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Model Problem:

—Au=f in QcCR?
u=0 on 90N}

Weak Formulation: find u € H{(Q2) such that
a(“?”) — (f,?))

for all v € H(Q2), where

a(u,v):/QVu~Vvdx (f,v):/vad:c

lull* = a(u,u) lull* = (u, u)
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Triangulation: (quasiuniform, shape regular)

Finite Element Subspace: S C H}(Q)
continuous piecewise linear polynomials

Finite Element Approximation: find u;, € § such that

a(un,v) = (f,v)

forall vesS
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Levels and Refinement:

he =hi2V78 = hy_1/2
Sr—1 C &y
Dim Sy~4x Dim Sp_1
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Finite Element Problem on Level /:

Find «Y € S, such that
a(u,v) = (f,v)

for all v e Sy

Classical A Priori Error Estimate:

lu —u N < Chyllullrzo)

Remark: Adaptive Refinement can lead to nonuniform meshes
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Classical Nodal Basis for Sy:
0), (¢
oy (v)7) = b,
Linear System of Equations:

A0 [0 — p®

49 = a(¢0, 60 b0 — (£, 6 u® =3 U® O

AW is large, sparse, symmetric, positive definite
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Iterative Methods for Ax = b:

A=B—-N

Preconditioner B is symmetric,positive definite, easy to solve.

Given zqg (e.g., xp =0), for j=0,1,2,...

Tj b-AJ?j
B(Sj Tj
ZCj—|—5j

Remark: Should accelerate with Conjugate Gradients
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Classical Convergence Analysis:

Consider Generalized Eigenvalue Problem
Ay = N\ By,
with |9l =1, 0 < A1 < Aa < -+ < Ay <1 (scale B as needed)

exr=a—x=I—B 'Ae,_1 = (I — B 1A)"e

ep = Zcz‘wi e = Z(l — i) e,

“smooth” A=~ 0= O0(h?) “rough” \~1
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Basic Multilevel Idea.
e Smooth rough components of the error on level ¢
e Project smooth components of the error to coarse level ¢ — 1

e Use Recursion

V-Cycle (r =1) W-Cycle (r = 2)

B — m smoothing iterations B — exact solution
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Multigrid Iteration (Finite Element Notation):
Level ¢ problem: a(69,v) = f(v) for all v € S,

If / =1 solve exactly; if £ > 1, let 5(()@ =0
Pre smoothing: for 0 <k <m —1,

b(8), — 8", 0) = f(v) — a(8”,v) for all v € S
Coarse Grid Corrrection: find ¢¢~1) € S,_; such that
a(e"D v) = f(v) — a(69,v) = f(v) for all v € Sp_1
5%&1 = 50 4 =)

(Approximately) solve by r = 1,2 iterations of £ — 1 level scheme.
Post smoothing: for m+ 1<k <2m +1,

b(8), — 8, v) = f(v) — a(8}”,v) for all v € S

Set 6 =45 |
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A Simple Convergence Theorem (2 Levels):

B = m/2 smoothing iterations
B — exact solution

Assume

for v e Sy NS,

NS

where K is independent of h. Then |e,, 1)1 < 7|leo]l1 where

(%cH)"  m<K-1

[ [ T R

m—+1 \ m+1

Remark: ||v]|? = a(v,v) & VIAV and ||v||3 = b(v,v) & VIBV.

UC San Diego, Scientific Computation Group Slide 11, July 13, 2000



Elements of Proof: (including K independent of h)
e Approximation Properties of &y
e Quasi uniformity, shape regularity of the triangulation

o H? (or H'®) regularity of solution

e The spectral decomposition (generalized eigenvalue problem)

W. Hackbusch
Bank-Dupont
Bramble-Pasciak-et al

J. Xu

J. Mandel

P. Oswald

and many, many others...

=
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Hierarchical Basis (1-Dimensional Example):

S1 nodal basis

Ss nodal basis

So hierarchical basis

Hierarchical Decomposition: Sy = Sy—1 ® W,
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Matrix Formulation:

A%) is the nodal basis stiffness matrix
Aﬁ? is the Hierarchical basis stiffness matrix

Aff Afc—i—Afth
Acf -+ VAff A%_U

A = A + VA + A Vi VA V!

Remark: f << “fine” and c < ‘“coarse”
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HBMG Preconditioner:

Solve A%)é — r using 1 iteration of Block Symmetric Gauss-Seidel

for Ag), developed implicitly to exploit sparsity of Ag\?

solve by “pre smoothing”

“restriction”

coarse grid correction

Op = 0p + V"0 “prolongation”

Afpdp =rp— Apede — Aff5f solve by “post smoothing”
5p =05+ 05
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HBMG Preconditioner (Finite Element Notation):
Level ¢ problem: a(69),v) = f(v) for all v € S,

Pre smoothing: find 5f € W, such that
a(éf,v) = f(v) for all v e W,
Coarse Grid Corrrection: find d. € Sy_1 such that
a(6e,v) = f(v) — a(df,v) for all v e Sp—1
Post smoothing: find 0y € W, such that

a(éf,v):f(v)—a(50+c§f,v) for all v € Wy

Set 0 = 57 4 6. + o5
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A Simple Convergence Theorem (2 Levels):

Assume that A;r and A%_l) are solved exactly and

sup la(v,w)| <7y <1
veSea =1
weWr Jw] =1

where ~ is independent of h (strengthened Cauchy Inequality).
Then |lep1]l < 7% [lex

Remarks: ~v = v(m, ) for m smoothing steps and / levels

v = 1/2 for this configuration
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HBMG and Classical MG V-Cycle are almost identical
HBMG does not use

e quasiuniformity of the mesh

e approximation properties of Sy

e regularity of solution (beyond H!)

e Spectral decomposition
HBMG does use

e |ocal properties of polynomials

e shape regularity of the mesh

H. Yserentant
Bank-Dupont-Yserentant
M. Griebel

and many others...
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The Graph of a Sparse, Symmetric Matrix A:

e;; = e;; € £ = edge set & Ai; #0

Graph of A%) is level ¢ triangulation (except for Dirichlet b.c.)
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Symbolic Sparse Gaussian Elimination:
H

To eliminate vertex B:

e Delete vertex B and its incident edges

e Make adj(l) into a clique by adding fill-in edges
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Classical Incomplete LU Decomposition:
H N

To eliminate vertex W:

e Delete vertex B and its incident edges

e Add NO fill-in edges edges
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HBMG as an /LU Decomposition:
H

B are parents of B; to eliminate vertex W:

e Delete vertex B and its incident edges

e Add fill-in edges for parents (M)
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Grid Coarsening and [/LU:

As the fine grid nodes are eliminated via the HBMG/ILU scheme,
the fine triangulation is transformed to the coarse grid.
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Matrix Interpretation:

Aff AfC-FAfth
Acf -+ VAff

= A.. + VAfc + Acht + VAfth

Exact Gaussian Elimination: A.f +VAss =0. Then

—A,.. — ACfA]?J}AfC = Schur Complement (generally dense)
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The Matrix V for the Hierarchical Basis Transformation:

u(M) + u(M)
2
“linear interpolation”

Column B of V has nonzero entries (1/2) only in rows M and B

A = A+ VAo + A Vi VAV

can be viewed a sparse approximate Schur complement
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The “Multigraph” Method:

Add fill-in edges only for parents

e For PDE's, can use geometry of mesh to choose parents

e For general sparse matrix, use max weight / min fill criteria

Remark: can have any number of parents; 1-parent option
( “matching” ) has some supporting analysis
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Choosing Multipliers in V (General case):

e If geometry is available, use “interpolation”

\l/. w(M) = (1 - 0)u(W) + fu(H)

e Create as many zeroes as possible in Acy +VAsr (as in
classical ILU algorithms (e.g. —a;;/a;;)

Remark: if A%) IS not symmetric, can choose different multipliers
for left and right
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