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1 Introduction

The e-pseudospectrum
A(A)={z€C:ze€ AM(A+ E), |E] <€}, (1)

of a non-normal matrix, 4 € C**" frequently furnishes useful information regard-
ing its behavior in several applications [13]. Fig. 1 illustrates the eigenvalues and
pseudospectrum boundaries A (A) corresponding to values e = 1071,.... 1077 for
the pentadiagonal Toeplitz matrix matrix grcar (50) from the Matrix Computation
Toolbox for MATLAB [7]. An equivalent definition of A(A) is based on the resolvent
of A, R(z) = (A —2I)~1:

Ac(A) ={z € C:[|R(2)]| > 7'} (2)

Let now the matrix A — zI have the singular value decomposition A — zI = UXV™*,
where the symbol “*’ denotes conjugate transposition. When the metric in use is
the Euclidean norm [|.||2, an equivalent, third definition, is:

A(A) = {2 € C: omin(A — 2I) < €}, (3)

since ||R(2)|| = omin(A—2I), where omin(-) denotes the smallest singular value of its
matrix argument!. To obtain the pseudospectrum, we need practical methods for
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Figure 1. Pseudospectra boundary curves O\ (A), € = 1071...10~7 (solid
lines) and eigenvalues (dots) of matriz grcar (50).

its computation and visualization. Relation (3) is behind GRID, a straightforward
and robust but expensive algorithm for computing A.(A4) [13]. This constructs
a grid Qy, over a region of the complex plane that includes A (A), then computes
Omin (A — zpI) for every node zj, of ;. The pseudospectrum is built from a graphics
postprocessing step. Unfortunately, it is well-known that as the size of the matrix
and/or the number of gridpoints increases the cost of GRID becomes overwhelming:
see [14, 4] for some efforts as well as the comprehensive repository [9].

2 The Transfer Function Framework

Let A € C"*" and D*, E be full rank matrices, typically rectangular, with row
dimension n. Consider the projection of the resolvent R(z) onto the subspaces
spanned by the columns of matrices D* and E, that is the transfer function

G.(A,E,D*) := D*R()E.

Let Wy, = [wy, . .., wy,] be the orthonormal basis for the Krylov subspace K,,, (A4, wy),
constructed by the Arnoldi iteration, according to the expanded relation:

AWm = WmHm,m + hm-{—l,mwm—i-le:na (4)

where H,, ,, is the square upper Hessenberg matrix consisting of the first m rows
of Hpy+1,m. We propose to use the approximation:

IR ~ G2 (A, Wner, Wi )l = Wiy (A = 2D) T Wi (5)

The theoretical aspects of this approach were established in [11] while some ini-
tial practical experiences with the framework were presented at the 2000 Copper
Mountain Conference on Iterative Methods; in [3] we illustrated some features of
this framework in the context of a MATLAB based parallel environment. In this
work we outline some new algorithms and results for the fast approximation of
pseudospectra based on this framework in combination with existing domain-based
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methods, including path-following. A direct calculation of G, (A) from formula
(5) would require the solution of m + 1 linear systems with A — zI, for each shift z.
Nevertheless, as observed in [11] that if we define the vector

= = Wi (A= 2D wm (6)
where w,, 1 is the last vector computed by the Arnoldi iteration, then
Gz7m<A) = [ :1+1 (A - ZI)_ll/Vm7 ¢z] € C(m+1)><(m+1) )

Consider the computation of the first m columns of G, ,,(A4). From the Arnoldi
factorization, it follows that

(A - ZI)Wm = Wm(Hm,m - ZI) + hm+17mwm+1e;*n. (7)

Assuming that z is not an eigenvalue or Ritz value of A so as to make A or Hy,
singular, pre-multiplying by W, (A — 2I)~! leads to

m

G:m(A4) = [(i = himt1,m®z€5,) (Hmm — ZI)_1a¢z)]' (8)

Consider next the application of the transfer function framework on GRID. That
would require solving a single linear system (A — z,I) 'v,,41 for each mesh point
zn. Krylov subspace linear solvers would be particularly suitable in this case because
of the shift invariance of Krylov subspaces, i.e. K., (A,b) = K, (A —21,b), for every
starting vector b and shift z € C. Since pseudospectra are interesting only for
non-normal matrices, it is natural to consider using GMRES [10] and its handling
of shift-invariance, e.g. [6]. Table 1 depicts the resulting transfer functions - grid
method, which we call TRGRID. In Figure 2 we compare TRGRID with the method
presented in [12] which is based on GRID and the approximation of omin(A — z5) by
Omin(H,, — 21), where H,, is the augmented Hessenberg matrix resulting from the
Arnoldi iteration. We call this method AHGRID. The test matrix was gre_1107 for
the Matrix Market and € = 0.1,0.01. Solid lines are the results of GRID using the
svds routine of MATLAB, which is based on ARPACK and uses shift and invert Lanczos
to compute the smallest singular value. Table 2 depicts runtimes on a PIII @ 866
MHz workstation with 1Gb RAM, running Windows 2000.

3 Path Following and Transfer Functions

One important class of domain-based methods uses numerical path following to
trace curves that define the pseudospectrum, in particular, boundaries OA(A) for
any given e. The first such algorithm was presented by Briihl in [5], who demon-
strated impressive savings of path following compared to GRID. Further work, in
[1], advanced the original path following approach, into an algorithm called Cobra;
this permitted the effective use of path following on parallel systems while achieving
greater robustness. Two other algorithms that lend themselves to parallel imple-
mentation are PAT [8], that is based on triangulation and bisection; and PsDM [2] that
applies path following in directions transversal to the pseudospectrum boundaries.
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TRGRID(m, d) algorithm

(* Input *)
Points z;,¢ =1, ..., M, vector wy
with ||wi]|| = 1, scalars m, d.

(Wint1, Hmt1,m] ¢ arnoldi (A, wy,m)

[Wat1, Fyr1,4] < arnoldi(4, wm41,d)
fori=1,... M

Y(:,4) = argmin, {||(Fa+1,0 — zila)y — e[}
Compute &, = W

m—i—leY

fori=1,...M

D; = (I - hm+17m¢z(3;i)e:n)(Hm7m — Zi.[)_l
G- (DI = [I[Ds, p:]ll

1
2
3
4.
5. end
6
7
8
9
10. end

Table 1. TRGRID for M points z using GMRES dimension d and Transfer
Function dimension m.

Method Runtimes (secs)
GRID (svds) 3438
AHGRID(100) 495
AHGRID(150) 221
AHGRID(200) 574
TRGRID(100, 50) 111

Table 2. Runtimes for TRGRID and AHGRID for matriz gre_1107 on a
25 x 50 mesh for the domain Q = [—1,1.5] x [0,1].

Except for PAT, the critical component of the aforementioned algorithms is
Newton iteration, applied to solve the nonlinear equation?

F(z) —e=0, where F(z)= omin(4—2I) (9)
for any € > 0. Therefore, it becomes imperative to compute V.F(z,y).
Assume that it is possible to construct the full length Krylov subspace K\, (A, w1 ),

and that W, is the corresponding orthonormal basis, where n is the size of matrix
A and wy is a starting vector of unit norm. Define @ as follows:

Wy = [Wm+laQ]

2We would be identifying the complex plane C with R? and frequently use F(z) to denote
F(z,y) : R? — R that is real analytic at simple nonzero singular values.
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Figure 2. Experiments with TRGRID and AHGRID for matrixz gre_1107 and
e = 0.1,0.01. Left-top corner: TRGRID(100,50). Rest: AHGRID(100), AHGRID(150),
AHGRID(200).

Lemma 1. Using the same notation as above, the following relation holds:
V|G m(A)|| = U%”TUI +uiWh (A - ZI)_IQQ*(A —2) " W gav1,
where (o1, u1,v1) is the largest singular triplet of G, m(A).

The following lemma immediately suggests an approximation for the gradient
of the transfer function:

Lemma 2. Let (u1,01,v1) the mazimum singular value triplet of G, nm(A). Let
rr = (A—2D) " Whav1 — o1 Wegut and rp = (A — 27 Wp1u1 — oy Wivn
be the right and left residuals, respectively. Then

VG m (A = orvgud| < lref[ [[ral]-

We next investigate the effectiveness of the approximation. For grcar(100),
we consider points that lie on A (A) for e = 107%, where k takes values 1,6, 15
as indicated in parentheses in the caption. Similarly, the points selected for kahan
were on pseudospectrum curves corresponding to k = —1, -2, —2.5. Table 3 shows
the extent to which (I) achieves the desired goals. Approximation of the norm
of the resolvent with transfer functions is a theoretically powerful approach for
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matrix: grcar(100)

| (A—2D) "2 —[[Gz.m(A)]l2 I VI(A—=zI) " [2=V[[G:.m(A)]2 |
[[(A—zD)~ '] VI[(A—2D)~" 2

m 21 29 23 21 22 23

30 1.2 2.5 4.1 8.9e-1 Te-1 8e-1

50 | 4.3e-1 | 7.7e-1 1.9 3.5e-1 | 4.6e-1 6.5e-1
70 | 3.1e-3 | 5.2e-1 | 5.1e-1 | 6.9e-3 | 3.6e-1 3.3e-1
90 | 8.9e-4 | 3.3e-1 9e-2 2e-3 | 2.6e-1 8.4e-2

|1—V||Gz,m(/)||2 | |Q|
VG- m (D]2 I
m 21 29 23 21 22 Z3
30 | 1.9e-1 709 1.4el11 | 1.7e-1 1 9.9e-1
50 | 3.1e-1 82 1.6ell | 4.4e-1 | 9.9e-1 1
70 | 7.7e-6 | 4.7e-3 | 1.1e7 | 1l.le-5 1.4 29.2
90 | 1.8e-6 | 4.7e-5 | 7.4e2 | 1.9e-6 1.3 4.3e5
matrix: kahan(100)
| [(A=2D) "2 =IG=.m (Al | |VII(A—zl)_l||2—V||Gz,m(A)II2 |
[(A—zD)~1] VI(A—zD)~"1]>
m 21 29 23 21 z29 23

30 | 4.6e-2 | 6.5e-6 | 9.2e-2 | 5.1e-2 | 1.2e-5 9.2e-2
50 | 3.1e-2 | 3.9e-6 | 5.2e-2 | 3.5e-2 | 6.9e-6 5.3e-2
70 | 6.7e-3 | 6.5e-7 | 8.3e-3 | 7.6e-3 | 1.2e-6 8.8e-3

90 | 1.8e-4 | 2.3e-9 | 2.9e-5 | 2.1e4 4e-9 3e-5
|I—V||Gz,m(A)||2 | |H|
VIGzm (A2 I
m 21 29 23 21 22 Z3

30 | 3.8e-6 | 2.9e-9 | 2.3e-5 | 3.8e-6 | 2.6e-9 2.3e-5
50 | 1.3e-7 | 1.2e-9 | 4.8e-5 | 1.3e-7 le-9 4.9e-5
70 | 6.7e-8 | 3.4e-10 | 4.3e-6 | 6.7e-8 | 9.4e-11 4.3e-6
90 | 1.1e-7 | 2.9e-10 | 1.6e-9 | 1.1e-7 | 1le-13 1.9e-9

Table 3. Top: Approximation of gradient of transfer function norm for
grcar (100) and points z; = —0.6034 + 1.6379: (—1), 2o = 1.8103 + 1.4655: (—6),
z3 = 0.4310 + 1.8103:; (—15). Bottom: Approximation of gradient of transfer
function norm for kahan(100). z; = 0.0862 + 1.2931; (—1), 2o = 0.7759 —
0.2586i (—2), z3 = —0.6034 + 0.2586¢ (—2.5). The numbers in parenthesis are
equal to logo(omin(A — 2z;I),i =1,2,3.

approximating pseudospectra. Our experiments show that transfer functions can
be efficiently combined with existing methods such as GRID and path following.
In our current research we investigate the incorporation of restarted Krylov linear
solvers in the transfer function framework that will allow us to tackle very large
problems.
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