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Abstract

Calculating the permanent of a (0, 1) matrix is a #P -
complete problem but there are some classes of struc-
tured matrices for which the permanent is calculable in
polynomial time. The most well-known example is the
fixed-jump (0, 1) circulant matrix which, using algebraic
techniques, was shown by Minc to satisfy a constant-
coefficient fixed-order recurrence relation.

In this note we show how, by interpreting the
problem as calculating the number of cycle-covers in a
directed circulant graph, it is straightforward to reprove
Minc’s result using combinatorial methods. This is a
two step process: the first step is to show that the cycle-
covers of directed circulant graphs can be evaluated
using a transfer matrix argument. The second is to show
that the associated transfer matrices, while very large,
actually have much smaller characteristic polynomials
than would a-priori be expected.

An important consequence of this new viewpoint
is that, in combination with a new recursive decompo-
sition of circulant-graphs, it permits extending Minc’s
result to calculating the permanent of the much larger
class of circulant matrices with non-fixed (but linear)
jumps.

1 Introduction

Definition 1.1. Let A = (ai,j) be an n×n matrix. Let
Sn be the set of permutations of the integers [1, . . . , n].
The permanent of A is

Perm(A) =
∑

π∈Sn

n∏

i=1

ai,π(i) where π = [π(1), . . . , π(n)].

If A is a (0, 1) matrix, then A can be interpreted
as the adjacency matrix of some directed graph G
and Perm(A) is the number of directed cycle-covers
in G, where a directed cycle-cover is a collection of
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disjoint cycles that cover all of the vertices in the graph.
Alternatively, A can be interpreted as the adjacency
matrix of a bipartite graph Ḡ, in which case Perm(A) is
the number of perfect-matchings in Ḡ. The permanent is
a classic well-studied combinatorial object (see the book
and later survey by Minc[13, 16]).

Calculating the permanent of a (0, 1) matrix is a
#P -Complete problem [19] even when A is restricted
to have only 3 non-zero entries per row [8]. The best
known algorithm for calculating a general permanent
is a straightforward inclusion-exclusion technique due
to Ryser [13] running in Θ(n2n) time and polynomial
space. By allowing super-polynomial space, Bax and
Franklin [1] developed a slightly faster (although still
exponential) algorithm for the (0, 1) case. We point
out, in another direction, that just recently, Jerrum,
Sinclair and Vigoda [11] developed a fully polynomial
approximation scheme for approximating the permanent
of nonnegative matrices.

On the other hand, for certain special structured
classes of matrices one can exactly calculate the perma-
nent in “polynomial time”. The most studied example
of such a class is probably the circulant matrices, which,
as discussed in [7], can be thought of as the borderline
between the easy and hard cases.

An n × n circulant matrix A = (ai,j) is defined

by specifying its first row; the (i + 1)st row is a cyclic
shift i units to the right of the first row, i.e., ai,j =
a1,1+(n+j−i) mod n. Let Pn denote the (0, 1) n×n matrix
with 1s in positions (i, i+1), i = 1, . . . , n−1, and (n, 1)
and 0s everywhere else. Many of the early papers on
this topic express circulant matrices in the form

An = a1P
s1

n + a2P
s2

n + · · · + akP sk

n(1.1)

where 0 ≤ s1 < s2 < · · · < sk < n and ai = a1,si+1.
The first major result on permanents of (0, 1)

circulants is due to Metropolis, Stein and Stein [12].

Let k > 0 be fixed and An,k =
∑k−1

i=0 P i
n, be the n × n

circulant matrix whose first row is composed of 1s in
its first k columns and 0s everywhere else. Then [12]
showed that, as a function of n, Perm(An,k) satisfies a
fixed order constant-coefficient recurrence relation in n



and therefore, could be calculated in polynomial time
in n (after a superpolynomial “start-up cost” in k for
deriving the recurrence relation).

This result was greatly improved by Minc who
showed that it was only a very special case of a general
rule. Let 0 ≤ s1 < s2 < · · · < sk < n be any
fixed sequence and set An = An(s1, . . . , sk) = P s1

n +
P s2

n + · · ·+P sk

n . In [14, 15] Minc proved that Perm(An)
always satisfies a constant-coefficient recurrence relation
in n of order 2sk − 1. Minc’s theorem was proven by
manipulating algebraic properties of An. Note, that as
mentioned by Minc, this result is difficult to apply for
large sk since, in order to derive the coefficients of
the recurrence relation it is first necessary to evaluate
Perm(An) for n ≤ 2(2sk − 1) and, using, Ryser’s
algorithm, this requires Ω

(
22sk

)
time.

Later Codenotti, Resta and various coauthors im-
proved these results in various ways; e.g. in [2] showing
how to evaluate sparse circulant matrices of size ≤ 200;
in [4, 5] showing that the permanents of circulants with
only three 1s per row can be evaluated in polynomial
time; in [6] showing how the permanents of some special
sparse circulants can be expressed in terms of determi-
nants and are therefore solvable in polynomial time; in
[2] showing that the permanents of dense circulants are
hard to calculate and in [7] that even approximating the
permanent of an arbitrary circulant modulo a prime p

is “hard” unless P#P = BPP.
In this paper we return to the original problem

of Minc. Our first main result will be to show that
if circulant matrix An(s1, . . . , sk) is interpreted as the
adjacency matrix of a directed circulant graph Cn, then
counting the number of cycle-covers of Cn using a
transfer matrix approach immediately reproves Minc’s
result. As well as reproving Minc’s original result this
new technique will then permit us extend the result to
a much larger set of circulant graphs as well as address
other related problems. To explain, we first need to
introduce some notation.

Definition 1.2. See Figure 1. Let Cs1,s2,···,sk

n . be
the n-node directed circulant graph with jumps S =
{s1, s2, . . . sk}. (Note that in this definition we allow
negative si.) Formally,

Cs1,s2,...,sk

n = (V (n), EC(n))

where
V (n) = {0, 1, . . . , n − 1}

and
EC(n) =

{
(i, j) : (j − i) mod n ∈ S

}
.

Note: we will assume that S contains at least one non-

negative si since if all the si were negative we could multiply

them by −1 and get an isomorphic graph. Also, we will often

write Cn as shorthand for C
s1,s2,···,sk
n .

Let G = (V,E) be a graph, T ⊆ E and v ∈ V.
Define IDT (v) to be the indegree of v in graph (V, T )
and ODT (v) to be the outdegree of v in (V, T ). T ⊆ E is
a cycle-cover of G if

∀v ∈ V, IDT (v) = ODT (v) = 1.

Definition 1.3. Let S = {s1, s2, . . . sk} be given. Set

CC(n) = {T ⊆ Cn : T is a cycle-cover of Cn}

and

T (n) = |CC(n)| = No. of cycle-covers of Cn.

Note that, by the standard correspondence men-
tioned before, An(s1, . . . , sk) is the adjacency matrix of
Cs1,s2,···,sk

n and T (n) = Perm(An(s1, . . . , sk)). So, cal-
culating T (n) is equivalent to calculating permanents of
An(s1, . . . , sk).

In [9, 10] the authors of this paper were interested
in counting spanning trees and other structures in
undirected circulant graphs. The main tool introduced
there was a recursive decomposition of such graphs. In
Section 2 we describe a related recursive decomposition
of directed circulant graphs. Our technique will be to
use this decomposition to show that for some constant
m there is a m × 1 (column) vector function T̄ (n) such
that

∀n ≥ 2s̄, T (n) = β T̄ (n) and T̄ (n + 1) = A T̄ (n)
(1.2)
where s̄ is a constant to be defined later (but reduces to
s̄ = sk for the Minc formulation described previously),
β is a 1 × m constant row-vector and A is a constant
m×m matrix. Such an A is known as a transfer-matrix
see, e.g., [18].

Let P (x) =
∑t

i=0 pix
i be any polynomial that

annihilates A, i.e., P (A) = 0. Then it is easy to see
that ∀n ≥ 2s̄,

t∑

i=0

piT (n + i) = β

(
t∑

i=0

piA
n+i−2s̄

)
T̄ (2s̄)

= β An−2s̄

(
t∑

i=0

piA
i

)
T̄ (2s̄)

= β An−2s̄ 0 T̄ (2s̄)

= 0

where 0 denotes the m×m zero matrix and 0 a scalar;
T (n) thus satisfies the degree-t constant coefficient re-

currence relation T (n+ t) =
∑t−1

i=0 − pi

pt

T (n+ i) in n. By
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Figure 1: C−1,0,2
n : Circulant matrix (a) is the adjacency matrix of circulant graph C−1,0,2

6 in (b). In (b), the
solid edges are Ln and the dashed edges are Hook(n). (c) illustrates C−1,0,2

n (n = 6, 7) drawn in lattice graph
representation. The bold edges in C−1,0,2

7 are New(n). Note that the Hook(n) edges for n = 6, 7 are “independent”
of n.

the Cayley-Hamilton theorem, the characteristic poly-
nomial of A, which has degree ≤ m, must annihilate
A, so such a polynomial exists and T (n) satisfies a re-
currence relation of at most degree m. In our notation,
Minc’s theorem is that T (n) satisfies a recurrence rela-
tion of degree 2s̄−1. Unfortunately, in our construction,
m = 22s̄ so the characteristic polynomial does not suf-
fice for our purposes. Our next step will involve showing
that even though A is of size 22s̄ × 22s̄, there is a much
smaller P , of degree 2s̄ − 1, that annihilates A, thus re-
proving Minc’s theorem. We point out that this degree
reduction of the transfer matrix (to the square-root of
the original size) is, a-priori, quite unexpected, and does
not occur in the undirected-circulant counting problems
analyzed in [9, 10].

One interesting consequence of this new derivation
is that, unlike in Minc’s proof, to derive the recurrence
relation it is no longer necessary to start by spending

Ω
(
22s̄

)
time calculating the first 2s̄ values of T (n) using

Ryser’s method. Instead one only has to calculate A,
β, the polynomial P and the first 2s̄ values of T̄ (n)
which, as we will see later, can all be done in O(s̄25s̄)
time, reducing the start-up complexity from doubly-
exponential in s̄ to singularly exponential.

Another, albeit minor, consequence of this new
derivation is that it can also handle non (0, 1) circulants.
That is, given any matrix An of the form (1), even when
the ai are not restricted to be in {0, 1} the technique
shows that Perm(An) satisfies a recurrence relation of
degree 2s̄−1. This is only a minor consequence, though,
since working through the details of Minc’s original
proof it is possible to modify it to get the same result.

A much more important new consequence, and the
major motivation for this paper, is the fact that the
proof can be extended to evaluate the permanents of
non-constant jump circulant matrices, something which
has not been addressed before. To explain this, we

generalize Definition 1.2 to

Definition 1.4. See Figure 2(a). Let p, s,
p1, p2, . . . , pk and s1, s2, . . . , sk be fixed integral
constants with such that ∀i, 0 ≤ pi < p. Set
S = {p1n + s1, p2n + s2, · · · , pkn + sk}. Denote
the (pn + s)-node directed circulant graph with jumps
S by

Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s = (V (n), EC(n))

where
V (n) = {0, 1, . . . , pn + s − 1}

and

EC(n) =
{

(i, j) : (j − i) mod (pn + s) ∈ S
}
.

Note that Apn+s(p1n+ s1, p2n+ s2, · · · , pkn+ sk) is the
adjacency matrix of Cn so, counting the cycle-covers
in Cn is equivalent to evaluating Perm(Apn+s(p1n +
s1, p2n + s2, · · · , pkn + sk)). Our method of counting
the cycle covers in Cn will be to derive a new recursive
decomposition of Cn (which might be of independent
interest) and use it to show that an analogue of (1.2)
holds in the non-constant jump case as well; thus T (n)
still satisfies a constant-coefficient recurrence relation
in n. For example, in Table 1, we show the recurrence
relation for the number of cycle covers in C1,n+1,2n

3n and
C0,n,2n−1

3n .
In the next section we describe the new recursive

decompositions of Cn, for both constant and non-
constant jumps, upon which our technique is based. In
Section 3 we show how this permits easily reproving
Minc’s result for non-constant circulants. We then
describe the minor modifications that are needed to
extend the proof to non-constant circulants.

Note: Due to space limitations in this extended
abstract only the proof skeleton is given, with many
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Figure 2: C1,n,2n
3n , a non-constant jump circulant: Dashed edges are Hook(n). Solid edges are Ln. (a) and (b) are

two representations of the graph when n = 4. Note the lattice representation in (b). (c) is is the case n = 5. The
bold solid edges on the right are New(n). The 3 vertices on the right are V N(n). Note that the dashed Hook(n)
edges for both n = 4, 5 are “independent” of n.

C−1,0,1
n T (n) = 2T (n − 1) − T (n − 3) T (n) ∼ φn

C0,1,2
n initial values 9, 13, 12 for n = 4, 5, 6 φ = (1 +

√
5)/2

C1,n+1,2n
3n T (n) = 5T (n − 1) − 5T (n − 2) − 5T (n − 3) + 6T (n − 4)

C0,n,2n−1
3n initial values 17, 45, 113, 309 for n = 2, 3, 4, 5 T (n) ∼ 3n

Table 1: The number of cycle-covers T (n) in directed circulant graphs with constant jumps C−1,0,1
n and C0,1,2

n ,
and with non-constant jumps C1,n+1,2n

3n and C0,n,2n−1
3n , as derived by the technique in this paper. Note that inside

each pair of graphs, the number of cycle covers is the same. This is to be expected, since their adjacency matrices
are just linear circular shifts of each other so the permanents of their adjacency matrices are the same.

of the details omitted. Also, when reproving Minc’s
result, we only prove that Perm(An) satisfies a degree
2s̄ recurrence relation and not a 2s̄ − 1 one.

2 A Recursive Decomposition of Directed

Circulant Graphs

The main conceptual difficulty with deriving a recur-
rence relation for T (Cn) is that larger circulant graphs
can not be built recursively out of smaller ones. The
crucial observation, though, is that, there is another
graph, Ln, the lattice graph, that can be built recur-
sively, and Cn can then be constructed from Ln through
the addition of a constant number of edges1. In [9, 10]
the authors of this paper developed such a recursive de-
composition for undirected circulant graphs as a tool for
counting the number of spanning trees in such graphs.
In what follows we develop a corresponding decompo-
sition for directed circulants that will permit counting
cycle-covers.

We first show this for the restricted case in which
S, the set of jumps, is constant (independent of n),
where it is easy to visualize. After deriving the relevant
properties we extend the decomposition to the more

1To put this into context, this is very similar to the definition
of Recursive families for undirected graphs [3, 17].

complicated case in which the set of jumps can depend
upon n.

Definition 2.1. See Figure 1. Let S = {s1, s2, . . . sk},
where the si are fixed integers. Define the n-node lattice
graph with jumps S

Ls1,s2,...,sk

n = (V (n), EL(n))

where
EL(n) =

{
(i, j) : j − i ∈ S

}
.

Now set
Hook(n) = EC(n) − EL(n)

and
New(n) = EL(n + 1) − EL(n).

Note that this implies

Ln+1 = Ln ∪ New(n) and Cn = Ln ∪ Hook(n).(2.3)

The simple but important observation is that, when n
is viewed as a label rather than as a number, Hook(n)
and New(n) are independent of the actual value of n.



Lemma 2.1. Set S+ = {s ∈ S : s ≥ 0} and
S− = {s ∈ S : s < 0}. Then

Hook(n) =

(
⋃

s∈S+

{ (n − j, s − j) : 1 ≤ j ≤ s}
)

∪
(
⋃

s∈S−

{ (j, n + s + j) : 0 ≤ j < |s|}
)

,

New(n) =

(
⋃

s∈S+

{(n − s, n)}
)

∪
(
⋃

s∈S−

{(n, n + s)}
)

.

Further set s+ = maxs∈S+ s,
and s− = maxs∈S− |s| (if S− = ∅ set s− = 0).
For later use we define s̄ = s+ + s−. Now define

L+(n) = {0, . . . s+ − 1},
R+(n) = {n − s+, . . . , n − 1},
L−(n) = {0, . . . s− − 1},
R−(n) = {n − s−, . . . , n − 1}.

Then

Hook(n) ⊆
(
R+(n) × L+(n)

)
∪
(
L−(n) × R−(n)

)

New(n) ⊆
(
R+(n) × {n}

)
∪
(
{n} × R−(n)

)

∪{(n, n)}(2.4)

Important Note: In this section and the next we will
always assume that n ≥ 2s̄ since this will guarantee that
(L+(n) ∪ L−(n)) ∩ (R+(n) ∪ R−(n)) = ∅. Without this
assumption some of our proofs would fail. Also note
that the {(n, n)} term in New(n) is only needed when
0 ∈ S.

We now extend the above definitions and lemmas to
the case of non-constant circulants. This will require a
change in the way that we visualize the nodes of Cn;
until, now, as in Figure 1(c), we visualized them as
points on a line with the edges in Hook(n) connecting
the left and right endpoints of the line. In the non-
constant jump case it will be convenient to visualize
them as points on a bounded-height lattice, where
Hook(n) connects the left and right boundaries of the
lattice. We start by introducing a new graph:

Definition 2.2. See Figure 2. Let p, s, p1, p2, . . . , pk

and s1, s2, . . . , sk be given integral constants such that
∀i, 0 ≤ pi < p. Set S = {p1n+s1, p2n+s2, · · · , pkn+sk}.
For u, v and integer n, set f(n;u, v) = un + v. Define

Ĉn =
(
V̂C(n), ÊC(n)

)

where

bV (n) = { (u, v) : 0 ≤ u ≤ p − 1, 0 ≤ v ≤ n − 1}

∪ { (p − 1, v) : n ≤ v ≤ n + s − 1}

and bEC(n) is the set of the union of all edges

((u1, v1), (u2, v2)),

where the union is taken over all

(u1, v1), (u2, v2) ∈ bV (n)

such that

f(n; u2, v2) − f(n; u1, v1) mod (pn + s) ∈ S.

Directly from the definition we see Ĉn is isomorphic
to Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s . In particular, cycle-

covers of Ĉn are in 1-1 correspondence with cycle covers
of Cn so we can restrict ourselves to counting cycle
covers of Ĉn. We now introduce the generalization of
Definition 2.1.

Definition 2.3. Let p, s, p1, p2, . . . , pk and
s1, s2, . . . , sk and S, f be as in Definition 2.2.
Define the pn + s-node lattice graph with jumps S

Ln = (V̂ (n), ÊL(n))

where ÊL(n) is the set of the union of all edges

((u1, v1), (u2, v2))

where the union is taken over all

(u1, v1), (u2, v2) ∈ V̂ (n),

such that

f(n;u2, v2) − f(n;u1, v1) = pin + si mod (pn + s)

and

u2 − u1 = pi mod p.

Now set
Hook(n) = ÊC(n) − ÊL(n)

and
New(n) = ÊL(n + 1) − ÊL(n).

Note that this implies

Ln+1 = Ln ∪ New(n)

and(2.5)

Ĉn = Ln ∪ Hook(n).

It is now straightforward to derive an analogue
of Lemma 2.1 showing that Hook(n) and New(n) are
independent of the actual value of n. Let NV (n) =
VL(n + 1) − VL(n). NV (n) will be the new vertices in
VL(n + 1). Note that we did not define this for fixed-
jump circulant graphs since in the fixed-jump case there
is only the one new vertex VL(n+1)−VL(n) = {n} and
NV (n) would be constant.



Lemma 2.2. Set S+ = {si ∈ S : si ≥ 0},
S− = {si ∈ S : si < 0}, and
s+ = maxsi∈S+ si, s− = maxsi∈S− |si|
(if S− = ∅ set s− = 0).
Let t1 = s+ − 1, t2 = s− − 1 and r = min{−s, 0}.
Now let 0 ≤ u ≤ p − 1 and define

L+(n) = {(u, v) : 0 ≤ v ≤ max{t1, t1 + s}},

R+(n) = {(u, n − 1 − v) : r ≤ v ≤ max{t1, t1 − s}},

L−(n) = {(u, v) : 0 ≤ v ≤ max{t2 + s, t2 + 2s}},

R−(n) = {(u, n − 1 − v) : r ≤ v ≤ max{t2, t2 + s}}.

Then

Hook(n) ⊆
(
R+(n) × L+(n)

)

∪
(
L−(n) × R−(n)

)
,

New(n) ⊆
(
R+(n) × NV (n)

)
(2.6)

∪
(
NV (n) × R−(n)

)

∪ (NV (n) × NV (n)) .

3 A New Proof of Minc’s result

Let CC be a cycle-cover of Cn. Then, in T = CC −
Hook(n), almost all vertices v except possibly those
that have an edge of Hook(n) hanging off of them, have
IDT (v) = ODT (v) = 1. Referring to (2.4) this motivates

Definition 3.1. T ⊆ EL(n) is a legal cover of Ln if

• ∀v ∈ V, IDT (v) ≤ 1 and ODT (v) ≤ 1.

• ∀v ∈ V − (L+(n) ∪ R−(n)) , IDT (v) = 1.

• ∀v ∈ V − (L−(n) ∪ R+(n)) , ODT (v) = 1.

Then, from (2.4) we have

Lemma 3.1.

(a) If T ⊆ EC(n) is a cycle-cover of Cn, then
T − Hook(n) is a legal-cover of Ln.

(b) If T ⊆ EL(n + 1) is a legal-cover of Ln+1, then
T − New(n) is a legal-cover of Ln.

From the definition of legal covers we can classify
and partition legal covers by the appropriate in/out
degrees of their vertices in L+(n), L−(n), R+(n), R−(n).

Definition 3.2. A is a binary r-tuple if
A = (A(0), A(1), . . . , A(r − 1)) where ∀i, A(i) ∈ {0, 1}.

Let P be the set of 22s̄ tuples (L+, L−, R+, R−)
where L+, L−, R+, R− are, respectively, binary s+, s−,
s+, s− tuples.

Let T be a legal-cover of Ln. The classification of T

will be C(T ) = (LT
+, LT

−, RT
+, RT

−) ∈ P where

∀0 ≤ i < s+, LT
+(i) = IDT (i)

RT
+(i) = ODT (n − 1 − i),

∀0 ≤ i < s−, RT
−(i) = IDT (n − 1 − i),

LT
−(i) = ODT (i).

If T is not a legal-cover then we will use the convention
that C(T ) = ∅. Finally, set

L(n) = {T ⊆ EL(n) : T is a legal cover of Ln}
LX(n) = {T ∈ L(n) : C(T ) = X}
TX(n) = |LX(n)|

so TX(n) is the number of legal-covers of Ln with
classification X.

The main reason for introducing these definitions is that
checking whether a legal cover T of Ln can be completed
to a cycle-cover of Cn doesn’t depend upon all of T
but only on its classification C(T ). Furthermore, how a
legal-cover in Ln expands to a legal cover in Ln+1 will
also only depend upon C(T ).

Lemma 3.2. See Figures 3 and 4.
(a) Let X = (LX

+ , LX
− , RX

+ , RX
− ) ∈ P and S ⊆ Hook(n).

Let T be a legal cover in Ln with C(T ) = X.

Then whether T ∪ S is a cycle cover of Cn depends
only upon X and S (and not at all on n). In particular,
if T is a legal-cover of Ln and T ′ is a legal cover of Ln′

with C(T ) = C(T ′) then
T ∪ S is a cycle-cover of Cn

iff

T ′ ∪ S is a cycle-cover of Cn′

Note: We will write X ∪ S is a cycle cover to denote that

T ∪ S, with C(T ) = X, is a cycle cover.

(b)Let T ′ be a legal cover in Ln with C(T ′) = X ′ ∈ P.
and S ⊆ New(n).

Then whether C(T ′ ∪ S) = X depends only upon
X ′ and S (and not at all on n). In particular, if T ′ is
a legal-cover of Ln and T ′′ is a legal cover of Ln′ with
C(T ′) = C(T ′′) then

C(T ′ ∪ S) = C(T ′′ ∪ S)
Note: We will write (X ′ ∪ S) = X to denote that, when

C(T ′) = X ′, C(T ′ ∪ S) = X.

Proof. To prove (a) recall that T ∪S is a legal-cover of
Ln if and only if,
∀v ∈ V, IDT∪S(v) = ODT∪S(v) = 1 or

∀v ∈ V, IDS(v) = 1−IDT (v) and ODS(v) = 1−ODT (v)
(3.7)



0 21 3 4 5

(a) CC1 and T1

0 21 3 4 5

(b) CC2 and T2

0 21 3 4 5

(c) CC3 and T3

Figure 3: All of the figures are in C−1,0,2
6 . Dashed edges are Hook(n). The solid plus dashed edges are three

different cycle covers CCi, i = 1, 2, 3 in C6. Removing the dashed Hook(n) edges leaves three legal covers Ti,
i = 1, 2, 3, in L6. Note that s+ = 2 and s− = 1 so classifications are of the form (LT

+, LT
−, RT

+, RT
−) where LT

+ and
RT

+ are pairs and LT
− and RT

− are singletons. Calculation gives C(T1) = C(T2) = X ′
1 = ( (1, 0), (0), (0, 1), (0) )

and C(T3) = X ′
3 = ( (0, 0), (1), (0, 0), (1) ).

0 21 3 4 5 6

(a) T1 ∪ {(n − 2, n)}

0 21 3 4 5 6

(b) T2 ∪ {(n − 2, n)}

0 21 3 4 5 6

(c) T3 ∪ {(n − 2, n)}

Figure 4: n was increased from 6 to 7 and S = {(4, 6)} ⊆ New(6) was added to the Ti of the previous figure. Note
that, in L7, C(T1 ∪ S) = C(T2 ∪ S) = ∅ since they are no longer legal covers. Also, C(T3 ∪ S) = X3(= X ′

3) =
( (0, 0), (1), (0, 0), (1) ). Thus, C(X ′

1 ∪ S) = ∅ and C(X ′
3 ∪ S) = X ′

3.

From Lemma 2.1 and the definition of a legal cover we
have that this is true if and only if

∀i ≤ s+, IDS(i) = 1 − LX
+ (i),

ODS(i) = 1 − LX
− (i),

∀i ≤ s−, IDS(n − 1 − i) = 1 − LX
+ (i, )

ODS(n − 1 − i) = 1 − LX
− (i).

and this is only dependent upon X and S and not upon
n or any other properties of T.

The proof of (b) is similar and omitted here.
2

Definition 3.3. For X,X ′ ∈ P, S ⊆ Hook(n) and
S′ ⊆ New(n) set

βX,S =

{
1 if X ∪ S is a cycle cover
0 otherwise

and

αX,X′,S′ =

{
1 if C(X ′ ∪ S′) = X
0 otherwise

.

Now set
βX =

∑

S⊆Hook(n)

βX,S

and
αX,X′ =

∑

S′⊆New(n)

αX,X′,S′ .

Note that βX and αX,X′ are constants that can be
mechanically calculated. Then Lemmas 3.1 and 3.2
immediately imply our main technical result, which is
equivalent to (1.2).

Lemma 3.3.

T (n) =
∑

X∈P

βXTX(n)

and
TX(n + 1) =

∑

X′∈P

αX,X′TX(n).

Let m = |P| = 22s̄. Take any arbitrary ordering of P
and define the 1×m constant vector β = (βX)X∈P and
m × m constant matrix A = (αX,X′)X,X′∈P . Finally,
set T̄ (n) = col(TX(n))X∈P to be a m × 1 column
vector. Then, Lemma 3.3 is exactly equation (1.2)
which immediately implies that T (n) satisfies a fixed-
degree constant coefficient recurrence relation where
the degree of the recurrence is at most the degree of
any polynomial P (x) such that P (A) = 0. By the
Cayley-Hamilton theorem, Q(A) = 0, Q(x) is the degree
m = 22s̄ characteristic polynomial Q(x) = det(IX−A).

We will now see that it is possible to reduce this
degree from 22s̄ down to below 2s̄.

Lemma 3.4. Let A = (αX,X′). Then there is a degree
2s̄ − 1 polynomial P (x) such that P (A) = 0.

Proof. Recall that s̄ = s+ + s−. Suppose X =
(LX

+ , LX
− , RX

+ , RX
− ) and X ′ = (LX′

+ , LX′

− , RX′

+ , RX′

− ).
Recall that αX,X′ =

∑
S⊆New(n) αX,X′,S where

αX,X′,S = 1 if and only if C(X ′ ∪ S) = X, and is
otherwise 0.

Now let L+, L− be any 2s+

and 2s−

binary tuples
and partition P up into 2s̄ sets of size 2s̄, PL+,L−

=
{X ∈ P : LX

+ = L+, LX
− = L−}.



Note that, if S ⊆ New(n), none of S’s edges have
endpoints in L+(n) or L−(n). Intuitively, this is because
edges in New(n) only connect vertices near the right side
of the lattice and do not touch any vertices on the left
side of the lattice.

Thus, if αX,X′,S = 1, then LX
+ = LX′

+ and LX
− =

LX′

− . In particular this means that if αX,X′,S = 1 then
X,X ′ are both in the same partition set PL+,L−

.

Now suppose that αX,X′,S = 1. Let L̄+, L̄− be any

other 2s+

and 2s−

binary tuples and set

X̄ = (L̄+, L̄−, RX
+ , RX

− ) and X̄ ′ = (L̄+, L̄−, RX′

+ , RX′

− ).
(3.8)
Then, again using the fact that none of the endpoints of
S are in L+(n) or L−(n) we have that C(X ′ ∪ S) = X
if and only if C(X̄ ′ ∪ S) = X̄ so αX,X′ = αX̄,X̄′ .

When constructing matrix A = (αX,X′)X,X′∈P we
previously allowed any arbitrary ordering of P. Now
order the X ∈ P lexicographically; this groups all
of the X in a particular PL+,L−

consecutively. The
observations above imply that A is partitioned into
2s̄ × 2s̄ blocks where each block is of size 2s̄ × 2s̄. The
non-diagonal blocks correspond to αX,X′ where X,X ′

are in different partitions so all of the non-diagonal
blocks are 0. On the other hand, the fact that αX,X′ =
αX̄,X̄′ for the X̄, X̄ ′ defined in (3.8), tells us that all the
diagonal blocks are copies of each other.

Let Ā be one of the 2s̄ × 2s̄ diagonal blocks in A. A
can then be denoted as A = diag(Ā, Ā, . . . , Ā) where A
contains 2s̄ copies of Ā on its diagonal. Thus, ∀i, Ai =
diag(Āi, Āi, . . . , Āi). In particular, this means that any
polynomial P (x) that annihilates Ā also annihilates
A. Since Ā is a 2s̄ × 2s̄ matrix, the Cayley-Hamilton
theorem says that the characteristic polynomial P̄ (x) of
Ā, which is of degree 2s̄, annihilates Ā.

By a more careful analysis of the structure of Ā
it is possible to show that P̄ (x) actually has degree
2s̄−1 but, as mentioned in the introduction, that further
analysis will be omitted here. 2

Lemma 3.3 tells us that (1.2) holds while Lemma
3.4 tells us that matrix A is annihilated by polynomial
P (x) of degree 2s̄ − 1. Combining them gives that T (n)
satisfies a degree-(2s̄−1) constant coefficient recurrence
relation. In order to actually derive the recurrence
relation, though, it is necessary to calculate the αX,X′ ,
βX , T̄ and P as well as the first 2s̄ − 1 values of T (n) =
β T̄ (n). It is relatively straightforward (but omitted in
this extended abstract) to see how to evaluate all of

these in O(s̄25s̄) time by evaluating O(22s̄) permanents
of size 2s̄ and O(24s̄) of size s̄.

We just saw how to calculate the number of cycle-
covers in constant-jump circulant graphs. Reviewing
the proof, everything followed directly as a consequence
from the recursive decomposition of circulant graphs
in (2.3) combined with the structural properties of
the decomposition given in Lemma 2.1. But, as also
derived in Section 2, non-constant jump circulants have
exactly the same structural properties, given in (2.5)
and Lemma 2.2. Therefore, the entire proof developed
in Section 3 can be rewritten for non-constant jump
circulants. The only difference is in the degree of
the recurrence relation for the number of cycle-covers.
Reviewing the proof for the constant-jump case we can
see that the order of the recurrence relation is really
2|R

+(n)|+|R−(n)| which worked out to 2s̄ − 1. In the non-
constant case, from Lemma 2.2, we can calculate that
|R+(n)| + |R−(n)| = p(|s| + s+ + s−) + 2s so the order

of the recurrence relation will then be 2p(|s|+s++s−)+2s.
Note that in the constant jump case we had p = s = 0 so
this collapses down to 2s++s−

= 2s̄ which is what we had
previously derived. For an example of such a recurrence
relation, see the second set of graphs in Table 1.
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Appendices

A Worked example for C0,1,2
n

As discussed in the paper we have that T (n), the
number of cycle covers in C0,1,2

n , satisfies

∀n ≥ 2s̄, T (n) = β T̄ (n) and T̄ (n + 1) = A T̄ (n)

where β = (βX)X∈P and A = (αX,X′)X,X′∈P .

For C0,1,2
n we have s+ = 2, s− = 0 so s̄ = s+ +s− =

2. Definition 3.2 then says that every X ∈ P is in the
form X = (LX

+ , LX
− , RX

+ , RX
− ) where LX

+ , RX
+ ∈ {0, 1}2

and LX
− , RX

− are empty. We can therefore represent

every X by a four-bit binary vector in which the first
two bits represent LX

+ and the last two RX
+ ; there are

16 such X ∈ P. Ordering the X lexicographically we
calculate that β is

( 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 ) ,

T̄ (4) is

( 1 0 0 0 0 2 1 0 0 3 2 0 0 0 0 1 )
t

(where the t denotes taking the transpose), and Transfer
matrix A(X) is





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





As predicted by Lemma 3.4, A is partitioned into 16
4× 4 blocks where all but the diagonal blocks are 0 and
all of the diagonal blocks are equal to some 4×4 matrix
Ā which in this case is

Ā =





1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1





This means that

Q(x) = det(Ix − Ā) = (x2 − x − 1)(x − 1)2,

the characteristic polynomial of Ā, annihilates A.
Working through the details we can then solve to

find that C0,1,2
n = 2T (n − 1) − T (n − 3) with initial

values T (4) = 9, T (5) = 13, and T (6) = 12.

B Other Applications

In this appendix we quickly mention two other applica-
tions of the technique introduced in this paper.

The first is in analyzing the number of cycles in
certain classes of random restricted permutations. Us-
ing the standard cycle-decomposition of a permuta-
tion there is 1-1 correspondence between permutations



T1(n) = 3T (n − 1) − T1(n − 2) − 3T1(n − 3)

C−1,0,1
n +T1(n − 4) + T1(n − 5) T1(n) ∼ φ4

φ2+φ4 nφn T1(n)
T0(n) ∼ .7236n

initial values 22, 42, 80, 149, 274 ∼ .7236nφn

for n = 4, 5, 6, 7, 8
T1(n) = 3T (n − 1) − 6T1(n − 3) + 2T1(n − 4)

C0,1,2
n +4T1(n − 5) − T1(n − 6) − T1(n − 7) T1(n) ∼ φ2

φ2+φ4 nφn T1(n)
T0(n) ∼ .2764n

initial values 21, 32, 56, 93, 161, 275, 475 ∼ .2764nφn

for n = 4, 5, . . . , 10

Table 2: T1(n) is the number of cycles in the given graph with n vertices.

π ∈ Sn and cycle-covers of the complete directed graph
on n-vertices. For given parameters p, s, pi, si and S as
in Definition 1.4 define

Spn+s(S) = {π ∈ Spn+s : π[i]− i mod (pn+ s) ∈ S}
(2.9)
to be the set of permutations in which π[i] is restricted
by (2.9). Now suppose that we pick a permutation
π uniformly at random from Spn+s(S) and set X =
# of cycles in π. What can be said about the distribu-
tion of X?

By the 1-1 correspondence between permutations
and cycle-covers, π ∈ Spn+s(S) if and only if the
corresponding cycle-cover is in Cn. Thus, the number
of such permutations satisfies |Spn+s(S)| = T (n) where
T (n) is the number of cycle-covers in Cn. Suppose now
that for cycle cover T ∈ CC(n) we define #C(T ) to be
the number of cycles composing cover T and set

TCi(n) =
∑

T∈CC(n)

(#C(T ))
i
.

That is, TC0(n) = T (n) while TC1(n) is the total
number of cycles summed over all cycle-covers in Cn.
Then, again by the correspondence, we have that the
moments of X are given by

∀i ≥ 0, E(Xi) =
TCi(n)

TC0(n)
.

The interesting point is that the transfer matrix ap-
proach introduced in this paper can mechanically be
extended to counting the total number of cycles in the
cycle-covers, to show that for every i, TCi(n) satisfies a
fixed-order constant coefficient recurrence relation. For
given, p, s, p1, p2, . . . , pk and s1, s2, . . . , sk this permits,
for example, calculating E(X) and V ar(X).

As an illustration recall the results from Table 1
counting the number of cycle covers in C−1,0,1

n and
C0,1,2

n . Even though these two graphs are not isomor-
phic they had the same number of cycle-covers because
the adjacency matrix of the second is just the adjacency

matrix of the first with every row (cyclicly) shifted over
one step. Since permanents are invariant under cyclic
shifts both matrices have the same permanent which is
∼ φn where φ = (1 +

√
5)/2.

Using our technique we calculated TC1(n) for both
cases with the results given in Table 2.

In both cases we have that TC1(n) ∼ cnφn. This
means that if a permutation on n items is chosen at
random from the corresponding distribution then, on

average, it will have T1(n)
T0(n) ∼ cn cycles. It is interesting

to note that that c is different for the two cases.
The second application of the technique we note

is that a minor modification permits using it to show
that the number of Hamiltonian Cycles in a directed
circulant graph Cn also satisfies a constant-coefficient
recurrence relation in n. This fact was previously
known for undirected circulant graphs [9, 10] but doesn’t
seem to have been known for directed circulants, with
the exception of the special case of in(out)-degree 2
circulants [20].


