Deterministic Random Walks

Joshua Cooper† Benjamin Doerr‡ Joel Spencer§ Garbor Tardos¶

Abstract

Jim Propp’s P-machine, also known as ‘rotor router model’ is a simple deterministic process that simulates a random walk on a graph. Instead of distributing chips to randomly chosen neighbors, it serves the neighbors in a fixed order.

We investigate how well this process simulates a random walk. For the graph being the infinite path, we show that, independent of the starting configuration, at each time and on each vertex, the number of chips on this vertex deviates from the expected number of chips in the random walk model by at most a constant c_1, which is approximately 2^{29}. For intervals of length L, this improves to a difference of $O(\log L)$ (instead of $2^{29}L$), for the L_2 average of a contiguous set of intervals even to $O(\sqrt{\log L})$. It seems plausible that similar results hold for higher-dimensional grids \mathbb{Z}^d instead of the path \mathbb{Z}.

1 The Propp Machine

The following deterministic process was suggested by Jim Propp as an attempt to derandomize random walks on infinite grids \mathbb{Z}^d:

Rules of the Propp machine: Each vertex $x \in \mathbb{Z}^d$ is associated with a ‘rotor’ and a cyclic permutation of the $2d$ cardinal directions of \mathbb{Z}^d. Each vertex may hold an arbitrary number of ‘chips’. In each time step, each vertex sends out all its chips to neighboring vertices in the following manner: The first chip is sent into the direction the rotor is pointing, then the rotor direction is updated to the next direction in the cyclic ordering. The second chip is sent in this direction, the rotor is updated, and so on. In consequence, the chips are distributed highly evenly among the neighbors.

This process found considerable attention recently. It turns out that the Propp machine in several respects behaves highly similar to a random walk. Used to simulate internal diffusion limited aggregation (repeatedly, a single chip is inserted at the origin, performs a rotor router walk until it reaches an unoccupied position and occupies it), it was shown by Levine and Peres [LP] that this derandomization produces results that are extremely close to what a random walk would have produced. See also Kleber’s paper [Kle05], which adds an interesting experimental results: Having inserted three million chips, the closest unoccupied site is at distance 976.45, the farthest occupied site is at distance 978.06. Hence the occupied sites almost form a perfect circle!

In [CS05, CS], the authors consider the following question: Start with an arbitrary initial position (that is, chips on vertices and rotor directions), run the Propp machine for some time and compare the number of chips on a vertex with the expected number of chips a random walk (run for the same amount of time) would have gotten to that vertex. Apart from a technicality, which we defer to the end of Section 2, the answer is astonishing: For any grid \mathbb{Z}^d, this difference (discrepancy) can be bounded by a constant, independent of the number of chips, the run-time, the initial rotor positions and the cyclic permutations of the cardinal directions.

In this paper, we continue this work. We mainly regard the one-dimensional case, but as will be visible from the proofs, our methods can be extended to higher dimensions as well. Besides making the constant precise (approximately 2.29), we show that the differences become even better for larger intervals (both in space and time). We also present a fairly general method to prove lower bounds (the ‘arrow forcing theorem’). This shows that all our upper bounds actually are sharp (including the constant of about 2.29).

Instead of talking about the expected number of chips the random walk produces on a vertex, we find it more convenient to think of the following ‘linear’
machine. Here, in each time step each vertex sends out exactly the same number (possibly non-integral) of chips to each neighbor. Hence for a given starting configuration, after \(t \) time-steps the number of chips in the linear model is exactly the expected number of chips in the random walk model.

2 Our Results

We obtain the following results (again, see the end of the section for a slight technical restriction): Fix any starting configuration, that is, the number of chips on each vertex and the position of the rotor on each vertex. Now run both the Propp machine and the linear machine for a fixed number of time-steps. Looking at the resulting chip configurations, we have the following:

- On each vertex, the number of chips in both models deviates by at most a constant \(c_1 \approx 2.29 \). We may interpret this as that the Propp machine simulates a random walk extremely well. In some sense, it is even better than the random walk. Recall that in a random walk a vertex holding \(n \) chips only in expectation sends \(n/2 \) chips to the left and the right. With high probability, the actual numbers deviate from this by \(\Omega(n^{1/2-\varepsilon}) \).

- In each interval of length \(L \), the number of chips that are in this interval in the Propp model deviates from that in the linear model by only \(O(\log L) \) (instead of, e.g., \(2.29L \)).

- If we average this over all length \(L \) intervals in some larger interval of \(\mathbb{Z} \), things become even better. The average squared discrepancy in the length \(L \) intervals also is only \(O(\log L) \).

We may as well average over time. In the setting just fixed, denote by \(f(x, T) \) the sum of the numbers of chips on vertex \(x \) in the last \(T \) time steps in the Propp model, and by \(E(x, T) \) the corresponding number for the linear model. Then we have the following discrepancy bounds:

- The discrepancy on a single vertex over a time interval of length \(T \) is at most \(|f(x, T) - E(x, T)| = O(T^{1/2}) \). Hence a vertex cannot have too few or too many chips for a long time (it may, however, alternate having too few and too many chips and thus have an average \(\Omega(1) \) discrepancy over time).

- We may extend this to discrepancies in intervals in space and time: Let \(I \) be some interval in \(\mathbb{Z} \) having length \(L \). Then the discrepancy in \(I \) over a time interval of length \(T \) satisfies

\[
\left| \sum_{x \in I} f(x, T) - \sum_{x \in I} E(x, T) \right| = \begin{cases} O(LT^{1/2}) & \text{if } L \leq T^{1/2}, \\ O(T \log(LT^{-1/2})) & \text{otherwise.} \end{cases}
\]

Hence if \(L \) is small compared to \(T^{1/2} \), we get \(L \) times the single vertex discrepancy in a time interval of length \(T \) (no significant cancellation in space); if \(L \) is of larger order than \(T^{1/2} \), we get \(T \) times the \(O(\log L) \) bound for intervals of length \(L \) (no cancellation in time, the discrepancy cannot leave the large interval in short time).

All bounds stated above are sharp, that is, for each bound there is a starting configuration such that after suitable run-time of the machines we find the claimed discrepancy on a suitable vertex, in a suitable interval, etc.

A technicality: There is one limitation, which we only briefly mentioned, but without which our results are not valid. Note that since \(\mathbb{Z}^L \) is a bipartite graphs, the chips that start on even vertices (“even chips” for short) never mix with those which start on odd positions (“odd chips”). It looks as if we would play two games in one. This is not true, however. The even chips and the odd ones do interfere with each other through the rotors.

In fact, there are initial positions such that the odd chips suitably reset the arrows and thus mess up the even chips. Note that the odd chips are not visible if we look at an even position after an even run-time. Hence in this general setting, no useful bounds on discrepancies on a single vertex can exist.

We therefore assume that the starting configuration has chips only on even positions (“even starting configuration”). Of course, nothing would change if we only allowed odd chips.

An alternative, in fact equivalent, solution would be to have two rotors on each vertex, one for even and one for odd chips.

3 The Basic Method

For numbers \(a \) and \(b \) set \([a..b] = \{ z \in \mathbb{Z} \mid a \leq z \leq b \} \) and \([b] = [1..b] \). For integers \(m \) and \(n \), we write \(m \sim n \) if \(m \) and \(n \) have the same parity, that is, if \(m - n \) is even.

For a fixed starting configuration, we use \(f(x, t) \) to denote the number of chips at time \(t \) at position \(x \) and \(\text{ARR}(x, t) \) to denote the value of the arrow at time \(t \) and position \(x \), i.e., \(+1\) if it points to the right, and \(-1\)
if it points to the left. We have:

\[
\begin{align*}
f(x, t + 1) &= f(x - 1, t)/2 + f(x + 1, t)/2 \\
&\quad + \text{ARR}(x - 1, t)(f(x - 1, t) \mod 2)/2 \\
&\quad - \text{ARR}(x + 1, t)(f(x + 1, t) \mod 2)/2, \\
\text{ARR}(x, t + 1) &= (-1)^{f(x, t)}\text{ARR}(x, t).
\end{align*}
\]

Note that after an even starting configuration if \(x \sim t\) does not hold, then we have \(f(x, t) = 0\) and \(\text{ARR}(x, t + 1) = \text{ARR}(x, t)\).

We consider the machine to be started at time \(t = 0\). Being a deterministic process, the initial configuration (i.e., the values \(f(x, 0)\) and \(\text{ARR}(x, 0)\), \(x \in \mathbb{Z}\)) determines the configuration at any time \(t > 0\) (i.e., the values \(f(x, t)\) and \(\text{ARR}(x, t)\), \(x \in \mathbb{Z}\)). The totality of all configurations for \(t > 0\) we term a game. We call a configuration even if no chip is at an odd position. Similarly, a position is odd if no chip is at an even position. Clearly, an even position is always followed by an odd position and vice versa.

By \(E(x, t)\) we denote the expected number of chips on a vertex \(x\) after running a random walk for \(t\) steps (from the implicitly given starting configuration). As described earlier, this is equal to the number of chips on \(x\) after running the linear machine for \(t\) time-steps.

In the proofs, we need the following mixed notation. Let \(E(x, t_1, t_2)\) be the expected number of chips at location \(x\) and time \(t_2\) if a simple random walk were performed beginning from the Propp machine’s configuration at time \(t_1\). In other words, this is the number of chips on vertex \(x\) after \(t_1\) Propp and \(t_2 - t_1\) linear steps.

Let \(H(x, t)\) denote the probability that a chip arrives at location \(x\) at time \(t\) in a simple random walk begun from the origin, i.e., \(H(x, t) = 2^{-t} \binom{t}{(t + x)} / 2^t\), if \(t \sim x\), and \(H(x, t) = 0\) otherwise. Let \(\text{INF}(y, t)\) denote the “influence” of a Propp step of a single chip at distance \(y\) with \(t\) linear steps remaining (compared to a linear step). More precisely, we compare the two probabilities that a chip on position \(y\) reaches 0 if (a) it is first sent to the right (by a single Propp step) and then does a random walk for the remaining \(t - 1\) time steps, or (b) it just does \(t\) random walk steps starting from \(y\). Hence,

\[
\text{INF}(y, t) := H(y + 1, t - 1) - H(y, t).
\]

A simple calculation yields

\[
(3.1) \quad \text{INF}(y, t) = -\frac{1}{2}H(y, t).
\]

This shows in particular, that \(\text{INF}(y, t) \leq 0\) for \(y \geq 0\) and \(\text{INF}(y, t) \geq 0\) for \(y \leq 0\). We have \(\text{INF}(0, t) = 0\).

Note that

\[
(3.2) \quad \text{INF}(y, t) = \frac{1}{2}H(y + 1, t - 1) - \frac{1}{2}H(y - 1, t - 1).
\]

Therefore, the first Propp step with arrow pointing to the left has an influence of \(-\text{INF}(y, t)\).

Using this notation, we can conveniently express the (signed) discrepancy \(f(x, t) - E(x, t)\) on a vertex \(x\) using information about when “odd splits” occurred. It suffices to prove the result for the vertex \(x = 0\). Clearly, \(E(0, t, t) = f(0, t)\) and \(E(0, 0, t) = E(0, t)\), so that

\[
(3.3) \quad f(0, t) - E(0, t) = \sum_{s=0}^{t-1} (E(0, s + 1, t) - E(0, s, t)).
\]

In comparing \(E(0, s + 1, t)\) and \(E(0, s, t)\), note that whenever there are two chips on some vertex at time \(s\), then these chips can be assumed to behave identically no matter whether the next step is a linear or a Propp step. Denote by \(\text{ODD}_s\) the set of locations which are occupied by an odd number of chips at time \(s\). Then

\[
E(0, s + 1, t) - E(0, s, t)
= \sum_{y \in \text{ODD}_s} (H(y + \text{ARR}(y, s), t - s - 1) - H(y, t - s))
= \sum_{y \in \text{ODD}_s} \text{ARR}(y, s) \text{INF}(y, t - s).
\]

Therefore, appealing to (3.3),

\[
(3.4) \quad f(0, t) - E(0, t) = \sum_{s=0}^{t-1} \sum_{y \in \text{ODD}_s} \text{ARR}(y, s) \text{INF}(y, t - s).
\]

Let \(s_i(y)\) be the \(i^{th}\) time (up to time \(t\)) that \(y\) is occupied by an odd number of chips, beginning with \(i = 0\). Switching the order of summation and noting that the arrows flip each time there is an odd number of chips on a vertex, we have

\[
(3.4) \quad f(0, t) - E(0, t)
= \sum_{y \in \mathbb{Z}} \sum_{i \geq 0} \text{ARR}(y, s_i(y)) \text{INF}(y, t - s_i(y))
= \sum_{y \in \mathbb{Z}} \sum_{i \geq 0} (-1)^i \text{INF}(y, t - s_i(y)).
\]

This equation will be crucial in the remainder of the paper. It shows that the discrepancy on a vertex only depends on the initial arrow positions and the set of location-time pairs holding an odd number of chips.

In the remainder, we show that we can construct starting configurations with arbitrary initial arrow positions and odd number of chips at arbitrary sets of location-time pairs. This will be the heart of our lower bound proofs in the following sections. Here \(\mathbb{N}_0\) denotes the set of non-negative integers.
THEOREM 3.1. (Parity-forcing Theorem) For any initial position of the arrows and any $\pi : \mathbb{Z} \times \mathbb{N}_0 \to \{0, 1\}$, there is an initial even configuration of the chips such that for all $x \in \mathbb{Z}$, $t \in \mathbb{N}_0$ such that $x \sim t$, $f(x, t)$ and $\pi(x, t)$ have identical parity.

Since rotors change their direction if and only if the vertex has an odd number of chips, the parity-forcing theorem is a consequence of the following arrow-forcing statement.

THEOREM 3.2. (Arrow-forcing Theorem) Let $\rho(x, t) \in \{-1, +1\}$ be arbitrarily defined for $t \geq 0$ integer and $x \sim t$. Then there exists an even initial configuration that results in a game with $\text{ARR}(x, t) = \rho(x, t)$ for all such x and t. Similarly, if $\rho(x, t)$ is defined for $x \sim t + 1$ a suitable odd initial configuration can be found.

Proof. By symmetry, it is enough to prove the first statement.

Assume the functions f and ARR describe the game following an even initial configuration, and for some $T \geq 0$, we have $\text{ARR}(x, t) = \rho(x, t)$ for all $0 \leq t \leq T + 1$ and $x \sim t$. We modify the initial position by defining $f'(x, 0) = f(x, 0) + \epsilon_x 2^t$ for even x, while we have $f'(x, 0) = 0$ for odd x and $\text{ARR}'(x, 0) = \text{ARR}(x, 0)$ for all x. Here, $\epsilon_x \in \{0, 1\}$ are to be determined.

Observe that a pile of 2^T chips will split evenly T times so that the arrows at time $t \leq T$ remain the same. Our goal is to choose the values ϵ_x so that $\text{ARR}'(x, t) = \rho(x, t)$ for $0 \leq t \leq T + 2$ and $x \sim t$. As stated above this holds automatically for $t \leq T$ as $\text{ARR}'(x, t) = \text{ARR}(x, t) = \rho(x, t)$ in this case. For $t = T + 1$ and $x - T - 1$ even we have $\text{ARR}'(x, T + 1) = \text{ARR}'(x, T) = \text{ARR}(x, T + 1) = \rho(x, T + 1)$ since we start with an even configuration. To make sure the equality also holds for $t = T + 2$ we need to ensure that the parities of the piles $f'(x, T)$ are right. Observe that $\text{ARR}'(x, T + 2) = \text{ARR}'(x, T)$ if $f'(x, T)$ is even, otherwise $\text{ARR}'(x, T + 2) = \text{ARR}'(x, T)$. So for $x - T$ even we must make $f'(x, T)$ even if and only if $\rho(x, T + 2) = \rho(x, T)$. At time T the “extra” groups of $2T$ chips have spread as in Pascal’s Triangle and we have

$$f'(x, T) = f(x, T) + \sum_y \epsilon_y \left(\frac{T}{2} + \frac{x - y}{2} \right)$$

where $x \sim T$ and the sum is over the even values of y with $|y - x| \leq T$. As $f(x, T)$ are already given it suffices to set the parity of the sum arbitrarily. For $T = 0$ the sum is ϵ_x so this is possible. For $T > 0$ we express

$$\sum_y \epsilon_y \left(\frac{T}{2} + \frac{x - y}{2} \right) = \epsilon_{x+T} + h + \epsilon_{x-T}$$

where h depends only on ϵ_y with $x - T < y < x + T$. We now determine the ϵ_y sequentially. We initialize by setting $\epsilon_y = 0$ for $T < y \leq T$. The values ϵ_y for $y > T$ are set in increasing order. The value of ϵ_y is set so that the sum at $x = y - T$ (and thus $f'(y - T, T)$) will have the correct parity. Similarly, the values ϵ_y for $y \leq -T$ are set in decreasing order. The value of ϵ_y is set so that the sum at $x = y + T$ (and thus the $f'(y + T, T)$) will have the correct parity.

Note that the above procedure changes an even initial configuration that matches the prescription in ρ for times $0 \leq t \leq T + 1$ into another even initial configuration that matches the prescription in ρ for times $0 \leq t \leq T + 2$. We start by defining $f(x, 0) = 0$ for all x (no chips anywhere) and $\text{ARR}(x, 0) = \rho(x, 0)$ for even x, while $\text{ARR}(x, 0) = \rho(x, 1)$ for odd x. We now have $\text{ARR}(x, t) = \rho(x, t)$ for $0 \leq t \leq 1$ and $x \sim t$. We can apply the above procedure repeatedly to get an even initial configuration that satisfies the prescription in ρ for an ever increasing (but always finite) time period $0 \leq t < T$. Notice however, that in the procedure we do not change the initial configuration of arrows $\text{ARR}(x, 0)$ at all, and we change the initial number of chips $f(x, 0)$ at position x only if $|x| \geq T$. Thus at any given position x the initial number of chips will be constant after the first $|x|$ iterations. This means that the process converges to an (even) initial configuration. It is simple to check that this limit configuration satisfies the statement of the theorem.

4 Discrepancy on a Single Vertex

THEOREM 4.1. There exists a constant $c_1 \approx 2.29$, independent of the initial (even) configuration, the time t, or the location x, so that

$$|f(x, t) - E(x, t)| \leq c_1.$$
First we show that \(\text{INF}(y, u) \) with a fixed \(y < 0 \) is a non-negative unimodal function of \(u \) if restricted to the values \(u \sim y \). We have already seen that it is non-negative. For the unimodality let \(y < 0 \) and \(u > 2, u \sim y \). We have

\[
\text{INF}(y, u) - \text{INF}(y, u + 2) = -\frac{y}{u}f(y, u) + \frac{y}{u + 2}f(y, u + 2) = \frac{4 + 3u - y^2}{(u + 2 - y)(u + 2 + y)}\text{INF}(y, u),
\]

whenever \(u \geq y \). Hence the difference is non-negative if \(u \geq (y^2 - 4)/3 \) and it is non-positive if \(u \leq (y^2 - 4)/3 \). Thus we have unimodality, with \(\text{INF}(y, u) \) taking its maximum at the largest value of \(u \) not exceeding \((y^2 - 4)/3 \) with \(u \sim y \). Let \(t_{\text{max}}(y) := \lceil (y^2 - 4)/3 \rceil \). It is easy to check that \(t_{\text{max}}(y) \sim y \) always holds, so we have that \(\text{INF}(y, u) \) takes its maximum for fixed \(y \leq -4 \) at \(u = t_{\text{max}}(y) \). For \(1 \leq |y| \leq 3 \) we have \(\min_u |\text{INF}(y, t)| = |\text{INF}(y,|y|)| \), for \(y = 0 \), \(\min_t |\text{INF}(y, t)| = 0 \), and, for \(y \geq 4 \) we have, by symmetry, that \(-\text{INF}(y, t) \) is non-negative and unimodal (again, restricted to \(u \sim y \)), with maximum taken at \(u = t_{\text{max}}(y) \). Therefore, define \(t'_{\text{max}}(y) = t_{\text{max}}(y) \) when \(|y| > 3 \), otherwise \(t_{\text{max}}(y) = |y| \).

Lemma 4.2. For \(y \in \mathbb{Z} \), the function \(|\text{INF}(y, t)| \) is maximized over all nonnegative integers \(t \) with \(t \sim y \) at \(t = \max\{\lfloor y \rfloor, \lceil (y^2 - 4)/3 \rceil \} \).

To bound \(|f(0, t) - E(0, t)| \) we use the formula (3.4) where the inner sums are alternating sums, for which we can apply Lemma 4.1, as \(y \sim t - s_i(y) \) holds by our even or odd starting position assumption. We get

\[
|f(0, t) - E(0, t)| \leq \sum_{y \in \mathbb{Z}} \sum_{i \geq 0} (-1)^i \text{INF}(y, t - s_i(y)) \leq \sum_{y \in \mathbb{Z}} \max_u |\text{INF}(y, u)| = 2 \sum_{y=1}^\infty |\text{INF}(y, t'_{\text{max}}(y))|.
\]

Note that

\[
|\text{INF}(y, t'_{\text{max}}(y))| = \frac{y}{t'_{\text{max}}(y)^2}t'_{\text{max}}(y) \left(\frac{t'_{\text{max}}(y)}{t'_{\text{max}}(y) + y/2} \right) = O(y(t'_{\text{max}}(y) + y/2)) = O(y^{-2}).
\]

Therefore, (4.5) implies that \(|f(0, t) - E(0, t)| \) is bounded. With

\[
c_1 := 2 \sum_{y=1}^\infty |\text{INF}(y, t'_{\text{max}}(y))| \approx 2.29
\]

we have therefore

\[
|f(0, t) - E(0, t)| < c_1.
\]

Amazingly, the constant \(c_1 \) defined above is best possible. Indeed, let \(y > 0 \) be arbitrary and even and let \(t_0 = t_{\text{max}}(y) \). We apply the Arrow-forcing Theorem to find an even starting position that makes \(\text{ARR}(x, t) = -1 \) if \(x > 0 \) and \(t \leq t_0 - t_{\text{max}}(x) \) or \(x < 0 \) and \(t > t_0 - t_{\text{max}}(x) \) and makes \(\text{ARR}(x, t) = -1 \) otherwise. It is easy to verify that in this case at a position \(|x| \leq y, x \neq 0 \) we have an odd number of chips exactly once at time \(t_0 - t_{\text{max}}(x) \) and the formula (3.4) gives

\[
f(0, t_0) - E(0, t_0) = 2 \sum_{y=1}^y |\text{INF}(x, t'_{\text{max}}(x))|.
\]

5 Intervals in Space

In this section, we regard the discrepancy in intervals in \(\mathbb{Z} \). For an arbitrary finite subset \(X \) of \(\mathbb{Z} \) set

\[
E(X, t) := \sum_{x \in X} f(x, t),
\]

\[
E(X, t) := \sum_{x \in X} E(x, t).
\]

We show that the discrepancy in an interval of length \(L \) is \(O(\log L) \), and this is sharp. We need the following facts about \(H \).

Lemma 5.1. For all \(x \in \mathbb{Z} \),

\[
H(x, \cdot) : \{ t \in \mathbb{N} \mid x \sim t \} \to \mathbb{R}; t \mapsto H(x, t)
\]

is unimodal. \(H(x, t) \) is maximal for \(t = x^2 - 2 \) and \(t = x^2 \). We have \(H(x, x^2 - 2) = H(x, x^2) = \Theta(|x|^{-1}) \).

Proof. Since \(H(x, t - 2) = H(x, t) = \frac{x^2 - 2}{t - 2} \), \(H(x, t) \), we conclude that \(H(x, t) \) is unimodal and it has exactly two maxima, namely \(t = x^2 - 2 \) and \(t = x^2 \).

Theorem 5.1. For any even initial configuration, any time \(t \) and any interval \(X \) of length \(L \),

\[
|f(X, t) - E(X, t)| = O(\log L).
\]

There is an even initial configuration, a time \(t \) and an interval \(X \) of length \(L \) such that

\[
|f(X, t) - E(X, t)| = \Omega(\log L).
\]

Proof. Without loss of generality, let \(X = [L + 1] \). Fix any even initial configuration. By (3.4), we have

\[
f(X, t) - E(X, t) = \sum_{y \in \mathbb{Z}} \sum_{x \in X} \sum_{i \geq 0} (-1)^i \text{INF}(y - x, t - s_i(y)) + \sum_{y \in \mathbb{Z}} \sum_{x \in X} \sum_{i \geq 0} (-1)^i \text{INF}(y - x, t - s_i(y)).
\]

189
Let us call

\[\text{CON}(y) := \text{ARR}(y, 0) \sum_{x \in X} \sum_{i \geq 0} (-1)^i \text{INF}(y - x, t - s_i(y)) \]

the contribution of the vertex \(y \) to the discrepancy in the interval \(X \). We first regard vertices \(y \) that lie outside \(X \). By symmetry, we may assume \(y \in \mathbb{N} \). The contribution of a vertex depends on its distance from the interval \(X \). If \(y \) is \(\Omega(L) \) away from \(X \), its influences on the various vertices of \(X \) are roughly equal, and all such influences are quite small. In this case we bound its influence by \(L \) times the one we computed in Theorem 4.1:

Let \(y > L \). By Lemma 4.1 and 4.2,

\[
|\text{CON}(y)| = \left| \sum_{x \in X} \sum_{i \geq 0} (-1)^i \text{INF}(y - x, t - s_i(y)) \right|
\leq \sum_{x \in X} \left| \sum_{i \geq 0} (-1)^i \text{INF}(y - x, t - s_i(y)) \right|
\leq \sum_{x \in X} \max |\text{INF}(y - x, t)|
\leq O \left(\sum_{x \in X} (y - x)^{-2} \right) = O(Ly^{-2}).
\]

Hence the total contribution of these vertices is

\[
\sum_{y > L} |\text{CON}(y)| = O \left(\sum_{y > L} Ly^{-2} \right) = O(1).
\]

We now turn to vertices \(y \in [L] \). Here mainly those vertices of \(X \) that are close to \(y \) contribute to \(\text{CON}(y) \). Hence, the approach above is too coarse.

Let \(\delta_i, \varepsilon_i \in \{0,1\} \) such that \(y + L - \delta i \) and \(y - 1 + \varepsilon_i \) have the same parity as \(t - s_i(y) - 1 \). Then by (3.2),

\[
|\text{CON}(y)|
= \left| \sum_{i \geq 0} (-1)^i \sum_{x \in X} \text{INF}(y - x, t - s_i(y)) \right|
= \left| \frac{1}{2} \sum_{i \geq 0} (-1)^i \sum_{x \in X} (H(y - x + 1, t - s_i(y) - 1) - H(y - x - 1, t - s_i(y) - 1)) \right|
\leq \frac{1}{2} \sum_{i \geq 0} (-1)^i (H(y + L - \delta i, t - s_i(y) - 1))
+ \frac{1}{2} \sum_{i \geq 0} (-1)^i (H(y - 1 + \varepsilon_i, t - s_i(y) - 1))
\leq \frac{1}{2} \max_{x \in \mathbb{N}, \delta \in \{0,1\}} H(y + L - \delta, s)
+ \frac{1}{2} \max_{x \in \mathbb{N}, \varepsilon \in \{0,1\}} H(y - 1 - \varepsilon, s)
= O(y^{-1}).
\]

Thus the vertices in \([L]\) contribute

\[\sum_{y \in [L]} |\text{CON}(y)| = O(\sum_{y = 1}^L y^{-1}) = O(\log L). \]

For \(y \in X \), note that exploiting symmetries, we can employ the same reasoning as above: Denote the upper bound for \(|\text{CON}(y)| \) computed above by \(b_y \). Note that it is non-decreasing in terms of \(L \).

We have \(\text{INF}(x, t) = -\text{INF}(-x, t) \) for all \(x \in \mathbb{Z} \) and \(\text{INF}(0, t) = 0 \). Taking this into account, we see that for each \(y \in X \), there is a subinterval \(X_y \subseteq X \) such that \(y \notin X_y \) and

\[\text{CON}(y) = \text{ARR}(y, 0) \sum_{i \geq 0} (-1)^i \sum_{x \in X_y} \text{INF}(y - x, t - s_i(y)). \]

Denote by \(d_y \) the distance from \(y \) to \(X_y \), that is, \(d_y = \min_{x \in X_y} |y - x| \). Then the above yields \(\text{CON}(y) \leq b_{d_y} |X_y| \leq b_{d_y} L \). Note further, that at most two different \(y \) yield the same \(d_y \). Hence \(\sum_{y \in X} |\text{CON}(y)| \leq 2 \sum_{y \in [N]} |\text{CON}(y)| \).

Combining all cases, we have

\[|f(X, t) - E(X, t)| \leq \sum_{y \in \mathbb{Z}} |\text{CON}(y)| = O(\log L). \]

For the lower bound, we just have to place the chips in a way the one of the logarithmic terms above actually occurs. Without loss of generality, let \(L \) be odd.
Consider the following initial configuration (its existence is ensured by the parity forcing theorem): All arrows point towards the interval X (arrows of vertices in X may point anywhere). Let $t = L^2$. Choose an initial configuration of the chips such that $f(y, s)$ is odd if and only if $y \in [L]$ is even and $t - s = y^2$.

Now by construction, $\text{CON}(y) = 0$ for all $y \in \mathbb{Z}\setminus[L]$. For $y \in [L]$, we have

$$\text{CON}(y) = -\sum_{x \in X} \text{INF}(y - x, y^2)$$

$$= \frac{1}{2}H(y, y^2) - \frac{1}{2}H(y + L + 1, y^2)$$

$$\geq \frac{1}{2}H(y, y^2) - \frac{1}{2}H(y + L + 1, (y + L + 1)^2)$$

$$= \Omega(y^{-1}).$$

Hence for this initial configuration,

$$f(X, t) - E(X, t) = \sum_{y \in \mathbb{Z}} \text{CON}(y)$$

$$= \sum_{y \in [L], y \geq 2} O(y^{-1}) = \Omega(\log L).$$

6 Intervals in Time

In this section, we regard the discrepancy in time-intervals. For $x \in \mathbb{Z}$ and finite $S \subseteq \mathbb{N}_0$, set

$$f(x, S) := \sum_{t \in S} f(x, t),$$

$$E(x, S) := \sum_{t \in S} E(x, t).$$

We show that the discrepancy of a single vertex in a time-interval of length T is $O(\sqrt{T})$, and this is sharp.

THEOREM 6.1. The maximal discrepancy $|f(x, S) - E(x, S)|$ of a single vertex x in a time interval S of length T is $\Theta(T^{1/2}).$

In the proof, we need the following fact that “rolling sums” of unimodal functions are unimodal again.

LEMMA 6.1. (Unimodality of rolling sums) Let $f : \mathbb{Z} \to \mathbb{R}$ be unimodal. Let $k \in \mathbb{N}$. Define $F : \mathbb{Z} \to \mathbb{R}$ by $F(z) = \sum_{i=0}^{k-1} f(z + i)$. Then F is unimodal.

Proof. If f is non-decreasing (resp. non-increasing), then clearly so is F and thus it is unimodal. Hence let f and $m \in \mathbb{Z}$ be such that f is non-decreasing in $\mathbb{Z}_{\leq m}$ and non-increasing in $\mathbb{Z}_{\geq m}$. We show that for some $M \in \mathbb{Z}$, $G(x) := F(x + 1) - F(x)$ is non-negative in $\mathbb{Z}_{\leq M}$ and not positive in $\mathbb{Z}_{\geq M}$. This implies that F is unimodal.

Since $G(x) = f(x + k) - f(x)$ for all $x \in \mathbb{Z}$, G is non-negative in $\mathbb{Z}_{\leq m - k}$ and not positive in $\mathbb{Z}_{\geq m}$. Let $x \in \mathbb{Z} \cap [m - k, m - 1]$. Then $G(x + 1) - G(x) = (f(x + k + 1) - f(x + k)) - (f(x + 1) - f(x)) \leq 0$, that is, G is non-increasing in $\mathbb{Z} \cap [m - k, m]$. Hence M as claimed exists (and satisfies $m - k \leq M \leq m$).

Of course, analogous statements hold for functions defined only on even or odd integers.

The following result says that a single odd split has an influence of exactly one on another vertex over infinite time.

LEMMA 6.2. For all $x \in \mathbb{Z} \setminus \{0\}$, $\sum_{t \in \mathbb{N}} |\text{INF}(x, t)| = 1.$

Proof. W.l.o.g., let $x \in \mathbb{N}$. Then $|\text{INF}(x, t)| = \frac{1}{2}H(x - 1, t - 1) - \frac{1}{2}H(x, t - 1).$ Consider a random walk of a single chip started at zero. Let $Y_{x,t}$ be the indicator random variable for the event that the chip is on vertex y at time t. Let $Y_{x,t}$ be the indicator random variable for the event that the chip is on vertex y at time t and that it has not visited vertex x so far. Let T denote the first time the chip arrives at x.

For any $t \geq 0$ we have by symmetry that $\Pr(Y_{x-1,t-1} = 1 | T = s) = \Pr(Y_{x+1,t-1} = 1 | T = s)$. Clearly, for $t \leq T$, $X_{x+1,t-1} = 0$, and for $t > T$, $Y_{x-1,t-1} = 0$. Thus

$$\sum_{t \in \mathbb{N}} |\text{INF}(x, t)|$$

$$= \frac{1}{2} \sum_{t \in \mathbb{N}} (E(X_{x-1,t-1}) - E(X_{x+1,t-1}))$$

$$= \frac{1}{2} \sum_{t \in \mathbb{N}} \Pr(T = s) \sum_{t \in \mathbb{N}} E(X_{x-1,t-1} - X_{x+1,t-1} | T = s)$$

$$= \frac{1}{2} \sum_{s \in \mathbb{N}} \Pr(T = s) \sum_{t \in \mathbb{N}} E(X_{x-1,t-1} | T = s)$$

$$= \frac{1}{2} \sum_{s \in \mathbb{N}} \Pr(T = s) E\left(\sum_{t \in \mathbb{N}} X_{x-1,t-1} | T = s \right)$$

$$= \frac{1}{2} E\left(\sum_{t \in \mathbb{N}} Y_{x-1,t-1} \right).$$

Note that $E(\sum_{t \in \mathbb{N}} Y_{x-1,t-1})$ is just the expected number of visits to $x - 1$ before visiting x. This number of visits is exactly k if and only if the chip moves left after each of its first $k - 1$ visits and right after the kth visit. This happens with probability 2^{-k}. Hence $E(\sum_{t \in \mathbb{N}} Y_{x-1,t-1}) = \sum_{t \in \mathbb{N}} 2^{-1} = 2$.

Proof. [Proof of Theorem 6.1] Fix any even initial configuration. Let $t_0 \in \mathbb{N}_0$ and $S = [t_0..t_0 + T - 1]$.

191
Without loss, let \(x = 0 \). By (3.4), we have

\[
f(0, S) - E(0, S) = \sum_{t \in S} (f(0, t) - E(0, t))
\]

\[
= \sum_{y \in Z} \text{ARR}(y, 0) \sum_{i \geq 0} (-1)^i \sum_{t \in S} \text{INF}(y, t - s_i(y)).
\]

By unimodality of rolling sums (Lemma 6.1),

\[
|f(0, S) - E(0, S)| \leq \sum_{y \in Z} \max_{x \in \mathbb{N}} \left| \sum_{t \in S} \text{INF}(y, t - s) \right|.
\]

We estimate the term \(\max_{x \in \mathbb{N}} \left| \sum_{t \in S} \text{INF}(y, t - s) \right| \) for all \(y \). For \(1 \leq |y| \leq T^{1/2} \), we use Lemma 6.2 and simply estimate

\[
(6.6) \quad \max_{x \in \mathbb{N}} \left| \sum_{t \in S} \text{INF}(y, t - s) \right| \leq \sum_{t \in \mathbb{N}} |\text{INF}(y, t)| = 1.
\]

For \(|y| > T^{1/2} \), \(\max_{x \in \mathbb{N}} \left| \sum_{t \in S} \text{INF}(y, t - s) \right| \leq T \max_{x \in \mathbb{N}} |\text{INF}(y, t)| = O(y^{-2}) \) by Lemma 4.2. Hence

\[
|f(0, S) - E(0, S)| \leq \sum_{1 \leq |y| \leq T^{1/2}} 1 + T \sum_{|y| > T^{1/2}} O(y^{-2}) = O(T^{1/2}).
\]

For the lower bound, we invoke the parity forcing theorem again. By this, there is an even initial configuration such that all arrows point towards zero, and such that there is an odd number of chips on vertex \(x \in \mathbb{Z} \) at time \(t \in \mathbb{N}_0 \) if and only if \(x \in X := \left[\sqrt{T}, 2\sqrt{T} \right] \) and \(t = 4T - x^2 \). For this initial configuration and \(S = [4T + 1..5T] \), we compute

\[
|f(0, S) - E(0, S)| \geq (1 - o(1))T^{3/2} \min \{ |\text{INF}(y, t)| \mid y \in X, t \in [T + 1..5T], y \sim t \} = \Omega(T^{1/2}).
\]

7 Space-Time-Intervals

We now regard the discrepancy in space-time-intervals. Extending the previous notation, for finite \(X \subseteq \mathbb{Z} \) and finite \(S \subseteq \mathbb{N}_0 \) set

\[
f(X, S) := \sum_{x \in X} \sum_{t \in S} f(x, t),
\]

\[
E(X, S) := \sum_{x \in X} \sum_{t \in S} E(x, t).
\]

Theorem 7.1. Let \(X \subseteq \mathbb{Z} \) and \(S \subseteq \mathbb{N}_0 \) be finite intervals of lengths \(L \) and \(T \), respectively. Then the maximal discrepancy \(|f(X, S) - E(X, S)| \) (taken over all odd or even initial configurations) is \(\Omega(T \log(LT^{-1/2})) \), if \(L \leq T^{1/2} \), and \(\Theta(LT^{1/2}) \) otherwise.

Proof. Fix an even initial configuration. Without loss of generality, let \(X = [-L + 1..0] \). Let \(t_0 \in \mathbb{N}_0 \) and \(S = [t_0..t_0 + T - 1] \). As in previous proofs, by (3.4) we have

\[
f(X, S) - E(X, S) = \sum_{y \in Z} \text{CON}(y)
\]

by unimodality of rolling sums, Lemma 4.1 and 4.2.

Now let \(T^{1/2} \leq y \leq L \). Let \(H^{-}(x, t) := \max\{H(x - 1, t), H(x, t)\} \). In other words, \(H^{-}(x, t) = H(x, t) \), if \(x \sim t \), and \(H^{-}(x, t) = H(x - 1, t) \) otherwise. Similarly, let \(H^{+}(x, t) := \max\{H(x, t), H(x + 1, t)\} \). Then, by (3.2), total unimodularity of rolling sums, Lemma 4.1.

Case 1: Let \(L \geq T^{1/2} \).

We analyze first the contribution of vertices \(y \in \mathbb{N}_0 \). Let \(y \geq L \). Then

\[
|\text{CON}(y)| := \text{ARR}(y, 0) \sum_{i \geq 0} (-1)^i \sum_{x \in X} \text{INF}(y - x, t - s_i(y)).
\]
and 5.1,

\[|\text{CON}(y)| \]

\[= \sum (-1)^i \sum_{t=0}^{T} \sum_{x \in X} \text{INF}(y - x, t - s_i(y)) \]

\[= \frac{1}{2} \sum (-1)^i \sum_{t=0}^{T} \sum_{x \in X} (H(y - x + 1, t - s_i(y) - 1) \]

\[= \frac{1}{2} \sum (-1)^i \sum_{t=0}^{T} \sum_{x \in X} (H^- (y + L, t - s_i(y) - 1) \]

\[= \frac{1}{2} \sum (-1)^i \sum_{t=0}^{T} \sum_{x \in X} (H^+ (y - 1, t - s_i(y) - 1) \]

\[\leq \frac{1}{2} \max_s \sum_{t=0}^{T} H^- (y + L, t - s) \]

\[+ \frac{1}{2} \max_s \sum_{t=0}^{T} H^+ (y - 1, t - s) \]

\[\leq \frac{T}{2} \max_s \sum_{t=0}^{T} H^- (y + L, t) + \frac{T}{2} \max_s \sum_{t=0}^{T} H^+ (y - 1, t) \]

\[= T \text{O}(y^{-1}). \]

Finally let \(y \leq T^{1/2} \). Now starting as above

\[|\text{CON}(y)| \]

\[\leq \frac{1}{2} \max_s \sum_{t=0}^{T} H^- (y + L, t - s) \]

\[+ \frac{1}{2} \max_s \sum_{t=0}^{T} H^+ (y - 1, t - s) \]

\[\leq \max_s \sum_{t=0}^{T} H(0, t - s) \]

\[\leq \sum_{t=0}^{T} H(0, t) \]

\[= O(T^{1/2}). \]

Putting all this together, we obtain

\[\sum_{y \in T^1/2} |\text{CON}(y)| \]

\[\leq \sum_{y \leq T^{1/2}} |\text{CON}(y)| + \sum_{T^{1/2} < y \leq L} |\text{CON}(y)| + \sum_{L < y} |\text{CON}(y)| \]

\[= \sum_{y \leq T^{1/2}} O(T^{1/2}) + \sum_{T^{1/2} < y \leq L} T \text{O}(y^{-1}) + \sum_{L < y} L \text{O}(y^{-2}) \]

\[= O(T) + O(T \log(LT^{-1/2})) + O(T) \]

\[= O(T \log(LT^{-1/2})). \]

By symmetry, we have the same bounds for \(\text{CON}(y) \) if \(y \leq -L \). Using the same reasoning as in the proof of Theorem 5.1, vertices \(y \in X \) contribute at most as much as those not in \(X \).

Altogether, we have

\[\sum_{y \in \mathbb{Z}} |\text{CON}(y)| = O\left(\sum_{y \in \mathbb{N}} |\text{CON}(y)| \right) \]

\[= O(T \log(LT^{-1/2})). \]

We now prove the corresponding lower bound. Set \(Y = [T^{1/2}, L] \). Choose an even initial configuration such that \(f(x, t) \) is odd if and only if \(x \in Y \) and \(t = L^2 - x^2 \). Direct all arrows towards zero. Let \(S = [L^2, L^2 + T - 1] \). Then for \(y \in Y \), with \(\delta_t, \epsilon_t \in \{0, 1\} \) appropriately chosen as before, \(\text{CON}(y) \)

\[= \sum_{x \in X} \sum_{t=L^2}^{L^2 + T - 1} |\text{INF}(y - x, t - (L^2 - y^2))| \]

\[\geq \frac{1}{2} \sum_{t=1}^{y^2 + T - 1} (H(y - 1 + \epsilon_t, t - 1) - H(y + L - 1 - \delta_t, t - 1)) \]

\[\geq \Omega \left(\sum_{t=1}^{y^2 + T - 1} H(y - 1 + \epsilon_t, t - 1) \right) \]

\[= \Omega(Ty^{-1}). \]

For \(y \notin Y \), \(\text{CON}(y) = 0 \). Hence the discrepancy in this setting is at least \(\sum_{y \in Y} \text{CON}(y) = \sum_{y = T^{1/2}}^{L} O(Ty^{-1}) = O(T \log(LT^{-1/2})). \)

Case 2: Let \(L \leq T^{1/2} \).

For the upper bound, we simply apply Theorem 6.1 as follows:

\[|f(X, S) - E(X, S)| \leq \sum_{x \in \mathbb{N}} |f(x, S) - E(x, S)| \]

\[\leq LO(T^{1/2}). \]
For the lower bound, the setting of Theorem 6.1 works as well. Choose an initial configuration such that \(f(x, t) \) is odd if and only if \(x \in X := [T^{1/2} \ldots 2T^{1/2}] \) and \(t = 4T - y^2 \). Then

\[
\text{CON}(y) = \sum_{x \in X} \sum_{t = 4T}^{5T-1} |\text{INF}(y - x, t - (4T - y^2))| \geq L^T \min\{[\text{INF}(y, t)] \mid y \in Z \cap [T^{1/2} \ldots 3T^{1/2}], t \in Z \cap [T..5T], y \sim t\} = \Omega(L)
\]

for all \(y \in Y \). Again, \(\text{CON}(y) = 0 \) for \(y \notin Y \). Hence \(\sum_{y \in Z} \text{CON}(y) = \Omega(LT^{1/2}) \).

8 Intervals in Space, Revisited

We stated in Theorem 5.1 that the discrepancy in an interval of length \(L \) is \(O(\log L) \). Here we state that intervals of length \(L \) with about \(\log L \) discrepancy are very rare, the quadratic average of the discrepancies of a long contiguous set of intervals of length \(L \) is only \(O(\sqrt{\log L}) \), and this bound is tight.

For a set \(X \) of vertices we denote by \(\text{DISC}(X, t) \) the discrepancy of the set \(X \) at time \(t \), i.e., we set \(\text{DISC}(X, t) = f(X, t) - E(X, t) \).

Theorem 8.1. Let \(X \) be an interval of length \(L \). For \(M \) sufficiently large,

\[
\frac{1}{M} \sum_{k=1}^{M} \text{DISC}^2(X + k, t) = O(\log L).
\]

Furthermore, for a given \(L \) and \(M \) there exists an even initial configuration, and a time \(t \) and an interval \(X \) of length \(L \) such that

\[
\frac{1}{M} \sum_{k=1}^{M} \text{DISC}^2(X + k, t) = \Omega(\log L).
\]

Proof. For the first statement we need to prove an \(O(\sqrt{\log L}) \) bound on the quadratic average of the discrepancies \(\text{DISC}(X + k, t) \) with \(k = 1, \ldots, M \). First note that changing the individual discrepancies by a bounded amount we change the quadratic average by at most the same amount. We use this observation to freely neglect \(O(1) \) terms in the discrepancy of the intervals. In particular we can change the intervals themselves by adding or deleting a bounded number of vertices. We use this to make a few simplifying assumptions. As in Section 7 we assume that (i) the starting configuration is odd, (ii) the interval \(X \) is \(X = [L'..L'] \) with \(L' \sim t \), and (iii) \(M \) is even and we only consider even values of \(k \), i.e., we consider the average of \(\text{DISC}^2(X + k, t) \) for \(2 \leq k \leq M \), \(k \) even (this can be justified by considering \(X + k + 1 \) instead of \(X + k \) for odd \(k \)).

First we show that discrepancies caused by odd piles at time \(t - L^2 \) or before can be neglected. We start with (3.4) for the individual discrepancies \(\text{DISC}(x, t) \).

\[
\text{DISC}(x, t) = \sum_{y \in Z} (-1)^y \text{INF}(y - x, t - s_i(y)) = \text{DISC}_1(x, t) + \text{DISC}_2(x, t);
\]

\[
\text{DISC}_1(x, t) = \sum_{y \in Z} (-1)^y \text{INF}(y - x, t - s_i(y));
\]

\[
|\text{DISC}_2(x, t)| = \sum_{y \in Z} (-1)^y \text{INF}(y - x, t - s_i(y)).
\]

We have seen that \(|\text{INF}(z, u)| \) is unimodal for fixed \(z \) and its maximum is at \(u = \lceil z^2/3 \rceil \), so we have

\[
|\text{DISC}_2(x, t)| \leq 2 \sum_{z=1}^{L} |\text{INF}(z, L^2)| + 2 \sum_{z>L} |\text{INF}(z, \lceil z^2/3 \rceil)| \leq 2 \sum_{z=1}^{L} H(z, L^2/L) + O(1/L) = O(1/L).
\]

Therefore the total contribution of \(\text{DISC}_2 \) to the discrepancy of an interval \(X + k \) is small. For

\[
\text{DISC}_1(X + k, t) := \sum_{x \in X + k} \text{DISC}_1(x, t)
\]

we have

\[
|\text{DISC}_1(X + k, t) - \text{DISC}(X + k, t)| \leq O(1).
\]

We continue as in Section 7 collapsing a sum using \(\text{INF}(z, u) = \frac{1}{u} H(z + 1, u - 1) - \frac{1}{u} H(z - 1, u - 1) \). We also use that \(\text{DISC}(x, t) = \text{DISC}_1(x, t) = 0 \) for \(x \sim t \) as
the starting configuration is odd.

\[
\text{DISC}_1(X + k, t) = \sum_{x \in X} \sum_{y \in \mathbb{Z}} \text{ARR}(y, 0) \sum_{s_i(y) > t - L^2} (-1)^i \text{INF}(y - x, t - s_i(y))
\]

\[
= \sum_{y \in \mathbb{Z}} \text{ARR}(y, 0) \sum_{s_i(y) > t - L^2} (-1)^i \sum_x \left(\frac{1}{2} H(y - x + 1, t - s_i(y) - 1) - \frac{1}{2} H(y - x - 1, t - s_i(y) - 1) \right)
\]

\[
= \frac{1}{2} \sum_{y \in \mathbb{Z}} \text{ARR}(y, 0) \sum_{s_i(y) > t - L^2} (-1)^i \left(H(y - k + L', t - s_i(y) - 1) - H(y - k - L', t - s_i(y) - 1) \right).
\]

We separate the two terms in this last expression. With

\[
D(m) := 2 \sum_{y \in \mathbb{Z}} \text{ARR}(y, 0) \sum_{s_i(y) > t - L^2} (-1)^i H(y - m, t - s_i(y) - 1)
\]

we have

\[
\text{DISC}_1(X + k, t) = \frac{1}{4} D(k - L') - \frac{1}{4} D(k + L').
\]

Our original goal was to prove an \(O(\sqrt{\log L})\) bound on the quadratic average of \(\text{DISC}(X + k, t)\). As \(\text{DISC}_1(X + k, t)\) differs from \(\text{DISC}(X + k, t)\) by \(O(1)\) it is clearly enough to prove the same bound for the quadratic average of \(\text{DISC}_1(X + k, t)\).

Let \(t_0 = \max(0, t - L^2 + 1)\) be the first time-step considered. For \(y \in \mathbb{Z}\) and \(u \sim y + 1\) we have an odd pile at \(y\) if and only if \(\text{ARR}(y, u) \neq \text{ARR}(y, u + 2)\) and in this case \(\text{ARR}(y, u) = (-1)^i \text{ARR}(y, 0)\) for the index \(i\) with \(s_i(y) = u\). For any \(m \sim t\) we have

\[
2\text{ARR}(y, 0) \sum_{s_i(y) > t - L^2} (-1)^i H(y - m, t - s_i(y) - 1)
\]

\[
= \sum_{t_0 \leq u < t} (\text{ARR}(y, u) - \text{ARR}(y, u + 2)) H(y - m, t - u - 1)
\]

\[
= \sum_{t_0 + 2 \leq u < t} 2 \text{ARR}(y, u) H(y - m, t - u - 1)
\]

\[
- \text{ARR}(y, u) H(y - m, t - u + 1) + \text{ARR}(y, t_1) H(y - m, t - t_1 - 1)
\]

\[
- \text{ARR}(y, t_2) H(y - m, t - t_2 + 1),
\]

where \(t_1 = t_1(y)\) is either \(t_0\) or \(t_0 + 1\), whichever makes \(t_1 \sim y + 1\) and similarly \(t_2 = t_2(y)\) is either \(t\) or \(t + 1\), so that \(t_2 \sim y + 1\). With

\[
D'(m) := \sum_{y \in \mathbb{Z}} \sum_{t_0 + 2 \leq u < t} \sum_{u \sim y + 1} \text{ARR}(y, u) \left(H(y - m, t - u - 1) - H(y - m, t - u + 1) \right)
\]

we have

\[
|D(m) - D'(m)|
\]

\[
= \left| \sum_{y \in \mathbb{Z}} (\text{ARR}(y, t_1(y)) H(y - m, t - t_1(y) - 1)
\]

\[
- \text{ARR}(y, t_2(y)) H(y - m, t - t_2(y) + 1)) \right|
\]

\[
\leq \sum_{u \in (0, t-1) \sim y + 1} \sum_{u \in (0, t-1)} \sum_{u \sim y + 1} H(y - m, u) \leq 4.
\]

As before, we ignore the small difference and will prove the \(O(\sqrt{\log L})\) bound on the quadratic average of \(D'(m)\) instead of \(D(m)\). Computing the square and summing for \(m\) we get the following. The summations are taken for \(m \in I, m \sim t\), for \(y, y_2 \in \mathbb{Z}\), and for \(u_1, u_2 \in [t_0 + 2, t - 3]\), \(u_1 \sim u_2 \sim y + 1\), respectively.

\[
\sum_m D'^2(m)
\]

\[
= \sum_{y_1, y_2} \sum_{u_1, u_2} \text{ARR}(y_1, u_1) \text{ARR}(y_2, u_2)
\]

\[
\cdot \sum_m (H(y_1 - m, t - u_1 - 1) - H(y_1 - m, t - u_1 + 1))
\]

\[
\cdot (H(y_2 - m, t - u_2 - 1) - H(y_2 - m, t - u_2 + 1)).
\]

Let us estimate the contribution to this sum coming from a fixed \(y_1, u_1\), and \(u_2\). Disregarding the signs and extending the summation for all \(m\) (even outside \(I\)) the contribution of each of the four terms we get from the multiplication is exactly 1. As \(u_1\) and \(u_2\) can take at
most $L^2/2$ values each, the total contribution coming from a single value of y_1 is at most L^4.

Let us obtain the intervals I' and I'' from I by extending or shortening it at both ends by L^2, i.e., if $I = [a, b]$, then $I' = [a - L^2, b + L^2]$, $I'' = [a + L^2, b - L^2]$. If y_1 is outside I' we have $H(y_1 - m, t - u_1 + 1) = H(y_1 - m, t - u_1) = 0$ for all $m \in I$, therefore such y_1 has zero contribution to $\sum_m D^2(m)$. The contribution for fixed y_1, y_2, u_1, and u_2 can usually be written in closed form using the identity

$$\sum_m H(y_1 - m, v_1)H(y_2 - m, v_2) = H(y_1 - y_2, v_1 + v_2).$$

This identity works if we sum for all possible values of m, but for $y_1 \in I''$ the contribution of the values $m \notin I$ is zero. Therefore the contribution to $\sum_m D^2(m)$ of the fixed terms $y_1 \in I''$, y_2, u_1, and u_2 is

$$ARR(y_1, u_1)ARR(y_2, u_2) \sum_m (H(y_1 - m, t - u_1 - 1) - H(y_1 - m, t - u_1 + 1)) \cdot (H(y_2 - m, t - u_2 - 1) - H(y_2 - m, t - u_2 + 1)) = \sum_m (H(y_2 - m, t - u_2) - 2H(y_2, v) + H(y, v + 2)),$$

where $y = y_1 - y_2$ and $v = 2t - u_1 - u_2$.

To estimate these contributions we first calculate

$$H(y_2, v) - 2H(y_2, v) + H(y, v + 2) = O(y^3/v^4 + 1/v^2)H(y, v + 2).$$

The same $y = y_1 - y_2$ value arises exactly once for every $y_1 \in I''$, a total of $M - 2L^2$ possibility. The highest possible value of v is less than $2L^2$ and the same value v can be the result of at most v pairs u_1, u_2. There are $4L^2$ possible values of y_1 outside I'' but inside I' contributing at most $4L^6$. Summing for all these contributions we estimate

$$\sum_m D^2(m) \leq 4L^6 + O(\sum_{v=1}^{2L^2} Mv \sum_{y \in \mathbb{Z}} (y^4/v^4 + 1/v^2)H(y, v + 2)) = 4L^6 + O(M \sum_{v=1}^{2L^2} (y^4/v^3 + 1/v)H(y, v + 2)) = 4L^6 + O(M \sum_{v=1}^{2L^2} 1/v) = O(L^6 + M \log L).$$

Here we used the estimate on the fourth moment of the random walk:

$$\sum_{y \in \mathbb{Z}} y^4H(y, v + 2) = O((v + 2)^2) = O(v^2).$$

To finish the proof we set $M > L^6$ for our threshold for large enough M. We did not make an effort to optimize for this threshold. This ensures that $\sum_m D^2(m) = O(M \log L)$, so the quadratic average of $D^2(m)$ (and therefore of $\text{disc}(X + k, t)$) is $O(\sqrt{\log L})$ as claimed.

It remains to construct a starting configuration where the quadratic average of discrepancies in the intervals of length L is large. For our construction we do not even use the value L. For a given (even) parameter t we define a probability distribution on starting positions, such that for all $L < t$ and all intervals X of length L the expectation of $\text{disc}^2(X, t) = \Omega(\log L)$.

We let $r(a, b)$ stand for independent random ± 1 variables for all integers a and $b \geq 1$. We look for an even starting configuration (guaranteed by the Arrowforcing Theorem, such that $\text{ARR}(x, u) = r(a, b)$ for all even x and u satisfying $4b < u \leq 4b + 4$ and $a2^b < x \leq (a + 1)2^b$). For simplicity we set $\text{ARR}(x, u) = 1$ for all u and all odd x and we also set $\text{ARR}(x, u) = 1$ for all x and $u \leq 4$.

Simple calculation similar to the one in Section 7 shows that for an interval $X = [c, d]$ we have

$$\text{disc}(X, t) = \sum_{a, b} h(a, b)r(a, b),$$

where the coefficients $h(a, b)$ depend on X. Further analysis shows that all coefficients are bounded and $\Theta(\log L)$ of them are above a positive absolute constant for each interval of length L. This implies that the expectation of $\text{disc}^2(X, t)$ is $\Omega(\log L)$, and therefore the expectation of the average $\frac{1}{L} \sum_{k=1}^{M} \text{disc}^2(X + k, t)$ is also $\Omega(\log L)$. This proves the second statement of the theorem.

9 Conclusion

In this paper, we elaborated that Jim Propp’s rotor router model is a very good simulation for random walks on \mathbb{Z}. Not only that there is a constant bound for errors on single vertices, these bounds become stronger in several forms of averages.

We are optimistic that similar results hold for higher-dimensional grids. For errors on single vertices, this was shown by Cooper and Spencer [CS05, CS]. For higher-dimensional intervals, that is, products of intervals, we note that interesting things mainly happen along the boundary. Hence we expect the discrepancy in a product of d intervals of length L to be of order $L^{d-1} \log L$. Note that the arrow-forcing theorem can be extended to higher-dimensional grids, so our lower bound proofs can be extended as well.
From this work a number of open problems arise. One is the following: The arrow/parity-forcing theorem yields a simple, yet general way to produce lower bounds. It is, however, quite wasteful in the number of chips. To obtain a desired behavior for t time steps, we will have $\Theta(2^t)$ chips on many vertices. For actual simulations, this is not desirable. Therefore, it seems to be an interesting problem to look for sparser setups that still produce large discrepancies.

References

