
Multilevel Methods:

From Fourier to Gauss

Randolph E. Bank
Department of Mathematics

University of California, San Diego

• Introduction

• Classical Multigrid Methods

• Hierarchical Basis Methods

• Sparse Gaussian Elimination

UC San Diego, Scientific Computation Group Slide 1, July 13, 2000



Model Problem:

−∆u = f in Ω ⊂ R2,

u = 0 on ∂Ω

Weak Formulation: find u ∈ H1
0(Ω) such that

a(u, v) = (f, v)

for all v ∈ H1
0(Ω), where

a(u, v) =
∫

Ω

∇u · ∇v dx (f, v) =
∫

Ω

fv dx

|||u|||2 = a(u, u) ‖u‖2 = (u, u)
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Triangulation: (quasiuniform, shape regular)

Finite Element Subspace: S ⊂ H1
0(Ω)

continuous piecewise linear polynomials

Finite Element Approximation: find uh ∈ S such that

a(uh, v) = (f, v)

for all v ∈ S
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Levels and Refinement:

` = 1 ` = 2 ` = 3

h` = h121−` = h`−1/2

S`−1 ⊂ S`
Dim S` ≈ 4×Dim S`−1
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Finite Element Problem on Level `:

Find u(`) ∈ S` such that

a(u(`), v) = (f, v)

for all v ∈ S`

Classical A Priori Error Estimate:

|||u− u(`)||| ≤ Ch`‖u‖H2(Ω)

Remark: Adaptive Refinement can lead to nonuniform meshes
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Classical Nodal Basis for S`:

φ
(`)
i (v(`)

j ) = δij

Linear System of Equations:

A(`) U (`) = b(`)

where

A
(`)
ij = a(φ(`)

j , φ
(`)
i ) b

(`)
i = (f, φ(`)

i ) u(`) =
∑

U
(`)
i φ

(`)
i

A(`) is large, sparse, symmetric, positive definite
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Iterative Methods for Ax = b:

A = B −N

Preconditioner B is symmetric,positive definite, easy to solve.

Given x0 (e.g., x0 = 0), for j = 0, 1, 2, . . .

rj = b−Axj
Bδj = rj

xj+1 = xj + δj

Remark: Should accelerate with Conjugate Gradients
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Classical Convergence Analysis:

Consider Generalized Eigenvalue Problem

Aψi = λiBψi

with ‖ψi‖ = 1, 0 < λ1 < λ2 < · · · < λN ≤ 1 (scale B as needed)

ek = x− xk = (I −B−1A)ek−1 = (I −B−1A)ke0

e0 =
∑

ciψi → ek =
∑

(1− λi)kciψi

“smooth” λ ≈ 0 = O(h2) “rough” λ ≈ 1
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Basic Multilevel Idea:

• Smooth rough components of the error on level `

• Project smooth components of the error to coarse level `− 1

• Use Recursion

` = 3

` = 2

` = 1

V-Cycle (r = 1) W-Cycle (r = 2)

� = m smoothing iterations � = exact solution
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Multigrid Iteration (Finite Element Notation):

Level ` problem: a(δ(`), v) = f(v) for all v ∈ S`

If ` = 1 solve exactly; if ` > 1, let δ
(`)
0 = 0

Pre smoothing: for 0 ≤ k ≤ m− 1,

b(δ(`)
k+1 − δ

(`)
k , v) = f(v)− a(δ(`)

k , v) for all v ∈ S`

Coarse Grid Corrrection: find ε(`−1) ∈ S`−1 such that

a(ε(`−1), v) = f(v)− a(δ(`)
m , v) ≡ f̂(v) for all v ∈ S`−1

δ
(`)
m+1 = δ(`)

m + ε(`−1)

(Approximately) solve by r = 1, 2 iterations of `− 1 level scheme.

Post smoothing: for m+ 1 ≤ k ≤ 2m+ 1,

b(δ(`)
k+1 − δ

(`)
k , v) = f(v)− a(δ(`)

k , v) for all v ∈ S`

Set δ(`) = δ
(`)
2m+1
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A Simple Convergence Theorem (2 Levels):

� = m/2 smoothing iterations

� = exact solution

Assume

1√
K
≤ |||v|||1
|||v|||0

≤ 1 for v ∈ S` ∩ S⊥`−1

where K is independent of h. Then |||em+1|||1 ≤ γ|||e0|||1 where

γ ≤


(K−1
K
)m

m ≤ K − 1
K

m+1

(
m
m+1

)m
m > K − 1

Remark: |||v|||21 = a(v, v)⇔ V tAV and |||v|||20 = b(v, v)⇔ V tBV .
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Elements of Proof: (including K independent of h)

• Approximation Properties of S`

• Quasi uniformity, shape regularity of the triangulation

• H2 (or H1+α) regularity of solution

• The spectral decomposition (generalized eigenvalue problem)

W. Hackbusch

Bank-Dupont

Bramble-Pasciak-et al

J. Xu

J. Mandel

P. Oswald

and many, many others...
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Hierarchical Basis (1-Dimensional Example):

S1 nodal basis

S2 nodal basis

S2 hierarchical basis

Hierarchical Decomposition: S` = S`−1 ⊕W`
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Matrix Formulation:

A
(`)
N is the nodal basis stiffness matrix

A
(`)
H is the Hierarchical basis stiffness matrix

A
(`)
N =

Aff Afc

Acf Acc



A
(`)
H =

 I 0

V I

A
(`)
N

I V t

0 I

 =

 Aff Afc +AffV
t

Acf + V Aff A
(`−1)
N



A
(`−1)
N = Acc + V Afc +AcfV

t + V AffV
t

Remark: f ⇔ “fine” and c⇔ “coarse”
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HBMG Preconditioner:

Solve A
(`)
N δ = r using 1 iteration of Block Symmetric Gauss-Seidel

for A
(`)
H , developed implicitly to exploit sparsity of A

(`)
N

Aff δ̂f = rf solve by “pre smoothing”

r̂c = rc −Acf δ̂f + V (rf −Aff δ̂f ) “restriction”

A
(`−1)
N δc = r̂c coarse grid correction

δ̂f ← δ̂f + V tδc “prolongation”

Aff δ̄f = rf −Afcδc −Aff δ̂f solve by “post smoothing”

δf = δ̄f + δ̂f
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HBMG Preconditioner (Finite Element Notation):

Level ` problem: a(δ(`), v) = f(v) for all v ∈ S`

Pre smoothing: find δ̂f ∈ W` such that

a(δf , v) = f(v) for all v ∈ W`

Coarse Grid Corrrection: find δc ∈ S`−1 such that

a(δc, v) = f(v)− a(δ̂f , v) for all v ∈ S`−1

Post smoothing: find δf ∈ W` such that

a(δf , v) = f(v)− a(δc + δ̂f , v) for all v ∈ W`

Set δ(`) = δf + δc + δ̂f
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A Simple Convergence Theorem (2 Levels):

Assume that Aff and A
(`−1)
N are solved exactly and

sup

v ∈ S`−1 |||v||| = 1

w ∈ W` |||w||| = 1

|a(v, w)| ≤ γ < 1

where γ is independent of h (strengthened Cauchy Inequality).

Then |||ek+1||| ≤ γ2|||ek|||

Remarks: γ = γ(m, `) for m smoothing steps and ` levels

γ = 1/2 for this configuration
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HBMG and Classical MG V-Cycle are almost identical

HBMG does not use

• quasiuniformity of the mesh

• approximation properties of S`

• regularity of solution (beyond H1)

• spectral decomposition

HBMG does use

• local properties of polynomials

• shape regularity of the mesh

H. Yserentant

Bank-Dupont-Yserentant

M. Griebel

and many others...
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The Graph of a Sparse, Symmetric Matrix A:

�
�
�
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�
�
�
�
�
�

�
�
�
�
�
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6

A =



� 0 0 0 � �

0 � 0 � 0 �

0 0 � � � 0

0 � � � � �

� 0 � � � �

� � 0 � � �



eij ≡ eji ∈ E ≡ edge set ⇔ Aij 6= 0

Graph of A
(`)
N is level ` triangulation (except for Dirichlet b.c.)
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Symbolic Sparse Gaussian Elimination:

To eliminate vertex �:

• Delete vertex � and its incident edges

• Make adj(�) into a clique by adding fill-in edges
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Classical Incomplete LU Decomposition:

To eliminate vertex �:

• Delete vertex � and its incident edges

• Add NO fill-in edges edges
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HBMG as an ILU Decomposition:

� are parents of �; to eliminate vertex �:

• Delete vertex � and its incident edges

• Add fill-in edges for parents (�)
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Grid Coarsening and ILU:

As the fine grid nodes are eliminated via the HBMG/ILU scheme,

the fine triangulation is transformed to the coarse grid.
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Matrix Interpretation:

A
(`)
N =

Aff Afc

Acf Acc


 I 0

V I

A
(`)
N

I V t

0 I

 =

 Aff Afc +AffV
t

Acf + V Aff Scc



Scc = Acc + V Afc +AcfV
t + V AffV

t

Exact Gaussian Elimination: Acf + V Aff = 0. Then

Scc = Acc −AcfA−1
ffAfc ≡ Schur Complement (generally dense)
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The Matrix V for the Hierarchical Basis Transformation:

u(�) =
u(�) + u(�)

2
“linear interpolation”

Column � of V has nonzero entries (1/2) only in rows � and �

A
(`−1)
N = Acc + V Afc +AcfV

t + V AffV
t

can be viewed a sparse approximate Schur complement
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The “Multigraph” Method:

Add fill-in edges only for parents

• For PDE’s, can use geometry of mesh to choose parents

• For general sparse matrix, use max weight / min fill criteria

Remark: can have any number of parents; 1-parent option

(“matching”) has some supporting analysis

UC San Diego, Scientific Computation Group Slide 26, July 13, 2000



Choosing Multipliers in V (General case):

• If geometry is available, use “interpolation”

u(�) = (1− θ)u(�) + θu(�)

• Create as many zeroes as possible in Acf + V Aff (as in

classical ILU algorithms (e.g. −aij/aii)

Remark: if A
(`)
N is not symmetric, can choose different multipliers

for left and right  I 0

V I

Aff Afc

Acf Acc

I W t

0 I


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