Stochastic linear solvers™

A. Srinivasan' and V. Aggarwal’

1 Introduction

The use of Monte Carlo (MC) in linear algebra dates back to the work of von Neu-
mann and Ulam (described by Forsythe and Leibler [5] in 1950). However, with
the development of modern deterministic numerical techniques, MC started losing
its appeal in numerical linear algebra. There has been a recent revival of interest
in MC linear algebra, partly because of advances in MC techniques, but more im-
portantly, due to the increasing importance of applications where the use of MC
techniques is attractive [11]. For example, the use of MC is promising in applica-
tions where approximate solutions are sufficient, such as in preconditioning, graph
partitioning, information retrieval, and feature extraction. Furthermore, parallel
MC is very latency tolerant, and so should be effective in a Grid-like environment.
MC can also yield specific components of the solution. In addition, the convergence
rate is independent of the size of the matrix.

The MC linear algebra techniques, in general, are based on the ability to per-
form stochastic matrix-vector multiplication. This permits the estimation of certain
stationary techniques to solve linear systems and the power method to estimate the
largest eigenvalue and corresponding eigenvector. The stochastic linear solver can
in turn be used to estimate the smallest eigenvalue and corresponding eigenvector
too. Other eigenvectors can also be obtained through deflation.

A major problem with current MC linear solver techniques, which we sum-
marize in § 2, is that they are fundamentally based on stationary iterative methods
with poor convergence properties. We proposed a different iterative process and
evaluated it empirically with dense matrices in [9, 10], and we briefly outlined the
idea behind the sparse implementation too. We summarize the splitting and the
dense implementation in § 3, and discuss the sparse implementation in further detail
in § 4. We then present experimental results illustrating its convergence properties
in § 5, and summarize our conclusions in § 6.

*We wish to acknowledge computational resources provided by NCSA.
TDepartment of Computer Science, Florida State University, email: asriniva@cs.fsu.edu.
IDepartment of Computer Science, Florida State University, email: viaggarw@cs.fsu.edu.

2 Current MC techniques

2.1 Matrix vector multiplication

The basis for MC linear algebra techniques is the ability to perform stochastic
matrix-vector multiplication. So we first outline the idea behind stochastic matrix-
vector multiplication. Further details can be found in [9].

Consider the matrix C' € R**™ and vector h € R"™. We construct “transition-
probability” and “weight” matrices P and W satisfying the following constraint

Cisziijij,l§i7j§n, (1)

where

n
Y Pj=11<j<n. (2)
i=1

We similarly define “initial-probability” and “initial-weight” vectors p and w satis-
fying the following constraint

hi =ps X w;, 1 <i<n | (3)

with
D pi=1. (4)
MC techniques estimate C7h, j > 0 by constructing a Markov chain of length
7, with initial probabilities given by the vector p, and transition probabilities by P.
The random walk visits a set of states in {1,...,n}, and we denote the state visited

in the i th step by k;, @ € [0, j]. The probability of the initial state being « is given
by

Prob(ky = a) = pq (5)
and the transition probability is given by
Prob(k; = alki_1 =) = Pas - (6)
Consider random variables X; defined as follows
Xo =Wy Xi =Xio1 X Wiy, - (7)

If we let § denote the Kronecker delta function (§;; = 1 if i = j, and 0 otherwise),
then it can be shown [3] that

Thergafore, for each random walk, X;0;x; can be used to estimate the 7 th component
of C7h. That is, in any random walk, the k; th component is estimated as X, and
all the other components are estimated as 0. We perform many random walks,
maintaining a running sum for estimates of each component, and finally average

over the number of walks. Note that in any single walk, the running sum for only
one component needs to be updated.
We will later find it useful to estimate Z;’n:o C7h through

m

E(Z W;diw,) = (O C7h); (9)

=0

Each random walk gives an estimate for the entire sum, with each step of the random
walk updating a particular component of the running sum.

Examples of transition probability choice

Popular choices to satisfy (1) and (3) are to either (i) make all probabilities in a
given column proportional to the magnitude of the corresponding element, or (ii)
make all probabilities in each column equal.

For example, if we make probabilities proportional to the magnitude of the
elements, then the initial probabilities are given by

hi
pi = T“hjv (10)
and the transition probabilities by
C..
P = #Tékﬂ (11)
The corresponding weights are given by
n n
w; = sign(hi) x Y |hi| and Wy; = sign(Ci;) x Y |Cil. (12)
i=1 k=1

Multiple matrices

We can easily extend the above technique to multiplying by more than one matrix.
For example, we will find it useful to estimate Z;.n:O(BC’)th, where B,C € R"*™
and h € R™. Transition probabilities and weights for C' and h are chosen with
the constraints given earlier by (1) and (3). Transition probabilities P and weights
W are similarly chosen for B too, and Markov chain of length 2m + 1 to estimate
Z;’L:O(BC’)j Bh, in a straight-forward generalization of the above technique. This
is described in further detail in [9, 10].

2.2 Linear solvers

In order to solve Az = b, A € R"*"™ and z,b € R, the starting point of MC
techniques is to split A as
A=N— M, (13)

and write the fixed-point iteration [7]
2t = N0 Ny = 02 4 b, (14)
where C' = N~'M and h = N—1b. Then we get

m—1
2 = Cma® 4 N " Ch, (15)

i=0

The initial vector z(©) is often taken to be h for convenience, yielding
m
2™ =% "C"h. (16)
i=0

(™) converges to the solution as m — oo if |C]| < 1.

MC techniques construct a Markov chain to estimate the sum in (16), with the
initial probabilities determined by &, and transition probabilities by C, as explained
in § 2.1. We wish to note that there are many different estimators available [1, 2,
5, 6, 12] (with the one we mentioned being a popular one, and similar to that
introduced by Wasow [12]). However, the fundamental idea behind the estimators
are essentially the same.

For effectiveness of the MC technique, efficient determination of C is con-
sidered important. Therefore current MC techniques choose N to be a diagonal
matrix, thereby yielding C = N7 M efficiently. This yields, for example, the Ja-
cobi method when N is taken to be the diagonal of A. This perceived need for
choosing N to be diagonal has resulted in the iterative schemes underlying current
MC techniques having poor convergence properties. Though variance reduction,
residual correction, and other techniques have been applied on top of this to get
better accuracy, the fundamental limitation is that the MC techniques estimate a
quantity that itself does not converge fast.

On the other hand, we note that MC techniques do not have to be based on
the best possible iterative technique. Estimates can be obtained fast, and this fact
may compensate for the underlying iterative scheme having poor convergence prop-
erties. Despite this fact, MC techniques have generally not been competitive with
deterministic techniques, except for a limited number of applications. Furthermore,
the convergence properties of the underlying iterative scheme restrict the systems
to which the current MC techniques can be applied. Therefore there is a need for
MC techniques based on better underlying iterations.

3 Non-diagonal splitting

In [9, 10], we demonstrated that one can have efficient MC implementations of
stationary methods even if we do not restrict ourselves to diagonal splittings, and
we discussed a dense matrix implementation in detail. We summarize the scheme
below. This can yield better convergence properties, at the potential cost of intro-
ducing inefficiencies at other points in the algorithm. However, we surmount these
problems for our splitting through various means, as explained later.

3.1 The splitting

We choose N to be the diagonal and first subdiagonal of A. This yields IV of the
form

dy
S9 dg
N = s3 ds . (17)
Sy dp
(We assume d; # 0, 1 <14 < n, as with the Jacobi method. Otherwise N -1 does

not exist.)

N1 is a lower triangular matrix, and just computing C = N~'M would
make this splitting noncompetitive. So we do not explicitly compute C, but rather,
estimate the result of the recurrence

MY = NTIpf) 4 N, (18)
which yields the following when we take z(?) = b.
2™ =3 (N"'M)'N 0. (19)
§=0

(™) can be estimated as shown in § 2.1. The number of steps in each random
walk will be twice the number in the current techniques. However, if the method
converges faster, then we will easily compensate for this.

Clearly, the splitting we have employed is not in any way as sophisticated as in
modern deterministic stationary methods, not to mention non-stationary methods.
However, we note that MC techniques need not be based on the best deterministic
iterative process, since they can compensate for slower convergence by producing
their estimate fast. Furthermore, the focus of this work is to show that stochastic
versions of a non-diagonal splitting can be efficiently implemented for sparse matri-
ces. These ideas will enable further improvement to MC techniques by permitting
more general stationary methods.

3.2 Dense matrix implementation

The matrix N~! is lower triangular, and in general, the lower triangle is dense.
While general matrix inversion takes O(n?) time, which is prohibitive, we showed
in [9, 10] that N~! requires just O(n?) time and space. The matrix A contains
0(n?) elements, and we can use §(n?) additional storage and 6(n?) pre-computation
time to enable efficient simulation each random walk of length m will take only
O(m) time.

4 Sparse matrix implementation

We now consider the case where A is sparse. The solution is still estimated using the
procedure outlined in § 3, in particular, using (19). Since A is sparse, so is M, and

the space required for the weight matrix and the transition probability (implicitly
stored as data for the alias method [8], which we use for sampling) is proportional
to the number of non-zero elements in M. Weight and probability computation for
the b vector is as for the dense case, since b is, in general, dense. However, N ! is
dense, and we can neither afford O(n?) computation time to determine it, nor the
O(n?) space to store it.

We therefore use a sparse representation that enables us to store certain infor-
mation in O(n) space, with O(n) pre-computation time. Using this, we will be able
to generate the next state in constant time, and also compute the weight associated
with that transition in constant time.

We first observe that

ifi <y
ifi=]j (20)
otherwise

-1 _
Ny =

~a©

l)iij i Sk
dj k:j+1 dk

If s, =0, 2 <i<n, then Ngl will be zero if i > k and j < k, as can be seen
from (20). For each j, 1 < j < n, if there exists a k, j + 1 < k < n, such s, =0,
then define L(j) to be the smallest such k. Otherwise, define L(j) to be n + 1.
We note that the non-zero elements of column j are those in rows j to L(j) — 1.

L(j), 1 < j < n, can be computed in O(n) time and space using the following

recurrence
n+1 j=n
LG) =1 LG+1) sis1#0andj#n (21)
j+1 sjy1=0and j <n
Here we start by computing L(n), and proceed in descending order, until we com-
pute L(1).
We now wish to define N, igl to permit its efficient computation. We first define

a function T' by
. 1 t=1ors; =0
(i) = { T(i—1)3 otherwise (22)

We can precompute T" using O(n) time and space, using the definition above. Next
we give a “computational” definition of N through

if i < jori>L(j)

o ifi=j (23)
i—j .
11)]- ;g;)) otherwise

-1 _
Nt =

~&|e O

|~

Since T has been precomputed, any component of N1 can be obtained in a small
constant time, using the above definition. .
We next assign transition probabilities P such that the non-zero elements in
each column of N1 have equal probability of occurring. Thus P is defined by
Pz'j =

{ 0 if i < jori>L(j) (24)

1 .
I=5 otherwise

We can obtain samples easily in a small constant time by suitably sampling from
the uniform distribution. X o
Finally, we need to be choose weights W;; that satisfy Ngl = P;jW;;. There-
fore
. 0 ifi <jori>L(j)
Wi = { 1 . : . - (25)
K N (L(§) —j) otherwise
Since any element Ngl can be computed in constant time, any element of Wij too
can be computed in constant time, each time that it is required.
Simulations are performed as with the dense matrix, except that the prob-
abilities for N1 are chosen according to (24) and the corresponding weights by

(25).

5 Experimental results

We wish to study the effectiveness of the splitting and of the sparse implementation.
We note that the MC technique has two factors that contribute to the error: (i)
error from the underlying iterative technique, and (ii) stochastic error in estimating
the iterative solution. The sparse and dense implementations have the same error
due to the iterative process. However, the stochastic errors can be qualitatively
different, since they use different probabilities.

We will first discuss the properties of the dense implementation, and compare
it with the conventional technique. We will then compare the stochastic errors in
the sparse implementation with those from the dense implementation.

In the first experiment, we choose a dense matrix where the conventional
technique will converge fast, in order to demonstrate different issues that affect the
relative accuracy of the two techniques. The matrix A is chosen to be a 100 x 100
matrix with A;; = 7 — j except for the diagonal and sub-diagonal elements. The
subdiagonal is taken to be (2/3)x sum of the absolute values of all other elements of
the column, excluding the diagonal. The diagonal is taken to be 14 twice the sum of
the absolute values of all the elements in the column. The vector b was taken to be
(1,2,---,n)T. The matrix A is diagonally dominant, ensuring that the conventional
Jacobi-based technique converges. The parameter m of (16) and (19) was taken to
be 2, since the iterations converge fast for this matrix. The sub-diagonal elements
are moderately large, so that we can see the difference in performance between the
two techniques. (At the other extreme, if the sub-diagonal were 0, then the two
methods would estimate identical quantities.)

Fig. 1 plots relative error (||Exact — Computed solution||z/||Exact solution||2)
versus the “scaled” number of simulations. The scaling refers to the fact that,
since our technique takes twice the number of steps that the conventional technique
does, we multiply the number of simulations with our technique by a scaling factor
of two, in order to make a fair comparison with the conventional one, in terms of
time taken. For example, if the simulation number is reported as 1000, it implies
1000 simulations with the conventional technique, but only 500 with ours. The plot
has two regions. When the number of simulations is small, the error is dominated
by the contribution of the stochastic factor. In this region, the conventional method

does better, since the actual number of simulations is greater for it. When the con-
vergence of the underlying iteration is the dominant factor, then the new technique
does better, as expected. Note that techniques that reduce the variance should
be added in a real computation, and this will tend to reduce the stochastic error,
and so our method would be become better at an earlier point (that is, with fewer
simulations). For example, we demonstrate the use of a low discrepancy sequence
(Scrambled Halton, with the scrambling due to Faure [4]), which makes our method
better at a much earlier point.

10°

T
---- Jacobi - LDS
+= Jacobi - PRN
= Non-diagonal - PRN
= = Non-diagonal - LDS

Relative error

10 10 10° 10 10 10

Scaled number of simulations

Figure 1. Plot relative error versus scaled number of simulations. PRN
refers to a pseudo-random number sequence, while LDS' refers to a low discrepancy
sequence.

We next compare the stochastic component of the errors of the sparse and
dense implementations in Fig. 2, with the same matrix as above. The relative error
is computed with the value of the deterministic iterative process replacing that of
the exact solution of the system. The number of simulations is not scaled, since both
use the same walk length. Since the matrix is dense, the sparse implementation has
no computational advantage. However, it is still be informative to evaluate it here.

We see that the error for the sparse implementation decreases at the same rate
as for the dense one; however, the actual error is higher by a significant constant
fact. We also note that the low discrepancy sequence does not help the sparse
implementation much.

We next take the same matrix as above, but make all the elements zero, except
the diagonal and four elements above and four elements below the diagonal of each
column. The sparse implementations therefore uses much less memory than the
dense one. We wish to determine if the accuracy too is acceptable. In this case,
the sparse implementation improves, and with the low discrepancy sequence, it is

100 T T T T T]
SPARSE PRN ———
SPARSE LDS -~)
DENSE PRN -
DENSE LDS -~
10
1 -
S
m
e o1}
8
[J)
@
0.01 b 4
0.001 | .
0.0001 1 1 1 1 1
100 1000 10000 100000 1e+06 le+07 1e+08

Number of simulations

Figure 2. Plot relative error versus number of simulations for a dense
matriz. PRN refers to a pseudo-random number sequence, while LDS refers to a
low discrepancy sequence.

competitive with the dense implementation, as seen from Fig. 3.

The sparse implementation has a higher error since it chooses elements with
equal probability in matrix N !, while the dense implementation chooses them with
probability proportional to their magnitude. Elements with large values tend to lead
to components with large magnitudes, and since the dense implementation chooses
these more often, the large components are computed more accurately, leading to
the norm of the error being smaller. A different definition of the error, for example,
choosing it as the norm of the average relative error, might lead to a different result.
An appropriate definition would depend on the needs of the application.

6 Conclusions

We have proposed efficient MC implementations for non-diagonal splitting, and
also experimentally demonstrated its effectiveness on dense matrices. We have
also proposed an effective sparse implementation, even though the explicit iteration
matrix is dense. We expect further studies along these lines to permit stochastic
solutions to a wider variety of applications.

The sparse and dense implementations of the non-diagonal splitting are based
on the same underlying iterative scheme, and will therefore have identical con-

10 T T T T

SPARSE PRN —— |

SPARSE LDS -~ 1
DENSE PRN - --
DENSE LDS -
1 -
01f
S
@
g 0.01 |
g
[0)
© .
0.001 | E
0.0001 | e
1e-05 I I I I I
100 1000 10000 100000 1e+06 1e+07 1e+08

Number of simulations

Figure 3. Plot relative error versus number of simulations for a sparse
matriz. PRN refers to a pseudo-random number sequence, while LDS refers to a
low discrepancy sequence.

vergence properties for the portion of the error arising from the iterative process.
While the error from the stochastic simulations will converge to 0 with increase in
the number of simulations for both implementations, the actual magnitude of the
error could differ significantly between the two implementations, since probabilities
and weights are chosen in different manners. This was demonstrated empirically
too.

The sparse implementation clearly uses much less space than the dense one,
with sparse matrices. While the sparse implementation converges at the same rate
as the dense one, its actual magnitude of the error is higher than that in the dense
implementation, and we mentioned reasons for that above. Though the sparse
technique with a low-discrepancy sequence performed well on a sparse matrix, the
experiments, on the whole, suggest that choosing elements with equal probabili-
ties is not that effective. We can modify this by choosing elements with varying
probabilities, such that they can still be sampled efficiently, and adjust the weights
accordingly. For example, we might sample from an exponentially decaying distri-
bution, since the elements of N ! decay for a diagonally dominant matrix. Clearly,
this is an issue to which more thought needs to be given.

[1]

2]

[4]

[5]

[6]

[7]

8]

[10]

Bibliography

J. H. Curtiss. Monte Carlo methods for the iteration of linear operators. Jour-
nal of Mathematical Physics, 32:209-232, 1954.

J. H. Curtiss. A theoretical comparison of the efficiencies of two classical meth-
ods and a Monte Carlo method for computing one component of the solution
of a set of linear algebraic equations. In Symposium on Monte Carlo methods,
University of Florida, 1954, 191-233, New York, 1956. John Wiley and Sons.

I. T. Dimov and A. N. Karaivanova. A power method with Monte Carlo
iterations. In Iliev, Kaschiev, Margenov, Sendov, and Vassilevski, editors,
Recent Advances in Numerical Methods and Appl. II, pages 239-247. World
Scientific, 1999.

H. Faure. Good permutations for extreme discrepancy. Journal of Number
Theory, 42:47-56, 1992.

G. E. Forsythe and R. A. Leibler. Matrix inversion by a Monte Carlo method.
Mathematical Tables and Other Aids to Computation, 4:127 127, 1950.

J. H. Halton. Sequential Monte Carlo. Proceedings of the Cambridge Philo-
sophical Society, 58 part 1:57 78, 1962.

M. T. Heath. Scientific Computing: An introductory survey. McGraw-Hill,
New York, 1997.

D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, Third edition. Addison-Wesley, Reading, Massachusetts, 1998.

A. Srinivasan. Improved Monte Carlo linear solvers through non-diagonal
splitting. Technical Report TR-030203, Department of Computer Science,
Florida State University, 2003. http://www.cs.fsu.edu/research/reports/TR-
030203.ps.

A. Srinivasan and V. Aggarwal. Improved Monte Carlo linear solvers through
non-diagonal splitting. In Lecture Notes in Computer Science: Proceedings of
the 2003 International Conference on Computational Science and its Applica-
tions. Springer Verlag, 2003 (to appear).

[11] A. Srinivasan and M. Mascagni. Monte Carlo techniques for estimating the

Fiedler vector in graph applications. In Lecture Notes in Computer Science —
2330, pages 635—645. Springer-Verlag, 2002.

[12] W. Wasow. A note on the inversion of matrices by random walks. Mathematical
Tables and Other Aids to Computation, 6:78-78, 1952.

