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Abstract

Binary unlabeled ordered trees (further called binary
trees) were studied at least since Euler, who enumerated
them. The number of such trees with n nodes is
now known as the Catalan number. Over the years
various interesting questions about the statistics of such
trees were investigated (e.g., height and path length
distributions for a randomly selected tree). Binary
trees find an abundance of applications in computer
science. However, recently Seroussi posed a new and
interesting problem motivated by information theory
considerations: how many binary trees of a given
path length (sum of depths) are there? This question
arose in the study of universal types of sequences.
Seroussi declares that two sequences of length p have
the same universal type if they generate the same set
of phrases in the incremental parsing of the Lempel-
Ziv’78 scheme. (He then proves that sequences of the
same type converge to the same empirical distribution.)
It turns out that the number of distinct types of
sequences of length p corresponds to the number of
binary (unlabeled and ordered) trees, Tp, of given path
length p (and also the number of different Lempel-Ziv’78
parsings of length p sequences). We first show that
the number of binary trees with given path length p
is asymptotically equal to Tp ∼ 22p/(log2 p). Then we
establish various limiting distributions for the number of
nodes (number of phrases in the Lempel-Ziv’78 scheme)
when a tree is selected randomly among all Tp trees.
Throughout, we use methods of analytic algorithmics
such as generating functions and complex asymptotics,
as well as methods of applied mathematics such as the
WKB method and matched asymptotics.

1 Introduction

Trees are the most important nonlinear structures that
arise in computer science. Applications are in abun-
dance (cf. [13, 15]); in this paper we discuss a novel
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application of binary unlabeled ordered trees (further
called binary trees) in information theory (e.g., count-
ing Lempel-Ziv’78 parsings and universal types). Tree
structures have been the object of extensive mathemat-
ical investigations for many years, and many interest-
ing facts have been discovered. Enumeration of binary
trees, which are of principal importance to computer
science, has been known already by Euler. Nowadays,
the number of such trees built on n nodes is called the
Catalan number.

Since Euler and Cayley, various interesting ques-
tions concerning statistics of randomly generated binary
trees were investigated (cf. [6, 13, 15, 22, 24, 25]). In the
standard model, one selects uniformly a tree among all
binary unlabeled ordered trees, Tn, built on n nodes
(where |Tn| =

(
2n
n

)
1

n+1 =Catalan number). For ex-
ample, Flajolet and Odlyzko [4] and Takacs [24] es-
tablished the average and the limiting distribution for
the height (longest path), while Louchard [16, 17] and
Takacs [23, 24, 25] derive the limiting distribution for
the path length (sum of all paths from the root to all
nodes). As we indicate below, these limiting distribu-
tions are expressible in terms of the Airy’s function (cf.
[1]).

While deep and interesting results concerning the
behavior of binary trees in the standard model were
uncovered, there are still many important unsolved
problems of practical importance. Recently, Seroussi
[20], when studying universal types for sequences and
distinct parsings of the Lempel-Ziv scheme, asked for
the enumeration of binary trees with a given path length.
Let Tp be the set of binary trees of given path length p.
Seroussi observed that the cardinality of Tp corresponds
to the number of possible parsings of sequences of length
p in the Lempel-Ziv’78 scheme, and the number of
universal types (that we discuss below). We shall first
prove that Tp = |Tp| ∼ 22p/(log2 p) (cf. also Seroussi
[21]), and then compute the limiting distribution of the
number of nodes (phrases in the LZ’78 scheme) when a
tree is selected uniformly among Tp. To the best of our
knowledge these problems were never addressed before,
with the exception of [20]. We show below that they are
much harder than the corresponding problems in the Tn

model.
As mentioned above, the problem of enumerating



binary trees of a given path arose in Seroussi’s research
on universal types. The method of types [3] is a powerful
technique in information theory, large deviations, and
analysis of algorithms. It reduces calculations of the
probability of rare events to a combinatorial analysis.
Two sequences (over a finite alphabet) are of the
same type if they have the same empirical distribution.
For memoryless sources, the type is measured by the
relative frequency of symbol occurrences, while for
Markov sources one needs to count the number of
pairs of symbols. It turns out (cf. [9]) that the
number of sequences of a given Markovian type can be
counted by enumerating Eulerian paths in a multigraph.
Recently, Seroussi [20] introduced universal types (for
individual sequences and/or for sequences generated by
a stationary and ergodic source). Two sequences of
the same length p are said to be of the same universal
type if they generate the same set of phrases in the
incremental parsing of the Lempel-Ziv’78 scheme. (It is
proved that such sequences have the same asymptotic
empirical distribution.) But, every set of phrases defines
uniquely a binary tree of path length p [8, 20] (with the
number of phrases corresponding to the number of nodes
in the Tp model). For example, strings 10101100 and
01001011 have the same set of phrases {1, 0, 10, 11, 00}
and therefore the corresponding binary trees are the
same. Thus, enumeration of Tp leads to counting
universal types and different LZ’78 parsings of sequences
of length p.

Let us now summarize our main results. It is
easy to see that the generating function B(z, w) =∑

n,p≥0 b(n, p)znwp of the number b(n, p) of binary trees
with n nodes and path length p satisfies the following
functional equation [13]

(1.1) B(z, w) = 1 + zB2(zw,w).

Observe that this equation is asymmetric with respect
to z and w. When enumerating trees in Tn, we
set w = 1 to get the well known algebraic equation
B(z, 1) = 1 + zB2(z, 1) that can be explicitly solved as
B(z, 1) =

(
1−

√
1− 4z

)
/(2z) leading to the Catalan

number. However, when enumerating trees of a given
path length, Tp, we must substitute z = 1 in (1.1) to
arrive at

B(1, w) = 1 + B2(w,w)

which is not algebraically solvable. Observe that Tp =
|Tp| =

∑∞
n=0 b(n, p) is the coefficient of B(1, w) at

wp. In fact, the functional equation (1.1) falls into the
class of quicksort-like nonlinear functional equations (cf.
[7, 5, 15, 10, 18, 19]) that we still do not know how to
analyze precisely (with some exceptions like the linear
probing algorithm [5, 14]). We shall show (and also give

explicitly the error term that involves the Airy function)
that

Tp =
1

(log2 p)
√

πp
2

2p
log2 p (1+O(log−2/3 p))

for large p. Seroussi first conjectured the form of the
leading term in the exponent of the above asymptotic
result, proved an upper bound of that form (Novem-
ber 2003, private communication), and has recently ob-
tained [21] a proof for the matching lower bound using
information-theoretic and combinatorial arguments for
t-ary trees.

In this paper we further analyze the random vari-
able Np representing the number of nodes in a ran-
domly selected tree from the assembly Tp. We prove
that (Np − E[Np])/Var [Np] is asymptotically normal.
Finally, we analyze the number of trees b(n, p) with n
nodes and path length p for various ranges of n and
p. In passing, we point out that Tp = |Tp| corresponds
to the number of distinct universal types in Seroussi’s
sense and the number of distinct parsings of binary se-
quences of length p, while b(n, p) enumerates the num-
ber of Lempel-Ziv’78 parsings with n phrases.

Nonlinear functional equations of type (1.1) are not
particularly suitable for analytic tools which work fine
for linear functional equations (cf. [6, 22]). Therefore,
we turn to methods of applied mathematics such as
matched asymptotics and the WKB method [2]. These
make certain assumptions about the forms of some
asymptotic expansions and their asymptotic matching.
These are analytic methods and are especially suitable
for problems that cannot be solved exactly by transform
methods (cf. [10, 11]).

In this conference version of the paper, we are not
able to present any details of the proof which is quite
long (the final paper [12] is about one hundred pages
long). In the next section we present some of our main
results and their consequences.

2 Summary of Results

We let b(n, p) denote the number of binary trees with
n nodes and path length p. This function satisfies the
recurrence relation

b(n, p) =
∑

k+`=n−1

∑
r+s+n−1=p

b(k, r)b(`, s), n ≥ 1

with the boundary conditions

b(0, 0) = 1; b(0, p) = 0, p ≥ 1.

The generating function

Bn(w) =
∞∑

p=0

b(n, p)wp



satisfies

(2.2) Bn+1(w) = wn
n∑

`=0

B`(w)Bn−`(w), n ≥ 0

with B0(w) = 1. Furthermore, the double transform

B(z, w) =
∞∑

n=0

∞∑
p=0

b(n, p)wpzn =
∞∑

n=0

znBn(w)

satisfies the functional equation

(2.3) B(z, w) = 1 + zB2(zw,w).

We shall mostly analyze (2.2), and then obtain asymp-
totic results for b(n, p) by expanding the Cauchy integral
(cf. [22])

(2.4) b(n, p) =
1

2πi

∫
C

Bn(w)w−p−1dw.

Here C is any closed loop about the origin in the w-
plane.

We can solve (2.3) when w = 1, noting that
B(0, 1) = 1, to obtain

B(z, 1) ≡ a(z) =
1
2z

[
1−

√
1− 4z

]
and thus
(2.5)

∞∑
p=0

b(n, p) =
1

2πi

∫
C

a(z)
zn+1

dz = Bn(1) =
1

n + 1

(
2n

n

)
is the Catalan number. This gives the total number of
trees with n nodes, regardless of the total path length.
By expanding (2.3) about w = 1, with

Bn(w) = an + bn(w − 1) +
1
2
cn(w − 1)2

+ O((w − 1)3)

B(z, w) = a(z) + b(z)(w − 1) +
1
2
c(z)(w − 1)2

+ O((w − 1)3)

we are led to

b′(z) = Bw(z, 1) =
2z2B(z, 1)Bz(z, 1)

1− 2zB(z, 1)

=
2z2a(z)a′(z)
1− 2za(z)

and thus
(2.6)

bn = B′
n(1) ≡

∞∑
p=1

pb(n, p) = 4n − 3n + 1
n + 1

(
2n

n

)
, n ≥ 0.

This gives the average total path length. Higher-order
moments can be obtained in a similar manner. In
particular, we obtain

cn = B′′
n(1) =

∞∑
p=2

p(p− 1)b(n, p)

= −4n

(
13
2

n + 4
)

+
(

2n

n

)[
10
3

n2 +
44
3

n + 2 +
2

n + 1

]
.

for n ≥ 0.
Asymptotically, for n → ∞, we obtain from (2.5),

(2.6) and the above via Stirling’s formula

(2.7)

an =
4n

√
πn3/2

[1 + O(n−1)]

bn = 4n

[
1− 3√

πn
+ O(n−1)

]
cn = 4n

[
10

3
√

π
n3/2 − 13

2
n + O(

√
n)
]
.

We can easily show that for each j

(2.8)
B

(j+1)
n (1)

B
(j)
n (1)

= O(n3/2), n →∞.

It is known [16, 17, 23, 24] that the distribution of the
total path length Ln, that is,

(2.9) Pr{Ln = p} =
b(n, p)
∞∑

p=0

b(n, p)

follows an Airy distribution as n →∞, and most of the
mass occurs in the range p = O(n3/2).

A more difficult problem is to study the distribution
of the number of nodes in trees of a fixed path length
p, that is, for the assembly Tp. Let Np be the number
of nodes for a tree uniformly generated from Tp. It is a
random variable distributed as

(2.10) Pr{Np = n} =
b(n, p)
∞∑

n=0

b(n, p)

.

We shall compute this distribution asymptotically, and
also obtain the asymptotic structure of b(n, p) for var-
ious ranges of n and p. We note that the above sums
are actually finite, since b(n, p) is only non-zero in the
range

(2.11)
n∑

J=2

blog2 Jc = pmin(n) ≤ p ≤ pmax(n) =
(

n

2

)
.

Here pmin and pmax are the minimal and maximal total
path lengths possible in a tree with n nodes. If we view



the problem as having p fixed and varying n, then b(n, p)
is non-zero in the range n ∈ [nmin(p), nmax(p)] where

nmin(p) = min{n :
(

n

2

)
≥ p}

and

nmax(p) = max

{
n :

n∑
J=2

blog2 Jc ≤ p

}
.

Asymptotically, for n →∞,

[pmin, pmax] ∼
[
n log2 n,

n2

2

]
and, for p →∞,

[nmin, nmax] ∼
[√

2p,
p

log2 p

]
.

We now summarize our main results. Our deriva-
tions are quite complicated, and are left for the final
version of this paper. In passing, we should add that
we use ideas of applied mathematics, such as lineariza-
tion and asymptotic matching. We shall make certain
assumptions about the forms of the asymptotic expan-
sions, as well as the asymptotic matching between the
various scales. In particular, we shall use the WKB
method that we will briefly discuss below.

The WKB method [2, 22] was named after the
physicists Wentzel, Kramers and Brillouin. It assumes
that the solution B(ξ;n) to a recurrence, functional
equation or differential equation has an asymptotic
solution in the following form for n →∞

B(ξ;n) ∼ enφ(ξ)

[
A(ξ) +

1
n

A(1)(ξ) +
1
n2

A(2)(ξ) + · · ·
]

where φ(ξ) and A(ξ), A(1)(ξ), . . . are unknown functions.
These functions must be determined from the equation
itself, often in conjunction with another tool known as
the asymptotic matching principle (cf. [10, 11, 22]).

We next formulate our main result concerning the
cardinality of Tp.

Result 1. The total number of trees of path length p
is, for p →∞

|Tp| =
∞∑

n=0

b(n, p) =
1

(log2 p)
√

πp
(2.12)

× exp
(

2p log 2
log2 p

(
1− 3

2
A0

log 2
a1/3

Q−2/3

+ M(Q)Q−1 + O(Q−4/3)
))

where Q = log p and

M(Q) = (log Q)(1 + A1 log 2)− log log 2(2.13)
+ (k2 −A1 log a) log 2,

A0 =
2
3
41/3|r0| = 2.4743 . . . ,

and
A1 =

1
log 2

− 1
3

= 1.1093 . . . ,

a = 2(log 2)2 = .96090 . . . ,

and

r0 = max{z : Ai(z) = 0} = −2.3381 . . . .

Here k2 ≈ 3.696 is obtained by numerically solving
a nonlinear integral equation, and Ai(·) is the Airy
function [1] defined as a solution of the differential
equation f ′′ − zf = 0 that decays as z →∞.

It follows that the exponential growth rate of the
total number of trees of path length p is

(2.14) log

[∑
n

b(n, p)

]
∼ p

log p
2(log 2)2

with the correction terms involving the least negative
root of the Airy function. Recently, Seroussi [21] proved
the same result using information theoretic arguments.
We will indicate how to formally obtain further terms
in the asymptotic series in (2.14).

Defining the mean and variance of Np by

N (p) := E[Np] =

∞∑
n=0

nb(n, p)

∞∑
n=0

b(n, p)

,

and

V(p) := Var [Np] =

∞∑
n=0

(n−N (p))2b(n, p)

∞∑
n=0

b(n, p)

we shall also obtain, for p = eQ →∞,
(2.15)

N (p) =
p

Q
log 2

[
1− log 2

a1/3

A0

Q2/3
+

M(Q)−A1 log 2
Q

+ O(Q−4/3)
]

and
(2.16)

V(p) =
p

Q5/3

(log 2)A0

6a1/3

[
1− 3A1

A0

(
a

Q

)1/3

+ O(Q−2/3)

]



where A0, A1 and M(Q) are given below (2.13). Fur-
thermore, the local limiting law is Gaussian, that is,

(2.17) Pr{Np = n} =
b(n, p)∑∞

n=0

b(n, p)

∼ 1√
2πV(p)

exp
[
− (n−N (p))2

2V(p)

]
,

for p → ∞ and n − N (p) = O(V1/2(p)) =
O(
√

p(log p)−5/6). We note that while the most impor-
tant scale for (2.9) is p = O(n3/2), that for (2.10) is

p = n log2 n + O[n(log n)1/3],

which is close to the lower limit pmin(n) (or upper limit
nmax(p)) of the support of b(n, p).

The above and preceding findings are derived
through the following main technical result. It gives
detailed asymptotic results for the solution Bn(w) to
(2.2) as n →∞, for various ranges of w.

Result 2. Consider binary trees with path length equal
to p. Let Bn(w) be its generating function satisfying
(2.2). Then for n → ∞ we have the following asymp-
totic expansions.

(a) far right region: n →∞, w > 1

(2.18) Bn(w) ∼ w(n
2)2n−1B∗(w)

where B∗(w) satisfies
(2.19)

B∗(w) = 1 +
1

4w
+

1
2w2

+ O(w−3), w →∞;

(2.20)

B∗(w) ∼ d1

√
w − 1 exp

(
d0

w − 1

)
, w → 1+,

d0 =
∫ log 2

0

ξ

eξ − 1
dξ = .58224 . . .,

d1 =
4√
2π

ed0/2 = 2.1350 . . . .

(b) right region: w = 1 + β/n, 0 < β < ∞

(2.21) Bn(w) ∼
√

β

n
ĝ(β) exp[nΦ(β)],

where

Φ(β) = log 2 +
β

2
+

1
β

∫ log 2

− log(1− 1
2 e−β)

ξ

eξ − 1
dξ

≡ log 2 +
β

2
+ φ(β),

ĝ(β) =
4√
π

e−β2/4e−β/2

(
1− e−β

2− e−β

)3/2

× exp
[
1
2
βφ(β) +

1
2
β log

(
1− 1

2
e−β

)]
.

(c) central region: w = 1 + a/n3/2, −∞ < a < ∞

(2.22) Bn(w) =
1

n + 1

(
2n

n

)
+

+
4n

n3/2

[
C(a) +

1√
n

C(1)(a) + O(n−1)
]

,

where for a < 0

C(a) = (−a)D̄((−a)2/3) = Y 3/2D̄(Y ), Y = (−a)2/3,

D̄(Y ) =
1

2πi

∫
Br

esY

[
2
√

s + 42/3 Ai′(4−1/3s)
Ai(4−1/3s)

]
ds.

Here Br is a vertical contour on which Re(s) > 0,
and

√
s is analytic for Re(s) > 0 and positive for

s real and positive. An alternate expression for the
leading term is, for a = −Y 3/2 < 0,
(2.23)

Bn(w) ∼ 4n

n3/2
(−a)

d

dY

[
1

2πi

∫
Br

42/3

s

Ai′(4−1/3s)
Ai(4−1/3s)

esY ds

]

=
4n+1

n3/2
(−a)

∞∑
j=0

exp(−|rj |41/3Y )

where 0 > r0 > r1 > r2 > . . . and rj are the roots
of Ai(z) = 0. The correction term has the integral
representation, for a < 0,
(2.24)

C(1)(a) = −aD̄1(Y ) =
Y 2

2πi

∫
Br

esY E∗(s)ds,

E∗(s) = −5
2
s + 8

(
h′(s)
h(s)

)2

− 4
h2(s)

∫ ∞

s

(h′(v))3

h(v)
dv

= −5
2
s + 10

(
h′(s)
h(s)

)2

+ 4
(

h′(s)
h(s)

)2

log[h(s)]− s log[h(s)]

− 1
h2(s)

∫ ∞

s

h2(v) log[h(v)]dv, h(s) = Ai(4−1/3s).

For a > 0 we let a = y3/2 with y > 0 and the
leading term is
(2.25)

Bn(w) ∼ 4n

n3/2

{
a

π241/3

∫ ∞

0

eτy

h(ωτ)h(ω2τ)
dτ

− 4a

π

∫ ∞

0

Re
[
eπi/6 h′(ωτ)

h(ωτ)
eω2τy

]
dτ

}
where ω = exp(2πi/3).

(d) left region: w = 1− γ/n, 0 < γ < ∞



(2.26)

Bn(w) ∼ 4n

n
exp[ν0n

1/3γ2/3 + ν1γ log n]F0(γ)

F0(γ) = 4γF1(γ),

ν0 = 41/3r0 = −41/3|r0|, ν1 = −1
3
,

where F1(·) satisfies the non-linear integral equa-
tion
(2.27)
eγ − 1

γ
F1(γ) =

∫ 1

0

F1(γx)F1(γ − γx)e−γH(x)/3dx,

with

H(x) = x log x + (1− x) log(1− x),

and behaves, for γ → 0+, as

F1(γ) = 1− 2
3
γ log γ + α1γ + O(γ)

where

α1 =
7
2
− γE + log[h′(s0)]

− 1
4[h′(s0)]2

∫ ∞

s0

h2(v) log[h(v)]dv ≈ 2.9622,

s0 = 41/3r0, γE = Euler′s constant = .57721 . . . .

For γ →∞ we have
(2.28)

F1(γ) ∼ 1√
2π log 2

ek2γ

√
γ

exp
[(

1
3
− 1

log 2

)
γ log γ

]
where k2 ≈ 3.696 is found numerically.

(e) far left region: n →∞, 0 < w < 1
(2.29)

Bn(w) ∼ en(log2 n) log wen[g(w)+B∗
0 (w,n)]nlog2 w

× (2πn)−1/2eg(w)w2+ 1
log 2 eB∗

0 (w,n)+B∗
1 (w,n)

×
√
− log2 w −B∗

1(w, n)− 1
4
B∗

2(w, n).

Here
(2.30)

B∗
0(w, n) =

∞∑
k=−∞

′

gk(w)e2πi(log2 n)k

B∗
1(w, n) =

2πi

log 2

∞∑
k=−∞

kgk(w)e2πi(log2 n)k

B∗
2(w, n) =

2πi

log 2

∞∑
k=−∞

[
2πi

log 2
k2 − k

]
× gk(w)e2πi(log2 n)k

and g(w) has the asymptotic expansion

g(w) = log 4 + 41/3r0(1− w)2/3+

+
(

1
log 2

− 1
3

)
(w−1) log(1−w)−k2(w−1)+O(w−1)

for w → 1−.

We comment that our analysis suggests that yet
another scale exists, which has n → ∞ and w → 0
simultaneously, and where a different expansion for
Bn(w) is needed. We have not been able to analyze
this scale, but it is not needed to obtain the asymptotic
results for the number of trees of a given total path
length. For this the important range is the asymptotic
matching region between the left and far left regions,
corresponding to w → 1−, but n(1 − w) = γ → +∞.
Since we have explicit analytic results for g(w) as w →
1−, and gk(w) → 0 for k 6= 0, we can use the above
results to obtain the explicit expressions in (2.12) -
(2.16). To obtain the distribution of the path length
in trees with n (→ ∞) nodes, the central region (c) is
the most important, and the leading term corresponds
to (the transform of) the Airy distribution.

We next give results for b(n, p) for n and p → ∞,
and summarize the main results as items (A)-(E) below.
Going from (A) to (E) corresponds to increasing n or
decreasing p.

Result 3. Consider binary trees built over n nodes
with path length p. Let b(n, p) denote the number of
such trees. Then we have the following for p, n →∞.

(A) n →∞, p =
(

n

2

)
− L, L = O(1), L ≥ 0

(2.31) b(n, p) ∼ 2n−1 1
2πi

∫
C

wL−1B∗(w)dw

where C is a closed loop with |w| > 1 and B∗(w) is as
in (a) in Result 2.

(B) p, n →∞ with Λ = p/n2 ∈
(

0,
1
2

)
(2.32)

b(n, p) ∼
√

2
π

β∗e
−β∗/2

(
1− e−β∗

2− e−β∗

)3/2 [
1− 2Λ− 1

2eβ∗ − 1

]−1/2

×2n+1

n2
exp

{
n

[
β∗(1− 2Λ)− log

(
1− 1

2
e−β∗

)]}
where β∗ ≡ β∗(Λ) is defined implicitly by

β2
∗

(
1
2
− Λ

)
+ β∗ log

(
1− 1

2
e−β∗

)
=
∫ log 2

− log(1− 1
2 e−β∗)

ξ

eξ − 1
dξ.



(C) p, n →∞ with Ω = p/n3/2 ∈ (0,∞)

b(n, p) ∼ −4n

n3

(
1

3Ω

)1/3 ∞∑
j=0

{[
56
9

42/3r2
j

Ω3
+

64
81

45/3r5
j

Ω5

]

×Ai

(
r2
j 42/3

34/3Ω4/3

)
+
(

1
3Ω

)1/3
[

40
3

41/3rj

Ω2
+

64
27

44/3r4
j

Ω4

]

×Ai′

(
r2
j 42/3

34/3Ω4/3

)}
exp

(
−8|rj |3

27Ω2

)
.

Here rj < 0 are the roots of the Airy function.

(D) p, n →∞ with Θ = p/n4/3 ∈ (0,∞)

(2.33)

b(n, p) ∼ 4n

n13/6 n−γ∗/3 29

34
√

π
|r0|9/2

Θ5 F1(γ∗)

exp
[
− 16n1/3|r0|3

27Θ2

]
,

γ∗ = 32
27

|r0|3
Θ3

where F1(·) satisfies (2.27) (cf. item (d) in Result 2).

(E) p, n →∞ with p = n log2 n + αn, α = O(1)

(2.34)

b(n, p) ≈ nlog2 w∗

2πn

w
2+ 1

log 2
∗√

α + w2
∗g
′′(w∗)

eg(w∗)
√
− log2 w∗

× exp [ng(w∗)− nα log w∗]

where w∗ = w∗(α) is the solution to

w∗g
′(w∗) = α.

In obtaining (2.34) we used (2.29) in (2.4) and
neglected the non-constant terms in the Fourier series,
which are numerically small. Then we evaluated the
integral by the saddle point method (cf. [22]). A refined
approximation that uses also the non-constant terms in
the Fourier series’ in (2.30). We can also obtain an
O(n−1/2) correction term to the Airy distribution in
(C) by using the correction term (i.e., C(1)(a)) in (2.24)
in asymptotically inverting (2.4). Our approximation(s)
to b(n, p) involve the unknown functions B∗(w), F1(γ)
and g(w), whose numerical calculation we discuss in the
full version of the paper.

In view of the complexity of the results in items
(A)-(E), we can get more insight into the structure of
b(n, p) by giving formulas that apply in the asymptotic
matching regions between the various scales. We sum-
marize these below, with the notation (AB) denoting
the asymptotic matching region between the scales in
(A) and (B), and so on. Note that the (AB) result can
be obtained by either expanding (2.31) as L →∞ (using
(2.20)), or by expanding (2.32) as Λ →

(
1
2

)−.

Result 4. The following matching asymptotics hold:

(AB) n, p →∞; L =
(

n

2

)
− p →∞, ∆ = p/n2 → 1

2

b(n, p) ∼ 2n

πn2

(
2d0

1− 2∆

)1/2

× 1√
1− 2∆

exp
[
n
√

2d0(1− 2∆) − 1
2

√
2d0

1− 2∆

]
where d0 is given below (2.20).

(BC) n, p →∞; Λ = p/n2 → 0, Ω = p/n3/2 →∞

(2.35)
b(n, p) ∼ 4n

n2

9
√

3
2π

Λ2 exp
(
−3

4
nΛ2

)
=

4n

n3

9
√

3
2π

Ω2 exp
(
−3

4
Ω2

)
.

(CD) n, p →∞; Ω = p/n3/2 → 0, Θ = p/n4/3 →∞

(2.36)

b(n, p) ∼ 4n

n13/6

|r0|9/2

Θ5

29

34
√

π
exp

[
−16n1/3|r0|3

27Θ2

]
=

4n

n3

|r0|9/2

Ω5

29

34
√

π
exp

[
−16|r0|5

27Ω2

]
.

(DE)
n, p →∞; Θ = p/n4/3 → 0, α = p/n− log2 n →∞

(2.37)

b(n, p) ∼ 1
n13/6

|r0|3

Θ7/2

1
π
√

log 2
64

9
√

3
exp

{
n log 4− γ∗

3
log n

+
(

1
3
− 1

log 2

)
γ∗ log γ∗ + k2γ∗ −

16
27

n1/3|r0|3

Θ2

}
where γ∗ is given below (2.33).

We will show in the final version of the paper
that the asymptotic matching region (DE) leads to
the Gaussian distribution in (2.17). Note that in
each of the four matching regions, our results are
completely explicit functions of n and p. The result
in (BC) (resp., (CD)) gives the right (resp., left) tail
of the Airy distribution in (C). The right tail has not
been characterized this precisely in previous studies
[16, 17, 23, 24, 25].
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