Multilevel Methods: From Fourier to Gauss

Randolph E. Bank
Department of Mathematics
University of California, San Diego

- Introduction
- Classical Multigrid Methods
- Hierarchical Basis Methods
- Sparse Gaussian Elimination

Model Problem:

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega \subset \mathcal{R}^{2} \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Weak Formulation: find $u \in \mathcal{H}_{0}^{1}(\Omega)$ such that

$$
a(u, v)=(f, v)
$$

for all $v \in \mathcal{H}_{0}^{1}(\Omega)$, where

$$
\begin{array}{cc}
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x & (f, v)=\int_{\Omega} f v d x \\
\|u\|^{2}=a(u, u) & \|u\|^{2}=(u, u)
\end{array}
$$

Triangulation: (quasiuniform, shape regular)

Finite Element Subspace: $\mathcal{S} \subset \mathcal{H}_{0}^{1}(\Omega)$
continuous piecewise linear polynomials
Finite Element Approximation: find $u_{h} \in \mathcal{S}$ such that

$$
a\left(u_{h}, v\right)=(f, v)
$$

for all $v \in \mathcal{S}$

Levels and Refinement:

$\ell=1$

$\ell=2$
$\ell=3$

$$
\begin{gathered}
h_{\ell}=h_{1} 2^{1-\ell}=h_{\ell-1} / 2 \\
\mathcal{S}_{\ell-1} \subset \mathcal{S}_{\ell} \\
\operatorname{Dim} \quad \mathcal{S}_{\ell} \approx 4 \times \operatorname{Dim} \quad \mathcal{S}_{\ell-1}
\end{gathered}
$$

Finite Element Problem on Level ℓ :

Find $u^{(\ell)} \in \mathcal{S}_{\ell}$ such that

$$
a\left(u^{(\ell)}, v\right)=(f, v)
$$

for all $v \in \mathcal{S}_{\ell}$

Classical A Priori Error Estimate:

$$
\left\|u-u^{(\ell)}\right\| \leq C h_{\ell}\|u\|_{\mathcal{H}^{2}(\Omega)}
$$

Remark: Adaptive Refinement can lead to nonuniform meshes

Classical Nodal Basis for \mathcal{S}_{ℓ} :

$$
\phi_{i}^{(\ell)}\left(v_{j}^{(\ell)}\right)=\delta_{i j}
$$

Linear System of Equations:

$$
A^{(\ell)} U^{(\ell)}=b^{(\ell)}
$$

where

$$
A_{i j}^{(\ell)}=a\left(\phi_{j}^{(\ell)}, \phi_{i}^{(\ell)}\right) \quad b_{i}^{(\ell)}=\left(f, \phi_{i}^{(\ell)}\right) \quad u^{(\ell)}=\sum U_{i}^{(\ell)} \phi_{i}^{(\ell)}
$$

$A^{(\ell)}$ is large, sparse, symmetric, positive definite

Iterative Methods for $A x=b$:

$$
A=B-N
$$

Preconditioner B is symmetric, positive definite, easy to solve.
Given x_{0} (e.g., $x_{0}=0$), for $j=0,1,2, \ldots$

$$
\begin{aligned}
r_{j} & =b-A x_{j} \\
B \delta_{j} & =r_{j} \\
x_{j+1} & =x_{j}+\delta_{j}
\end{aligned}
$$

Remark: Should accelerate with Conjugate Gradients

Classical Convergence Analysis:

Consider Generalized Eigenvalue Problem

$$
A \psi_{i}=\lambda_{i} B \psi_{i}
$$

with $\left\|\psi_{i}\right\|=1,0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N} \leq 1$ (scale B as needed)

$$
\begin{aligned}
& e_{k}=x-x_{k}=\left(I-B^{-1} A\right) e_{k-1}=\left(I-B^{-1} A\right)^{k} e_{0} \\
& e_{0}=\sum c_{i} \psi_{i} \quad \rightarrow \quad e_{k}=\sum\left(1-\lambda_{i}\right)^{k} c_{i} \psi_{i}
\end{aligned}
$$

"smooth" $\lambda \approx 0=O\left(h^{2}\right)$

"rough" $\lambda \approx 1$

Basic Multilevel Idea:

- Smooth rough components of the error on level ℓ
- Project smooth components of the error to coarse level $\ell-1$
- Use Recursion

V-Cycle ($r=1$)
$\boldsymbol{\square}=m$ smoothing iterations

$$
\begin{aligned}
& \ell=3 \\
& \ell=2 \\
& \ell=1
\end{aligned}
$$

Multigrid Iteration (Finite Element Notation):

Level ℓ problem: $a\left(\delta^{(\ell)}, v\right)=f(v)$ for all $v \in \mathcal{S}_{\ell}$
If $\ell=1$ solve exactly; if $\ell>1$, let $\delta_{0}^{(\ell)}=0$
Pre smoothing: for $0 \leq k \leq m-1$,

$$
b\left(\delta_{k+1}^{(\ell)}-\delta_{k}^{(\ell)}, v\right)=f(v)-a\left(\delta_{k}^{(\ell)}, v\right) \quad \text { for all } v \in \mathcal{S}_{\ell}
$$

Coarse Grid Corrrection: find $\varepsilon^{(\ell-1)} \in \mathcal{S}_{\ell-1}$ such that

$$
\begin{gathered}
a\left(\varepsilon^{(\ell-1)}, v\right)=f(v)-a\left(\delta_{m}^{(\ell)}, v\right) \equiv \hat{f}(v) \quad \text { for all } v \in \mathcal{S}_{\ell-1} \\
\delta_{m+1}^{(\ell)}=\delta_{m}^{(\ell)}+\varepsilon^{(\ell-1)}
\end{gathered}
$$

(Approximately) solve by $r=1,2$ iterations of $\ell-1$ level scheme. Post smoothing: for $m+1 \leq k \leq 2 m+1$,

$$
b\left(\delta_{k+1}^{(\ell)}-\delta_{k}^{(\ell)}, v\right)=f(v)-a\left(\delta_{k}^{(\ell)}, v\right) \quad \text { for all } v \in \mathcal{S}_{\ell}
$$

Set $\delta^{(\ell)}=\delta_{2 m+1}^{(\ell)}$

A Simple Convergence Theorem (2 Levels):

$\square=m / 2$ smoothing iterations
■ = exact solution

Assume

$$
\frac{1}{\sqrt{\mathcal{K}}} \leq \frac{\|v\|_{1}}{\|v\|_{0}} \leq 1 \quad \text { for } v \in \mathcal{S}_{\ell} \cap \mathcal{S}_{\ell-1}^{\perp}
$$

where \mathcal{K} is independent of h. Then $\left\|e_{m+1}\right\|_{1} \leq \gamma\left\|e_{0}\right\|_{1}$ where

$$
\gamma \leq\left\{\begin{array}{cl}
\left(\frac{\mathcal{K}-1}{\mathcal{K}}\right)^{m} & m \leq \mathcal{K}-1 \\
\frac{\mathcal{K}}{m+1}\left(\frac{m}{m+1}\right)^{m} & m>\mathcal{K}-1
\end{array}\right.
$$

Remark: $\|v\|_{1}^{2}=a(v, v) \Leftrightarrow V^{t} A V$ and $\|v\|_{0}^{2}=b(v, v) \Leftrightarrow V^{t} B V$.

Elements of Proof: (including \mathcal{K} independent of h)

- Approximation Properties of \mathcal{S}_{ℓ}
- Quasi uniformity, shape regularity of the triangulation
- \mathcal{H}^{2} (or $\mathcal{H}^{1+\alpha}$) regularity of solution
- The spectral decomposition (generalized eigenvalue problem)
W. Hackbusch

Bank-Dupont
Bramble-Pasciak-et al
J. Xu
J. Mandel
P. Oswald
and many, many others...

Hierarchical Basis (1-Dimensional Example):

\mathcal{S}_{1} nodal basis
\mathcal{S}_{2} nodal basis
\mathcal{S}_{2} hierarchical basis

Hierarchical Decomposition: $\mathcal{S}_{\ell}=\mathcal{S}_{\ell-1} \oplus \mathcal{W}_{\ell}$

Matrix Formulation:

$A_{N}^{(\ell)}$ is the nodal basis stiffness matrix
$A_{H}^{(\ell)}$ is the Hierarchical basis stiffness matrix

$$
\begin{gathered}
A_{N}^{(\ell)}=\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right) \\
A_{H}^{(\ell)}=\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right) A_{N}^{(\ell)}\left(\begin{array}{cc}
I & V^{t} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A_{f f} & A_{f c}+A_{f f} V^{t} \\
A_{c f}+V A_{f f} & A_{N}^{(\ell-1)}
\end{array}\right) \\
A_{N}^{(\ell-1)}=A_{c c}+V A_{f c}+A_{c f} V^{t}+V A_{f f} V^{t}
\end{gathered}
$$

Remark: $f \Leftrightarrow$ "fine" and $c \Leftrightarrow$ "coarse"

HBMG Preconditioner:

Solve $A_{N}^{(\ell)} \delta=r$ using 1 iteration of Block Symmetric Gauss-Seidel for $A_{H}^{(\ell)}$, developed implicitly to exploit sparsity of $A_{N}^{(\ell)}$

$$
\begin{aligned}
A_{f f} \hat{\delta}_{f} & =r_{f} & \text { solve by "pre smoothing" } \\
\hat{r}_{c} & =r_{c}-A_{c f} \hat{\delta}_{f}+V\left(r_{f}-A_{f f} \hat{\delta}_{f}\right) & \text { "restriction" } \\
A_{N}^{(\ell-1)} \delta_{c} & =\hat{r}_{c} & \text { coarse grid correction } \\
\hat{\delta}_{f} & \leftarrow \hat{\delta}_{f}+V^{t} \delta_{c} & \text { "prolongation" } \\
A_{f f} \bar{\delta}_{f} & =r_{f}-A_{f c} \delta_{c}-A_{f f} \hat{\delta}_{f} & \text { solve by "post smoothing" } \\
\delta_{f} & =\bar{\delta}_{f}+\hat{\delta}_{f} &
\end{aligned}
$$

HBMG Preconditioner (Finite Element Notation):

Level ℓ problem: $a\left(\delta^{(\ell)}, v\right)=f(v)$ for all $v \in \mathcal{S}_{\ell}$
Pre smoothing: find $\hat{\delta}_{f} \in \mathcal{W}_{\ell}$ such that

$$
a\left(\delta_{f}, v\right)=f(v) \quad \text { for all } v \in \mathcal{W}_{\ell}
$$

Coarse Grid Corrrection: find $\delta_{c} \in \mathcal{S}_{\ell-1}$ such that

$$
a\left(\delta_{c}, v\right)=f(v)-a\left(\hat{\delta}_{f}, v\right) \quad \text { for all } v \in \mathcal{S}_{\ell-1}
$$

Post smoothing: find $\delta_{f} \in \mathcal{W}_{\ell}$ such that

$$
a\left(\delta_{f}, v\right)=f(v)-a\left(\delta_{c}+\hat{\delta}_{f}, v\right) \quad \text { for all } v \in \mathcal{W}_{\ell}
$$

$\operatorname{Set} \delta^{(\ell)}=\delta_{f}+\delta_{c}+\hat{\delta}_{f}$

A Simple Convergence Theorem (2 Levels):

Assume that $A_{f f}$ and $A_{N}^{(\ell-1)}$ are solved exactly and

$$
\begin{array}{ll}
\quad \sup & |a(v, w)| \leq \gamma<1 \\
v \in \mathcal{S}_{\ell-1} & \|v\|=1 \\
w \in \mathcal{W}_{\ell} & \|w\|=1
\end{array}
$$

where γ is independent of h (strengthened Cauchy Inequality). Then $\left\|e_{k+1}\right\| \leq \gamma^{2}\left\|e_{k}\right\|$

Remarks: $\gamma=\gamma(m, \ell)$ for m smoothing steps and ℓ levels

$$
\gamma=1 / 2 \text { for this configuration }
$$

HBMG and Classical MG V-Cycle are almost identical

HBMG does not use

- quasiuniformity of the mesh
- approximation properties of \mathcal{S}_{ℓ}
- regularity of solution (beyond \mathcal{H}^{1})
- spectral decomposition

HBMG does use

- local properties of polynomials
- shape regularity of the mesh
H. Yserentant

Bank-Dupont-Yserentant
M. Griebel
and many others...

The Graph of a Sparse, Symmetric Matrix A :

$$
e_{i j} \equiv e_{j i} \in \mathcal{E} \equiv \text { edge set } \quad \Leftrightarrow \quad A_{i j} \neq 0
$$

Graph of $A_{N}^{(\ell)}$ is level ℓ triangulation (except for Dirichlet b.c.)

Symbolic Sparse Gaussian Elimination:

To eliminate vertex ■:

- Delete vertex \square and its incident edges
- Make $\operatorname{adj}(\square)$ into a clique by adding fill-in edges

Classical Incomplete $L U$ Decomposition:

To eliminate vertex ■:

- Delete vertex \square and its incident edges
- Add NO fill-in edges edges

HBMG as an $I L U$ Decomposition:

\square are parents of $\boldsymbol{\square}$; to eliminate vertex \square :

- Delete vertex \square and its incident edges
- Add fill-in edges for parents (■)

Grid Coarsening and $I L U$:

As the fine grid nodes are eliminated via the HBMG/ILU scheme, the fine triangulation is transformed to the coarse grid.

Matrix Interpretation:

$$
\begin{gathered}
A_{N}^{(\ell)}=\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right) \\
\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right) A_{N}^{(\ell)}\left(\begin{array}{cc}
I & V^{t} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A_{f f} & A_{f c}+A_{f f} V^{t} \\
A_{c f}+V A_{f f} & S_{c c}
\end{array}\right) \\
S_{c c}=A_{c c}+V A_{f c}+A_{c f} V^{t}+V A_{f f} V^{t}
\end{gathered}
$$

Exact Gaussian Elimination: $A_{c f}+V A_{f f}=0$. Then

$$
S_{c c}=A_{c c}-A_{c f} A_{f f}^{-1} A_{f c} \equiv \text { Schur Complement (generally dense) }
$$

The Matrix V for the Hierarchical Basis Transformation:

$$
u(\square)=\frac{u(\square)+u(\boldsymbol{\square})}{2}
$$

"linear interpolation"

Column \square of V has nonzero entries $(1 / 2)$ only in rows \square and \square

$$
A_{N}^{(\ell-1)}=A_{c c}+V A_{f c}+A_{c f} V^{t}+V A_{f f} V^{t}
$$

can be viewed a sparse approximate Schur complement

The "Multigraph" Method:

Add fill-in edges only for parents

- For PDE's, can use geometry of mesh to choose parents
- For general sparse matrix, use max weight / min fill criteria

Remark: can have any number of parents; 1-parent option ("matching") has some supporting analysis

Choosing Multipliers in V (General case):

- If geometry is available, use "interpolation"

$$
u(\square)=(1-\theta) u(\square)+\theta u(\square)
$$

- Create as many zeroes as possible in $A_{c f}+V A_{f f}$ (as in classical $I L U$ algorithms (e.g. $-a_{i j} / a_{i i}$)

Remark: if $A_{N}^{(\ell)}$ is not symmetric, can choose different multipliers for left and right

$$
\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right)\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right)\left(\begin{array}{cc}
I & W^{t} \\
0 & I
\end{array}\right)
$$

