To resolve this issue we consider fully implicit split-step balanced methods with optimal parameter selections with respect to the desired convergence, stability and positivity properties. Numerical examples are provided to show the effectiveness of these methods.

Viktor Reshniak, Abdul Khaliq
Middle Tennessee State University
vr2m@mtmail.mtsu.edu, abdul.khaliq@mtsu.edu

David A. Voss
Western Illinois University
d-voss1@wiu.edu

CP11
Local Smoothers for Cdfem with Sub-Element Discontinuities

The conformal decomposition finite element method (a technique for handling sub-cell discontinuities) allows for Lagrangian-like interfaces in a (basically) Eulerian mesh. As the physics “chooses” the location of the interface, it can lie very close to element boundaries, which can hurt matrix conditioning and the linear solver. We present a local smoothing multigrid approach, which uses information about geometry near the interface to perform a single geometric coarsening to a problem with volume-averaged materials.

Christopher Siefert, Richard Kramer
Sandia National Laboratories
csiefert@sandia.gov, rmkrame@sandia.gov

CP11
Various Strategies for the Numerical Stochastic Homogenization of the Stochastic Poisson and Helmholtz Equations

We consider stochastic versions of the Poisson equation as well as of the Helmholtz equation with discontinuous coefficients. These equations arise, e.g., when modeling nanowire sensors and metamaterials with a random structure. Although there are some theoretic homogenization results, the question of how to compute solutions efficiently still remains. Here, we discuss approximations of the stochastic dimensions by various quasi-MC strategies and which boundary conditions and size of the domain to use when approximating the problem on the whole space.

Gerhard Tulzer
TU Vienna, Austria
gerhard.tulzer@tuwien.ac.at

Clemens F. Heitzinger
Arizona State University &
Technical University Vienna (TU Vienna)
Clemens.Heitzinger@asu.edu

CP12
Iron-dependent Oxidative Stress Response Pathway in Human Mammary Epithelial Cells

It has been known that iron plays an important role in the development of breast cancer and cancer cells are under persistent oxidative stress. However, the effect of iron overload on the oxidative stress response pathway in normal and cancer cells is still under study. This project focuses on a mathematical model of an oxidative stress response pathway in normal human breast cells in order to understand how normal cells transition malignant cells.

Seda Arat
Virginia Tech
sedag@vt.edu

Julia Chifman
Wake Forest School of Medicine
jchifman@wakehealth.edu

Suzy Torti, Reinhard Laubenbacher
University of Connecticut Health Center
storti@uchc.edu, laubenbacher@uchc.edu

CP12
A Mathematical Model for Glucose and Fatty Acid Metabolism

A model is presented for the rate of utilization and storage of carbohydrates and fats. It is based on differential equations for the chemical kinetics converting glucose and fatty acids to pyruvate and acetylCoA, which then enter the Krebs cycle to produce energy. The molecules can also
be stored as glycogen and fat. The conversion rates are modeled as Hill’s reactions. Results are presented for different conditions of supply and usage.

Donald A. Drew
Rensselaer Polytechnic Institute
Dept of Mathematical Sciences
drew@rpi.edu

Julienne LaChance
Rensselaer Polytechnic Institute
lachaj3@rpi.edu

CP12
Multiscale Simulation of Reaction-Diffusion Systems in Living Cells

We present a simulation algorithm that allows for dynamic switching between a microscopic and a mesoscopic modeling framework for stochastic reaction-diffusion kinetics. By discretizing space with an unstructured mesh we can carry out simulations in complex and realistic geometries. The accuracy and efficiency of the algorithm is demonstrated in numerical examples inspired by biological applications. We show that by simulating only parts of a system at the more detailed, microscopic level, we can reduce the computational cost significantly while retaining the accuracy of the full microscopic model. The method can be combined with microscopic simulations of dynamic lower dimensional structures such as DNA or fibers, where the microscopic simulations are used close to the complex parts of the geometry, and the more efficient mesoscopic simulations are used in the other parts of space.

Stefan Hellander
Uppsala University, Sweden
st.hellander@gmail.com

Andreas Hellander
Uppsala University
andreas.hellander@it.uu.se

Linda Petzold
University of California, Santa Barbara
petzold@cs.ucsb.edu

CP12
A Simulator of the Multi-Scale Dynamics of Gene Regulatory Networks

We propose a simulator of an ODE model class of the multi-scale dynamics of gene regulatory networks with steep sigmoidal interactions. The threshold-dependent dynamics divides the phase space into domains. Under specific assumptions, trajectories through any sequence of domains are derived by iterating a local computation of transitions between domains. The parameter values can be expressed either qualitatively by inequalities or by probability distributions. In the latter case, the probability of trajectory occurrence is calculated.

Liliana Ironi
IMATI - CNR
Pavia (Italy)
ironi@imati.cnr.it

CP12
Biochemical Network Structure can be Revealed with Timecourse Data

Due to the limit of current experimental techniques, identifying biochemical network among genes and proteins underlying biological systems is one of the most challenging works. On the other hand, output of the networks, time-courses of genes and proteins can be easily acquired with recent advances in technology (e.g. microarray analysis). In this work, we will describe how to use oscillating time-course data to reveal the biochemical network structure by using a fixed-point criteria.

Jae Kyoung Kim
Department of Mathematics
University of Michigan, Ann Arbor, Michigan 48109, USA
kim.5052@mbi.osu.edu

Daniel B. Forger III
University of Michigan
forger@umich.edu

CP12
Using Machine Learning and Metabolomic/transportomic Systems Modeling to Identify Bacterial Ecotype from Genomic Sequence of Uncharacterized Environmental Or Clinical Isolates

The ability to genomically sequence bacteria from environmental or clinical isolates that are not or cannot be cultured in the laboratory requires development of computational tools to predict bacterial ecotypes from genomic data. Using Psuedomonads for which complete genomes are available and ecotype is known or inferred, we demonstrate that support vector machines using features derived from computational modeling of bacterial metabolome and transportome is more predictive of Psuedomonads ecotype than using only genomic data.

Peter E. Larsen, Frank Collart
Argonne National Laboratory
plarsen@anl.gov, fcollart@anl.gov

Yang Dai
Laboratory of Computational Functional Genomics
University of Illinois at Chicago
yangdai@uic.edu

CP13
Non-Parametric Clustering with Rank-Constrained Least-Squares

Unsupervised clustering is a problem of great practical importance, from genetics to marketing, extreme events modeling or even financial engineering. Although most available techniques perform well in practice, most of them require solving an NP-hard optimization problem or require to know the number of clusters ahead of time. Our goal is to present a simple technique for fast joint estimation of the number of clusters and their respective center of mass. Assuming the data can be represented as a \(d \times n \) matrix \(X = C + E \), where \(C = MT \), \(E \) is a matrix-noise, \(M \) is the center of mass matrix, and \(T_{k,i} = 1 \) if \(X_i \) belongs to cluster \(k \) and \(T_{k,i} = 0 \) otherwise. This representation leads to searching for a low rank approximation of \(X \). The rank of \(C \) is the number of clusters and is efficiently estimated using recent work in model selection. The approximation itself can be performed using the power method and its
AN14 Abstracts

recent analysis by Hardt.

Stephane Chretien
Universite de Franche Comte
stephane.chretien@univ-fcomte.fr

CP13

Stationary Stability for Evolutionary Dynamics in Finite Populations

We extend the theory of evolutionary stability to multidimensional finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability for the replicator dynamic. We show essentially that the local extrema of the stationary distribution minimize the relative entropy of the current population state and the "expected next state" computed by weighting the adjacent states by the appropriate transition probabilities. This holds for a variety of selection processes including the increasingly popular Fermi selection. We present several complete computations for illustration and we show that the classical stability theory of the replicator dynamic is recovered in the large population limit. If time allows, we describe extensions to populations evolving on graphs.

Dashiell Fryer
Pomona College
Dashiell.Fryer@Pomona.edu

Marc Harper
UCLA
marcharper@ucla.edu

CP13

A Novel Concept of Normal Exponential ROC Model

Receiver Operating Characteristic (ROC) Curve is used to quantify and compare the accuracy of diagnostic tests. In this paper, Normal Exponential ROC model is proposed and its properties are studied when healthy test scores follow Normal distribution and diseased test scores follow Exponential distribution. Area under the proposed ROC curve and its standard error are derived. The utility of this model is explored using simulation studies and Serum concentrations of CA 19-9 (Carbohydrate antigen) for pancreatic cancer. At the end, it is found that proposed ROC model gives better accuracy as compared to the traditional Binormal ROC model.

Sudesh Pundir
Pondicherry University
sudeshpundir19@gmail.com

CP13

Storage Allocation Models with Finite Capacity

We consider a stochastic storage allocation model, which has m primary holding spaces and R secondary ones. All of the spaces are numbered and ordered, and an arriving customer takes the lowest ranked available space. We define the traffic intensity ρ to be λ / μ, where λ is the customers’ arrival rate and μ is the service rate of the processor. If we let $m + R = N$, the total number of stored items behaves as an $M/M/N/N$ queue, which is the Erlang loss model. We obtain the joint probability distribution of the numbers of occupied primary and secondary spaces, for $\rho \to \infty$. We also study the marginal distribution of the number of occupied secondary spaces, as well as various conditional distributions.

Eunju Sohn
University of Georgia
esohn@colum.edu

Charles Knessl
University of Illinois at Chicago
knessl@uic.edu

CP14

Using Lasso Model to Predict Cell-Type-Specific Transcription Factors in Low Methyalted Regions

Low Methylated Regions (LMRs) have been implied to be potential distal regulatory regions. Using the transcription factor binding sites (TFBSs) predicted from both LMRs and promoters, we apply LASSO models to predict directions of gene expression among multiple cell types based on the similarity score of TFBSs. By analyzing the LASSO results, we demonstrate that the model can facilitate the identification of cell-type-specific transcription factors binding that may potentially regulate directions of gene expression.

Hong Hu
Biominformatics Program, Department of Bioengineering
University of Illinos at Chicago
hhu4@uic.edu

Yang Dai
Laboratory of Computational Functional Genomics
University of Illinois at Chicago
yangdai@uic.edu

CP14

Moment Fitting for Parameter Inference in Repeatedly and Partially Observed Stochastic Biological Models

The inference of reaction rate parameters in biochemical network models from time series concentration data is a central task in computational systems biology. Under the assumption of well mixed conditions the network dynamics are typically described by the chemical master equation. Based on the latter we derive closed systems of parameter dependent nonlinear ordinary differential equations that predict the time evolution of the statistical moments. For inferring the reaction rate parameters we suggest to not only compare the sample mean with the theoretical mean prediction but also to take the residual of higher order moments into account. Cost functions that involve residuals of higher order moments may form landscapes in the parameter space that have more pronounced curvatures at the minimizer and hence may weaken or even overcome parameter sloppiness and uncertainty.

Philipp Kuegler
RICAM, Austrian Academy of Sciences
Austria
philipp.kuegler@uni-hohenheim.de

CP14

Mathematical Modeling of the Antibiotic Er-
tapenem

Ertapenem is an antibiotic commonly used to treat a broad spectrum of infections. A physiologically-based pharmacokinetic model was developed to investigate the uptake, distribution, and elimination of ertapenem following a once-a-day, single one gram dose. Blood concentrations of ertapenem found by the model were compared to data from published experimentation for normal height, normal weight males. Simulations were performed to consider the distribution of the antibiotic in underweight, overweight, and obese men of normal height.

Cammey Cole Manning
AWM and Meredith College
ManningC@meredith.edu

Michele Joyner
East Tennessee State University
joynerm@mail.etsu.edu

CP14
Connecting Motifs and Molecular Mechanisms Toward Control of Complex Networks

Advances in high throughput biological assays have promoted statistical inference of large experimental datasets; the subsequent networks are then used as models to discover therapeutic targets. However, these networks yield little mechanistic insight into the cornerstones of complex biological systems: regulation and dynamics. Comprehensive analysis of networks inferred from in silico models that represent biological mechanisms (e.g., competitive inhibition) elucidates our understanding of large network dynamics and informs novel control strategies.

Aaron Oppenheimer
Northwestern University
Department of Chemical and Biological Engineering
aaronoppenheimer2016@u.northwestern.edu

Neda Bagheri
Chemical and Biological Engineering
Northwestern University
n-bagheri@northwestern.edu

CP14
A Combined Method of Model Reduction for Biochemical Reaction Networks

This talk introduces a combined model reduction algorithm with particular application to biochemical reaction networks within the context of systems pharmacology. This method brings together versions of proper lumping and empirical balanced truncation to reduce nonlinear, stiff dynamical systems that are typical in the modelling of biochemical reactions. Modifications and enhancements to the established methods are discussed. Finally, the algorithm is demonstrated with application to two published systems biology models, with good results.

Tom J. Snowden, Marcus Tindall
University of Reading
T.J.Snowden@pgr.reading.ac.uk, m.tindall@reading.ac.uk

Piet van Der Graaf
Universiteit Leiden
Pfizer

p.vandergraaf@lacdr.leidenuniv.nl

CP14
Discovery of Multi-Dimensional Modules in Cancer Genomic Data

Recent technology has made it possible to simultaneously perform multi-platform genomic profiling of biological samples, resulting in so-called 'multi-dimensional genomic data'. However, integrative analysis of multi-dimensional genomics data for the discovery of combinatorial patterns is currently lacking. Here, we develop a set of matrix factorization techniques to address this challenge. We applied this method to the data from The Cancer Genome Atlas project, and show that our tools can uncover hidden patterns in multi-dimensional cancer 'omic' data.

Xianghong J. Zhou
Biological Science and Computer Science
University of Southern California
xjzhou@dornsife.usc.edu

CP15
Fourth Order Compact Simulation of the One Dimensional Euler Equations of Gas Dynamics

This paper introduces a class of higher order compact schemes for the solution of one dimensional (1-D) Euler equations of Gas Dynamics. These schemes are fourth order accurate in space and second or lower order accurate in time and unconditionally stable. To test the efficiency of our proposed schemes, we first apply it to three shock tube problem of gas dynamics, including the famous SOD shock tube problem. Later on, we apply our proposed schemes to the subsonic-supersonic isentropic flow through a convergent-divergent nozzle and compare our solution with the exact solutions. In all the cases, our computed numerical solutions are found to be in excellent match with the exact ones. Lastly, we show ways to extend the schemes to problems of higher spatial dimensions.

Jiten C. Kalita
Indian Institute of Technology Guwahati
Guwahati INDIA
jiten@iitg.ernet.in

Bidyut Gogoi
Indian Institute of technology Guwahati INDIA
b.gogoi@iitg.ernet.in

CP15
High Order Parametrized Maximum-Principle-Preserving and Positivity-Preserving Weno Schemes on Unstructured Meshes

We will talk about the generalization of the maximum-principle-preserving (MPP) flux limiting technique developed in [Z. Xu, Math. Comp., (2013)] to develop a class high order MPP finite volume schemes for scalar conservation laws and positivity-preserving (PP) finite volume WENO schemes for compressible Euler system on two dimensional unstructured meshes. The key idea of this parameterized technique is to limit the high order schemes towards first order ones which enjoy MPP property, by decoupling linear constraints on numerical fluxes. Error analysis on one dimensional non-uniform meshes is presented to show the proposed MPP schemes can maintain high order of accuracy. Similar approach is applied to solve
compensate Euler systems to obtain high order positivity-preserving schemes. Numerical examples coupled with third order Runge-Kutta time integrator are reported.

Yuan Liu
Department of Mathematics
Michigan State University
liuyuan01@gmail.com

CP15
Scalable High-Order Non Conforming Finite Element Methods For Time Domain Acoustic-Elastic Problems

High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Discontinuous Galerkin and Classical Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Importantly, physical domains may be independently discretized and the structural geometry is faithfully represented upon a chosen degree of fidelity, enabling for higher flexibility and efficient computation. In order to illustrate the accuracy and scalability properties of a parallel implementation, we present representative numerical tests for large-scale seismic wave propagation.

Angel Rodriguez-Rozas
Center for Mathematics and its Applications
Department of Mathematics - Instituto Superior Técnico
angel.rodriguez_rozas@inria.fr

Julien Diaz
Team-Project Magique-3D
INRIA Bordeaux Sud-Ouest
julien.diaz@inria.fr

CP15
Advances in Adaptively Weighted Finite Element Methods

The overall effectiveness of finite element methods may be limited by solutions that lack smoothness on a relatively small subset of the domain. By enhancing norms and and/or inner products in the variational framework with weight functions chosen according to a coarse-scale approximation, it is possible to recover near-optimal convergence rates. In this talk we give an overview of the general approach, both in the least-squares and Galerkin settings, and illustrate with numerical examples.

Chad Westphal
Wabash College
westphac@wabash.edu

CP15
Numerical Simulations of Bioresorbable Vascular Stent with Automatic Patient-Specific Geometry Construction and Adaptive Meshing

The invention of Bioresorbable Vascular Stent (BVS) opened a new era for cardiovascular intervention technology as it offers numerous benefits for patients. Patient-specific CFD Simulation of stented vessel is a great tool to analyze potential risks of BVS such as restenosis. Current work in BVS research is limited to geometries with no clear appearance of the stent. However, we have developed an algorithm that extracts the 3D geometry of the deployed stent from real patients OCT images. Visualization of the blood flow in stented vessel for the first time becomes a reality. Combined with an adaptive meshing method, real inflow, and real vessel curvature, our CFD simulations can best approximate the real hemodynamic conditions of the stented vessel and provide many desirable results, which demonstrates the great power of numerical PDEs in biomedical engineering.

Boyi Yang
Emory University
Department of Mathematics & Computer Science
byang8@emory.edu

Alessandro Veneziani
MathCS, Emory University, Atlanta, GA
ale@mathcs.emory.edu

CP15
A Finite Element Method for the Second Order Linear Elliptic Equation in Non-Divergence Form

We design a finite element method for the linear elliptic equation in non-divergence form, which satisfies discrete maximum principle. We show that the method guarantees convergence to the viscosity solution provided that coefficient matrix A(x) and function f(x) are continuous. In order to establish a rate of convergence, we derive a discrete version of Alexandroff-Bakelman-Pucci estimate. Using this discrete estimate, we show that

\[\| u - u_h \|_{L^\infty} \leq C \left(h \ln \frac{1}{h} \right)^{(2+\alpha)/(2+\alpha)} \]

for \(u \in C^{2,\alpha}(\Omega), f \in C^{\alpha}(\Omega), \) and

\[\| u - u_h \|_{L^\infty} \leq C \left(\ln \frac{1}{h} \right)^{1/2} \]

for \(u \in C^{3,1}(\Omega), f \in C^{0,1}(\Omega). \)

Wujun Zhang
Department of Mathematics
University of Maryland
wujunzhang@gmail.com

Richardo Nochetto
University of Maryland
Department of Mathematics
rhn@math.umd.edu

CP16
The Influence of Stochastic Parameters on Calcium Waves in a Heart Cell

In this study, we investigate the effects of stochastic release from calcium release units (CRUs) on generating calcium waves considering a distribution for the flux density term sampled (i) once for all CRUs and (ii) for each CRU independently. We include a stochastic flux density term as more physiologically appropriate than a fixed release rate. We use an array of statistical techniques as well as parallel computing to facilitate the large number of simulation runs.

Matthew W. Brewster
University of Maryland, Baltimore County
bmatt3@umbc.edu
Simulating calcium induced calcium flow in a heart cell requires solving a system of advection-reaction-diffusion equations in three space dimensions. Efficient parallel computing is necessary to enable long-time simulations on high-resolution meshes. Modern architectures with multiple memory hierarchies in CPU and coprocessors such as GPUs and the Intel Phi offer opportunities to speed up the numerical kernels of PDE solvers dramatically.

A Model of Brain Neuro-Mechanics

Brain tissue is sensitive to mechanical forces and chemical imbalances which can alter brains functions and/or structure and lead to neurological diseases. Mathematical models of brain neuro-mechanics can increase our understanding of how brain works and help develop better diagnostic and therapeutic tools. We propose to model the brain as a mixture material and investigate the linkages between neural activity and mechanical behavior of brain tissue through computer simulations.

Interface Tracking Using Level Set and A Fast Algorithm

Although moving interface problem is an interesting problem in physics, it is challenging to obtain accurate and stable numerical solution because interface problems are singular and sensitive with small perturbations. In this talk, we will discuss an interface tracking method for the solution of 2D incompressible Stokes flow problems within an unit disk as an application of a fast algorithm [L. Borges and...
AN14 Abstracts

JoungDong Kim
Texas A&M University
jdkim@math.tamu.edu

Prabir Daripa
Department of Mathematics
Texas A&M University
daripa@math.tamu.edu

CP17
Field-split Preconditioned Inexact Newton Algorithms

To improve the convergence of systems with unbalanced nonlinearities, the field-split preconditioned inexact Newton (FSPIN) algorithm is introduced as a complementary form of the additive Schwarz preconditioned inexact Newton (ASPIN) algorithm, based on partitioning of degrees of freedom in a nonlinear system by field type rather than by subdomain. We introduce two types of FSPIN algorithms: Jacobi-type and Gauss-Seidel-type, and we augment the classical Jacobi-type convergence theory for the latter.

Lulu Liu
King Abdullah University of Science and Technology
lulu.liu@kaust.edu.sa

David E. Keyes
KAUST
david.keyes@kaust.edu.sa

CP17
A Dual Iterative Substructuring Method with An Optimized Penalty Parameter

In this talk, we will present a domain decomposition method based on augmented Lagrangian. The proposed method imposes the continuity on the interface not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter and a measure of the jump across the interface. The study for the proposed method with an optimized penalty parameter will be discussed in terms of its convergence analysis and practical efficiency.

Eun-Hee Park
KAIST
eh.park@kangwon.ac.kr

Chang-Ock Lee
Department of Mathematical Sciences
KAIST
colee@kaist.edu

CP17
Redefining a Mimetic Curl Operator Using Gauss’ Theorem with Applications in Computational Climate and Weather Modeling

The common way to define a Curl operator considers Stoke’s Theorem and the concept of circulation. Common numerical discretizations for this operator also use this approach. In this work, we present a redefinition of the Curl operator using Gauss’ Theorem instead. This redefinition allows us to present a discretization framework that naturally inherits all the desirable properties of the mimetic differential operators. We present the mathematical justification for this redefinition and we implement this mimetic Curl operator testing it on 2 and 3D test cases. Physical applications concern the computational study of hurricanes.

Eduardo J. Sanchez
Computational Science Research Center
San Diego State University
ejspeiro@gmail.com

Guillermo Miranda
San Diego State University
unigrav7@gmail.com

Jose Castillo
Computational Science Research Center
San Diego State University
jcastillo@sdsu.edu

CP17
Fast Structured Direct Spectral Methods for Differential Equations with Variable Coefficients

We study the rank structures of the matrices in Fourier and Chebyshev-spectral methods for differential equations with variable coefficients in one dimension. We show analytically that these matrices have a so-called low-rank property, and develop a matrix-free direct spectral solver, which has nearly $O(N)$ complexity and $O(N)$ memory. Numerical tests for several important but notoriously difficult problems show the superior efficiency and accuracy of the direct solutions, especially when iterative methods have severe difficulties in the convergence.

Yingwei Wang
Purdue University
wywshtj@gmail.com

Jie Shen
Purdue University
shen7@math.purdue.edu

Jianlin Xia
Purdue
xiaj@math.purdue.edu

CP17
A Hybrid Fd-Fv Method for First-Order Hyperbolic Systems

We describe a hybrid FD-FV approach to solve first-order hyperbolic systems. These methods use cell averages and nodal values as dependent variables, and evolve them in time by the method of lines. They use the integral form of the PDE and Hermite interpolation polynomials to discretize the cell averages and nodal values in space, respectively. We present the accuracy and stability analysis of these methods to solve problems in one and two dimensions.

Xianyi Zeng
Duke University
Block Preconditioners for Biot’s Equations

Biot’s equations are a popular model for geomechanical simulations of fluid flow in elastic porous media. These simulations are run on a very large scale, resulting in a large number of unknowns. Further complicating matters is that the domains have complex geometry and a vast range of material parameters. The linear systems that arise after discretization of Biot’s equations are large enough that iterative methods are required. They are also badly conditioned, making effective preconditioners essential. In this work we investigate the effectiveness of several different preconditioners over a wide range of material parameters.

Geoffrey Dillon
Texas Tech University
geoffrey.dillon@ttu.edu

Victoria Howle
Texas Tech
victoria.howle@ttu.edu

Rob Kirby
Baylor University
robert.kirby@baylor.edu

A Model for Tempo Synchronization in Music Performance

A model is derived for the manner in which performers of music establish and maintain tempi in the presence of a conductor, other performers, and noise. The model assumes that a performer sets a tempo in response to several stimuli. This tempo, or period, correction, occurs as a superposition of responses of the form of sensitivity times stimulus. The model is solved and results obtained for several cases. A model for phase correction is also derived.

Donald A. Drew
Rensselaer Polytech Institute
Dept of Mathematical Sciences
drewd3@rpi.edu

Recycling and Updating Preconditioners for Sequences of Linear Systems

For sequences of related linear systems, the computation of a preconditioner for every system can be expensive. Often a fixed preconditioner is used, but this may not be effective as the matrix changes. We analyze cheap updates to preconditioners: Incremental updates (Calgaro et al) and sparse approximate inverse updates to ILUTP preconditioners and updates to factorized sparse approximate inverse preconditioners (Bellavia et al.) Applications include model reduction, the Quantum Monte Carlo method, and others.

Arielle K. Grim McNally
Virginia Tech
arielle5@vt.edu

Sensitivity of Leverage Scores to Perturbations

The leverage scores of a matrix A with full column rank are the squared row norms of any matrix that contains an orthonormal basis for the range of A. Leverage scores describe the importance of rows in regression problems and are used as sampling probabilities in randomized algorithms for matrix computations. We bound the difference between the leverage scores of A and a perturbation $A + \Delta A$ when the orthonormal basis is computed by a QR factorization or SVD.

John Holodnak
North Carolina State University
jtholodn@ncsu.edu

Tamara G. Kolda
Sandia National Laboratories
tgkolda@sandia.gov

Indefinite Preconditioning of the Coupled Stokes-Darcy System

We propose the use of an indefinite (constraint) preconditioner for the iterative solution of the linear system arising from the finite element discretization of coupled Stokes-Darcy flow. We provide spectral bounds for the preconditioned system which are independent of the underlying mesh size. We present numerical results showing that the indefinite preconditioner outperforms both standard block diagonal and block triangular preconditioners both with respect to iteration count and CPU times.

Scott Ladenheim
Temple University
saladenh@temple.edu

Princ Chidyagwai
Loyola University
pchidyagwai@loyola.edu

Daniel B. Szyld
Temple University
Department of Mathematics
CP19

Optimisation and Conditioning in Variational Data Assimilation

Data assimilation merges observations with a dynamical model to find the optimal state estimate of a system given a set of observations. It is cyclic in that it is applied at fixed time intervals and the beginning of each cycle incorporates the previous cycle known as the background or apriori estimate. Variational data assimilation aims to minimise a non-linear, least-squares objective function that is constrained by the flow of the (perfect) dynamical model (4DVAR). Relaxing the perfect model assumption gives rise to weak-constraint 4DVAR, which has two formulations of interest. Gradient-based iterative solvers are used to solve the problem. We gain insight into accuracy and convergence by studying the condition number of the Hessian. Bounds on the condition number are demonstrated using a simple model and are utilised to illustrate the effect of different assimilation components on the conditioning which can highlight interesting architectural differences between both formulations.

Adam El-Said
University of Reading
a.el-said@pgr.reading.ac.uk

Nancy K. Nichols
University of Reading
Department of Mathematics
n.k.nichols@reading.ac.uk

Amos Lawless
University of Reading
a.s.lawless@reading.ac.uk

CP19

A Primal-Dual Simplex Algorithm to Enumerate the Mixed Cells of a Polynomial System

When the polyhedral homotopy continuation method is used to locate all isolated zeros of a polynomial system, the process of enumerating all the mixed cells plays a critical role: it provides starting points for the solution paths and governs the efficiency of the continuation method. When locating mixed cells, one must deal with a large number of linear programming problems. Rather than the more popular interior point method, the simplex method is used for those LP problems because its underlying pivoting structure provides indispensable information in the process. An efficient primal-dual algorithm to enumerate all the mixed cells will be presented.

Tsung-Lin Lee
National Sun Yat-sen University
leetsung@math.nsysu.edu.tw

Tien-Yien Li
Department of Mathematics
Michigan State University
li@math.msu.edu

CP19

Fitting a Straight Line in Three-Dimensional Space by Total Least-Squares Adjustment

Over a century ago Pearson (1901) solved the problem of fitting lines in 2-space to points with noisy coordinates in all dimensions. Surprisingly, however, the case of fitting lines in 3-space has seen little attention. We solve this problem using a new algorithm for the Total Least-Squares solution within an Errors-In-Variables (EIV) Model, respectively an equivalent Gauss-Helmert Model. Following Roberts (1988), only four parameters are estimated, thereby avoiding over-parameterization that may lead to unnecessary singularities.

Kyle B. Snow, Burkhard Schaffrin
School of Earth Sciences
The Ohio State University
snow.55@osu.edu, aschaffrin@earthlink.net

CP19

A Block-Coordinate Descent Approach for Large-Scale Sparse Inverse Covariance Estimation

The Sparse Inverse Covariance Estimation problem arises in many statistical applications in Machine Learning. In this problem, the inverse of a covariance matrix of a multivariate normal distribution is estimated, assuming that it is sparse. An l-1 regularized log-determinant optimization problem is solved to compute such matrices. Because of memory limitations, most algorithms are unable to handle large scale instances of this problem. We present a new block-coordinate descent approach for solving the problem for such large-scale data sets. Our method treats the sought matrix block-by-block using quadratic approximations. Numerical experiments demonstrate the potential of this approach.

Eran Treister
Computer Science Department, Technion
eran@tx.technion.ac.il

Javier Turek
Computer Science Department
Technion
javiert@cs.technion.ac.il

Irad Yavneh
Computer Science Department, Technion
irad@cs.technion.ac.il

CP19

Coupled Spring Forced Multiagent Coordination Optimization for Mixed-Binary Nonlinear Programming

Mixed-binary nonlinear programming (MBNP) optimizing the network structure and network parameters simultaneously has been seen widely applications in cyber-physical system nowadays. Swarm intelligence based optimization algorithms simulate the cooperation and interaction behaviors from social or nature phenomena as optimization to solve complex, non-convex and/or ill-conditioned nonlinear problems of high efficiency. In this research, we propose a coupled spring forced multiagent coordination optimization (CSFMCO) algorithm by considering that each particle is a spring and is coupled with the optimal solution founded so far as the second abstract spring to offer a new efficient algorithm to solve the MBNP problem. Continuous optimizer, binary optimizer and the switch between
continuous and binary optimizers will be investigated.

Haopeng Zhang, Qing Hui
Department of Mechanical Engineering
Texas Tech University
haopeng.zhang@ttu.edu, qing.hui@ttu.edu

CP20
Modeling Accidental Explosions and Detonations

The physical mechanism and constraints required for a Deflagration to Detonation Transition (DDT) in a large number of explosive devices is investigated. The Uintah Computational Framework is utilized to model explosives using large computational platforms. Current efforts are focused on a parametric study to determine if inertial confinement could cause a transition to detonation. These simulations will give insight into the physical mechanism of DDT for large-scale explosions and help determine safe packaging configurations to eliminate DDT in transportation accidents.

Jacqueline Beckvermit
Department of Chemistry
University of Utah
beckvermit@gmail.com

Todd Harman
Department of Mechanical Engineering
University of Utah
t.harman@utah.edu

Andrew Bezdjian
University of Utah
andrewbezdjian@gmail.com

Qingyu Meng
SCI Institute
University of Utah
qymeng@cs.utah.edu

Alan Humphrey, John Schmidt
University of Utah
ahumphrey@sci.utah.edu, john.schmidt@utah.edu

Martin Berzins
Scientific Computing and Imaging Institute
University of Utah
mb@sci.utah.edu

Chuck Wight
Weber State University
cwright@weber.edu

CP20
Finite Elements in Flux Coordinates in Gyrokinetic Turbulence Simulation

A series of finite elements with C^0 and C^1 continuity are constructed in curved flux coordinates in gyrokinetic turbulence modeling. The difficulties with flux coordinate Jacobian and periodic domain and the solution strategies will be demonstrated. This is the first time two-dimensional finite elements are constructed in this type of coordinate systems which are used everywhere in fusion plasma simulation.

Jin Chen

CP20
A Performance-Portable Implementation of the Albany Ice Sheet Model: Kokkos Approach

Modern HPC applications need to be run on many different platforms and performance portability has become a critical issue: parallel code needs to be executed correctly and performant despite variation in the architecture, operating system and software libraries. In this talk we’ll present our progress towards a performance portable implementation of the finite element assembly in the Albany Ice Sheet Model code, based on Kokkos programming model from Trilinos.

Irina Demeshko, H. Carter Edwards
Sandia National Laboratories
ipdemes@sandia.gov, hcedwar@sandia.gov

Michael A. Heroux
Sandia National Laboratories
Albuquerque, New Mexico, USA
maherou@sandia.gov

ERIC T. Phipps, ANDREW G. Salinger
Sandia National Laboratories
etphipp@sandia.gov, agsalin@sandia.gov

CP20
Matrix-Free Krylov Subspace Methods on Modern CPUs and Many-Core Processors

We study methods to implement Krylov Subspace methods in matrix-free form that take advantage of the memory hierarchy of modern CPUs and many-core processors such as GPUs and the Intel Phi. We also work to develop an effective preconditioner for Krylov subspace methods for linear systems arising from the discretization of PDEs that is easy to program. We use a finite difference approximation of an elliptic test problem for the computational experiments.

Samuel Khuvis
Department of Mathematics and Statistics
University of Maryland, Baltimore County
khsa1@umbc.edu

Matthias K. Gobbert
University of Maryland, Baltimore County
Department of Mathematics and Statistics
gobbert@umbc.edu

Andreas Meister
University of Kassel
Institute of Mathematics
meister@mathematik.uni-kassel.de

CP20
Parallel Techniques for the Incomplete-LU Factorization

The incomplete-LU factorization (ILU) is one of the most popular black-box preconditioning techniques. However, incomplete factorizations are challenging to effectively implement on massively parallel computer architectures, such as GPUs. In this talk we present an in-depth study of different existing parallelization techniques for ILU, such as
level-scheduling, multi-coloring and multi-level approaches, as well as more recent communication avoiding algorithms and related power(q)-pattern method. We discuss their properties and relationships. Finally, we present relevant numerical experiments.

Maxim Naumov
NVIDIA
maxim.a.naumov@nvidia.com

CP20
Effective Parallel Preconditioners for CFL Application

We focus on the fast iterative solution of linear systems on GPUs, in particular, for problems from computational fluid dynamics. Krylov subspace solvers mostly can be implemented efficiently on GPUs; however, the preconditioner is often a bottleneck. In fact, many of the most effective preconditioners perform poorly on GPUs, such as ILUT, taking much more time than the matrix-vector product in spite of similar complexity. Therefore, we discuss preconditioners like sparse approximate inverse preconditioners, which are matrix-vector product like, as alternatives, possibly accelerated with deflation techniques like Krylov subspace recycling.

Katarzyna Swirydowicz, Eric De Sturler
Virginia Tech
kswirydo@vt.edu, sturler@vt.edu

Xiao Xu, Christopher J Roy
Virginia Tech, Department of Aerospace and Ocean Engineering
xiao6@vt.edu, cjroy@vt.edu

CP21
Equilibrium and Bifurcation Analysis of Discoidal Lipoproteins

A discoidal lipoprotein particle consists of a lipid bilayer bounded by a protein polymer chain. In isolation, the free energy of such a particle is the sum of the bending-energy of the bilayer and the bending and torsional energy of the chiral protein loop. The Euler–Lagrange equations governing the equilibrium of such particles are derived. Also, a finite-element solver is employed to obtain approximate numerical solutions and analyze possible conformations of these particles.

Aisa Biria
McGill University
aisa.biria@mail.mcgill.ca

Eliot Fried
Okinawa Institute of Science and Technology
mechanicist@gmail.com

CP21
Swimming and Pumping of Helical Bodies in Viscous Fluids

Many flagellated microorganisms including E. coli swim by rotating slender helical flagella, while ciliated organisms like Paramecia swim by passing helical waves along their surfaces. We will discuss a framework for studying such problems where the Stokes equations describing viscous flow are written in helical coordinates. Analytical predictions match well with full numerical simulations, and suggest optimal geometries. This work may also aid designs in microfluidic manipulation, microswimmer engineering, and the mixing of viscous fluids.

Lei Li, Saverio Spagnolie
University of Wisconsin-Madison
leil@math.wisc.edu, saverioiv@gmail.com

CP21
Mathematical Model and Simulation of Particle Flow Around Choanoflagellates Using the Method of Regularized Stokeslets

Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigate the role of the microvilli in the feeding and swimming behavior of the organism using the method of regularized Stokeslets. This model allows us to depict the effective capture of nutritional particles and bacteria in the fluid and the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism.

Hoa Nguyen, Niti Nararidh
Trinity University
hnuyen5@trinity.edu, nnrarid@trinity.edu

CP21
Swimming Efficiently: An Analytical Demonstration of Optimal Strouhal Number in Fish

Using Lighthill’s large amplitude elongated body theory it is shown that the kinematics of fish swimming can be reduced to a single variable, Strouhal Number (St). This is accomplished by applying mathematical constraints to enforce constant velocity, low drag swimming. Using this result, it is demonstrated that Froude efficiency for swimming can be defined directly as a function of St. This function correctly predicts the behavior of swimmers across a wide range of sizes.

Alexander J. Wiens
Massachusetts Institute of Technology
wiens@mit.edu

Anette Hosoi
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 3-173, Cambridge MA 02139
peko@mit.edu

CP22
Analysis of a Large Time Step and Overlapping Grids Method for Hyperbolic Conservation Laws

We propose a numerical method for approximate solving of hyperbolic conservation laws. The method is based on a finite volume method and our novelties are twofold. First, our method is a Large Time Step method which enables us to march faster in time. Secondly, the method incorporates overlapping grids which is a very important issue in many practical applications. In one space dimension, we prove that the method converges to the entropy solution of the conservation law. We also present numerical simulations for Burger’s equation and the Lax problem for the Euler gas dynamics equations.

Ilija Jegdic
Filtered Positive P_N Closure for Kinetic Transport Equations

We propose a modification to the standard spherical harmonic closure, known as P_N closure, used for linear kinetic equations. The modification produces smooth, nonnegative polynomial particle distributions by using two-step filtering on the oscillatory, partially negative P_N solutions; closes the moment system using filtered polynomial ansatz; and integrates the closed moment system with filtered moments. We formulate the filtering process as a quadratic program, and demonstrate numerical results on the challenging line source benchmark problem.

Ming Tse P. Laiu
Department of Electrical and Computer Engineering
University of Maryland - College Park
mtlaiu@umd.edu

Cory Hauck
Oak Ridge National Laboratory
hauckc@ornl.gov

Dianne P. O'Leary
University of Maryland, College Park
oleary@cs.umd.edu

Andre Tits
University of Maryland at College Park
andre@umd.edu

Unconditionally Optimal Error Estimates of Fully Discrete FEMs for Parabolic Equations

Error analysis of fully discrete finite element methods for nonlinear parabolic equations often requires certain time-step size conditions (or stability conditions) such as $\Delta t = O(h^k)$, which are widely used in the analysis of the nonlinear PDEs from mathematical physics. In this talk, we suggest a new approach to analyze the discretization error of fully discrete FEMs for nonlinear parabolic equations. By this new approach, we found that the time-step size restrictions are not necessary for most problems. To illustrate our idea, we analyze some models from mathematical physics, e.g., the thermistor problem, miscible flow in porous media and gradient flows, with linearized backward Euler scheme for the time discretization. Previous works on the these models all required certain time-step size conditions.

Buyang Li
Nanjing University, China
buyangli@nju.edu.cn

Asymptotic-Preserving Semi-Lagrangian Discontinuous Galerkin Schemes for a Class of Relaxation Systems

We consider in this work a class of singularly perturbed hyperbolic balance laws that admit a diffusive limit. Such systems arise naturally in radiative transport applications if one starts with a Boltzmann description and expands the distribution function in spherical harmonics (i.e., the P_n approximation). One key difficulty in solving such systems is that standard numerical schemes have maximum time-step restrictions that vanish in the singular limit. Several approaches have been proposed in the literature that overcome this difficulty, many of which are based on splitting the equation into stiff and non-stiff pieces and using appropriate semi-implicit time-stepping methods. In this work we employ a different strategy in order to achieve asymptotic-preservation. We develop a scheme using a discontinuous Galerkin semi-Lagrangian scheme. Several numerical test cases are used to validate the proposed scheme.

Anna Lischke
Iowa State University
alischke@iastate.edu

James A. Rossmanith
Department of Mathematics
Iowa State University
rossman@iastate.edu

Positivity-Preserving WENO Schemes with Constrained Transport for Ideal MHD

We will discuss a novel positivity-preserving flux limiting technique developed for WENO schemes to solve ideal magnetohydrodynamic (MHD) equations. There are two main steps in our MHD solver: first updating conservative quantities by WENO scheme with positivity-preserving limiter and then correcting the magnetic field and total energy by a high-order constrained transport approach. Several examples are presented to verify the order of accuracy and to demonstrate the efficiency of positivity-preserving limiter.

Qi Tang, Andrew J. Christlieb, Yuan Liu
Department of Mathematics
Michigan State University
tangqi@msu.edu, christlieb@math.msu.edu, liuyuan01@gmail.com

Zhengfu Xu
Michigan Technological University
Dept. of Mathematical Sciences
zhengfux@mtu.edu

Partially Penalized Immersed Finite Element Methods for Elliptic Interface Problems

In this talk, we present new immersed finite element (IFE) methods for the second order elliptic interface problems on Cartesian meshes. Closely related to traditional IFE methods which are based on Galerkin formulation, these new IFE methods contain extra stabilizing terms at interface edges to penalize the discontinuity in IFE functions. Error estimation shows that these IFE methods converge optimally in an energy norm. Numerical examples demonstrate that these new methods outperform traditional IFE methods at the vicinity of the interface.

Xu Zhang
Purdue University
xuzhang@purdue.edu

Lagrangian Particle Methods for Global Atmos-
spheric Flow

We present a particle method for global atmospheric flow in spherical geometry based on the Lagrangian formulation of the fluid equations. Poisson equations for the stream function and velocity are solved using integral convolution with Green’s function for the sphere, which is approximated numerically with singular point vortices and point sources using midpoint rule quadrature. An adaptive remeshing procedure is applied at regular time intervals to maintain spatial accuracy on the Lagrangian particles. Solutions of the barotropic vorticity equation are presented, and ongoing work with the shallow water equations is discussed.

Peter A. Bosler
University of Michigan
Applied and Interdisciplinary Mathematics
pbosler@umich.edu

CP23
Numerical Derivation of a $\dot{D} - D - \kappa$ Relation for An Expanding Detonation Wave in the Mie-Gruneisen Equation of State

The propagation behavior of a detonation wave expansion can be described asymptotically by Taylor blast wave theory (TBW) in the limit of a small, rapid wave, and by geometrical shock dynamics (GSD) in the limit of a large, steady wave. We use a hydrodynamic solver to find a numerical relationship between the curvature, velocity, and acceleration of the detonation wave that describes the transition between the limits in the ideal and Mie-Gruneisen equations of state.

Brandon A. Lieberthal
University of Illinois at Urbana-Champaign
brandon.lieberthal@gmail.com

D. Scott Stewart
Mechanical Science and Engineering
University of Illinois at Urbana Champaign
dss@illinois.edu

CP23
Turbulent Mix in Numerical Simulations for ICF Capsules

We study the turbulent mixing zone in an Inertial Confinement Fusion (ICF) capsule, with a focus on the Rayleigh-Taylor (RT) unstable deceleration phase of hot spot formation. Our main results are twofold: (i) a "post shot" simulation with modifications to input parameters that better resemble experimental observations and (ii) examination of the resulting hot spot and turbulent mixing zone properties.

Hyunkyung Lim
SUNY at Stony Brook
Department of Applied Mathematics and Statistics
hyulim@ams.sunysb.edu

Jeremy Melvin
Stony Brook University
Stony Brook NY
jmelvin@ams.sunysb.edu

Verinder Rana
Stony Brook University
verinder.rana@stonybrook.edu

James Glimm
State University of New York, Stony Brook
glimm@ams.sunysb.edu

Baolian Cheng
Los Alamos National Lab
bcheng@lanl.gov

David Sharp
Los Alamos National Laboratory
dcs@lanl.gov

CP23
Continuum Boundary Force Method for Multiscale Modeling of Flows Subject to Slip Boundary Conditions

When fluid flow velocity at fluid-solid interfaces is non-zero, the flow is said to have “slip” at the fluid-solid boundary. This phenomenon is commonly described by the Navier boundary condition or, more generally, Robin-type boundary conditions. Here we propose the Continuous Boundary Force (CBF) method for imposing Robin boundary conditions in Smoothed Dissipative Particle Dynamics (SDPD) simulations. We demonstrated the efficiency and accuracy of the SDPD-CBF method for modeling slip flows subject to the Robin boundary conditions with arbitrary (constant, space-dependent, or non-linear) slip lengths at flat and curved boundaries. Furthermore, the consistent thermal scaling in the SDPD-CBF method allows it to also be used for multiscale modeling, i.e., bridging scales in concurrent coupling from the continuum hydrodynamic scale all the way to the molecular scale.

Wenxiao Pan
Pacific Northwest National Laboratory
wenxiao.pan@pnl.gov

Alexandre Tartakovsky
University of South Florida
tartakovsky@usf.edu

Nathan Baker
Pacific Northwest National Laboratory
nathan.baker@pnnl.gov

CP23
Hydrodynamic Calculations Using Reale: An Arbitrary-Lagrangian-Eulerian Framework with Mesh Reconnection

We examine a new ALE hydro scheme that allows for on-the-fly mesh reconnection based on the Voronoi diagram [Loubere et al, ReALE: A Reconnection-Based Arbitrary-Lagrangian-Eulerian Method, JCP, 2010]. Reconnection allows the mesh to follow Lagrangian features in the flow more closely than standard ALE schemes while avoiding the problem of mesh tangling typical of pure Lagrangian schemes. We outline our methodology for ReALE and present results demonstrating its effectiveness on several challenging compressible hydrodynamic tests.

David Starinshak, John Owen, Douglas Miller
Lawrence Livermore National Laboratory
CP23
A Smoothed Particle Hydrodynamics Model for Electrokinetic Flows

Theoretic description of electrokinetic phenomena includes the Poisson-Boltzmann equation relating the electric field to ion concentration and Navier-Stokes equations relating the flow velocity to the pressure and electrostatic forces acting on the system. A Lagrangian particle model based on smoothed particle hydrodynamics is proposed to numerically solve the coupled equations. And a fast multi-level pre-conditioned method by means of auxiliary space is incorporated as the linear solver for the associated Poisson equation. The efficiency and accuracy of the proposed model are examined through modeling the electroosmotic flow in microchannels and flow through charged membranes. A good agreement is found in comparison with the corresponding analytical or finite-element solutions. The diffusion-advection equation relating the species mass concentration to flow velocity is then coupled to investigate the influence of surface heterogeneity on electrokinetically driven microfluidic mixing.

Wenxiao Pan
Pacific Northwest National Laboratory
wenxiao.pan@pnnl.gov

Hongxuan Zhang, Xiaozhe Hu
The Pennsylvania State University
hu114@psu.edu, hu.x@math.psu.edu

Jinchao Xu
Pennsylvania State University
xu@math.psu.edu

CP24
Mutational History Dominates Clonal Selection Within Evolving Tumors

Natural selection acting on clonal diversity within tumors is thought to drive tumor progression, but details remain obscure. Evolutionary mathematical models of the angiogenic switch predict the emergence of hypovascular necrosis caused by hypertumors—“cheating” clones that freeride on vasculature organized by cooperative clones. Here we show that hypertumors should rarely evolve because the deterministic evolutionary trajectory is overwhelmed by stochastic mutational history. These results highlight mutation pressure as a significant evolutionary force in cancer.

Scott T. Bickel
Arizona State University
bickel777@gmail.com

Joseph Juliano
Arizona State University
joejuliano22@gmail.com

John D. Nagy
Scottsdale Community College
Arizona State University
john.nagy@scottsda.ceu.edu

CP24
Modeling the Progression and Development to Hepatocellular Carcinoma for Hepatitis C Virus Infection

The mathematical model considered here is the first attempt to encapsulate the long-term dynamics of hepatitis C virus (HCV) infection and the influence of viral and immune processes in the gradual progression and development to hepatocellular carcinoma (HCC). The key basis for the model formulation is that the long-term implications are random and are very likely caused by cell-mediated immune response. The chances of development of cancer are modeled by way of a stochastic model which takes into account the dynamics over the infection duration. Sampling based simulations show that the development rate of HCC over a period of 40 years is about 9%, which is in consonance with estimates available in literature. Simulations also show that the chance of developing HCC increases linearly along with the length of period of infection at a rate of 2.4 incidents per year for every thousand infected individuals.

Siddhartha P. Chakrabarty
Dept. of Mathematics
Indian Institute of Technology Guwahati
pratim@iitg.ernet.in

John Murray
School of Mathematics
University of NSW
J.Murray@unsw.edu.au

CP24
Quantifying the Relationships among Natural Selection, Mutation, and Stochastic Drift in Multidimensional Finite Populations

The interrelationships of the fundamental biological processes natural selection, mutation, and stochastic drift are quantified by the entropy rate of Moran processes with mutation, measuring the long-run variation of a Markov process. The entropy rate is shown to behave intuitively with respect to evolutionary parameters such as monotonicity with respect to mutation probability (for the neutral landscape), relative fitness, and strength of selection. Strict upper bounds, depending only on the number of replicating types, for the entropy rate are given and the neutral fitness landscape attains the maximum in the large population limit.

Marc Harper
UCLA
marc.harper@gmail.com

CP24
Competition Between Oysters and Invasive Mussels in the Presence of Water Releases

The Asian green mussel competes with oyster populations in parts of Florida, displacing some reefs in Tampa Bay. However, oysters are more tolerant of salinity changes that can occur, such as when large freshwater releases are made. Releases along waterways can take different forms, with some recent ones being large in volume relative to time. We present an ODE system modeling the population dynamics,
including the effect of fresh water releases. Some numerical results are included.

Daniel L. Kern
Florida Gulf Coast University
Dept of Chemistry and Mathematics
dkern@fgcu.edu

CP24
A Mixed-Strategy Game Theoretical Approach for Infectious Disease Prevention by Social Distancing

We describe a population game in which individuals are allowed to decide between adopting different social distancing strategies in order to lower infection risk and maximize payoffs. When the reduction in infection risk is a convex function of the cost of social-distancing, there is a unique pure-strategy game equilibrium. When the reduction in infection risk is not convex, the existence of equilibria becomes more complicated. We will discuss three cases vis-à-vis different costs of infection.

Jing Li
California State University Northridge
jing.li@csun.edu

Timothy Reluga
Pennsylvanian State University
treluga@math.psu.edu

CP24
Traveling Wave Fronts in Population and Disease Models with Nonlocal Reaction and Delay

We will discuss the stability of traveling wavefronts for nonlinear reaction diffusion equations with nonlocal reaction and delay. We will prove stability of both non-critical and critical wavefronts, and their rates of convergence. Applications will be made to a host-vector disease model, a generalized Nicholson blowflies model, and a modified vector disease model. This work generalizes results of Lv-Wang and Mei-et-al, and allows us to treat more realistic models.

Peter Y. Pang
National University of Singapore
matpyh@nus.edu.sg

CP25
A \(Q_2 \text{-iso} - Q_1 \) Immersed Finite Element for Stokes Interface Problems

We present the bilinear immersed finite element (IFE) methods for solving Stokes reaction interface problems with structured Cartesian meshes that is independent of the location and geometry of the interface. Basic features of the bilinear IFE functions, including the unisolvent property, will be discussed. Numerical examples are provided to demonstrate that the bilinear IFE spaces have the optimal approximation capability, and that numerical solutions produced by a \(Q_2 \text{-iso} - Q_1/Q_1 \) method with these IFE functions for Stokes interface problem also converge optimally in both \(L^2 \) and \(H^1 \) norms.

Nabil Chaabane
Virginia Tech
nabilch@vt.edu

Slimane Adjerid

CP25
Flow Control by Adjoints and Sensitivities

I will present an algorithm for flow control which is based on the derivation of adjoint equation using Lagrange multipliers. This algorithm involves computing gradient of an user-defined objective function that has the system control settings resulting in sensitivity expressions. Characteristic analysis is incorporated in this methodology to derive sensitivity expressions that yield more information on flow control as compared to sensitivity expressions that are derived without characteristic analysis. Finally, I will show results obtained by applying these algorithms to partial differential equations that model atmospheric flows.

Vani Cheruvu
Department of Mathematics and Statistics
The University of Toledo, Toledo, OH 43606
vani.cheruvu@utoledo.edu

CP25
A Realizability Preserving Discontinuous Galerkin Method for the \(M_1 \) Model for Radiative Transfer in 2D

We consider the \(M_1 \) moment model for radiative transfer. In order to ensure well-possedness the moment variables of the model have to satisfy certain realizability conditions. We present the necessary modifications to the Runge-Kutta discontinuous Galerkin method in 2D that ensure realizability of the moment variables. Our goal is to resolve the time evolution of isolated sources or beams of particles in heterogeneous media on unstructured triangular meshes.

Prince Chidyagwai
Temple University
Department of Mathematics
pchidyagwai@temple.edu

Martin Frank
RWTH Aachen University
Center for Computational Engineering Science
frank@mathcces.rwth-aachen.de

CP25
Optimal Error Estimates of a Linearized Backward Euler Galerkin Fem for the Landau-Lifshitz Equation

We present a fully discrete linearized backward Euler Galerkin FEM for the Landau-Lifshitz equation in which a new linearization is proposed for the gyromagnetic term.
Optimal error estimates are proved almost unconditionally (i.e. when the stepsizes h and τ are smaller than given constants). Numerical results are provided to confirm our theoretical analysis and show the unconditional stability of the scheme.

Huadong Gao
Department of Mathematics, CityU of HK
mahdgao@163.com

CP25
A Particle-In-Cell Method Based on An Implicit Wave Solver

A recently developed implicit wave solver removes the CFL condition while maintaining computational cost comparable to explicit wave solvers. We present the application of this wave solver in a particle-in-cell (PIC) method for the simulation of plasmas in an approach that can handle both electrostatic and fully electromagnetic cases. We show the results of some standard one- and two-dimensional electrostatic test problems, and discuss the extension to the fully electromagnetic case.

Eric Wolf
Michigan State University
eriwolf@gmail.com

CP26
Generalization of Pade Approximation from Rational Functions to Arbitrary Analytic Functions - Applications

We extended the basic idea of Pade approximation to any arbitrary function holomorphic in a neighborhood of the Taylor series expansion point. This provides the flexibility of using other functions in a Pade-type approximation, yielding highly accurate approximations with additional desirable properties such as asymptotic behavior. In this talk, we present applications of our method to approximation of \sin, \cos, Fresnel integral functions, representation of band-limited functions, and constructing multiresolution representations, i.e., chirplet decomposition.

Evren Yarman
Schlumberger
cyarman@slb.com

Garret Flagg
Schlumberger, Houston, TX
gflagg@slb.com

CP26
Analysis of a Singular Integral Equation Modeling Waves Propagating in a Fusion Plasma

A singular integral equation models resonant waves in a fusion plasma. This resonance called hybrid is linked to heating of a magnetic plasma. This presentation is dedicated to the analysis of this equation, see [B. Després, L.-M. Imbert-Gérard, R. Weder, Hybrid resonance of Maxwell's equations in slab geometry, J. Math. Pures et Appl., DOI: 10.1016/j.matpur.2013.10.001]. A singular solution is obtained thanks to a limit absorption principle, which provides a formula for the plasma heating.

Lise-Marie Imbert-Gérard
Courant Institute of Mathematical sciences, NYU

Bruno Després
UPMC Univ Paris 06, LJLL
despres@ann.jussieu.fr

Ricardo Weder
Universidad Nacional Autonoma de México, IIMAS
weder@unam.mx

CP26
Juxtaposition of Evaporation, Gravity and Darcian Resistance in Seepage Through a Silt Block Adjacent to a Coarse Sand Compartment: Solutions Based on Theory of Holomorphic Functions and Computer Algebra

2-D wicking of soil water is analytically studied by tension-saturated model. Along 3 sides of a transient flow tube the type of boundary conditions is fixed but the 4-th side consists of no-flow boundary and constant-potential segment. In the complex potential domain, the shrinking rectangle is conformally mapped onto the rectangle in the flow domain. The Schwarz-Christoffel formula and Mobius transformation are used. Cauchys problem for an integro-differential equation with respect to an affix of the conformal mapping is numerically solved. Physical and mathematical conditions of solvability of the equation are established. The seepage flow rate as a function of time is presented and related to the classical hydrological taxonomy of evaporation stages. Applications in agricultural engineering, e.g. desiccation of a coarse-textured under-canopy zone of irrigated trees in arid conditions, is related to the developed mathematical model.

Anvar Kacimov
Sultan Qaboos University
anvar@squ.edu.om

Yurii Obnosov
Kazan Federal University, Russia
yurii.obnosov@gmail.com

Dani Or
Eidgenössische Technische Hochschule Zürich
dani.or@env.ethz.ch

CP26
Unexpected Fooling Functions

We often rely on automatic quadrature rules to compute definite integrals that cannot be expressed in terms of elementary functions. Unfortunately, we have found that nearly all such algorithms can be fooled because their error estimates are based on the difference of two quadrature rules. Using this insight, we have constructed fooling functions that are not particularly spiky, but for which the automatic quadrature rule is grossly incorrect. This highlights the need for better rules.

Martha Razo
Illinois Institute of Technology
mrazo@hawk.iit.edu

CP26
Generalization of Pade Approximation from Rat-
We present a method for extending the basic idea of Padé approximation by using an arbitrary analytic function instead of rational functions to match a prescribed number of terms in the Taylor series. The choice of analytic function can be used to construct highly accurate approximations. In this talk, we discuss the theory and error analysis behind our method. Several examples of its application will be discussed in a separate talk.

Evren Yarman
Schlumberger
cyarman@slb.com

Garret Flagg
Schlumberger, Houston, TX
gflagg@slb.com

CP27
Rate-Limited Sorption in Production Transport Codes

Computational models of contaminant transport are used regularly for designing subsurface environmental remediation systems. In many soils, the contaminant sorbs to the solid matrix in the porous media. As a result, the rate of removal by traditional pump-and-treat flushing is much slower than predicted with equilibrium models. This phenomenon is called rate-limited sorption (RLS) and it is particularly problematic in cases where the contaminant has been in place for a long period of time. Although RLS is well known in academic literature, production models used for field work have failed to incorporate the effect.

As a result, remediation designs and cleanup time projections are often inaccurate. In this project, a well-validated production subsurface transport model is modified with a simple analytical model for layers and lenses that incorporate RLS effects with reasonable computational costs. Preliminary results show good agreement with RLS behavior.

David L. Coulliette
Mathematics and Computer Science Department
Asbury College
david.coulliette@asbury.edu

Kenneth Rietz
Asbury University
ken@rietz@gmail.com

Edward Heyse
Parsons Corporation
ed.heyse@parsons.com

CP27
Fingering Instability in the Presence of Viscoelasticity

With the motivation of understanding the effect of complex rheological properties of complex fluids often used in chemical enhanced oil recovery, we study linear instability of the displacement of a visco-elastic complex fluid and quantify the effect of elasticity on fingering instability. An exact formula is provided which shows that the elasticity has a destabilizing effect on fingering instability. Relevance of these results to chemical EOR will be discussed.

Prabir Daripa
Texas A&M University
Department of Mathematics
prabir.daripa@math.tamu.edu

CP27
Iterative Algorithms for Geosounding Inversion

For most of Geosounding problems, an iterative scheme is usually implemented after linearization of forward equations. Bachmayr and Burger proposed iterative algorithms for TV functionals. Those iterative algorithms are based on Bregman distance, that can be interpreted as a generalization of the mean-square distance for general functionals. In this contribution, several novel algorithms for nonlinear inversion of electrical, electromagnetic and resistivity soundings based on Bregman iterations are presented. Results are reported of algorithm implementation for several geosounding methods applying Bregman distance to minimize the TV and MS functionals. The linear approximation for electromagnetic soundings at low induction numbers is implemented on the inversion algorithm. A comparison of developed models for Bregman based algorithms with those obtained with a linear programming package is also presented for synthetic and field data.

Hugo Hidalgo
CICESE-Ciencias de la Computacion
hugo@cicese.mx

Enrique Gomez-Trevino
CICESE-Geofisica Aplicada
gomez@cicese.mx

CP27
A Higher-Order Robert-Asselin Type Time Filter

We propose and analyze a higher-order Robert-Asselin (hoRA) type time filter for weather and climate models. While requiring the same amount of computational effort as the Robert-Asselin-Williams filter, the hoRA filter effectively suppresses the leapfrog schemes computational modes and achieves third-order accuracy. The hoRA filter is shown to be suitable for long-time simulations. In addition, the filter is non-intrusive, and so it would be easily implementable in the existing legacy codes.

Yong Li
University of Pittsburgh
yol34@pitt.edu

Catalin S. Trenchea
Department of Mathematics
University of Pittsburgh
trenchea@pitt.edu

CP27
Coupled Multi-Physics Analysis of Caprock Integrity and Joint Reactivation During CO2 Sequestration

Structural trapping beneath a low-permeable caprock layer is the primary trapping mechanism for long-term subsurface sequestration of CO₂. We modeled the effects of caprock jointing on the caprock scaling. The modeling effort uses a 3D-FEM based coupled multiphase flow and ge-
omechanics simulator. Various injection schedules as well as caprock jointing configurations within a proto-typical sequestration site have been investigated. The resulting leakage rates through the caprock and fault are compared to those assuming intact material.

Pania Newell
Sandia National Laboratory
pnewell@sandia.gov

Mario, J. Martinez, JOSEPH, E. Bishop
Sandia National Laboratories
mjmarti@sandia.gov, jebisho@sandia.gov

CP27
Modeling of Arctic Melt Ponds and Sea-Ice Albedo-Feedback

We study possibility of the climate system to pass through a bifurcation point - irreversible critical threshold as the system progresses toward ice-free summers. This study is based on the nonlinear phase transition model for melt ponds and bifurcation analysis of a simple climate model with the positive sea ice - albedo feedback as a key mechanism potentially driving the system to the bifurcation point.

Ivan A. Sudakov
University of Utah
sudakov@math.utah.edu

Sergey Vakulenko
Institute for Mechanical Engineering Problems
vakulenfr@mail.ru

CP28
Multi-Echelon Supply Chain Inventory Optimization: An Industrial Perspective

Mathematical programming based multi-echelon inventory optimization models developed in the literature quantify uncertain demand or lead time assuming a Normal or Poisson distribution. We demonstrate how such assumptions can severely impact and underestimate optimal inventory, and discuss the drawbacks of mathematical programming approaches. We present a novel simulation-optimization framework that not only generates more accurate results by bootstrapping historical data, but is also versatile to capture non-standard inventory policies and decisions. Industrial examples are presented.

Anshul Agarwal, John Wassick
The Dow Chemical Company
Aagarwal2@dow.com, jmwassick@dow.com

CP28
Single Machine Scheduling Problem with Interval Processing Times

In this paper, the single machine scheduling problem with uncertain and interval processing times is addressed with the objective of minimizing mean weighted completion time. Some polynomial time heuristics, utilizing the bounds of processing times, are proposed. The proposed and existing heuristics are compared by extensive computational experiments. The computational results indicate that the proposed heuristics perform significantly better than the existing heuristics in terms of both error and computation time.

Ali Allahverdi
Kuwait University
ali.allahverdi@ku.edu.kw

Harun Aydilek, Asiye Aydilek
Gulf University for Science and Technology
aydilek.h@gust.edu.kw, aydilek.a@gust.edu.kw

CP28
Computing Spectra of Laplace Beltrami Operator Using Cylindrical Radial Basis Functions

The spectrum of the Laplace-Beltrami (LB) Operator is known to provide an intrinsic shape signature for 3D shape matching. Given point clouds on a 2 manifold, we utilize a novel cylindrical Radial Basis function to efficiently approximate the surface and compute the Eigen values of the LB operator. At the end, we perform numerical tests to demonstrate the generality and efficiency of our method.

Emmanuel O. Asante-Asamani
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
eoa@uwm.edu

Zeyun Yu
University of Wisconsin-Milwaukee
yuz@uwm.edu

Lei Wang
University of Wisconsin-Milwaukee
wang256@uwm.edu

CP28
Sub-Linear Sparse Fourier Algorithm for High Dimensional Data

In this talk, we discuss how to implement a sub-linear sparse Fourier algorithm on data in high dimensional space. We already have the efficient algorithm with $O(k\log k)$ runtime for one dimensional problem with k data. We propose a method to embed higher dimensional data in lower space without overlap so that the existent algorithm is applicable to modified data. In this way, we can retain the computational efficiency. It can be shown theoretically and computationally.

Bosu Choi
University of Michigan
choibosu@math.msu.edu

Yang Wang
Michigan State University
Chunhui Lai

Some results on this problem and related conjectures are summarized. On the maximum number of cycles in a planar graph, J.

Xuan Zhou

variable the horizontal scale of a function in

K formula, then, adding the boundary condition

S

on how quickly the sequence (variable

\alpha

\ell

\gamma

\ell

\ell
CP29
Investigation and Numerical Solution of Initial-Boundary Value Problem to One Nonlinear Parabolic Equation

In the presented work the difference scheme for specific initial-boundary value problem to the following nonlinear parabolic equation

$$\frac{\partial U}{\partial t} = a(x,t) \frac{\partial^2 U}{\partial x^2} + U^3 + f(x, t)$$

is investigated. The coefficient $a(x,t)$ is required to be continuous and positive. The function $f(x,t)$ is required to be continuous. For the mentioned difference scheme the theorem of convergence of its solution to the solution of the source problem is proved. The rate of convergence is established and it is equal to $O(\tau + h^2)$. The corresponding numerical experiments are conducted which confirm the validity of the theorem.

Mikheil Tutberidze
Ilia State University
Associated Professor
mikheil.tutberidze@iliauni.edu.ge

CP29
Coupled Orbital And Thermal Evolution of Major Uranian Satellites

We have developed a model of the orbital and thermal evolution of the five major Uranian satellites over millions of years. The model consists of detailed ordinary differential equations for the orbital evolution coupled to the one-dimensional heat equation for the thermal evolution. We present preliminary results that show how the different terms in the orbital equations such as the oblateness of Uranus affect the orbital semi-major axis and eccentricity of the satellites.

Attique Ur Rehman
The University of Auckland
attique.ur-rehman@auckland.ac.nz

CP29
A New Optimal Error Analysis of Characteristics-Mixed Fems for Miscible Displacement in Porous Media

In this talk, we establish unconditionally optimal error estimates for a modified method of characteristics with a mixed finite element approximation for the miscible displacement problem in \mathbb{R}^d $(d = 2, 3)$, while all previous work required certain time-step restrictions. By introducing a characteristic time-discrete system, we prove that the numerical solution is bounded in $W^{1,\infty}$-norm unconditionally. Thus, optimal error estimates can be obtained in a traditional way. Numerical results are presented to confirm our theoretical analysis.

Jilu Wang
University of Maryland Baltimore County, USA

CP30
The Heuristic Static Load-Balancing Algorithm Applied to the Community Earth System Model

We propose to use the heuristic static load-balancing algorithm for solving load-balancing problems in the Community Earth System Model, using fitted benchmark data as an alternative to the current manual approach. The problem of allocating the optimal number of CPU cores to CESM components is formulated as a mixed-integer nonlinear optimization problem which is solved by using an optimization solver implemented in MINLP/MINOTAUR. Our algorithm was tested on 163,840 cores of IBM Blue Gene/P.

Yuri Alexeev
Argonne National Laboratory
yuri@alcf.anl.gov

CP30
Roadmapping An Obstacle Forest

A growing spectrum of applications targeted for autonomous vehicles drives demand for robust path planners. Environment obstacle information determines route selection in cluttered domains but is only partially exploited by sample-based algorithms. A geometric terrain-based roadmapping approach is discussed that builds, explores and updates Morse navigation functions for forests of obstacle trees. Exploiting a known mathematical characterization of valleys and ridges on the function landscape, a high-level roadmap connecting landscape critical points is constructed.

Thomas A. Frewen
United Technologies Research Center
frewenta@utrc.utc.com

CP30
Optimal Control Approach and Numerical Methods for Constrained Smoothing Splines

Constrained smoothing splines are an efficient array of estimators, whose performance often surpasses that of their unconstrained counterparts. The computation of smoothing splines subject to general dynamics and control constraints and initial state constraints is considered. The optimal control formulation of such splines is developed. Several algorithms to compute these splines, including a directional derivative based nonsmooth Newton method, are introduced. The convergence analysis of these algorithms and numerical examples are presented.

Teresa Lebair
University of Maryland Baltimore County, USA
CP30
A Cut Approach for Solving the Single-Row Machine Layout Problem

A cut approach is developed for the machine configuration in a single-row linear layout, with objective to minimize the total material movement cost. We show that the above equidistant linear layout problem is equivalent to the locale network problem by graph theory. The minimum cut, which has the minimum capacity in each locale network, is the corresponding optimal layout that minimizes the material handling cost. The computational complexity of the cut approach is $O(n^3)$, where n is the number of workstations in the layout problem. In addition, the non-equidistant linear layout problem can be transformed into an equidistant linear layout problem.

Shine-Der Lee
National Cheng Kung University
Dept. of Industrial & Information Management
sdlee@mail.ncku.edu.tw

CP30
Study of Weak Stationarity for a Class of Stochastic Mpc Problems

In this talk we shall discuss the weak stationarity for a particular class of stochastic mathematical programming problem with complementarity constraints (SMPCC, for short). Our aim here is to show why concept of weak stationarity is important for SMPCC problems even if the problem data is smooth. In fact, a well known technique to solve stochastic programming problems, namely sample average approximation (SAA) method will show the strength of weak stationarity for SMPCC problems.

Arnab Sur
Indian Institute of Technology, Kanpur
arnabsur2002@gmail.com

CP30
Real-Time Power Dispatch with Renewables Using Stochastic Admm

Leveraging stochastic programming techniques, energy management problems are formulated to account for the intrinsically stochastic availability of renewable energy sources. Both economic dispatch and demand response setups are considered to minimize the microgrid net cost. Based on the stochastic alternating direction method of multipliers (ADMM), a novel decentralized solver with guaranteed convergence is developed for real-time power dispatch. Numerical tests illustrate the merits of the novel approach.

Yu Zhang
University of Minnesota
Department of ECE and DTC
zhan1220@umn.edu

Georgios Giannakis
University of Minnesota
giannak@umn.edu

giannak@umn.edu

CP31
On the Existence of Classical Solutions for a Two-Point Boundary Value Problem for the Navier-Stokes Equations

We consider the motion of a liquid surface between two parallel surfaces that are non-ideal, and hence, subject to contact angle hysteresis effect. This effect implies that the contact angle of the capillary surface at the interface is set-valued. We study the problem of existence of classical solutions to the two point boundary value problem in time whereby a liquid surface with one contact angle is deformed to another with a different contact angle.

Bhagya U. Athukorallage, Ram Iyer
Texas Tech University
bhagya.athukorala@ttu.edu, ram.iyer@ttu.edu

CP31
High-Order L-Stable Schemes for the Nonlinear Parabolic Equation Using Successive Convolution

We present a numerical implementation of an L-stable, 3rd order accurate solution of the Cahn-Hilliard model using successive convolution combined with the high order multi-derivative time integrators. The primary advantage is that the operators can be computed quickly and effectively with various boundary conditions using parallel computing.

Hana Cho
Michigan State University
chohana@msu.edu

Andrew Chrislieb
Dept. of Mathematics
Michigan State University
christlieb@math.msu.edu

David C. Seal
Department of Mathematics
Michigan State University
seal@math.msu.edu

Matthew F. Causley
Michigan State University
causleym@math.msu.edu

CP31
A Scalable, Parallel Implementation of Weighted, Non-Linear Compact Schemes

Weighted, non-linear compact finite-difference schemes, such as the CRWENO scheme (Ghosh and Baeder, SIAM J. Sci. Comput., 2012) and the hybrid compact-WENO scheme (Pirozzoli, J. Comput. Phys., 2002), are well suited for the numerical solution of compressible, turbulent flows. We propose a scalable, parallel implementation of these schemes based on an iterative sub-structuring of the tridiagonal system. We apply our algorithm to benchmark flow problems and demonstrate its scalability on extreme-scale computing platforms.

Debojyoti Ghosh
Mathematics and Computer Science Division
Argonne National Laboratory
ghosh@mcs.anl.gov
Emil M. Constantinescu
Argonne National Laboratory
Mathematics and Computer Science Division
emconsta@mcs.anl.gov

Jed Brown
Mathematics and Computer Science Division
Argonne National Laboratory
jedbrown@mcs.anl.gov

CP31
Robust Design of Boundary Conditions for Stochastic Incompletely Parabolic Systems of Equations

We consider an incompletely parabolic system in one space dimension with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution is presented.

Jan Nordstrom
Department of Mathematics, Linköping University
SE 581 83 Linköping, Sweden
jan.nordstrom@liu.se

Markus Wahlsten
Department of Mathematics
Linköping University SE 581 83 Linköping, Sweden
markus.wahlsten@liu.se

CP31
Multilevel Monte Carlo Finite Element Method for Time-Dependent Wave Equation

We propose multilevel Monte Carlo Finite Element method (MLMC-FEM) for time-dependent stochastic wave equation. Our method leads to decrease to log-linear work and memory in the number of unknowns of a single level calculation of the deterministic wave equation. We analyze the MLMC-FEM of the solution based on the nested mesh for Finite Element spaces.

Imbo Sim, Myounghyoun Kim
National Institute for Mathematical Sciences
imbosim@nims.re.kr, gmnkim@nims.re.kr

CP31
Pointwise Estimate for Elliptic Equations in Periodic Perforated Domains

Pointwise estimate for the solutions of elliptic equations in periodic perforated domains is concerned. Let ϵ denote the size ratio of the period of a periodic perforated domain to the whole domain. It is known that even if the given functions of the elliptic equations are bounded uniformly in ϵ, the $C^{1,\alpha}$ norm and the $W^{2,p}$ norm of the elliptic solutions may not be bounded uniformly in ϵ. It is also known that when ϵ close to 0, the elliptic solutions in the periodic perforated domains approach a solution of some homogenized elliptic equation. In this work, the Hölder uniform bound in ϵ and the Lipschitz uniform bound in ϵ for the elliptic solutions in perforated domains are proved. The L^∞ and the Lipschitz convergence estimates for the difference between the elliptic solutions in the perforated domains and the solution of the homogenized elliptic equation are derived.

Li-Ming Yeh
Department of Applied Mathematics
National Chiao Tung University, Taiwan
liming@math.nctu.edu.tw

MS1
Network Adaption for Leader-Follower Networks

We examine a networked multi-agent system running consensus susceptible to mis-information from its environment. The influenced dynamics are modeled with leader-follower dynamics and the impact of the foreign input is measured through the open loop H_2 norm of the network dynamics. The measure has a graph-based effective resistance interpretation which allows one to reason about the graph’s topological robustness. Consequently, to dampen the external disturbances, decentralized game-theoretic and online edge rewiring methods are proposed.

Airlie Chapman
Aeronautics & Astronautics
University of Washington
airlc@uw.washington.edu

Mehran Mesbahi
University of Washington
mesbahi@uw.edu

MS1
On Leader Selection for Performance and Controllability

A standard approach to controlling multi-agent systems is to select a subset of agents, denoted as leaders, that are directly controlled in order to steer the remaining (follower) agents to a desired state. Approaches to selecting the leader agents currently depend on the design criteria of the system, with continuous optimization techniques employed to guarantee performance and robustness to disturbances, and discrete optimization used to ensure controllability, and hence do not give optimality guarantees for joint selection based on performance and controllability. I will present a unifying approach to leader selection in multi-agent systems based on both performance (e.g., robustness to noise and convergence rate) and controllability. My key insight is that leader selection for joint performance and controllability can be formulated within a matroid optimization framework, implying provable guarantees on the optimality of the chosen leader set. Furthermore, I define a novel graph controllability index, equal to the cardinality of the largest controllable subgraph from a given leader set, and prove that it is a submodular function of the leader set, leading to a submodular relaxation of the problem of achieving controllability.

Andrew Clark
Electrical Engineering
University of Washington
awclark@u.washington.edu

MS1
Joint Centrality and Optimal Leader Selection in
Noisy Networks

We discuss the leader selection problem in a model where networked agents, subject to stochastic disturbances, track an external signal. The optimal leader set minimizes steady-state variance about the external signal. We prove the single optimal leader is the agent with maximal information centrality and show the optimal set of m leaders maximizes a measure of joint centrality. Finally, we solve explicitly for optimal leader locations in special cases.

Katherine Fitch
Mechanical Engineering
Princeton University
kfitch@princeton.edu

Naomi E. Leonard
Princeton University
naomi@princeton.edu

MS1
Leader Selection in Noisy Multi-agent Systems: A Resistance Distance Approach

We select a number of agents and control them to effectively reject noise in multi-agent systems. This optimization problem is equivalent to grounding nodes in resistance networks such that total effective resistance is minimized. For structured networks in which resistance distances have analytical expressions, we obtain globally optimal selection of leaders. For unstructured networks in which resistance distances can be computed efficiently, we speed up existing greedy algorithms by exploiting sparsity techniques. We illustrate our results with several examples.

Fu Lin
Mathematics and Computer Science Division
Argonne National Laboratory
fulin@mcs.anl.gov

MS2
Bayesian Estimation for Mixtures of Linear Subspaces with Variable Dimension

We assume i.i.d. data sampled from a finite mixture distribution over variable dimension linear subspaces. An embedding of linear subspaces onto a Euclidean sphere allows us to define a joint prior on each subspace and its dimension. The embedding and use of a Gibbs posterior yield model parameter estimates.

Brian St. Thomas
Department of Statistical Science - Duke University
brian.st.thomas@duke.edu

Sayan Mukherjee
Duke University
sayan@stat.duke.edu

Lek-Heng Lim
University of Chicago
lekheng@galton.uchicago.edu

MS2
Distributed Coordinate Descent Method for Learning with Big Data

In this paper we develop and analyze Hydra: HYbrid co-
orDinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes and applies updates to the selected coordinates based on a simple closed-form formula. We give bounds on the number of iterations sufficient to approximately solve the problem with high probability, and show how it depends on the data and on the partitioning. We perform numerical experiments with a LASSO instance described by a 3TB matrix.

Martin Takac, Peter Richtarik
University of Edinburgh
m.takac@sms.ed.ac.uk, peter.richtarik@ed.ac.uk

MS2
Efficient Quasi-Newton Proximal Method for Large Scale Sparse Optimization

Recently several methods were proposed for sparse optimization which make careful use of second-order information [10, 28, 16, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modified versions of existing algorithms and also a new algorithm, and provide a global convergence rate analysis in the spirit of proximal gradient methods, which includes analysis of method based on coordinate descent.

Xiaocheng Tang
Lehigh
xct@lehigh.edu

MS2
Nomad: Non-Locking, Stochastic Multi-Machine Algorithm for Asynchronous and Decentralized Matrix Factorization

Abstract not available at time of publication.

S V N Vishwanathan
Department of Statistics - Purdue University
vishy@stat.purdue.edu

MS3
Krylov Subspaces for Approximation of the Spectral Embedding

Spectral embedding problems are solved with truncated spectral decompositions (tSDs); approximation of the tSD may allow for substantial compute savings. Minimal Krylov subspaces have been advocated as tSD alternatives; minimal Krylov subspaces present the greatest potential for compute savings over the tSD, but they also have nontrivial approximation error. We observe that this error is due both to lack of convergence of eigenvalues used in the spectral embedding and convergence of undesired eigenvalues from the opposite end of the spectrum. We also note that eigenvalue approximations may be far more converged than canonical error bounds suggest. We propose preconditioning to produce lower-error minimal Krylov subspaces without incurring much extra computational cost. We demonstrate polynomial preconditioning
MS3
Algebraic Distance on Graphs with Applications to Large-Scale Optimization and Data Analysis

Measuring the connection strength between vertices in a graph is one of the most important concerns in many numerical tasks in graph mining. We consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance) based on this process. Algebraic distance is attractive in that the process is simple, linear, and easily parallelized.

Jie Chen, Ilya Safro
Argonne National Laboratory
jiechen@mcs.anl.gov, isafro@g.clemson.edu

MS3
Numerical Analysis of Spectral Clustering Algorithms (SCAs)

An SCA employs eigensolves to cluster vertices and edges so that graph topology is better understood. Given a graph, a desired cluster type, and a SCA, how many eigensolver iterations are required for the constituent eigenproblems to have adequate data mining quality? We present in-depth analysis of the simplest cases: power method applied to synthetic data mining problems, with an eye for developing convergence theory for real-world problems and faster iterative methods.

Geoffrey D. Sanders
Center for Applied Scientific Computing
Lawrence Livermore National Lab
sanders29@llnl.gov

Lance Ward
Lawrence Livermore National Lab
ward48@llnl.gov

Tobias Jones
University of Colorado, Boulder
Dept. of Applied Mathematics
Tobias.Jones@colorado.edu

MS4
Pressure Forcing and Time Splitting for Discontinuous Galerkin Approximations to Layered Ocean Models

This work concerns the application of DG methods to the numerical modeling of the general circulation of the ocean. One step performed here is to develop an integral weak formulation of the pressure forcing that is suitable for usage with a DG method and with a generalized vertical coordinate that includes level, terrain-fitted, and isopycnic coordinates as examples. The computation of pressure at cell edges is facilitated by some ideas that are also used for barotropic-baroclinic time splitting. This formulation is tested, in special cases, with some computational experiments and with analyses of well-balancing, dispersion relations, and numerical stability.

Robert L. Higdon
Oregon State University
higdon@math.oregonstate.edu

MS4
Analysis of Adaptive Mesh Refinement for IMEX Discontinuous Galerkin Solutions of the Compressible Euler Equations with Application to Atmospheric Simulations

We investigate the performance of a tree-based AMR algorithm for the high order discontinuous Galerkin method on quadrilateral grids with non-conforming elements. We pay particular attention to the implicit-explicit (IMEX) time integration methods and show that the ARK2 method is more robust with respect to dynamically adapting meshes than BDF2. Preliminary analysis of preconditioning reveals that it can be an important factor in the AMR overhead.

Michal A. Kopera, Francis X. Giraldo
Naval Postgraduate School
makopera@nps.edu, fxgiraldo@nps.edu

MS4
A Unified Discontinuous Galerkin Approach for Solving the Two- and Three-Dimensional Shallow Water Equations

In this talk, we present a novel discontinuous Galerkin (DG) method that provides a unified approach for solving the two- (depth-integrated) and three-dimensional shallow water equations. A key feature of the developed DG method is the discretization of all the primary variables using discontinuous polynomial spaces of arbitrary order, including the free surface elevation. In a standard Cartesian-coordinate system, this results in elements in the surface layer having mismatched lateral faces (a staircase boundary). This difficulty is avoided in the current method by employing a sigma-coordinate system in the vertical, which transforms both the free surface and bottom boundaries into coordinate surfaces. The top sigma coordinate surface, which corresponds to the free surface, is discretized using triangular and/or quadrilateral elements that are extended in the vertical direction to produce a three-dimensional mesh of one or more sigma layers of triangular prism and hexahedral elements. The polynomial spaces over these elements are constructed using products of Jacobi polynomials of varying degrees in both the horizontal and vertical directions. The DG approach is unified in the sense that in the case of a single sigma layer and a piecewise constant approximation in the vertical, the method collapses to a “standard” DG method for the two-dimensional, depth-integrated shallow water equations. The approach also makes use of new (in many cases optimal) sets of nonproduct integration rules and strong-stability-preserving time steppers that have been specifically designed for efficient calculation when used with DG spatial discretizations. The efficiency, robustness and h (mesh) and p (polynomial order) convergence properties of the method will be demonstrated on a set of test cases.

Ethan Kubatko
Department of Civil, Environmental and Geodetic Engineering
The Ohio State University
MS4
A Discontinuous Galerkin Non-Hydrostatic Model with An Operator-Split Semi-Implicit Time Stepping Scheme

A new two-dimensional non-hydrostatic (NH) DG model (compressible Euler or Navier-Stokes system) based on efficient spatial discretization has been developed on (x,z) plane. However, the fast-moving acoustic waves together with a high aspect ratio $(\Delta x = 1000\Delta z)$ between the horizontal and vertical spatial discretization impose a stringent restriction on explicit time-step size for the resulting ODE system. We consider a semi-implicit time-split method which employs so-called horizontally explicit and vertically implicit (HEVI) approach through an operator-split procedure for the DG discretization. The vertical component of the dynamics, which deals with the acoustic waves and very small grid-spacing (Δz), is solved implicitly while the horizontal part solved in an explicit manner. For the DG model with HEVI time integration, the CFL limit is only restricted to the horizontal grid-spacing (Δx). The model is tested for various NH benchmark test-cases, and the results will be presented in the seminar.

Ram Nair
NCAR
rnair@ucar.edu

Lei Bao
University of Colorado, Boulder
lei.bao@colorado.edu

MS5
My Intertwined Paths: Career and Family

A rich mixture of both career and family characterizes my life during the past twenty years since I earned a PhD in applied mathematics. I’ll discuss my intertwined paths – as a researcher at Argonne National Laboratory and as a parent. I will highlight career paths at national laboratories, with emphasis on the diverse opportunities for impact in interdisciplinary computational science. Also, I will reflect on my ongoing choices for work-life balance, including addressing the ‘two-body’ problem, parenting, and care for aging parents.

Lois Curfman McInnes
Argonne National Laboratory
curfman@mcs.anl.gov

MS5
Beating the Imposter Syndrome

Many competitive and successful students and professionals at times feel like impostors. “I am not as smart as they think I am”, or “One sure day, I will disappoint my advisor” are frequently occurring thoughts. In a study of several hundred graduate students at Stanford, we asked about this Impostor Syndrome. I’d like to share some of the results, as well as my own thoughts on how the often negative and sometimes paralyzing thoughts that surface can be turned around. We all need mentors and to connect with a community in our work, and we need this at every career stage. I will tell some stories of successes and failures with these from my own career. I will draw some key conclusions about what to look for in a mentor. And I will reflect on the related topic of community, where the supports and the engagement are bi-directional and dynamic.

Margot Gerritsen
Dept of Energy Resources Engineering
Stanford University
margot.gerritsen@stanford.edu

MS5
From Law of Large Numbers...

I would like to share some aspects from my own academic experiences, such as holding positive attitudes, planning and making preparation, and the importance of having good mentors.

Fengyan Li
Rensselaer Polytechnic Institute
lf@rpi.edu

MS5
On the Road Again: My Experience as an Early-career Mathematician

As a mathematician in the transition between postdoc and tenure-track, I will reflect on my experiences thus far and highlight some of the resources that have supported my career. I will also discuss my experience with the academic job market, the two-body problem, pursuing funding opportunities, and seeking a balance between work and personal/family commitments.

Anne Shiu
University of Chicago
annejls@math.uchicago.edu

MS5
On the Importance of Good Mentoring and having an Engaging Community

We all need mentors and to connect with a community in our work, and we need this at every career stage. I will tell some stories of successes and failures with these from my own career. I will draw some key conclusions about what to look for in a mentor. And I will reflect on the related topic of community, where the supports and the engagement is bi-directional and dynamic.

Mary Silber
Northwestern University
Dept. of Engineering Sciences and Applied Mathematics
m-silber@northwestern.edu

MS6
Parallel Preconditioning for All-at-Once Solution of Time-Dependent Navier-Stokes Optimization Problems

We explore domain decomposition strategies for accelerating the convergence of all-at-once numerical schemes for the solution of time-dependent Navier-Stokes optimization problems on parallel computers. Special attention is paid to developing preconditioners that are robust with respect to parameters, such as the regularization parameter, the Reynolds number, and the timestep size. We describe a parallel preconditioning strategy for these systems that
uses domain decomposition algorithms in the time domain and Schur complement approximations for the resulting local saddle point systems. Finally, we present numerical results and discuss possible applications.

Andrew Barker
Max Planck Institut, Magdeburg
barker@mpi-magdeburg.mpg.de

MS6
A Block Diagonal Preconditioner for All-at-Once Solution of Time-Dependent PDE-Constrained Optimization Problems

All-at-once schemes aim to solve all time-steps of parabolic PDE-constrained optimization problems in one coupled computation, leading to exceedingly large linear systems requiring efficient iterative methods. We present a new block diagonal preconditioner which is both optimal with respect to the mesh parameter and parallelizable over time, thus can provide significant speed-up. We will present numerical results to demonstrate the effectiveness of this preconditioner.

Eleanor McDonald
University of Oxford
eleanor.mcdonald@new.ox.ac.uk

Andrew J. Wathen
Oxford University
Numerical Analysis Group
wathen@maths.ox.ac.uk

MS6
Fast Iterative Solvers for Reaction-Diffusion Control Problems from Biological and Chemical Processes

In this talk, we develop fast and robust preconditioned iterative methods for solving matrix systems arising from reaction-diffusion control formulations of biological and chemical processes. To construct these methods, we exploit the saddle point structure of the matrices to derive block diagonal preconditioner which is both optimal with respect to the mesh parameter and parallelizable over time, thus can provide significant speed-up. We will present numerical results to demonstrate the performance of our methods.

John W. Pearson
University of Edinburgh
j.pearson@ed.ac.uk

Martin Stoll
Max Planck Institute, Magdeburg
stollm@mpi-magdeburg.mpg.de

MS6
All-at-Once Multigrid Methods for Optimal Control Problems

In this talk we will discuss the solution of all-at-once multigrid methods for optimal control problems of tracking type with inequality constraints, which might look as follows:

\[
\text{Minimize } J(y, u) = \frac{1}{2} \| y - y_D \|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \| u \|_{L^2(\Omega)}^2 \]

subject to \(-\Delta y = u \) on \(\Omega\) and \(y = 0\) on \(\partial \Omega\) and box constraints \((\alpha, y_D \text{ and } \Omega \text{ are given})\). The box constraints might be state constraints \((y \leq y \leq \overline{y})\) or control constraints \((u \leq u \leq \overline{u})\). One possibility to solve such problems using multigrid methods is to use a (semi-smooth) Newton solver. Here, a standard multigrid method would be used as an solver for linear sub-problems that occur within this iteration. Recently, it was possible to construct and analyze multigrid solvers that can be directly applied to elliptic problems with box constraints (like obstacle problems). Those methods have shown good convergence behavior in practice. In the present talk we will discuss how the ideas of such methods can be extended to control problems.

Stefan Takacs
TU Chemnitz
stefan.takacs@numa.uni-linz.ac.at

MS7
Algorithms That Satisfy a Stopping Criterion, Probably

Numerical algorithms are typically equipped with a stopping criterion where the calculation is terminated when some error or misfit measure is deemed to be below a given tolerance. However, in practice such a tolerance is rarely known; rather, only some possibly vague idea of the desired quality of the numerical approximation is available. Indeed, fast codes for initial value ODEs and DAEs heavily rely on the underlying philosophy that satisfying a tolerance for the global error is too rigid a task; such codes proceed to control just the local error. Another instance of soft error control is when a large, complicated model for fitting data is reduced, say by a Monte Carlo sampling method. If calculating the misfit norm is in itself very expensive then the option of satisfying the stopping criterion only in a probabilistic sense naturally arises. We will discuss this in the context of inverse problems involving systems of PDEs, when many experiments are employed in order to obtain reconstructions of acceptable quality. Major computational savings can then be realized by using unbiased estimators for the misfit function in the stopping criterion.

Uri M. Ascher
University of British Columbia
department of Computer Science
ascher@cs.ubc.ca

Farbod Roosta-Khorasani
Computer Science
UBC
farbod@cs.ubc.ca

MS7
Time Varying RBFs for Wave-Like Solutions of PDEs

We introduce radial basis functions (RBFs) whose time-varying coefficients determine not only the amplitude and position of each RBF but also their shape. The intended use of these Time Varying-RBFs (TV-RBFs) is in the local-in-time representation of low-dimensional approximations of functions that arise in solving spatiotemporal evolution problems; in particular, for time-varying spatially localized solutions with a temporal translation component such as traveling waves, modulated pulses or soliton-like solutions of evolutionary differential equations. This paper is restricted to the one-dimensional spatial case. We also
present an algorithm that places the Time Varying-RBFs (TV-RBFs) over spatiotemporal data that may come from experiments, from finely discretized PDE simulations, or even from multiscale, particle-based simulations. It first approximates the function at a single time instant (a temporal snapshot) as a sum of RBFs using a novel weighted minimization that causes each RBF to primarily approximate one of the localized parts of the function. It then extends that approximation to TV-RBFs over a sequence of snapshots of the function at different times. We conclude by discussing the potential uses of these TV-RBFs.

C.W. Gear
Princeton University
Department of Chemical Engineering
wgear@princeton.edu

Arta Jamshidi
Princeton University
arta.jamshidi@gmail.com

Yannis Kevrekidis
Dept. of Chemical Engineering
Princeton University
yannis@princeton.edu

MS7
On High Index Differential-Algebraic Equations

In this talk we discuss solvability of high index differential algebraic equations. In this context, exponentially faster time scale of evolution of the algebraic variables is pointed out. A numerical method that elucidates the above result by regularizing the Jacobian of the method and producing smoothed solutions is given. The results are illustrated with numerical examples.

Soumyendu Raha
SERC, Indian Institute of Science, Bangalore 560012, India
raha@serc.iisc.ernet.in

MS7
Sensitivity Analysis of Stochastic Chemical Kinetics

Monte Carlo methods of parametric sensitivity analysis for stochastic dynamics consist of the Girsanov Transformation (GT), Pathwise Derivative (PD) and Finite Difference (FD) methods. The GT differs significantly from the PD and FD methods which are closely related. While each method has its advantages and drawbacks, it has been observed that PD and FD have lower variance than GT in many examples. We provide a theoretical explanation for this in the chemical kinetics context.

Muruhan Rathinam
University of Maryland, Baltimore County
muruhan@math.umbc.edu

Ting Wang
Department of Mathematics and Statistics
University of Maryland Baltimore County
ting1@umbc.edu

MS8
Optimizing Snake Locomotion in the Plane

We develop a numerical scheme to determine which planar snake motions are optimal for locomotory efficiency, across frictional parameter space. With large transverse friction, retrograde traveling waves are optimal. Our asymptotic analysis shows that the optimal wave amplitude decays as the $-1/4$ power of the coefficient of transverse friction. At the other extreme, zero transverse friction, we find a triangular direct wave which is optimal. Between these extremes, a variety of locally optimal motions are found, including ratcheting motions. We also extend the study to motion on inclines.

Silas Alben
University of Michigan, USA
alben@umich.edu

Matt Osborne
University of Toledo
matthew.osborne@rockets.utoledo.edu

Xiaolin Wang
Georgia Institute of Technology
xiaolin.wang1987@gmail.com

MS8
From Animal to Robot and Back: Sidewinding on Granular Media

Sidewinders locomote in granular medium through complicated internal shape changes and body-terrain interactions, hence making it difficult to predict their trajectories. We propose an approach which predicts motions according to body shapes. This approach is built on geometric techniques to prescribe the internal motions and observations from live sidewinders moving on sandy terrain. We demonstrate these ideas on the CMU snake robot.

Howie Choset
Robotics Institute
Carnegie Mellon University
choset@cmu.edu

Chaohui Gong, Matthew Travers
Carnegie Mellon University
chaohuig@cmu.edu, botics11@gmail.com

MS8
Lessons from Animal Locomotion: Extending Floquet Theory to Hybrid Limit Cycle Oscillators

Animal locomotion is often modeled as a limit cycle oscillator with hybrid (discontinuous) vector field, where classical results of Floquet theory do not apply. We will discuss several recent theoretical results extending Floquet theory to hybrid limit cycle oscillators, as well as ongoing work on numerical/statistical tools for Data Driven Floquet Analysis of legged locomotion systems.

Shai Revzen
University of Michigan
MS8

Chaotic Scattering during Legged Locomotion on Granular Media

We study locomotion on heterogeneous granular media using laboratory experiments and a granular resistive force theory (RFT). By combining RFT with a multi-body simulator, we model in detail the dynamics of a small open-loop controlled legged sand-running robot. To gain insight into the long-term trajectories, we use cycle expansion theory to study a simplified (scattering potential) model of the locomotor.

Tingnan Zhang
Georgia Institute of Technology
tingnan1986@gatech.edu

Chen Li
University of California, Berkeley
chen.li@berkeley.edu

Predrag Cvitanovic
Center for Nonlinear Science
Georgia Institute of Technology
predrag@gatech.edu

Daniel Goldman
Georgia Tech
School of Physics
daniel.goldman@physics.gatech.edu

MS9

An Initial Modeling of Fractal Nets for the Sierpinski Gasket

The Sierpinski tetrahedron is obtained by applying an iterated function system (IFS) method to a regular tetrahedron. We give a sketch and algorithm for a folding method that allows us to construct the n-th iteration of a modified Sierpinski gasket, then fold it to form the Sierpinski tetrahedron. We also provide an initial exploration of construction methods for minimal volume objects that retain their surface area under refinement. This idea has potential applications at nanoscale. Advisor: Gregory Fasshauer

Barrett Leslie
Illinois Institute of Technology
bleslie@hawk.iit.edu

MS10

Multiscale Modeling and Numerical Simulation of Calcium Cycling in Cardiac Myocyte

In this talk we present the detailed model of the intracellular calcium dynamics in a cardiac myocyte and their efficient numerical techniques. We adopted a detailed CRU model to describe the source functions in the PDE model and the dynamics of the membrane potential is based on the Mahajan membrane Model. We developed a finite element simulator interface for the 452 CRUs arrangement. The numerical convergence of solutions and parallel results are demonstrated.

Nagaiah Chamakuri
Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences
nagaiah.chamakuri@oeaw.ac.at

MS9

Billiard Motion of Microorganisms in Confined Domains

Models of ciliated "squirmer" microorganisms indicate that the body rotates passively away from a wall before, during, and after collision. We explore the billiard-like motion of such a body as it swims inside a confined domain. Solutions for stable periodic trajectories inside of regular polygons are derived, and criteria for the existence of other trajectories in complex domains are investigated. The results may provide insight on entrapment and sorting of microorganisms and other active particles. Advisors: Jean-Luc Thiffeault and Saverio E. Spagnolie, UW-Madison

Colin Wahl, Joseph Lukasik
UW-Madison
cwhal@wisc.edu, jglukasik@wisc.edu

MS10

Modeling the Molecular Basis of Calcium Entrained Arrhythmia

Heart disease is the leading cause of death in the developed world and an increasing problem developing nations most often as result of cardiac arrhythmia. Here we examine the cellular and subcellular basis of calcium dependent arrhythmias. In order to understand how calcium dynamics plays a role in arrhythmogenesis, we have investigated normal and dysfunctional calcium signaling in heart cells at high temporal and spatial resolution using multiscale stochastic models.

Aman Ullah
Department of Molecular Neuroscience
George Mason University, Fairfax, VA 22030
ullah.aman@gmail.com

Tuan Hoang-Trong
School of Systems Biology
George Mason University, Manassas, VA 20110
hoangtrongminhtuan@gmail.com

Geoge Williams, William Lederer
Biomedical Engineering and Technology
University of Maryland, Baltimore, MD 21201
AN14 Abstracts

Mohsin S. Jafri
Department of Molecular Neuroscience
George Mason University, Manassas, VA 20110
sjafri@gmu.edu

MS10
Cellular Mechanisms of Calcium-Mediated Triggered Activity in Cardiac Myocytes

The main chambers of the heart are made up of electrically coupled ventricular myocytes, which are excitable cells that only transit from the resting to the excited states (fire an action potential) under a finite current stimulus. However, under abnormal conditions, those cells can spontaneously fire a single action potential, or even a burst of several action potentials, after a normal stimulated action potential. This talk will present results of a computational study that sheds new light on the dynamical origin of those arrhythmogenic “afterdepolarizations” by quantifying the relationship of stochastic intracellular calcium dynamics and whole-cell voltage dynamics.

Alain Karma
Distinguish Professor
Northeastern University
a.karma@neu.edu

Zhen Song
Physics Department
Northeastern University
a.karma@neu.edu

MS10
Alternans As An Order-Disorder Transition in Heart Cells

Electrical alternans is a beat-to-beat alternation in the amplitude of the electrocardiogram (ECG) which has been shown to be a precursor to various cardiac arrhythmias. In this talk I will argue that nonlinear signaling between stochastic ion channels can explain the onset of alternans. Furthermore, I will present evidence that the transition to alternans occurs via an order-disorder phase transition which exhibits universal features common to a wide range of physical systems.

Yohannes Shiferaw
California State University Northridge
yshiferaw@csun.edu

MS11
Computing Eigenvalues and Eigenvectors of Symmetric Tensors: A Survey

Eigenvalues and eigenvectors of symmetric tensors have found applications in automatic control, data analysis, higher order diffusion tensor imaging, image authenticity verification, optimization, and other areas. In the past few years several algorithms have been proposed for computing certain eigenpairs of symmetric tensors. In this talk, we will survey these methods. We will also describe some new ideas such as the use of deflation method that can assist the existing algorithms to find other eigenpairs.

Lixing Han
University of Michigan at Flint
lxhan@umflint.edu

MS11
Dynamical Systems Analysis of Swamps in ALS

The Alternating Least Squares (ALS) algorithm for approximating a tensor by a low-rank tensor is prone to periods of very slow convergence, known as swamps. Although the existence of swamps is well-known and various fixes have been proposed, the mechanisms that cause swamps are mysterious. I will discuss progress on analyzing and understanding swamps using tools from Dynamical Systems.

Martin J. Mohlenkamp
Ohio University
mohlenka@ohio.edu

MS11
Canonical Polyadic Decomposition for Symmetric Tensor

We propose a method for finding symmetric outer product decomposition for fully and partially symmetric tensor. These are iterative algorithms which are based on matricizations, least-squares and finding roots of quartic polynomials. The methods work well for third-order partially symmetric tensors and fourth-order fully symmetric tensors. Our numerical examples indicate a faster convergence rate than the standard alternating least-squares method.

Carmeliza Navasca
University of Alabama at Birmingham
cnavasca@gmail.com

Na Li
MathWorks
nalitensor@gmail.com

MS11
Towards Better Computation-statistics Trade-off in Tensor Decomposition

New approaches for tensor decomposition with worst case performance guarantee have recently emerged. \(O(rn^{d-1}) \) is the number of samples required for recovering an \(n \times n \times n \) \(d \)-way tensor that admits a Tucker decomposition with \(r \times r \times r \times r \) core proved for one of these methods called overlapped trace norm. Although this method is computationally very efficient, the rate is rather disappointing. A newer approach called square norm achieves lower \(O(r(d/2)n^{d/2}) \) samples at the cost of higher computational demand. There is also a more theoretical approach that could achieve optimal \(\Theta(rn^d) \) but seem to be computationally intractable. I will overview these recent developments and discuss how we could achieve a better trade-off between what we can provably achieve in terms of statistical accuracy and how much computation we need to spend.

Ryota Tomioko
Toyota Technological Institute at Chicago
Mixing and Transport by Ciliary Flows: A Numerical Study

Motile cilia often serve the dual function of transporting fluid across the cell surface and sensing of environmental cues. The performance of cilia in fluid transport was studied extensively. However, the way by which cilia serve the simultaneous tasks of transport and sensing is less well understood. We use a 3D computational model to examine the transport and mixing properties of ciliary flows. We find that the metachronal wave improves both the transport and mixing rates, often simultaneously. These results suggest that cilia use chaotic advection and mixing as a mechanism to enhance sensing.

Eva Kanso
University of Southern California
ekanso@usc.edu

The Capture of Symbiotic Bacteria from the Environment by Host Ciliated Epithelia

Most, if not all, animals have epithelial cells whose apical surfaces have cilia, elongate mechanosensory appendages that are evolutionarily conserved in their structure and biochemical composition. Cilia often occur in dense, behaviorally-coordinated assemblages along the mucosal surfaces. In these locations, the cilia work in concert with the secreted mucus to capture and translocate suspended materials, notably environmental bacteria. This presentation will focus on what is known about the biology of cilia-bacteria interactions.

Margaret McFall-Ngai
University of Wisconsin-Madison
mjmcfallngai@wisc.edu

A Cilia-Driven Hydrodynamic Sieve for Selective Particle Capture

Juvenile Hawaiian bobtail squids reliably capture and isolate a single species of bacteria from inhaled coastal water containing a huge background of other particles. Here I present experimental data showing how arrangement and coordination of the cilia that capture the bacteria create a 3D flow field that facilitates advection, sieving and selective retention of flow-borne particles, including bacteria. These studies may inspire novel microfluidic tools for detection and capture of specific cells and particles.

Janna C. Nawroth
Harvard School of Engineering
jnawroth@gmail.com

Cilia Generated Flows: Insights from Cell Cultures and Engineered Arrays

The lung stays sterile due to the cilia-generated flow of mucus that sweeps the airway clean. We are studying each aspect of this process: Using a magnetic microbead assay to measure the force developed by individual cilia, using driven microbead rheology to understand strain thickening behavior at nano sized structures, using cell cultures to study biological fluid flow against gravity, and engineering artificial cilia to study directed flow and enhanced mixing in actuated arrays.

Richard Superfine
Department of Physics & Astronomy
University of North Carolina
rsuper@email.unc.edu

Frictional and Heat Transfer Characteristics of Flow in Square Porous Tubes of Diesel Exhaust Particulate Filters

In the 1D modeling of flow in the channels of wall-flow monoliths used in diesel particulate filters for engine exhaust emissions control, it is common to use friction coefficients and Nusselt numbers from idealized 2D/3D channel flows. Previously, this idealization suffered from lack of flow through the porous filter walls. As wall flow increases for the simpler geometries of circular tubes and parallel planes, there is a rich literature describing multiple solutions. We extend the practical portion of these results to the computationally challenging, but realistic, square channel geometry that is necessary for mathematical modeling and settle certain long-standing controversies.

Edward Bissett
Gamma Technologies, Inc
Westmont, IL 60559
e.bissett@gtisoft.com

Margaritis Kostoglou
Aristotle University of Thessaloniki
tba@tba.edu

Athanasios Konstandopoulos
Aristotle University of Thessaloniki
tba@tba.edu

Solution Verification in Simulations of Drop Impact of Flexible Containers

Solution Verification is an important part of the credibility of a computational model. This activity is focused on determining the rate of convergence of the computed solution as the computational grid gets refined, with the assumption that it will reach an asymptotic regime of convergence. The talk will show some approaches on verifying the solution of a fluid structure interaction problem where flexible container filled with fluid impacts the ground after being dropped.

Carlos A. Corrales
BAXTER HEALTHCARE CORPORATION
Round Lake, IL 60073
carlos.corrales@baxter.com

Mark Perry
Baxter Healthcare Corporation
mark.perry@baxter.com
Radar Data

Due to the relatively short microwave wavelengths involved, radar imaging relies on exquisite knowledge of the relative geometry between the antenna(s) and the scene to be imaged (i.e., the target). Radar image formation of non-cooperative targets, such as ships in a rolling sea, is particularly challenging because the target may undergo significant unknown and unpredictable motion. In this talk we discuss our recent progress in estimating arbitrary target motion from radar measurements.

Matthew Ferrara, Gregory Arnold
Matrix Research, Inc.
matthew.ferrara@matrixresearch.com, greg.arnold@matrixresearch.com

Mark Stuff
Michigan Tech Research Institute
mastuff@mtu.edu

Jason T. Parker
AFRL/RYRT
jason.parker@wpafb.af.mil

MS13

Regularization in the Real World

The inverse problem of determining cardiac electrical patterns from measurements on internal or external electrodes has received increasing attention from medical-device companies in recent years. This talk will describe new ideas for regularization methods, simulation and preclinical experiments to evaluate and optimize them, and some of the clinical factors that make reliable solutions more difficult in vivo.

Eric Voth
St. Jude Medical, USA
evoth@sjm.com

MS14

Hybrid Parallelism for Large-scale Adaptive-mesh Simulations

With the advent of supercomputers featuring one million processing units or more, maybe the most important guideline for algorithm development is to maximize the concurrency of computational tasks. This is at odds with common solution algorithms for elliptic or hyperbolic PDEs, which are most effective in the mathematical sense but rely on a multilevel structure of causality. In this talk, we discuss options in parallel algorithm design to reduce causality in favor of concurrency.

Carsten Burstedde
Universität Bonn
burstedde@ins.uni-bonn.de

Donna Calhoun
Boise State University
donacalhoun@boisestate.edu

Bram Metsch
University of Bonn
metsch@ins.uni-bonn.de

MS14

Plate Boundary-resolving Nonlinear Global Mantle Flow Simulations using Parallel High-order Geometric Multigrid Methods on Adaptive Meshes

The simulation of global mantle flow with associated plate motion at global scale is challenging due to the extreme nonlinearity, the viscosity variations, and the different spatial scales inherent in the problem. We discretize the governing nonlinear incompressible Stokes equations using high-order finite elements on highly adapted meshes, which allow us to resolve plate boundaries down to a few hundred meters. Crucial components in our scalable solver are an efficient, collective communication-free, parallel implementation of geometric multigrid for high-order elements, the use of a Schur complement preconditioner that is robust with respect to extreme viscosity variations, and the use of an inexact Newton solver combined with grid continuation methods. We present results based on real data that are likely the most realistic global scale mantle flow simulations conducted to date.

Johann Rudi
ICES
The University of Texas at Austin
johann@ices.utexas.edu

Hari Sundar
Institute for Computational and Engineering Sciences
University of Texas at Austin
hari@ices.utexas.edu

Tobin Isaac, Georg Stadler
University of Texas at Austin
tisaac@ices.utexas.edu, georgst@ices.utexas.edu

Michael Gurnis
California Institute of Technology
gurnis@gps.caltech.edu

dave.may@erdw.ethz.ch
MS14
Title Not Available at Time of Publication
Abstract not available at time of publication.

Olaf Schenk
USI - Università della Svizzera italiana
Institute of Computational Science
olaf.schenk@usi.ch

MS15

This talk presents a general modeling approach for locomotion dynamics of mobile multibody systems containing passive internal degrees of freedom concentrated into joints and/or distributed along deformable bodies of the system. The approach embraces the locomotion systems bioinspired by animals that exploit the advantages of soft appendages to improve their locomotion performance. It is illustrated through the passive swimming in von Karman Vortex Street (KVS), and the hovering flight with twistable flapping wings.

Frédéric Boyer
Department of Automatic Control
Ecole des Mines de Nantes
frederic.boyer@mines-nantes.fr

MS15
Mapping Effort: Cartographically-Inspired Methods for Representing the Energetic Cost of Locomotion

In kinematic motion planning, Euclidean configuration distance metrics often fail to encode nonlinear effort or power from changing shape. Cartographic techniques can project the distorted configuration coordinates into representations that more accurately portray such distances. We show that the kinematic cartography problem may be reformulated into one of nonlinear dimensionality reduction (NLDR), and compare the results of applying a well-known NLDR technique against a previous spring relaxation algorithm on a three-link low Reynolds swimmer.

Howie Choset
Robotics Institute
Carnegie Mellon University
choset@cmu.edu

MS15
Numerical-Geometric Analysis of Sandswimming

Sand-swimming, a form of desert burrowing, offers interesting potential as a locomotion mode for robots operating in loose, granular environments. Unfortunately, the computational cost of modeling the relevant physics raises obstacles to a thorough exploration of the system dynamics. Geometric mechanics offers techniques for reducing the complexity of evaluating gaits, thereby offering the potential for exploring a gait design space; unfortunately, these tools have historically been restricted to systems with linear, analytical dynamics. We have recently developed a framework for combining empirical data from nonlinear models with geometric gait evaluation methods. The resulting tools both reduce the computational costs of describing sand-swimming and reveal fundamental aspects of the motion.

Ross L. Hatton
Sc. of Mechanical, Industrial, and Manufacturing Engineering
Oregon State University
ross.hatton@oregonstate.edu

MS16
Fully-Automated Multi-Objective Optimization for Fitting Spatial and Temporal Constraints in a Neuronal Model with Real Morphology

We introduce a fully automated optimization methodology for fitting spatially extended neuronal models with multiple time scales. Using multi-objective optimization and targeted experimental protocols, we model a hippocampal CA1 pyramidal cell, which exhibits a sodium channel with widely-separated time constants of recovery from inactivation. Our implementation uses Python to control the NEURON simulator on a multi-core cluster and features a clickable interface to explore the Pareto-optimal front of solutions.

Aushra Abouzeid
Department of Applied Mathematics, Northwestern University
Department of Neurobiology, Northwestern University
aushra.abouzeid@northwestern.edu

MS16
Intrinsically Bursting AII Amacrine Cells Drive Oscillations in the Degenerated Rd1 Retina

In retinal degeneration, spontaneous oscillations are observed in retinal output neurons, interfering with signal processing. Using compartmental modeling, based on slice experiments, we show these oscillations are generated by...
intrinsic bursting of individual AII amacrine cells, which are instrumental in transmitting photoreceptor signals to the output cells. We explain the bursting mechanism by decoupling the fast and slow subsystems, and investigate the bistability between bursting and tonic firing in the model.

Hannah Choi
Northwestern University
hannahchoi2014@u.northwestern.edu

Lei Zhang
University of Maryland
vdxiaozhang@gmail.com

Mark Cembrowski
HHMI Janelia Farm
cembrowskim@janelia.hhmi.org

Joshua Singer
University of Maryland
jhlsinger@umd.edu

William Kath
Northwestern University
Engineering Sciences and Applied Mathematics
kath@northwestern.edu

Hermann Riecke
Applied Mathematics
Northwestern University
h-riecke@northwestern.edu

MS16
Synchrony and Phase-Locking of Mixed-Mode Oscillations in a System of Pulse-Coupled Neurons

Our study is motivated by the experimental observation of fast and slow rhythms in the mammalian olfactory system. We develop a minimal model in which the interaction of three relevant populations of neurons is reduced to an effective pulse-coupling amongst a single population of mixed-mode oscillators, and explore the dynamics of this system as a function of the shape and delay of the pulses. We interpret our findings in the context of the observed rhythms.

Avinash J. Karamchandani
Department of Engineering Sciences and Applied Mathematics
Northwestern University
avijka@u.northwestern.edu

Hermann Riecke
Applied Mathematics
Northwestern University
h-riecke@northwestern.edu

MS16
Network Restructuring Guided by Associative Feedback for Enhanced Stimulus Discrimination

The neuronal network performing the initial information processing of olfactory stimuli in mammals exhibits extensive neuronal turnover and a slow restructuring of its connectivity. This network evolution and the activity on this network are modulated by feedback from a network that has properties of an associative memory. Using simple computational models we investigate how these processes allow these coupled networks to learn to discriminate stimuli depending on their familiarity or their association with non-olfactory cues.

Hermann Riecke
Applied Mathematics
Northwestern University
h-riecke@northwestern.edu

Wayne Adams, James Graham, Cameron Dennis, Tom Zhao, Siu Fai Chow
Northwestern University
wayneadams2014@u.northwestern.edu, jngraham@u.northwestern.edu, jcdennis0411@gmail.com, tomzhao2014@u.northwestern.edu, siuchow2008@u.northwestern.edu

MS17
Hardcore Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

The High-order Adaptively Refined Dynamical Core (HARDcore) composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for simulations at the mesoscale. A complete implementation of the methods described is shown with verification test case simulation results based on standard literature.

Jorge E. Guerra
Department of Land, Air and Water Resources
University of California, Davis
jeguerra@ucdavis.edu

Paul Ullrich
University of California, Davis
paulullrich@ucdavis.edu

MS17
Using the Multilayer Shallow Water Equations for Storm Surge Modeling

Coastal hazards related to strong storms, in particular storm surge, are one of the most frequently recurring and widespread hazards to coastal communities. In this talk we will present a modification of the standard shallow water model that adds an additional layer to represent the boundary layer of the ocean so that the storm wind forcing is properly taken into account. A demonstration of the utility of this approach will also be presented as applied to Hurricane Ike.

Kyle T. Mandli
University of Texas at Austin
icest
MS17
Transport Methods for the Community Atmosphere Model’s Spectral Element Dynamical Core

Transport algorithms are highly important in atmospheric modeling for climate where hundreds of tracer species must be efficiently transported and it is critical that they satisfy physical bounds and conservation laws. We describe and compare two new transport algorithms that are being developed for the Community Atmosphere Model’s (CAM) Spectral Element (SE) Dynamical Core for use on unstructured meshes. The first is a finite-volume based approach where cell intersections between a Lagrangian departure grid and the Eulerian computational grid are computed with the Mesh Oriented Data Base (MOAB). This method is stable for large time steps and is efficient for large numbers of tracer species because the computationally intensive intersection algorithm needs to be called only once per timestep for multiple tracers. The second method is a nodal semi-Lagrangian scheme that has the advantage of directly using the spectral element degrees-of-freedom. This method is coupled with an optimization algorithm to enforce mass conservation and bounds preservation. We evaluate the new methods using several standard two- and three-dimensional transport problems on the sphere and compare to existing approaches.

Kara Peterson
Sandia Natl. Labs
kpeter@sandia.gov

Mark A. Taylor
Sandia National Laboratories, Albuquerque, NM
mataylo@sandia.gov

MS18
Interpreting the Impact of Constraints for Mean Variance and Cvar Optimization

In this presentation, we study the effect linear constraints have on risk in the context of both mean variance optimization (MVO) and conditional value at risk (CVaR) optimization. Jagannathan and Ma (2003) establish an equivalence between certain constrained and unconstrained MVO problems via a modification of the covariance matrix. We extend their results to both the general case of arbitrary constraints in MVO problems and to CVaR optimization, where the joint density is modified.

Chris Bemis
Whitebox Advisors
Minneapolis, MN 55416
chris.bemis@gmail.com

MS18
Addressing the Potential Non-Robustness of Subadditive Portfolio Risk Measures

The modern approach to managing financial market risk is to define an acceptance set for portfolio net asset value at some fixed time horizon according to some probability measure and to impose limits in the current period on the portfolio composition in order to assure acceptable outcomes. Estimating these limits present practical and theoretical challenges (cf Cont et al. [2010]), particularly where outcomes are highly leptokurtotic. We present a concise description of the problem and how it can be addressed.

John A. Dodson
Options Clearing Corporation
Chicago, IL 60606
j dodson@theocc.com

MS18
Using Social Influence to Predict Subscriber Churn

With the saturation of mobile phone markets operators focus their energies on identifying potential churners for retention campaigns. Typical churn prediction algorithms identify churners based on service usage metrics, network performance indicators, and demographic information while social influence to churn is usually not considered. We present a churn prediction algorithm that incorporates the influence churners spread to their social peers and show that social influence improves churn prediction and is among the most important factors.

Vee na Mendiratta
Bell Labs, ALCATEL-LUCENT
Naperville, IL 60563
veena.mendiratta@alcatel-lucent.com

Chitra Phadke, Huseyin Uzunalioglu, Dan Kushnir
Bell Labs, Alcatel-Lucent
chitra.phadke@alcatel-lucent.com, huseyin.uzunalioglu@alcatel-lucent.com, dan.kushnir@alcatel-lucent.com

MS18
Efficient High-Precision Numerical Computation

This talk provides an overview of the methods used to compute numerical functions using high precision in Mathematica. The main focus will be on computation of elementary functions, but applications to special functions will also be mentioned. An outline of the algorithms used will be given together with a description of recent work on more efficient implementation. A comparison with some state-of-the-art special purpose software will also be presented.

Mark Sofroniou
Wolfram Research Inc
40139 Bologna, Italy
marks@wolfram.com

MS19
Changing Directions

We were often told to choose a research area we love. But there are a lot of different kinds of math I love; in fact, any math is fun! In this talk I will share my reflections on how I came to the research area I work in now and factors you can consider when making that difficult choice yourself.

May Boggess
Arizona State University
May.Boggess@asu.edu

MS19
Two Jobs, Two Children, and Two Cars: What can Possibly go Wrong?

Some time in the last millennium but it seems longer ago
than that my husband and I set out to start a family and find permanent academic jobs, more or less at the same time. Employer-provided daycare, spousal accommodation, and parental leave were yet to be invented. Nonetheless, we benefited from many factors: The novelty of the situation, our willingness to explore different parts of the country and different types of institutions, and our optimism and our determination to do the best we could for our careers and for our family. This talk will summarize our strategies, and will consider what we could have done better.

Barbara Lee Keyfitz
The Ohio State University
Department of Mathematics
bkeyfitz@math.ohio-state.edu

MS19
Perspectives of an Assistant Professor

I will reflect on my career path, which did not follow the trajectory I expected. Instead of continuing in a career focused solely on teaching, I moved from being an assistant professor at a teaching university to one at a research university. Along with my career path, I will share the advice I received along the way that shaped this journey. In addition, I will reflect on my experiences of being an assistant professor at two different types of institutions.

Joan Lind
University of Tennessee
jlind@utk.edu

MS20
A Linear Algebra Perspective on Modeling and Computation with Stochastic PDEs

Computational solutions of PDE models with uncertain inputs often begin by representing the randomness in the system with a set of random variables, which become additional coordinates of the PDE solution. One must discretize both the physical domain (space, time) and the random domain (added coordinates) to approximate the solution numerically. Discretization methods yield a host of interesting linear systems to solve. We will compare the linear systems arising in Galerkin methods, pseudospectral methods, and least-squares methods with the goal of offering some practical guidelines for discretization.

Paul Constantine
Colorado School of Mines
Applied Mathematics and Statistics
pconstan@mines.edu

David F. Gleich
Purdue University
dgleich@purdue.edu

MS20
Strategies for the Efficient Solution of Parameterized or Stochastic PDEs

Many applications, such as stochastic PDEs and uncertainty quantification, lead to a large collection or sequence of parameterized PDEs. Taking into account that we need to solve a collection or sequence of related PDEs can lead to a substantially shorter total solution time (over all systems). We provide a brief overview of methods that help solve systems of parameterized PDEs faster, such as model reduction for parameterized systems, Krylov subspace recycling, and updating preconditioners, and we discuss links between these approaches, and results from recent projects.

Eric De Sturler
Virginia Tech
sturler@vt.edu

MS20
Computational Complexity of Stochastic Galerkin and Collocation Methods for PDEs with Random Coefficients

We developed a rigorous cost metric, used to compare the computational complexity of a general class of stochastic Galerkin methods and stochastic collocation methods, when solving stochastic PDEs. Our approach allows us to calculate the cost of preconditioning both the Galerkin and collocation systems, as well as account for the sparsity of the Galerkin projection. Theoretical complexity estimates will also be presented and validated with use of several computational examples.

Nick Dexter
University of Tennessee
n.dexter@utk.edu

Clayton G. Webster, Guannan Zhang
Oak Ridge National Laboratory
webstercg@ornl.gov, zhangg@ornl.gov

MS20
Compressive Sensing Method for Solving Stochastic Differential Equations

We solve stochastic partial differential equations (SPDEs) with random coefficients by expanding the solution with generalized polynomial chaos (gPC). We employ the compressive sensing method to recover the coefficients of the gPC expansion given the knowledge that the solution is "sparse". We also combine this method with a special sampling strategy to further increase the accuracy of the recovery of the gPC coefficients. Our method is especially suitable for exploiting information from limited sources.

Xiu Yang
Brown University
xiu.yang@brown.edu

George E. Karniadakis
Brown University
george_karniadakis@brown.edu

MS21
Stochastic Turing Patterns: Analysis of Compartment-based Approaches

Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models. In this talk, the dependence of stochastic Turing patterns on the com-
part of noise on Turing patterns in biological systems need to be reinterpreted.

Yang Cao
Computer Science Department
Virginia Tech
cyao@cs.vt.edu

Radek Erban
University of Oxford
Mathematical Institute
erban@maths.ox.ac.uk

MS21
Adaptive Accelerated Spatial Stochastic Simulation of Biochemical Systems

Spatial stochastic simulation is an extremely computationally intensive task. This is due to the large number of molecules, which along with the refinement of the discretized spatial domain, results in a large number of diffusive transfers between voxels (sub-volumes). Previously, we presented a novel formulation of the Finite State Projection (FSP) method, called the Diffusive FSP (DFSP) method, for the efficient and accurate simulation of diffusive processes. Using the FSP method’s ability to provide a bound on the error, we are able to take large diffusion timesteps with confidence in our solution. We used this to construct an operator split algorithm for spatial stochastic simulation of reaction-diffusion processes that solves diffusion with DFSP and reactions with SSA. However, one of the biggest challenges faced by scientists utilizing DFSP is correct selection of the appropriate operator splitting timestep. A correctly chosen timestep will produce results at the optimum speed without violating the specified error tolerance. Choosing an appropriate timestep requires estimation of the error due to operator splitting. The error is a function of the spatial discretization of the domain, the diffusion coefficients of the molecules within the system, and the stiffness of the chemical reaction channels. Here, we present an extension to the DFSP algorithm that automatically and adaptively selects the appropriate timestep for performance and error control. We demonstrate the utility of this method with a traditional CPU implementation, and its parallel efficiency with a many-core implementation.

Brian Drawert
University of California Santa Barbara
bdrawert@cs.ucsb.edu

MS21
Stochastic Simulation of Biochemical Networks: Diffusion and Parameter Sensitivity

At the level of a single biological cell, random fluctuations have a significant effect on the biochemistry of the cell. The intrinsic noise in the system with reactions and diffusion is simulated on an unstructured mesh. The parameters in the models will vary due to external sources. We will discuss how diffusion can be modeled on meshes of poor quality and how to include and analyze extrinsic noise in the simulations of an oscillatory system.

Per Lotstedt
Department of Information Technology
Uppsala University, Sweden
Per.Lotstedt@it.uu.se

MS21
SParSE: Efficient Stochastic Parameter Search Algorithm for Events

High-performance computing empowers scientists to run large in silico stochastic models that accurately mimic the behavior of the represented system. As the predictive power of such models improve, the need for an algorithm that efficiently determines system configurations for achieving a specific outcome increases. In this presentation, we present a novel parameter estimation algorithm—Stochastic Parameter Search for Events (SParSE)—that automatically computes parameter configurations for propagating the system to produce an event of interest at user-specified success rate and error tolerance.

Min K. Roh
Intellectual Ventures Laboratory
mroh@intven.com

MS23
Machine Learning Models for Terrestrial Space Weather Forecasting

Earths magnetosphere experiences loading and unloading processes in response to the incoming energy from the solar wind, creating geomagnetic storms. Predicting these storms is a key priority of space agencies. Due to the scarcity of available data, this system is difficult to simulate with first-principle techniques, inspiring significant research in data-driven models. We investigate the use of advanced graphical machine learning methods including Elman Recurrent Neural Networks and Hidden Markov Models for predicting solar storms. Advisor: Dhruv Batra, Virginia Tech

Brendan Avent, Nicholas Sharp
Virginia Tech
bavent@vt.edu, nsharp@vt.edu

MS23
Optimal Control in Time-Varying Velocity Fields using Alpha Hulls

Vehicles in current fields present a difficult optimization problem in charting optimal navigational paths. Recent progress has been made on the general optimal control problem by using front propagation to track the boundary of a reachable set. This work presents a significant advancement by using alpha hulls to dynamically mesh a set boundary in three dimensional space. This method permits higher order optimization, including mixed time-fuel cost metrics and trajectories in three dimensions. Advisor: Shane Ross, Virginia Tech

Nicholas Sharp
Virginia Tech
MS23
An Extensible Test Matrix Collection

We describe the design and implementation of a test matrix collection. The matrices are grouped into subclasses and their key properties are documented, such as structure, eigenvalues, inverse and condition number. Users can access to matrices by matrix name, by number and by property. They can also include their own matrices by creating new subclasses, which can be easily shared with others. The package is written in Fortran 95 and includes a Python interface. Advisor: Nicholas Higham, University of Manchester

Weijian Zhang
University of Manchester
weijian.zhang@student.manchester.ac.uk

MS24
Mathematical Modelling of Excitation Contraction Coupling

We present a spatially resolved Ca2+ release unit model. It reproduces experimental findings like gain and gradedness, spark life time and the dependence of release currents and RyR open probability on luminal Ca2+. A crucial question for the early phase of release is whether the activation of the RyRs is triggered by one or by multiple open LCCs. We address the problem by modelling. We conclude that the activation of RyRs requires multiple open LCCs.

Martin Falcke
MDC for Molecular Medicine
Berlin, Germany
martin.falcke@mdc-berlin.de

MS24
Ca2+ Signaling in the Cardiomyocyte: An Atomistic to Cellular Multi-Scale Perspective

Abstract not available at time of publication.

Peter Kekenes-Huskey
UCSD
pkekeneshuskey@ucsd.edu

MS24
Subcellular Calcium Dynamics in a Whole-cell Model of an Atrial Myocyte

Intracellular calcium waves play a crucial role in coordinating contraction of cardiac myocytes. I will present an innovative mathematical modelling approach that allows detailed characterisation of calcium movement within the 3-dimensional volume of an atrial myocyte. Essential aspects of the model are the geometrically realistic representation of calcium release sites and physiological calcium flux parameters, coupled with a computationally inexpensive framework. By translating non-linear calcium excitability into threshold dynamics, we avoid the computationally demanding time-stepping of the full parabolic partial differential equations that are often used to model calcium transport. Our approach successfully reproduces key features of atrial myocyte calcium signalling observed during excitation-contraction coupling. Beyond this validation of the model, our simulation reveals novel observations about the spread of calcium within an atrial myocyte. Furthermore, I will demonstrate that altering the strength of calcium release, the refractoriness of calcium release channels, the magnitude of initiating stimulus, or the introduction of stochastic calcium channel activity can cause the nucleation of pro-arhythmic travelling calcium waves.

Ruediger Thul
University of Nottingham
ruediger.thul@nottingham.ac.uk

Steve Coombes
University of Nottingham
Division of Applied Mathematics, School of Mathematical Science
stephen.coombes@nottingham.ac.uk

Martin Bootman
The Open University
martin.bootman@open.ac.uk

MS25
Complexity and Approximability of Tensor Nuclear Norm

We show that computing the nuclear norm of a 3-tensor is an NP-hard problem. We discuss its approximability and deduce polynomial-time computable upper and lower bounds.

Shmuel Friedland
Department of Mathematics, University of Illinois, Chicago
friedlan@uic.edu

Lek-Heng Lim
University of Chicago
lekheng@galton.uchicago.edu

MS25
Combinatorial Interpretation of the Mesner-Bhattacharya Algebra with Application to Hypermatrix Spectral Decomposition

In this talk we will present an overview of the hypermatrix generalization of matrix algebra proposed by Mesner and Bhattacharya in 1990. In connection with the Mesner-Bhattacharya algebra we discuss a spectral decomposition theorem for hypermatrices, a generalization of the Cayley-Hamilton theorem to Hypermatrices with application to computing new hypergraph invariants.

Edinah Gnang
Institute of Advanced Study
kgnang@gmail.com

Vladimir Retakh
Rutgers University
vretakh@math.rutgers.edu

Ahmed Elgammal
Department of Computer Science
Rutgers University
elgammal@cs.rutgers.edu

Ori Parzanchevski
Institute of Advanced Study
parzan@math.ias.edu

MS25
Randomized Methods for Higher-Order SVD
We adapted the work of Halko, Martinsson and Tropp of the randomized range finder in finding the low multilinear rank of tensors.
Deonnia Pompey, Carmeliza Navasca
Department of Mathematics
University of Alabama at Birmingham
nicholep@uab.edu, cnavasca@gmail.com

MS25
Tensor Linear Discriminant Analysis for Object Recognition
In this talk we explore a tensor based approach to linear discriminant analysis and object recognition. Similar to matrix LDA we determine a basis for projection by minimizing the within class scatter and maximizing the between class scatter. We measure the accuracy of the method and compare to the traditional LDA approach by varying the number of eigenvectors and eigenmatrices used for classification.
William E. Sorenson
South Dakota School of Mines and Technology
William.Sorenson@mines.sdsmt.edu

Randy Hoover, Karen S. Braman
South Dakota School of Mines
randy.hoover@sdsmt.edu, Karen.Braman@sdsmt.edu

Nels Leonard
South Dakota Schoold of Mines and Technology
nels.leonard@mines.sdsmt.edu

MS26
Leaf Compliance and Foliar Disease Transmission
Foliar diseases in plants are a major cause of crop loss worldwide. Following a recent study which identified various modes of foliar pathogen ejections from contaminated leaves during rainfalls, we here present a theoretical model that rationalizes the effect of foliage compliance on such mechanisms. The laws of fluid dynamics set tight limits on this epidemiological problem of foliar disease transmission and suggest mitigation strategies to the onset of foliar disease spread.
Lydia Bourouiba
Department of Mathematics #2-348
Massachusetts Institute of Technology
lydia.bourouiba@math.mit.edu

MS26
Hydrodynamic Contributions to Amoeboid Cell Motility
Understanding the methods by which cells move is a fundamental problem in modern biology. Cell locomotion is integral to physiological processes such as wound healing, cancer metastasis, embryonic development, and the immune response. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we develop a computational model of crawling Physarum. Our model incorporates the effects of the cytoplasm, cellular cortex, the internal cytoskeleton and adhesions to the substrate. Of paritcular interest are stresses generated by cytoplasmic flow and how transmission of stresses to the substrate is coordinated. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion. Cytoplasmic flows and traction stresses generated by the model are compared to experimentally measured stresses generated by Physarum.
Owen Lewis
University of California, Davis
ollewis@math.ucdavis.edu

MS26
Simulation of Fluid Flow Past Conic Obstacles with Applications to Leaves
We present findings from 2 and 3 dimensional simulations of fluid flow past conic obstacles to compare to experiments of leaves in wind tunnels conducted by the Miller Lab. The goal is to study vortex formation at different cone angles, compare boundary layers to asymptotics and if given time potentially measure the impact of elasticity on the obstacle.
Jeremy L. Marzuola
Department of Mathematics
University of North Carolina, Chapel Hill
marzuola@math.unc.edu

MS26
Plant Leaves Reconfigure into Cone Shapes to Reduce Drag and Flutter
We examine how leaves roll up into drag reducing shapes in strong flows. The dynamics of the flow around the leaves of the wild ginger and tulip poplar are described and compared to simplified sheets using 3D numerical simulations and physical models. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed.
Laura A. Miller
Department of Mathematics
University of North Carolina - Chapel Hill
lam9@email.unc.edu

MS27
Demon Design: Circumnavigating Landauer’s Limit
Maxwell’s Demon is a century old thought experiment which has challenged physicists understanding of thermodynamics. We develop a new classical formalism for constructing generalized Maxwellian Demons. We call this new class of systems information engines. These engines use “intelligent” information processing to extract energy from a thermal bath. Although these processes appear to violate the second law of thermodynamics on first inspection, information processing has an energy cost. This cost
was once thought to be described by Landauers limit on erasure. We discuss how to design the microscopic and macroscopic architecture of the information engine in order to circumnavigate Landauers Principle, developing a different set of energetic bounds on information processing.

Alec Boyd, James P. Crutchfield
University of California Davis
alecboy@gmail.com, chaos@cse.ucdavis.edu

MS27
Information Processing and the Second Law of Thermodynamics: An Inclusive, Hamiltonian Approach

We obtain generalizations of the Kelvin-Planck, Clausius, and Carnot statements of the second law of thermodynamics for situations involving information processing. To this end, we consider an information reservoir (representing, e.g., a memory device) alongside the heat and work reservoirs that appear in traditional thermodynamic analyses. We derive our results within an inclusive framework in which all participating elements—the system or device of interest, together with the heat, work, and information reservoirs—are modeled explicitly by a time-independent, classical Hamiltonian. We place particular emphasis on the limits and assumptions under which cyclic motion of the device of interest emerges from its interactions with work, heat, and information reservoirs.

Sebastian Deffner
University of Maryland
sebastian.deffner@gmail.com

MS27
Towards A Physics of Information: Bit by Bit

Energy and information are fundamental concepts in science, and yet, most would struggle to cite results relating the two, with Landauers principle, perhaps, being the most well-known. However, there has been renewed interest in relating these concepts, especially as researchers engage the nanoscale. We review information-theoretic measures of memory and organization as developed in computational mechanics, an approach that emphasizes information storage and processing in physical systems. Existing and future applications will also be discussed.

Christopher J. Ellison
Center for Complexity and Collective Computation
University of Wisconsin-Madison
cellison@wisc.edu

MS27
Predictive Inference in Non-equilibrium Steady State

Biological sensory systems could be very efficient lossy predictive feature extractors, and a common goal is to engineer systems which learn to extract predictive features of sensory input. One theoretical framework for lossy predictive feature extraction is that of predictive rate-distortion theory. We discuss how to find predictive information curves of output generated by partially-deterministic finite automata. We discuss how input-dependent dynamical systems can extract predictive features of their input automatically. And finally, we ask whether or not an energetically-efficient machine which merely copied the input would necessarily predict the input.

Sarah Marzen
University of California Berkeley
marzen.sarah@gmail.com

James Crutchfield
Computational Science & Engineering Center and Physics Dept.
University of California at Davis
chaos@cse.ucdavis.edu

MS28
Scalable Nonlinear Solvers for Geophysical Problems

Robustness and efficiency of nonlinear solvers, especially for complex multiphysics problems, is a major concern for large scale problems. We present the new framework for nonlinear preconditioning developed in PETSc, and show its application to problem in crustal dynamics from the PyLith package, and lithospheric dynamics from the pTatin3d package.

Matthew G. Knepley
University of Chicago
knepley@ci.uchicago.edu

MS28
Performance and Scalability of Multigrid Solvers for Geophysical Flow

In this talk, we present the abstract concept of hierarchical hybrid grids to design scalable and fast multigrid solvers for the incompressible Stokes that lead to saddle point formulations. Based on a hierarchy of block-wise uniformly refined grids, a semi-structured mesh is obtained that constitutes the starting point for the design and implementation of a massively parallel Stokes solver. In this presentation, we investigate and analyze experiments for Earth Mantle Convection simulations on peta-scale clusters.

Björn Gmeiner
Computer Science 10 - System Simulation
Friedrich-Alexander-University Erlangen-Nuremberg, Germany
bjoern.gmeiner@informatik.uni-erlangen.de

Christian Waluga
M2 Center of Mathematics
Technical University of Munich
waluga@ma.tum.de

Ulrich J. Ruede
University of Erlangen-Nuremberg
Department of Computer Science (Simulation)
ruede@informatik.uni-erlangen.de

MS28
Computational Environments for Modeling Multiphase Flow, Geochemistry, and Geomechanics

We discuss multiphase models for modeling coupled flow, geochemistry and geomechanics in a porous medium that includes history matching using EnKf. We will present results for a carbon sequestration storage problem and a
MS29
A Hyperspherical Method for Discontinuity Detection

The objects studied in uncertainty quantification may inconveniently have discontinuities or be contained in an implicitly defined irregular subvolume. Standard techniques are likely to fail; even an adaptive sparse grid method may require excessive sampling to achieve a tolerance. The hypersphere approach detects and unfolds discontinuity surfaces, greatly reducing the influence of highly curved geometry, and allowing good estimates of shape and probabilistic volume.

Guannan Zhang, Clayton G. Webster
Oak Ridge National Laboratory
zhangg@ornl.gov, webstercg@ornl.gov

John Burkardt
Department of Computational Science
Florida State University
jburkardt@fsu.edu

MS29
A Hierarchical Stochastic Collocation Method for Adaptive Acceleration of PDEs with Random Input Data

We will present an approach to adaptively accelerate a sequence of hierarchical interpolants required by a multilevel sparse grid stochastic collocation (aMLSC) method. Taking advantage of the hierarchical structure, we build new iterates and improved pre-conditioners, at each level, by using the interpolant from the previous level. We also provide rigorous complexity analysis of the fully discrete problem and demonstrate the increased computational efficiency, as well as bounds on the total number of iterations used by the underlying deterministic solver.

Peter Jantsch
University of Tennessee
jantsch@math.utk.edu

Guannan Zhang, Clayton G. Webster
Oak Ridge National Laboratory
zhangg@ornl.gov, webstercg@ornl.gov

MS29
Improving Performance of Sampling-Based Uncertainty Quantification on Advanced Computing Architectures Through Embedded Ensemble Propagation

We explore approaches for improving the performance of sampling-based uncertainty quantification methods on emerging computational architectures. Our work is motivated by the trend of increasing disparity between floating-point throughput and memory access speed. We describe rearrangements of sampling-based uncertainty propagation methods to propagate ensembles of samples simultaneously leading to improved memory access patterns and increased fine-grained parallelism. We then measure the resulting performance improvements on emerging multicore architectures in the context of sparse linear algebra.

Eric Phipps
Sandia National Laboratories
Optimization and Uncertainty Quantification Department
etphipp@sandia.gov

H. Carter Edwards
Sandia National Laboratories
hceedwar@sandia.gov

MS29
A Generalized Clustering-based Stochastic Collocation Approach for High-dimensional Approximation of SPDEs

We developed a novel generalized clustering-based stochastic collocation (gSC) approach, constructed from, e.g., a latinized hCV tessellation (hCVT), with locally supported hierarchical radial basis function defined over each hCVT cell. This gSC method permits low-discrepancy adaptive sampling according to the input probably density function (PDF), and whose accuracy decreases as the joint PDF approaches zero; effectively approximating the solution only in the high-probability region. Theoretical and computational comparisons to classical sampling and SC methods will also be examined.

Clayton G. Webster, Guannan Zhang
Oak Ridge National Laboratory
webstercg@ornl.gov, zhangg@ornl.gov

MS30
Matching Exponential and Resolvent Based Centrality Measures in Complex Networks

Centrality measures are used to numerically define the notion of importance of a node to the entire network. In this talk we consider in particular centrality measures based on the matrix exponential and resolvent functions. It has been observed that the ordinal node ranking the resolvent based measure yields can be particular sensitive to the choice of the parameter involved. We show that the parameter can be chosen so that the resolvent measure gives similar rankings to the exponential measure.

Mary Aprahamian
School of Mathematics
The University of Manchester
mary.aprahamian@postgrad.manchester.ac.uk

Des Higham
Univ. Strathclyde
djh@maths.strath.ac.uk

Nicholas J. Higham
University of Manchester
School of Mathematics
Nicholas.J.Higham@manchester.ac.uk

MS30
Anticipating Behavior During Twitter Spikes

We propose and test a novel mathematical model for the activity of microbloggers during an external, event-driven spike. The model leads to a computable prediction of who
will become active during a spike. This information is of interest to commercial organisations, governments and charities, as it identifies key players who can be targeted with information in real time. The main expense is a large-scale, sparse linear system solve that is comparable with the cost of computing Katz centrality. We will illustrate the new algorithm on Twitter data around sporting events and TV shows, where spikes in social media activity are driven by external events such as referees’ decisions or dramatic plot developments.

Desmond Higham
University of Strathclyde, UK
d.j.higham@strath.ac.uk

Peter Laflin
Bloom Agency, UK
peter.laflin@bloomagency.co.uk

Peter Grindrod
University of Oxford, UK
grindrod@maths.ox.ac.uk

Alex Mantzaris
University of Strathclyde, UK
alexander.mantzaris@strath.ac.uk

Amanda Otley
Bloom Agency, Leeds, UK
amanda.otley@bloomagency.co.uk

MS30
A Matrix Analysis of Different Centrality Measures

Node centrality measures including degree, eigenvector, Katz and subgraph centralities are analyzed for both undirected and directed networks. We show how parameter-dependent measures, such as Katz and subgraph centrality, can be "tuned" to interpolate between degree and eigenvector centrality, which appear as limiting cases of the other measures. Our analysis gives some guidance for the choice of parameters in Katz and subgraph centrality, and provides an explanation for the observed correlations between different centrality measures.

Christine Klymko
Emory University
cklymko@emory.edu

Michele Benzi
Department of Mathematics and Computer Science
Emory University
benzi@mathcs.emory.edu

MS30
Low-rank Approximation Methods for Ranking the Nodes of a Complex Network

Various network metrics have been introduced to identify the most important nodes in a graph. Some of them are defined as a function of the adjacency matrix associated to the network. We propose a new method to compute such matrix functions, based on a low rank approximation of the adjacency matrix, which allows us to determine a subset that contains the most important nodes, followed by the application of Gauss quadrature to refine the result.

Giuseppe Rodriguez, Caterina Fenu

University of Cagliari, Italy
rodriguez@unica.it, kate.fenu@gmail.com

Lothar Reichel
Kent State University
reichel@math.kent.edu

MS31
A Family of Numerical Methods for Large Scale DFN Flow Simulations avoiding Complex Mesh Generation

A novel optimization method for Discrete Fracture Network (DFN) simulations of subsurface flows is presented. Large scale DFN problems are iteratively split in quasi-independent smaller problems on the fractures that can be efficiently solved on parallel computers, applying several discretization approaches on fractures, with independent meshes. The approach leads to a flexible, efficient and reliable method. The approach is also used for Uncertainty Quantification of flow properties in DFNs.

Matias Benedetto, Stefano Berrone, Claudio Canuto, Sandra Pieraccini, Stefano Scialo
Politecnico di Torino
dipartimento di Scienze Matematiche
matias.benedetto@polito.it, sberrone@calvino.polito.it, claudio.canuto@polito.it, pieraccini@calvino.polito.it, stefano.scialo@polito.it

MS31
Adaptive Mesh Refinement for Flow in Fractured Porous Media

Discrete fracture models are typically large due to the explicit representation of fractures. For these systems, the fracture connectivity often has the largest impact on flow. In some cases fracture connectivity can restrict the flow to a limited area, leaving large parts of the reservoir essentially inactive. In this work we show how well-driven flow solutions can be used to efficiently adapt the unstructured grid to resolve key flow regions.

Mohammad Karimi-Fard
Stanford University
karimi@stanford.edu

Louis Durlofsky
Stanford University
lou@stanford.edu

MS31
Meshing Strategies and the Impact of Finite Element Quality on the Velocity Field in Fractured Media

For calculating flow in a fracture network, the mixed hybrid finite element (MHFE) method is a method of choice as it yields a symmetric, positive definite linear system. However, a drawback to this method is its sensitivity to bad aspect ratio elements. For poor-quality triangles, elementary matrices are ill-conditioned, and inconsistent velocity vectors are obtained by inverting these local matrices. Here we present different strategies for better reconstruction of the velocity field.

Géraldine Pichot
INRIA-Rennes, France
Campus de Beaulieu
gerardine.pichot@inria.fr

Patrick Laug
INRIA - Rocquencourt
France
patrick.laug@inria.fr

Jocelyne Erhel
INRIA - Rennes, France
Campus de Beaulieu
Jocelyne.Erhel@inria.fr

Jean E. Roberts
INRIA Paris-Rocquencourt
France
jean.roberts@inria.fr

Jérôme Jaffré
INRIA-Rocquencourt
Jerome.Jaffre@inria.fr

Jean-Raynald de Dreuzy
Geosciences Rennes, UMR6118 CNRS
Université de Rennes 1
jean-raynald.de-dreuzy@univ-rennes1.fr

Anna Scotti
MOX, Department of Mathematics, Politecnico di Milano
anna.scotti@mail.polimi.it

Luca Formaggia
Department of Mathematics
Politecnico di Milano, Italy
luca.formaggia@polimi.it

Campus de Beaulieu
geraldine.pichot@inria.fr

Patrick Laug
INRIA - Rocquencourt
France
patrick.laug@inria.fr

Jocelyne Erhel
INRIA - Rennes, France
Campus de Beaulieu
Jocelyne.Erhel@inria.fr

Jean E. Roberts
INRIA Paris-Rocquencourt
France
jean.roberts@inria.fr

Jérôme Jaffré
INRIA - Rocquencourt
Jerome.Jaffre@inria.fr

Jean-Raynald de Dreuzy
Geosciences Rennes, UMR6118 CNRS
Université de Rennes 1
jean-raynald.de-dreuzy@univ-rennes1.fr

MS31
XFEM for Flow in Fractured Porous Media

Simulations of flows in porous media in geological applications are challenging due to geometric complexity and strong variability of properties. To obtain a flexible numerical discretization we employ the XFEM. Grids can be set irrespectively of regions of different permeability since we can represent discontinuous coefficients within elements accurately. Fractures can cut grid elements thanks to suitable enrichments of the pressure and velocity spaces. Finally, \(n - 1 \) dimensional XFEM are employed to treat the intersections between fractures.

Anna Scotti
MOX, Department of Mathematics, Politecnico di Milano
anna.scotti@mail.polimi.it

MS32
Mathematical Models of Metabolic Dysfunction in Type 2 Diabetes

Type 2 diabetes is a slowly progressing and complex metabolic disease with a multitude of etiological factors. Although it is primarily caused by reduced cellular uptake of glucose (insulin resistance) and insufficient insulin production (\(\beta \)-cell dysfunction), many of its underlying mechanisms remain unknown. We develop a series of mathematical models to describe cellular and molecular processes involved in the progression of insulin resistance and \(\beta \)-cell dysfunction and discuss implications for metabolic irreversibility and disease onset time.

Erica J. Graham
North Carolina State University
Department of Mathematics

Candice Price
ejgraha2@ncsu.edu

MS32
Oscillation of Nabla Dynamic Equations on Time Scales

In this talk we discuss the oscillatory behavior of the second-order nonlinear nabla functional dynamic equation

\[
\left(p(t) y^{\nabla}(t) \right)^{\nabla} + q(t) f(y(\tau(t))) = 0
\]

on a time scale (a nonempty subset of the real numbers) \(T \) with \(\sup T = \infty \). We establish a sufficient and necessary condition which ensures that every solution oscillates. Next we establish the oscillatory equivalence of the above dynamic equation and the second-order nonlinear nabla dynamic equation

\[
\left(p(t) y^{\nabla}(t) \right)^{\nabla} + q(t) f(y^{\rho}(t)) = 0
\]

on time scales. We close with an example.

Raegan Higgins
Texas Tech University
Department of Mathematics and Statistics
raegan.higgins@ttu.edu

MS32
Fetal Heart Rate and EEG Modeling: Predicting Fetal Distress in Labor

During labor, fetal well-being is typically monitored by measuring fetal heart rate (FHR). It is known that more reliable monitoring modalities are needed. To address this, we present a mathematical model which explores the monitoring of two signals, FHR and EEG, as a way to predict fetal distress. Our modeling approach includes blood flow to the heart and brain and incorporates several key features such as, oxygen delivery, blood flow redistribution, blood pressure, chemo and baro-receptor mechanisms.

Aisha Najera Chesler
Claremont Graduate University
aisha.najera@cgu.edu

Ami Radunskaya
Pomona College
Mathematics Department
aer04747@pomona.edu

MS32
A Biological Application of the Oriented Skein Relation

The tangle model was developed in the 1980's by professors DeWitt Sumner and Claus Ernst. This model uses the mathematics of tangles to model protein-DNA binding. An \(n \)-string tangle is a pair \((B, t)\) where \(B \) is a 3-dimensional ball and \(t \) is a collection of \(n \) non-intersecting curves properly embedded in \(B \). In the tangle model for DNA site-specific recombination, one is required to solve simultaneous equations for unknown tangles which are summands of observed DNA knots and links. This presentation will give a review of the tangle model for site specific recombination, discuss another tangle model that utilizes the oriented skein relation for knots and give an application for these models to biological processes.

Candice Price
United States Military Academy, West Point
Department of Mathematical Sciences
candice.price@usma.edu

MS33
Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws

Fast sweeping methods are efficient alternative numerical schemes originally designed for solving stationary Hamilton-Jacobi equations. Their efficiency relies on Gauss-Seidel type nonlinear iterations, and a finite number of sweeping directions. We generalize it to hyperbolic conservation laws with source terms. The algorithm is obtained through finite difference discretization, with the numerical fluxes evaluated in WENO fashion, coupled with Gauss-Seidel iterations. High order accuracy and the capability of resolving shocks are achieved. In further study, we incorporate multigrid method to improve the efficiency.

Weitao Chen
University of California, Irvine
weitao1@uci.edu

MS33
Nonlinear Traveling Waves for a Model of the Madden-Julian Oscillation

The Madden-Julian oscillation (MJO) is a planetary-scale wave envelope of cloud and storm activities in the tropics. MJO significantly affects other components of the atmosphere-ocean-earth system. Recently, a nonlinear model is presented for capturing MJO’s features. I will present the exact nonlinear traveling wave solutions based on the model’s energy conservation. The solution allows for explicit comparisons between features of linear and nonlinear waves, such as dispersion relations and eligible traveling wave speeds.

Shengqian Chen
University of Wisconsin, Madison
sqchen@math.wisc.edu

MS33
Nonlinear Neutral Inclusions: Assemblages of Spheres and Ellipsoids

If a neutral inclusion is inserted in a matrix containing a uniform applied electric field, it does not disturb the field outside the inclusion. The well known Hashin coated sphere is an example of a neutral coated inclusion. In this talk, we consider the problem of constructing neutral inclusions from nonlinear materials. In particular, we discuss assemblages of coated spheres and ellipsoids.

Silvia Jimenez Balanc
Department of Mathematics
Colgate University
sjimenez@colgate.edu

MS33
Energy-Conserving Discontinuous Galerkin Methods for the Vlasov-Ampere System

In this talk, we propose energy-conserving numerical schemes for the Vlasov-Ampere (VA) systems. The VA system is a model used to describe the evolution of probability density function of charged particles under self consistent electric filed in plasmas. It conserves many physical quantities, including the total energy which is comprised of the kinetic and electric energy. Unlike the total particle number conservation, the total energy conservation is challenging to achieve. For simulations in longer time ranges, negligence of this fact could cause unphysical results, such as plasma self heating or cooling. In our work, we develop the first Eulerian solvers that can preserve fully discrete total energy conservation. The main components of our solvers include explicit or implicit energy-conserving temporal discretizations, an energy-conserving operator splitting for the VA equation and discontinuous Galerkin finite element methods for the spatial discretizations. We validate our schemes by rigorous derivations and benchmark numerical examples such as Landau damping, two-stream instability and bump-on-tail instability.

Xinghui Zhong
Michigan State University
zhongxh@math.msu.edu

MS34
Bayesian Inference with Reduced-order Models and Statistical Error Estimates

Bayesian inversion for parameterized PDEs requires sampling from the posterior distribution, which can entail thousands of forward simulations; this is infeasible with large-scale models. To make this tractable, we 1) replace the large-scale model with a reduced-order model (ROM), and 2) rigorously account for the ROM error using the novel ROMES method. ROMES provides a statistical model of this error by constructing a stochastic process mapping error indicators (e.g., residual norm) to a distribution over the ROM error.

Kevin T. Carlberg
Sandia National Laboratories
ktcarlb@sandia.gov

MS34
Partial Eigenvalue Assignment in Large-Scale Linear Stochastic Dynamic Systems

The objective of the proposed work is to characterize feedback matrices for large-scale linear dynamic systems within the framework of nonlinear eigenvalue problem and robust design optimization under uncertainty. The proposed formulation takes into account the effects of constraint violations associated with certain risk assessment for the dynamic system under consideration. It is based on the concept of quantiles and tail conditional expectations. Numerical examples will be presented to illustrate the proposed framework.

Sonjoy Das, Kundan Goswami
University at Buffalo
MS34
Optimal Sampling of Polynomial Chaos Expansions

We investigate Monte Carlo sampling of random inputs for the estimation of coefficients in a sparse polynomial chaos expansion, with a particular focus on high-dimensional random inputs. Sampling from the distribution of the random variables is typically sub-optimal in a statistical sense. Asymptotic properties of orthogonal polynomials yield sampling schemes with reduced dependence on the order and dimension of polynomial basis. We present alternative sampling schemes including a Markov Chain Monte Carlo sampling with a statistical optimality.

Alireza Doostan
Department of Aerospace Engineering Sciences
University of Colorado, Boulder
Alireza.Doostan@Colorado.EDU

Jerrad Hampton
University of Colorado, Boulder
jerrad.hampton@colorado.edu

MS34
High-Dimensional Approximation with Discrete Leja Sequences

We investigate weighted Leja sequences for non-intrusive interpolatory/approximation schemes of differential equations parameterized by a random variable. Leja sequences are attractive for building surrogates of parametric dependence because of their asymptotically optimal properties in the pdf-weighted norm. In this talk we discuss the application and construction of discrete approximations to these sequences, the latter of which involves canonical numerical linear algebra routines and maximum-volume subspace selection.

Akil Narayan
University of Massachusetts Dartmouth
akil.narayan@umassd.edu

MS35
Intrinsic and Extrinsic Fluctuations in a Spatiotemporal Oscillatory System

Appropriate modeling and simulation frameworks for studying extrinsic noise in spatial settings will be increasingly important as cell biologists dissect the relative contributions of intrinsic and extrinsic fluctuations to total stochasticity on ever finer scales. Here we present an extension to URDME to incorporate extrinsic noise into a spatial, mesoscopic setting. As an example, the method is demonstrated on a model of experimentally observed, spatiotemporal Min protein oscillations in E. Coli cells. When extrinsic fluctuations are modelled as a coloured noise process the sensitivity of a system may depend critically on the typical lifetime of the noise. This phenomenon is observed here and illustrates the importance of taking the timescale of interacting processes into account when analyzing a models robustness to noise.

Andreas Hellander
Department of Computer Science
University of California, Santa Barbara
andreash@cs.ucsb.edu

MS35
Multi-Physics Multiscale Simulations for Dusty Proto-Planetary Disks

We develop a numerical package to simulate the interaction between the protoplanetary disks and embedded proto-planets. The disk motion is described as PDEs(hyperbolic, parabolic, and elliptic type). The planet motion is described as ODEs. The coupled system contains multiple length and time scales. Several numerical techniques including multiscale method have been developed to accelerate the time integration. Adaptive mesh refinement and parallel-in-time methods are also used to speed up the calculation.

Shengtai Li
Los Alamos National Laboratory
sli@lanl.gov

MS35
Understanding the Network of Oscillators in the Mammalian Circadian Clock

The mammalian circadian clock is comprised of thousands of heterogeneous intracellular oscillators synchronizing their rhythms via intercellular communication. It is not well understood how such a diverse set of cells synchronizes. Using a mechanistic ordinary differential equation model, we have identified an inverse relationship between intrinsic amplitude and phase response properties as a key factor in synchronization. Using a simple phase-amplitude model, we relate our earlier findings to the ability to synchronize increasingly heterogeneous populations.

Stephanie Taylor
Colby College
srtaylor@colby.edu

MS36
Inertial Particles in Turbulence, Caustics and Col-
MS36
Capillary Fracture
I will describe the initiation and growth of fractures in gels close to their solid-liquid transition. In experiments, channel fractures form at the surface of the gel, driven by fluid propagating away from a central droplet. Their initiation is governed by two processes. First, surface-tension forces exerted by the droplet deform the gel substrate and break azimuthal symmetry. We model the substrate as an incompressible, linear-elastic solid and characterize the elastic response to provide a prediction for the number of fracture arms as a function of material properties and geometric parameters. Second, a thermally-activated process initiates a starburst-shaped collection of fractures corresponding to this strain-patterning. Once initiated, the fractures grow with a universal power law $L = t^{3/4}$, with the speed limited by the transport of an inviscid fluid into the fracture tip.

Karen Daniels
North Carolina State University
kdaniel@ncsu.edu

Joshua Bostwick
Northwestern University
joshua.bostwick@northwestern.edu

MS37
Qualitative and Asymptotic Theory of Detonations
We derive a multidimensional weakly non-linear asymptotic model of detonation waves capable of reproducing the rich nonlinear dynamics observed in solutions of the reactive Euler equations, both in one and multiple space dimensions. Quantitative and qualitative comparison between the asymptotic equations and the full system they approximate are also presented.

Luiz Faria
KAUST
luiz.faria@kaust.edu.sa

Aslan R. Kasimov
Applied Mathematics and Computational Science
King Abdullah University of Science and Technology
aslan.kasimov@kaust.edu.sa

Rodolfo R. Rosales
Massachusetts Inst of Tech
Department of Mathematics
rrr@math.mit.edu

MS37
A Mathematical Model for the Sexual Selection of Extravagant and Costly Mating Displays
The evolution of extravagant and costly ornaments on animals has intrigued biologists since Darwin suggested that female preference for exaggerated courtship displays drives the sexual selection of these ornaments. We propose a minimal mathematical model which incorporates two components of ornament evolution: an intrinsic cost of ornamentation to an individual, and a social benefit of relatively large ornaments within a population. Using bifurcation analysis and perturbation theory, we show that animals will split into two niches, one with large ornaments and one with small, a phenomenon observed in many species.

Sara Clifton
Northwestern University, USA
sclifton@u.northwestern.edu

Danny Abrams
Northwestern University
dmabrams@northwestern.edu

Nicolas Mordant
Laboratoire des Ecoulements Géophysiques et Industriels
Univ. J. Fourrier / CNRS / Grenoble INP / IUF
nicolas.mordant@ujf-grenoble.fr

Luiz Faria
KAUST
luiz.faria@kaust.edu.sa

Aslan R. Kasimov
Applied Mathematics and Computational Science
King Abdullah University of Science and Technology
aslan.kasimov@kaust.edu.sa

Rodolfo R. Rosales
Massachusetts Inst of Tech
Department of Mathematics
rrr@math.mit.edu

MS37
A Linear Quadratic Programming Method for Nonlinear Model Predictive Control
Nonlinear Model Predictive Control (NMPC) requires iterative approximative solution of optimal control problems. After discretization these are given as nonlinear programs. State-of-the-art solvers use Sequential Quadratic Programming to this end. Several industrial applications demand the solution of Mixed-Integer NMPC Problems with combinatorial constraints leading to Mathematical Programs with Equilibrium Constraints. We investigate an SLEQP method that uses LPs to determine active sets and steps given by a combination of Linear and equality constrained Quadratic Programs.

Felix Lenders
Heidelberg University, Germany
felix.lenders@iwr.uni-heidelberg.de

Christian Kirches
Interdisciplinary Center for Scientific Computing
University of Heidelberg, Germany
christian.kirches@iwr.uni-heidelberg.de

MS37
Mathematical Model of Transplant Rejection: Roles of T cells, Antigen Presenting Cells, and Cytokines
A mathematical model of the immune-mediated rejection of transplants predicts a 50% decrease in graft mass within
two weeks of transplantation. Effector T cells propagate rejection while regulatory T cells limit it; the model is used to test graft tolerance-promoting interventions. Decreasing the effector T cell translocation rate into the graft typically delays rejection, although this effect depends on relative cytokine concentrations. Doubling the initial number of regulatory T cells delays rejection by two weeks.

Andrew Maturo
Indiana University-Purdue University, Indianapolis, USA
amaturo@umail.iu.edu

Giorgio Raimondi
Johns Hopkins School of Medicine, Baltimore, MD
g.raimondi@jhmi.edu

Julia Arciero
Department of Mathematical Sciences
Indiana University-Purdue University Indianapolis
jarciero@math.iupui.edu

MS37

Solving Differential Algebraic Equations Using Structural Analysis Based Dummy Derivatives

Differential algebraic equations, DAEs, appear frequently in applications involving equation based modelling. A common way of making a DAE amenable to numerical solution is by reducing it to a corresponding (usually implicit) ODE. The signature matrix method instead solves the DAE directly via Taylor series [1]. We draw comparisons between these two different approaches and show the signature matrix method is in some sense equivalent to the dummy derivative index reduction method [2].

Ross McKenzie
Cardiff University, Wales, UK
McKenzieR1@cardiff.ac.uk

John Pryce
Cardiff University, Wales, United Kingdom
j.d.pryce@cantab.net

Guangning Tan
McMaster University, Hamilton, Canada
tgn3000@msn.com

Ned Nedialkov
McMaster University
nedialk@mcmaster.ca

MS37

A Mathematical Model of an Arterial Wall

Elastic arteries are significantly prestretched in axial direction and this has great influence on the mechanical behavior during the pressure cycle. Our study presents results of a simulation of the inflation-extension behavior and comparison of several different models of the wall. The constitutive parameters and geometries for 17 aortas adopted from the literature were supplemented with initial axial prestretches obtained from the statistics of 395 autopsy measurements.

Marek Netuil
Charles University in Prague, Czech Republic
marek.netusil@gmail.com

Lukas Horny
Czech Technical University in Prague
lukas.horny@fs.cvut.cz

MS38

Hamilton-Jacobi Equations for the Continuum Limits of Sorting and Percolation Problems

We show that two related combinatorial problems have continuum limits that correspond to solving Hamilton-Jacobi equations, and give convergent numerical schemes. The first problem is non-dominated sorting, which is fundamental in multi-objective optimization, and the second is directed last passage percolation (DLPP), which is an important stochastic growth model closely related to directed polymers and the totally asymmetric simple exclusion process (TASEP).

Jeff Calder
Department of Mathematics
University of Michigan
jcalder@umich.edu

MS38

Fast and Accurate Redistancing Via Directional Optimization

A fast and accurate algorithm for the reinitialization of the signed distance function in two and three spatial dimensions is presented. The algorithm has computational complexity $O(N \log N)$ for the reinitialization of N grid points. The order of accuracy of the reinitialization is demonstrated to depend primarily on the interpolation algorithm used. Bicubic interpolation is demonstrated to result in fourth-order accuracy for smooth interfaces. Simple numerical examples demonstrating the convergence and computational complexity of the reinitialization algorithm in two and three dimensions are presented as verification of the algorithm.

Selim Esedoglu
University of Michigan
esedoglu@umich.edu

MS38

Numerical Solution of the Second Boundary Value Problem for the Monge-Ampère Equation

The second boundary value problem for the Monge-Ampère equation consists of a fully nonlinear elliptic partial differential equation (PDE) with a global constraint on the image of the gradient map. The state constraint is replaced by a more tractable local PDE on the boundary. Using wide-stencil finite difference schemes, we construct a numerical method that converges to the viscosity solution of the underlying problem.

Brittany Froese
University of Texas at Austin
bfroese@math.utexas.edu

MS38

Convergent Filtered Schemes for the Eikonal Equation

The approximation theory of Barles and Souganidis [Asymptotic Anal. 4 (1991), pp. 271-283] guarantees the convergence of numerical schemes to the viscosity solution...
provided they are monotone, stable and consistent. However, these schemes are in general only 1st order accurate. Froese and Oberman [Siam J. Numer. Anal. 51 (2013), pp. 423-444] introduced recently convergent filtered schemes which achieve high order where the solutions are sufficiently smooth. In this talk, we construct filtered schemes to the Eikonal equation, present results in one and two dimensions and compare them to the ENO schemes [Siam J. Numer. Anal. 28 (1991), pp. 907-922].

Tiago Salvador
McGill University
tiago.saldanhasalvador@mail.mcgill.ca

MS39
Using Krylov Subspace Method for the Canonical Polyadic Decomposition

We propose method based on Krylov subspace methods in finding the minimum sum of rank one tensors. For rank deficient least-squares problems, this iterative method is efficient with respect to the computational cost and memory.

Christina Glenn
Department of Mathematics
University of Alabama at Birmingham
tina7@uab.edu

Carmeliza Navasca
University of Alabama at Birmingham
cnavasca@gmail.com

MS39
Source Apportionment of Time and Size Resolved Ambient Particulate Matter

The proposed weighted alternating least squares method was used to analyze size- and time-resolved particle sample compositional tensor data. The algorithm identified five emission sources: soil, deicing road salt, aircraft landings, transported secondary sulfate, and local sulfate/construction. The largest source associated with the airport operations was aircraft landing that had not been previously considered as a significant source of particles.

Na Li
MathWorks
na@iltenso@gmail.com

Carmeliza Navasca
University of Alabama at Birmingham
cnavasca@gmail.com

MS39
Stochastic Approximation Algorithms for the Polyadic Decomposition

In a polyadic decomposition, a tensor is written as a sum of rank-1 terms. The computation of this decomposition often involves the minimization of the distance between the tensor and the decomposition. Most iterative algorithms use every known element in each iteration. By using stochastic approximation techniques, only a few points are accessed in each iteration. The number of data point accesses can thus be reduced, which is important in big data applications.

Nico Vervliet
KU Leuven
nico.vervliet@esat.kuleuven.be

Lieven De Lathauwer
Katholieke Universiteit Leuven
lieven.delathauwer@kuleuven-kulak.be

MS40
Hydrodynamics and Control of Microbial Locomotion

Interactions between swimming cells, surfaces and fluid flow are essential to many microbiological processes, from the formation of biofilms to the fertilization of human egg cells. Yet, relatively little remains known quantitatively about the physical mechanisms that govern the response of bacteria, algae and sperm cells to flow velocity gradients and solid surfaces. A better understanding of cell-surface and cell-flow interactions promises new biological insights and may advance microfluidic techniques for controlling microbial and sperm locomotion, with potential applications in diagnostics and therapeutic protein synthesis. Here, we report new experimental measurements that quantify surface interactions of bacteria, unicellular green algae and mammalian spermatozoa. These experiments show that the subtle interplay of hydrodynamics and surface interactions can stabilize collective bacterial motion, that direct ciliary contact interactions dominate surface scattering of eukaryotic biflagellate algae, and that rheotaxis combined with steric surface interactions provides a robust long-range navigation mechanism for sperm cells.

Jorn Dunkel
Mathematics, MIT
dunkel@math.mit.edu

Vasily Kantsler
University of Warwick
Skolkovo Institute of Technology
v.kantsler@warwick.ac.uk

Raymond E. Goldstein
University of Cambridge
r.e.goldstein@damtp.cam.ac.uk

MS40
Orientational Order in Two-Dimensional Confined Active Suspensions

Geometric confinement in physical space is important for the studies of the collective motion of suspensions of active swimmers. The reasons are two-fold: motile biological micro-organisms or active colloids are always subject to different types of confinement in the swimming environment; The existence of confinement can have significant effects on the hydrodynamic interactions between the swimmers and thus changes the nature of the collective motion. We focus on the situation when the swimmers are confined between two parallel plates (Hele-Shaw cell) such that the motion of the particles are restricted to two dimensions. In this case, the far-field hydrodynamic effect of a swimmer is no longer given by a force-dipole, which has been used in numerous studies on discrete numerical simulations and continuum theories. Instead, the far-field effect of a confined swimmer is given by a potential-dipole.
Using a potential-dipole model in doubly-periodic domain, we perform numerical simulations to probe into the collective dynamics of confined active suspensions. We show that, depending on whether the swimmers have head-and-tail symmetry, the isotropic suspensions of swimmers can develop either long-time polar orientation order, local alignments and non-mobile clusters or combination of the above, which are novel collective behavior compared to swimmer suspensions in unconfined geometries.

Alan Cheng Hou Tsang, Eva Kanso
University of Southern California
alanchet@usc.edu, kanso@usc.edu

MS40

Surface Interactions in Suspensions of Swimming Cells

Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. In the talk I will reveal recent advances in understanding of flagella interaction with surfaces, provide mechanisms for utilizing our knowledge about these interactions to control swimming of flagellated cells. In addition, I will describe our very recent results on sperm rheotaxis near surfaces. The key focus will be on the experimental results, supported by numerical simulation using minimal models.

Vasily Kantsler
University of Warwick
Skolkovo Institute of Technology
v.kantsler@warwick.ac.uk

Jorn Dunkel
Mathematics, MIT
dunkel@math.mit.edu

Raymond E. Goldstein
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
r.e.goldstein@damtp.cam.ac.uk

MS40

Modeling of Hydrodynamic Interactions of Large Groups of Swimming Microorganisms in Viscoelastic Fluids

Hydrodynamic interactions of swimming microorganisms can lead to coordinated behaviors of large groups. The impact of viscoelasticity on the collective behavior of active particles driven by hydrodynamic interactions has been quantified with the inclusion of rotational diffusion. Oldroyd-B, Maxwell, and generalized linear viscoelastic modeled are considered as the constitutive equation of the suspending fluid, inspired by some biological fluids. A mean field assumption is used to model the suspension dynamics near an isotropic state. The onset of instability has been quantified by a linear stability analysis in terms of wavenumber, diffusivities, and constitutive equation parameters. Some key results are in contrast to suspensions in Newtonian fluids. The maximal growth rate can occur at a particular wavelength, and diffusion can act to make the system more unstable. Viscoelasticity can also affect the long-time dynamics of the continuum equations.

Patrick Underhill, Yaser Bozorgi
Rensselaer Polytechnic Institute
Department of Chemical and Biological Engineering
underhill@rpi.edu, bozorgi@rpi.edu

MS41

Low-Dimensional Dynamics Embedded in Echo-State Networks

Abstract not available at time of publication.

Andrea K. Barreiro
Department of Mathematics
Southern Methodist University
abarreiro@smu.edu

Lee DeVille
University of Illinois, Department of Math
rdeville@illinois.edu

MS41

Integrate-and-Fire Model of Insect Olfaction

When a locust detects an odor, the stimulus triggers a series of synchronous oscillations of the neurons in the antenna lobe. These oscillations are followed by slow dynamical modulation of the firing rates which continue after the stimulus has been turned off. I model this behavior by using an Integrate-and-Fire neuronal network with excitatory and inhibitory neurons. The inhibitory response of both types of neurons contains a fast and slow component. The fast component, together with the excitation, creates the initial oscillations while the slow component suppresses them and aids in the creation of the slow patterns that follow. During the initial oscillations the stimulus can be identified by determining which excitatory neurons participate consistently in every cycle of the oscillations.

Pamela B. Fuller
Rensselaer Polytechnic Institute
Fullep@rpi.edu

MS41

Generalized Linear Models for Networks of Spiking Neurons

Abstract not available at time of publication.

Sara A. Solla
Northwestern University
MS42
Cytoplasm Rheology and Its Role Cellular Blebbing Dynamics

We present a computational model to describe the dynamics of blebbing, which occurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol towards the area of detachment and the local expansion of the cell membrane. The model is used to explore the relative roles in bleb dynamics of cytoplasmic rheology, permeability of the cytoskeleton, and elasticity of the membrane and cytoskeleton. We show that the multiphasic poroelastic nature of cytoplasm is essential to explain experimental observations.

Robert Guy
Department of Mathematics, U.C. Davis
drguy@ucdavis.edu

MS42
An Analytic Framework for Pairwise Correlations in Active Swimming

In recent years there has been considerable interest in active fluids, such as suspensions of swimming micro-organisms. A key observation for such suspensions is the tendency of "pushing" swimmers (typically bacteria, e.g. E. coli) to develop long range orientational correlations; in stark comparison to "pulling" organisms (typically algae, e.g. C. reinhardtii) which tend to remain uncorrelated. This observation is consistent with analytical results in mean field theories for hydrodynamically interacting swimmers, where the uniform isotropic state is stable for pullers but unstable for pushers. However, a mean field theory can not be used to actually predict correlation length scales, as it assumes independence of distinct swimmers. Being able to predict such two-point statistics is an important step in characterizing the macroscopic rheological properties of the suspension as a whole. In this talk an analytical framework for computing the correlations in a simplified phenomenological model for swimming will be discussed.

Kajetan M. Sikorski
University of California Santa Barbara
Deaptment of Mathematics
sikork@math.ucsb.edu

MS42
Finite Length Undulatory Swimmers: Whether to Kick Or to Burrow in a Viscoelastic Fluid

We explore finite length undulatory swimmers in viscoelastic fluids. The worm is modeled as an inextensible infinitely thin sheet in 2 dimensions and the swimming is driven using a prescribed target curvature. We look at front-back asymmetries in the prescribed stroke pattern and consider the effect on swimming speed and efficiency. The importance of passive dynamics, where swimmers are given prescribed torques rather than prescribed shapes, is explored. We show that kickers can get a larger boost from viscoelasticity than burrowers.

Becca Thomases
University of California at Davis

MS42
Exploring the Effect of Glass-Forming Sugars on Vesicle Membrane Dynamics During Drying

When immersed in a liquid, certain sugars have a "glass-forming" effect on the liquid at large enough concentration. In particular, the viscosity of the liquid is found to be heavily dependent on the sugar concentration, reaching that of a glass in optimal conditions. These sugars, and their affect on cellular structures, are of interest to the biological community for various reasons, one of which is their use in the preservation of biological material. Whereas cryopreservation stores material using extremely low temperatures to reduce cellular mobility, a new technique named lyopreservation uses the aforementioned glass-forming effect to reduce mobility. However, current attempts to achieve lyopreservation have less than successful. The work discussed in this talk focuses on modeling a single cell undergoing drying similar to that involved in current lyopreservation techniques. This is done by considering a vesicle placed in a fluid containing a spatially varying concentration of sugar. The model incorporates the bending resistance and inextensibility of the membrane, the viscosity dependence on the sugar, the flow of liquid across the vesicle membrane, as well as the surrounding concentration and velocity fields. It is solved using the level set, immersed boundary, and immersed interface methods. The results focus on identifying how the various material parameters affect the vesicle dynamics and attempt to identify ideal regimes for achieving lyopreservation.

Chris Vogl
University of Washington
Department of Applied Mathematics
chris.j.vogl@gmail.com

MS43
Qualitative Reasoning with Modelica Models

Qualitative reasoning allows us to reason about physical systems using simplified systems of qualitative differential equations, in a way which preserves important behavioral aspects of those systems. However, a continuing challenge in that work is the construction of appropriate qualitative models of those systems. Meanwhile, designers are increasingly using the Modelica language to create simulation models of proposed designs for numerical simulation. Our group at PARC has addressed the model construction bottleneck of qualitative reasoning by automatically transforming Modelica models into qualitative models. In this talk, we describe that process, and discuss the challenges in abstracting equations into constraints, determining initial conditions and discrete events, and identifying appropriate continuous behavior. We identify places where additional qualitative constraints can be derived from Modelica equations, and describe how we bridge the gaps between Modelica and existing qualitative simulation work on discrete behavior. Our system has been integrated with existing Modelica tools; we describe its potential applications to mechatronic engineering design.

Bill Janssen
PARC
MS43
Enabling Technologies for Web-Based Engineering Analysis

The web and cloud have become ubiquitous in our daily lives. The societal impact of these technologies is significant. Everyday, new tools and technologies are introduced to facilitate the creation of web-based applications. But most of these applications are targeted at consumer level applications. Although these applications are driven by very interesting mathematical principles (for machine intelligence, data correlation, etc), they are successful because they use these principles to create a significant impact for non-technical users (i.e. consumers). In the engineering world, many interesting mathematical techniques have only a limited impact because there are fewer technologies available to wrap these techniques up so they can impact non-expert users. The first step in connecting engineering and software technologies is understanding the role of technology standards in streamlining the development and deployment process. The next step is identifying applications where these technologies can have a significant impact on the the customers of engineered products. Along the way, we need to consider how to educate engineers, mathematicians and scientists about the possibilities that these technologies present and how to leverage them. This talk will discuss these issues and demonstrate examples of how engineering standards combined with cutting edge software technologies can help bridge the gap allowing engineers and mathematicians to have a greater impact on engineering product development and, ultimately, consumers. Specific topics will include mathematical models of products, cloud computing technologies and user experience in web-based engineering applications.

Michael Tiller
Xogeny
michael.tiller@gmail.com

MS43
Introduction and Overview of Modelica

Modelica is a declarative, equation based, object oriented language for the physics-based modeling of large scale engineering systems. Modelica is unique in being a vendor-neutral and widely accepted standard to describe such cyber-physical systems as the composition of Differential-Algebraic Equations (DAE) to describe the system physics and the software to control such systems. For the software part, several models of computation can be expressed in Modelica: signal oriented modeling, state machines, and synchronous declarative descriptions can all be expressed within the scope of Modelica. This combination makes Modelica useful through all phases of model based engineering, from the early phases of system design to the verification of the control software, and even reaching into system operation, where Modelica based models are used for non-linear model predictive control of complex and safety-critical plants. This talk will give an introduction to various aspects of Modelica from the perspective of applied mathematics and introduce how high-level Modelica code is transformed in several of the Modelica compilers to a range of numerical algorithms that are then used to analyze engineering design problems. In particular we will look at the transformation of Modelica code into hybrid DAE systems and to NLPs for solving optimal control problems.

Hubertus Tummescheit
Modelon, Inc.
tba

MS43
Modelica for Building and Community Energy Systems

Building energy and control systems can be represented by systems of coupled stiff differential equations, algebraic equations and discrete equations. These equations couple models from multiple physical domains. We will present how these systems can be modeled using the equation-based, object-oriented Modelica language. We discuss numerical challenges and opportunities to use such models for analysis that is outside the capabilities of conventional building simulation programs. The talk closes with an overview of the international project "new generation computational tools for building and community energy systems based on the Modelica and Functional Mockup Interface standards". This project is a collaboration among 16 countries under the Energy in Buildings and Communities Programme of the International Energy Agency.

Michael Wetter
LBNL
mwetter@lbl.gov

MS44
Dynamics Constrained Optimization of Power Grid Using Adjoint Sensitivity Analysis

We present a DAE-constrained optimization problem for the electric power grid where the steady state operating point has path constraints on the trajectory when the power grid is subjected to severe disturbances. We use constraint aggregation and adjoint sensitivity approach for efficiently solving this optimal control problem. This talk discusses the problem formulation, solution approach, and the preliminary results obtained.

Shrirang Abhyankar
Argonne National Laboratory
abhyshr@mcs.anl.gov

MS44
Global Error Estimation for Differential Equations

Global error represents the actual discretization error resulting after solving a system of differential equations. I will focus on time-stepping methods for ordinary and differential algebraic equations. Calculating a posteriori errors is generally viewed as an expensive process, and therefore in practice only the (local) error from one step to the next is used to estimate the global errors. However, local error estimation is not always suitable and may lead to error...
underestimation. I will review several strategies for a posteriori error estimation and discuss new approaches that generalize the classical strategies.

Emil M. Constantinescu
Argonne National Laboratory
Mathematics and Computer Science Division
emconsta@mcs.anl.gov

MS44
Predicting the Future with Faster Than Real-Time Power System Dynamics Simulation

“Faster than real-time dynamics simulation” is a key goal of DOE’s Advanced Modeling Grid program. IIT is leading a project to (eventually) predict complex, large-scale power system behavior based on real-time measurements. The team is leveraging computational and hardware advances (e.g., PETSc solvers, time-stepping algorithms, and multi-core processors) to increase speed. Furthermore, the team is integrating modeling advances (e.g., three-phase unbalanced models, protection system models) to improve accuracy. The ultimate goal is to avoid blackouts.

Alexander J. Flueck
Illinois Institute of Technology
flueck@iit.edu

MS44
Dynamic-Feature Extraction, Attribution and Reconstruction (dear) Method for Power System Model Reduction

This paper presents a method of deriving the reduced dynamic model of power systems based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR), and results in a quasi-nonlinear reduced model of the original system. The network topology is unchanged. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods.

Shuai Lu, Shaobu Wang, Ning Zhou, Marcelo Elizondo, Guang Lin
Pacific Northwest National Laboratory
shuai.lu@pnnl.gov, shaobu.wang@pnnl.gov, ning.zhou@pnnl.gov, marcelo.elizondo@pnnl.gov, guang.lin@pnnl.gov

M.A. Pai
University of Illinois, Champion
mapai@illinois.edu

MS45
Improved Multilevel Monte Carlo for High Performance Computing

Since models at extreme scales may have high dimensional random space, it is important to continue the development of dimension-independent methods of uncertainty quantification. Here we accelerate MLMC for PDEs by using a FEM iterative solver that improves the initial guess during sampling. By using previous samples to build an interpolant that predicts the solution value at subsequent sample points, we can greatly reduce the number of iterations per MC sample. Implementation on GPU.

Zane Colgin, Abdul Khaliq
Middle Tennessee State University
zac2g@mtmail.mtsu.edu, abdul.khaliq@mtsu.edu

Guannan Zhang, Clayton G. Webster
Oak Ridge National Laboratory
zhangg@ornl.gov, webstercg@ornl.gov

Viktor Reshniak
Middle Tennessee State University
vr2m@mtmail.mtsu.edu

MS45
A Multilevel Stochastic Collocation Methods for SPDEs

Multilevel methods for SPDEs seek to decrease computational complexity by balancing spatial and stochastic discretization errors. Multilevel techniques have been successfully applied to Monte Carlo methods (MLMC), but can be extended to accelerate stochastic collocation (SC) approximations. In this talk, we present convergence and complexity analysis of a multilevel SC (MLSC) method, demonstrating its advantages compared to standard single-level approximations, and highlighting conditions under which a sparse grid MLSC approach is preferable to MLMC.

Max Gunzburger
Florida State University
School for Computational Sciences
mgunzburger@fsu.edu

Aretha L. Teckentrup
Florida State University
ateckentrup@fsu.edu

Peter Jantsch
University of Tennessee
jantsch@math.utk.edu

Clayton G. Webster
Oak Ridge National Laboratory
webstercg@ornl.gov

MS45
A Comparison of Algebraic Multigrid Preconditioning Approaches for Sampling-Based Uncertainty Propagation on Advanced Computing Architectures

Algebraic multigrid (AMG) methods are known to be effective, scalable preconditioners for linear systems arising in various application areas. Sampling-based uncertainty propagation methods provide an opportunity to extend such techniques to what are essentially groups of closely coupled systems. We compare AMG approaches in the context of ensemble propagation on advanced architectures, where sampling rearrangement has occurred in order to improve access and parallelism. Examples will be given using the Trilinos solver framework.

Jonathan J. Hu
Sandia National Laboratories
Livermore, CA 94551
jhu@sandia.gov
MS45
Calibration of a Computer Model with Functional Inputs

We investigate the use of specialized experimental data to find Bayesian estimates of a functional parameter in a model of the system. Ideas are illustrated using a case study on the action potential of ventricular myocytes.

Matthew Plumlee
ISYE, Georgia Tech
mplumlee@gatech.edu

MS46
Overview of High-Performance Algorithms for Functions of Matrices

In this talk I will present an overview of recent developments in high performance algorithms for matrix functions, with a focus on topics not covered by the subsequent talks in this minisymposium. I will discuss a selection of recent algorithms and results on condition estimation, the action of matrix functions on large, sparse matrices, and the implementation and testing of matrix function algorithms. I will also discuss some of the open problems and challenges involved in developing high-performance algorithms for matrix functions.

Edvin Deadman
University of Manchester
edvin.deadman@manchester.ac.uk

MS46
Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature

Arnoldi's method is a popular tool for approximating \(f(A)b \), the action of a function \(f \) of a large sparse matrix \(A \) onto a vector \(b \). The practical applicability of this method is limited by the storage requirements of the Arnoldi basis. We will discuss a new restarting technique based on quadrature which removes this limitation and is more stable and efficient than previously proposed restarting techniques. The new technique is applicable for a large class of functions \(f \), including the so-called Stieltjes functions and the exponential function, both of which have applications in complex network analysis. Our method is applicable for functions of Hermitian and non-Hermitian matrices, requires no a-priori spectral information, and runs with essentially constant computational work per restart cycle.

Stefan Güttel
The University of Manchester
stefan.guettel@manchester.ac.uk

MS46
Exponential Iterative Methods of Runge-Kutta-type (EPIRK): Construction, Analysis and Software

Exponential integrators have recently emerged as an efficient alternative to the explicit and implicit methods for time integration of large stiff systems of differential equations. A distinct feature of these techniques is that the approximation of the solution uses exponential and exponential-like functions of the Jacobian or the matrices corresponding to the stiff linear part of the problem. Exponential integrators possess better stability properties compared to explicit methods and can require fewer calculations per time step than implicit schemes. We introduce a new class of Exponential Propagation Iterative methods of Runge-Kutta type (EPIRK). These schemes are designed to offer computational savings and allow construction of very efficient schemes compared to other exponential and implicit methods. We describe three different types of EPIRK methods - the unsplit, the split and the hybrid EPIRK schemes - as well as discuss a new type of implicit-expontial (IMEXP) methods. Both the classical and stiff order conditions for EPIRK integrators will be discussed and we will present a new software package EPIC (Exponential Propagation Integrators Collection) which implements most efficient of these methods for serial and parallel computational platforms.

Mayya Tokman
University of California, Merced
School of Natural Sciences
mtokman@ucmerced.edu

MS47
Gradient Discretization of Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media

We present a gradient discretization, including a large family of schemes, in a case of a two-phase Darcy flow in discrete fracture networks (DFN). We consider the asymptotic model for which the fractures are represented as interfaces of codimension one immersed in the matrix domain with continuous pressures at the matrix fracture interface. The convergence is proved under the assumption that the relative permeabilities are bounded from zero but cover the discontinuous capillary pressures. The numerical tests
are performed on the 3D fracture networks using Hybrid Finite Volume and the novel Vertex Approximate Gradient (VAG) discretizations. Compared with Control Volume Finite Element (CVFE) approaches, the VAG scheme has the advantage to avoid the mixing of the fracture and matrix rock types, while keeping the low cost of a nodal discretization on unstructured meshes. The efficiency of VAG scheme is shown in the case of a high permeability contrast between fracture network and matrix.

Konstantin Brenner
University of Nice Sophia Antipolis
laboratoire de mathématiques J.A. Dieudonné
konstantin.brenner@gmail.com

Cindy Guichard
LJLL, University Paris 6
guichard@ljl.math.upmc.fr

Mayya Groza
LJAD, University Nice Sophia Antipolis
COFFEE team, Inria
mayya.groza@unice.fr

Gilles Lebeau
LJAD, University Nice Sophia Antipolis
roland.masson@unice.fr

Roland Masson
University of Nice Sophia Antipolis
roland.masson@unice.fr

MS47
A Double-Layer Reduced Model for Flow in Fault Zones Using Hybrid Finite Volume Schemes

We consider single-phase flows for subsurface porous media with faults, the latter along which the surrounding domain on one side of the fault has slipped with respect to that on the other. The fault width being smaller by several orders of magnitude than other characteristic sizes, we propose a hybrid finite volume method based on a double-layer, reduced model. We allow non-matching grids along the faults. Numerical and theoretical results are shown.

Isabelle Faille
IFP Energies Nouvelles
France
isabelle.faille@ifpenergiesnouvelles.fr

Alessio Fumagalli, Alessio Fumagalli
Institut Français du Pétrole Énergies nouvelles
alessio.fumagalli1984@gmail.com, alessio.fumagalli1984@gmail.com

Jerome Jaffre
INRIA-Rocquencourt
78153 Le Chesnay cedex France
Jerome.Jaffre@inria.fr

Jean E. Roberts
INRIA Paris-Rocquencourt
France
jean.roberts@inria.fr

MS47
Controlling Uncertainty in Fractured Porous Media Flow

We consider the dynamics of multiphase flow in heterogeneous porous media with randomly located interfaces. In the deterministic case the modeling of such systems requires the usage of nonlinear discontinuous flow functions. Based on the capillarity-free fractional flow formulation for two-phase flow, a hybrid stochastic Galerkin finite volume method (HSG-FV) is presented. The method accounts for the spatially random change of the mobilities and is particularly well-suited for parallel computations.

Markus Köppel
University of Stuttgart
Institute for Applied Analysis and Numerical Simulation
markus.koeppel@mathematik.uni-stuttgart.de

MS47
A Fracture Indicator to Identify Fractures in Porous Media

We study the identification of fractures in porous media. The problem is formulated as a least squares minimization of a function evaluating the misfit between a measured pressure and a pressure calculated using a particular reduced discrete model for flow in porous media with fractures. Inspired by the idea of refinement indicators, we develop fracture indicators to search for fractures as well as their hydraulic conductivities through an iterative process.

Vincent Martin
UTC
vincent.martin@utc.fr

MS48
Learning Hierarchical Invariant Spatio-Temporal Features for Human Action and Activity Recognition

We propose a neural-network based learning scheme which computes a manifold in a bag of spatio-temporal features through regression based modeling. The action class models are designed to be independent of time without the need for sequence length normalization and initialization of states. Using the bag of spatio-temporal features as a time series data, a time-independent orthogonal basis is computed where a low-dimensional manifold is learned. Experimental results prove its efficiency on public data sets.

Binu Nair, Vijay Asari
University of Dayton
binuq8@gmail.com, vasari1@udayton.edu

MS48
An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Analysis of the Lower Extremity Joint Angles

This research highlights the results obtained from an experimental study of the lower limbs of a human gait cycle to extract and identify gait signatures. This biometric analysis was carried out by capturing the gait cycles in a normal and load bearing gait, using modalities such as passive infrared and passive optical. The challenge of this study is to distinguish between normal and abnormal gait signatures due to a concealed load on the lower body.

Anum Barki
MS48
Game-Theoretic and Reliability Methods in Counterterrorism and Security

The routine application of reliability analysis is not adequate in the security domain. Protecting against intentional attacks is fundamentally different from protecting against accidents or acts of nature. In particular, an intelligent and adaptable adversary may adopt a different offensive strategy to circumvent or disable protective security measures. Game theory provides a way of taking this into account. Thus, security and counter-terrorism require a combination of reliability analysis and game theory.

Vicki Bier
University of Wisconsin- Madison
bier@ie.engr.wisc.edu

MS49
Numerical Optimization Method for Simulation Based Optimal Design Problems

The numerical optimization of simulation based problem is an interdisciplinary area of study that includes the optimization with PDE constraints area in applied mathematics. The Finite Element Method to find the numerical solution of a PDE subject to third-type boundary conditions as the ones that model electromagnetic phenomena, adjoint and direct differentiation gradients, and proper orthogonal decomposition are some of some of the topics of interest that continue to develop optimal design of devices.

Carmen Caiseda
Inter American University Bayamón, PR
ccaiseda@bayamon.inter.edu

MS49
A Characterization of the Reflected Quasipotential

Our purpose here is to characterize the reflected quasipotential in terms of a first-order Hamilton-Jacobi equation. Because it is continuous but not differentiable in general the characterization will be in terms of viscosity solutions. Using conventional dynamic programming ideas, along with a complementarity problem formulation of the effect of the Skorokhod map on absolutely continuous paths, we will derive necessary conditions in the form of viscosity-sense boundary conditions.

Kasie Farlow
United States Military Academy
kasie.farlow@usma.edu

MS49
Analysis of Finite Difference Schemes for Diffusion in Spheres with Variable Diffusivity

Three finite difference schemes are compared for discretizing the spatial derivatives of the diffusion equation in spherical coordinates for the general case of variable diffusivity, D. Five diffusivity cases are considered: 1) constant D, 2) time-dependent D, 3) spatially-dependent D, 4) concentration-dependent D, and 5) implicitly time-dependent and spatially-dependent D. The results point to one of the schemes as the preferred finite difference method for numerically solving the diffusion equation in spheres with variable diffusivity.

Ashlee Ford Versypt
Massachusetts Institute of Technology
ashleefv@mit.edu

MS49
Analysis of Si Models with Multiple Interacting Populations Using Subpopulations with Forcing Terms

As a system of differential equations describing an epidemiological system becomes large with multiple connections between subpopulations, the expressions for reproductive numbers and endemic equilibria become algebraically complicated, which makes drawing conclusions based on biological parameters difficult. We present a new method which deconstructs the larger system into smaller subsytems, captures the bridges between the smaller systems as external forces, and bounds the reproductive numbers of the full system in terms of reproductive numbers of the smaller systems, which are algebraically tractable. This method also allows us to analyze the size of the endemic equilibria.

Evelyn Thomas
Bennett College
MS50
Krylov Subspace Methods for Solving Singular Linear Systems or Least-Squares Problems

GMRES (Saad and Schultz 1986) is a famed generalized minimal-residual method for solving nonsingular unsymmetric or non-Hermitian linear systems. It may suffer from breakdown on nearly singular systems (Brown and Walker 1997). When working, the solver returns only a least-squares solution for a singular problem (Reichel and Ye 2005). We present GMRES-QLP and GMRES-URV, both successful revamps of GMRES, for returning the unique pseudoinverse solutions of (nearly) singular linear systems or linear least-squares problems. On nonsingular problems, they are numerically more stable than GMRES. In any case, users do not need to know a priori whether the systems are singular, ill-conditioned, or incompatible; the solvers constructively reveal such properties. The solvers leverage the QLP and URV decompositions (Stewart 1998 and 1999) to reveal the rank of the Hessenberg matrix from the Arnoldi process, incurring only minor additional computational cost in comparison to GMRES. We present extensive numerical experiments to demonstrate the scalability and robustness of the solver, with or without preconditioners or restart.

Sou-Cheng T. Choi
University of Chicago and Argonne National Laboratory
sctchoi@uchicago.edu

MS50
Probabilistic Bounds for Randomized Preconditioner for a Krylov Least Squares Solver

The Blendenpik algorithm by Avron, Maymounkov and Toledo solves least squares problems min ||Ax - b|| for m \times n matrices A with rank(A) = n, by computing a randomized preconditioner and applying the Krylov method LSQR to the preconditioned matrix. The preconditioner is computed by randomly sampling rows from A. We present probabilistic bounds for the condition number of the preconditioned matrix, when rows are sampled with replacement, and the sampling probabilities are uniform or based on leverage scores. Our bounds are derived from singular value bounds for a Monte Carlo matrix multiplication algorithm for computing the cross product AA'. For uniform sampling, the bounds imply that the number of sampled rows can be as much as 30 percent lower than existing bounds. For leverage-score based sampling, our bounds imply that the number of sampled rows must at least be a multiple of n * ln(n). This is joint work with John Holodnak.

Iise Ipsen
North Carolina State University
Department of Mathematics
ipsen@ncsu.edu

MS50
IDR-CGS-BiCGSTAB-IDR(s) - a Case of Serendipity

In about 1976, the author was preparing a renovation of an elementary course on numerical analysis in Delft University. In relation to the problem of solving a single non-linear equation iteratively, he wondered whether the so-called ‘secant method’ could be generalized to systems of N nonlinear equations with N unknowns, just for showing the students that there is something behind the horizon. Before starting to read everything on the subject, the author always tries to think about it unbiased, and so he started with, probably, re-inventing the wheel. Had he seen the book by Ortega and Rheinboldt at that time, CGS, BiCGSTAB and IDR(s) probably wouldn’t exist today. Actually a new wheel was discovered, that appeared to be useful in the machinery of solving large sparse non-symmetric linear systems. The first application of the new wheel was called IDR – Induced Dimension Reduction. Afterwards, CGS – Conjugate Gradients Squared – was developed as an ‘improvement’ of IDR, and also for other reasons. After CGS, in cooperation with Henk van der Vorst, (Bi-)CGStab was constructed, followed by a lot of other methods of this kind, developed by others. This went on until about 10 years ago. In this short presentation a reconstruction will be given of the strange history of these so-called ‘Lanczos-type Product Methods’. It will be explained why this ‘sleeping theory’ woke up just after the author’s retirement in 2006, resulting in a brand new family of methods: IDR(s). History is a continuing story, therefore some recently established features of IDR(s) will be mentioned.

Peter Sonneveld
Delft Inst. of Appl. Mathematics
Delft University of Technology
p.sonneveld@tudelft.nl

MS50
Multiple Preconditioners for GMRES

We propose a variant of GMRES which we call MPGMRES, whereby multiple (two or more) preconditioners are applied simultaneously, while maintaining minimal residual optimality properties. To accomplish this, a block version of Flexible GMRES is used, but instead of considering blocks starting with multiple right hand sides, we start with the initial residual and grow the space by applying each of the preconditioners to all current search directions and minimizing the residual norm over the resulting larger subspace. To alleviate the difficulty of rapidly increasing storage requirements and make the method practical, we further propose a selective algorithm that uses limited memory, and show theoretically and experimentally that this approach is highly effective. Convergence bounds for a special case are presented. Numerical results for problems in domain decomposition, PDE-constrained optimization, and fluid flow problems are presented, illustrating the viability and the potential of the proposed method. This is joint work with Chen Greif and Tyrone Rees.

Daniel B. Szyld
Temple University
Department of Mathematics
szyld@temple.edu

MS51
Title Not Available at Time of Publication

Abstract not available at time of publication.

Robert P. Gilbert
Department of Mathematical Sciences
University of Delaware
MS51
Analysis of the Volume-Constrained Peridynamic Navier Equation of Linear Elasticity

Well-posedness results for the state-based peridynamic nonlocal continuum model of solid mechanics are established with the help of a nonlocal vector calculus. The peridynamic strain energy density for an elastic constitutionally linear anisotropic heterogeneous solid is expressed in terms of the field operators of that calculus, after which a variational principle for the equilibrium state is defined. The peridynamic Navier equilibrium equation is then derived as the first-order necessary conditions and are shown to reduce, for the case of homogeneous materials, to the classical Navier equation as the extent of nonlocal interactions vanishes. Using standard results, well-posedness is also established for the time-dependent peridynamic equation of motion.

Richard B. Lehoucq
Sandia National Laboratories
rblehou@sandia.gov

MS51
Is Dynamic Fracture at the Macroscale a Distinguished Limit of Unstable Nonlocal Bond Models?

We investigate a new class of models for solving problems of free crack propagation described by the peridynamic formulation. In the peridynamic formulation material points interact through short-range forces acting over a prescribed horizon. The formulation allows for discontinuous deformations and free propagation of cracks. We upscale the peridynamic model, passing to a small horizon limit, to find that the macroscopic evolution corresponds to the simultaneous evolution of the fracture surface and the linear elastic displacement away from the crack set. This provides a new connection between the dynamics of nonlocal short-range forces acting at the microscale to a brittle fracture evolution at the macroscale.

Robert P. Lipton
Department of Mathematics
Louisiana State University
lipton@math.lsu.edu

MS51
Peridynamics as a Multiscale Method

Abstract not available at time of publication.

Stewart Silling
Sandia National Laboratories
ssasilli@sandia.gov

MS52
Rigorous Computations for Nonlinear PDEs: An Introduction

Abstract not available at time of publication.

Jean-Philippe Lessard
Université Laval
jean-philippe.lessard@mat.ulaval.ca

MS52
Computer-Assisted Existence and Multiplicity Proofs for Semilinear Elliptic Boundary Value Problems

Abstract not available at time of publication.

Michael Plum
Karlsruhe University (KIT)
Germany
michael.plum@kit.edu

MS52
Rigorous Computation of Connecting Orbits

Abstract not available at time of publication.

Jan Bouwe Van Den Berg
VU University Amsterdam
Department of Mathematics
janbouwe@few.vu.nl

MS52
Rigourous Computation of a Bifurcation Diagram for the Ohta-Kawasaki Model

The Ohta-Kawasaki, or non-local Cahn-Hilliard, model is a simple description of energy-driven pattern formation with competing short- and long-range effects. One of the fundamental problems in this area is to identify which patterns have lowest energy in which regions of parameter space. We address this problem by finding the curves along which different solutions have the same energy. We use methods from rigourous computing to prove the existence of such curves and to get bounds between our discrete numerical approximations and the true infinite-dimensional solutions. Results from both two and three dimensions will be presented and discussed. This is joint work with JB van den Berg.

J.F. Williams
Simon Fraser University
Dept. of Mathematics
jfw@math.sfu.ca

MS54
The Exponential Formula for The Wasserstein Metric

Many evolutionary partial differential equations may be rewritten as the gradient flow of an energy functional, a perspective which can provide useful estimates concerning the behavior of solutions. The notion of gradient flow requires both the specification of an energy functional and a metric with respect to which the gradient is taken. In particular, much recent work has considered gradient flow in the Wasserstein metric. Given the formal nature of the gradient in this setting, a useful technique for constructing solutions to the gradient flow and studying their stability is to consider the "discrete gradient flow", a time discretization of the gradient flow problem analogous to the implicit Euler method in Euclidean space. In this talk, I will present a new proof that the discrete gradient flow converges to the continuous time gradient flow inspired by Crandall and Liggett’s result in the Banach space case. Along the way,
I will discuss theorems of independent interest concerning transport metrics.

Katy Craig
Rutgers University
katycrow@mac.com

MS54
A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

We consider a finite volume method for the general equation

$$\rho_t = \nabla \cdot \left[\rho \nabla \left(H'(\rho) + V(x) + W(x) \right) \right], \quad x \in \mathbb{R}^d$$

to find solutions of the original equation.

with the density of internal energy $H(\rho)$, the confinement potential $V(x)$ and the interactional potential $W(x)$. A large variety of equations arises from physical or biological models can be written in this general form, and many important theoretical advances like optimal transportations are developed in certain special cases. The finite method is carefully designed to preserve the non-negativity of the solutions, and the total energy

$$E(\rho) = \int_{\mathbb{R}^d} H(\rho) \, dx + \int_{\mathbb{R}^d} V(x) \rho(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(x-y) \rho(x) \rho(y) \, dx \, dy$$

is shown to be non-increasing in the semi-discrete form. We demonstrate the effectiveness of this method with many examples, and show that it can be used to perform a numerical study of other unknown equations of similar types.

Yanghong Huang
Imperial College London
yanghong.huang@imperial.ac.uk

José Carrillo
Department of Mathematics
Imperial College London
carrillo@imperial.ac.uk

Alina Chertock
North Carolina State University
Department of Mathematics
chertock@math.ncsu.edu

MS54
Numerical Methods for the Fractional Laplacian

The fractional Laplacian is the seminal example of a nonlocal diffusion operator. Nonlocal diffusions are increasingly popular, and the fractional Laplacian is the prototypical model. Recent work by analysts including Caffarelli and Silvestre, among others, has studied nonlinear equations involving this operator, starting with the obstacle problem. But it solving even the one dimensional linear Fractional Laplacian equation on a bounded domain is a challenge which has not yet been addressed. It might appear that it should be quite simple to build schemes for the fractional Laplacian. For example the work of Valdinoci suggests that convolution kernels with the right decay will converge. The difficulty turns out to be accuracy: building even a first order accurate discretization is a challenge.

The operator can be defined (and, in simple situations, approximated) using its Fourier symbol, which is multiplication by a power. However, when bounded domains are involved, the Fourier method is not as practical. The operator can also be represented as a singular integral: our method comes from a careful discretization of the singular integral. We apply rigorous numerical analysis methodology to the study of the fractional Laplacian. We derive a finite difference/quadrature method, and establish accuracy, a proof of convergence, careful truncation of the operator outside the computational domain, and numerical validation against exact solutions. Our method is compared favorably against existing methods, which do not have a rigorous foundation. We also apply the method to solve the obstacle problem.

Adam M. Oberman
McGill U.
adam.oberman@mcgill.ca

Yanghong Huang
Imperial College London
yanghong.huang@imperial.ac.uk

MS54
Error Estimates for Approximations to Fully Nonlinear PDE

We discuss error estimates for finite difference approximations to nonlinear elliptic and parabolic PDE. In particular, we highlight the relationship between error estimates and the regularity of solutions of the original equation. We present some recent progress and applications.

Olga Turanova
Department of Mathematics
University of Chicago
turanova@math.uchicago.edu

MS55
Active Nano-Rod Dispersions

Within the large space of fluids that behave nonlinearly, we consider a niche fluid system between liquid crystals and active micro scale swimmers: active nano scale rod dispersions. We first highlight physical and biological systems that motivate our modeling, analysis, and simulations, and then take liberty to explore the models for rich phenomena that are reminiscent of behavior in either liquid crystals or bacterial suspensions.

M. Gregory Forest
University of North Carolina at Chapel Hill
Dept of Math & Biomedical Engr.
forest@unc.edu

Qi Wang
University of South Carolina
qwang@math.sc.edu

Ruhai Zhou
Old Dominion University
rzhou@math.odu.edu

MS55
Physiological Boundary Conditions for Hemodynamics

A common goal in computational hemodynamics is the prediction of local blood flow downstream from stem arteries in which measurements are available. Due to computational complexity and uncertainties about the geometry and topology of the vasculature, such calculations are typ-
ically performed in a relatively small number of contiguous vessels. At the downstream edge of the computational domain, outflow boundary conditions have to be imposed. Choices of parameter values and type of conditions strongly impact the results, putting in question the significance of the entire modeling endeavor. We will discuss a new type of outflow boundary conditions allowing for a reduced reliance on calibration which is a major obstacle toward reliable patient specific simulations. Our approach allows the computation of the impedance of tiered structured vascular trees. It extends previous work from periodic to generic transient flows and relies on Laplace transforms and convolution quadratures. Joint work with Will Cousins (MIT) and Daniel Tartakovsky (UCSD)

Pierre Gremaud
Department of Mathematics and Center for Research in Scientific Computing, North Carolina State University
gremaud@ncsu.edu

MS55
Two-Fluid Flow in a Capillary Tube

A phase field model for two-phase flow in a capillary tube, developed by Cueto-Felgueroso and Juanes, results in a PDE with higher-order terms. We find traveling wave solutions of the PDE and determine a bound on parameters to obtain physically relevant solutions. We observe that the traveling wave height decreases monotonically with capillary number. Finite difference simulations of the injection of a gas finger into water show a traveling wave advancing ahead of a rarefaction, leaving a plateau region of fluid adjacent to the tube wall. The residual thickness of this region was measured in experiments by G.I. Taylor in his famous 1961 paper. We find agreement between the traveling wave heights and the plateaus seen in the PDE simulations, and the results also compare favorably with the residual fluid thickness observed in the experiments. This is joint work with Rachel Levy, Ruben Juanes, and Luis Cueto-Felgueroso.

Michael Shearer
Mathematics
NC State University
shearer@ncsu.edu

Melissa Strait
NC State University
mestrait@ncsu.edu

MS55
A Saddle-Point Formulation And Finite Element Method For The Stefan Problem With Surface Tension

A dual formulation is proposed for the Stefan problem with surface tension (Gibbs-Thomson law). The method uses a mixed form of the heat equation in the solid and liquid domains, and imposes the interface motion law (on the solid-liquid interface) as a constraint. Well-posedness of the time semi-discrete and fully discrete (finite element) formulations is proved in 3-D, as well as an a priori bound, conservation law, and error estimates. Simulations are presented in 2-D.

Christopher B. Davis
Louisiana State University
Department of Mathematics
cdv135@lsu.edu

Shawn W. Walker
Louisiana State University
Department of Mathematics and CCT
walker@math.lsu.edu

MS56
Mechanics and Evolution in Bacterial Biofilms

Bacteria frequently occupy densely populated surface-bound communities, termed biofilms. Biofilms behave like viscoelastic fluids at the macroscopic level. It is largely unknown how bacteria organize their behavior inside biofilms, and how biofilms behave in natural environments. In this talk, I will focus on how biofilms solve a classical evolution-ary theory problem, the public goods dilemma, and how fluid physics shapes the dynamics of biofilms in complex environments.

Knut Drescher, Howard Stone
Princeton University
dreschd@princeton.edu, hastone@princeton.edu

MS56
Hydrodynamics Affects Ordering and Organization in Bacterial Suspensions

We explore the nature and causes of the spontaneous ordering and organization that emerges in bacterial suspensions under confinement. Using simulations that capture oriented cell-cell and cell-fluid interactions, we show that hydrodynamics is crucial in reproducing and explaining the phenomena observed in recent experiments using bacteria B. Subtilis. We give new insights into the microscopic arrangement of the bacteria, which are confirmed by new experiments.

Enkeleida Lushi
Imperial College London
and Courant Institute NYU
enkeleida_lushi@brown.edu

MS56
Active Suspensions in Confinement

Active particle suspensions, of which a bath of swimming bacteria is a paradigmatic example, are characterized by complex dynamics involving strong fluctuations and large-scale correlated motions. These motions, which result from the many-body interactions between particles, are biologically relevant as they impact mean particle transport, mixing and diffusion, with possible consequences for nutrient uptake and the spreading of bacterial infections. In this work, we use a combination of kinetic theory and numerical simulations to analyze these effects, with particular focus on confined suspensions. I will specifically discuss the transport and effective rheology of dilute to semi-dilute suspensions in pressure-driven channel flows, as well as the pattern formation and complex dynamics arising in active suspensions confined in a Hele-Shaw geometry.

David Saintillan
Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign
dsn@illinois.edu

Barath Ezhilan
University of Illinois at Urbana-Champaign
Department of Mechanical Science and Engineering
Ezhilan2@illinois.edu

MS56
Effects of Micro-swimmer Locomotion in Peristaltic Pumping

Peristaltic pumping is a form of fluid transport along the length of a tube containing liquid when the tube undergoes a contraction wave. While much is known about the peristalsis of Newtonian liquids, complex ones have received limited attention. If the fluid inside such a peristaltic micro-pump contains motile micro-particles (such as bacteria), then the net transport and mixing are affected by the micro-swimmer collective motion. We present a new numerical method that couples the motion of many micro-swimmers, the pump and the fluid flow. We show that the type of swimmer affects not only the net transport but can be utilised for mixing passive material.

Adam Stinchcombe
University of Michigan
stinch@umich.edu

Enkeleida Lushi
Imperial College London
and Courant Institute NYU
enkeleida.lushi@brown.edu

Charles S. Peskin
Courant Institute of Mathematical Sciences
New York University
peskin@cims.nyu.edu

MS57
Social Aggregation in Pea Aphids: Experimental Measurement and Random Walk Modeling

Biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, *Acyrthosiphon pisum*. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that aphids follow a correlated random walk whose parameters depend strongly on distance to an aphid’s nearest neighbor. We propose a random walk model and demonstrate that it reproduces the salient features of the observed macroscopic patterns of movement.

Chad M. Topaz
Macalester College
ctopaz@macalester.edu

Andrew J. Bernoff
Harvey Mudd College
Department of Mathematics
ajb@hmc.edu

MS57
Trajectory Dynamics of Aquatic Kleptoparasitic Interactions

Predation is among the most common pressures leading to group formation in animals. Although predator-prey systems have been studied extensively at the population level, relatively little work has been done to specify the individual behavioral decisions in such interactions. Here, we study a rather unique instance of kleptoparasitic interactions, whereby seagulls attempt to ‘rob’ flocks of aquatic seaducks of their food obtained from underwater dives. By reconstructing individual trajectories of both kleptoparasite and prey, we analyze the evasion behavior of the seaducks.

Ryan Lukeman
Department of Mathematics, Statistics and Computer Science
St. Francis Xavier University
rlukeman@stfx.ca

MS57
Collective Dynamics in Laboratory Insect Swarms

Aggregations of social animals, think bird flocks or swarms of insects, are beautiful, natural examples of self-organized behavior far from equilibrium. Many models have been proposed to describe these systems, including agent-based models that specify social forces between individuals. We discuss measurements of laboratory midge swarms in the context of model assessment. In particular, we focus on the question of the small-number limit: how large must the population be before collective properties emerge?

James Puckett
School of Engineering and Applied Science
Yale University
james.puckett@yale.edu

MS57
Oscillatory Patch Formations from Social Foraging

Dynamics of resource patches and foragers have been shown to exhibit pattern formations. Simple taxis of foragers towards randomly moving prey cannot lead to spontaneous formation of patchy environments. However, social interactions among foragers, specifically taxis in producer-scrounger group, can create novel spatiotemporal oscillatory patterns. I will also briefly discuss which of these behaviors is more beneficial and how switching between strategies affect the resulting spatiotemporal patterns.

Nessy Tania
Smith College
Mathematics and Statistics Department
ntania@smith.edu

MS58
Elastic Swimmer in Viscous Fluid: How to Swim Efficiently?

We use fully-coupled computer simulations to examine the low Re hydrodynamics of a self-propelling elastic swimmer. The swimmer is modelled as a thin elastic plate plunging at the root. The swimmer is free to move in the forward direction. We probe how swimming speed and efficiency depend on swimmer parameters. Our simulations reveal that the efficiency is maximized when the swimmer center of mass displacement is minimized. This regime reduces viscous losses, thereby enhancing the swimming efficiency.

Alexander Alexeey, Peter Derek Yeh
George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
MS58
Mathematical Models for Microstructured Optical Fibre (MOF) Fabrication

We address various challenges arising in the fabrication of so-called microstructured optical fibres (MOFs) which guide light by virtue of a specially designed geometrical arrangement of channels running along their length. The fabrication involves placing a material (such as glass), heating it in a draw tower, and pulling it into a fibre so that the material is essentially a highly viscous (Stokes) fluid under an axial strain. The simultaneous effects of surface tension on the fibre/channel boundaries and the axial strain lead to deformations in the global fibre geometry that must be understood in order to arrive at the desired fibre state. This talk will describe recent progress in the mathematical modelling of this process [joint with P. Buchak and Y. Stokes].

Darren G. Crowdy
Imperial College London
d.crowdy@imperial.ac.uk

MS58
Accelerated Boundary Integral Simulations for Interactions of Drops and Solids in Micro-Fluidics

In micro-fluidic applications where the scales are small and viscous effects dominant, the Stokes equations are often applicable. Simulation methods can be developed based on boundary integral equations, which leads to discretizations of the boundaries of the domain only, reducing the number of unknowns. Two main challenges associated with boundary integral methods are to construct accurate quadrature methods for singular and nearly singular integrands, as well as to accelerate the solution of the dense linear systems that arise. For drops and solids in 2D, including also objects with sharp corners, we will discuss how to apply a general special quadrature approach to achieve highly accurate simulations also for very complicated settings. The simulations are accelerated with either the Fast Multipole method or a spectrally accurate FFT based Ewald method (for periodic problems). Simulation results for very challenging problems are presented.

Anna-Karin Tornberg
KTH
akto@kth.se

MS58
Self-Propulsion of An Inextensible Elastic Membrane in An Electric Field

In this work we illustrate a novel mechanism for self-propulsion of an inextensible elastic (lipid-bilayer) membrane subject to an electric field. In the lubrication framework, the dynamics of an inextensible elastic membrane is governed by a sixth order nonlinear partial differential equation with an integral constraint. Through numerical simulations we find (1) sloshing motion of the membrane, and (2) unit directional movement of the membrane, both in the direction transverse to the imposed electric field. We will also demonstrate how such movements of an elastic membrane can be further controlled by pattern electrodes and/or varying the temporal dependence of the external electric field. This work is a collaboration with Petia Vlahovska (Brown University). Y.-N. Young is partially supported by NSF grants DMS 1222550.

Yuan-Nan Young
Department of Mathematical Sciences
NJIT
yyoung@oak.njit.edu

Petia Vlahovska
Brown University
petia_vlahovska@brown.edu

MS59
Role of Network Topology in the Electromechanical Dynamics of Cascading Power Grid Failure

Recent work in analysis of cascading failure of electric power networks has sought to augment the quasi-steady state representations of prior literature with faster time scale electromechanical dynamics, and with threshold-driven relay action that disconnects network links upon overload. In these dynamic models, cascading failure appears as a sequence of transitions between locally stable equilibria, each corresponding to a partially degraded network structure, and with the most vulnerable paths of transition passing through saddle point unstable equilibria. This work will explore the role of network topology in predicting the location of these saddle exits in the state space, and the interplay of topology and relay threshold values in determining the disturbance energy that must be injected into the system to drive the state over such a saddle point.

Christopher DeMarco
University of Wisconsin
demarco@engr.wisc.edu

Honghao Zheng
University of Wisconsin-Madison
hustfreedom.zheng@gmail.com

MS59
Centrality of Dynamical Graph Structures

We consider adapting well known graph centrality measures to the case of dynamic graphs or static graphs with dynamic forcing functions. For instance, we present the PageRank method on a static graph with time-varying teleportation and demonstrate a closed form analytical solution that involves complex valued teleportation parameters. We consider how these could be deployed for studying power systems and contingency analysis.

David F. Gleich
Purdue University
dgleich@purdue.edu

MS59
Stochastic Graph Modeling of Power Grids

Graph-theoretic approaches have long been used for characterizing the topological structure of power grids. The central idea of such approaches is to use known algorithms for generating random graphs and then using graph-based metrics to match the characteristics with those from real-world power grid models, such as the Western and Eastern Interconnections. In our work, we are exploring several variants of the random geometric graph algorithm for the
purposes of generating synthetic models of the power grid. By exploiting the inherent hierarchical structure in voltage levels, we show that random geometric graph models can be used to generating synthetic power grids.

Mahantesh Halappanavar
Pacific Northwest National Laboratory
hala@pnnl.gov

Eduardo Cotilla-Sanchez
Oregon State University
ecs@eecs.osu.edu

Emilie Hogan
Pacific Northwes National Lab
emilie.hogan@pnnl.gov

Paul Hines
University of Vermont
paul.hines@uvm.edu

MS59
Algorithms for Monitoring Oscillations in the Power Grid

Monitoring the oscillations in the power grid in real-time is an increasingly difficult challenge due to the large number of components. Additionally, large numbers of Phasor Measurement Units (PMUs) are being deployed to generate large-scale data on the state of the grid. Algorithms for computing a few singular values and vectors and updating these are critical components to monitor the oscillations. We describe efficient algorithms to compute and update the singular value decompositions in this context.

Alex Pothen
Purdue University
Department of Computer Science
apothen@purdue.edu

Mani Venkatasubramanian, Tianying Wu
Washington State University
mani@eecs.wsu.edu, tianying.wu@email.wsu.edu

Ananth Kalyanaraman
Associate Professor
School of EECS, Washington State University
ananth@eecs.wsu.edu

MS60
RBF-FD for Elastic Wave Propagation in Layered Media

Seismic exploration is used to map out hydrocarbon deposits. In forward modeling, substructures are assumed to be known, and the task is to simulate elastic wave propagation through the medium. Inversion programs then update substructure assumptions to reconcile the model response with actual measurements. We have found that RBF-FD spatial discretization offers outstanding accuracy and algebraic simplicity for modeling elastic wave propagation, especially in layered media with large numbers of irregularly curved interfaces.

Bengt Fornberg
University of Colorado
Boulder
fornberg@colorado.edu

MS60
Application of the RBF-FD Method to Laminar Flame Propagation Problems

Premixed flame propagation is an important topic in combustion research with many applications in energy and safety. In this paper we apply the RBF Finite difference (RBF-FD) method to solve the equations describing laminar flame propagation in two-dimensional and three-dimensional ducts. We use stencils with a relatively large number of nodes in order to achieve high order accuracy. Finally, we apply this methodology to solve a simplified mathematical model describing flame propagation in a rotary engine microcombustor.

Manuel Kindelan
Universidad Carlos III de Madrid
kinde@ing.uc3m.es

MS60
Modeling Ocean Dynamics Using RBF-FD

RBFs have started to emerge as a powerful tool, not only for interpolation, but also for discretizing differential operators. Over the last few years, new approaches have been developed to bypass the method’s well-known problems of stability and of large computational complexity. Such a new approach resulted in the RBF-FD method which enjoys high accuracy, has an intrinsic ability to represent complicated geometries in any dimension, still has a remarkable algorithmic simplicity, and leads to a sparse differentiation matrix. We will use this technique to solve the Navier-Stokes equations and discuss its potential as a high-order method for the modeling of oceanic phenomena.

Cecile M. Piret
Université catholique de Louvain
cecile.piret@uclouvain.be

MS61
Electromagnetic Wave Propagation in Random Waveguides

I will describe an analysis of electromagnetic wave propagation in waveguides filled with heterogeneous media, mod-
eled by a random electric permeability. The waves are trapped by perfectly conducting boundaries and the goal of the analysis is to quantify the long range net scattering effects of the random medium. The result is a detailed characterization of the transport of energy, the loss of coherence and the depolarization of the waves due to scattering. I will give some numerical illustrations and will compare the theory with that of scalar (acoustic) wave propagation in random waveguides.

Liliana Borcea
University of Michigan
borcea@umich.edu

MS61
Homogenization of Interfaces Moving with Spatio-temporal Periodic Velocity

Abstract not available at time of publication.

Wenjia Jing, Panagiotis Souganidis, Hung V. Tran
University of Chicago
wjing@math.uchicago.edu, souganidis@math.uchicago.edu, hung@math.uchicago.edu

MS61
Imaging Multiply Scattering Point Targets Using Sparsity Promoting Optimization

We study active array imaging of small but strong scatterers in homogeneous media when multiple scattering between them is important. We discuss a non-iterative approach that solves the imaging problem in two steps using sparsity promoting optimization. We analyze the uniqueness and stability of this imaging method using both single and multiple illuminations. To improve its robustness and the resolution of the images we also discuss the use of optimal illuminations. This is join work with Anwei Chai and George Papanicolaou.

Miguel Moscoso
Universidad Carlos III de Madrid
moscoso@math.uc3m.es

MS61
Correlation Based Imaging and Applications

Abstract not available at time of publication.

George C. Papanicolaou
Stanford University
Department of Mathematics
papanico@math.stanford.edu

MS62
Numerical Assessment of the Risk of Rock Damage in the Vicinity of Salt Caverns for the Storage of Gaseous Matter at Cyclic Operation Conditions

Abstract not available at time of publication.

Norbert Böttcher
Helmholtz-Centre for Environmental Research - UFZ
norbert.boettcher@ufz.de

MS62
Numerical Simulation of Deformation and Flow in Fractured, Poroeconomic Materials

We introduce a coupled system of PDEs for the modeling of the fluid-fluid and fluid-solid interaction in a fractured, poroeconomic material. The fluid flow in the fracture is modeled by a lower-dimensional equation, which interacts with the surrounding rock matrix and the fluid it contains. To determine the mechanical and hydrological equilibrium of the system numerically, we combine an XFEM discretization for the rock matrix deformation and pore pressure with a lower-dimensional grid for the fracture. The resulting coupled discrete problem is solved using a substructuring method.

Katja Hanowski
IGPM
RWTH Aachen University
hanowski@igpm.rwth-aachen.de

Oliver Sander
IGPM RWTH Aachen University
sander@igpm.rwth-aachen.de

MS62
Fracture Propagation in Porous Media Using Isogeometric Analysis

Abstract not available at time of publication.

Trond Kvamsdal
Department of Applied Mathematics
SINTEF ICT, Trondheim, Norway
trond.kvamsdal@sintef.no

MS62
Coupling Fluid Flow with Stresses Induced by Fracture Deformation in Discrete Fracture Networks

Fluid flow in fractures can cause deformation, but induced stresses can be challenging to implement in numerical models, especially in large DFNs. I will describe CFRAC, a simulator I developed that implicitly couples fluid flow, fracture deformation, transmissivity evolution, friction evolution, and fracture propagation, and is efficient enough to simulate (2D) networks with thousands of fractures. I will describe model behaviors that emerge from interactions between processes and which give insight into complex physical systems.

Mark McClure
The University of Texas at Austin
Petroleum & Geosystems Engineering
mcclure@austin.utexas.edu

MS63
Learning the Association of Multiple Inputs in Recurrent Networks

In spite of the many discoveries made in neuroscience, the mechanism by which memories are formed is still unclear. To better understand how some disorders of the brain arise, it is necessary to improve our knowledge of memory formation in the brain. With the aid of a biological experiment, an artificial neural network is developed to provide insight into how information is stored and recalled. In particular, the bi-conditional association of distinct spatial and non-spatial information is examined using
computational model. This model is based on a combination of feedforward and recurrent neural networks and a biologically-inspired spike time dependent plasticity learning rule. The ability of the computational model to store and recall the bi-conditional object-space association task through reward-modulated plastic synapses is numerically investigated.

Jeannine Abiva, Rodica Curtu
University of Iowa
jeannine.abiva@gmail.com, rodica-curtu@uiowa.edu

MS63
Mechanistic Models of Retinitis Pigmentosa
In this talk we will give a brief overview of our work as it pertains to Retinitis Pigmentosa (RP). With mathematics and computer (in silico) experiments, we explore the experimentally observed photoreceptor death and rescue in the progression of RP. Using mechanistic mathematical models of photoreceptor interactions in the presence of RP we (1) trace the evolution of RP from one stage to another in each main subtype, (2) capture the rod and cone wave deaths, and (3) explore various treatment regimens via RdCVF. Our work highlights the delicate balance between the availability of nutrients and the rates of shedding and renewal of photoreceptors needed for a normal functioning retina and to halt the progression of RP. This work provides a framework for future physiological investigations potentially leading to long-term targeted multi-faceted interventions and therapies dependent on the particular stage and subtype of RP under consideration.

Erika T. Camacho
Arizona State University
erika.camacho@asu.edu
Stephen Wirkus
Arizona State University
School of Mathematical and Natural Sciences
Stephen.Wirkus@asu.edu

MS63
Dynamics and Control of An Invasive Species: The Case of the Rasberry Crazy Ant Colonies
This project is motivated by the costs related with the documented risks of the introduction of non-native invasive species of plants, animals, or pathogens associated with travel and international trade. Such invasive species often have no natural enemies in their new regions. The spatiotemporal dynamics related to the invasion/spread of Nylanderia fulva, commonly known as the Rasberry crazy ant, are explored via the use of models that focus on the reproduction of ant colonies. A Cellular Automaton (CA) simulates the spatially explicit spread of ants on a grid. The impact of local spatial correlations on the dynamics of invasion is investigated numerically and analytically with the aid of a Mean Field (MF) model and a Pair Approximation (PA) model, the latter of which accounts for adjacent cell level effects. The PA model approach considers the limited mobility range of N. fulva, that is, the grid cell dynamics are not strongly influenced by non-adjacent cells. The model determines the rate of growth of colonies of N. fulva under distinct cell spatial architecture. Numerical results and qualitative conclusions on the spread and control of this invasive ant species are discussed.

Luis Melara
Shippensburg University
lamelara@ship.edu
Victor Vidal
SUNY Stony Brook
Valerie Cheathon
ASU West
Agustin Flores
Northeastern Illinois University
Octavius Talbot
Morehouse College
Adrian Smith
University of Arizona
th@siam.org
Marta Sarzynska
University of Oxford
marta.sarzynska@sjc.ox.ac.uk
Dustin Padilla
ASU Tempe
Pamela Marshall
Arizona State University
pamela.marshall@asu.edu

MS64
Organism - Effects of Nonlinearities on Lamprey
Locomotion

The lamprey is a basal vertebrate and a model organism for neurophysiology and locomotion studies. Here a 2D, integrative, multi-scale model of the lamprey’s anguilliform (eel-like) swimming is driven by neural activation and muscle kinematics coupled to body interactions with fluid surroundings. The fluid-structure interaction problem is solved numerically using an adaptive version of the immersed boundary method (IBAMR). Effects on swimming speed and cost by nonlinear dependencies associated with muscle force development are examined.

Christina Hamlet
Tulane University
New Orleans LA
hamlet@tulane.edu

Eric Tytell
Tufts University
Department of Biology
tytell@tufts.edu

Lisa J. Fauci
Tulane University
Department of Mathematics
tulane.edu

MS64
The Breadth of Mathematical Modelling of Biological Systems: History and Opportunities

An overview of a number of established areas in mathematical biology, as well as more recent opportunities that have emerged, will be presented as an introduction to this session. In particular, the importance that nonlinearities often pose, both in terms of reflecting realistic biological dynamics and the mathematical challenges that arise in analyzing the resulting models, will be emphasized. Recent illustrations of integrative research in this area in which the mathematical sciences guide biological studies and experimental work and field data inform the modeling will be discussed.

Mary Ann Horn
Vanderbilt University & National Science Foundation
mary.ann.horn@vanderbilt.edu

MS64
Cellular Nonlinear Models for Predicting Immune Response Mechanisms

Johne’s disease, a persistent and slow progressing infection in ruminants such as cows and sheep is caused by Mycobacterium avium subspecies paratuberculosis (MAP) bacillus. Mycobacterial infections are associated with complex immune response mechanisms whose underlying biology is not clearly understood. Host immune response to MAP infection is associated with predominance of a cell mediated response in its early stages and a switch to the dominance of antibody response with concomitant disease progression.

How the switch in immune response predominance occurs is not clearly known. In this study, we developed series nonlinear models to predict the underlying immune response mechanisms associated with MAP-bacteria shed in cattle feces. Immune response mechanisms are identified by fitting these models to immune response data and longitudinal fecal shedding patterns of experimentally infected cattle. Using statistical model selection methods, we were able to discriminate potential animal immune response mechanisms that can explain the variant shedding patterns for each infected animal. Our results suggest that there are specific variant immune response mechanisms that could be silent in other animals, however, these could be active in other animals, hence varying MAP shedding patterns and disease progression trends.

Gesham Magombedze
NIMBioS
University of Tennessee, Knoxville
gmagombedze@nimbios.org

MS64
Variability in Species Abundance Distributions from Nonlinear Stochastic Competition Models

Species abundance distributions (SADs) are metrics for ecological communities, or sets of similar species in an ecosystem. Using a nonlinear stochastic competition model, I will show that SADs of communities with neutral dynamics (demographic stochasticity and immigration) differ from those of communities with niches (clusters of similar species) arising under trait-based competition, and quantify the likelihood of being able to use this metric to distinguish between these two community types based on abundance data alone.

Rosalyn Rael, Rafael D’Andrea, György Barabási, Annette Ostling
Department of Ecology and Evolutionary Biology
University of Michigan
rosalyn.rael@gmail.com, rdandrea@umich.edu, dysor-dys@umich.edu

MS65
Block Preconditioners for Saddle-Point Linear Systems

Symmetric indefinite 2×2 and 3×3 block matrices are featured prominently in the solutions of constrained optimization problems and partial differential equations with constraints. When the systems are large and sparse, modern iterative methods are often effective. For block-structured matrices it is often desirable to design block diagonal preconditioners. In this talk a few block preconditioning approaches are discussed. We focus on the case of a maximally rank deficient leading block, which gives rise to interesting algebraic properties that can be exploited in the design of preconditioners. The use of Schur complements and null space matrices is illustrated.

Chen Greif
Department of Computer Science
The University of British Columbia
greif@cs.ubc.ca

MS65
Krylov Subspace Methods for Large Scale Matrix Equations

Given the square large matrices A, B, D, E and the matrix C of conforming dimensions, we consider the numerical solution of the linear matrix equation $AXE + DXB = C$ in the unknown matrix X. These matrix equations are becoming a reliable tool in the numerical treatment of advanced mathematical models in engineering and scientific computing. Our aim is to provide an overview of the major algorithmic developments in projection methods based on
Krylov-type subspaces, that have taken place in the past few years.

Valeria Simoncini
Università di Bologna
valeria.simoncini@unibo.it

MS65
Krylov Subspaces and Dense Eigenvalue Problems

When we think of Krylov subspace methods, we normally think of large, sparse problems. It is not widely appreciated that Krylov subspace ideas are also applicable to dense linear algebra. In this talk, which is more pedagogy than research, we show how thinking about Krylov subspaces leads to a powerful algorithm for solving dense eigenvalue problems. Unfortunately the algorithm is not new; it was invented over 50 years ago by John Francis.

David S. Watkins
Washington State University
david.s.watkins@wsu.edu

MS65
Computing Singular Values of Large Matrices with an Inverse Free Preconditioned Krylov Subspace Method

We present an efficient algorithm for computing a few extreme (largest and smallest) singular values and corresponding singular vectors of a large sparse \(m \times n \) matrix \(C \). Our algorithm is based on reformulation of the singular value problem as an eigenvalue problem for \(C^T C \) and, to address the clustering of singular values, we use an inverse-free preconditioned Krylov subspace method to accelerate convergence. We consider preconditioning that is based on robust incomplete factorizations and we discuss various implementation issues. Extensive numerical tests are presented to demonstrate efficiency and robustness of the new algorithm.

Qiao Liang
University of Kentucky
qiao.liang@uky.edu

Qiang Ye
Dept of Math
Univ of Kentucky
qye@ms.uky.edu

MS66
Closure-based Algorithms for Simulation of Mesoscale Evolution of Large ODE Systems

We study a problem of designing efficient methods based on space-time averaging for simulation of mesoscale dynamics of large particle systems. Averaging produces exact mesoscale partial differential equations but they cannot be simulated without solving the underlying microscale system. To simulate these mesoscale equations independently, we consider several closure methods including regularized deconvolution closure and kinetic closure. We investigate the relationship between their accuracy and computational cost.

Lyudmyla Barannyk
University of Idaho
lyudmyla.barannyk@uidaho.edu

Elena Cherkaev
University of Utah
elena@math.utah.edu

Niklas Wellander
Swedish Defence Research Agency
niklas.wellander@foi.se

Dali Zhang
University of Calgary
dlzhang@math.ucalgary.ca

MS66
On Reconstruction of Dynamic Permeability and Tortuosity of Poroelastic Materials

Dynamic permeability refers to the permeability of porous media subjecting to oscillatory pressure gradient. It depends on both the frequency and the pore space geometry. The dynamic tortuosity is inversely related to the dynamic permeability and plays an important role in the mechanism of energy dissipation of waves through poroelastic materials. Numerically, dynamic tortuosity is the kernel in the memory term in the dissipation term for time domain wave equations; it is known to be associated with fractional derivative of order 1/2. In this talk, we will present our results on reconstructing the dynamic permeability as a function of frequency from partial data by utilizing its analytical properties when extending to the complex frequency plane. Using the relation between tortuosity and permeability, a set of quadratures are constructed for handling the memory term in the poroelastic wave equations.

Miao-Jung Y. Ou
University of Delaware, USA
mou@math.udel.edu

Alexander Panchenko
Washington State University
panchenko@math.wsu.edu

MS67
Symmetry and Bifurcations in First-order PDEs with Nonlocal Terms Modelling Animal Aggrega-
Pattern formation in self-organised biological aggregation is a phenomenon that has been studied intensively over the past twenty years. I will present a class of models of animal aggregation in the form of two first-order hyperbolic partial differential equations on a one-dimensional domain with periodic boundary conditions, describing the motion of left and right moving individuals. The nonlinear terms appear using nonlocal social interaction terms for attraction, repulsion and alignment. This class of models has been introduced in the Ph.D thesis of R. Eftimie. In this talk, I will show that the equations are \(O(2) \) equivariant where the group \(O(2) \) is generated by space-translations and a reflection which interchanges left-moving individuals with right-moving individuals across the middle of the interval. I will discuss steady-states and their symmetry with a focus on homogeneous \(O(2) \) symmetric states and the existence of codimension two steady-state/steady-state, steady-state/Hopf and Hopf/Hopf bifurcation points. I will discuss how using existing symmetry-breaking bifurcation theory and new theoretical results, one can study the neighborhood of those bifurcation points and classify the patterns obtained. This is joint work with R. Eftimie (U. Dundee, Scotland).

Pietro-Luciano Buono
University of Ontario Institute of Technology
Oshawa, Ontario Canada
Pietro-Luciano.Buono@uoit.ca

Raluca Eftimie
University of Alberta, Edmonton, Canada
reftimie@maths.dundee.ac.uk

MS67
Network Symmetry and Binocular Rivalry Experiments

Hugh Wilson has proposed a class of models that treat higher-level decision making as a competition between patterns coded as levels of a set of attributes in an appropriately defined network. In this talk, I will propose that symmetry-breaking Hopf bifurcation from fusion states in suitably modified Wilson networks can be used in an algorithmic way to explain the surprising percepts that have been observed in a number of binocular rivalry experiments.

Casey Diekman
Department of Mathematical Sciences
New Jersey Institute of Technology
casey.o.diekman@njit.edu

Martin Golubitsky
Ohio State University
Mathematical Biosciences Institute
golubitsky@mbi.osu.edu

MS67
Spontaneous Symmetry-Breaking in Neural Morphology

A developing neuron initially extends several protrusions which are similar in length, but selects a single one which elongates much longer than the others and becomes an axon. This morphological symmetry breaking is important for the neuron to form its input (dendrite) and output (axon) devices. In this talk, we introduce quantitative mathematical model of the neuronal symmetry breaking as a nonlinear dynamical system, and show how symmetry breaks by phase plane analysis.

Yuichi Sakumura
School of Information Science and Technology
Aichi Prefectural University
sakumura@ist.aichi-pu.ac.jp

Naoyuki Inagaki
Graduate School of Biological Sciences
Nara Institute of Science and Technology
ninagaki@bs.naist.jp

MS68
Mathematical Modelling of Wind Turbines

America is home to one of the largest and fastest growing wind markets in the world. In 2012 the United States wind power installations were more than 90% higher than in 2011. With the growing demand for installations, the need for mathematical modelling has become critical. In this talk, I will describe a simple model of a wind turbine and some of it’s applications. Future lines of research will also be discussed.

Andre Candido
State University of New York at New Paltz, USA
n02284572@hawkmail.newpaltz.edu

MS68
Well-Balanced Positivity Preserving Central-Upwind Scheme for the Shallow Water System with Friction Terms

Shallow water models are widely used to describe and study free-surface water flow. The friction terms will play a significant role when the depth of the water is very small. In this talk, we introduce shallow water equations with friction terms and a well-balanced central-upwind scheme that is capable of exactly preserving physically relevant steady states. The data in the numerical example correspond to the laboratory experiments designed to mimic the rain water drainage in urban areas.

Shumo Cui
Tulane University, USA
scui2@tulane.edu

Alina Chertock
North Carolina State University
Department of Mathematics
chertock@math.ncsu.edu

Alexander Kurganov
Tulane University
Department of Mathematics
kurganov@math.tulane.edu

Tong Wu
Tulane University
twu2@tulane.edu

MS68
Membrane Deformation by Protein Inclusions

I will explore various models for the deformation of biomembranes by protein molecules which are embedded.
in or attached to the membrane, termed protein inclusions. Mathematically we focus on minimisation problems involving the Helfrich energy functional. Inclusions will be modelled by enforcing pointwise constraints on the membrane displacement or curvature. I will present results detailing the existence and behaviour of minimal energy states for some of these models.

Graham Hobbs
University of Warwick, UK
g.hobbs@warwick.ac.uk

MS68
Modeling Feral Hogs in the Great Smoky Mountains National Park

Feral Hogs (Sus Scrofa) are an invasive species that have occupied the Great Smoky Mountains National Park since the early 1900s. Recent studies have revitalized interest in the pest and have produced useful data on vegetation, mast and harvest history. Using these data, a model with discrete time and space was formulated to represent the hog dynamics in the park. Management strategies and estimation of actual total population was investigated.

Benjamin Levy
University of Tennesse, USA
levy@math.utk.edu

Bill Stiver
Great Smoky Mountains National Park
bill_stiver@nps.gov

Rene Salinas
Appalachian State University
salinasra@appstate.edu

Joseph Corn, Marguerite Madden
University of Georgia
jcorn@uga.edu, mmadden@uga.edu

Charles Collins
University of Tennessee
Knoxville, Tennessee
ccollins@math.utk.edu

Suzanne M. Lenhart
University of Tennessee
Department of Mathematics
lenhart@math.utk.edu

MS68
Stochastic Diffusion Processes in Systems Biology

In cell biology many species are only present at very low copy numbers, therefore a deterministic description by partial differential equations often does not reproduce experimental results and a stochastic model is needed. We use a continuous-time discrete-space Markov process to simulate diffusion stochastically. To represent complex geometries accurately we discretize the cell into an unstructured mesh and compare the jump coefficients resulting from a finite element method and a first exit time approach.

Lina Meinecke
Uppsala University, Sweden
lina.meinecke@it.uu.se

Per Lötstedt
Uppsala University
per.lotstedt@it.uu.se

MS68
A Smoothing Trust Region Filter Algorithm for Nonsmooth Nonconvex Least Squares Problems

We propose a smoothing trust region filter algorithm for nonsmooth and nonconvex least squares problems with zero residual. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations with high degrees on the sphere and solving differential variational inequalities.

Yang Zhou
The Hong Kong Polytechnic University, China
zyg1212@163.com

Xiaojun Chen
Department of Applied Mathematics
The Hong Kong Polytechnic University
maxjchen@polyu.edu.hk

Shouqiang Du
Qingdao University, China
qddsg1@163.com

MS69
Filtered Spectral Methods for Transport Problems

We analyze the behavior of filtered spectral approximations that are used in the angular discretization of radiative transport equations. Recently the filtering approach has been recast as a transport equation with modified scattering cross-section. We examine this modified equation, prove some basic convergence properties, and show some supporting numerical results.

Cory Hauck
Oak Ridge National Laboratory
hauckc@ornl.gov

Martin Frank, Kerstin Kuepper
RWTH Aachen University
Center for Computational Engineering Science
frank@mathcces.rwth-aachen.de, kuepper@mathcces.rwth-aachen.de

MS69
Hybrid Algorithms for Hybrid Computers: Kinetic-Continuum Models of Transport Phenomena

Recent developments in high-performance computing have led to a hybrid architecture composed of multicore CPUs and GPU coprocessors (e.g., ORNL Titan machine). In such architectures, a premium is placed on algorithms that require minimal communication between CPU/GPU nodes. We introduce a set of algorithms in this spirit based upon stochastic differential equation solvers for kinetic level models of transport phenomena, coupled with high-order finite element models of the continuum (homog-
MS69
Hydraulic Modeling for Quantum Absorption Calculation in Plasmonics Based on High-Order Spectral Element Discontinuous Galerkin Approach

I will discuss about recent development of spectral element discontinuous Galerkin (SEDG) schemes for solving local interactions between electrons and the light in plasmonic systems. The dispersive material properties of the system are described by a hydraulic model. This approach is formulated by coupling the macroscopic Maxwell equations with the equations of motion of the electron gas. The nonlocal polarization current induced by an external electromagnetic field is represented by a system of the first-order partial differential equations with an auxiliary ordinary differential equation. I will present efficient and stable SEDG algorithms with properly designed numerical fluxes, provided with stability analysis. We validate our computational results for nano sized metallic cylinders for the absorption cross sections and field distributions.

MiSun Min
Argonne National Laboratory
Mathematics and Computer Science Division
mmin@mcs.anl.gov

MS69
Semi-Lagrangian Discontinuous Galerkin Schemes for the Relativistic Vlasov-Maxwell System

The Vlasov-Maxwell system describes the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via the electromagnetic force. One of the main difficulties in numerically solving this system is the severe step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community is the so-called particle-in-cell method. The focus of the current work is on semi-Lagrangian methods. In particular, we develop a method based on high-order discontinuous Galerkin (DG) scheme in phase space, and an operator split, semi-Lagrangian method in time. The method is designed to be (1) high-order accurate, (2) mass conservative, and (3) positivity-preserving. The resulting scheme is applied to laser-plasma acceleration problems.

James A. Rossmanith
Department of Mathematics
Iowa State University
rossmani@iastate.edu

Harbir Antil
George Mason University
Fairfax, VA
hantil@gmu.edu

MS70
Numerical Investigations of Bouncing Jets

The Kaye effect is a fascinating phenomenon of a leaping shampoo stream which was first described by Alan Kaye in 1963 as a property of non-Newtonian fluid. It manifest itself when a thin stream of non-Newtonian fluid is poured into a dish of fluid. As pouring proceeds, a small stream of liquid occasionally leaps upward from the heap. We investigate numerically the impact of the experimental setting as well as the fluid rheology on the apparition of bouncing jets. In particular, we observe the importance of the creation of a thin lubricating layer of air between the jet and the rest of the liquid. The numerical method consists of a projection method coupled with a level-set formulation for the interface representation. Adaptive finite element methods are advocated to capture the different length scales inherent to this context.

Andrea Bonito
Texas A&M University
Department of Mathematics
bonito@math.tamu.edu

Jean-Luc Guermond
Department of Mathematics
Texas A&M, USA
guermond@math.tamu.edu

Sanghyun Lee
Texas A&M University
Department of Mathematics
shlee@math.tamu.edu

MS70
Splitting for Variable Density Flows

We show the equivalence between the so-called gauge Uzawa method and the pressure correction schemes in rotational form. Using this equivalence we show simpler stability proofs for known schemes and devise a new stable scheme for the approximation of incompressible flows with variable density. The main feature of the new method is that only involves constant, in time, matrices.

Abner J. Salgado
Department of Mathematics
University of Maryland
asalgad1@utk.edu

MS70
Modeling Viscoelastic Networks in Stokes Flow

We will give a novel proof for the second order order sufficient conditions for an optimal control problem where the state system is composed of Laplace equation in the bulk and Young-Laplace on the free boundary. Next, we will discuss a novel analysis for a Stokes free boundary problem with surface tension effect. We will conclude with some recent results for the Navier-Stokes problem with slip boundary conditions.

Michael Malahe, Sorin Mitran
University of North Carolina Chapel Hill
mmalahe@email.unc.edu, mitran@unc.edu

MS70
Modeling Viscoelastic Networks in Stokes Flow

We present a simple method for modeling heterogeneous viscoelastic media at zero Reynolds number. The method can be extended to capture viscoelastic features as well as some other models. Linking rules for the network are based on linear viscoelastic models, then varying complex-frequency functions. Stability proofs for known schemes and devise a new stable scheme for the approximation of incompressible flows with variable density. The main feature of the new method is that only involves constant, in time, matrices.

Harbir Antil
George Mason University
Fairfax, VA
hantil@gmu.edu
parameters on these properties.

Jacek K. Wrobel
Department of Mathematics, Tulane University
Center for Computational Science
jwrobel@tulane.edu

Ricardo Cortez, Ricardo Cortez
Tulane University
Mathematics Department
r cortez@tulane.edu, rcortez@tulane.edu

Lisa J. Fauci
Tulane University
Department of Mathematics
aufu@tulane.edu

MS71
Interferometric Waveform Inversion: Geophysics Meets Spectral Graph Theory
In seismic and SAR imaging, fitting cross-correlations of wavefields rather than the wavefields themselves can result in improved robustness vis-a-vis model uncertainties. This approach however raises two challenges: (i) new spurious local minima may complicate the inversion, and (ii) one must find a good subset of cross-correlations to make the problem well-posed. I will explain how to address these two problems with lifting, semidefinite relaxation, and expander graphs. This mix of ideas has recently proved to be the right approach in other contexts as well, such as angular synchronization (Singer et al.) and phase retrieval (Candes et al.). Joint work with Vincent Jugnon.

Laurent Demanet
Professor of Mathematics, MIT
laurent@math.mit.edu

MS71
Inverse Born Series for the Radiative Transport Equation
We propose a direct reconstruction method for the inverse radiative transport problem that is based on inversion of the Born series. We characterize the convergence and approximation error of the method and illustrate its use in numerical simulations.

Manabu Machida
Department of Mathematics
University of Michigan
machida@umich.edu

John Schotland
University of Michigan
schotland@umich.edu

MS71
Layered Media Scattering: Fokas Integral Equations and Boundary Perturbation Methods
In this talk we describe a class of Integral Equations to compute Dirichlet-Neumann operators for the Helmholtz equation on periodic domains inspired by the recent work of Fokas and collaborators on novel solution formulas for boundary value problems. These Integral Equations have a number of advantages over standard alternatives including: (i.) ease of implementation (high-order spectral accuracy is realized without sophisticated quadrature rules), (ii.) seamless enforcement of the quasiperiodic boundary conditions (no periodization of the fundamental solution, e.g. via Ewald summation, is required), and (iii.) reduced regularity requirements on the interface profiles (derivatives of the deformations do not appear explicitly in the formulation). We show how these can be efficiently discretized and utilized in the simulation of scattering of linear acoustic waves by families of periodic layered media which arise in geoscience applications.

David P. Nicholls
University of Illinois at Chicago
nicholls@math.uic.edu

MS72
Hydrodynamic Interaction of Swimming Microorganisms in Complex Fluids
The interaction of motile microorganisms, surrounding fluids and boundaries is of paramount importance in a variety of physical and environmental phenomena including the development of biofilms, colonization of microbes in viscoelastic mucus of human and animal bodies, bacterial aggregating in oceanic gels, and swimming of spermatozoa in female reproductive tract. In this study, we scrutinize the role of rheological properties of background fluids on the interaction of microorganisms with rigid surfaces.

Gaojin Li
University of Notre Dame
gli5@nd.edu

Arezoo Ardekani
Notre Dame University
Department of Aerospace and Mechanical Engineering
arezoo.ardekani.1@nd.edu

MS72
Swimming Through Heterogeneous Networks
I will present results for swimmers moving near similar-size microstructural heterogeneities. Spherical obstructions are used to deduce physical principles linking the swimmer flow
field, forces on obstructions, and changes in swimming velocities. Then single rod-like obstructions are studied to deduce the effect of a network of filaments. The average and variance of the swimming speed reflect the density and orientation correlations of the microstructure, and hence swimming properties can be used as probes of microstructure.

Henry Fu
University of Nevada, Reno
Dept. Mechanical Engineering
hfu@unr.edu

MS72
Mechanism of Microorganism Propulsion in Viscoelastic Fluids

Abstract not available at time of publication.

Alexander Morozov
University of Edinburgh
School of Physics & Astronomy
alexander.morozov@ph.ed.ac.uk

MS72
Flagellar Locomotion in Viscoelastic and Anisotropic Environments

We will discuss recent investigations of helical and undulatory motion in viscoelastic (Oldroyd-B) and anisotropic (liquid crystal) fluids. Elastic and anisotropic effects can either enhance or retard a microorganism’s swimming speed, and can even change the direction of swimming, depending on the body geometry and the fluid properties. Our findings connect studies showing situationally dependent enhancement or retardation of swimming speeds, and may help to clarify phenomena observed in a number of biological systems.

Saverio E. Spagnolie
University of Wisconsin
Department of Mathematics
Spagnolie@math.wisc.edu

MS73
The Response of the Lyapunov Exponent to External Perturbations

We present a new approach to predict the response of the largest Lyapunov exponent of a dynamical system to small external perturbations of different types. The connection between the external perturbation and the change in the largest Lyapunov exponent is approximately represented through the corresponding response operator, computed for the original unperturbed system. The theory for the response operator of the largest Lyapunov exponent is based on the well-known Fluctuation-Dissipation theorem. We also compute the response prediction for a simple model of chaotic nonlinear dynamics, and compare it against the actual response of the largest Lyapunov exponent computed by directly perturbing the system, for a simple constant forcing perturbation.

Rafail Abramov
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
abramov@math.uic.edu

MS73
Stochastic Mode-Reduction in Models with Conservative Fast Sub-Systems

We will consider application of the stochastic mode reduction to multi-scale models with deterministic energy-conserving fast sub-system. In particular, we consider the situation when the slow variables are driven stochastically and interact with the fast subsystem in an energy conserving fashion. Since there is energy exchange between the fast conservative sub-system and the slow variables, it is necessary to explicitly keep track of the energy of the fast sub-system. Therefore, we develop a new stochastic mode reduction process in this case by introducing energy of the fast sub-system as an additional hidden slow variable. We use several prototype models to illustrate the approach.

Ankita Jain
Dept of Applied and Computational Mathematics and Statistics
University of Notre Dame
ankita.jain@nd.edu

MS73
Stochasticity in An Integrable System: Pulse Polarization Switching in An Active Optical Medium

Propagation of optical pulses through an active optical medium with two working levels, known as the Lambda-configuration, is described by an initial-boundary value problem for a set of completely integrable partial differential equations. If the initial conditions are prepared randomly, the resulting soliton solutions exhibit stochastic behavior, which can be described exactly in terms of probability-density functions and first- and last-passage time problems. The talk will present these soliton statistics.

Gregor Kovacic
Rensselaer Polytechnic Inst
kovacg@rpi.edu

MS73
Dynamics of Ferromagnets

Driving nanomagnets by spin-polarized currents offers exciting prospects in magnetoelectronics, but the response of the magnets to such currents remains poorly understood, even more so with the addition of thermal noise. For a single domain ferromagnet, I will show that an averaged equation describing the diffusion of energy on a graph captures the low damping dynamics of these systems. I will then present the problem of extending the analysis to spatially non-uniform magnets, modeled by an infinite dimensional Hamiltonian systems, equivalently a non-linear wave equation with stochastic in space initial conditions.

Katherine Newhall
Courant Institute of Mathematical Science
New York University
newhall@cims.nyu.edu

MS74
Data Analytics Throughout Undergraduate Math-
 DATUM is an education/research program which trains freshman and sophomore students in the philosophy and tools of data analysis and modeling. The course, Introduction to Data Mathematics, introduces high-dimensional modeling, data analytics, and their use in applications. Requiring only basic calculus, it prepares students for summer research on real-world data analytics problems. It teaches data analytics methods along with a targeted examination of underlying high-dimensional mathematics including Euclidean geometry, matrix algebra, eigenvalues, and spectral decomposition.

Kristin Bennett
Mathematical Sciences
Rensselaer Polytechnic Institute
bennek@rpi.edu

Bruce Piper
Rensselaer Polytechnic Institute
Dept of Mathematical Sciences
piperb@rpi.edu

MS74
Research and Training in Computational and Data-Enabled Science and Engineering for Undergraduates in the Mathematical Sciences at NJIT

The NJIT EXTREEMS-QED program is designed to immerse undergraduates in courses and group research projects in the computational analysis of data and the modeling and simulation of complex systems in multidisciplinary contexts. In this talk, we will describe the research activities of our first cohort of undergraduates and the curricular enhancements in computational and data enabled science and engineering that have already been made. This project is supported by the NSF.

David J. Horntrop
Dept of Mathematical Sciences, Center for Applied Math
New Jersey Institute of Technology
david.horntrop@njit.edu

MS74
Data-Enabled Science and Computational Analysis Research, Training, and Education for Students (DESCARTES) Program at UC Merced

The Data-Enabled Science and Computational Analysis Research, Training, and Education for Students (DESCARTES) Program at UC Merced trains Applied Mathematical Sciences majors in the computational tools needed to study modeling and simulation of complex systems and analysis of large data sets. This program has three specific aims: (1) Provide exceptional undergraduate students unique research opportunities and state-of-the-art education and training in computational and data-enabled science; (2) Develop the Computational and Data-Enabled Science emphasis track within the Applied Mathematical Sciences Major; and (3) Provide high school math teachers from the region the opportunity to learn the tools and methods of computational and data-enabled science. In this talk, we will describe current developments within the DESCARTES program and discuss new initiatives that we have undertaken since the inception of the program.

Arnold D. Kim
University of California, Merced
adkim@ucmerced.edu

MS74
Computational and Data-Enabled Training in William & Mary

In this talk, I will talk about how EXTREEMS-QED is organized at W&J, how we recruit students, and how to run our summer research programs. I will also talk about how we develop Data-related courses.

Gexin Yu
Department of Mathematics
The College of William and Mary
gyu@wm.edu

MS75
A Stochastic-Oriented NLP Relaxation for Integer Programming

We introduce a nonlinear, nonconvex relaxation of integer constraints in certain linear programs. The relaxation is motivated by the interpretation of relaxed integer variables as probability of units to be on in energy systems applications. The relaxation depends on a complexity parameter that controls its strength that is derived from a quantile interpretation of a stochastic formulation. We analyze the dependence of the solution on this complexity parameter and provide numerical examples to support our claims.

John Birge
University of Chicago Booth School of Business
john.birge@chicagobooth.edu

Mihai Anitescu, Cosmin G. Petra
Argonne National Laboratory
Mathematics and Computer Science Division
anitescu@mcs.anl.gov, petra@mcs.anl.gov

MS75
Uncertainty Analysis of Wind Power Plant Dynamic Model

In transient stability studies, large wind power plants (WPP) are usually represented by reduced model consisting on one, or few, equivalent machines. However individual wind turbine generators (WTG), within a WPP, can produce diverse power outputs, because of terrain topography and/or wake effect. Under these conditions, the accuracy of the reduced WPP model has not been studied yet. In this paper, we present an uncertainty analysis to investigate the model accuracy of a WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The impact of wake effect in dynamic WPP model uncertainty is investigated. The importance of diverse WTG power output is evaluated in full and reduced models of a large 168-machine test WPP connected to the IEEE-39-bus system. The results show that diverse WTG output due to wake effect can affect the transient stability outcome analysis. The reduced WPP model misrepresents the dynamic response observed with the full WPP representation. Engineers should be aware of this difference when using reduced WPP models.

Guang Lin, Marcelo Elizondo, Shuai Lu, Shaobu Wang
Pacific Northwest National Laboratory
MS75
Global Optimization of Large Optimal Power Flow Problems

We propose a global optimization algorithm based on branch and bound for the Optimal Power Flow (OPF) problem in power grids. The algorithm uses Semidefinite Programming (SDP) relaxations of the OPF to provide strong lower bounds on the optimal objective function value. The algorithm is able to guarantee global optimality to a small tolerance for several IEEE benchmark instances and modified instances, orders of magnitude faster than general purpose global optimization solvers. We also extend the algorithm to the smart grid problem, which is a multi period extension of the OPF to address integration of renewable energy sources and storage devices into the power grid. Results illustrate the effectiveness of storage in lowering costs and absorbing fluctuations due to intermittent power sources in the grid.

Lorenz T. Biegler
Carnegie Mellon University
Pittsburgh, USA
biegler@cmu.edu

Bethany Nicholson
Carnegie Mellon University
bnnichol@andrew.cmu.edu

MS75
Exploiting Large-Scale Natural Gas Storage to Mitigate Power Grid Uncertainty

We present a stochastic optimal control model to optimize gas network inventories in the face of system uncertainties. We demonstrate that gas network inventories can be used to mitigate volatility observed in power grid operations.

Victor Zavala
Argonne National Laboratory
vzavala@mcs.anl.gov

MS76
Mathematical Models and Computational Software for Hazardous Earth-Surface Flows: from Tsunamis to Landslides

There is a large class of geophysical flows that can be categorized as hazardous, free-surface, gravity-driven inundation flows. These problems include tsunami propagation and inundation; overland flooding; hurricane-generated storm surges; and a range of granular-fluid flows including landslides, debris flows and lahars. These problems are often modeled with depth-averaged PDEs sharing common mathematical features and presenting similar computational challenges. I will describe these models and show simulations of tsunamis, floods and landslides using these methods.

David George
U.S. Geological Survey
Cascades Volcano Observatory
dave.jorge@gmail.com

MS76
Dynamically and Kinematically Consistent Global Ocean State Estimation for Climate Research

The sparsity of observations for oceanographic (and cryospheric) research directed at climate requires the development and application of mathematical and computational tools, variously known as inverse methods, or state and parameter estimation, to infer poorly known or not directly measurable quantities, and to provide useful uncertainty estimates. Data assimilation commonly used in numerical weather prediction applies filtering methods that are optimal for forecasting. However, to the extent that the focus is on understanding the dynamics of the ocean’s past evolution such methods have limitations; they do not preserve known conservation laws and evolution equations. Instead, climate reconstruction is best solved using smoother methods such that optimal use is made of the sparse observations while preserving known physical laws encapsulated in the model used for data interpolation. Two examples from global ocean state estimation and ice sheet modeling will be discussed.

Patrick Heimbach
Massachusetts Institute of Technology
heimbach@mit.edu

MS76
Computational Challenges in High-Resolution, Experimentally-Constrained Non-Newtonian Subduction Modeling

Results from high-resolution, massively parallel, three-dimensional numerical models of subduction zone deformation are presented. The models are observationally based, contain multiple plates, and use a non-Newtonian viscosity, making them among the highest fidelity convergent margin models to date. A scalable solver is used to solve the difficult variable viscosity Stokes flow. Large viscosity gradients emerge due to the strain-rate dependent viscosity, allowing for local decoupling and complex circulation semi-independent from the larger scale mantle circulation.

Margarete A. Jadamec
Brown University
Department of Geological Sciences
Margarete.Jadamec@Brown.edu

MS76
Promoting the Development and Application of Mathematics, Statistics and Computational Science in the Geosciences

I will begin by describing recent efforts of the Consortium for Mathematics in the Geosciences (CMG++) formed by members of the mathematical, statistical, computational and geoscience communities. The goal of the consortium is to accelerate traditional interactions between these groups of scientists. Then I will discuss a computational inverse method developed by myself and colleagues that was motivated by specific challenges in oceanographic data assimilation and geophysics.

Jodi Mead
Boise State University
Department of Mathematics
MS77
Imaging of Extended Reflectors in Two-Dimensional Waveguides

We consider the problem of imaging extended reflectors in waveguides using the response matrix of the scattered field obtained with an active array. We employ selective imaging techniques to focus onto the edges of a reflector which typically give rise to weaker echoes than those coming from its main body. A selective imaging functional based on Kirchhoff migration and the SVD of a weighted modal projection of the response matrix is proposed and analyzed.

Chrysoula Tsogka
University of Crete and FORTH-IACM
tsgoka@tem.uoc.gr

Dimitrios Mitsoulis
Institute of Applied and Computational Math
Heraklion, Crete
dmits@tem.uoc.gr

Symeon Papadimitropoulos
Department of Applied Mathematics, University of Crete
spapadem@tem.uoc.gr

MS77
Imaging of Sparse Scatterers

Abstract not available at time of publication.

Alexei Novikov
Penn State University
Mathematics
anovikov@math.psu.edu

MS77
Connecting the Dots: from Homogenization to Radiative Transport

Abstract not available at time of publication.

Lenya Ryzhik
Stanford University
ryzhik@math.stanford.edu

MS77
Signal to Noise Ratio Analysis in Virtual Source Array Imaging

We consider imaging a reflector located on one side of a passive array where the propagation medium is homogeneous. The reflector is illuminated by remote impulsive sources situated on the other side of the passive array where the medium is complex and strongly scattering. We transform the passive array to an active virtual array by migrating the cross correlations of the field recorded on the passive array. We will present an analysis of the signal to noise ratio of the obtained image.

Chrysoula Tsogka
University of Crete and FORTH-IACM
tsgoka@tem.uoc.gr

MS78
Flagellar Kinematics of Algal Cells in Viscoelastic Fluids

The motility behavior of microorganisms can be significantly affected by the rheology of their fluidic environment. In this talk, we experimentally investigate the effects of fluid elasticity on both the flagella kinematics and swimming dynamics of the microscopic alga Chlamydomonas reinhardtii. We find that the flagellar beating frequency and wave speed are both enhanced by fluid elasticity. Interestingly, the swimming speeds during the alga power and recovery strokes are enhanced by fluid elasticity for De 1. Despite such enhancements, however, the alga net forward speed is hindered by fluid elasticity by as much as 30% compared to Newtonian fluids of similar shear viscosities. The motility enhancements could be explained by the mechanism of stress accumulation in the viscoelastic fluid.

Paulo E. Arratia
Mechanical Engineering and Applied Mechanics
University of Pennsylvania, Philadelphia.
parratia@seas.upenn.edu

MS78
The Dynamics of Sperm Detachment from Epithelium in a Coupled Fluid-Biochemical Model of Hyperactivated Motility

A mechanical advantage of the spermatozoa hyperactivated waveform has been hypothesized to be the promotion of detachment from oviductal epithelium. Using a Stokes fluid model that incorporates forces due to dynamic elastic bonds between the flagellar head and a surface, we find that hyperactive waveforms do result in the frequent detaching and binding dynamics that are observed in recent lab experiments.

Lisa J. Fauci
Tulane University
Department of Mathematics
fauci@tulane.edu

Julie Simons
Tulane University
jsimons@tulane.edu

Sarah D. Olson
Worcester Polytechnic Institute
sdolson@wpi.edu

Ricardo Cortez
Tulane University
Mathematics Department
rcortez@tulane.edu, rcortez@tulane.edu

MS78
The Phylogeny of Sperm Swimming Kinematics

Phylogenetic analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment are mediated by organism form and function, highlighting the importance of mechanics to understanding evolutionary trajectories. We combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagel-
lar waveforms of sperm from eight diverse species. The emergence of dominant flagellar waveforms is suggestive of biological optimization, driven by environmental cues.

Jeffrey Guasto
Massachusetts Institute of Technology
Jeffrey.Guasto@tufts.edu

Lisa Burton, Filippo Menolascina
MIT
lisab@mit.edu, filipm@mit.edu

Richard Zimmer
UCLA
z@biology.ucla.edu

Anette Hosoi
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 3-173, Cambridge MA 02139
peko@mit.edu

Roman Stocker
MIT
Civil and Environmental Engineering
romans@mit.edu

Math 78
Flagellar Bundling and Unbundling in E. Coli

Flagellar bundling and unbundling are important aspects of locomotion in bacteria such as Escherichia coli. To study the hydrodynamic behavior of helical flagella, we present a computational model that describes the motion of bacterial flagellar filament at the micrometer scale. Bundling occurs when all flagella are left-handed helices turning counterclockwise or when all flagella are right-handed helices turning clockwise. Helical flagella of the other combinations of handedness and rotation direction do not bundle.

Sookkyung Lim
University of Cincinnati
sookkyung.lim@uc.edu

Math 79
Unifying the Equations of Life: Time Scale Calculus and Evolutionary Dynamics

Evolutionary dynamics is concerned with the evolution of populations. In a general framework, each population has its own geometry, method of adaptation (incentive), and time-scale (discrete, continuous, and others). Using an information-theoretic measure of distance, a widely-applicable stability result will be given for all of these scenarios. A wealth of examples leading up to and beyond the main results is included. No prior knowledge of evolutionary dynamics, information theory, Riemannian geometry, or game theory is required.

Dashiel Fryer
Pomona College
Dashiel.Fryer@Pomona.edu

Marc Harper
UCLA
marc.harper@gmail.com

Math 79
Flight Stability of Mosquitoes using a Reduced Model

We employ a reduced model that represents a mosquito as a rigid body with two rigid wings to explore mosquito stability. Wing motions derived from analysis of high speed movies are used as inputs to a dynamical model of the mosquito body. We study uniform flight where flight trajectories are periodic orbits in a suitable translating reference frame. We analyze the stability of body motions in this frame by computing a linearized return map of the periodic orbit along with its eigenvalues and singular values. Long time stability corresponds to eigenvalues all smaller than one in magnitude and depends upon model parameters. For our mosquito geometry, we find that hovering flight is unstable but locate parameter ranges in which forward flight is stable. We also investigate the effect of varying the location of the joint between wings and body on stability of hovering flight. All cases are close to marginal stability.

Sarah Iams
Northwestern University
Evanston, IL
smi6@cornell.edu

Math 79
On a Non-Linear Investigation of An Electrospinning Model under Combined Space and Time Evolving Instabilities

We study the nonlinear problem of axisymmetric electrically driven jets with applications to the electrospinning process. We consider classical stability point of view in the early stage and then weakly nonlinear wave theory of certain dyad resonance modes that later involve the use of Newton’s Method to solve a dispersion relation. Finally we present the Method of Lines (MOL) to solve a system of PDEs that governs the combined time and space evolving amplitude instability functions.

Saulo Orizaga
Department of Mathematics
Iowa State University
sorizaga@iastate.edu

Math 79
Analyzing Coherent Structure in Signals and Fluid Flows

We consider a dynamical systems based method for measuring the complexity of particle trajectories in fluid flows. This complexity is measured in terms of ergodicity which relates to how a trajectory samples a space and how it samples provides insight about the structure in the phenomena or region of interest. We discuss how this insight is used to visualize the 2D and 3D Lagrangian coherent structures in ocean flows and how this information can in turn be used to better understand the transport in the flow - e.g., transport barriers and transport facilitators. As time permits, other related diagnostics will also be presented.

Sherry Scott
Marquette University
MS80
Asymptotically Compatible Schemes for Robust Discretization of Nonlocal Models

We present an abstract framework of asymptotically compatible (AC) schemes for robust discretizations of a family of parametrized problems. The AC schemes provide convergent approximations to problems associated with fixed parameter values as well as their limiting values. This framework is then applied to study approximations of nonlocal models such as peridynamic models of nonlocal elasticity parameterized by the horizon parameter and their local PDE limits (Navier equations) when the horizon parameter approaches zero. In particular, by combining with the theory of nonlocal calculus of variations, a precise characterization of AC schemes can be obtained for popular conforming finite element discretizations.

Qiang Du
Penn State University
Department of Mathematics
qdu@math.psu.edu

Xiaochuan Tian
Pennsylvania State University
tianx@math.psu.edu

MS80
Analysis and Approximation of Finite-Range Jump Processes

The classical Brownian motion model for diffusion is not well-suited for applications with discontinuous sample paths. For instance, the mean square displacement of a diffusing particle undergoing a jump process often grows faster than that for the case of Brownian motion, or grows at the same rate but is of finite variation or finite activity. Such jump processes are viable models for anomalous super-diffusion or nonstandard normal diffusion. In particular, such jump diffusions are expedient models when the process sample-path is discontinuous because nearly instantaneous price volatility, species migration or heat conduction is suggested by the length and time scales over which the data is collected. My presentation is on recent work for the associated deterministic equation on bounded domains where the jump process is of finite-range, i.e., the jump-rate is positive over a region of compact support. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and be consistent with the jump process.

Marta D’Elia
Department of Scientific Computing
Florida State University, Tallahassee, FL
mdelia@fsu.edu

Qiang Du
Penn State University
Department of Mathematics
qdu@math.psu.edu

Max Gunzburger
Florida State University
School for Computational Sciences
mgunzburger@fsu.edu

MS80
Modeling Anomalous Diffusion Using the Fractional Bloch-Torrey Equation

Contrast in magnetic resonance imaging (MRI) can be manipulated to display the apparent diffusion coefficient for water. In complex, heterogeneous materials, such as biological tissue, diffusion is anisotropic and often non-Gaussian. Such anomalous diffusion can be succinctly described via the fractional order Bloch-Torrey equation - a FPDE that captures both deterministic and stochastic processes. Using this model, MRI can display spatial maps of tissue properties in terms of sub- and super-diffusion.

Richard Magin
Department of Bioengineering
University of Illinois at Chicago
rmagin@uic.edu

MS80
Fractional PDEs: Numerical Methods and Mathematical Analysis

We present a faithful and efficient numerical methods for time-dependent space-fractional PDEs in three space dimensions, without resorting to any lossy compression, but rather by exploring the structure of the coefficient matrices. The method reduces computational cost from \(O(N^3)\) to \(O(N^{\log_2 3})\) per time step and memory requirement from \(O(N^2)\) to \(O(N)\). We also address some mathematical issues that are characteristic for fractional PDEs and report our recent progress in this direction.

Hong Wang
University of South Carolina
Department of Mathematics
hwang@math.sc.edu

MS81
BANDITS: A Matlab Package of Band Krylov Subspace Iterations

Band Krylov subspace iterations are extensions of Krylov subspace methods such as the Arnoldi process and the Lanczos algorithm, which can handle only single starting vectors, to the case of multiple starting vectors. Band methods have a number of advantages over the more traditional block Krylov subspace methods. We describe the Matlab package BANDITS that provides implementations of band versions of the Arnoldi process, the general Lanczos method, and the symmetric and Hermitian Lanczos algorithms.

Roland W. Freund
University of California, Davis
Department of Mathematics
freund@math.ucdavis.edu

MS81
Newton-Krylov Method for Problems with Embed-
ded Monte Carlo Simulations

We analyze the behavior of inexact Newton methods for problems where the nonlinear residual, Jacobian, and Jacobian-vector products are the outputs of Monte Carlo simulations. We propose algorithms which account for the randomness in the iteration, develop theory for the behavior of these algorithms, and illustrate the results with an example from neutronics.

Carl T. Kelley
North Carolina State University
tim_kelley@ncsu.edu

Jeffrey Willert
Los Alamos National Laboratory
jaw@lanl.gov

Xiaojun Chen
Hong Kong Polytechnic University
xiaojun.chen@inet.polyu.edu.hk

MS81
The Lanczos Algorithm and Extensions for Quaternionic Matrices

Let A be an associative algebra containing one and A a square matrix with entries from A. Let there be a vector $x \neq 0$ with entries from A and $\lambda \in A$ such that

$$Ax = x\lambda, \tag{1}$$

where the multiplication on the right is carried out componentwise. Then, A will be called an eigenvalue of A associated with an eigenvector x of A. If we multiply (1) from the right by an invertible element $h \in A$ we obtain

$$A[xh] = x\lambda h = [xh][h^{-1}\lambda h], \tag{2}$$

which shows that the set of eigenvalues of quaternionic matrices can always be reduced to complex numbers. This is not necessarily so in other algebras. The Lanczos algorithm produces a series of tridiagonal $j \times j$ matrices T_j, $j = 1, 2, \ldots$ from a symmetric matrix A, and the eigenvalues of T_j (called Ritz values) approximate the eigenvalues of A (usually very quickly). We report on the results for quaternionic matrices and on extensions to other non-commutative algebras. Algebraic operations with quaternions are in general more effective than the corresponding operations with their matrix counterpart. This research was supported by the DFG, GZ OP 33/19-1.

Gerhard Opfer
Universität Hamburg
gerhard.opfer@uni-hamburg.de

MS81
Hierarchical Krylov and Nested Krylov Methods Using PETSc for Extreme-Scale Computing

We develop hierarchical Krylov methods and nested Krylov methods to overcome the scaling difficulties for extreme-scale computing. We demonstrate the impact at high core counts on the PFLOTRAN subsurface flow application. Because these algorithms can be activated at runtime via the PETSc library, application codes that employ PETSc can easily experiment with such techniques. The principles of hierarchical Krylov methods and nested Krylov methods can be applied to complementary advances in synchronization and communication-avoiding Krylov methods, thereby offering potentially multiplicative benefits of combined approaches.

Hong Zhang
Argonne National Lab
hzhang@mcs.anl.gov

MS82
Information Theoretic Projection of Cytoskeleton Dynamics onto Surrogate Cellular Motility Models

Lattice Boltzmann and lattice Fokker-Planck methods can readily handle the geometric and physical complexity of the reactions underlying cytoskeleton formation and dynamics from actin polymerization and myosin motor motion. The computational cost, even for such simplified discretizations of the flow velocity and cytoskeleton configuration, is still prohibitive for study of cellular motion over many cell diameters. This talk presents a non-linear projection approach to the construction of surrogate models of cellular motility, as extracted from lattice computations. A mesoscale state is represented by a set of parameters from a family of probability density functions. The non-linear projection is induced by geodesic transport in the non-Euclidean geometry of the space of probability functions, guided by information theoretic functionals that quantify the fidelity of a reduced model. Several interesting links between microscopic parameters governing cytoskeleton formation and overall cell motion are brought out by this approach.

Sorin Mitran
University of North Carolina Chapel Hill
mitran@unc.edu

MS82
Hybrid Models and Interfaces

In various applications the traditional mathematical models based on PDEs, with their empirically determined coefficients, and associated traditional numerical approximations, are not sufficient to describe all the relevant dynamics and complexity. In the talk we describe our progress on hybrid computational models which combine traditional numerical PDEs with other computational methods from, e.g., statistical mechanics, and more broadly computational physics. We focus on a model which accounts for complicated physics occurring at a fixed interface in semiconductors, which involves a Density Function Theory model at microscale and a Domain Decomposition approach involving a traditional drift-diffusion equation at macroscale.

Timothy Costa
Oregon State University
costat@math.oregonstate.edu

Malgorzata Peszynska
Department of Mathematics
Oregon State University
mpesz@math.oregonstate.edu

MS82
Lagrangian Particle Methods for Multiphase Flows

Here we present a novel formulation of the so-called multiphase Pairwise Force Smoothed Particle Hydrodynamics Method originally proposed by Tartakovsky and Meakin.
We derive a relationship between parameters in the pairwise forces and the surface tension and static contact angle, validate the model and demonstrate its applicability for studying complex processes such as multiphase flow in porous media with variable wettability.

Alexandre Tartakovsky
University of South Florida
tartakovsky@usf.edu

Alexander Panchenko
Washington State University
panchenko@math.wsu.edu

MS82
Modeling Nanoscale Fluid-Solid Interfaces

Structure and dynamics of soft matter are governed by molecular interactions and hydrodynamic fluctuations. As the molecular and hydrodynamic aspects are coupled, computer simulations of soft matter must confront this multiscale challenge. I will present a new scale-consistent simulation framework that combines molecular dynamics (MD) and fluctuating hydrodynamics (FHD) to enable multiscale modeling of complex systems. This method allows resolution of solute-solvent interfaces and realization of excluded volumes of particles in the presence of hydrodynamic coupling. Simulation results show that the hybrid FHD/MD method can reproduce the solvation free energies and scaling laws of particles dynamics for hydrophobes of different sizes. Simulations of self-assembly of hydrophobic particles will also be presented.

Nikolaos Voulgarakis
Washington State University
nvoul@tricity.wsu.edu

MS83
Persistence Modules and their Applications to Material Sciences

In this talk, we present several applications of persistence modules to material sciences such as proteins and glasses. The types of persistence modules are given by representations on A_n-quiver (i.e., standard persistent homology) and on commutative triple ladder quivers. Furthermore, we give a generalized notion of persistence diagrams which is defined as a graph on Auslander-Reiten quivers. Some of the computational results applied to proteins and glasses are also shown.

Yasuaki Hiraoka
Kyushu University
hiraoka@imi.kyushu-u.ac.jp

MS83
Analyzing the Dynamics of Pattern Formation in the Space of Persistence Diagrams

Persistence diagrams are a relatively new topological tool for describing and quantifying complicated patterns in a simple but meaningful way. We will demonstrate this technique on patterns appearing in Rayleigh-Bénard convection. This procedure allows us to transform experimental or numerical data from experiment or simulation into a point cloud in the space of persistence diagrams. There are a variety of metrics that can be imposed on the space of persistence diagrams. By choosing different metrics one can interrogate the pattern locally or globally, which provides deeper insight into the dynamics of the process of pattern formation. Because the quantification is being done in the space of persistence diagrams this technique allows us to compare directly numerical simulations with experimental data.

Miroslav Kramar
Rutgers University
Department of mathematics
miroslav@math.rutgers.edu

Konstantin Mischaikow
Department of Mathematics
Rutgers, The State University of New Jersey
mischaik@math.rutgers.edu

MS83
Reconstructing Manifolds and Functions from Point Samples

We will survey some fantastic work of Niyogi, Smale and Weinberger which provides explicit bounds on the number of sample points required to reconstruct an underlying manifold up to homotopy type with high confidence. Next, we imagine the situation where an unknown function between two such manifolds must be inferred from point samples along with the ability to evaluate the function at the domain-samples. Not only can such functions be reconstructed up to homotopy from finite point samples with high confidence, but also that the entire process of reconstruction is robust to certain models of sampling and evaluation noise.

Vidit Nanda
Department of Mathematics
University of Pennsylvania
vnanda@sas.upenn.edu

MS83
Word Representations of Structurally Stable Hamiltonian Flows in Multiply Connected Domains and its Applications

We consider Hamiltonian vector fields with a dipole singularity that satisfy the slip boundary condition in two-dimensional multiply connected domains. One example of such a Hamiltonian vector field is the incompressible
and inviscid flow in an exterior multiply connected domain in the presence of a uniform flow whose Hamiltonian is called the stream function. They are regarded as mathematical models of biofluids, rivers and coastal flows. Here, we are interested in structurally stable Hamiltonian vector fields and their topological structures of contour lines of the Hamiltonian, i.e. streamline patterns. We develop an encoding procedure to assign a unique sequence of words to every streamline pattern. Owing to this word representation, we not only determine all possible streamline patterns in a combinatorial manner, but also describe the complex evolution of fluid flows as a change of words. Moreover, we can determine possible transitions between two different structurally stable streamline patterns. In the present talk, we introduce the theory of word representations for structurally stable Hamiltonian vector fields and demonstrate how it is applicable to fluid flow problems with vortex structures.

Takashi Sakajo
Kyoto University
sakajo@math.kyoto-u.ac.jp

Tomoo Yokoyama
Kyoto University of Education
tomoo@kyokyo-u.ac.jp

MS85
High-Order Algorithms for Compressible Reacting Flow with Complex Chemistry

We describe a numerical algorithm for integrating the multicomponent, reacting, compressible Navier-Stokes equations, targeted for direct numerical simulation of combustion phenomena. The algorithm addresses two shortcomings of previous methods. First, it incorporates an eighth-order narrow stencil approximation of diffusive terms that reduces the communication compared to existing methods and removes the need to use a filtering algorithm to remove Nyquist frequency oscillations that are not damped with traditional approaches. The methodology also incorporates a multirate temporal integration strategy that provides an efficient mechanism for treating chemical mechanisms that are stiff relative to fluid dynamical time scales. The overall methodology is eighth order in space for fourth order to eighth order in time. The implementation uses a hybrid programming model designed for effective utilization of many-core architectures. We present numerical results demonstrating the convergence properties of the algorithm with realistic chemical kinetics and illustrating its performance characteristics. We also present a validation example showing that the algorithm matches detailed results obtained with an established low Mach number solver.

Matthew Emmett, Weiqun Zhang
Lawrence Berkeley National Laboratory
Center for Computational Sciences and Engineering
mwemmett@lbl.gov, weiqunzhang@lbl.gov

John B. Bell
CCSE
Lawrence Berkeley Laboratory
jbbell@lbl.gov

MS85
High-Order Numerical Methods for Fractional PDEs in Water Wave Propagation

We consider numerical solutions for a fractional PDE arising as a nonreflecting boundary condition in water wave propagation. The fractional derivative is expressed as divergence of a singular integrable convolution. The equation is viewed as a linear conservation law with a nonlocal singular flux. A semi-discrete finite volume scheme uses local polynomial approximation of order p from solution cell averages, followed by exact integration of the singular flux, and yields a surprising convergence rate of $p + 3/2$. Time integration uses Runge-Kutta methods of matching order. We discuss stability and convergence, and show numerical results for uniform and nonuniform grids.

David Prigge
University of Michigan
Department of Mathematics
dkprigge@umich.edu

Sean Carney
University of Michigan
carneys@umich.edu

Smadar Karni
University of Michigan
Department of Mathematics
karni@umich.edu

Remi Abgrall
INRIA Bordeaux Sud-Ouest
Universite de Bordeaux
remi.abgrall@inria.fr

MS85
Semi-Lagrangian Discontinuous Galerkin Schemes for the 2+2 Vlasov-Poisson System on Unstructured Meshes

The Vlasov-Poisson system is a set of equations that describe collisionless plasma far from thermodynamic equilibrium. Numerical difficulties in solving the Vlasov-Poisson system include the high-dimensionality and severe time step restrictions attributed to moderate to large velocities in the system. Explicit Eulerian methods require excessively small time steps, and implicit Eulerian methods have matrices with large condition numbers. Particle in Cell methods together with their Lagrangian and semi-Lagrangian counterparts relax this time step restriction by solving for the characteristics in the system. We propose a high-order operator split DG method for solving the Vlasov-Poisson system. Our hybrid method incorporates large time steps using semi-Lagrangian methods, and complicated geometries in configuration space with unstructured grids. We present 2D-2V results including the formation of a plasma sheath in the proximity of a cylindrical Langmuir probe, as well as the simulation of a single-species charged particle beam in an accelerator.

James A. Rossmanith
Department of Mathematics
Iowa State University
rossmanith@iastate.edu

David C. Seal
Department of Mathematics
Michigan State University
seal@math.msu.edu
Andrew J. Christlieb
Michigan State University
Department of Mathematics
andrewch@math.msu.edu

MS85
Evaluation of Discrete and Continuous Adjoint Approaches for Sensitivity Analysis and Error Estimations for Numerical Approximations of Hyperbolic Pdes with Shocks

The literature on adjoint methods for shock-hydrodynamic applications is actually rather sparse and recent. Early investigations with continuous adjoint problems required accurate knowledge of the discontinuities. Recent work has shown that this issue may be mitigated by considering an alternative dual problem based on the concept of limiting viscosity. We compare and evaluate this approach using either a discontinuous Galerkin approximation or a continuous Galerkin approximation with flux-corrected transport for shock-hydrodynamic applications.

Tim Wildey
Optimization and Uncertainty Quantification Dept.
Sandia National Laboratories
tmwilde@sandia.gov

John N. Shadid
Sandia National Laboratories
jnshadid@sandia.gov

Eric C. Cyr
Scalable Algorithms Department
Sandia National Laboratories
eccyr@sandia.gov

MS86
Energetic Variational Approaches in Ion Transport

Almost all biological activities involve transport of charged ions in specific biological environments. In this talk, I will discuss a unified energetic variational approach developed specifically for these multiscale-multiphysics problems. I will discuss the relevant classical theories and relevant physical approaches and methods. I will focus on the mathematics, in particular the analytical issues arising from these studies.

Chun Liu
Department of Mathematics, Penn State University
University Park, PA 16802
lui@math.psu.edu

MS86
From Micropolar Navier Stokes to Ferrofluids, Analysis and Numerics

The Micropolar Navier-Stokes Equations (MNSE), is a system of nonlinear parabolic partial differential equations coupling linear velocity, pressure and angular velocity, i.e.: material particles have both translational and rotational degrees of freedom. The MNSE is a central component of the Rosensweig model for ferrofluids, describing the linear velocity, angular velocity, and magnetization inside the ferrofluids, while subject to distributed magnetic forces and torques. We present the basic PDE results for the MNSE (energy estimates and existence theorems), together with a first order semi-implicit fully-discrete scheme which decouples the computation of the linear and angular velocities. Similarly, for the Rosensweig model we present the basic PDE results, together with an fully-discrete scheme combining Continuous Galerkin and Discontinuous Galerkin techniques in order to guarantee discrete energy stability. Finally, we demonstrate the capabilities of the Rosensweig model and its numerical implementation with some numerical simulations in the context of ferrofluid pumping by means of external magnetic fields.

Ignacio Tomas
University of Maryland, College Park
ignaciotomas@math.umd.edu

MS86
Optimal Energy Norm Error Estimates for a Mixed FEM for a Cahn-Hilliard-Stokes System

In this I talk describe a mixed finite element method for a modified Cahn-Hilliard equation coupled with a non-steady Darcy-Stokes flow that models phase separation and coupled fluid flow in immiscible binary fluids and diblock copolymer melts. The time discretization is based on a convex splitting of the energy of the equation. I show that the scheme is unconditionally energy stable and unconditionally uniquely solvable and that the discrete phase variable is bounded in $L^\infty(0, T; L^\infty)$ and the discrete chemical potential is bounded in $L^\infty(0, T; L^2)$, for any time and space step sizes, in two and three dimensions, and for any finite final time T. With this in hand I show that these variables converge with optimal rates in the appropriate energy norms in both two and three dimensions. I will describe how this analysis can be extended to two-phase diffuse interface models with large density mismatch. This is joint work with Amanda Diegel and Xiaobing Feng.

Steven M. Wise
Mathematics Department
University of Tennessee
swise@math.utk.edu

MS87
Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media

Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to the complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this talk, we present a multiscale finite element method for wave propagation on a coarse grid. To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. To our best knowledge, this is the first time where multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. These multiscale basis functions are coupled via the symmetric IPDG method which provides a block diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretization. Our methods’ stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods’ performance. The research is supported by Hong Kong
RGC General Research Fund (Project number: 400411).

Eric Chung
The Chinese University of Hong Kong
Department of Mathematics
tschung@math.cuhk.edu.hk

Yalchin Efendiev
Dept of Mathematics
Texas A&M University
efendiev@math.tamu.edu

Wing Tat Leung
Texas A&M University
sidnet123@yahoo.com.hk

MS87
Maximal Laplace-Beltrami Eigenvalues on Compact Riemannian Surfaces

Let \((M, g) \) be a connected, compact Riemannian surface and denote by \(\lambda_k(M, g) \) the \(k \)-th eigenvalue of the Laplace-Beltrami eigenproblem. We consider the mapping \((M, g) \mapsto \lambda_k(M, g) \). We propose computational methods for solving the eigenvalue optimization problem of maximizing \(\lambda_k(M, g) \) as \(g \) varies within a conformal class \([g_0]\) of fixed volume and for the problem where \(M \) is additionally allowed to vary over surfaces with fixed genus. Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.

Chiu-Yen Kao
Claremont McKenna College
ckao@cmc.edu

Rongjie Lai
University of Southern California
rongjielai@gmail.com

Braxton Osting
University of California, Los Angeles
braxton@math.ucla.edu

MS87
A Level Set-Adjoint State Method for the Joint Transmission-Reflection First Arrival Traveltime Tomography

We propose an efficient partial differential equation (PDE) based approach to the joint transmission-reflection traveltime tomography using first arrivals. In particular, we consider only the first arrivals from the transmission and reflection measurements at a series of receiver-source pairs. Unlike typical reflection tomography where the location of the reflector is assumed to be known by some migration techniques, we propose an efficient numerical approach based on the adjoint state method and the PDE based local level set method to invert both the piecewise smooth velocity within the computational domain and the location of a codimension-one reflector. Since we are using only first arrivals for tomography, we might not be able to obtain a perfect illumination of the reflector because the relevant information might be carried by the later arrivals. In this work, we propose an easily computed quantity which can quantify the reliability of our reconstruction. Numerical examples in both two- and three-dimensions will be given to demonstrate the efficiency of the proposed approach. The work is supported in part by the Hong Kong RGC under Grant GRF603011.

Wenbin Li
Department of Mathematics,
Hong Kong University of Science and Technology
lwb@ust.hk

Shingyu Leung
Hong Kong University of Science and Technology
masyleung@ust.hk

Jianliang Qian
Department of Mathematics
Michigan State University
qian@math.msu.edu

MS87
Fast Matrix-free Direct Solution and Selected Inversion for Seismic Imaging Problems

Fast direct solvers have been shown very useful for modeling large inverse problems. In this talk, we show our recent development of matrix-free direct solvers for large dense or spare matrices based on rank structures and randomized sampling. Unlike existing direct or iterative methods, these new solvers can quickly provide direct solutions with controllable accuracies, using only a small number of matrix-vector multiplications. This is especially attractive for problems which are ill-conditioned, where it is too expensive to form the matrix, or where there are too many right-hand sides. The solvers are also useful for problems with varying parameters (e.g., frequency). We then discuss the application of the methods to the extraction of selected entries of the inverse of large sparse matrices. For discretized Helmholtz equations, we can quickly compute the diagonal blocks or any off-diagonal entries of the inverse. Such information is useful for the preconditioning of the problem. These methods can significantly improve the efficiency of the solution/inversion of the Hessian matrix in Gauss-Newton iterations for FWI.

Jianlin Xia
Department of Mathematics
Purdue University
xiaj@math.purdue.edu

Maarten de Hoop
Center for Computational & Applied Mathematics
Purdue University
mdehoop@math.purdue.edu

Xiao Liu
Department of Mathematics
Purdue University
liu867@math.purdue.edu

Yuanzhe Xi
Purdue University
yxi@math.purdue.edu

MS88
The Scholarly Work of Reliable and Well-Designed Mathematical Software

Well-designed mathematical software has long been considered a cornerstone of scholarly contributions in computational science. Forsythe, founder of Computer Science at Stanford and regarded by Knuth as the "Martin Luther of
the Computer Reformation,” is credited with inaugurating the refereeing and editing of algorithms not just for their theoretical content, but also for design, robustness, and usability. His vision extends to the current day, and this talk presents a modern perspective of academic software. The speaker’s academic software constitutes much of $x=A\backslash b$ in MATLAB when A is sparse, and is widely used in many other academic, government, and commercial applications, because of its performance and its reliability.

Timothy A. Davis
University of Florida
Computer and Information Science and Engineering
DrTimothyAldenDavis@gmail.com

MS88
A Deterministic Guaranteed Automatic Algorithm for Univariate Function Approximation

Function recovery is a fundamental computational problem. It is desirable to have automatic algorithms for solving such problems, i.e., the algorithms decide adaptively how many and which pieces of function data are needed and then use those data to construct an approximate function. The error of this approximation should be guaranteed not to exceed the prescribed tolerance. We provide a deterministic guaranteed automatic algorithm for univariate function approximation on a given finite interval and prove its reliability.

Yuhan Ding, Fred J. Hickernell
Illinois Institute of Technology
yding2@hawk.iit.edu, hickernell@iit.edu

MS88
A Survey of Issues in Reliable Computational Science

Continuing developments in computing software and hardware allow us to solve more complex problems than ever before. However, there remains the nagging question of how we can be sure that the answers are correct. This talk surveys the efforts that have been made to ensure that computational science is reliable and the work that still needs to be done.

Fred J. Hickernell
Illinois Institute of Technology
Department of Applied Mathematics
hickernell@iit.edu

MS88
Generation of Appropriate Publication Citations by Numerical Software Libraries

Properly citing academic publications that describe software libraries and algorithms is the way that open source scientific library users “pay” to use the free software. With large multifaceted libraries and applications that use several such libraries, even the conscientious user may end up citing publications in error or missing relevant publications. Based on a feature recently added to the PETSc numerical software libraries, we suggest an alternative model where the library itself generates the bibtex items based on exactly what algorithms and portions of the code are used in the application.

Barry F. Smith
Argonne National Lab

MS90
The Inverse Fast Multipole Method

We present a fast direct solver for dense linear systems arising out of wide range of applications, integral equations, multivariate statistics, radial basis interpolation, etc., to name a few. The highlight of this new fast direct solver is that the solver scales linearly in the number of unknowns in all dimensions. The solver, termed as the Inverse Fast Multipole Method, works on the same data-structure as the Fast Multipole Method. More generally, the solver extends to the class of hierarchical matrices, denoted as H^2 matrices with strong admissibility criteria, i.e., only the interaction between particles corresponding to well-separated clusters is represented as a low-rank matrix, and thereby the algorithm departs from the existing (HSS/ HODLR) approaches. We also present numerical benchmarks in 1D and 2D validating the linear scaling of the algorithm.

Sivaram Ambikasaran
Department of Mathematics
Courant Institute of Mathematical Sciences
sivaram@cims.nyu.edu

Eric F. Darve
Stanford University
Mechanical Engineering Department
darve@stanford.edu

MS89
Hierarchical Interpolative Factorization

We present some recent results on the efficient factorization of matrices associated with non-oscillatory integral operators in 2D and 3D. In contrast to the 1D case, such matrices exhibit considerable rank growth in their off-diagonal blocks when compressed using standard hierarchical schemes. We combat this with explicit dimensional reductions via geometric reclustering and additional compression. The resulting ranks are much better behaved, yielding essentially linear costs to construct, apply, and invert the factorization. Our method is fully adaptive and can handle both boundary and volume problems.

Kenneth L. Ho
Department of Mathematics
Stanford University
kilo@stanford.edu

MS89
Randomized Methods for Accelerating Structured Matrix Computations

Randomized methods have over the last several years proven to be powerful tools for computing low-rank approximations to matrices whose singular values exhibit appropriate decay. In this talk, we describe how such techniques can be extended to certain “rank-structured” matrices, for which only certain off-diagonal blocks (not the matrix itself) admit accurate low-rank approximations. Matrices of this type often arise in the construction of $O(N)$ direct solvers for elliptic PDEs.

Gunnar Martinsson
Univ. of Colorado at Boulder
MS89
Parallel Structured Direct Solvers for Nonsymmetric and Indefinite Sparse Matrices

Fast structured direct solvers have been extensively studied for matrices with a low-rank property. Most existing work concentrates on symmetric and/or positive definite problems. Here, we exploit this structure in the direct solution of nonsymmetric and indefinite matrices. Graph ordering and pivoting are performed. The pivoting strategy is designed in a way so as to preserve both the sparsity and the rank structure. A structured multifrontal LU factorization is then performed. To implement the method in parallel, we use static mapping to preallocate tasks to processes. Under a certain switching level in the tree, factorizations are done locally in each process. Beyond the switching level, processes of child nodes form a process grid on parent nodes where structured operations are performed among the processes. In such a way, both idling and communications are reduced. All the frontal and update matrices are structured and their factorizations are done in parallel. In the numerical experiments, we show the applications of this method to seismic imaging and more general problems. This is joint work with Jianlin Xia.

Zixing Xin
Department of Mathematics
Purdue University
zxin@purdue.edu

MS91
A Fully Implicit Approach for the Solution of Temporal Multiscale Problems with Application to Power Grid

In this talk, we present a fully implicit approach for temporal multiscale problems and discuss a power grid application that involves two time-scales. At each step of the slow time-scale, our approach involves solving equations for one step of the slow time-scale along with several coupled-in-time equations for the fast time-scale. We will discuss the formulation, preconditioning techniques, and parallel implementation of our approach.

Shrirang Abhyankar
Argonne National Laboratory
abhyshr@mcs.anl.gov

Alexander J. Flueck, Xu Zhang
Illinois Institute of Technology
flueck@iit.edu, xu.zhang@hawk.iit.edu

MS91
Gridpack Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms

This presentation describes the GridPACK framework, which is designed to help power grid engineers develop modeling software capable of running on today's high performance computers. The framework contains modules for managing power grid networks, distributed matrices and vectors, parallel linear and non-linear solvers, and mapping functionality to create matrices and vectors based on properties of the network. Examples of applications built with GridPACK will be presented and performance results will be discussed.

Bruce Palmer
Pacific Northwest National Lab
bruce.palmer@pnl.gov

William Perkins
Pacific Northwest National Laboratory
william.perkins@pnl.gov

Kevin Glass
Pacific Northwest National Laboratory
Richland WA
kevin.glass@pnnl.gov

Yousu Chen
Pacific Northwest National Lab
yousu.chen@pnnl.gov

Shuangshuang Jin, Ruisheng Diao
Pacific Northwest National Laboratory
shuangshuang.jin@pnnl.gov, ruisheng.diao@pnnl.gov

Mark Rice
Pacific Northwest National Lab
mark.rice@pnnl.gov

David Callahan, Steve Elbert
Pacific Northwest National Laboratory
david.callahan@pnnl.gov, steve.elbert@pnnl.gov

Zenyu Huang
Pacific Northwest National Lab
zenyu.huang@pnnl.gov

MS91
Power Grid Simulation: Needs, State of the Art, Challenges

The complexity of Power Grid is increasing, due to the massive integration of intermittent generation far away from load centers or dispersed in the distribution grids. The Power Grid is operated nearest to its limits; more and more closed loop controls are installed in the system. There is an urgent need to base decisions on a more accurate description of the system including its dynamic behavior. The Power Grid simulation must now include time domain simulation and not only static Power Flow. Most of the Power Grid Simulation tools use fixed time step methods and hard coded modeling of the components even if only variable time step implicit method can offer a certain level of confidence for the accuracy of the results in particular at the design stage when the dynamic behavior could be far away from a realistic and expected behavior. A tough requirement is that physical unstable Power Grid must be simulated as unstable. The "over damping" intrinsically induces by numerical methods which guarantees the damping of numerical errors, must be minimized as much as possible.

Patrick Panciatici
RTE France
patrick.panciatici@rte-france.com

MS91
Experiences with Time Integration Algorithms in
a Time Domain Simulation Code

Commercial power grid simulators often employ a standard Trapezoid time integration scheme along with constant time steps for their time evolution. In this talk we will discuss our experiences in incorporating a variable step integrator within a commercial time domain simulation code. The method used includes a second order predictor and a time step selector based on controlling local truncation error. Preliminary results show potential for significant speedup in simulation runs.

Carol S. Woodward
Lawrence Livermore Nat’l Lab
woodward6@llnl.gov

Chaoyang Jing
eMIT
c.jing@myemit.com

Liang Min
Lawrence Livermore National Laboratory
min2@llnl.gov

Steve G. Smith
Lawrence Livermore National Lab
smith84@llnl.gov

MS92
Mathematics Research: Support, Stakeholders, Accountability

The papers we publish and read are crucial to us as researchers. However, there are many other stakeholders of mathematical publishing as well: our employers, organizations like SIAM, corporate publishers, funding agencies, and society, which ultimately pays for and benefits from the research. The diverse requirements of stakeholders, together with rapidly advancing technology and economic and social factors have created turmoil and sometimes conflict in publishing, placing us in a time of both peril and opportunity.

Douglas N. Arnold
School of Mathematics
University of Minnesota
arnold@umn.edu

MS92
Mathematics and Science Policy: Some Perspectives from SIAM’s President

Mathematical sciences are a common denominator behind key scientific and technological advance, from robotics and genetics to Big Data, reminding us all of the vital importance of a well-trained STEM community to the future. Accordingly, SIAM plays a pivotal role promoting the visibility of mathematics in the halls of government, contributing to science policy discussions, all the while advocating for much-needed research dollars and resources to improve STEM education.

Irene Fonseca
Carnegie Mellon University
Center for Nonlinear Analysis
fonseca@andrew.cmu.edu

MS92
Building Support, Building Budgets for the Mathematical Sciences

I will provide some perspectives on how federal science budget requests are built; what kinds of arguments seem to be effective for increasing requests; and what actions the mathematical sciences community can take to justify and support such requests.

Peter March
Ohio State University
Department of Mathematics
march.2@osu.edu

MS92
SIAM’s Initiatives and Activities in STEM Education

In this talk SIAM’s initiatives in STEM education, and their relations to science policy will be discussed. Important aspects of this are the Modeling across the Curriculum, MaC, initiative. The two MaC workshops (August 2012 and January 2014) and their outcomes will be presented. Other important recent activities include the INGenius project which exemplified the way various mathematical sciences professional societies can work together to enhance understanding of the issues and affect policy.

Peter R. Turner
Clarkson University
School of Arts & Sciences
pturner@clarkson.edu

MS93
Crop Rotation Modeling and Optimization for Sustainable Water Use

We use a simulation-based optimization framework to guide planting decisions with a constraint to account for sustainable water usage. The motivation is the berry farming region of the Pajaro Valley, CA, which is over-drawing from the aquifer, resulting in seawater intrusion. MODFLOW-FMP is treated as a black-box with optimization tools from DAKOTA. We compare modeling formulations and optimization algorithms to understand trade-offs and identify challenges.

Kathleen Fowler
Clarkson University
Department of Mathematics
kfowler@clarkson.edu

MS93
Estimating Uncertainty in Annual Energy Production

A primary quantity in the evaluation of a proposed solar power plant is the annual energy production (AEP). Uncertainty in the AEP is often quantified by estimating the 50th and 10th percentiles by means of a model. The ratio between these quantiles significantly affects the financial risk associated with the proposed power plant, and thus, uncertainty in AEP significantly impacts a proposals success. We outline a method for estimating uncertainty in
annual energy accounting for the three primary contributions to this uncertainty: inter-annual variability in the weather; uncertainty in measurements of irradiance; and modeling error in the translation from irradiance to power. We describe how this can be used to improve AEP uncertainty estimates in Arizona and Georgia.

Genetha Gray
Sandia National Laboratories
gagray@sandia.gov

MS93
Analysis of a Managed Aquifer Recharge System

Over the last few decades, groundwater resources have been depleted at a faster rate than the underlying aquifers have been replenished. This imbalance has led water management agencies to consider managed aquifer recharge networks, where infiltration basins are used to replenish the aquifers using previously uncaptured storm water runoff. In this work, we utilize optimization to evaluate the costs associated with constructing such a network while simultaneously meeting demands placed on the aquifer. We present results for a realistic subwatershed in the Pajaro Valley region of California. We utilize existing computational tools to determine limits for the constraint equations, to compute subwatershed drainage areas, and to compute the corresponding storm water runoff over a pre-determined time period consisting of several rain events. We present results that may be used to suggest best practices with regards to regional recharge basin design.

Lea Jenkins
Department of Mathematical Sciences
Clemson University
lea@clemson.edu

MS93
Modeling Impacts of Water Level Control Procedures on Water Quality of the St Lawrence River

The St Lawrence River is the 13th largest river on the earth and the greatest single fluvial point source of freshwater to the North Atlantic. This river is faced with important ecosystem management issues related to the interdependence of environmental issues, e.g., the effect of climate change on invasive species, nutrient processing, and water budgets. Our work focus on development of integrated modeling techniques to explore the interplay of nutrient loading and population dynamics as modulated by the water control procedures implement to maintain nearly neutral levels. Our work seeks to understand the impact of more natural level excursions in the river that might be considered as a way to maintain the nearshore ecosystem.

Joseph Skufca
Clarkson University
jskufca@clarkson.edu

MS94
Discovery of Principles of Nature from Matrix and Tensor Modeling of Large-Scale Molecular Biological Data

We will describe the use of matrix and tensor decompositions in comparing and integrating different types of large-scale molecular biological data, from different studies of cell division and cancer and from different organisms, to computationally predict previously unknown physical, cellular and evolutionary mechanisms that govern the activity of DNA and RNA. We will present novel generalizations of the singular value decomposition as well as experimental verification and validation of some of the computational predictions.

Orly Alter
Sci Comp & Imaging (SCI) Inst, Bioeng & Human Genetics Depts
University of Utah
oryl@sci.utah.edu

MS94
Deconvolution of the Mammalian Cell Cycle Metabolome

We have completed a comprehensive mass spectrometry analysis quantifying hundreds of small molecule metabolites throughout the phases of the mammalian cell cycle. Using singular value decomposition of the matrix of metabolite abundance from a synchronized culture of HeLa cells, we have produced a map of metabolic changes by phase of cycle, allowing the characterization of the coordinated metabolic changes occurring in the proliferating human tumor cell.

Anneleen Daemen, Christopher Delnagro, Jonathan Choi, Peter Jackson, Thomas O’Brien, Matthew Brauer
Bioinformatics & Computational Biology
Genentech, Inc.
daemen@gene.com, chrisjde@gene.com, choi.jonathan@gene.com, pjackson@stanford.edu, tomob@gene.com, brauer.matthew@gene.com

MS94
Tensor Completion Methods in Seismology: Reconstruction, Denoising and Un-Mixing Seismic Sources

Seismic data can be stored in 5D tensors that depend on time (or frequency), x-y position of receivers, and x-y position of sources. This talk will discuss the development of algorithms, inspired by tensor algebra and recent work on nuclear norm minimization, to de-noise and reconstruct large 5D volumes of seismic data. I will also discuss the application of tensor algebra techniques to the problem of seismic source separation. The latter arises when seismic data are acquired with sources that are triggered almost simultaneously in order to save acquisition time.

Mauricio D. Sacchi
Department of Physics
University of Alberta
msacchi@ualberta.ca

MS94
Coherent Pattern Detection in Tensor Data

In real-world applications, multidimensional data may contain coherent patterns and we need to perform clustering simultaneously along all dimensions of the data to detect these patterns. In this talk, we will discuss how column-pair based strategies we have developed for biclustering 2D data can be extended to higher dimensions. We can use tensor decomposition algorithms to convert a complicated coherent pattern detection problem in a high dimensional
data space to simpler 2D data analysis problems.

Hongya Zhao, Hong Yan
Department of Electronic Engineering
City University of Hong Kong
hyzhao@cityu.edu.hk, h.yan@cityu.edu.hk

MS95
A Spectral Analysis for Regularization and Image Processing Applications

Regularization incorporates prior information into mathematical models to favor desired solutions. When computing piecewise polynomial solutions whose derivatives of certain order are sparse, a common regularizer is the L1-norm of the derivatives. Our interest evolved from the fact that approximations to the desired solution are often more accurate, up to orders of magnitude, than approximations to the derivatives. We explain such a phenomenon by a spectral analysis of discrete derivatives and propose alternative regularizers.

Jorge A. Castanon
Rice University
jorge.a.castanon@rice.edu

MS95
Exploiting Nonlinear Structure for Nonconvex Optimization

Many important design and operational planning problems give rise to nonconvex optimization problems. We review the reformulation-linearization technique (RLT) for solving certain polynomial optimization problems to global optimality. We show how to exploit nonlinear structure in RLT, such as partial separability, and present numerical results that show that the resulting relaxation can be solved orders of magnitude faster.

Sven Leyffer
Argonne National Laboratory
leyffer@mcs.anl.gov

MS95
Topology Control for Load Shed Recovery

We introduce the dc optimal load shed recovery with transmission switching model (DCOLSR-TS), which seeks to reduce potential post-contingency load shedding by modifying the system topology. Since solving DCOLSR-TS is computationally difficult, we develop a heuristic (MIP-H), which improves the system topology while specifying the sequence of switching operations. We argue the use of a parallelized version of MIP-H for on-line load shed recovery and recurring contingency-response analysis.

Erick Moreno-Centeno
Texas A&M University-College Station
e.moreno@tamu.edu

MS95
A Coxian-Phased Approximation for Border Crossing Service Times of Commercial Trucks

Since 2011, yearly combined trade exceeds $1 trillion within North American nations, with 80% transported by commercial trucks. Previous analytical models assume Markovian distributions for service time. Yet, field data lacks fit, and security procedures such as canine detection create dependencies. This research presents an analytical model of the border crossing process with an implementation of Mixture of Generalized Erlang (MGE) distributions, also known as Coxian k-phased distributions, as an improved inspection service time approximation.

Hiram Moya
University of Texas-Pan American
moyah@utpa.edu

MS96
A Fast Finite-Volume Eulerian-Lagrangian Localized Adjoint Method for Space-Fractional Advection-Diffusion Equations

Fractional advection-diffusion PDEs provide an adequate and accurate description of subsurface flow and transport processes in porous media that exhibit anomalous diffusion, which can not be modeled properly by second-order advection-diffusion equations. However, fractional advection-diffusion PDEs raise mathematical and numerical difficulties that have not been encountered in the context of second-order advection-diffusion PDEs. In this talk we present a faithful and fast finite-volume Eulerian-Lagrangian localized adjoint method for space-fractional advection-diffusion equations, without resorting to any lossy compression, but rather by exploring the structure of the coefficient matrices. These methods have computational cost of O(N log2 N) per time step and memory of O(N), while retaining the same accuracy and approximation property of the underlying numerical methods.

Mohamed Al-Lawati
Department of Mathematics and Statistics
Sultan Qaboos University
allawati@squ.edu.om

MS96
Variational Formulation of Problems Involving Fractional Order Differential Operators

In this talk, we consider boundary value problems involving either Caputo or Riemann-Liouville fractional derivatives of order $\alpha \in (1, 2)$ on the unit interval (0,1). The variational problem for the Riemann-Liouville case is coercive on the space $H^{\alpha/2}_0(0, 1)$ but the solutions are less regular, whereas that for the Caputo case involves different test and trial spaces. We establish the regularity pickup of the solutions of the variational problem, which enables one to establish convergence rates of the finite element approximations. The analytical theory is then applied to the Sturm-Liouville problem involving a fractional derivative in the leading term. Finally, extensive numerical results are presented to illustrate the error estimates.

Bangti Jin
Department of Mathematics
University of California, Riverside
bangti@math.ucr.edu

MS96
High Order Scheme for Caputo Derivative and Its Application to Caputo Type Advection-Dispersion Equation

In this paper, we derive a high order numerical scheme for $\alpha(\in(0, 1))$-th order Caputo derivative of a given function
Fractional Sturm-Liouville Theory for Spectral and Spectral Element Methods

We first introduce a new theory on fractional Sturm-Liouville problems, leading to the development of exponentially-accurate spectral and spectral element methods for time- and space-fractional PDEs. We introduce a new Discontinuous Petrov-Galerkin (DPG) method for fractional hyperbolic problems. Next, we present a unified Petrov-Galerkin (PG) spectral method for low-to-high dimensional fractional advection, diffusion, and Poisson/Helmholtz problems. We conclude the talk with a fractional collocation spectral method for efficient treatment of nonlinear/multi-term FPDEs.

Mohsen Zayernouri, George E. Karniadakis
Division of Applied Mathematics
Brown University
mohsen_zayernouri@brown.edu,
george_karniadakis@brown.edu

z-Pares: A Complex Moment Based Hierarchical Parallel Eigensolver Package

We have developed a parallel software package for solving generalized eigenvalue problems which is named z-Pares. This software enables users to utilize a large amount of computational resources because of its hierarchical parallel structure. z-Pares implements the Sakurai-Sugiura procedure for normal mode analysis which has shown to be robust and reliable for solving very large general eigenvalue problems. Although its classical form as introduced by Bathe in the seventies of the last century is less efficient than the Lanczos iteration method in terms of CPU time, it is beneficial in terms of storage use if a very large number (say hundreds) of eigenmodes are needed and good approximations to the wanted eigenvectors are at hand. In this way, the extra memory cost due to the linearization of the original NLEP is negligible.

Roel Van Beeumen
KU Leuven
roel.vanbeemen@cs.kuleuven.be

Preconditioning Subspace Iteration for Large Eigenvalue Problems with Automated Multi-Level Sub-Structuring

The subspace iteration method (SIM) is a numerical procedure for normal mode analysis which has shown to be robust and reliable for solving very large general eigenvalue problems. Although its classical form as introduced by Bathe in the seventies of the last century is less efficient than the Lanczos iteration method in terms of CPU time, it is beneficial in terms of storage use if a very large number (say hundreds) of eigenmodes are needed and good approximations to the wanted eigenvectors are at hand. In this paper we take advantage of the automated multi-level sub-structuring (AMLS) to construct an accurate initial subspace for SIM. Along with the AMLS reduction we derive a very efficient preconditioning method for SIM which solves the linear systems for a transformed system with block diagonal system matrix whereas the multiplication with the mass matrix is executed in the original variables.

Heinrich Voss
Hamburg Univ of Technology
Institute of Numerical Simulation
We are interested in extending classical asymptotic approaches to allow for the spatial pattern wavenumber to vary on the macroscale variables and to find how changes in microstructure geometry affect macroscopic properties and transport. To this end, we consider the thermal transport of a fluid through nonuniformly spaced laminates, as a simple model for heat sinks in electronics. We find a coupled system of partial differential equations that describe the local microscale temperature and deviations from the Darcy pressure. Microscale values of all of these quantities are known in terms of the solutions to these effective equations. Examples of optimal channel geometries are found, which depend on the ability to transfer heat from the device to the environment, the orientation of the device with respect to gravity, and the available power needed to drive the fluid motion.

Burt S. Tilley
Worcester Polytechnic Institute
Mathematical Sciences Department
tilley@wpi.edu

MS99
Deterministic Quantities for Understanding Stochastic Dynamics

To understand dynamics under uncertainty, it is desirable to examine the quantities that carry dynamical information. A quantity called escape probability is investigated in order to describe transitions between dynamical regimes. This leads to consideration of a deterministic nonlocal partial differential equation. The speaker will focus on understanding stochastic dynamics by examining escape probability, in the context of prototypical examples in biophysical and physical settings. Relevant theoretical results will also be highlighted.

Jinqiao Duan
Illinois Institute of Technology
duan@iit.edu

MS99
A Multi-Time-Scale Analysis of Stochastic Chemical Reaction Network

We consider stochastic descriptions of reaction networks in which there are both fast and slow reactions, and the time scales are widely separated. We obtain a reduced equation on a slow time scale by applying a state space decomposition method to the full governing equation and describe our reduction method on the reaction simplex. We illustrate the numerical accuracy of the approximation by simulating several motivating examples.

Xingye Kan
University of Minnesota
xykan@ima.umn.edu

MS99
Fokker-Planck Equations for Stochastic Dynamical Systems with Symmetric Lévy Motions

The Fokker-Planck equations for stochastic dynamical systems, with non-Gaussian ρ-stable symmetric Lévy motions, have a nonlocal or fractional Laplacian term. Taking advantage of the Toeplitz matrix structure of the time-space discretization, a fast and accurate numerical algorithm is proposed to simulate the nonlocal Fokker-Planck equations, under either absorbing or natural conditions.
The scheme is shown to satisfy a discrete maximum principle and to be convergent. It is validated against a known exact solution and the numerical solutions obtained by using other methods. The numerical results for two prototypical stochastic systems, the Ornstein-Uhlenbeck system and the double-well system are shown.

Xiaofan Li
Illinois Institute of Technology
lix@iit.edu

MS99
DiPaola-Falsone Formula and Marcus Integral for Stochastic Dynamical Systems under non-Gaussian White Noise

DiPaola-Falsone formula is widely used in engineering and science. The equivalence between DiPaola-Falsone formula and Marcus integral was first proved by Sun, Duan and Li (arXiv:1202.2565 , Feb. 2012, the published final version appeared on Probabilistic Engineering Mechanics, Vol 32, pp:1-4, Jan. 2013). This talk further explores the relationship between DiPaola-Falsone formula and Marcus integral to solve some challenging problems associated with stochastic dynamical systems such as deriving Fokker-Planck equations and moment equations.

Xu Sun
Huazhong University of Science and Technology
xsun@mail.hust.edu.cn

MS100
Stable, Accurate, and Efficient Schemes for Parabolic Problems using the Method of Lines Transpose

We present a numerical scheme suitable for solving parabolic partial differential equations using the Method of Lines Transpose (MOL²), and dimensional splitting. As a result, several one-dimensional boundary value problems can be solved in O(N) work, to high precision; and a multidimensional solution is formed by dimensional sweeps. We prove that the scheme converges to prescribed orders in both time and space, and is L-stable. We demonstrate our solver on the Allen-Cahn equation, and discuss.

Matthew F. Causley
Michigan State University
causleym@math.msu.edu

Andrew J. Christlieb
Michigan State University
Department of Mathematics
andrewch@math.msu.edu

MS100
Spectral Deferred Correction Methods for Vesicle Suspensions

Many fluid structure interaction problems have changing characteristic time scales throughout a simulation. For such problems, an adaptive high-order time integrator is important. Adaptive time stepping methods often require forming multiple numerical solutions to estimate the local truncation error. However, for vesicle suspensions, by taking advantage of the underlying physics, we are able to estimate the local truncation error with a single numerical solution. I will also show how we couple vesicle suspensions with spectral deferred correction methods in order to achieve high-order accuracy.

Bryan D. Quaife
Institute for Computational Engineering and Sciences
University of Texas at Austin
quaife@ices.utexas.edu

MS100
Boundary Integral Methods for General Elliptic Problems

Elliptic problems such as Poisson, Yukawa, Helmholtz, Maxwell, Stokes and elasticity equations are converted to a consistent overdetermined first-order form. We derive simple well-conditioned integral equations for this form, analyze their solvability in Sobolev spaces, and build fast high-order solution methods with Ewald summation and the nonuniform fast Fourier transform.

John A. Strain
Department of Mathematics
University of California at Berkeley
strain@math.berkeley.edu

MS100
Volume Integral Equation Approaches for Fast Field Analysis in Inhomogeneous Media, with applications to MR Imaging and Induction Power Couplers

Volume integral methods are an appealing choice for computing electromagnetic fields in inhomogeneous media, such as a human head or an induction power coupler. These methods generate second-kind integral equations, so matrix-implicit iterative methods should converge rapidly, though convergence is often slow in practice. In this talk we show that the observed slow convergence can be an artifact of mismatching the material and basis function boundaries, and resolve the mismatch to generate a fast FFT-accelerated iterative method suitable for MR imaging field computation. We also show an approach effective for induction power couplers, where proper boundaries allow the use of a numerically computed Toeplitz-Hankel decomposition.

Athanasios Polimeridis, Richard Zhang
MIT
thanos.p@mit.edu, ryz@mit.edu

Jacob White
MIT
white@mit.edu

MS101
Computing Singular and Nearly Singular Integrals

We will describe recent progress with J. Wilson and W. Ying in computing a singular or nearly singular integral, such as a harmonic function given by a single or double layer potential on a smooth, closed curve surface in 3D. The present approach is suited for use with moving interfaces since the representation of the interface is simple and the value of the integral can be found at nearby points as well as on the surface. The value of the integral is found using a standard quadrature, with the singularity replaced by a regularized version. Correction terms are then added for
the errors due to regularization and discretization. They are needed at points near the surface, since the integrals are nearly singular. Surface integrals can be computed in overlapping coordinate grids; however, in recent work, we improve this method and make it more practical. We use a technique of J. Wilson for surface integration which allows accurate representation without explicit reference to the coordinate charts. For efficient summation, we use a treecode developed by Duan and Krasny for the Gaussian regularization of the fundamental solution of Laplacian.

J. Thomas Beale
Duke University
beale@math.duke.edu

Wenjun Ying
Department of Mathematics and Institute of Natural Sciences
Shanghai Jiao Tong University
wying@sjtu.edu.cn

MS101
An Interface Problem for Biomolecules

A biomolecule placed in solvent can be viewed as generating an interface separating the biomolecule and vacuum from the surrounding solvent. The size and configuration of this interface plays an important role in biomolecule functions such as protein folding and docking. We develop the setup and algorithms to capture such interfaces, using a variational framework and gradient descent flow for energy minimization; the level-set method to handle interfacial motion and topological changes; and a new finite difference compact stencil approach to compute electrostatic contributions.

Li-Tien Cheng
University of California, San Diego
Department of Mathematics
lcheng@math.ucsd.edu

Bo Li
Department of Mathematics, UC San Diego
bli@math.ucsd.edu

MS101
An Overlapping Patch Boundary Integral Method for Dynamic Interface Problems

A nonstiff boundary integral method for 3D interfacial flow with surface tension or elastic membrane stress is presented. The stiffness is removed by developing a small-scale decomposition, based on a generalized isothermal parameterization of the interface. New applications of the method to water waves and hydroelastic waves will be discussed. We will also present preliminary work on a new version of the method which uses domain decomposition or overlapping coordinate patches to describe the interface. This is necessary to treat problems for which generalized isothermal coordinates do not provide a global parameterization. It also provides a framework for significant spatial adaptivity of the method. This is joint work with David Ambrose and Carlo Fazioli.

Michael Siegel
New Jersey Institute of Technology
misieg@njit.edu

MS101
A Kernel-Free Boundary Integral Method for Moving Interface and Free Boundary Problems

The kernel-free boundary integral method is a Cartesian grid-based boundary integral method for elliptic partial differential equations. The method avoids direct evaluation of boundary integrals and does not need to know an analytical expression for kernels of boundary integrals or the fundamental solution of the associated elliptic partial differential equation. To evaluate a boundary integral, the kernel-free boundary integral method first solves an equivalent interface problem on a Cartesian grid and then interpolates the grid solution to get values of the corresponding boundary integral at discretization points of the boundary or interface of the problem. The method is efficient as well as accurate. Numerical experiments for some moving interface and free boundary problems such as the Hele-Shaw flow will be presented in this talk.

Wenjun Ying
Department of Mathematics and Institute of Natural Sciences
Shanghai Jiao Tong University
wying@sjtu.edu.cn

MS102
Elastic Structure Coupled with the Air/water Interface, Inspired by Diving Birds

We investigate how a soft elastic body responds to water-entry impact analogous to a bird diving into water to catch prey. Experimentally, dumbbell shaped objects made of two acrylic spheres connected by an elastic rod are dropped into water. A buckling threshold was calculated using a linear Euler beam theory, which is expressed in terms of body geometry, impact force, and elastic rod stiffness. This threshold may have implication as to how birds are able to safely dive into water at high speeds and avoid any neck-injury.

Sungwhan Jung
Engineering Science and Mechanics
Virginia Tech
sunnyjsh@vt.edu

MS102
Simulations of Pulsating Sessile Coral and the Resulting Fluid Flow

Soft coral of the family Xeniidae have a pulsating motion, a behavior not observed in other immobile marine organisms. These pulsations consume a large amount of energy, and determining the benefits of this behavior is vital to understanding the evolution of such animals. We will present direct numerical simulations of the pulsations of the coral and the resulting fluid flow by solving the Navier-Stokes equations coupled with the immersed boundary method to model individual and interacting polyps.

Shilpa Khatri
Department of Mathematics
University of North Carolina at Chapel Hill
MS102
Performance of Vortex-Based Propulsion on a Jellyfish-Like Swimmer

This study develops a computational approach to investigate the vortex wakes generated by an axisymmetric jellyfish-like swimmer. The parameter space of swimmer body kinematics is explored. The effects of these parameters on thrust, input power and circulation are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The knowledge from this study can be used for the design of robotic swimmers that use vortex rings for propulsion.

Jifeng Peng
Department of Mechanical Engineering
University of Alaska
jpeng@alaska.edu

MS102
Simulation of a 3D Viscous Flow Past a Deformable Thin-Walled Circular Disk Tethered at Its Center by An IB Method

Motived by animal locomotion in a fluid, we model and simulate the interaction of a viscous incompressible flow past a deformable circular thin-walled disk tethered at its center. The thin-walled structure is modelled by a classic approach (shell as an assembly of plate elements) and a special finite element method (the corotational scheme) is used to solve numerically the partial differential equations (PDE) governing the motion of the thin-walled structure. The flow is modelled by the classic viscous incompressible Navier-Stokes equations and are solved numerically by a popular lattice Boltzmann model (D3Q19). The interaction between the structure and flow is handled by the immersed boundary (IB) method. Our simulations have identified three distinct deformation modes of the thin disk: circular, folding, and triple-petalled, depending on the parameters of the flow and the structure. Our results are in very good agreement with laboratory experiments published very recently (L Schouveiler and C Eloy, Flow-induced drapping, Phys Rev Lett 111: 064301, 2013).

RuNan Hua
Univ of Science and Technology of China
rnhua@ustc.edu.cn

Xiyun Lu
Univ of Science and Technology of China
PR China
xlu@ustc.edu.cn

Luoding Zhu
Indiana Univ-Purdue Univ Indianapolis
lzhu@math.iupui.edu

MS103
Multiple Scattering Using the Generalized Foldy-Lax Formulation

Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. This talk will present the computational study for the wave propagation. The imaging functions are designed to visualize the location of the point scatterers and the shape of the extended obstacle scatterers.

Kai Huang
Department of Mathematics
Florida International University
kuang@fiu.edu

Peijun Li
Department of Mathematics
Purdue University
lipeijun@math.purdue.edu

Hongkai Zhao
University of California, Irvine
Department of Mathematics
zhao@math.uci.edu

MS103
Fast Solver for Multi-Particle Scattering in a Layered Medium

This talk is devoted to the scattering of multi-particle in a layered medium. Assume the medium has three layers and a large number of dielectric particles are randomly distributed and well separated in the middle layer. The size of each particle is comparable to the wavelength and the shape of each particle is the same up to a rotation but not restricted to be a disk. The field is excited by some external source. Direct evaluation for the scattered field is notoriously slow due to the large number of unknowns. We propose a method based on the combination of Sommerfeld integral, scattering matrix and fast multiple method(FMM), which can dramatically speed up the calculation. Numerical experiments will be shown to confirm the efficiency. This is a joint work with Leslie Greengard and Motoki Kobayashi.

Jun Lai
Courant Institute of Mathematical Science
lai@cims.nyu.edu

MS103
The Factorization Method for a Cavity in An Inhomogeneous Medium

We consider the inverse scattering problem for a cavity that is bounded by a penetrable anisotropic inhomogeneous medium of compact support and seek to determine the shape of the cavity from internal measurements on a curve or surface inside the cavity. We derive a factorization method which provides a rigorous characterization of the support of the cavity in terms of the range of an operator which is computable from the measured data. The support of the cavity is determined without any a-priori knowledge of the properties of the surrounding anisotropic medium. Numerical examples are given showing the viability of our method.

Shixu Meng
University of Delaware
sxmeng@math.udel.edu

Houssem Haddar
CMAP, Ecole Polytechnique
houssem.haddar@inria.fr

Fioralba Cakoni
MS103

Surface Plasmon Enhancement in Nano Dielectric Layer

We consider the experiments done by Brian Cullum and his group at UMBC of multilayer silver film over nanostructure substrates that provide much greater surface-enhanced Raman scattering signal compared to single layer of silver with the same thickness as multilayer. We are going to discuss the multilayer and nano gap effects mathematically in an experimental related set up and compare the results with that of the experiments.

Yannan Shen
University of Minnesota
yxs135630@utd.edu

MS104

Improving Computing Skills of STEM Graduates

Computing skills are today a requirement for any STEM graduate, yet we still have not found a way to embed computing throughout the curriculum in engineering and mathematics. Many students only experience an "introduction to programming" class in their freshman year, and then we expect them to teach themselves whatever they might need to succeed in other courses, and in their careers. It’s no wonder that so many scientist and engineers don’t use best practices for scientific computing, including good software design and development, reproducibility, testing and ensuring the permanence of the scientific evidence they create. A few trends are taking hold that have potential to improve this situation. Efforts like Software Carpentry (Mozilla Foundation) are spreading best practices in software creation and curation: version control, testing, automation, provenance, sharing. Less commonly, some schools are revising their approach to computing in the curriculum. We are conducting a pilot study using just-in-time online modules that teach context-based computing for engineers. The context-based approach has already demonstrated its effectiveness, e.g., in the media computing course introduced at Georgia Tech some years back (which not only improved student success, but also reduced the gender achievement gap in computing). We are extending this approach with the just-in-time delivery of skills, as a "performance support" device. In this talk, we will present our theory of action for this educational intervention, the design concepts, and the preliminary data from our evaluation.

Lorena A. Barba
Department of Mechanical Engineering
Boston University
labarba@gwu.edu

MS104

Towards Verifiable Publications

Research papers provide the primary mechanism for sharing novel methods and data. Papers describe experiments involving small amount of data, derivations on that data, and associated methods and algorithms. Readers reproduce the results by repeating physical experiments, performing hand calculations, and setting forth logical arguments. The scientific method in this decade has become decisively computational, involving large quantities of data, complex data manipulation tasks, and large, and often distributed software stacks. The research paper, in its current text form, is only able to summarize the associated data and computation and not able to reproduce it computationally. While papers corroborate descriptions through indirect means, such as by building companion websites that share data and software packages, these external websites continue to remain disconnected from the content within the paper, making it difficult to verify claims and reproduce results. There is a critical need for systems that minimize this disconnect. We describe Science Object Linking and Embedding (SOLE), a framework for creating verifiable publications by linking them with associated science objects, such as source code, datasets, annotations, workflows, re-playable packages, and virtual machine images. SOLE provides a suite of tools that assist the authors to create and host science objects that can then be linked with research papers for the purpose of assessment, repeatability, and verification of research. The framework also creates a linkable representation of the science object with the publication and manages a bibliography-like specification of science objects. In this presentation, we will introduce SOLE through examples from climate science, chemistry, biology, and computer science, and describe its use for augmenting the content of computation-based scientific publications.

Tanu Malik
Computation Institute
University of Chicago
tanum@ci.uchicago.edu

MS104

What Is Worth Reproducing in Computational Science?

What is driving the call for reproducible science? The sentiment is that the archival literature should have a reproducible basis and computational science is particularly ephemeral due to the ever-changing landscape of computation. Simultaneously, we see an explosion of papers that exceed the ability of scientists to keep up with. Should we add to this tsunami of data with reproducibility? Perhaps reproducibility will stem the tide and make the literature more compact and valuable.

William J. Rider
Sandia National Laboratory
wjrider@sandia.gov

MS104

Constructing Guaranteed Automatic Numerical Algorithms for Univariate Integration

The project establishes an automatic, adaptive algorithm for solving univariate integration problems using trapezoidal rule. The algorithm provides rigorous guarantees of success and computational cost. The key idea is that the error analysis should be done for cones of input functions rather than balls. Theoretical and numerical results are provided.

Yizhi Zhang
Department of Applied Mathematics
Illinois Institute of Technology
MS105

A Practical Guide to Measure-Theoretic Inversion: Algorithms and Error Estimation

We describe the practical elements of a measure-theoretic framework for solving stochastic inverse problems for deterministic models with uncertain parameters. Theoretical results on the existence and uniqueness of solutions are presented that outline a basic computational algorithm for approximation of solutions. We extend the algorithm for estimating solutions in high dimensional parameter spaces and explore an a posteriori error analysis on computed probabilities of events.

Troy Butler
University of Colorado Denver
troy.butler@ucdenver.edu

Don Estep, Simon Tavener
Colorado State University
estep@stat.colostate.edu, tavener@math.colostate.edu

MS105

Spatially Heterogeneous Parameter Estimation Within the Advanced Circulation (ADCIRC) Model

We describe a framework for estimating spatially heterogeneous parameters critical to the accuracy of model forecasts of storm surge. We use pixelated land cover data to determine the spatial distribution of land cover classifications which we consider certain. We estimate the Manning’s n (a bottom friction parameter) value associated with these land cover classifications. We solve an inverse problem for these values using a measure-theoretic approach applied to the ADCIRC storm surge model.

Lindley Graham
University of Austin at Texas
Institute for Computational Engineering and Sciences (ICES)
igraham@ices.utexas.edu

Troy Butler
University of Colorado Denver
troy.butler@ucdenver.edu

Clint Dawson
Institute for Computational Engineering and Sciences
University of Texas at Austin
clint@ices.utexas.edu

Donald Estep
Department of Statistics
Colorado State University
estep@stat.colostate.edu

MS105

Advanced Coastal/Subsurface Models and a Measure-Theoretic Uq Framework Using Real Data

In this talk we’ll focus on advanced models for near shore flows and multiphase flows in the subsurface. In particular, the focus will be on identifying the computational issues that need to be addressed in estimating parameters especially in highly heterogeneous materials in the case of subsurface flows. We will also describe methods of dealing with real data to quantify uncertainties.

Nishant Panda
University of Texas at Austin
Colorado State University
nishant.panda@gmail.com

MS106

Novelty, Convention and Scientific Impact

Analyzing all 17 million papers in the Web of Science database, we employ a methodology based on journal pairings that characterizes each paper by the convention and novelty of the prior work combined. We measure the relative conventionality and novelty of the prior work that a paper combines by examining the journals referenced.

Satyam Mukherjee
Kellogg School of Management
Northwestern Institute on Complex Systems
satyam.mukherjee@gmail.com

MS106

Modeling the Dynamics of Vector-Host Interaction of Easter Equine Encephalitis

Eastern equine encephalitis (EEE) virus is a highly
pathogenic mosquito-borne infectious disease that is responsible for outbreaks in humans and equines, resulting in high mortality or severe neurological impairment in most survivors. In the northeastern United States, EEE virus is maintained in an enzootic cycle involving the mosquito, Culiseta melanura, and perching birds in freshwater swamp habitats. Utilizing the SIR model, we examine the influence of the different bird species and time of year in the spread and survival of EEE.

Muntaser Safan
Department of Mathematics
Oregon State University
muntaser.safan@asu.edu

MS106
Controllability Of Infections In Models Exhibiting Multiple Endemic Equilibria

In mathematical infectious disease epidemiology, reducing R_0 to slightly below 1 is sufficient to control the infection under consideration. This is true only if the model doesn’t show the existence of endemic equilibria for $R_0 < 1$. However, some models of infections exhibits backward bifurcation or even hysteresis. In this case reducing R_0 to below 1 is necessary but not sufficient to eliminate the infection. We show a family of models showing hysteresis and find the conditions on model parameters assuring the elimination of the infection.

Muntaser Safan
Department of Mathematics, Faculty of Science, Mansoura Univ
Mathematical Computational and Modeling Sciences Center, ASU
muntaser.safan@asu.edu

MS106
Modeling the Transmission Dynamics of H7N9 Avian Influenza Outbreak: Poultry Markets

The outbreak of H7N9 avian influenza in humans in Asia during 2013 and 2014 underlines the need for better understanding of the mechanisms by which avian influenza spreads among bird flocks in live markets. Here we employ and susceptible, exposed, infected, recovered (SEIR) model and fit the parameters of the model to low-pathogenic avian influenza prevalence data collected in in Hong Kong live bird markets between 1999 to 2005. In conjunction with climate data from the Hong Kong observatory, we examine the dependence of model parameters on temperature, relative humidity, and absolute humidity.

Sherry Towers
Mathematical and Computational Modeling Sciences Center, ASU
smtowers@asu.edu

MS108
Variant Prioritization by Genomic Data Fusion

Exome sequencing has revolutionized the discovery of mutations causing rare monogenic disorders. However, sequencing identifies many candidate mutations and we need better methods to prioritize variants for validation. Our methodology for genomic data fusion uses machine learning to integrate multiple strategies to detect deleteriousness of mutations. Our key innovation is the incorporation of a computational method for gene prioritization, which scores mutated genes based on their similarity to known disease genes.

Yves Moreau
K.U. Leuven, Dept. of Electrical Engineering ESAT-SCD
yves.moreau@esat.kuleuven.be

MS108
Discovery of Multidimensional Modules in Cancer Genomic Data

Recent technology has made it possible to simultaneously perform multi-platform genomic profiling of biological samples, resulting in so-called multidimensional genomic data. Such data provide unique opportunities to study the coordination between regulatory mechanisms on multiple levels. However, integrative analysis of multidimensional genomics data for the discovery of combinatorial patterns is currently lacking. Here, we develop a series of methods to address this challenge. We applied this method to data from The Cancer Genome Atlas, and prove its utilities in identifying subtly perturbed cancer pathways and distin...
MS110
The Role of Numerical Boundary Procedures in the Stability of Perfectly Matched Layers

We address the temporal energy growth associated with numerical approximations of the perfectly matched layer (PML) for Maxwell’s equations in first order form. In the literature, several studies have shown that a numerical method which is stable in the absence of the PML can become unstable when the PML is introduced. We demonstrate in this talk that this instability can be directly related to numerical treatment of boundary conditions in the PML. At the continuous level, we establish the stability of the constant coefficient initial boundary value problem for the PML. To enable the construction of stable numerical boundary procedures, we derive energy estimates for the variable coefficient PML. Numerical experiments verify the theoretical results.

Kenneth Duru
Department of Geophysics, Stanford University, Stanford CA
Stanford University
kduru@stanford.edu

MS109
A Fast Algorithm for 3D Azimuthally Anisotropic Velocity Scan

Conventional velocity scan can be computationally expensive for large-size seismic data, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transform. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly $O(N^3 \log N)$ as opposed to $O(N^3)$ of the straightforward velocity scan, with N being the representative of the number of points in either dimension of data space or parameter space. Synthetic and field-data examples demonstrate the superior efficiency of the proposed algorithm.

Jingwei Hu
The University of Texas at Austin
hu@ices.utexas.edu

Sergey Fomel
University of Texas at Austin
sergey.fomel@beg.utexas.edu

Lexing Ying
Stanford University
Department of Mathematics
lexing@math.stanford.edu

MS110
Bio-inspired Wing Design for Flying Micro Robots

Low Reynolds number aerodynamics is of great importance for the optimization of Micro Air Vehicles (MAV). A possibility to improve the flight performance of MAVs is to take inspiration from efficient flyers and swimmers in nature. Studies have shown that the scales on the wing of a butterfly as well as the ribs present on the dermal denticles of sharks can have a positive effect on the fluid dynamic performance, using different principles of flow boundary layer control which increase the lift to drag ratio. In this talk, I will present different fabrication methods for mimicking the scales on the wings of butterflies as well as the ribs present on the skin of sharks. Furthermore, I will present recent work on high-performance butterfly-inspired wing shapes that can be used for MAVs and I will outline how optimized wing designs in robotics can give insights to questions in evolutionary biology.

Mirko Kovac
Faculty of Engineering, Department of Aeronautics
Imperial College London
m.kovac@imperial.ac.uk

MS110
Sharks and Butterflies: Micro-Sized Scales Have Macro Effects

Sharks and butterflies swim and fly in two completely different flow regimes, yet the structure of their surfaces interacting with the surrounding fluid look amazingly similar. Both are not smooth but have unique microgeometries that potentially work to control the flow. Sharks have move- able scales that appear to act as a passive, flow-actuated dynamic roughness for separation control. Alternatively, butterfly scales appear to fundamentally alter the local skin friction drag depending on flow orientation.

Amy Lang
Aerospace Engineering and Mechanics
University of Alabama

Noemi Petra
Institute for Computational Engineering and Sciences
The University of Texas at Austin
noemi@ices.utexas.edu

Tobin Isaac, Georg Stadler
University of Texas at Austin
tisaac@ices.utexas.edu, georgst@ices.utexas.edu

Omar Ghattas
The University of Texas at Austin
omar@ices.utexas.edu

Noemi Petra, Tobin Isaac, Georg Stadler
Institute for Computational Engineering and Sciences
The University of Texas at Austin
noemi@ices.utexas.edu, tisaac@ices.utexas.edu, georgst@ices.utexas.edu

Omar Ghattas
The University of Texas at Austin
omar@ices.utexas.edu

Stability of Perfectly Matched Layers

We address the temporal energy growth associated with numerical approximations of the perfectly matched layer (PML) for Maxwell’s equations in first order form. In the literature, several studies have shown that a numerical method which is stable in the absence of the PML can become unstable when the PML is introduced. We demonstrate in this talk that this instability can be directly related to numerical treatment of boundary conditions in the PML. At the continuous level, we establish the stability of the constant coefficient initial boundary value problem for the PML. To enable the construction of stable numerical boundary procedures, we derive energy estimates for the variable coefficient PML. Numerical experiments verify the theoretical results.

Kenneth Duru
Department of Geophysics, Stanford University, Stanford CA
Stanford University
kduru@stanford.edu

MS109
A Fast Algorithm for 3D Azimuthally Anisotropic Velocity Scan

Conventional velocity scan can be computationally expensive for large-size seismic data, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transform. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly $O(N^3 \log N)$ as opposed to $O(N^3)$ of the straightforward velocity scan, with N being the representative of the number of points in either dimension of data space or parameter space. Synthetic and field-data examples demonstrate the superior efficiency of the proposed algorithm.

Jingwei Hu
The University of Texas at Austin
hu@ices.utexas.edu

Sergey Fomel
University of Texas at Austin
sergey.fomel@beg.utexas.edu

Lexing Ying
Stanford University
Department of Mathematics
lexing@math.stanford.edu

MS110
Bio-inspired Wing Design for Flying Micro Robots

Low Reynolds number aerodynamics is of great importance for the optimization of Micro Air Vehicles (MAV). A possibility to improve the flight performance of MAVs is to take inspiration from efficient flyers and swimmers in nature. Studies have shown that the scales on the wing of a butterfly as well as the ribs present on the dermal denticles of sharks can have a positive effect on the fluid dynamic performance, using different principles of flow boundary layer control which increase the lift to drag ratio. In this talk, I will present different fabrication methods for mimicking the scales on the wings of butterflies as well as the ribs present on the skin of sharks. Furthermore, I will present recent work on high-performance butterfly-inspired wing shapes that can be used for MAVs and I will outline how optimized wing designs in robotics can give insights to questions in evolutionary biology.

Mirko Kovac
Faculty of Engineering, Department of Aeronautics
Imperial College London
m.kovac@imperial.ac.uk

MS110
Sharks and Butterflies: Micro-Sized Scales Have Macro Effects

Sharks and butterflies swim and fly in two completely different flow regimes, yet the structure of their surfaces interacting with the surrounding fluid look amazingly similar. Both are not smooth but have unique microgeometries that potentially work to control the flow. Sharks have moveable scales that appear to act as a passive, flow-actuated dynamic roughness for separation control. Alternatively, butterfly scales appear to fundamentally alter the local skin friction drag depending on flow orientation.

Amy Lang
Aerospace Engineering and Mechanics
University of Alabama
Friction Enhancement in Snake Locomotion

Snakes are one of the world’s most versatile organisms, at ease slithering through rubble or climbing vertical tree trunks. In this study, we elucidate the physics of snake interactions with its complex environment. We present a series of experiments and supporting mathematical models demonstrating how snakes optimize their speed and efficiency by adjusting their frictional properties as a function of position and time. We use this discovery to build two snake-robots with enhanced climbing capabilities.

Bioinspired Transformative Skins: From Fundamental Physics to Applications

As human beings age, our skins develop wrinkles and folds, an undesirable feature that has fueled a multi-billion-dollar skin care industry. Conversely, many animals such as cephalopods can reversibly create skin patterns to match surrounding textures for active camouflage. This talk will present a unified model that can predict various modes of instabilities and patterns on skins. We will then discuss novel transformative applications of surface instabilities such as tunable superhydrophobicity and on-demand stem-cell alignment by seeking bioinspirations.

Friction Enhancement in Snake Locomotion

Banded Nonlinear Eigenvalue Problems

A variation of Kublanovskaya’s method for solving nonlinear eigenvalue problems will be presented for the case of unstructured banded problems. The new method is iterative and specifically designed for problems too large to use dense linear algebra techniques. A new data structure will also be presented for storing the matrices to keep memory and computational costs low. In addition, an algorithm will be presented for computing several nearby eigenvalues to already computed eigenvalues.

An Indefinite Variant of LOBPCG for Definite Matrix Pencils

We propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil $A - \lambda B$ (i.e., A, B are Hermitian and there is a shift λ_0 such that $A - \lambda_0 B$ is definite). Our new method is a variant of the popular LOBPCG method operating in an indefinite inner product. It also turns out to be a generalization of the recently proposed LOBP4DCG method for solving product eigenvalue problems.

Preconditioned Locally Minimal Residual Methods for Large-Scale Eigenproblems

We study the preconditioned locally minimal residual method (PLMR) for computing invariant pairs of nonlinear eigenproblems of the form $T(\lambda)v = 0$. PLMR is a newly-developed preconditioned eigensolver which does not require the computation of shift-invert matrix vector products. It bears close connections to several well-known algorithms, including LOPCG, Jacobi-Davidson and the inverse-free preconditioned Krylov subspace method. Numerical experiments show the flexibility and competitiveness of PLMR on large-scale benchmark nonlinear eigen
problems.

Fei Xue
Louisiana State University
fxx6187@louisiana.edu

MS112
Multiscale 3D Simulation of Whole Blood in Complex Geometry

A 3D multiscale immersed-boundary method is developed to simultaneously simulate major hemodynamics processes in whole blood flowing in microvascular network. The whole blood is represented as a suspension of red blood cells, white blood cells and platelets. The dynamics of each cell is resolved using a front-tracking method. The vascular network in 3D is modeled directly using a ghost-node immersed-boundary method. The method simulates interaction among blood cells, platelet adhesion, WBC rolling adhesion, and dispersion of drug-carriers in vascular network.

Prosenjit Bagchi, Koohyar Vahidkhah, Peter Balogh,
Daniel Cordasco
Rutgers University
pbagchi@jove.rutgers.edu, k.vahidkhah@gmail.com, petebalogh1@gmail.com, dan.cordasco@gmail.com

MS112
Simulation of Cellular Blood Flow in Microvessels

The cellular character of blood leads to complex flow phenomenology in vessels of comparable size to the blood cells. We have designed a fast spectral boundary integral algorithm that simultaneously solves for the dynamics of the highly deformable blood cells and their flow in such configurations. The talk will include an outline this method and discussion of two applications: the transport of magnetic nanoparticles amongst the flow blood cells and the flow of red-blood cells through a model spleenic slit.

Jonathan B. Freund
UIUC
jbfreund@illinois.edu

MS112
Long-Wave Dynamics of an Inextensible Planar Membrane in an Electric Field

We investigate the long-wave nonlinear dynamics of an inextensible capacitive elastic membrane under ac and dc electric fields. In the lubrication framework we derive a nonlinear evolution equation for the membrane height with an integral constraint. Different membrane dynamics, such as undulation and flip-flop are found at different electric field strengths and membrane area. In particular an alternating wave on the membrane is found as a response to an ac field in the perpendicular direction.

Yuan-Nan Young
Department of Mathematical Sciences
NJIT
yyoung@oak.njit.edu

Shravan Veerapaneni
Department of Mathematics
University of Michigan
shravan@umich.edu

Michael Miksis
Department of Engineering Science and Applied Mathematics
Northwestern University
miksis@northwestern.edu

MS112
Extensional Dynamics of Vesicles: Asymmetric Rayleigh-Plateau, Burst, and Pearling

When deformable vesicles with an aspect ratio of at least 3.5 are subject to extensional flow, they undergo an elongational transition above a critical capillary number. We complete 3D boundary integral simulations and develop a multipole expansion spectral theory for vesicles with aspect ratios up to 10. We demonstrate that the critical conditions can be predicted quantitatively. Moreover, a second burst transition at higher Capillary number which is a prelude to pearling is demonstrated.

Eric S. Shaqfeh
Professor, Chemical Engineering & Mechanical Engineering
Stanford University, Stanford, CA
esgs@stanford.edu

MS113
A Difference Equations Approach to Studying Oscillations in a Suspension Bridge involving a Nonlinear Cable Function

In their 2000 paper 'Multiple Periodic Solutions to a Suspension Bridge Ordinary Differential Equation’, P. J. McKenna and K. S. Moore studied oscillations in a suspension bridge by analyzing periodic solutions to the system of nonlinear ordinary differential equations

\[\theta' = -\frac{6K}{m} \cos \theta \sin \theta - \delta_1 \theta'' + f(t) \]
\[y' = -\frac{2K}{m} y - \delta_2 y'' + g \]

where \(\delta_1, \delta_2 \) are damping constants, \(K, m \) are positive parameters, \(g \) is the force due to gravity and \(f(t) \) is an external force at time \(t \). They used Leray-Schauder Degree Theory along with numerical methods like the Runge-Kutta Method to do so. In this talk, I will analyze the periodic solutions of (1) using a slightly newer more nontraditional method. More specifically, I will introduce a nonlinear cable function \(c(t) \) in the \(y' \)-equation in (1), discretize the resulting system into a system of two coupled second-order second-degree difference equations and then perform a local and global stability analysis of this new system using the mathematical theory of difference equations. One of the biggest challenges of this study will be setting up the global analysis framework for general second-order second-degree difference equations along the way since this topic is still largely an open research area. However if successful, this study will provide a way to analyze the local and global dynamics of periodic solutions of (1) for entire regions of initial conditions and parameter values as opposed to a limited number of initial conditions and parameter values as is generally possible using numerical methods.

Sukanya Basu
Wentworth Institute of Technology
MS113

From Billiard Dynamics to Thermodynamics

We develop a stochastic approach to thermodynamics using a model of gas-surface interactions derived from a randomized version of billiard dynamical systems. We first recover some classical results from the kinetic theory of gases, specifically Knudsen’s Law for angle of reflection. We then derive diffusion constants for particles moving in a channel with rough walls. Finally, we develop notions of temperature, heat flow, and entropy production, leading to models of simple machines.

Scott Cook
Swarthmore College
scook3@swarthmore.edu

Tim Chumley
Iowa State University
tchumley@gmail.com

Renato Feres
Washington University in St. Louis
feres@math.wustl.edu

MS113

Predictor-Based Tracking for Neuromuscular Electrical Stimulation

Neuromuscular electrical stimulation is a technology that helps restore functionality to human limbs. We study neuromuscular electrical stimulation of the human knee, by providing a tracking controller such that the tracking error globally asymptotically converges to zero, under any input delay, a state constraint on the knee position, and sampled state measurements. We use a new method for constructing predictors. This work is joint with Iasson Karafyllis, Marcio de Queiroz, Miroslav Krstic, and Ruzhou Yang.

Michael Malisoff
Department of Mathematics
Louisiana State University
malisoff@math.lsu.edu

MS113

Solving Linear Differential Equations and Inverting Matrices: Key Formulas

In preparing a new textbook on *Differential Equations and Linear Algebra*, one function and one formula took a central place: the solution $g(t)$ with driving function $\delta(t)$ = impulse response $=$ Green’s function $=$ fundamental solution. When the driving function is $f(t)$, the solution is the integral of $g(t-s)f(s)$. The talk will connect the different ways to find this growth factor $g(t)$. Separately we call attention to an amazing expression for A^{-1} when that matrix is tridiagonal.

Gilbert Strang
MIT
gilstrang@gmail.com

MS114

Boundary Integral Equation for an Ion Channel in Electrolyte Media

In this talk, computation of the electrostatic potential arising from the hybrid solvation model for ion channels will be discussed. The Poisson-Boltzmann (P-B) equation is considered. In order to model the cell membrane where the ion channel is located, the layered media Green’s function of the P-B equation is used to develop a boundary integral equation for a finite hight hollow cylinder. Two fictitious half spheres are attached top and bottom of the cylinder to avoid edge singularities. Then, a body-fitted mesh is used to discretize the boundary of the cylinder. Several numerical examples will be presented.

Min Hyung Cho
Department of Mathematics
Dartmouth College
min.h.cho@dartmouth.edu

MS114

Life after Sweeping: Hopping for the Helmholtz Equation

The high-frequency 3D Helmholtz equation in a heterogeneous medium is a difficult question in numerical analysis. Direct solvers are either unwieldy to set up for the problem as a whole, or are hard to link up in a domain decomposition framework. In this work we consider an upwind, incomplete form of Green’s identity as a high-quality transmission boundary condition, and use it to define polarized waves at interfaces between subdomains. This approach is attractive when local Green’s functions are precomputed, and a fast algorithm is available for their application: we obtain an algorithm with complexity sublinear in the number of unknowns normally needed to represent the solution in the volume. The new method can be seen as a generalization of the sweeping preconditioner of Engquist-Ying to larger subdomains. Joint work with Leonardo Zepeda-Nunez.

Laurent Demanet
Mathematics, MIT
demanet@gmail.com

MS114

A Robust Maxwell Solver in Axisymmetric Geometries

Several integral equations used for electromagnetic scattering problems suffer from instabilities at low frequencies. Some instabilities occur from purely numerical considerations, others from non-trivial topology of the scatterer. In this talk, we review an integral equation formulation based on generalized Debye sources which addresses both of these forms of low-frequency breakdown. We will present a high-order solver based on this formulation for axisymmetric geometries, both for perfect conductor and dielectric problems.

Michael O’Neil
Courant Institute
New York University
oneil@courant.nyu.edu

MS114

Scalable Quasi-direct Solvers for 3D Elliptic Problems

While scalable distributed-memory techniques have re-
cently been proposed for the approximate factorization of $HSS/H^2/H$-matrices defined through a “weak” admissibility condition, no scalable $HSS/H^2/H$-matrix factorization strategy is known which can handle the “strong” admissibility condition needed to represent Green’s functions of 3D elliptic problems. This talk evaluates two directions for circumventing this problem: (1) an approximate Newton-Schulz iteration based upon a new parallelization of H-matrix/H-matrix multiplication and (2) the recently introduced Hierarchical Interpolative Factorization.

Jack Poulson
Institute for Computational Engineering and Sciences
The University of Texas at Austin
jpoulson@cc.gatech.edu

Austin Benson
UC Berkeley
arbenson@stanford.edu

Kenneth L. Ho
Department of Mathematics
Stanford University
klho@stanford.edu

Yingzhou Li
Stanford
ryanli@stanford.edu

Lexing Ying
Stanford University
Department of Mathematics
lexing@math.stanford.edu

MS115
A Treecode-Accelerated Boundary Integral Poisson-Boltzmann Solver for Solvated Proteins

We present a treecode-accelerated boundary integral (TABI) solver for electrostatics of solvated proteins described by the linear Poisson-Boltzmann equation. The integral equations are discretized by centroid collocation. The linear system is solved by GMRES and the matrix-vector product is carried out by a treecode. We compute the electrostatic solvation energy for a protein. We compare TABI results with those obtained using the grid-based APBS code and we present parallel TABI simulations.

Robert Krasny
University of Michigan
Department of Mathematics
krasny@umich.edu

Weihua Geng
Southern Methodist University
weng@mail.smu.edu

MS115
A Hybrid Immerged Boundary and Immersed Interface Method for Two-Phase Electrohydrodynamic Simulations

In this talk, we introduce a hybrid immersed boundary (IB) and immersed interface method (IIM) to simulate the dynamics of a drop under the influence of electric field in Navier-Stokes flows. Instead of applying the volume electric force arising from the Maxwell stress tensor, we alternatively treat the electric effect as an interfacial force bearing the normal jump of Maxwell stress on the interface. A series of numerical tests with different permittivity and conductivity ratios are performed and compared with the results obtained by the small deformation theory.

Ming-Chih Lai
NCTU, Taiwan
Department of Applied Math
mclai@math.nctu.edu.tw

MS115
Electro-Hydrodynamics of Vesicle Suspensions

We investigate the mechanics of inextensible capacitive elastic membranes in applied electric fields. A new boundary integral formulation for the coupled electric and hydrodynamic governing equations will be presented. The membrane evolution is characterized by a competition between elastic energy, inextensibility, non-local hydrodynamic interaction, electric potential and the a.c. field field frequency. We will discuss new insights gained via numerical simulations.

Shravan Veerapaneni
Department of Mathematics
University of Michigan
shravan@umich.edu

MS116
Recent Developments of Grid Based Particle Method

Grid based particle method (GBPM) is a meshless point method for moving interface problems. GBPM has a particle method nature which can capture a moving interface accurately and efficiently. At the same time these meshless particles carry both Lagrangian and Eulerian information simultaneously with the help of a underlying grid which allows one to handle different kind of topological changes easily. Also adaptivity can be incorporated into GBPM naturally. In this presentation, I will talk about some recent developments in GBPM and using it to model various moving interface problems.

Hongkai Zhao
University of California, Irvine
Department of Mathematics
zhao@math.uci.edu

MS116
Ten Good Reasons for using Kernel Reconstructions in Adaptive Finite Volume Particle Methods

This talk discusses the utility of meshfree kernel techniques in adaptive finite volume particle methods (FVPM). To this end, we give ten good reasons in favour of using kernel-based reconstructions in the recovery step of FVPM, where our discussion addresses relevant computational aspects concerning numerical stability and accuracy, as well as more specific points concerning efficient implementation. Special emphasis is finally placed on more recent advances in the construction of adaptive FVPM, where WENO reconstructions by polyharmonic spline kernels are used in combination with ADER flux evaluations to obtain high order methods for hyperbolic problems.

Armin Iske
University of Hamburg
Department of Mathematics
MS116
Model Selections for Polynomial Kernel Regressions

Polynomial kernel regression is one of the most commonly used methods in numerical analysis and statistics. However, in dealing with many real world problems, choosing the right degree of a polynomial kernel is a challenging issue, as poor choices often lead to either “under-fitting” or “over-fitting”. We propose and study criteria and new strategies especially designed for this purpose. We provide both theoretical analysis and numerical simulations to illustrate the performance of the new strategies.

Xingping Sun
Missouri State University
xsun@missouristate.edu

MS116
Multiscale Rbf Interpolation and Collocation

The combination of compactly supported radial basis functions with a residual correction scheme has proven to be numerically extremely efficient and accurate for solving both scattered data interpolation and collocation problems. In this talk I will give a short survey of what is known so far and address recent developments particularly when it comes to solving partial differential equations. For example, I will address adaptivity, boundary conditions and scaling.

Holger Wendland
Univ. Goettingen
Germany
holger.wendland@uni-bayreuth.de

MS117
Conjugate Gradient Iterative Hard Thesholding

Conjugate Gradient Iterative Hard Thresholding is a greedy algorithm for solving the compressed sensing and matrix completion problems combining the advantages of the low per iteration complexity of Normalized Iterative Hard Thresholding and the effectiveness of projection based algorithms such as Hard Thresholding Pursuit and Compressive Sampling Matching Pursuit. This talk will also introduce the compressed sensing and matrix completion problems as examples of low dimensional models.

Jeffrey D. Blanchard
Department of Mathematics and Statistics
Grinnell College
jeff@math.grinnell.edu

Jared Tanner
University of Oxford
tanner@maths.ox.ac.uk

Ke Wei
Mathematics Institute
University of Oxford
wei@maths.ox.ac.uk

MS117
Denoising Simultaneously Structured Signals

Models or signals exhibiting low dimensional behavior (e.g., sparse signals, low rank matrices) arise in many applications in signal processing and machine learning. We focus on models that have multiple structures simultaneously; e.g., matrices that are both low rank and sparse, arising in phase retrieval, quadratic compressed sensing, and cluster detection in social networks. We consider the estimation of such models from direct observations corrupted by additive Gaussian noise. Our main result is to provide tight upper and lower bounds on the mean squared error (MSE) of a convex denoising program that uses a combination of regularizers to induce multiple structures. In the case of low rank and sparse matrices, we quantify the gap between the MSE of the convex program and the best achievable error, and also compare it with a simple nonconvex thresholding algorithm in a certain regime of signal-to-noise ratio.

Maryam Fazel
University of Washington
Electrical Engineering
mfazel@ee.washington.edu

Samet Oymak
California Institute of Technology
soymak@caltech.edu

Amin Jalali
University of Washington
amjalali@uw.edu

Babak Hassibi
Electrical Eng. Dept
Caltech, Pasadena, CA
hassibi@systems.caltech.edu

MS117
Frontiers of Atomic Norm Minimization

We often model signals from the physical world with continuous parameterizations. Unfortunately, continuous models pose problems for the tools of sparse approximation, and popular discrete approximations are fraught with theoretical and algorithmic issues. In this talk, I will propose a general, convex-optimization framework—called atomic-norm minimization—that obviates discretization and gridding by generalizing sparse approximation to continuous dictionaries. I will discuss recent theoretical and algorithmic advances that demonstrate the utility of this framework in a diverse set of applications.

Ben Recht
UC Berkeley
brecht@eecs.berkeley.edu

MS117
Modal Analysis with Compressive Measurements

We consider the problem of determining the mode shapes of a structure from a compressed collection of vibrational time series recordings, as might be collected by a network of wireless sensor nodes performing Compressive Sensing (CS). We consider three different CS strategies, analyze a simple SVD-based method for estimating the mode shapes
from compressive samples without performing CS reconstruction, and provide novel finite sample reconstruction bounds. This work has potential applications in structural health monitoring.

Jae Young Park
EECS Department
University of Michigan
jaeypark@umich.edu

Michael B. Wakin
Dept. of Electrical Engineering and Computer Science
Colorado School of Mines
mwakin@mines.edu

Anna Gilbert
Department of Mathematics
University of Michigan
annacg@umich.edu

MS118
Universe Geometry

This brief history will elucidate the role of supercomputers in enhancing progress in mathematics. Moving through the exciting history of supercomputing, we will broach the top supercomputers of its time and its important applications. This will be followed by a stimulating story about a supercomputer simulation that has proven the validity of a theory that was proposed 40 years ago for the evolution of the universe.

Samar A. Aseeri
Computational Scientist at the KAUST Supercomputing Laboratory
samar.aseeri@kaust.edu.sa

MS118
Understanding the Universe with Petascale Simulations - the Enzo Cosmology Code

Abstract not available at time of publication.

Brian O'Shea
Department of Physics and Astronomy
Michigan State University
oshea@msu.edu

MS118
Talk title: Creating a Virtual Universe

Abstract not available at time of publication.

Mark Vogelsberger
MIT
address:vmvogelsb@cfa.harvard.edu

MS119
Irregular Polyomino Tiling via Integer Programming with Application in Phased Array Antenna Design

A polyomino is a generalization of the domino and is created by connecting a fixed number of unit squares along edges. Tiling a region with a given set of polyominoes is a hard combinatorial optimization problem. This work is motivated by a recent application of irregular polyomino tilings in the design of phased array antennas. Ex-
The basic reproduction number, \(R_0 \), severity of disease of vaccinated birds and vaccine waning. The model includes reduction of probability of infection, decreasing asymptotically infected birds, and infected birds. The model has four components: susceptible birds, reduction in infectiousness of asymptomatically infected birds and vaccine waning can have important implications for disease control. We analytically and numerically demonstrate that vaccination can paradoxically increase the total number of infected, resulting in the “silent spread” of the disease. We also study the effects of vaccine efficacy on disease prevalence and the minimum critical vaccination coverage, a threshold value for vaccination coverage to avoid an increase in total disease prevalence due to asymptomatic infection.

Hao Zhang
Department of Mathematics
hzm39@ufl.edu

Yunmei Chen
Department of Mathematics
University of Florida
yun@ufl.edu

MS120
A Structured Avian Influenza Model with Imperfect Vaccination

We introduce a model of avian influenza in domestic birds with imperfect vaccination and age-since-vaccination structure. The model has four components: susceptible birds, vaccinated birds (stratified by vaccination-age), symptomatically infected birds, and infected birds. The model includes reduction of probability of infection, decreasing severity of disease of vaccinated birds and vaccine waning. The basic reproduction number, \(R_0 \), is calculated. The disease-free equilibrium is found to be globally stable under certain conditions when \(R_0 < 1 \). When \(R_0 > 1 \), existence of an endemic equilibrium is proved (with uniqueness for the ODE case and local stability under stricter conditions) and uniform persistence of the disease is established. The inclusion of reduction in susceptibility of vaccinated birds, reduction in infectiousness of asymptotically infected birds and vaccine waning can have important implications for disease control. We analytically and numerically demonstrate that vaccination can paradoxically increase the total number of infected, resulting in the “silent spread” of the disease. We also study the effects of vaccine efficacy on disease prevalence and the minimum critical vaccination coverage, a threshold value for vaccination coverage to avoid an increase in total disease prevalence due to asymptomatic infection.

Hayriye Gulbudak, Maia Martcheva
University of Florida
hgulbudak@ufl.edu, maia@ufl.edu

MS120
Modeling Avian Influenza and Implications for Control

A mathematical model of avian influenza which involves human influenza is introduced to better understand the complex epidemiology of avian influenza. The model is used to rank the efficacy of the current control measures. We find that culling without re-population and vaccination are the two most efficient control measures. Control measures applied to humans, such as wearing protective gear, are not very efficient. Furthermore, we find that should a pandemic strain emerge, it will invade, possibly displacing the human influenza virus in circulation at that time. Moreover, higher prevalence levels of human influenza will obstruct the invasion capabilities of the pandemic H5N1 strain. This effect is not very pronounced, as we find that 1% increase in human influenza prevalence will decrease the invasion capabilities of the pandemic strain with 0.006%.

Maia Martcheva
University of Florida
maia@ufl.edu

MS120
Evaluation of Malaria Vaccines as a Control Strategy in a Region with Naturally Acquired Immunity

The malaria vaccine RTS,S has reached the final stages of vaccine trials, demonstrating an efficacy of roughly 50% in children. Regions with high prevalence tend to have high levels of naturally acquired immunity (NAI) to severe malaria. I will introduce a model developed to address concerns about how these vaccines will perform in regions with existing NAI, discuss some analytic results and their public health implications, and reframe our question as an optimal control problem.

Olivia Prosper
University of Florida
prosper.olivia@gmail.com

Nick Ruktanonchai
University of Florida
Department of Biology
nrukt00@gmail.com

Maia Martcheva
MS121
Undergraduate Modeling Curricula

Abstract not available at time of publication.

Jeff Humpherys
Department of Mathematics
Brigham Young University
jeffh@math.byu.edu

MS121
Modeling in the Early Grades

Abstract not available at time of publication.

Rachel Levy
Harvey Mudd College
levy@hmc.edu

MS121
Mathematical Modeling in High School

Abstract not available at time of publication.

Katherine Socha
Math for America
ksocha@mathforamerica.org

MS121
SIAM-NSF Modeling across the Curriculum initiative and Workshops: Introduction

Abstract not available at time of publication.

Peter R. Turner
Clarkson University
School of Arts & Sciences
pturner@clarkson.edu

MS122
Reduced Order Modeling of the Quasi-Geostrophic Equations

This talk surveys some recent developments in the modeling, analysis and numerical simulation of the quasi-geostrophic equations, which describe the wind-driven large scale ocean circulation. A new large eddy simulation model, which is based on approximate deconvolution, is proposed for the numerical simulation of the one-layer and two-layer quasi-geostrophic equations. A reduced order model based on the proper orthogonal decomposition is also proposed as an accurate and computationally efficient tool for the numerical simulation of the quasi-geostrophic equations. The error analysis for the finite element discretization and the numerical investigation of the new models are also presented.

Traian Iliescu
Department of Mathematics
Virginia Tech
iliescu@vt.edu

MS122
Fluid-Structure Interaction Decoupling by Optimization

Simulating fluid-structure interactions is challenging due to the tight coupling between the fluid and solid structures. An approach is presented that allows the problem to be decoupled by reformulating it in an optimal control setting. A control is introduced to minimize the jump in velocity and stress on the interface. An analytical framework is developed to show the well-posedness of the optimality system for the time dependent case.

Paul A. Kuberry
Clemson University
pkuberr@clemson.edu

Hyesuk Lee
Clemson University
Dep. of Mathematical Sciences
hklee@clemson.edu

MS122
Numerical Approximation of Non-Newtonian Fluid - Structure Interaction Problems

Fluid-structure interaction (FSI) problems governed by non-Newtonian fluid models are considered. For viscoelastic and quasi-Newtonian fluid models variational formulations of the coupled FSI systems are developed based on the Arbitrary Lagrangian-Eulerian (ALE) method. Stability of the time discretized systems and finite element error estimates are discussed, and numerical results will be presented.

Hyesuk Lee
Clemson University
Dep. of Mathematical Sciences
hklee@clemson.edu

Shuhan Xu
Clemson University
shuhanx@g.clemson.edu

MS122
Greenland Ice-sheet Initialization: Optimal Control and Bayesian Calibration Approaches

Greenland ice sheet plays a significant role in climatology and, in particular, in sea-level rise. In order to simulate the evolution of the ice sheets we need to know the current thermomechanical state of the system. In this talk, we seek an initial state for the Greenland ice sheet via the estimation of the basal sliding coefficient and the bedrock topography. We consider both a deterministic approach (PDE constrained optimization) and a Bayesian calibration approach.

Michael S. Eldred
Sandia National Laboratories
Optimization and Uncertainty Quantification Dept.
mseldre@sandia.gov

John D. Jakeman
Sandia National Labs
jdjakem@sandia.gov
MS123
Optimal Shrinkage of Singular Values

It is common practice in multivariate statistical analysis to reduce dimensionality by performing SVD or PCA, and keeping only r singular values. For white noise and appropriate asymptotic frameworks, random matrix theory describes the random behavior of the singular values and vectors of Y. It delivers simple, convincing answers to a range of fundamental questions, such as the location of the optimal singular value threshold and the shape of the optimal singular value shrinker.

In particular, the recent works of Matan Gavish and David L. Donoho have shown that simple rules can be used to estimate the optimal value of r in the presence of white noise.

MS123
Tensor GSVD for Comparison of Two Column-Matched and Row-Independent Large-Scale Biomedical Datasets

There exists a fundamental need for frameworks that can simultaneously compare and contrast large-scale data tensors, e.g., biomedical datasets recording multiple aspects of a disease across a set of patients. We describe a novel exact and unique simultaneous decomposition for two tensors that generalizes the GSVD to a tensor GSVD. We show that tensor GSVD comparisons of two ovarian cancer patient- and platform-matched genomic datasets from The Cancer Genome Atlas predict survival and drug targets.

Div First-Order System LL* for Elliptic Systems

The first-order system LL* (FOSLL*) approach was introduced in order to retain the full efficiency of the L^2 norm first-order system least-squares (FOSLS) approach while exhibiting the generality of the inverse-norm FOSLS approach. In this talk, we will present the div FOSLL* approach to the Stokes and linear elasticity equations and the a priori and a posteriori error estimations.

What Kinds of Singularities can we Deduce from the Corner Singularity Theory of the Compressible Viscous Stokes Flows?

Based on some known corner singularity and regularity re-
sults for the compressible viscous Stokes equations, I will describe certain singularities of solutions in the domain, for instance, interior layer, jump discontinuities of the density solution across the streamline emanating from the non-convex vertex or grazing vertex.

Jae Ryong Kweon
POSTECH(Pohang University of Science and Technology) Korea
kweon@postech.ac.kr

MS124
Compact Implicit Integration Factor Method for High Order Differential Equations

When developing efficient numerical methods for solving parabolic types of equations, severe temporal stability constraints on the time step are often required due to the high-order spatial derivatives and/or stiff reactions. The implicit integration factor (IIF) method, which treats spatial derivative terms explicitly and reaction terms implicitly, can provide excellent stability properties in time with nice accuracy. One major challenge for the IIF is the storage and calculation of the dense exponentials of the sparse discretization matrices resulted from the linear differential operators. The compact representation of the IIF (cIIF) can overcome this shortcoming and greatly save computational cost and storage. On the other hand, the cIIF is often hard to be directly applied to deal with problems involving cross derivatives. In this talk, by treating the discretization matrices in diagonalized forms, we present an efficient cIIF method for solving a family of semilinear fourth-order parabolic equations, in which the bi-Laplace operator is explicitly handled and the computational cost and storage remain the same as to the classic cIIF for second-order problems. In particular, the proposed method can deal with not only stiff nonlinear reaction terms but also various types of homogeneous or inhomogeneous boundary conditions. Numerical experiments are finally presented to demonstrate effectiveness and accuracy of the proposed method.

Xingfeng Liu
University of South Carolina
xfliu@math.sc.edu

MS124
An Asymptotic Splitting Approximation for Highly Accurate Numerical Solutions of Differential Equations

This talk explores applications of the asymptotic splitting method for approximating highly oscillatory solutions of the systems of paraxial Helmholtz equations. An eikonal transformation is introduced for oscillation-free platforms and matrix operator decompositions. It is found that the sequential, parallel and combined exponential splitting formulas possess not only anticipated algorithmic simplicity and efficiency, but also the accuracy and asymptotic stability required for highly oscillatory wave computations via systems of partial differential equations.

Qin Sheng
Department of Mathematics
Baylor University
Qin_Sheng@baylor.edu

Hai-Wei Sun
Department of Mathematics
University of Macau
hsun@umac.mo

MS125
Recent Progress in MatCont Development

MatCont is an interactive MATLAB software for numerical analysis of ODEs in \mathbb{R}^n. It allows to simulate ODEs, continue equilibria and cycles in one parameter, and study bifurcations of equilibria, cycles, and homoclinic orbits in two-parameter ODEs. Recent features of MatCont will be presented, including normal form computations for codim 2 bifurcations of cycles and initialization of homoclinic orbits. Decisions made during the development and future of the software will be discussed.

Iourii Kouznetsov
Department of Mathematics, Utrecht University
The Netherlands
I.A.Kouznetsov@uu.nl

MS125
Numerical Analysis of Travelling Waves in Neural Fields

We consider waves in integro-differential systems modelling neural activity. For special cases of spatial coupling a suitable ODE can be derived whose solutions correspond to patterns of the original system. We exploit the numerical toolbox MATCONT to construct a complete bifurcation diagram for smooth nonlinearities. For more general, but translationally invariant connectivity including transmission delays, we propose novel numerical schemes to compute travelling waves and discuss its implementation.

Hil Meijer
Twente University, NL
h.g.e.meijer@utwente.nl

MS125
(Parallel) Auto and Applications: Past, Present and Future

We show how the numerical continuation package AUTO-07p can effectively run in parallel using MPI on modern HPC clusters, and explain its algorithms. Much larger problems can now be continued than was reasonably possible in the past. Combining with the method of continuation of orbit segments we can investigate how certain ODE and PDE solutions suddenly change as parameters cross critical values. Several examples illustrate this technique. Lastly, possible future directions for AUTO are given.

Bart E. Oldeman
CLUMEQ (McGill, ETS)
bart.oldeman@mcgill.ca

MS125
Analysis of Nonsmooth Systems: Perspectives and Directions

The realisation that many real-world systems possess nonsmooth characteristics has opened up a plethora of different directions for the analysis of such systems. In this presentation I will give a background to nonsmooth systems, describe a few of the analysis techniques employed, and also discuss where the field is heading. Open problems that will keep the dynamical systems community busy for years to
come will be highlighted through a couple of examples.

Petri T. Piiroinen
School of Mathematics, Statistics and Applied Mathematics
National University of Ireland, Galway
petri.piiroinen@nuigalway.ie

MS126
A Locally Accelerated Block Preconditioned Steepest Descent Method for Ill-conditioned Generalized Hermitian Eigenvalue Problems

In this talk, we first present a locally accelerated block preconditioned steepest descent (LABPSD) algorithm for solving ill-conditioned generalized Hermitian eigenvalue problems, such as arising in orbital based ab initio methods for electronic structure calculations. We then revisit the classical convergence analysis of steepest descent algorithms and provide a new analysis to justify the efficiency of LABPSD.

Zhaojun Bai
Departments of Computer Science and Mathematics
University of California, Davis
bai@cs.ucdavis.edu

Yunfeng Cai
Peking University, P. R. China
yfcai@math.pku.edu.cn

John Pask
Lawrence Livermore National Lab
pask1@llnl.gov

N. Sukumar
University of California, Davis
nsukumar@ucdavis.edu

MS126
Structured Eigensolvers for the Analysis of Symmetry-Breaking in Next Generation Gyrosopes

In 1890, G. H. Bryan demonstrated that when a ringing wine glass rotates, the shape of the vibration pattern precesses. This effect is the basis for a family of high-precision gyroscopes. Mathematically, the precession can be described in terms of a symmetry-breaking perturbation due to gyroscopic effects of a geometrically degenerate pair of vibration modes. Unfortunately, current attempts to miniaturize these gyroscopes designs are subject to fabrication imperfections that also break the device symmetry. In this talk, we describe the structure of the eigenvalue problems that arise in simulation of both ideal and imperfect geometries, and show how to use this structure in accurate and efficient simulations.

David Bindel, Erdal Yilmaz
Cornell University
bindel@cs.cornell.edu, ey45@cornell.edu

MS126
Fast Spectral Computations for Quasiperiodic Schroedinger Operators

Discrete Schroedinger operators with quasiperiodic potentials arise as mathematical models of quasicrystals. Their spectra exhibit exotic properties that are more challenging to analyze than periodic or random potentials; often these spectra are Cantor sets. Quasiperiodic potentials can be approximated by periodic potentials, whose spectrum can be computed by solving finite dimensional eigenvalue problems. Accurate estimates require long periods. We show how to compute such approximations quickly and address the need for high accuracy.

Mark Embree, Charles Puelz
Department of Computational and Applied Mathematics
Rice University
embree@vt.edu, cp16@rice.edu

MS126
Eigenvalue Problems in Electron Excitation

Single-electron excitation can be described by a nonlinear eigenvalue known as Dyson’s equation in which the Hamiltonian operator is a function of an eigenvalue to be determined. We will describe the nonlinear structure of the eigenvalue problem and examine numerical methods for solving this type of problem.

Chao Yang
Lawrence Berkeley National Lab
chao yang cyang@lbl.gov

Fang Liu
Central University of Finance and Economics
Peking, China
cufe.fliu@gmail.com

Lin Lin
Lawrence Berkeley Lab
linline@lbl.gov

Alexander Kemper
Lawrence Berkeley National Lab
Berkeley, CA
afkemper@lbl.gov

MS127
Rheology of Sickle Cell Anemia: Effects of Heterogeneous RBC Shapes

Sickle cell anemia (SCA) is a highly complex, inherited blood disorder exhibiting heterogeneous cell morphology and abnormal rheology. To better understand the relationship between rheological behavior and cell morphological characteristics of blood in SCA, we present a multiscale sickle red blood cell (SS-RBC) model, accounting for diversity in both cell shape and rigidity. The proposed model provides a systematic approach to quantify the rheological behavior and hemodynamics of SS-RBC suspensions. We quantify the heterogeneous shear viscosity of SS-RBC suspensions with different cell morphologies, i.e., the SS-RBC suspensions with granular shapes are the most viscous; while the shear viscosity of SS-RBC suspensions containing elongated cells show a dramatic decrease. In combination with the experimental data of SS-RBCs from patients treated with and without hydroxyurea, we also predict the shear viscosity of SS-RBC suspensions under different conditions. These findings lead to useful insights into the abnormal rheological behavior of blood in SCA.

Xuejin Li
Brown University
xuejin_li@brown.edu
MS127

Lipid Bilayer and Cytoskeletal Interactions in a Red Blood Cell

We developed a two-component model of red blood cell (RBC) membranes to study interactions between the lipid bilayer and the cytoskeleton for healthy and diseased RBCs. We modeled the bilayer and the cytoskeleton as two distinct components and consider the normal elastic interaction and tangential viscous friction between them. We implemented this model using both a three-level multiscale continuum approach and Dissipative Particle Dynamics, and investigated RBC-related diseases such as malaria and sickle cell disease.

Zhangli Peng
MIT
zhpeng@mit.edu

MS127

Three-Dimensional Vesicle Electrohydrodynamics: A Level Set Method

The electrohydrodynamics of three-dimensional vesicles is investigated using a combined Jet level set/continuum force method. The electric field in the domain is obtained by an immersed interface method, for which the necessary jump conditions have been developed. Numerical results match well with the dynamics observed experimentally. A investigation of parameters influencing the vesicles dynamics will also be presented.

David Salac
University at Buffalo - SUNY
davidsal@buffalo.edu

Mohammad Kolahdouz
University at Buffalo, SUNY
mkolahdou@buffalo.edu

MS127

A Hybrid Numerical Method for Electro-Kinetic Flow with Deformable Membranes

We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid-fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or ‘Debye layer’. The applied electric field acts on the ionic cloud it induces, resulting in a strong slip flow near the interface. This is known as ‘induced-charge electro-kinetic flow’, and is an important phenomenon in microfluidic applications and in the manipulation of biological cells. We address a significant challenge in the numerical computation of such flows in the thin-double-layer limit, by using the slenderness of the layer to develop a fast and accurate ‘hybrid’ or multiscale numerical method. The method incorporates an asymptotic analysis of the electric potential and fluid dynamics in the Debye layer into a boundary integral numerical solution of the full moving boundary problem.

Michael Siegel
New Jersey Institute of Technology
misesig@njit.edu

MS128

Integral Equations on Domains with Edges

We will discuss the discretization of integral equations on surfaces with edges and corner points. Although achieving high accuracy in this setting is not that difficult, there are a number of issues (such as the need for highly anisotropic meshes) which make the construction of efficient discretization procedures challenging. We will discuss our progress on addressing these issues.

James Bremer
UC Davis
bremer@math.ucdavis.edu

MS128

Integral Equation Techniques for Solving Elliptic Problems with Mixed Boundary Conditions

This talk describes integral equation techniques for solving elliptic problems with mixed boundary conditions (i.e. a portion of the obstacle has Dirichlet boundary conditions while the remainder has Neumann boundary conditions.) The proposed approach avoids using a hypersingular kernel as a result the system is better conditioned than existing integral equation based methods. For many problems, the discretized system is amenable linear scaling solvers. Numerical experiments illustrate the performance of the solution technique.

Adrianna Gillman
Dartmouth College
adrianna.gillman@dartmouth.edu

MS128

Practical and Efficient Direct Solvers for BIEs

The last several years have seen rapid progress on constructing direct solvers for the dense linear systems arising upon discretization of BIEs. The goal is to build direct solvers with $O(N^p)$ complexity, where p is one, or close to one, and with high practical efficiency. This talk will describe techniques aimed at improving performance and simplifying coding by using randomized methods to accelerate certain structured matrix computations.

Gunnar Martinsson
Univ. of Colorado at Boulder
martinss@colorado.edu

MS128

Updating Techniques for Hierarchical Factorizations

Many fast direct algorithms for solving linear systems arising from discretized partial differential equations or boundary integral equations rely on a hierarchical tree decompo-
sition of the domain, e.g., methods based on nested dissection for PDEs or recursive skeletonization for integral equations. In this talk we will show that, given a factorization corresponding to a given problem, we can update the factorization to solve problems related by local changes such as localized modification of the PDE coefficients or perturbation of the problem geometry. In cases where the computational cost per tree node is the same across all nodes, updating is both asymptotically and practically less expensive than re-doing the complete factorization.

Victor Minden
Stanford
vminden@standford.edu

MS129
Diffusion-Limited Growth and Decay of 2D Epitaxial Nanoclusters: Atomistic and Coarse-Grained Modeling

Random deposition onto isotropic or anisotropic crystalline surfaces leads to diffusion-mediated formation of an ensemble of epitaxial 2D islands or nanoclusters. The process might be described by stochastic fully atomistic-level models or by coarse-grained 2D continuum descriptions of surface diffusion and aggregation. However, the latter must retain the stochastic aspects of nucleation, and an open challenge is to capture far-from equilibrium island growth shapes (as this requires precise treatment of non-equilibrium diffusion around island edges). After deposition, these island ensembles coarsen usually by Ostwald ripening. Again atomistic or continuum-level treatment is possible, the latter being more common. However, recent experiments reveal shortcomings of standard continuum formulations for strongly anisotropic systems, a feature which we address.

Jim W. Evans
Ames Laboratory USDOE and Iowa State University
evans@ameslab.gov

Yong Han
Iowa State University
yhan.ameslab@gmail.com

MS129
Efficient Numerical Methods for Molecular Beam Epitaxial Growth

This work is concerned with efficient numerical methods for the simulation of the dynamics of molecular beam epitaxial (MBE) growth. Numerical simulations of MBE models require long time computations, and therefore large time-stepping methods become necessary. In this work, we present some unconditionally energy stable finite difference schemes for MBE models. We will also discuss on some time adaptive strategies.

Zhonghua Qiao
Applied Math Dept.
The Hong Kong Polytechnic University Hong Kong
zhonghua.qiao@polyu.edu.hk

MS129
Stable and Convergent Numerical Schemes for Phase Field Crystal Models

Crystalline materials have atomic-scale imperfections in the form of defects – such as vacancies, grain boundaries, and dislocations – and controlling, or at least predicting, the formation and evolution of such imperfections is a major challenge. The phase field crystal (PFC) methodology has emerged as a important, increasingly-preferred modeling framework for investigating materials with atomic-scale structures on diffusive time scales. In essence, the fast atomic vibrational time-scale phenomena are averaged out, but the atomic spatial resolution is preserved. In this talk, I describe some efficient, stable, and convergent numerical methods for PFC and PFC-type equations, a family of highly nonlinear hyperbolic-parabolic PDE and integro-PDE. I will also discuss a new PFC framework for multi-spatial-scale modeling based on the recent method of amplitude expansions.

Steven M. Wise
Mathematics Department
University of Tennessee
swise@math.utk.edu

MS129
Continuum Framework for Dislocation Structure, Energy and Dynamics of Dislocation Arrays and Low Angle Grain Boundaries

We present a continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries which may be nonplanar and nonequilibrium. In our continuum framework, we define a dislocation density potential function on the dislocation array surface or grain boundary to describe the orientation dependent continuous distribution of dislocation in a very simple and accurate way. The continuum formulations of energy and dynamics include the long-range interaction of constituent dislocations, local line tension effect of dislocations and the cooperative motion of dislocations, which are derived from the discrete dislocation model. We also present numerical simulations using this continuum model including applications to dislocation structures of low angle grain boundaries and interfaces with misfitting spherical inclusions.

Yang Xiang
Hong Kong University of Science and Technology
maxxiang@ust.hk

MS130
Matrix-Valued Kernels Associated to Vector-

Valued Random Fields with Correlated Components

We propose a class of nonseparable space-time compactly supported correlation functions, termed here quasi-tapers, to mean that such correlations can be dynamically compactly supported over space or time. An important feature of the quasi-taper is given by a spatial (temporal) compact support being a decreasing function of the temporal lag (spatial distance), so that the spatial (temporal) compact support becomes smaller when the temporal (spatial) dependence becomes weaker. We propose general classes as well as some examples that generalize the Wendland tapers to the space-time setting. Then a non separable space-time taper with spatial and temporal compact support is obtained as tensor product of quasi-tapers. Our space-time taper includes all the known constructions as special cases and will be shown to have great flexibility. Covariance tapering is then explored as an alternative to maximum likelihood when estimating the covariance model of a space-time Gaussian random field in the case of large datasets. The proposed quasi and space-time tapers allow to perform covariance tapering when dealing with data that are densely observed in time (space) but sparse in space (time) or densely observed both in time and space. The statistical and computational properties of the space-time covariance tapering is addressed under increasing domain asymptotics. A simulation study and two real data examples illustrate the statistical and computational performances of the covariance tapering with respect to the maximum likelihood method using the space-time tapers proposed.

Emilio Porcu
Institute for Mathematical Stochastics
Georg-August-Universitaet, Goettingen, Germany
emilio.porcu@usm.cl

MS130
Improved Exponential Convergence Rates for Regularized Approximation by Oversampling Near the Boundary

We discuss convergence rates for kernel based approximation in smooth settings. Typical examples range from classical function approximation to the approximate solution of partial differential equations. In smooth settings one expects exponential convergence orders, but the numerical schemes are notoriously ill conditioned, which enforces some kind of regularization. Further, in smooth settings one often observes boundary effects, i.e., the deterministic approximation rates for scattered data approximation are improved globally if the data sets are distributed more densely near the boundary. In this talk, such boundary effects for regularized approximation schemes are analyzed by means of sampling inequalities for smooth functions. The latter provide a bound on a continuous norm in terms of a discrete norm and an error term that tends to zero exponentially as the discrete data set becomes dense. We show that the exponential convergence rates are improved by oversampling near the boundary. This is partly based on joint works with Christian Rieger (Bonn) and Robert Schaback (Göttingen).

Barbara Zwicknagl
University of Bonn
zwicknagl@iam.uni-bonn.de

MS130
Recurrence Operators for Zonal Basis Functions on the Sphere

One approach for simulation of stationary random fields in the Euclidean space is based on Matheron’s turning bands methods. The idea behind this method is to relate positive definite radial functions in the \mathbb{R}^d to corresponding ones on the circle using averaging. The explicit form of the turning bands operator turns out to be a special case of a well-known recurrence relation for Bessel functions. Aiming at similar recurrences for zonal basis functions on the sphere, we can use relations between Gegenbauer polynomials of different parameters. Interestingly, there is a set of operators which can be used to derive analogous relations. We will discuss some of these operators and their interrelations.

Wolfgang zu Castell
Heinrich-Zentrum München, German Research Center for Envir
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
castell@gsf.de

MS131
Tracking a Low-Dimensional Vector Via Quantized Measurements Or Pairwise Comparisons

Suppose that we wish to track a point $x_t \in \mathbb{R}^k$ as its position changes in time. In this talk I will describe approaches to this problem in two practical settings. First, I will consider the case where the observations consist of highly quantized linear measurements. Next I will describe the related case where our data is given by pairwise comparisons between between x_t and various points $x_1, \ldots, x_n \in \mathbb{R}^k$ with known position. I will describe practical algorithms for handling both cases.

Mark Davenport
Georgia Institute of Technology
mdav@gatech.edu

MS131
Intrinsic Volumes of Convex Cones: Theory and Applications

Spherical intrinsic volumes are fundamental statistics of convex cones, and occupy a central role in integral geometry. They also appear in various guises in statistics, convex optimization, compressed sensing (polytope angles), algebraic combinatorics, and differential geometry, among other fields. In particular, they are the main ingredients of the classical kinematic formulas, which describe the exact intersection probabilities of randomly oriented cones. Combining the kinematic formula with another pillar of integral geometry, the spherical Steiner formula, and concentration of measure arguments, gives rise to a complete explanation of phase transition phenomena for general random convex optimization problems. This talk surveys the theory of intrinsic volumes, present methods of computation, and highlights connections to problems in statistics, convex regularization, and to the theory of condition numbers for convex optimization. Based on joint work with Dennis Amelunxen, Mike McCoy and Joel Tropp

Martin Lotz
School of Mathematics
The University of Manchester
MS131
The Achievable Performance of Demixing

Demixing is the problem of disentangling multiple informative signals from a single observation. These problems appear frequently in image processing, wireless communications, machine learning, statistics, and other data-intensive fields. Convex optimization provides a powerful framework for creating tractable demixing procedures that work right out of the box. In this talk, we describe a geometric theory that precisely characterizes the performance of convex demixing methods under a generic model. This theory precisely identifies when demixing can succeed, and when it cannot, and further indicates that a sharp phase transition between success and failure is a ubiquitous feature of these programs. Our results admit an elegant interpretation: Each signal has an intrinsic dimensionality, and demixing can succeed if (and only if) the number of measurements exceeds the total dimensionality in the signal. Joint work with Joel A. Tropp.

Michael B. McCoy, Joel A. Tropp
Caltech CMS
mccoy@caltech.edu, jtropp@cms.caltech.edu

MS131
Adaptively Sensing in Compressive Sensing Applications

In this talk we will present new results in compressive sensing using adaptive sampling. Compressive sensing is a new signal acquisition technology which reconstructs a high dimensional signal from a small number of linear measurements. In the typical setting, these measurements are determined a priori. However, in some cases selecting these measurements adaptively can lead to improvements both in error and in the number of samples required. We discuss some fundamental limitations of this sampling scheme, as well as some new encouraging results which show compressive sensing can benefit from adaptivity.

Deanna Needell
Department of Mathematics
Claremont McKenna College
dneedell@cmc.edu

MS132
Building Meso-Scale Stochastic Models Using the Mori-Zwanzig Formalism

We present a meso-scale model built from the Mori-Zwanzig (MZ) formalism. The meso-scale model is built with the projection operator that is applied on the discretized MZ equation in time. The projection operator is used to calculate the memory function with a simple recurrence without having to compute orthogonal dynamics, or e^{itH}. Assuming that the memory function can be well-approximated by exponentials, we can generate the corresponding fluctuation using Ornstein-Ulenbeck process. Then we can obtain the generalized Langevin equation. Our approach was validated by the simple heat bath model, in which the analytical solution is known. The Dissipative Particle Dynamics (DPD) system with one tagged particle was also used as a numerical test case. Finally, we apply our framework to generate the meso-scale model of alanine dipeptide (in Φ and Ψ dihedral angle) to correctly predict the kinetics of the bio-molecule.

Hee Sun Lee, Surl-Hee Ahn
Stanford University
hslee88@stanford.edu, sahn1@stanford.edu

MS132
Stochastic Modeling Through the Mori-Zwanzig Formalism

The Mori-Zwanzig formalism tells us that if we project a dynamical system onto a subset of its degrees of freedom, the resulting process will generally exhibit memory effects. Unfortunately, the associated memory kernels, which are needed for dimension reduction, are typically difficult to obtain directly from the formalism itself. In this talk, we propose an empirical approach based on statistical estimation and apply it to certain prototypical models of spatiotemporal chaos.

Alexander J. Chorin
University of California, Berkeley
Mathematics Department
chorin@math.berkeley.edu

Kevin K. Lin
Department of Mathematics
University of Arizona
klin@math.arizona.edu

MS132
MZ-PDF Methods for Stochastic Analysis in Non-linear Dynamical Systems

We propose a new framework for stochastic analysis in non-linear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving reduced-order PDF equations for quantities of interest, e.g., functionals of the solution to systems of stochastic ordinary and partial differential equations. The proposed approach is useful to many disciplines as it leads to new and more efficient computational algorithms.

Danielle Venturi
Division of Applied Mathematics
Brown University
MS133
A Predator-prey-disease Model with Immune Response in Infected-prey

This talk presents a predator-prey-disease model with immune response in the infected prey. The basic reproduction number of the within-host model will be defined and it is found that there are three equilibria: extinction equilibrium, infection-free equilibrium and infection-persistent equilibrium. The local stabilities of these equilibria under certain conditions depending on the basic reproduction and invasion reproduction numbers shall be explained in this talk. Finally the global stability of the predator-free equilibrium will be explained in this talk.

Souvik Bhattacharya
North Dakota State University
Visiting Assistant Professor
souvik.bhattacharya@ndsu.nodak.edu

MS133
Modeling the Spread of Bacterial Infections in a Hospital with Environmental Contamination

Nosocomial infections, i.e. hospital-acquired infections, have become a major concern for public health officials as the amount of antibiotic-resistant bacterial infections increases. One important mechanism for bacterial persistence is the ability of bacteria to contaminate hospital surfaces and survive in this environment for extended periods of time. In this talk, I discuss a differential equation model of bacterial infections in a hospital with environmental contamination. The basic reproduction number of the model is proved to be a global threshold under certain conditions. In addition, simulations of the deterministic model and a stochastic version of the model provide insight into an outbreak of bacterial infections in a hospital. This is joint work with Glenn Webb.

Cameron Browne
Vanderbilt University
cameron.j.browne@vandebilt.edu

MS133
HIV Dynamic Control Following Cessation of Antiretroviral Therapy

Reports suggest that HIV antiretroviral therapy initiated early may permit post-treatment control (PTC) of HIV (undetectable viral load) after treatment termination. We hypothesize that early treatment induces PTC by restricting the latent reservoir size, allowing immune responses to control infection post-treatment. ODE model analysis reveals a range in immune response strengths where a patient may show viral rebound or PTC. In this bistable regime, we predict a latent reservoir size threshold below which PTC is achievable.

Jessica M. Conway
Los Alamos National Laboratory
conway@lanl.gov

Alan S. Perelson
Theoretical Biology and Biophysics
Los Alamos National Lab
n/a

MS133
Dynamics of Low and High Pathogenic Avian Influenza in Wild and Domestic Bird Populations

An earlier infection with low pathogenic avian influenza (LPAI) provides a partial immunity towards infection with high pathogenic avian influenza (HPAI). We consider a time since recovery structured model to study the dynamics of LPAI and HPAI in wild and domestic bird populations. The system has a unique disease-free equilibrium which is locally and globally stable when the reproduction number is less than one. There are unique LPAI-only and HPAI-only equilibria, which are locally asymptotically stable as long as the other pathogen can not invade the equilibrium. There exist a coexistence equilibrium when the invasion number of both pathogens are greater than one. We show that both pathogens can coexist in the form of sustained oscillations.

Necibe Tuncer
University of Tulsa
necte-tuncer@utulsa.edu

Maia Martcheva, Juan Torres
University of Florida
maia@ufl.edu, gatorcha@ufl.edu

MS134
Inverting for Maritime Environments Using Empirical Eigenfunction Bases from Radar Imagery

Radar wavefront arrival times and spatial energy deposition, associated with propagation through a given marine atmospheric boundary layer, may be described using proper orthogonal modes, and subsequently represented as points on the compact Stiefel manifold. By exploiting the Riemannian structure of Stiefel, interpolation within the cloud of manifold points is possible when solving inverse problems aimed at uncovering in situ maritime conditions affecting radar propagation on a given day.

Vasileios Fountoulakis, Christopher J. Earls
Cornell University
vf59@cornell.edu, cje23@cornell.edu

MS134
Optimal Filters for General-Form Tikhonov Regularization

In this work, we use training data in an empirical Bayes risk framework to estimate optimal regularization parameters for the general-form Tikhonov problem and the multi-parameter Tikhonov problem. We will show how estimates of the optimal regularization parameters can be efficiently obtained and present several numerical examples from signal and image deconvolution to demonstrate their performance.
MS134

Reproducible Kernel Hilbert Space Modeling and Computing in Imaging

Regularization ensures uniqueness and smoothness in various inverse problems arisen in imaging science. Most of the existing regularization methods cannot efficiently interpolate or extrapolate image intensity. They are thus not effective in solving image super-resolution and inpainting problems that both need to extend intensity information at one region to another. We use reproducible kernel Hilbert space (RKHS) to model these two problems. RKHS method is more flexible, adaptive to data and involves simple computation.

Weihong Guo
Department of Mathematics, Case Western Reserve University
wxg49@case.edu

Liangjian Deng, Si Wang
University of Electronic Science and Technology of China
liangjian1987112@126.com, uestcswang@163.com

MS134

Improved Image Reconstruction by Statistically Estimating Near-Optimal Parameters for Spectral Filters

Spectral Filters improve the reconstruction of images corrupted by blur and unknown noise. We compute in this work the near-optimal parameters for general filters such as a hybrid method that combines the Tikhonov filter and the truncated SVD. Using the discrete Picard condition, we provide an algorithm for computing a Picard parameter, a cut-off for the singular values beyond which the observations are predominantly noise. The method compares favorably against other reconstruction methods.

Victoria Taroudaki
University of Maryland
victtar@math.umd.edu

Dianne P. O’Leary
University of Maryland, College Park
Department of Computer Science
oleary@cs.umd.edu

MS135

POD Reduced-order Models of Complex Fluid Flows

The proper orthogonal decomposition (POD) method has been commonly applied to generate reduced-order models for turbulent flows. However, to achieve a balance between the low computational cost required by a reduced-order model and the complexity of the targeted turbulent flows, appropriate closure modeling strategies are needed. In this talk, we present several new nonlinear closure methods for the POD reduced-order models, which synthesize ideas originating from large eddy simulation. We design efficient discretization algorithms for the new models and perform the numerical validation and verification in challenging computational settings.

Zhu Wang
IMA, University of Minnesota
MS136
Distribution of Directional Change as a Signature of Complex Dynamics

Analyses of random walks traditionally use the mean square displacement (MSD) as an order parameter characterizing dynamics. We show that the distribution of relative angles of motion between successive time intervals of random walks in two or more dimensions provides information about stochastic processes beyond the MSD. We illustrate the behavior of this measure for common models and apply it to experimental particle tracking data. For a colloidal system, the distribution of relative angles reports sensitively on caging as the density varies. For transport mediated by molecular motors on filament networks in vitro and in vivo, we discover self-similar properties that cannot be described by existing models and discuss possible scenarios that can lead to the elucidated statistical features.

Stas Burov
University of Chicago
tba

Frederic Chavane
CNRS
Institut de Neurosciences de la Timone
frederic.chavane@univ-amu.fr

Alain Destexhe
CNRS UNIC
destexhe@unic.cnrs-gif.fr

MS137
A Novel Higher Order ETD Scheme for System of Coupled Semi-linear PDEs

We introduce a novel version of the ETD3RK scheme based on \((1, 2)\)–Padé approximation to exponential function. In addition, we develop its extrapolation form to improve temporal accuracy to the fourth order. The scheme and its extrapolation are strongly stable and have ability to damp spurious oscillations. We demonstrate the performance of the schemes on system of nonlinear Schrödinger equations and problem from biochemistry which contains discontinuity between initial and boundary condition.

Harish Bhatt
Middle Tennessee State University
hpb2e@mtmail.mtsu.edu

MS136
Honeybee Nest Bentilation: A Bio-robotic Study of Collective Flapping Wing Fluid Mechanics

Honeybee workers ventilate their hive by collectively fanning their wings. The fluid mechanics of this phenomena— in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground—are unstudied and may play an important role in the physiology of colony life. We perform field and laboratory observations of nest ventilation wing kinematics. Through recent advances in micro-robotics we construct at scale micro-mechanical models of honeybee ventilation swarms to explore the fluid mechanics of collective ventilation.

Nick Gravish
Harvard University
nick.gravish@gmail.com

MS137
Local Discontinuous Galerkin Method with a Fourth Order Exponential Time Differencing Scheme for System of Nonlinear Schrödinger Equations

This paper studies a local discontinuous Galerkin (LDG) approximation combined with fourth order exponential time differencing Runge-Kutta (ETDRK4) method for solving the N-coupled nonlinear Schrödinger equation (NLSE). The numerical method is proven to be highly efficient and stable for long-range soliton computations. Numerical examples with periodic boundary conditions are provided to illustrate the accuracy, efficiency and reliability of the proposed method.

Xiao Liang
Middle Tennessee State University
xl2h@mtmail.mtsu.edu

MS136
Propagating Waves Structure Spatiotemporal Activity in Visual Cortex of the Awake Monkey

Propagating waves have recently been found in the neocortex of anesthetized animals. Whether propagating waves appear during awake and conscious states, however, remains unclear. To address this, we apply a phase-based analysis to single-trial voltage-sensitive dye imaging data, which captures the average membrane potential of neuronal populations over large cortical areas with high spatiotemporal resolution. With this approach, we detect and characterize spontaneous and stimulus-evoked propagating waves in visual cortex of the awake monkey.

Lyle Muller
CNRS UNIC
muller@unic.cnrs-gif.fr

Alexandre Reynaud
CNRS & Aix-Marseille Université, Marseille, France
tba

Alexandre Reynaud
CNRS & Aix-Marseille Université, Marseille, France
tba

MS137
A New Family of Discontinuous Galerkin Methods for Linear and Nonlinear Partial Differential Equations

In this talk, we discuss a discontinuous Galerkin (DG) finite element differential calculus theory for approximating weak derivatives of Sobolev functions and piecewise Sobolev functions. By introducing numerical one-sided derivatives as building blocks, various first and second order numerical operators such as the gradient, divergence, Hessian, and Laplacian operator are defined, and their corresponding calculus rules are established. We show that several existing DG methods can be rewritten compactly using the proposed DG framework, and that new DG methods for linear and nonlinear PDEs are also obtained.

Michael J. Neilan
University of Pittsburgh
Department of Mathematics
Application of the Laplace Transform Method to Solving Evolution Problems

We are interested in the highest-possible order time discretization for solving parabolic problems. Recently the method of Laplace transform has been drawing an increasing attention. Instead of solving parabolic problems using time-marching algorithms, we attempt to solve the Laplace-transformed complex-valued elliptic equations in parallel. The inverse Laplace transform then gives the time-domain solutions by using exponential convergent quadrature rules on carefully-chosen contours. We will give a short review on this approach and generalize the method to solving parabolic equations with time-dependent coefficients. The method will be shown to converge exponentially under suitable assumptions. We will discuss a couple of directions to generalize this approach.

Dongwoo Sheen
Seoul National University
Department of Mathematics
sheen@snu.ac.kr

Uncover Deep Learning: Assess Online Learners Cognitive Presence in Mooc

The study will investigate learners cognitive presence level in a five-week MOOC data science course. Transcript analysis, social network analysis, learning records (i.e. frequency of views, grades), survey of perceived learning and satisfaction will be used to assess the learning process and outcomes. The results will reveal the levels of cognitive presence exhibited by learners, how their cognitive presence evolves overtime, and how their levels of cognitive presence correlate with their online behaviors and satisfactions.

Ye Chin
Syracuse University
ychen129@syr.edu

Coalition for Undergraduate Computational Science and Engineering Education - Proof of Concept

This talk will present the project funded by NSF TUES to create a cluster of collaborating institutions that combine students into common classes and use cyberlearning technologies to deliver and manage instruction. As an idea of scale-up project, we will discuss how to advance Undergraduate Computational Science Education through learning analytics, deep learning assessment and massive open online courses.

Hong Liu
Department of Mathematics
Embry-Riddle Aeronautical University
liuho@erau.edu

Undergraduate Exploration of Agent-Based Modeling

The final week of a modeling and simulation course in fall, 2013, students explored agent-based models (ABMs) with NetLogo. Initially, they completed tutorials to develop models on unconstrained growth and average distance covered by random walkers. Besides revealing their utility, these models provided an opportunity to compare agent-based modeling with previously considered techniques - system dynamics modeling, empirical modeling, and cellular automaton simulations. Improved test scores and positive questionnaire results support the success of this approach.

Angela B. Shiflet
McCalla Professor of Math. & CS, Dir. of Computational Sci.
Wofford College
shifletab@wofford.edu

George W. Shiflet
Wofford College
shifletgw@wofford.edu

The Ingenious Project and Other Initiatives

This talk will focus on aspects of the INGenIOuS Mathematical Sciences Workforce Development project that relate especially to computational applied mathematics education. The NSF-funded project was a joint venture of all the main professional societies (ASA, AMS, MAA and SIAM). The focus on workforce development led to a strong role for applied mathematical science education. This theme continues for the upcoming CBMS forum, which will focus on the first two years of college education.

Peter R. Turner
Clarkson University
School of Arts & Sciences
pturner@clarkson.edu

Mathematical Modeling and Discretization for Exascale Simulation

In simulations, the choices of mathematical models and their discretization significantly influence the properties of the resulting discrete systems. The advent of exascale computing is an opportunity to re-think the formulation and implementation of mathematical models and discretizations in ways that are more favorable for numerical integration on exascale machines. We will survey several promising research topics and the fundamental constraints involved in the process of expressing physical phenomena as fully discrete models.

Luis Chacon
Los Alamos National Laboratory
chacon@lanl.gov

Resilient Algorithms and Computing Models

Abstract not available at time of publication.

Michael A. Heroux
Sandia National Laboratories
MS139
Discrete Solvers at the Exascale

Discrete solvers are crucial in scientific simulations. Moving to the exascale will put heavier demands on these kernels due to the need for increasing amounts of data locality and to obtain much higher factors of fine-grained parallelism. Thus, parallel solvers must adapt to this environment, and new algorithms and implementations must be developed to capitalize on the capabilities of future hardware. We will discuss several key topics that are potentially relevant in the exascale era.

Esmond G. Ng
Lawrence Berkeley National Laboratory
egng@lbl.gov

MS139
Hierarchical Multilevel Methods for Exascale Uncertainty Quantification and Optimization

The sustained increase in computational capabilities will enable new possibilities at the intersection of optimization and uncertainty quantification (UQ), including model calibration, robust control and design under uncertainty. However, numerous changes in scientific computing at extreme scales are expected to challenge the current UQ/optimization paradigm, wherein these techniques are typically wrapped around a black-box simulation. This talk will focus on several multi-fidelity, hierarchical approximations for UQ/optimization that exploit greater levels of parallelism provided by emerging many-core architectures.

Clayton G. Webster
Oak Ridge National Laboratory
webstercg@ornl.gov

Stefan Wild
Argonne National Laboratory
wild@mcs.anl.gov

MS140
The Behavior of a Quasi-Circular Vesicle During Drying Processes

A proposed method for the preservation of biological cells is through desiccation. We consider a two-dimensional, quasi-circular vesicle, whose boundary is an inextensible bilipid membrane wall but whose enclosed area varies owing to the osmotic transport of water through the membrane. The evolution of the vesicle’s shape is computed and the effects of advection, diffusion and the membrane’s permeability are analyzed and compared with conclusions drawn from recent level-set simulations.

Maurice J. Blount
Cardiff University
blountmj@cardiff.ac.uk

Stephen H. Davis
Dept. of Engineering Sciences and Applied Math
Northwestern University
sdavis@northwestern.edu

Michael J. Miksis
Department of Engineering Sciences and Applied Mathematics
Northwestern University
miksis@northwestern.edu

MS140
Electrohydrodynamics of Lipid Bilayer Vesicles in AC and DC Fields

Vesicles are closed, fluid-filled lipid bilayers which exhibit shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics, then use the boundary integral method to numerically investigate the dynamics of a vesicle in various electric field profiles. Finally, we present a comparison of our numerical results with recent small deformation theory and experimental data.

Lane McConnell
University of New Mexico
lmcconne@gmail.com

MS140
Field Theoretic Approaches for Non-Spontaneous Deformation of Bilayers under Surface Director Energies

The shapes of membranes are continually changing in their aqueous environment. Often, these shape changes involve proteins but the mechanistic coupling between proteins and bilayers is poorly understood. In this talk, we will discuss some classical and field theoretic calculations which have given insight into membrane shape changes away from equilibrium and allowed us to evaluate a path of deformations leading to a least energy barrier between quasi-static membrane configurations.

Rolf Ryham
Fordham University
rryham@fordham.edu

Fredric Cohen
Department of Molecular Biophysics and Physiology
Rush University
fredric_cohen@rush.edu

Bob Eisenberg
Department of Molecular Biophysics and Physiology
Rush University Medical Center
beisenbe@rush.edu

MS140
Deformation and Stability of Vesicles in DC Electric Pulses

Electrohydrodynamics of vesicles are investigated under strong DC pulses. In an applied field, the membrane acts as a capacitor and the vesicle deforms into an oblate or prolate ellipsoid. If poration occurs, the membrane capacitor becomes short-circuited and leads to non-ellipsoidal shape and vesicle collapse. The evolution of vesicle shape is studied for DC pulses of different strength and duration. Membrane composition is varied to observe the effect of membrane viscosity, capacitance, and poration threshold.

Paul Salipante
MS142
Fast Iterative Methods for The Variable Diffusion Coefficient Equation in a Disk

Variable coefficient diffusion equation has widespread applications in many areas of Physics, Engineering and Industrial research like the flow in porous media, tomography in image processing to mention a few. We present here fast, efficient iterative methods to solve this equation in a disk with applications to the Ginzburg Landau equation. Our technique is based on the solution of the Poisson equation in a disk using fast Fourier transform and recursive relations. The method takes advantage of scaling the original problem and using shifted iteration. This is an ongoing work and our focus is to develop a fast solution for this non-separable elliptic equation in arbitrary two-dimensional domains by the help of domain embedding method using the optimal distributed control algorithm. The performance of this fast method is illustrated with some numerical examples.

Aditi Ghosh, JoungDong Kim
Texas A&M University
amathematics@gmail.com, jdkim@math.tamu.edu

Prabir Daripa
Texas A&M University
Department of Mathematics
prabir.daripa@math.tamu.edu

MS142
Subspace Iteration Randomization and Low-rank Approximation

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approximations, randomized algorithms have attracted researchers’ recent attention due to their surprising reliability and computational efficiency in different application areas. Typically, such algorithms are shown to compute with very high probability low-rank approximations that are within a constant factor from optimal, and are known to perform even better in many practical situations. In this paper, we present a novel error analysis that considers randomized algorithms within the subspace iteration framework and show with very high probability that highly accurate low-rank approximations as well as singular values can indeed be computed quickly for matrices with rapidly decaying singular values. Furthermore, we show that the low-rank approximations computed by these randomized algorithms are actually rank-revealing approximations, and the special case of a rank-1 approximation can also be used to correctly estimate matrix 2-norms with very high probability. Our numerical experiments are in full support of our conclusions.

Ming Gu
University of California, Berkeley
Mathematics Department
mgu@math.berkeley.edu

MS142
Fast Algorithms for the Evaluation of Layer Potentials using ‘Quadrature by Expansion’

Quadrature by Expansion, or ‘QBX’, is a systematic, high-order approach to singular quadrature that applies to layer potential integrals with general kernels on curves and surfaces. This talk discusses algorithmic options for using QBX within a variant of the Fast Multipole Method. A method is presented that preserves accuracy, generality and close evaluation capability while only requiring a relatively modest increase in computational cost in comparison to a point-to-point FMM.

Andreas Klöckner
Courant Institute of Mathematical Sciences
New York University
andreas@illinois.edu

MS142
Stability and Accuracy of Structured Direct Solvers

Structured direct solvers are known to be very efficient in solving some integral equations and PDEs. Here, we show that they are not only faster than standard direct solvers, but can also have much better stability. In particular, for hierarchically semiseparable (HSS) matrices, we first show how the approximation errors can be controlled by the tolerance in either classical or randomized compression. We further demonstrate the backward stability of the direct solution. In fact, the growth of the numerical error in the direct factorization is significantly slower than that in standard LU factorization with pivoting. The growth factors are derived.

Jianlin Xia
Department of Mathematics
Purdue University
xiaj@math.purdue.edu

Yuanzhe Xi
Purdue University
yxi@math.purdue.edu

MS143
Fictitious Domain Method with a Hybrid Cell Model for Simulating Motion of Cells in Fluid Flow

This talk will consider a hybrid model to represent biological cells and the distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) formulation for simulating the fluid/cell interactions. The hybrid model to represent the cellular structure consists of a continuum representation of the lipid bilayer, from which the bending force is calculated through energetic variational approach, a discrete cytoskeleton model utilizing the worm-like chain to represent network filament, and area/volume constraints. For our computational scheme, a formally second-order accurate fractional step scheme is employed to decouple the entire system, and is solved by the projection method, level set method, ENO reconstruction, and the Newton method. Numerical results compare favorably with previously reported numerical and experimental results, and show that...
our method is suited to the simulation of the cell motion in flow.

Wenrui Hao
Dept. of Applied and Comp. Mathematics and Statistics
University of Notre Dame
whao@nd.edu

MS143
Modeling and Computation of a Precipitate in Inhomogeneous Elastic Media

We present linear theory and nonlinear simulations to study the self-similar growth/shrinkage of a precipitate in a 2D elastic media. For given applied stress boundary conditions, we show that depending on the mass flux entering/exiting the system, there exist critical flux and elasticity at which compact self-similar growth/shrinkage occurs in the linear regime. Numerical results reveal that at long times there exists nonlinear stabilization that leads the precipitate to evolve to compact limiting shape.

Shuwang Li
Department of Applied Mathematics
Illinois Institute of Technology
sli@math.iit.edu

MS143
A Boundary Integral Method for Particles Moving in Viscoelastic Fluids

We present a boundary integral method for computing forces on interacting particles in an unsteady viscoelastic flow. Using a correspondence principle between Stokes flow and linear viscoelasticity in the Fourier domain, we provide a simple boundary integral formulation for solid particles moving in a linear viscoelastic fluid. We present an accurate numerical method for finding the particle surface forces when the velocities are given or vice versa. Our numerical methods are validated against a known exact solution and an existing asymptotic solution. The comparisons are in excellent agreement.

Xiaofan Li
Illinois Institute of Technology
lix@iit.edu

MS143
Solving Interface Problems to High-order on a Regular Cartesian Grid

In this talk I will present a regular Cartesian grid framework for solving two problem of central importance to interfacial dynamics. The first one is the solution of Poisson’s equation with interface jump conditions and the second one is the evolution of the interface. The methods presented are high order (4th order accurate), optimally local (compact stencil sizes), and easy to implement. I will present applications of these methods to solve the incompressible two-phase Navier Stokes equations for flows involving the interaction of droplets with a membrane.

Jean-Christophe Nave
McGill University
jcnave@math.mcgill.ca

MS144
Radial Basis Function Collocation Method in Block Pseudospectral Mode

We numerically investigate radial basis function (RBF) collocation method in block pseudospectral (BPS) mode, a method popularized by Driscoll and Fornberg for pseudospectral collocation method. The RBF implementation allows us to deal with irregular domain whereas matching solution and derivatives continuity are done in similar ways as in BPS. Numerical experiments in solving simple collocation problems will be shown.

Alfa Heryudono
University of Massachusetts Dartmouth
Department of Mathematics
aheryudono@umassd.edu

MS144
Adaptive Trial Subspace Selection for Ill-Conditioned Kernel Collocation

Choosing data points is a common problem for researchers who employ various meshless methods for solving partial differential equations. On the one hand, high accuracy is always desired; on the other, ill-conditioning problems of the resultant matrices, which may lead to unstable algorithms, prevent some researchers from using meshless methods. In this talk, we will go over some adaptive trial subspace selection algorithms that select basis to approximate the true solution of the full problem.

Ling Leevan
Hong Kong Baptist University
Department of Mathematics
lling@hkbu.edu.hk

MS144
Reproducing Kernel Hilbert Spaces Related to Parametric Partial Differential Equations

Parametric partial differential equations often arise in complicated physical simulations. A recent source for high- and even infinite dimensional problems is the modeling of uncertainties. For the efficient numerical treatment of those problems it is crucial to have a decay in importance of the input parameters. Such a decaying ordering can be formally stated in terms of reproducing kernels. Such a point of view also indicates numerical schemes which are well-known in the kernel-based literature. We will provide some non-standard examples and discuss the resulting approximation properties. This is partly based on joint work with M. Griebel and B. Zwicknagl (both Bonn University).

Christian Rieger
Universitat Bonn
Haussdorff Center for Mathematics
rieger@ins.uni-bonn.de

MS144
A Novel Radial Basis Function (RBF) Method for Solving Partial Differential Equations (PDEs) on Large Point Clouds

Radial Basis Function (RBF) methods, with advantages such as mesh-free, simplicity of implementation, and dimension-independence, have been broadly employed for reconstructing arbitrary surfaces. However, there are still many challenge problems in the numerical solution of Partial Differential Equations (PDEs) on large point clouds. In
this talk, a novel RBF method will be briefly introduced. Several related topics, such as fast algorithms, treecode, will also be discussed. Numerical examples demonstrate that this method yields promising results.

Lei Wang
Argonne National Laboratory
wang256@uwm.edu

Zeyun Yu
University of Wisconsin, Milwaukee
"zeyun yu" zyu@uwm.edu

Emmanuel O. Asante-Asamani
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
eoa@uwm.edu

MS145
Exponentially Decaying Error Rate in One-Bit Compressive Sensing

In one-bit compressive sensing, s-sparse vectors $\mathbf{x} \in \mathbb{R}^n$ are acquired via extremely quantized linear measurements $y_i = \text{sgn}(\langle a_i, \mathbf{x} \rangle)$, $i = 1, \ldots, m$. Several procedures to reconstruct these sparse vectors have been shown to be effective when a_1, \ldots, a_m are independent random vectors. They typically yield an error decaying polynomially in $\lambda := m/(s \log(n/s))$. This rate cannot be improved in the measurement framework described above. However, we show that a reconstruction error decaying exponentially in λ is achievable when thresholds τ_1, \ldots, τ_m are chosen adaptively in the quantized measurements $y_i = \text{sgn}(\langle a_i, \mathbf{x} \rangle - \tau_i)$, $i = 1, \ldots, m$. Our procedure, which is robust to measurement error, is based on a simple recursive scheme involving either hard-thresholding or linear programming.

Richard G. Baraniuk
Rice University
Electrical and Computer Engineering Department
richb@rice.edu

Simon Foucart
Mathematics
University of Georgia
foucart@math.uga.edu

Deanna Needell
Department of Mathematics
Claremont McKenna College
dneedell@cmc.edu

Yaniv Plan
Department of Mathematics
University of Michigan
yplan@umich.edu

Mary Wootters
University of Michigan
wootters@umich.edu

MS145
Compressed Subspace Matching on the Continuum

We consider the general problem of matching a subspace to a set of (compressed) samples. We are interested in the case where the collection of subspaces is continuously parameterized, i.e. uncountably infinite. We present some mathematical theory that shows that a random projection embeds a collection of K-dimensional spaces if the number of samples is on the order of K times a constant that describes the geometry of the collection. We also show how this embedding results in a guarantee on our ability to choose the a subspace which is (almost) as good as the one computed from a full observation of the signal. This is joint work with William Mantzel.

Justin Romberg
School of ECE
Georgia Tech
jrom@ece.gatech.edu

MS145
Constructing Matrices with Optimal Block Coherence

Block coherence of matrices plays an important role in analyzing the performance of block compressed sensing recovery algorithms (Bajwa and Mixon, 2012). We present bounds on worst-case block coherence and Kronecker product constructions which achieve these bounds. We also show that random subspaces have optimal-order worst-case block coherence asymptotically. Finally, we present a flipping algorithm that can improve the average block coherence of a matrix, while maintaining the worst-case block coherence of the original matrix.

Andrew J. Thompson, Robert Calderbank
Mathematics
Duke University
thompson@math.duke.edu, robert.calderbank@duke.edu

Yao Xie
Industrial and Systems Engineering
Georgia Institute of Technology
yao.xie@isye.gatech.edu

MS145
Compressed Sensing and Sigma-Delta Quantization: Decoding Via Convex Optimization

We introduce an alternative reconstruction method for signals whose compressed samples are quantized via a Sigma-Delta quantizer. The method is based on solving a convex optimization problem, and unlike the previous approaches, it yields a stable and robust estimate of the original signal. Consequently, we can use Sigma-Delta quantizers for compressible signals and when the measurements are noisy. Finally, our theory applies to "fine" Sigma-Delta quantizers and "coarse" Sigma-Delta quantizers, e.g., 1-bit per measurement.

Ozgur Yilmaz
Mathematics
University of British Columbia
oyilmaz@math.ubc.ca

Rongrong Wang
University of British Columbia
rongwang@math.ubc.ca

MS146
Mori-Zwanzig Analysis of Brownian Motion in a Confined Molecular System

Brownian motion in molecular systems is one of the orig-
inal examples for which Mori-Zwanzig projection method was developed. Compared to the unbounded case, Brownian motion in a confined fluid exhibits interesting features, which are reflected on its memory kernel. By calculating the memory kernel from molecular dynamics simulations and obtaining analytic results for the Rayleigh gas model, we investigate the effects of confinement.

Changho Kim, George E. Karniadakis
Brown University
Division of Applied Mathematics
changho_kim@brown.edu, george_karniadakis@brown.edu

MS146
Mori-Zwanzig and Adaptive Mesh Refinement for Uncertainty Quantification

We employ the Multi-element generalized Polynomial Chaos method to deal with stochastic equations involving discontinuities in random space. We develop a new criterion through the model reduction and study the connection between the variances of the outputs and the quantities which are selected as the accuracy control parameters to determine when to carry out the mesh refinement. The Kraichnan-Orszag three mode problem is used to illustrate the effectiveness of the algorithm for ODEs.

Jing Li
University of Minnesota
lixxx873@umn.edu

MS146
Scale Dependence and Renormalization in Model Reduction

The problem of model reduction for complex systems is an active area of research. In this talk I want to discuss how the physics inspired concepts of scale dependence and renormalization can be used to facilitate the construction of accurate reduced models for complex problems.

Panos Stinis
University of Minnesota, Twin Cities
stinis@umn.edu

PP1
A New Test for Exclusion Algorithm to Find the Optimum Value of Function in R^n

The problem of finding the global minimum of a vector function is very common in science, economics and engineering. One of the most notable approaches to find the global minimum of a function is that based on interval analysis. In this area, the exclusion algorithms (EAs) are a well-known tool for finding the global minimum of a function over a compact domain. There are several choices for the minimization condition In this paper, we introduce a new exclusion test and analyze the efficiency and computational complexity of exclusion algorithms based on this approach. We consider Lipschitz functions and give a new minimization condition for the exclusion algorithm. Then we study the convergence and complexity of the method.

Ibraheem Alolyan
King Saud University
ialolyan@ksu.edu.sa

PP1
A Mesh Free Method for Numerical Simulation of Calcium Dynamics In Ventricular Myocytes

We consider a coupled system of non-linear reaction-diffusion equations that model the spatio-temporal variation of intracellular calcium concentration in ventricular myocytes. We introduce a modified mesh free method and utilize exponential time differencing, to significantly reduce the simulation time. At the end we present numerical results demonstrating the stability of the method when used on uneven distribution of nodes.

Emmanuel O. Asante-Asamani
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
eoa@uwm.edu

Bruce Wade
Department of Mathematical Sciences, UW-Milwaukee
Milwaukee, Wisconsin 53201-0413
wade@uwm.edu

Zeyun Yu
University of Wisconsin-Milwaukee
yuz@uwm.edu

PP1
Gene Selection from Microarray Data : An Exploratory Approach

The goal of microarray data analyses is often to identify the smallest set of genes that can distinguish between classes of samples (e.g., from unhealthy samples to healthy ones). In this work, we explore current statistical learning techniques on the discovery of informative genes from microarray experiments. In particular, several gene selection algorithms are tested on a microarray data sets from samples in a type-1-diabetes (T1D) study. The results are compared and discussed.

Sami Cheong
University of Wisconsin-Milwaukee
cheongs@uwm.edu

PP1
AWM Workshop: Confidence Sets for Geometric and Topological Distances

Distance measures arise in many contexts. Unfortunately, the most interesting distance is the one between an unknown ground truth object and an object created from sampling. In this talk, we introduce the statistical bootstrap for the purpose of bounding the distance between a reconstructed object and the original object. In particular, we derive confidence sets for persistence diagrams, persistence landscapes, road networks, and Reeb graphs.

Brittany Fasy
Tulane University
bfasy@tulane.edu

PP1
AWM Workshop: Fast Iterative Methods for The Variable Diffusion Coefficient Equation in a Unit
Disk

Variable coefficient diffusion equation has widespread applications in many areas of Engineering and Industrial research like the flow in porous media and Tomography. We present here fast, iterative methods to solve this equation with applications to the Ginzburg Landau equation. Our technique is based on solution of Poisson and Helmholtz equation in a unit disc using fast FFT and recursive relations. The performance of this fast method is illustrated with some numerical examples.

Aditi Ghosh
Texas A&M University
amathematics@gmail.com

PP1

Spatiotemporal Pattern of Temperature Change over US Using Bounded-Variation Segmentation

In order to analyze low frequency variability of climate, the method of bounded-variation segmentation is applied for modeling temperature time series of US from 1184 stations during 1900-2012. The method finds multiple linear trends and locate times of significant changes. Important attribute of this method is that it is not dependent on Gaussian or Markovian assumptions. Also multidimensional analysis used in this method eliminate the effect of sensors relocation on the detected trends.

Mohammad Gorji Sefidmazgi
PhD Student
North Carolina A&T State University
mgorjise@aggies.ncat.edu

Abdollah Homaifar
North Carolina A&T State University
homaifar@ncat.edu

Mina Moradi Kordmahalleh
North Carolina A&T State University
mmoradik@aggies.ncat.edu

PP1

AWM Workshop: The Asymptotic Analysis of a Thixotropic Yield Stress Fluid in Squeeze Flow

The partially extending strand convection model, combined with a Newtonian solvent, is investigated for a viscoelastic fluid in biaxial extensional (squeeze) flow. For a prescribed tensile stress, the asymptotic analysis, while not simple, is an essential tool for the physical interpretation of the distinct stages in evolution. The overall picture that emerges captures a number of features that are associated with thixotropic yield stress fluids, such as delayed yielding and hysteresis for up-and-down stress ramping.

Holly Grant
Virginia Tech
hollygrant@vt.edu

PP1

Multiscale Decomposition and Modeling of Complex Networks

Statistical analyses of networks can provide critical insights into the structure, function, dynamics, and evolution of many complex systems. Here, we introduce a flexible method for synthesizing realistic ensembles of networks starting from a known network, through a series of mappings that coarsen and later refine the network structure by randomized editing. The method, MUSKETEER, preserves structural properties with minimal bias, including unknown or unspecified features, while introducing realistic variability at multiple scales.

Alexander Gutfraind
Cornell University
agutfraind.research@gmail.com

Ilya Safro
Clemson University
isafro@g.clemson.edu

Lauren A. Meyers
The University of Texas at Austin
Section of Integrative Biology
laurenmeyers@mail.utexas.edu

PP1

Pathways to Type 2 Diabetes with a Mathematical Model

We develop a mathematical model of how pancreatic beta cells fail in the progression to type 2 diabetes. Insulin resistance by itself does not generally lead to diabetes unless it is extreme. In contrast, typical degrees of insulin resistance do lead to disease if accompanied by an increased propensity to apoptosis, which impairs the ability to expand beta-cell mass or function in response to insulin resistance. We have incorporated the dynamics of exocytosis of insulin granules. These enhancements allow us to look at the mechanistic defects that underlie observed pathologies such as impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). The model supports associations in experiments between IFG and excess HGP and between IGT and peripheral insulin resistance.

Joon Ha, Arthur S. Sherman
National Institutes of Health
joon.ha@nih.gov, asherman@nih.gov

PP1

Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

The analysis of a safety-critical system often requires detailed knowledge of safe regions and their high-dimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

Yuning He
UC Santa Cruz
yuning.he@nasa.gov

PP1

AWM Workshop: Traveling Fronts to the Combustion and the Generalized Fisher-Kpp Models

We show the nonexistence of traveling fronts in the combustion model with fractional Laplacian \((-\Delta)^s\) when \(s \in \)
Our method can be used to give a direct and simple proof of the nonexistence of traveling fronts for the usual Fisher-KPP nonlinearity. Also we prove the existence and nonexistence of traveling fronts for different ranges of the fractional power s for the generalized Fisher-KPP type model.

Tingting Huan
University of Connecticut
tingting.huan@uconn.edu

PP1
Which Conical Ant Mound is Optimal in Collection of Solar Beams From Transient Sun

We optimize domes of ant nests, receiving energy from solar heating and losing it to a cold night air. Sun completes the daily sky cycle with beams of radiation continuously changing their altitude and azimuthal angles. We calculate the incoming radiation at each exposed point of a conical dome surface and at each instance from dawn to sunset. The daily energy serves as a criterion and the surface area of the cone, through which heat is lost during night time, serves as an isoperimetric constraint in the sense of Poincaré-Szego, with the height to cones base ratio chosen as a control variable. For the simplest case, the instantaneous flux of the terrestrial solar power is explicitly expressed through the altitude Sun angle. Time-integration over the azimuthal angle and areal-integration over the illuminated half-cone give the total solar day energy. This functional is then optimized with respect to the size of the ant hill that answers the question stated in the title.

Rouzalia Kasimova
German University of Technology in Oman
rouzalakasimova@geutech.edu.om

Denis Tishin, Yuri Obnosov
Kazan Federal University, Russia
denis.tishin@kpfu.ru, yuri.obnosov@gmail.com

Anvar Kacimov
Sultan Qaboos University
anvar@squ.edu.om

PP1

The FCH is a higher order free energy which balances solvation energy of ionic groups against elastic energy of the underlying polymer backbone, and describes the formation of solvent network structures which are essential to ionic conduction in polymer membranes. For the H -1 gradient flow of the FCH energy, using functional analysis and asymptotic methods, we drive a sharp-interface geometric motion which couples the flow of co-dimension 1 and 2 network morphologies, through the far-field chemical potential.

Noa Kraitzman
Michigan State University
kraitzm1@msu.edu

PP1
On a Method for Approximation of the Singularity Curve of a Piecewise Constant Function of Two Variables

We modify the method suggested earlier by us and overcome its main deficiency. The method enables the approximation of the singularity curve of a piecewise constant function of two variables by means of its Fourier-Jacobi coefficients. The method is based on the technique suggested by the author for recovering the locations of discontinuities of a piecewise smooth function of one variable. The method could be generalized for functions of three or more variables. In addition, some numerical examples are presented.

George Kvernadze
Weber State University
gkvernadze@weber.edu

PP1
Stable Implementation of Complete Radiation Boundary Conditions in Finite Difference Time Domain Solvers for Maxwell’s Equations

Complete Radiation Boundary Conditions (CRBCs) allow for the efficient truncation of unbounded domains in wave propagation problems. Unlike standard Perfectly Matched Layer (PML) approaches, CRBCs allow for a weakly time dependent error estimate for both propagating and decaying waves. We demonstrate the how the CRBC can be implemented in a Finite Difference Time Domain (FDTD) scheme and obtain an energy estimate using a summation by parts (SBP) argument to prove stability.

John Lagrone, Fritz Juhnke
Southern Methodist University
jlagrone@smu.edu, kjuhnke@smu.edu

Thomas Hagstrom
Department of Mathematics
Southern Methodist University
thagstrom@smu.edu

PP1
Regression in High Dimensions Via Geometric Multi Resolution Analysis

We present a framework for high-dimensional regression using the GMRA data structure. In analogy to classical wavelet decompositions of function spaces, GMRA is a tree-based decomposition of data sets into local affine projections. Moreover, GMRA admits a fast algorithm for computing the projection coefficients on the already-learned dictionary. Within each node of the tree one can also assign regression coefficients in any manner; here we study the simple case of weighted linear regression.

David Lawlor
Department of Mathematics
Duke University
djl@math.duke.edu

PP1
Two Projection Methods for Regularized Total Least Squares Approximation

We consider the Total Least Squares problems with Tikhonov Regularization. Since the problem of finding the Total Least Squares solution is equivalent to the solution of the two parameter linear system, our method derives two nonlinear equations from the two parameter linear system,
applied a Newton method with a nonlinear Jacobian matrix that is computed inexpensively. For large-scale problems, this is further combined with two projection methods, one based on bidiagonal reduction, the other projecting onto a generalized Krylov space.

Geunseop Lee
The Pennsylvania State University
gx174@cse.psu.edu

Jesse L. Barlow
Penn State University
Dept of Computer Science & Eng
barlow@cse.psu.edu

PP1
Theoretical Analysis of Low-Energy Electron Diffraction: New Results for Real Systems and New Understanding for Model Ones

We describe our novel, first-principles approach to theoretical calculations of low-energy electron diffraction (LEED) spectra, and especially its expansion to off-normal incidence diffraction from few-layer-graphene systems. We compare our calculated off-normal incidence reflection intensities to conventional LEED calculations. We also present an asymptotic investigation of electron scattering in model systems, e.g., 2D square well potential, to better understand the anomalous solutions that create difficulties for our wave-matching approach to this boundary value problem.

John F. McClain
University of New Hampshire
jfi46@wildcats.unh.edu

Jiebing Sun
Michigan State University
jsun@msu.edu

Karsten Pohl, Jian-Ming Tang
University of New Hampshire
karsten.pohl@unh.edu, jmtang@mailaps.org

PP1
A Viscoelastic Model That Displays Thixotropic Yield Stress Fluid Behavior

There are biological fluids such as the slime excreted by slugs, which are yield stress fluids. Among them, some are thixotropic. Typically, a model for yield stress fluids begins with inputing a measured value for the yield stress. On the other hand, our model does not assume any yield stress behavior a priori. The relaxation time of the material is taken as a large parameter, and asymptotic solutions are obtained. These display some observed features of thixotropic yield stress fluids.

Yuriko Renardy
Virginia Tech
Department of Mathematics
renardy@vt.edu

PP1
AWM Workshop: Sexual Cannibalism As An Optimal Strategy in Fishing Spiders

We consider a model, based on the aggressive spillover hypothesis, where we link a females propensity to cannibalize a mate to her aggression towards prey. Higher levels of aggression lead to higher food consumption and lower mating rates, a trade-off in fitness. We find an optimal aggression level and analyze its effects on the frequency and type of sexual cannibalism. We then compare our results to existing models of sexual cannibalism.

Sara Reynolds
University of Nebraska-Lincoln
s-reynol5@math.unl.edu

PP1
AWM Workshop: Time-Delayed Pdes with Stochastic Boundary in Mathematical Modeling of Kidney

We consider nonlinear time-delayed transport equations with stochastic boundary to study the stability of feedback systems in the kidney. We prove the existence and uniqueness of the steady-state solution for deterministic and stochastic boundary cases with small delay, based on the contraction mapping theorem. Model results revealed that the system admits the stationary solution for small delay despite stochastic influences, whereas it exhibits oscillatory solutions for large delay, resembling irregular oscillations in spontaneously hypertensive rats.

Hwayeon Ryu
Duke University
hwayeon@math.duke.edu

PP1
Analysis of a Camera-Based Model of Bar Code Decoding

This work addresses the issue of the limited capability of a camera-based bar code decoding method. The question we wish to address is “What is the resolution needed in the captured image to unambiguously decode a bar code?” For simplicity, we consider the UPC bar code which consists of black and white bars of different widths. The width of the black and white bars encode a 12-digit number according to a look-up table. The smallest element in the bar code is assumed to be of width h. We further assume that the camera pixels are lined up along the bars and they are of size d. The question now amounts to unique determination of the digits for a fixed ratio of d to h. We show that the digits are uniquely determined if the pixel size is no greater than twice the smallest element. Moreover, we show that this determination is stable. A decoding algorithm is presented, along with numerical examples that illustrate the main ideas behind this work.

Madeline J. Schrier, Fadil Santosa
University of Minnesota-Twin Cities
schri051@umn.edu, santo002@umn.edu

PP1
Fully Nonlinear Model for Dispersive Wave Turbulence

The Majda-McLaughlin-Tabak (MMT) model describes a one-dimensional system exhibiting dispersive wave turbulence, and includes linear and nonlinear terms. I consider a modified version of the model where the linear term is absent. I discuss symmetry-based arguments, perturbative solutions, and other methods for predicting the dispersion
relation and waveaction spectrum, and compare with nu-
merical results. I consider both the case where driving and
damping are present and the case where they are absent.

Michael Schwarz
Rensselaer Polytechnic Institute
mschwarz137@gmail.com

David Cai
New York University
Courant institute
cai@cims.nyu.edu

Gregor Kovacic
Rensselaer Polytechnic Inst
Dept of Mathematical Sciences
kovacg@rpi.edu

Peter R. Kramer
Rensselaer Polytechnic Institute
Department of Mathematical Sciences
kramep@rpi.edu

PP1
Ritz-Augmented Extended Krylov Subspaces for
Sequences of Lyapunov Equations

We consider the numerical solution of generalized Lyapunov equations occurring in bilinear model order reduction. We proceed by splitting the operator and use a classical stationary iteration, performing standard Lyapunov solves with the extended Krylov subspace method. This enables reuse of computation via the use of augmented Krylov subspaces. The resulting algorithm appears competitive with the existing state of the art on two benchmark problems.

Stephen D. Shank
Temple University
sshank@temple.edu

PP1
Numerical Investigation of Microfluidic Droplet
Breakup Using T-Junction Geometry

A critical analysis on the breakup of Microfluidic droplet in a T-junction is presented. A way by which droplets can be evenly distributed over multiple micro channels is to break them into many smaller droplets. Hence it is essential to understand the behavior of the breakup of droplet in a micro channel. Available theoretical and numerical data are compared with simulations obtained using a modified version of the interFoam solver of the OpenFOAM CFD package.

Olabanji Y. Shonibare
Department of Mathematical Sciences
Michigan Technological University
oyshonib@mtu.edu

Kathleen Feigl
Michigan Technological University
Dept. of Mathematical Sciences
feigl@mtu.edu

Franz Tanner
Department of Mathematical Sciences
Michigan Technological University
tanner@mtu.edu

PP1
A Mathematical Model of Moisture Movement and
Bacterial Growth in a Two-Dimensional Porous Medium

Bacterial growth in sand is of concern in regard to the health of beaches. A mathematical model is presented that represents the movement of moisture and the growth of bacteria through a beach. Simulations were run by numerically solving Richard’s Equation using a Finite Volume Method. These simulations show that elevated bacteria counts following rain events do not necessarily result from bacteria in the body of water, but can also be sourced from the sand.

Rachel E. Tewinkel
University of Wisconsin - Milwaukee
tewinke2@uw.edu

PP1
A Guaranteed, Adaptive, Automatic Algorithm
For Univariate Function Minimization

This algorithm attempts to provide an approximate minimum value of a one-dimensional function that differs from exact minimum value by no more than an error tolerance. Besides guaranteed the error tolerance, this algorithm also considers the lengths tolerance of the subset containing point(s) where the minimum occurs.

Xin Tong
Illinois Institute of Technology
xtong5@hawk.iit.edu

PP1
Iterative Functional Modification Method for Solv-
ing a Transportation Problem

New method for solving transportation problems based on decomposing the original problem into a number of two-dimensional optimization problems is proposed. Since the solution procedure is integer-valued and monotonic in the objective function, the required computation is finite. As a result, we get not only a single optimal solution of the original transportation problem but a system of constraints that can yield all optimal solutions. We give numerical examples illustrating the constructions of our algorithm.

Vladimir I. Tsurkov
Computing Centre of RAS
tsur@ccas.ru

Alexander Tizik
CC RAS
tsurkov@gmail.com

PP1
A Multiscale Implementation for the Peridynamic
Model of Mechanics

An investigation in continuous and discontinuous finite element methods for a peridynamics model of mechanics gives us a new view of the peridynamic model when dealing with solutions with jump discontinuities. Peridynamics can be transit between nonlocal and local models depending on
the size of horizon compared to the grid size. Therefore, a mesh of good quality and an appropriate quadrature rule to conform the multiscale setting need to be concerned. We developed a local grid refinement method that can be suitable for the multiscale peridynamic model and also found a quadrature rule to estimate the weak formulation with high accuracy.

Feifei Xu
Florida State University
winterflyfei@gmail.com

PP1
AWM Workshop: Three Model Problems for 1-D Particle Motion with the History Force in Viscous Fluids

Abstract. We consider various model problems that describe rectilinear particle motion in a viscous fluid under the influence of the history force. These problems include sedimentation, impulsive motion, and oscillatory sliding motion. The equations of motion are integrodifferential equations with a weakly singular kernel. We provide analytical solutions using Laplace transforms and discuss the mathematical relation between the sedimentation and impulsive start problems. We also compare several numerical schemes and benchmark them against the analytical results.

Shujing Xu
CLAREMONT GRADUATE UNIVERSITY
flora.xushujing@gmail.com

PP1
AWM Workshop: A Local Grid Mesh Reinement for a Nonlocal Model of Mechanics

Nonlocal problems are based on integro-differential equations, which do not involve spatial derivatives. This makes it possible to deal with discontinuous solutions. We are most interested in the numerical results for piecewise solutions with a jump discontinuity. A local grid reinement method is then investigated for two-dimensional nonlocal model, which would be suitable for the curve discontinuous path. With the reine meshes, optimal convergence behaviors are achieved.

Feifei Xu
Florida State University
winterflyfei@gmail.com

PP1
Designing a Self-Propelled Hydrogel Microswimmer

We use dissipative particle dynamics to design a new self-propelling bi-layered gel microswimmer. The gel consists of one layer that swells in response to an external stimulus and one passive layer. When a periodic stimulus is applied, the microswimmer undergoes a sequential expansion, bending, contraction, and straightening motions leading to net propulsion at low Reynolds number. We probe how the swimming speed can be enhanced by selecting material properties and geometry of the gel swimmer.

Peter Yeh, Svetsoslav Nikolov
Georgia Institute of Technology
pyeh3@gatech.edu, snikolov3@gatech.edu

Alexander Alexeev
George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
alexander.alexeev@me.gatech.edu

PP1
Inverse Modeling and Prediction Uncertainty Analysis of a CO2 Injection Pilot Test, Cranfield, Mississippi

The ensemble-based filtering algorithms and the null-space Monte Carlo approach are applied for characterizing the heterogeneity and quantifying model prediction uncertainty of a CO2 injection test, Cranfield, Mississippi. An ensemble of reservoir model conditioned to the observed data is retained from both approaches and models prediction results are analyzed to evaluate the trade-off between model efficiency and model complexity to provide a computationally efficient and practically useful framework for predictive uncertainty analysis of CO2 sequestration.

Hongkyu Yoon
Geoscience Research and Applications
Sandia National Laboratories
hyoon@sandia.gov

Reza Tavakoli
UT-Austin
tavakoli@ices.utexas.edu

Bill Arnold
Sandia National Laboratories
bwarnol@sandia.gov

PP1
A Spatio-Temporal Point Process Model for Ambulance Demand

We model spatio-temporal point processes as a time series of spatial densities using finite mixture models. We fix the mixture component distributions across time while letting the mixture weights evolve over time. We capture seasonality by constraining mixture weights; we represent location-specific temporal dependence by applying autoregressive priors on mixture weights. To illustrate, we estimate ambulance demand in Toronto, Canada. Our method accurately captures the complex spatial and temporal dynamics present in this large-scale dataset.

Zhengyi Zhou
Center for Applied Mathematics
Cornell University
zz254@cornell.edu

David Matteson
Department of Statistical Science
Cornell University
dm484@cornell.edu

Dawn Woodard
School of Operations Research and Information Engineering
Cornell University
woodard@cornell.edu

Shane Henderson
Cornell University
School of Operations Research and Industrial Engineering
sgh9@cornell.edu

Athanasios Micheas
Department of Statistics
University of Missouri-Columbia
micheasa@missouri.edu