rrreerer

The Graph BLAS effort and its
implications for Exascale

David Bader (GA Tech), Aydin Bulug (LBNL), John Gilbert (UCSB),
Joseph Gonzalez (UCB), Jeremy Kepner (MIT LL), Tim Mattson (Intel)

SIAM Workshop on Exascale Applied Mathematics

SR

Graphs matter in Applied Math

Graph Theoretical

Whole genome assembly analysis of Brain
Connectivity
A Read Layout B Overlap Graph , , ,
: > C
Ryt GACCTACA Vertices: reads -
R,: ACCTACAA B
CCTACAAG * A o
R,: CTACAAGT _ ‘ Y
A: TACAAGTT Ry Ry Ry/ "R
B: ACAAGTTA iy
C: CAAGTTAG w\
G e
Z: CAAGTCCG o iy ,;‘ ’?'\. ' ‘\
w"’t\'
C de Bruijn Graph . TAG
Vertices: k-mers Pl
L GTT
GAcv > ACC ’CCT > CTA > TAC »> ACA > CAA’ AAG’ AGT\ o

26 billion (8B of which are non-erroneous) @K
unigue k-mers (vertices) in the hexaploit

B Potentially millions of
wheat genome W7984 for k=51 neurons and billions of edges

Schatz et al. (2010) Perspective: Assembly of Large Genomes with developing technologies

w/2nd-Gen Seq. Genome Res. (figure reference)

Graphs matter in Applied Math

1 2 3 4 5 1 2 3 4 5
1@ ° 1 1 4le @
2 o0 0 2 2 5] @ °
3 o o ; 3 3 e o
1le @ 1@ o
5| @ ° 4 4 2 e 0o o
A > > PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

Graph partitioning: Dynamic load
balancing in parallel simulations

Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse
linear system to be solved or the
simulation to be performed

Graphs as middleware

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

Graphs as middleware

By ana|ogy to Basic Linear Algebra Subroutines (BLAS):

numerical oo OPsiSec vs. Matrix Size

scientific R —— |
computing. . . C = A'B

200

Speed in Megaflops
&
o

=
|
X
-]
<

What should the =
CO " bl & ato Il al % 100 200 300 400 500 600
B LAS IOO k I [ke’? Order of vectorsimatrices

The case for sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph Graphs in the language of

computations linear algebra

Data driven, Fixed communication patterns
unpredictable communication.

Irregular and unstructured, Operations on matrix blocks exploit
poor locality of reference memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

Linear-algebraic primitives for graphs

Sparse matrix-sparse Sparse matrix-sparse
matrix multiplication vector multiplication
)) ® o o)) ® P
o o X ® o X
® O ® o o ® O o
® O ® o ® O o
o [)
Element-wise operations Sparse matrix indexing
o o o [] o [] [] o
) ® ® ® e 0o 0 2 ® °®
P o o0 o O o o 0 Y
® O (] ® O ® O

The Combinatorial BLAS implements these, and more,
on arbitrary semirings, e.g. (X, +), (and, or), (+, min)

Examples of semirings in graph algorithm

Real field: (R, +, X)

Classical numerical linear algebra

Boolean algebra: ({01}, |, &)

Graph traversal

Tropical semiring: (R U {00}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +)

Graph matching &network alignment

(R, min, times)

Maximal independent set

Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Neither add nor multiply needs to have an inverse.

Both add and multiply are associative, multiply distributes over add

Multiple-source breadth-first search

® ®
o
® o o o
o ® |©
® o
® ®
®
Al B

e Sparse array representation => space efficient
« Sparse matrix-matrix multiplication => work efficient
« Three possible levels of parallelism: searches, vertices, edges
« Highly-parallel implementation for Betweenness Centrality*
*: A measure of influence in graphs, based on shortest paths

Multiple-source breadth-first search

° O O
° O
° ’ .: O ° 9.o
° °
° ° O
°
Al B Al.B

e Sparse array representation => space efficient
« Sparse matrix-matrix multiplication => work efficient
« Three possible levels of parallelism: searches, vertices, edges
« Highly-parallel implementation for Betweenness Centrality*
*: A measure of influence in graphs, based on shortest paths

Graph algorithm comparison

(LA: linear algebra)

Slide inspiration: Jeremy Kepner (MIT LL)

Algorithm (Problem) Canonical LA-Based | Critical Path
Complexity | Complexity (for LA)
Breadth-first search e(m) e(m) O(diameter)
Betweenness Centrality e&(mn) A(mn) O(diameter)
(unweighted)
All-pairs shortest-paths O(n?) O(n3) O(n)
(dense)
Prim (MST) 6(m+n log n) O(n?) e(n)
Boravka (MST) ©(m log n) 6(m log n) O(log? n)
Edmonds-Karp (Max Flow) 6(m?n) O(m?n) e(mn)
Greedy MIS (MIS) O(m+nlog n) | G(mn+n?) e(n)
Luby (MIS) O(m+nlog n) | ©(mlog n) &(log n)
Majority of selected algorithms can be represented with (n=1|V]|andm=|E|)
array-based constructs with equivalent complexity.

Combinatorial BLAS

auss.cs.ucsb.edu/~aydin/CombBLAS

N o U b WN =
[]
o 0 o

An extensible distributed-memory library offering a
small but powerful set of linear algebraic
operations specifically targeting graph analytics.

* Aimed at graph algorithm designers/programmers who are
not expert in mapping algorithms to parallel hardware.

* Flexible templated C++ interface; 2D data decomposition
e Scalable performance from laptop to 100,000-processor HPC.
* QOpen source software (v1.4.0 released January, 2014)

Matrix times Matrix over semiring

Inputs
matrix A: SMN (sparse or dense)

matrix B: SN (sparse or dense)
Optional Inputs

matrix C: SMXL (sparse or dense)
scalar “add” function @

scalar “multiply” function ®
transpose flags for A, B, C
Outputs

matrix C: SMXL (sparse or dense)

Implements Co=A ®.® B

forj=1:N
CG,k) =Cak) @ (AG,) ® B(,k))

If input C is omitted, implements
C=A®®B

Transpose flags specify operation
on AT, BT, and/or C! instead

Notes

S is the set of scalars, user-specified
S defaults to IEEE double float

@ defaults to floating-point +

& defaults to floating-point *

Specific cases and function names:

SpGEMM: sparse matrix times sparse matrix
SpMSpV: sparse matrix times sparse vector
SpMV: Sparse matrix times dense vector
SpMM: Sparse matrix times dense matrix

Can we standardize a “Graph BLAS”?

No, 1t’s not reasonable to define a universal set of
building blocks.

Huge diversity in matching graph algorithms to hardware platforms.
No consensus on data structures or linguistic primitives.
Lots of graph algorithms remain to be discovered.
Early standardization can inhibit innovation.

Yes, 1t is reasonable to define a common set of
building blocks...
... for graphs as linear algebra.

Representing graphs in the language of linear algebra 1s a mature field.
Algorithms, high level interfaces, and implementations vary.
But the core primitives are well established.

The Graph BLAS effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

The Graph BLAS Forum: http://istc-bigdata.org/GraphBlas/
Graph Algorithms Building Blocks (GABB workshop at IPDPS’14):
http://www.graphanalysis.org/workshop2014.html

Challenges at Exascale

“New algorithms need to be developed that identify and leverage
more concurrency and that reduce synchronization and
communication” - ASCR Applied Mathematics Research for
Exascale Computing Report

High-performance requirement is the invariant for {any}scale

Challenges specific to Exascale and beyond:
* Power/Energy

e Data Locality

e Extreme Concurrency/Parallelism

e Resilience/ Fault tolerance

Performance of Linear Algebraic

G ra p h A I g O r i t h m S Pagerank (Weak scaling, 128M edges/node)

-o—-Native -®-Combblas —e—Graphlab —#4-Socialite -#=-Giraph

100

Combinatorial BLAS fastest among all
tested graph processing frameworks

on 3 out of 4 benchmarks in an @ PosoRont
independent study by Intel. .

~o-Native ~#-Combblas —e—Graphlab -A—-Socialite -#-Giraph

Time per iteration (seconds)

g 100 ® " - 5 —————————a
The linear algebra abstraction £
enables high performance, within 4X

Ofnat-ive performancefor PageRank Number of nodes

(b) Breadth-First Search

an d COIlabora t-ive ﬁlterin g. Collaborative Filtering (Weak scaling, 250 M edges/node)

-e—-Native -#-Combblas —e—Graphlab -#4—Socialite -#=Giraph

10000
— =
1000 W
100 :/__,’ in,» — — R

Satish, Nadathur, et al. "Navigating the Maze of Graph
Analytics Frameworks using Massive Graph Datasets”,
in SIGMOD’14

Time per iteration (seconds)

1 2 4 8 16 32 64
Number of nodes
(c) Collaborative Filtering

Energy and data locality challenges

“Data movement is overtaking computation as the most dominant cost of a system
both in terms of dollars and in terms of energy consumption. Consequently, we
should be more explicit about reasoning about data movement.”

10,000

=== 2008 (45 nm)

- 2018 (11 nm)
1,000

Data movement
(communication)

costs energy

100

pJ per 64-bit operation

10

‘I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Image Courtesy
&8 A & & of Kogge & Shalf

Exascale Computing Trends: Adjusting to the "New Normal" for Computer Architecture
Kogge, Peter and Shalf, John, Computing in Science & Engineering, 15, 16-26 (2013)

Communication-avoidance motivation

e I
Two kinds of costs: Develop faster algorithms:
Anthmetl(.: (F_LOPS) | minimize communication
Communication: moving data (to lower bound if possible)
_ J

Running time =y -#FLOPs + [-#Words + (a -#Messages)

Sequential Distributed

@%Near 3l md 59%/Year ”
of size M
Q%/Year 26%/Year>
2004: trend transition
iInto multi-core, further ”

communication costs P processors

Communication crucial for graphs

- Often no surface to volume ratio.
- Very little data reuse in existing algorithmic formulations *
- Already heavily communication bound

0 Computation
B Communication

100 2D sparse matrix-matrix multiply
£ emulating:
& U - Graph contraction
-E 60 F-- - AMG restriction operations
q;n 40 1 -
*g Scale 23 R-MAT (scale-free graph)
§ 205 times order 4 restriction operator

0

— <t \O <t O

1024

Cray XT4, Franklin, NERSC

4096

Number of Cores

B., Gilbert. Parallel sparse matrix-matrix multiplication and indexing: Implementation and
experiments. SIAM Journal of Scientific Computing, 2012

Reduced Communication

Graph Algorithms

Communication avoiding approaches in linear algebra:

[A] Exploiting extra available memory (2.5D algorithms)
- typically applies to matrix-matrix operations

[B] Communicating once every k steps (k-step Krylov methods)
- typically applies to iterative sparse methods

Good news: We successfully generalized A to sparse matrix-
matrix multiplication (graph contraction, multi-source BFS,
clustering, etc.) and all pairs shortest paths (Isomap).

Unknown: if B can be applied to iterative graph algorithms.

Manifold Learning

Isomap (Nonlinear dimensionality reduction): Preserves the
intrinsic geometry of the data by using the geodesic distances
on manifold between all pairs of points

Tools used or desired: - K-nearest neighbors
- All pairs shortest paths (APSP)

- Top-k eigenvalues
e [.

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear
dimensionality reduction." Science 290.5500 (2000): 2319-2323.

All pairs shortest paths at Scale

R-Kleene: A recursive APSP algorithm that is rich in semiring
matrix-matrix multiplications

+ is “min”, X is “add”

A = A*; 9% recursive call
A B B = AB; C = CA;

D =D + CB;
C D =D¥*; 9% recursive call

B =BD; C=DC;

v V2 A = A + BG;

Using the “right” recursion and 2.5D communication avoiding
matrix multiplication (with c replicas):

Bandwidth=0(n*/\Jep) ~ Latency=0({/cp log’ (p))

Communication-avoiding APSP on

distributed memory

1200

1000

800

600

GFlops

400

200

65K vertex dense problem solved in about two minutes

c: replication in
2.5D semiring
matrix multiply

Jaguar (Titan
without GPUSs)
at ORNL.

Nodes have 24

— < O <+ © < — < © <+ © < cores each
— O W A — O N A
S = S =
— —

Number of compute nodes

Solomonik, B., and J. Demmel. “Minimizing communication in all-pairs shortest paths”, IPDPS. 2013.

Fault Tolerance of Linear Algebraic

Graph Algorithms

Literature exists on fault tolerant linear algebra operations.
Overhead: O(dN) to detect/correct O(d) errors on N-by-N matrices

Good news: Overhead can often be tolerated in sparse matrix-
matrix operations for graph algorithms.

Unknown: Techniques are for fields/rings, how do they apply to
semiring algebra?

Extreme Concurrency/Parallelism

Linear algebra is the right abstraction for exploiting
multiple levels of parallelism available in many graph algorithms

1 2

° o °
° °
° ’ .: o : 9.o 4 5
° °
o o °
°
Al B AlT.B

Encapsulates three level of parallelism:

1. columns(B): multiple BFS searches in parallel

2. columns(AT)+rows(B): parallel over frontier vertices in each BFS
3. rows(AT): parallel over incident edges of each frontier vertex

B. and J.R. Gilbert. The Combinatorial BLAS: Design, implementation, and applications. IJHPCA, 2011.

We believe the state of the art for “Graphs in the language of
Linear algebra” is mature enough to define a common set of
building blocks

Linear algebra did not solve its exascale challenges yet, but it is
not clueless either.

All other graph abstractions (think like a vertex, gather-apply-
scatter, visitors) are clueless/ignorant about addressing
exascale challenges.

If graph algorithms ever scales to exascale, it will most likely be
in the language of linear algebra.

Come join our next event at HPEC'14

Acknowledgments

* Avriful Azad (LBL) * Dan Rokhsar (JGI/UCB)

* Grey Ballard (UCB) Oded Schwartz (UCB)

e Jarrod Chapman (JGI) e Harsha Simhadri (LBL)

e Jim Demmel (UC Berkeley) Edgar Solomonik (UCB)

* John Gilbert (UCSB) * Veronika Strnadova (UCSB)
 Evangelos Georganas (UCB) ¢ Sivan Toledo (Tel Aviv Univ)

e Laura Grigori (INRIA) * Dani Ushizima (Berkeley Lab)

* Ben Lipshitz (UCB) » Kathy Yelick (Berkeley Lab/UCB)

* Adam Lugowski (UCSB) My work is funded by:

* Sang-Yuh Oh (LBL) U.S. DEPARTMENT OF Office of
* Lenny Oliker (Berkeley Lab)

ENERGY Science
e Steve Reinhardt (Cray)

