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Abstract

Let Ω(n, Q) be the set of partitions of n into summands

that are elements of the set A =
{
Q(k) : k ∈ Z+

}
.

Here Q ∈ Z[x] is a fixed polynomial of degree d > 1

which is increasing on R+, and such that Q(m) is a non–

negative integer for every integer m ≥ 0. For every λ ∈
Ω(n, Q), let Mn(λ) be the number of parts, with multiplicity,

that λ has. Put a uniform probability distribution on

Ω(n, Q), and regard Mn as a random variable. The limiting

density of the random variable Mn (suitably normalized) is

determined explicitly. For specific choices of Q, the limiting

density has appeared before in rather different contexts

such as Kingman’s coalescent, and processes associated with

the maxima of Brownian bridge and Brownian meander

processes.

1 Introduction and statement of the result

In research on partitions, there have been great syner-
gies between probabilistic, analytic, and combinatorial
methods. The oldest literature on partition enumera-
tions, dating back to Hardy and Ramanujan [15], has a
purely analytic flavor. But Erdös and Lehner [11] intro-
duced a probabilistic viewpoint that was quite fruitful.
Random partitions were developed by Erdös, Szalay,
Turan and others, [12, 27, 29, 30, 31, 32]. Some authors,
e.g. [5, 16, 17, 22, 25], have studied random partitions
with summands restricted to proper subsets of the set of
positive integers. Increasingly sophisticated probabilis-
tic ideas have been introduced [13, 2], and these ideas
have led to remarkably strong theorems about the joint
distribution of part sizes of random integer partitions
[23].

In this abstract we concentrate on the limiting dis-
tribution of the number of parts in a random partition
whose parts are restricted to the range of a polynomial.
Specifically, let

Q(x) = adx
d + ad−1x

d−1 + ... + a1x + a0(1.1)

∗The second author was supported in part by NSA Grant

MSPF-04G-054
†Department of Mathematics, Drexel University, Philadelphia,

PA 19104, email: wgoh@math.drexel.edu
‡Department of Mathematics, Drexel University, Philadelphia,

PA 19104, email: phitczenko@math.drexel.edu

be a fixed polynomial of degree d ≥ 2 and we assume
that Q(x) is strictly increasing for x > 0 and that Q(m)
is a non-negative integer for an integer m ≥ 0. Let
Ω(n, Q) be the set of partitions of n into summands
that are elements of the set A =

{
Q(k) : k ∈ Z+

}
. For

every λ ∈ Ω(n, Q), let Mn(λ) be the number of parts,
with multiplicity, that λ has. Put a uniform probabil-
ity measure Pn on Ω(n, Q), and regard Mn as a ran-
dom variable. Note that Mn(λ) =

∑
a

Ma(λ), where

Ma(λ) is the multiplicity of the part size a in the Pn-
random partition λ. These random variables Ma are
clearly not independent since they must satisfy the con-
dition

∑
a∈A

aMa = n. Fristedt [13] used a conditioning

device that enables one to cope with this dependence.
It quickly proved to be a powerful tool and has been
used by several authors in the past decade, see e.g.
[1, 2, 5, 8, 23, 24, 26]. Given a parameter q ∈ (0, 1),
let
{
Ga

}
a∈A be mutually independent geometric ran-

dom variables with respective parameters 1 − qa, i.e.
for all a ∈ A, and for all non-negative integers k, we
have P(Ga = k) = (1 − qa)qak. As was observed by
Fristedt [13] the joint distribution of the random vari-
ables

{
Ma

}
a∈A (with respect to Pn) is exactly equal to

the conditional distribution of the
{
Ga

}
a∈A, where the

event conditioned on is that
∑

a∈A
aGa = n. This is true

for any choice of the parameter q. Hence the parameter
q = qn can be chosen in such a way that asymptotic
estimates as n →∞ are tractable. Analogous methods
have been used (with Poisson distributions in place of
geometric distributions) in the context of random per-
mutations [28]. As a matter of fact, it is quite common
that the distribution of the components of random com-
binatorial structures are independent random variables
conditioned on the sum of the sizes being fixed (see [1]
for more information and references).

We write En for expected values computed using
Pn. We likewise write Pq and Eq for computations with
the independent geometric variables. We use Fristedt’s
device, as well as some additional probabilistic and
analytic arguments to derive a limit theorem for Mn.

For n ≥ 1 we choose the parameter q = qn =
exp[−CQn−d/d+1], with a specific value of the constant,



namely CQ is equal to

1

a
1/(d+1)
d

(
ζ(1 + d−1)Γ(1 + d−1)

d

)d/(d+1)

.(1.2)

(A reason for that particular choice will become clear in
Section 2.) We also set the normalizing constants µn =
n

d
d+1 /CQ. Finally, we let r1, r2, . . . , rd be the (complex)

roots of Q(z) and for j = 1, 2 . . ., α1(j), . . . , αd−1(j) be
those (complex) roots of Q(z)−Q(j) that are not equal
to j.

Our aim is to sketch a proof of the following:

Theorem 1.1. For any positive real number x, we have

lim
n→∞

Pn(
Mn

µn
≤ x) = P(WQ ≤ x),(1.3)

where WQ is a random variable whose characteristic
function is

φQ(t) =
∏
k≥1

1
1− it/Q(k)

(1.4)

and whose density is

fQ(x) =
∞∑

j=1

(−1)j−1e−Q(j)x Q
′
(j)

(j − 1)!

d−1∏
m=1

Γ(1− αm(j))

d∏
m=1

Γ(1− rm)
,

(1.5)
for x > 0.

Our argument will be broken into several steps. We will
first show that the distribution of Mn is close to that of
a sum of independent geometric random variables with
suitably chosen parameters. It then follows that the
limiting distribution has a characteristics function given
by (1.4). This means that WQ is equidistributed with
the infinite sum of independent exponential random
variables with parameters Q(k), k = 1, 2 . . .. We
will carry out the Fourier inversion and, after some
simplifications, will show that the density is given by
(1.5).

Finally, we will point out that specific choices of
Q lead to distributions that have already appeared
in several, quite different, contexts. We will briefly
mention a few such instances in the last section of the
abstract.

2 Reduction to the case of independent
summands

We consider a doubly infinite array {Gn,a : a ∈ A, n ≥
1}, where Gn,a is a geometric random variable with
parameter 1 − qa

n, and for each n ≥ 1, {Gn,a a ∈ A}
are independent.

As follows from an observation by Fristedt [13] (see
also [5]), for any x > 0, and n ≥ 1 we have

Pn(
Mn

µn
≤ x) = Pq(

∑
a∈A

Gn,a ≤ µnx|
∑
a∈A

aGn,a = n)

=
Pq(

∑
a∈A

Gn,a ≤ µnx,
∑

a∈A
aGn,a = n)

Pq(
∑

a∈A
aGn,a = n)

.(2.6)

The argument, whose details we omit here, is to show
that the events in the numerator of (2.6) are asymptot-
ically independent. This is done by arguing that for a
suitably chosen sequence (kn), each of the sums

∑
a∈A

aGn,a =
∞∑

j=1

Q(j)Gn,Q(j),

and ∑
a∈A

Gn,a =
∞∑

j=1

Gn,Q(j),

can be split in two pieces (j ≤ kn and j > kn)
so that the dominant contribution to the value of∑

j≥1 Gn,Q(j) comes from indices j ≤ kn while the
dominant contribution to

∑
j≥1 Q(j)Gn,Q(j) comes from

j > kn.
This can be seen by extending the line of argument

that was originally developed by Fristedt. First, in order
to asymptotically maximize the denominator in (2.6) we
choose qn so that Eq(

∑
a∈A

aGn,a) ∼ n. Since G’s are

geometric this means that we want

∑
a∈A

a
qa

1− qa
=

∞∑
j=1

Q(j)
qQ(j)

1− qQ(j)
∼ n.

After calculations and change of variables y =
Q(x) ln(1/q) we get (the same computations were car-
ried out in the case Q(x) =

(
x+d

d

)
in [13] for d = 1 and

in [5] for d ≥ 2)

Eq

∑
a∈A

aGn,a =
∞∑

`=1

Q(`)
qQ(`)

1− qQ(`)

∼
∫ ∞

0

Q(x)
e−Q(x) ln(1/q)

1− e−Q(x) ln(1/q)
dx

=
1

ln2(1/q)

∫ ∞

0

y

Q′(Q−1(y/ ln(1/q)))
e−y

1− e−y
dy

∼ 1

da
1/d
d ln1+1/d(1/q)

∫ ∞

0

y1/d e−y

1− e−y
dy,

which, using [20, formula 3.411-7] leads to qn =
exp(−CQ/nd/(d+1)), where CQ is given by (1.2).



By the same argument, if kn = o(n1/(d+1)), then

Eq

∑
j≤kn

Q(j)Gn,Q(j) =
kn∑

j=1

Q(j)
e−Q(j) ln(1/q)

1− e−Q(j) ln(1/q)

∼ 1
ln2(q−1)

Q(kn) ln(q−1)∫
0

y

Q′
(
Q−1

(
y

ln(q−1)

)) e−ydy

1− e−y

∼ n

∫ kd
n/nd/(d+1)

0

y1/de−y

1− e−y
dy

∼ cn
kn

n1/(d+1)
,(2.7)

which is of lower order than the expected value of the
full sum

∑∞
j=1 Q(j)Gn,Q(j). (Here and throughout the

rest of this abstract c = cQ is an unspecified constant
which depends on Q only. Its value is unimportant and
may change from one use to another.)

Similar reasoning applied to
∑

Gn,Q(j) gives,

Eq

∑
j>kn

Gn,Q(j) ∼
∫ ∞

kn

e−Q(x) ln(1/q)

1− e−Q(x) ln(1/q)
dx

∼ 1
ln(q−1)

∞∫
Q(kn) ln(q−1)

e−y

(1− e−y)
dy

Q′
(
Q−1

(
y

ln(q−1)

))
∼ cn1/(d+1)

∫ ∞

ckd
n

nd/(d+1)

y
1
d−1e−y

1− e−y
dy

∼ cn1/(d+1) · n(d−1)/(d+1)

kd−1
n

∼ c
nd/(d+1)

kd−1
n

,

and

Eq

∞∑
j=1

Gn,Q(j) ∼ cnd/(d+1),

Hence, as long as kn → ∞, the expected value of the
sum restricted to j > kn is of smaller order than that
of the full sum. Thus one expects the contribution
of
∑

j>kn
Gn,Q(j) to be negligible. Similarly, (2.7)

suggests that the contribution of the truncated sum∑
j≤kn

Q(j)Gn,Q(j) to the full sum is negligible.
Of course, the very fact that the two pieces have ex-

pectation of lower order than the respective sums over
all of natural numbers, does not by itself suffice to ar-
gue that they may be dropped from the sums without
affecting their magnitude. But both of these expres-
sions, being sums of independent random variables are
heavily concentrated about their expected value. This
can be quantified by using methods based on exponen-
tial inequalities. When these estimates are carried out,
we are left with two truncated sums over the disjoint
sets of indices, plus error terms that are negligible even

when divided by the denominator of (2.6). The gain is
that, unlike the original sums, the truncated sums are
independent and thus can be handled with relative ease.
Since the estimates are very explicit, it is easy to trace
down conditions that kn’s need to satisfy and it turns
out that one may choose

kn = Θ(nα), where 0 < α <
1

2(d + 1)
.(2.8)

The upshot of all this is that, for any x > 0,

lim
n→∞

Pn(Mn/µn ≤ x) = lim
n→∞

Pq(
kn∑

j=1

Gn,Q(j)/µn ≤ x).

Since the jth summand on the right–hand side above
is geometric with parameters 1− qQ(j) its characteristic
function is

Eqe
itGn,Q(j)/µn =

1− qQ(j)

1− eit/µnqQ(j)
.

Since j ≤ kn = o(n1/(2(d+1))), q = exp(−CQ/nd/(d+1)),
and µn = nd/(d+1)/CQ using basic approximations we
further have

1− qQ(j)

1− eit/µnqQ(j)

=
1− exp(−Q(j)CQ/nd/(d+1))

1− exp(it/µn −Q(j)CQ/nd/(d+1))

=
CQ

Q(j)
nd/(d+1) + O

(
Q2(k)

n2d/(d+1)

)
CQ

Q(j)
nd/(d+1) − it

µn
+ O

(
Q2(k)

n2d/(d+1)

)
=

1
1− it

Q(j)

(
1 + O

(
Q2(k)

n2d/(d+1)

))
.

Hence, by independence of the summands, for j’s in our
range, we get

φn(t) := Ee
t

µn

∑kn

j=1
Gn,Q(j)

=
kn∏

j=1

(
1

1− it
Q(j)

(
1 + O

(
Q2(j)

n2d/(d+1)

)))

=

 kn∏
j=1

1
1− it

Q(j)

(1 + O

(
Q2(kn)

n2d/(d+1)

))kn

=

 kn∏
j=1

1
1− it

Q(j)

(1 + O

(
knQ2(kn)
n2d/(d+1)

))
.(2.9)

Since knQ2(kn) = O(k2d+1
n ), for kn satisfying (2.8), the

“big Oh”term in (2.9) goes to zero. Thus we conclude
that φn(t) converge pointwise to φQ(t) given by (1.4).



3 Fourier Inversion

In this section we derive an explicit representation for
the density of the limit distribution. By inversion
formula, this density is given for x > 0 by

fQ(x) =
1
2π

∫ ∞

−∞
e−itxφQ(t)dt.

If we regard t as a complex variable, then φQ(t) is
a meromorphic function with simple poles at −iQ(j),
j ≥ 1. One may then apply residue theory to evaluate
the integral and deduce that, for x > 0,

fQ(x) =
∞∑

j=1

e−Q(j)xQ(j)
∏
` 6=j

Q(`)
Q(`)−Q(j)

.(3.10)

Specifically, for a large natural number n, we let

N =
Q(n) + Q(n + 1)

2

and we let CN to be a clockwise oriented rectangular
contour in the complex plane with vertices at ±N ,
±N − iN . We consider the contour integral

1
2π

∮
CN

e−itxφQ(t)dt, x > 0,

and we show that the integrals along three non-real sides
of CN approach zero as n →∞. Since the residue of

e−itx
∏
`≥1

1
1− it

Q(`)

,

at t = −iQ(j) is

iQ(j)e−xQ(j)
∏
` 6=j

Q(`)
Q(`)−Q(j)

,

using the residue theorem (taking into account the
orientation of CN ) and passing to the limit with n we
derive (3.10).

4 Simplification

The expression on the right–hand side of (3.10) may be
further transformed by evaluating the product. Specif-
ically, we will show that∏

` 6=j

Q(`)
Q(`)−Q(j)

=
Q
′
(j)(−1)j+1

Q(j)(j − 1)!

d−1∏
t=1

Γ(1− αt(j))

d∏
t=1

Γ(1− rt)
,(4.11)

where r1, r2, . . . , rd are the roots of Q(z) and
α1(j), . . . , αd−1(j) are those roots of Q(z) − Q(j) that
are not equal to j.

To this end we write

∏
` 6=j

Q(`)
Q(`)−Q(j)

= lim
s→j

∏
` 6=j

Q(`)
Q(`)−Q(s)


= lim

s→j

Q(j)−Q(s)
Q(j)

∏
`≥1

Q(`)
Q(`)−Q(s)

 .(4.12)

We factor both Q(`) and Q(`) − Q(s) as a product of
linear terms

Q(`) = ad

d∏
m=1

(`− rm)

Q(`)−Q(s) = ad

d∏
m=1

(`− αm(s)).

We now use the following formula [33, Chaptex XII, Sec.
12.13]: if a1 + . . . + ar = b1 + . . . + br then

∞∏
n=1

(n− a1) · . . . · (n− ar)
(n− b1) · . . . · (n− br)

=
r∏

m=1

Γ(1− bm)
Γ(1− am)

.

Applying this to the product in (4.12) we obtain∏
` 6=j

Q(`)
Q(`)−Q(j)

= lim
s→j

(
Q(j)−Q(s)

Q(j)

d∏
m=1

Γ(1− αm(s))
Γ(1− rm)

)
.

We know that exactly one of αm(s)’s is equal to s and
we assume without loss of generality that αd(s) = s.
Since

1
Q(j)Γ(1− rd)

d−1∏
m=1

Γ(1− αm(s))
Γ(1− rm)

(4.13)

is continuous at s = j we only need to be concerned
with

lim
s→j

((Q(j)−Q(s))Γ(1− αd(s)))

= lim
s→j

(
Q(j)−Q(s)

j − s
(j − s)Γ(1− s)

)
= lim

s→j

(
Q(j)−Q(s)

j − s
(j − s)(−s)Γ(−s)

)
= jQ′(j) lim

s→j
((s− j)Γ(−s)).

Since the residue of Γ(z) at −j is (−1)j/j! this last limit
is (−1)j−1/j! which combined with (4.13) and (4.12)
proves (4.11).



5 Further remarks

In this section we briefly discuss a few cases that are of
special interest.

(i) One such case, Q(z) = z(z+1)
2 arises naturally in

the context of iterated functions and the coalescent
[14], [18]. There the characteristic function is

φ(t) =
∞∏

m=2

(
m
2

)(
m
2

)
− it

=
∞∏

m=1

1
1− it/

(
m+1

2

) .(5.14)

In (4.11) we have r1 = 0, r2 = −1, α1(k) = −k− 1,
and consequently∏

` 6=k

Q(`)
Q(`)−Q(k)

=
2k+1

2
k(k+1)

2

Γ(1 + 1 + k)
Γ(1− 0)Γ(1 + 1)

(−1)k−1

(k − 1)!

= (−1)k−1(2k + 1).

Hence inversion of (5.14) yields the probability
density function

f(x) =
∞∑

k=2

e−(k
2)x

(
k

2

)
(−1)k(2k − 1), x > 0.

This latter density is well-known in certain circles,
and is generally attributed to Kingman [18], [19].
See the unpublished manuscript [14] for a deriva-
tion that is related to the arguments in this paper.

(ii) Similarly, for the special case Q(x) = x3, we con-
sider the number of parts of random partitions of
n into parts that are cubes. For this particular
class of partitions, Richmond [25] provided asymp-
totic estimates for the moments. Carleman’s condi-
tions are satisfied, therefore the limit distribution is
uniquely determined. However Richmond did not
invert, and we are not aware of any previous work
in which the limiting density is calculated. In fact,
the density has an interesting form: for x > 0,

f(x) = 3
∞∑

k=1

e−k3x (−1)k+1k3ck

k!
,

where

ck = Γ(1− ke2πi/3)Γ(1− ke−2πi/3)
= |Γ(1− ke2πi/3)|2.

(iii) The next case corresponds to Q(x) =
(
x+d

d

)
, for

some fixed positive integer d. (Since d = 1 does not
impose any restrictions we will assume d ≥ 2. Also,
d = 2 was a special case discussed in (i).) Such
partitions are in bijection with partitions with dth
differences non-negative. Some of their properties
(although the limiting distribution of the number
of parts was not one of them) were studied in [5].
We have rm = −m, m = 1, . . . , d and thus

d∏
m=1

Γ(1− rm) =
d∏

m=1

m!.

Further,

Q′(x) =
1
d!

d∑
j=1

∏
1≤`≤d

` 6=j

(x + `) = Q(x)
d∑

j=1

1
x + j

,

so that

Q′(k) = Q(k) (Hk+d −Hk) ,

where Hn is the nth harmonic number. Although
there does not seem to be a simple way of handling
the roots of Q(x) − Q(k) in the general case, the
case d = 3 can be managed (as can be any other
polynomial of degree 3 since it leads to a quadratic
equation after factoring (x − k)) and gives the
density

∞∑
k=1

(−1)k−1e−(k+3
3 )x

(
k + 3

3

)
(Hk+3 −Hk)fk

2! · 3! · (k − 1)!
,

where fk =
∣∣Γ (4 + k

2 + i
2

√
3k2 + 12k + 8

)∣∣2 and
x > 0.

If d = 4 then
(
x+4
4

)
−
(
k+4
4

)
has a real root −k−5 (in

addition to k, of course) and the limiting density
for x > 0 is given by

∞∑
k=1

(−1)k−1e−(k+4
4 )x

(
k + 4

4

)
(Hk+4 −Hk)gk(k + 5)!

2! · 3! · 4! · (k − 1)!
,

where gk =
∣∣Γ ( 7

2 + i
2

√
4k2 + 20k + 15

)∣∣2.
(iv) Finally, we would like to conclude by observing that

the choice Q(x) = x2 corresponds to yet another
interesting situation that arises in quite a different
context. In view of (1.5) and (4.11) the probability
density function corresponding to this choice is

f(x) = 2
∞∑

k=1

(−1)k+1k2e−k2x, x > 0.



Up to a scaling this is the density of the maxi-
mum of the Brownian bridge process or the Brow-
nian meandering process (see [7, Section 3] and also
[10, 9] for more details and information). Further
interesting connections along with many more ref-
erences to the literature are discussed in a relatively
recent survey paper [3].

Distribution function corresponding to the last
density is given by

F (x) = 1− 2
∞∑

k=1

(−1)k+1e−k2x

=
∞∑

k=−∞

(−1)ke−k2x.

Changing variables, x → 2x2 and differentiating
gives a density

4
∞∑

k=−∞

(−1)k−1k2xe−2k2x2
,

which is the density of the Kolmogorov-Smirnov
statistic used to measure the discrepancy between
the true and empirical distribution functions. We
refer the reader to [21] for the translation of the
original work of Kolmogorov and to [4, Chapter 2,
Sec. 13] for a detailed exposition.

Acknowledgment: We would like to thank Eric
Schmutz for several helpful discussions, suggestions, and
comments.

References

[1] R. Arratia, A. D. Barbour, and S. Tavare, Logarithmic
Combinatorial structures: A Probabilistic Approach,
EMS Monographs in Mathematics, EMS (2003).

[2] R. Arratia and S. Tavare, Independent Poisson process
approximations for random combinatorial structures,
Adv. in Math., 104 (1994), pp. 90–154.

[3] P. Biane, J. Pitman, and M. Yor, Probability laws
related to Jacobi theta and Riemann zeta functions,
and Brownian excursions, Bull. Amer. Math. Soc., 38
(2001), pp. 435–465.

[4] P. Billingsley, Convergence of Probability Measures,
Wiley (1968).

[5] E. R. Canfield, S. Corteel, and P. Hitczenko, Partitions
with rth differences non-negative, Adv. in Appl. Math.,
27 (2001), pp. 298-317.

[6] N. R. Chaganty and J. Sethuraman, Strong large
deviation and local limit theorems, Ann. Probab., 21
(1993), pp. 1671–1690.

[7] K. L. Chung, Excursions in Brownian motion, Ark.
Mat., 14 (1976), pp. 155–177.

[8] S. Corteel, B. Pittel, C. D. Savage, and H. S. Wilf, On
the multiplicity of parts in a random partition, Random
Structures Algorithms, 14 (1999), pp. 185-197.

[9] R. T. Durrett and D. L. Iglehart, Functionals of Brow-
nian meander and Brownian excursion, Ann. Probab.,
5 (1977), pp. 129–135.

[10] R. T. Durrett, D. L. Iglehart, and D. R. Miller,
Weak convergence to Brownian meander and Brownian
excursion, Ann. Probab., 5 (1977), pp. 117–129.

[11] P. Erdös and J. Lehner, The distribution of the number
of summands in the partition of a positive integer, Duke
Math. J., 8 (1941), pp. 335–345.

[12] P. Erdös and P. Turan, On some general problems
in the statistical theory of partitions, Acta Arith., 18
(1971), pp. 53–62.

[13] B. Fristedt, The structure of random partitions of large
integers, Trans. Amer. Math. Soc., 337 (1993), pp. 703–
735.

[14] W. M. Y. Goh, P. Hitczenko, and E. Schmutz, Iter-
ating random functions on a finite set, unpublished
manuscript available at arxiv: math.CO/0207276.

[15] G. H. Hardy and S. R. Ramanujan, Asymptotic formu-
lae in combinatory analysis, Proc. London Math. Soc.,
17 (1918), pp. 75–118.

[16] C. B. Haselgrove and H. N. V Temperly, Asymptotic
formulae in the theory of partitions, Math. Proc. Cam-
bridge Philos. Soc., 50 (1954), pp. 225–241.

[17] H. K. Hwang, Limit theorems for the number of sum-
mands in integer partitions, J. Combin. Theory Ser. A,
96 (2001), pp. 89–126.

[18] J. F. C. Kingman, On the genealogy of large popula-
tions. Essays in statistical science. J. Appl. Probab.,
19A (1982), pp. 27–43.

[19] J. F. C. Kingman, The Coalescent, Stochastic Process.
Appl., 13 (1982), pp. 235–248.

[20] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals,
Series, and Products, 4th ed., Academic Press, New
York, 1965.

[21] A. N. Kolmogorov, On the empirical determination
of a distribution, in: Breakthroughs in Statistics, vol.
II, S. Kotz. and N. L. Johnson, Eds. Springer, 1992,
pp. 106 – 113.

[22] D. Lee, The asymptotic distribution of the number of
summands in unrestricted Λ partitions, Acta Arith., 65
(1993), pp. 29–43.

[23] B. Pittel, On the likely shape of the random Ferrers
diagram, Adv. in Appl. Math., 18 (1997), pp. 432–488.

[24] B. Pittel, Confirming two conjectures about integer par-
titions, J. Combin. Theory Ser. A, 88 (1999), pp. 123–
135.

[25] L. B. Richmond, The moments of partitions II, Acta
Arith., 28 (1975/76), pp. 229-243.

[26] D. Romik, Partitions of n into tn1/2 parts, Europ. J.
Combin., 26 (2005), pp. 1–17.

[27] K. F. Roth and G. Szekeres, Some asymptotic formulae
in the theory of partitions, Quarterly J. Math. Oxford



Ser., 5 (1954), pp. 241–259.
[28] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in

a random permutation, Trans. Amer. Math. Soc., 12
(1966), pp. 340–357.

[29] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group I, Acta Math. Acad. Sci.
Hungar., 29 (1977), pp. 361–379.

[30] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group II, Acta Math. Acad. Sci.
Hungar., 29 (1977), pp. 381–392.

[31] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group III, Acta Math. Acad. Sci.
Hungar., 32 (1978), pp. 129–155.

[32] G. Szekeres, An asymptotic formula in the theory of
partitions II, Quarterly J. Math. Oxford Ser., 4 (1953),
pp. 96–111.

[33] E. T. Whittaker and G. N. Watson, A Course of Mod-
ern Analysis, 4th Ed., reprinted. Cambridge University
Press, 1963.


