Long-Term Information Technology Research

Meeting the PITAC Challenge

Ken Kennedy Center for High Performance Software Rice University

http://www.cs.rice.edu/~ken/Presentations/SIAMPITAC.pdf

PITAC Charter

- The Committee shall provide an independent assessment of:
 - Progress made in implementing the High-Performance Computing and Communications (HPCC) Program;
 - Progress in designing and implementing the Next Generation Internet initiative;
 - -The need to revise the HPCC Program;
 - -Balance among components of the HPCC Program;
 - -Whether the research and development undertaken pursuant to the HPCC Program is helping to maintain United States leadership in advanced computing and communications technologies and their applications;
 - -Other issues as specified by the Director of the Office of Science and Technology.
 - Review of the entire IT investment strategy is it meeting the nation's needs

PITAC Membership 97-99

- Co-Chairs:
 - Bill Joy, Sun Microsystems
- Members:
 - Eric Benhamou, 3Com
 - Ching-chih Chen, Simmons
 - Steve Dorfman, Hughes
 - Bob Ewald, SGI
 - Sherri Fuller, U of Washington
 - Susan Graham, UC Berkeley
 - Danny Hillis, Disney, Inc
 - John Miller, Montana State
 - Raj Reddy*, Carnegie Mellon
 - Larry Smarr, UIUC
 - Les Vadasz, Intel
 - Steve Wallach, Centerpoint

- Ken Kennedy, Rice
- Vinton Cerf, MCI
- David Cooper, LLNL
- David Dorman, PointCast
- David Farber, Penn
- Hector Garcia-Molina, Stanford
- Jim Gray, Microsoft
- Robert Kahn, CNRI
- David Nagel, AT&T
- Ted Shortliffe, Stanford
- Joe Thompson, Miss. State
- Andy Viterbi, Qualcomm
- Irving Wladawsky-Berger*, IBM

* = current co-chair

Methodology

- Evaluation of Federal Research Investment Portfolio
 - -Plans reviewed for each of the major areas:
 - High End Computing and Computation
 - Large Scale Networking
 - Human Centered Computer Systems
 - High Confidence Systems
 - Education, Training, and Human Resources
- Review of Balance in Federal Research Portfolio
 - -Fundamental versus Applied
 - Based on our own definition of these terms
 - -High-Risk versus Low-Risk
 - -Long-Term versus Short-Term

Drift Away from Long-Term Fundamental Research

- Drift Away from Long-Term Fundamental Research
 - -Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense

- Drift Away from Long-Term Fundamental Research
 - -Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 - -Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission

- Drift Away from Long-Term Fundamental Research
 - -Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 - -Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission
- This Trend Must Be Reversed
 - -Continue the flow of ideas to fuel the information economy and society

- Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 - -Ramp up over five years
 - -Focus on increasing fundamental research

- Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 - -Ramp up over five years
 - -Focus on increasing fundamental research
- Invest in Key Areas Needing Attention
 - -Software
 - -Scalable Information Infrastructure
 - -High-End Computing
 - -Social, Economic, and Workforce Issues

- Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 - -Ramp up over five years
 - -Focus on increasing fundamental research
- Invest in Key Areas Needing Attention
 - -Software
 - -Scalable Information Infrastructure
 - -High-End Computing
 - -Social, Economic, and Workforce Issues
- Develop a Coherent Management Strategy
 - -Establish clear organizational responsibilities
 - -Diversify modes of support

Software

- Recommendations
 - -Make fundamental software research an absolute priority
 - -Invest in key area needing attention
 - Improving programmer productivity
 - Ameliorate the shortage of IT professionals
 - Improving reliability and robustness of software
 - Improving usability through human interface innovations
 - Improving capabilities for information management
 - -Make software research a substantive component of every major information technology research initiative.

Scalable Information Infrastructure

- Research Needed:
 - -Understanding the behavior of the global-scale network.
 - Physics of the network, including optical and wireless technologies such as satellites, and bandwidth issues.
 - -Scalability of the Internet.
 - -Information management, Information and services survivability
 - -Large-scale applications and the scalable services they require.
 - National digital library, Next-generation world-wide web
 - —Fund a balanced set of testbeds that serve the needs of networking research, research in enabling information technologies and advanced applications, and Internet research.

High-End Computing

- Findings:
 - -High-end computing is essential for science and engineering research
 - High-end computing is an enabling element of the United States national security program
 - -New applications of high-end computing are ripe for exploration
 - Suppliers of high-end systems suffer from difficult market pressures
 - High-end market not large
 - $-\operatorname{Advances}$ in high-end computing eventually find their way to desktop
- Recommendation
 - -Fund high-end computing research (architecture, software, and applications, and testbeds) because it is important to the government and the health, welfare, and security of the population

Social, Economic, Workforce Issues

- Invest in Four Areas:
 - -IT-literate population
 - -IT workforce
 - More workers, more underrepresented groups
 - -Use of IT in education
 - $-\ensuremath{\mathsf{Understanding}}$ economic and policy implications of technology

Social, Economic, Workforce Issues

- Invest in Four Areas:
 - -IT-literate population
 - -IT workforce
 - More workers, more underrepresented groups
 - -Use of IT in education
 - -Understanding economic and policy implications of technology
- An Observation on IT Workforce
 - -Research investment in universities is critical
 - Without it, faculty leave
 - Without it, grad students do not go -> no new faculty
 - Without faculty, we cannot produce more BS graduates

• Can we increase long-term research by rebudgeting?

Can we increase long-term research by rebudgeting?
 No, because the short-term work addresses essential problems

- Can we increase long-term research by rebudgeting?
 No, because the short-term work addresses essential problems
- Why doesn't industry fund this?

- Can we increase long-term research by rebudgeting?
 —No, because the short-term work addresses essential problems
- Why doesn't industry fund this?
 - -Industry research focused on product development
 - Enormously expensive

- Can we increase long-term research by rebudgeting?
 No, because the short-term work addresses essential problems
- Why doesn't industry fund this?
 - -Industry research focused on product development
 - Enormously expensive
 - Thurow:
 - Private rate of return on research -24%
 - Societal rate of return on research -66%

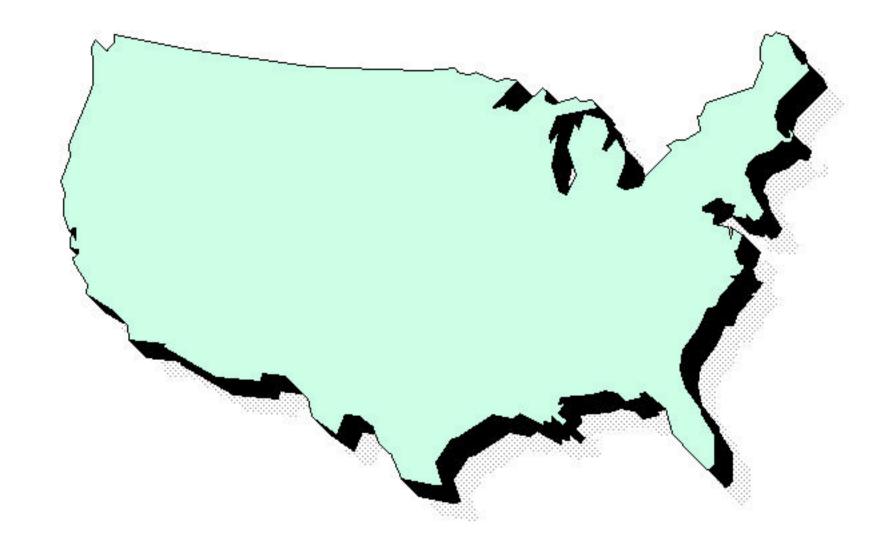
- Can we increase long-term research by rebudgeting?
 - -No, because the short-term work addresses essential problems
- Why doesn't industry fund this?
 - -Industry research focused on product development
 - Enormously expensive
 - Thurow:
 - Private rate of return on research -24%
 - Societal rate of return on research -66%
 - Industry is not good at funding and developing disruptive technologies
 - -Federal Government funding creates fuel for the venture capital system

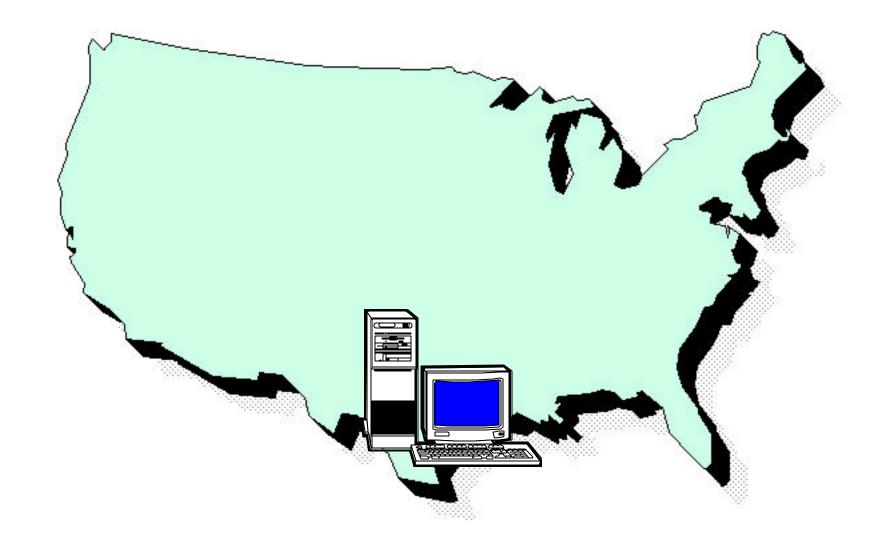
Good News

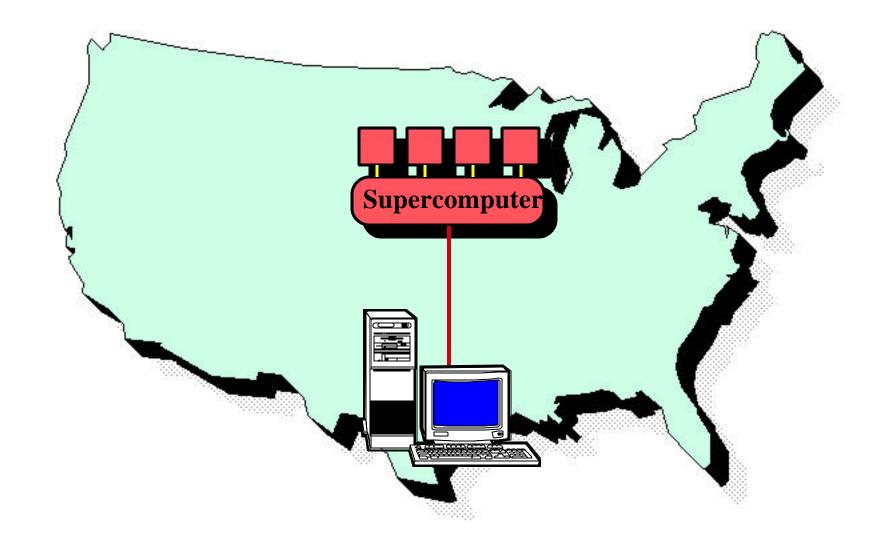
- Administration Budget
 - -Proposed additional \$366 million in FY 2000
 - Appropriated: \$226 million
 - -Proposed \$605 million increase for FY 2001
 - -Successive years unclear
- Congress
 - -Sensenbrenner NITR&D Act from House Science Committee
 - 5 years of funding at PITAC-recommended levels
 - Permanent R&D investment tax credit
 - Passed with near-unanimous support
 - Only partially reflected in the Senate authorization bills
 - Appropriations are year-to-year

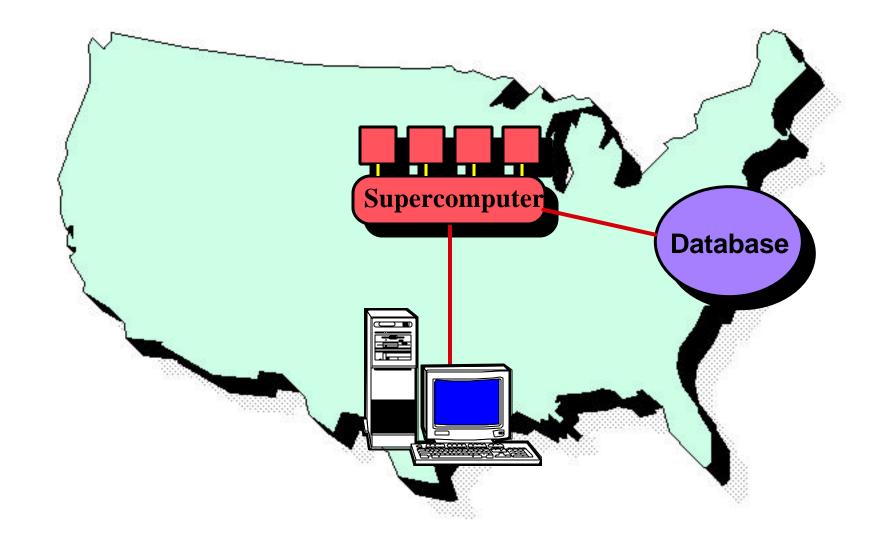
Software Reliability

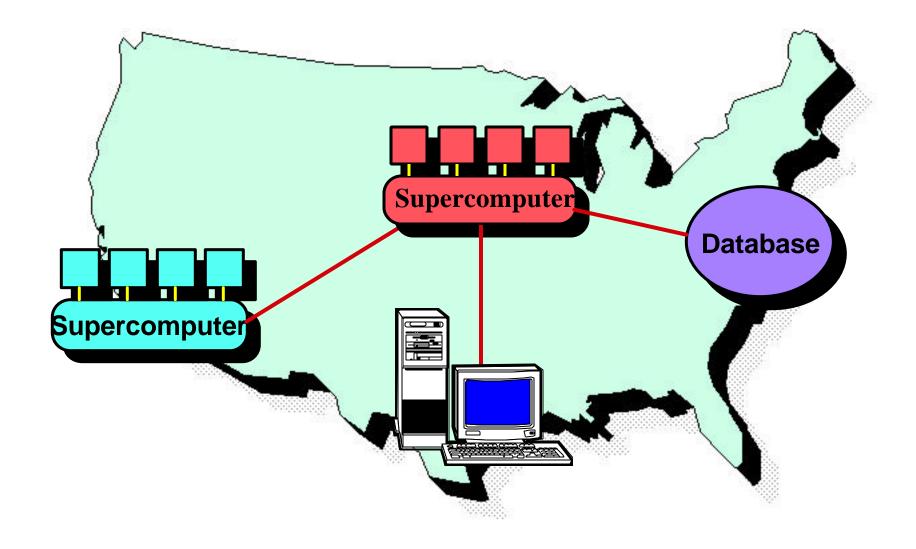
-Who will pay for bug free, feature-poor software?

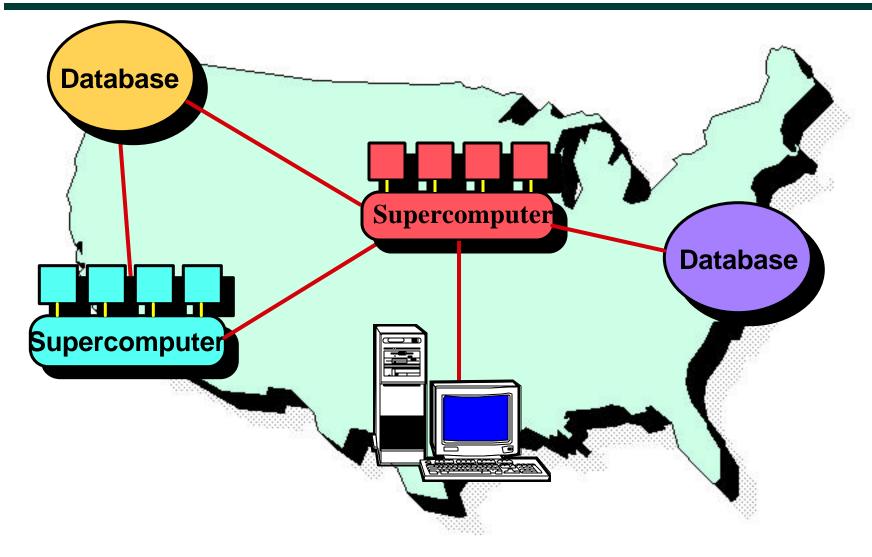

- Software Reliability
 - -Who will pay for bug free, feature-poor software?
- Internet Scalability and Security
 - -How do we handle 2 billion internet connections at DSL speed?
 - -What if those connections are mobile and wireless?

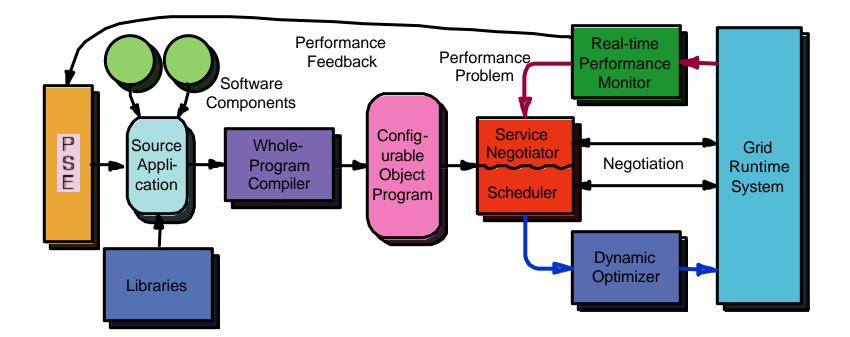

- Software Reliability
 - -Who will pay for bug free, feature-poor software?
- Internet Scalability and Security
 - -How do we handle 2 billion internet connections at DSL speed?
 - -What if those connections are mobile and wireless?
- Realistic Telepresence

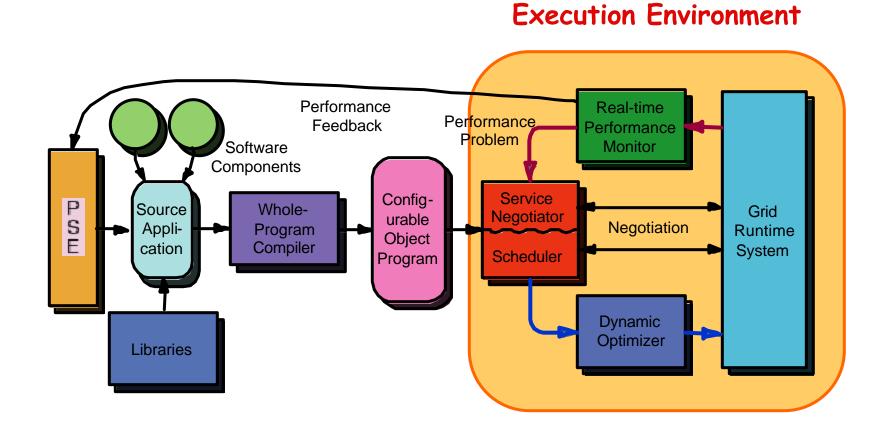

-Can we put airlines out of business?


- Software Reliability
 - -Who will pay for bug free, feature-poor software?
- Internet Scalability and Security
 - -How do we handle 2 billion internet connections at DSL speed?
 - -What if those connections are mobile and wireless?
- Realistic Telepresence
 - -Can we put airlines out of business?
- The Internet as Problem-Solving Engine*
 - -GrADS Project

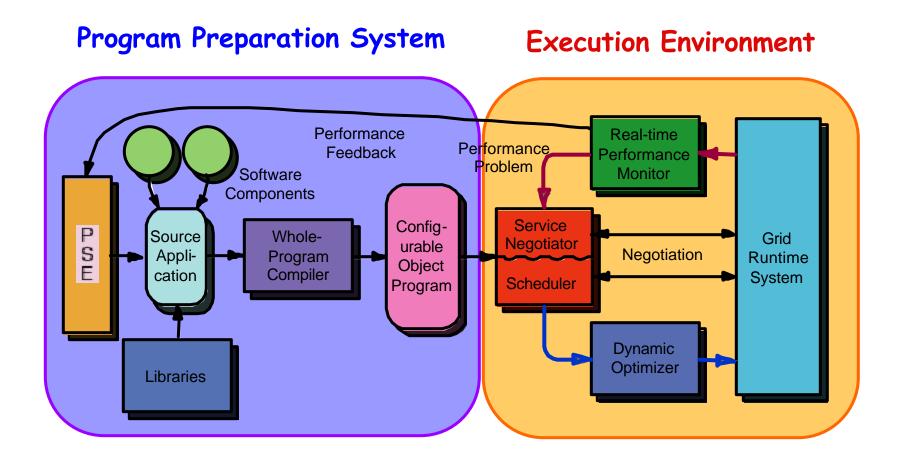

- Software Reliability
 - -Who will pay for bug free, feature-poor software?
- Internet Scalability and Security
 - -How do we handle 2 billion internet connections at DSL speed?
 - -What if those connections are mobile and wireless?
- Realistic Telepresence
 - -Can we put airlines out of business?
- The Internet as Problem-Solving Engine*
 - -GrADS Project
- Software Productivity*
 - -Workforce shortage
 - -Idea: make it possible for end users to be application developers






Grid Compilation Architecture

• Goal: reliable performance under varying load



GrADS Project (NSF NGS): Berman, Chien, Cooper, Dongarra, Foster, Gannon, Johnsson, Kennedy, Kesselman, Mellor-Crummey, Reed, Torczon, Wolski

Grid Compilation Architecture

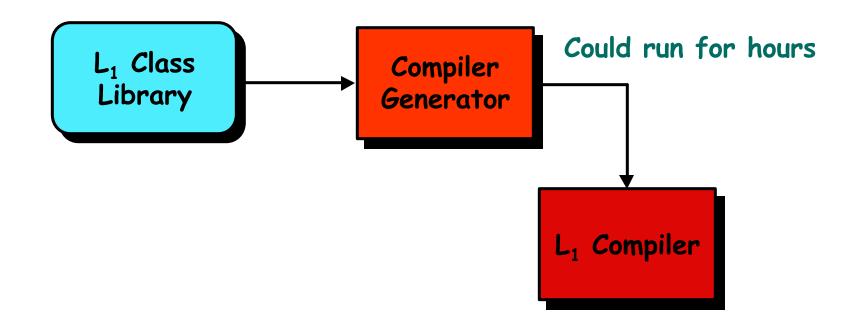
Grid Compilation Architecture

Programming Productivity

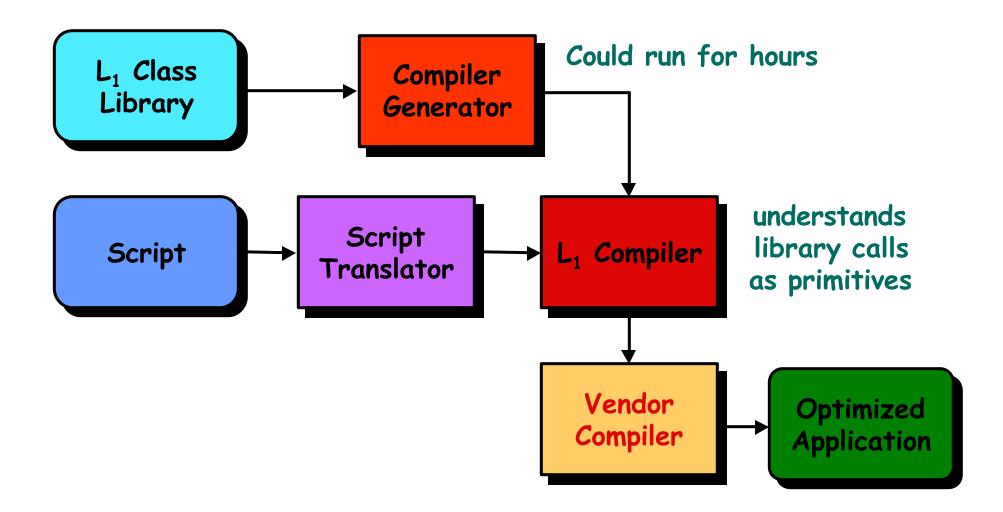
- Challenges
 - -programming is hard
 - -professional programmers are in short supply
 - -high performance will continue to be important

Programming Productivity

- Challenges
 - -programming is hard
 - -professional programmers are in short supply
 - -high performance will continue to be important
- One Strategy: Make the End User a Programmer
 - -professional programmers develop components
 - -users integrate components using:
 - problem-solving environments (PSEs)
 - scripting languages (possibly graphical)
 examples: Visual Basic, Tcl/Tk, AVS, Khoros


Programming Productivity

- Challenges
 - -programming is hard
 - -professional programmers are in short supply
 - -high performance will continue to be important
- One Strategy: Make the End User a Programmer
 - -professional programmers develop components
 - -users integrate components using:
 - problem-solving environments (PSEs)
 - scripting languages (possibly graphical)
 examples: Visual Basic, Tcl/Tk, AVS, Khoros
- Compilation for High Performance
 - -translate scripts and components to common intermediate language
 - —optimize the resulting program using interprocedural methods


Telescoping Languages

Telescoping Languages

Telescoping Languages

Telescoping Languages: Advantages

- Compile times can be reasonable
 - -More compilation time can be spent on libraries
 - Amortized over many uses
 - -Script compilations can be fast
 - Components reused from scripts may be included in libraries

Telescoping Languages: Advantages

- Compile times can be reasonable
 - -More compilation time can be spent on libraries
 - Amortized over many uses
 - -Script compilations can be fast
 - Components reused from scripts may be included in libraries
- High-level optimizations can be included
 - -Based on specifications of the library designer
 - Properties often cannot be determined by compilers
 - Properties may be hidden after low-level code generation

Telescoping Languages: Advantages

- Compile times can be reasonable
 - -More compilation time can be spent on libraries
 - Amortized over many uses
 - -Script compilations can be fast
 - Components reused from scripts may be included in libraries
- High-level optimizations can be included
 - -Based on specifications of the library designer
 - Properties often cannot be determined by compilers
 - Properties may be hidden after low-level code generation
- User retains substantive control over language performance

Mature code can be built into a library and incorporated into language

- Theories of security and reliability
 - -Most of the current tools are based on mathematics
 - public-key encryption
 - -New frontier: Software

- Theories of security and reliability
 - Most of the current tools are based on mathematics
 - public-key encryption
 - -New frontier: Software
- Theories of scalable, reconfigurable communication networks
 - -Routing, load balancing
 - Integer and mixed integer programming

- Theories of security and reliability
 - -Most of the current tools are based on mathematics
 - public-key encryption
 - -New frontier: Software
- Theories of scalable, reconfigurable communication networks
 - -Routing, load balancing
 - Integer and mixed integer programming
- Robust libraries for scientific computation
 - -Components for problem-solving systems
 - -Latency-tolerant algorithms
 - -Management of accuracy in heterogeneous computer configurations

- Theories of security and reliability
 - -Most of the current tools are based on mathematics
 - public-key encryption
 - -New frontier: Software
- Theories of scalable, reconfigurable communication networks
 - -Routing, load balancing
 - Integer and mixed integer programming
- Robust libraries for scientific computation
 - -Components for problem-solving systems
 - -Latency-tolerant algorithms
 - Management of accuracy in heterogeneous computer configurations
- Transmission of high-quality video
 - -Compression, compression, compression

- IT Research Needs Revitalization
 - -Focus on the long term

- IT Research Needs Revitalization
 - -Focus on the long term
 - -University research critical
 - for both ideas and human resources
 - government support role is essential

- IT Research Needs Revitalization
 - -Focus on the long term
 - -University research critical
 - for both ideas and human resources
 - government support role is essential
 - -Areas of focus
 - software, scalable infrastructure, high performance computing, societal and economic impact

- IT Research Needs Revitalization
 - -Focus on the long term
 - -University research critical
 - for both ideas and human resources
 - government support role is essential
 - -Areas of focus
 - software, scalable infrastructure, high performance computing, societal and economic impact
- IT Grand Challenges
 - Software productivity, software reliability, internet security and reliability, telepresence, Grid computing

- IT Research Needs Revitalization
 - -Focus on the long term
 - -University research critical
 - for both ideas and human resources
 - government support role is essential
 - -Areas of focus
 - software, scalable infrastructure, high performance computing, societal and economic impact
- IT Grand Challenges
 - -Software productivity, software reliability, internet security and reliability, telepresence, Grid computing
- Critical Role for the SIAM Community