
DISCRETE OPTIMIZATION AND NETWORK
DESIGN

Daniel Bienstock
Columbia University

Generic definition

Expand or add capacity to an existing network, or build
a new network; subject to certain constraints

And in the resulting network, route a given set of multicom-
modity demands, subject to certain constraints

So as to maximize a given performance measure of the rout-
ing, or to deliver a required performance from the routing, at
minimum cost.

Mixed-integer programming formulations

Expand or add capacity to an existing network, or build a new net-
work; subject to certain constraints –

Use integer variables, sometimes 0/1. Constraints: e.g. topological. Example: the network

must be a union of rings with ≤ 10 nodes each.

In the resulting network, route a given set of multicommodity demands,
subject to certain constraints –

Usually modeled using continuous variables. The variables are used to model flows on arcs of
the network, or path flows.

Optimize

Objective: minimize cost, or maximize throughput. Cost of the installed capacity, throughput
= amount of traffic that is routed.

Many submodels

Different types of transmission systems. (Magnanti, Balakrishnan, Vachani; many others) e.g.
on a link we may install an integer number of units of bandwidth 12, and an integer number of units
of bandwidth 24, or 48, etc.

����

����

����

����

��		

��

��

 ������
���
������
���

������
���
������
���

5

2

0
0

1

1

3
2

1 0

1 1

2

1

1

11 capacity = 96

capacity = 24

For each arc of the network we have a constraint of the form

fij −
∑
t

M txt
ij ≤ Uij

where fij = total traffic on link (i, j), xt
ij is the number of units of type t installed on the link;

Uij is the existing capacity

Related to knapsack polyhedra (Pochet and Wolsey, Günlük and Pochet)

Modeling node capacities

Example: ATM networks (Asynchronous Transfer Mode), B. and Saniee

SYSTEM
TRANSMISSION

PLUGIN

SWITCH

• At each of a selected set of nodes, must decide whether to place a switch or not

• In addition to placing a switch, we must choose a set of adapters, or “plugins”

• Each plugin is traffic specific (e.g. video, packets, etc)

• Each plugin has a certain throughput and a number of “pins”

• The switch has a total number of pins available, plus capacity

The leased line cost model.

(Grötschel and Stoer, Alevras, others)

CAPACITY

COST

→ The cost of procuring capacity on a given arc is a step function – the function depends on the arc

For a given arc (i, j) we have a submodel of the form

fij −
∑
t

M t
ijx

t
ij ≤ Uij

xt
ij ≤ xt−1

ij

where fij = total traffic on link (i, j), xt
ij = 1 if we use “rung” t; M t

ij = incremental capacity of
rung t over rung t − 1

Survivability requirements

If an edge (node) is removed, the remaining network should adapt seamlessly
and carry all, or a prescribed fraction, of the demands

10

���
�

���
�

10
���
�

���
�

��	
	

��

��

���
�

10

���
�

���
�

10
���
�

���
�

���
� ����

���
�

���
�2

8

Many possible models: line restoration, capacity reservation, etc

Early versions (non-capacitated):
Grötschel, Monma, Shallcross; many others in the algorithms community

Modern versions (capacitated):
Magnanti and Sokol, Bienstock and Muratore, Wessäly et al

Even more models

Routing restrictions. Examples:

• Internet Protocol Routing. (A. Bley, M. Prytz, many others). Example: OSPF, MPLS proto-
cols.

→ Routing algorithm must produce, for each link (i, j) a positive integer πij.
All traffic must be routed on shortest paths using the metric π.

Even more models

Routing restrictions. Examples:

• Internet Protocol Routing. (A. Bley, M. Prytz, many others). Example: OSPF, MPLS proto-
cols.

→ Routing algorithm must produce, for each link (i, j) a positive integer πij.
All traffic must be routed on shortest paths using the metric π.

• ATM Routing. Only certain paths may be used for routing, e.g.

�� ��

���� ����

��		

��

��

 ����

���
�
���
�

���
�
���
�

���
�
���
�SOURCE

DESTINATION

EDGE DEVICE

SWITCH

EDGE DEVICE

Even more models

Routing restrictions. Examples:

• Internet Protocol Routing. (A. Bley, M. Prytz, many others). Example: OSPF, MPLS proto-
cols.

→ Routing algorithm must produce, for each link (i, j) a positive integer πij.
All traffic must be routed on shortest paths using the metric π.

• ATM Routing. Only certain paths may be used for routing, e.g.

�� ��

���� ����

��		

��

��

 ����

���
�
���
�

���
�
���
�

���
�
���
�SOURCE

DESTINATION

EDGE DEVICE

SWITCH

EDGE DEVICE

• Wireless network design (too many authors)

→ A. Eisenblaetter, frequency assignment in GSM networks

What is the track record?

• Specific problems or problem instances can sometimes be effectively solved

• Not infrequently, a lot of good mathematics can only provide an adequate solution.

An honest appraisal. Network design problems can be:

• Easy (sometimes)

• Hard (usually)

• Very hard (not infrequently)

• Impossible (all too often)

• They are also important

An old problem on optical networks (Bienstock and Günlük, 1990)

• Build a directed network to connect a set of nodes – the network will be used to route multicom-
modity demands

• Restriction: the nodes of the network can have up to p ingoing and outgoing links

• Route the demands as flows in the network

The objective of the problem is to simultaneously decide how to build the network and how to route
the demands, so that the maximum load is minimized

⇒ Experimental observation: heuristics don’t work

How about mixed-integer programming?

A mixed-integer programming formulation

• Variable: xij is a 0/1 variable, = 1 when we use a link from i to j

• Variable: fk
ij ≥ 0 is the flow of commodity k on link (i, j).

(a) Constraint: for any node i, Σjxij ≤ p (or = p).

(b) Constraint: for any commodity k, and any arc (i, j), fk
ij ≤ Mxij, where M is a large value

(c) Constraint: for any node i and commodity k, Σjf
k
ji − Σjf

k
ij = demand of commodity k at i.

Problem:

Minimize z

Subject to:

z ≥ Σkf
k
ij, for all (i, j)

(a), (b) and (c)

x is a 0/1 vector and f ≥ 0.

This is a hard problem

→ Instance danoint of MIPLIB III (p = 2; 8 nodes)

• 661 rows, 521 variables (56 0/1)

• Early 1990’s: optimization problem can only be solved to within 4 %
error, and only if special-purpose algorithms are used

• 2003: problem can now be solved with general-purpose mixed-integer
solvers, in about 1 day CPU time, enumerating about 1 million
branch-and-bound nodes

→ Modern general purpose MIP solver:
at least one year CPU time using 1993 hardware + LP solver

This is a hard problem

→ Instance danoint of MIPLIB III (p = 2; 8 nodes)

• 661 rows, 521 variables (56 0/1)

• Early 1990’s: optimization problem can only be solved to within 4 %
error, and only if special-purpose algorithms are used

• 2003: problem can now be solved with general-purpose mixed-integer
solvers, in about 1 day CPU time, enumerating about 1 million
branch-and-bound nodes

→ Larger instance dano3mip: 3202 constraints, 13873 variables (552 0/1)

• network has 20 nodes

• error gap is about 25 %

• beyond the reach of any current solver

The canonical problem – network loading

We are given a directed network, with

• A list of traffic demands to be routed: we must route dk units of flow
from node sk to node tk, k = 1, 2, . . .,

• Each arc (i, j) has some existing capacity uij ≥ 0,

• We can add an integer amount of capacity to each arc (i, j), at cost cij

per unit.

Problem. Add capacity, at minimum cost, so that the demands can be
feasibly routed.

Magnanti, Mirchandani, Vachani (1993), Bienstock, Chopra, Günlük, Tsai (1994), Barahona (1994),

· · ·, Atamturk, Rajan (2002), Avella, Mattia, Sassano (2004)

Progress: 1994 - 2004

1994: Problem instances on 27 nodes, 102 arcs, 67 demands (from Bienstock, Chopra, Günlük, Tsai)
→ Cut & Branch on SUN Sparc 10, CPLEX 3.0

Name lower cut lower best lower upper Gap (%) Time (sec)

MS1 2753.4 2925.7 2933.2 2976.3 1.45 3600
MS2 2791.5 2943.1 2955.3 2978.2 0.77 3600
MS3 2829.5 2969.4 2978.9 2978.9 0.00 3600
MS4 3067.9 3225.9 3232.3 3256.8 0.75 3600
MS5 2997.6 3169.6 3174.8 3246.6 2.21 3600
MS6 2391.2 2563.4 2566.9 2592.4 0.98 3600

→ Cutting plane algorithm using

cut inequalities, 3-partitions (and a few other inequalities)

heuristics to find upper bounds

commercial branch-and-bound code

Progress: 1994 - 2004

1994: Problem instances on 27 nodes, 102 arcs, 67 demands (from Bienstock, Chopra, Günlük, Tsai)
→ Cut & Branch on SUN Sparc 10, CPLEX 3.0

Name lower cut lower best lower upper Gap (%) Time (sec)

MS1 2753.4 2925.7 2933.2 2976.3 1.45 3600
MS2 2791.5 2943.1 2955.3 2978.2 0.77 3600
MS3 2829.5 2969.4 2978.9 2978.9 0.00 3600
MS4 3067.9 3225.9 3232.3 3256.8 0.75 3600
MS5 2997.6 3169.6 3174.8 3246.6 2.21 3600
MS6 2391.2 2563.4 2566.9 2592.4 0.98 3600

2004: Avella, Mattia, Sassano
→ Branch & Cut on 1.7 GHz Pentium IV, CPLEX 8.0

Name LB Flow LB Cuts BLB UB Heur BUB Gap (%) Nodes Time (sec)

MS1 2738.78 2962.42 2962.42 2979.49 2962.42 0.00 5914 4523
MS2 2773.72 2976.24 2976.24 2980.71 2976.24 0.00 1928 1733
MS3 2824.11 2978.90 2978.90 2978.9 2978.90 0.00 46 7103
MS4 3038.38 3242.78 3242.78 3257.22 3242.78 0.00 426 1880
MS5 2979.25 3196.96 3196.96 3196.96 3196.96 0.00 4487 20464
MS6 2375.11 2585.00 2585.00 2609.87 2585.00 0.00 1591 8947

Progress: 1994 - 2004

1994: Problem instances on 27 nodes, 102 arcs, 67 demands (from Bienstock, Chopra, Günlük, Tsai)
→ Cut & Branch on SUN Sparc 10, CPLEX 3.0

Name lower cut lower best lower upper Gap (%) Time (sec)

MS1 2753.4 2925.7 2933.2 2976.3 1.45 3600
MS2 2791.5 2943.1 2955.3 2978.2 0.77 3600
MS3 2829.5 2969.4 2978.9 2978.9 0.00 3600
MS4 3067.9 3225.9 3232.3 3256.8 0.75 3600
MS5 2997.6 3169.6 3174.8 3246.6 2.21 3600
MS6 2391.2 2563.4 2566.9 2592.4 0.98 3600

2004: Avella, Mattia, Sassano
→ Branch & Cut on 1.7 GHz Pentium IV, CPLEX 8.0

Name LB Flow LB Cuts BLB UB Heur BUB Gap (%) Nodes Time (sec)

MS1 2738.78 2962.42 2962.42 2979.49 2962.42 0.00 5914 4523
MS2 2773.72 2976.24 2976.24 2980.71 2976.24 0.00 1928 1733
MS3 2824.11 2978.90 2978.90 2978.9 2978.90 0.00 46 7103
MS4 3038.38 3242.78 3242.78 3257.22 3242.78 0.00 426 1880
MS5 2979.25 3196.96 3196.96 3196.96 3196.96 0.00 4487 20464
MS6 2375.11 2585.00 2585.00 2609.87 2585.00 0.00 1591 8947

2005: CPLEX 9.0 on 2.8 GHz Xeon. After 6× 105 seconds on MS5, gap > 4%.

Formulation

min
∑

ij cijxij

Subject to: ∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i (1)

∑
k

fk,ij − xij ≤ uij ∀(i, j) (2)

xij ∈ Z+ ∀(i, j), fk,ij ≥ 0 ∀k, (i, j) (3)

dk
i = demand of commodity k at node i, uij = existing capacity in (i, j)

fk,ij = flow of commodity k on (i, j); xij = capacity added to (i, j)

(Variations:

• Costs on the flows

• Different types (“modularities”) of capacities

• Restriction on the allowable flows)

Cut-and-branch

Magnanti, Mirchandani, Vachani; Bienstock, Günlük

Given a partition A, B of the nodes into 2 sets,

Cut-and-branch

Magnanti, Mirchandani, Vachani; Bienstock, Günlük

Given a partition A, B of the nodes into 2 sets,

cut directed
from A to B

A
B

→ Capacity installed on arcs from A to B, plus existing capacity, ≥ demand from A to B

Cut-and-branch

Magnanti, Mirchandani, Vachani; Bienstock, Günlük

Given a partition A, B of the nodes into 2 sets,

A B

Cut inequality: x(δA,B) ≥ dD(A, B) − u(δA,B)e

Notation:

x(δA,B) = Σi∈A,j∈B xij = total capacity installed from A to B

u(δA,B) = Σi∈A,j∈B uij = existing total capacity from A to B

D(A, B) = total demand going from A to B

This is a strenghtening (Gomory rank-1) of: x(δA,B) ≥ D(A, B) − u(δA,B)

Cut-and-branch

Magnanti, Mirchandani, Vachani; Bienstock, Günlük

Notation: v(δA,B) = Σi∈A,j∈B vij ; D(A, B) = total demand going from A to B

Given a partition A, B, C of the nodes into 3 sets,

A B

C

3-partition inequality:

x(δA,B) + x(δB,C) + x(δA,C) ≥ dD(A, B) + D(A, C) + D(B, C) − u(δB,C) − u(δB,C) − u(δA,C)e

Also: k-partition inequalities, other configurations, mixed-integer rounding inequalities

→ Separating the cut inequalities is NP-hard (B. and Günlük)

→ So must rely on heuristics

What is the primary obstacle to running Cut-and-Branch?

→ The linear programs are remarkably hard in large cases
(hundreds of nodes or more)

min ∑
ij cijxij

Subject to:
∑

(j,i)
fk,ji −

∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij − xij ≤ uij ∀(i, j)

xij ∈ Z+ ∀(i, j), fk,ij ≥ 0 ∀k, (i, j)

Nevertheless, the formulation is quite strong

Branch-and-cut using projection to x variables

Alevras, Grötschel, Stoer; Chopra, Tsai; Barahona; Avella, Mattia, Sassano

Key idea: only work with x variables; always maintain a “working formulation” Ax ≥ b of valid inequalities

Algorithm:

Step 1. Let x∗ be an optimal solution to
{
min cT x : Ax ≥ b, x ∈ Z+

}
Step 2. If there is a flow vector f∗, such that (x∗, f∗) are feasible for the network design problem, STOP.

Step 3. Else, find a valid inequality that is violated by x∗, add it to Ax ≥ b, and go to Step 1.

Branch-and-cut using projection to x variables

Alevras, Grötschel, Stoer; Chopra, Tsai; Barahona; Avella, Mattia, Sassano

Key idea: only work with x variables; always maintain a “working formulation” Ax ≥ b of valid inequalities

Algorithm:

Step 1. Let x∗ be an optimal solution to
{
min cT x : Ax ≥ b, x ∈ Z+

}
Step 2. If there is a flow vector f∗, such that (x∗, f∗) are feasible for the network design problem, STOP.

Step 3. Else, find a valid inequality that is violated by x∗, add it to Ax ≥ b, and go to Step 1.

Better Algorithm:

Step 1. Let x∗ be an optimal solution to
{
min cT x : Ax ≥ b, x ≥ 0

}
Step 2. If we can find a valid inequality that is violated by x∗, add it to Ax ≥ b and go to Step 1.

Step 3. Otherwise, if x∗ ∈ Z+ STOP – we have solved the problem.

Step 4. Otherwise, branch on some fractional variable x∗
j .

→ How do we implement Step 2?

One possibility: heuristics (Chopra and Tsai), separate cut inequalities by solving max-cut problem (Barahona)

Farkas’ Lemma

Question: given a capacity vector x∗, is there a flow vector f such that:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij ≤ x∗ij + uij ∀(i, j)

fk,ij ≥ 0 ∀k, (i, j)

Answer: there is no such vector, if and only if there are quantities πij ≥ 0 (for each arc (i, j)) such that:

Σij πij(x
∗
ij + uij) < Σi,k Lk

i (π) dk
i

Here, Lk
i (π) = shortest path length, to node i, from the source of commodity k, using arc lengths π.

A metric inequality: Σij πijxij ≥ Σi,k Lk
i (π) dk

i − Σi,jπijuij

(Lomonosov, Iri, Laurent, ...) Cut inequalities, partition inequalities, are all metric

Farkas’ Lemma

Question: given a capacity vector x∗, is there a flow vector f such that:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij ≤ x∗ij + uij ∀(i, j)

fk,ij ≥ 0 ∀k, (i, j)

Answer: there is no such vector, if and only if there are quantities πij ≥ 0 (for each arc (i, j)) such that:

Σij πij(x
∗
ij + uij) < Σi,k Lk

i (π) dk
i

Here, Lk
i (π) = shortest path length, to node i, from the source of commodity k, using arc lengths π.

Equivalently: solve the linear program
min Σij(x

∗
ij + uij)πij

Subject to:

Σ(i,j)L
k
j − Lk

i − πij ≤ 0, ∀k, (i, j)

Σi,k dk
i L

k
i = 1

L ≥ 0, π ≥ 0

If Σij(x
∗
ij + uij)πij < 1, violation

In that case, can usually tighten:

Σijdπijexij ≥ d1 − Σijπijuije
(Avella, Mattia, Sassano)

Farkas’ Lemma

Question: given a capacity vector x∗, is there a flow vector f such that:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij ≤ x∗ij + uij ∀(i, j)

fk,ij ≥ 0 ∀k, (i, j)

Answer: there is no such vector, if and only if there are quantities πij ≥ 0 (for each arc (i, j)) such that:

Σij πij(x
∗
ij + uij) < Σi,k Lk

i (π) dk
i

Here, Lk
i (π) = shortest path length, to node i, from the source of commodity k, using arc lengths π.

Equivalently: solve the linear program
min Σij(x

∗
ij + uij)πij

Subject to:

Σ(i,j)L
k
j − Lk

i − πij ≤ 0, ∀k, (i, j)

Σi,k dk
i L

k
i = 1

L ≥ 0, π ≥ 0

If Σij(x
∗
ij + uij)πij < 1, violation

In that case, can usually tighten:

Σijdπijexij ≥ d1 − Σijπijuije
(Avella, Mattia, Sassano)

⇒ Obstacle to this approach: the bad LP (again)

But is it bad? It is a maximum concurrent flow problem

The maximum concurrent flow problem – generic version

Definition: Given a network with capacities on the arcs, and multicommodity demands to be routed;
find the maximum common fraction θ of all demands that can be simultaneously routed.

max θ

s.t.
∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij − θdk
i = 0 ∀k, i

∑
k

fk,ij ≤ uij ∀(i, j)

fk,ij ≥ 0 ∀k, (i, j)

Very difficult as a linear program

But many results regarding approximation algorithms

• 1971: Fratta, Gerla and Kleinrock (flow deviation method)

• 1991: Shahrokhi and Matula (exponential potential function). Relative error ε in time O(ε−5)

• 1991-1994: Grigoriadis and Khachiyan; Plotkin, Shmoys and Tardos (exponential potential function), O(ε−2)

• 1998-1999: Garg and Könemann, Fleischer (elaborations)

• 2003: Nesterov (new ideas from non-differentiable optimization)

• 2004: Bienstock and Iyengar: rel. error ε in time O(ε−1)

• 2005: Nemirovskii?

Approximation algorithms – rough outline

All algorithms resort to approximately solved related problem

min
∑

(i,j) Φ
(∑

k fk,i,j

uij

)

s.t.
∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

0 ≤ fk,ij ≤ uij ∀k (i, j)

Where Φ is an appropriate potential function

→ How is Φ approximately minimized?

Either:

• First-order method: this gives rise to a sequence of shortest-path problems, or single-commodity
linear min cost flow problems

• Quasi-Newton like methods: convex, separable single commodity min cost flow problems

⇒ the methods are scalable

Approximation algorithms vs standard LP

Tests performed on a recent workstation

Name nodes arcs comm. Cplex Dual 1.0e−04 Approx
(sec) (sec.)

RMF23 484 2123 5000 40368 746
RMF19 500 2200 5000 66112 1024
RMF25 600 2660 5000 137685 1303
RMF26 700 3120 5000 445541 2103
RMF27 1000 4500 10000 1734618 5487

x 10
5

x 10
6

−1

0

2

1

3

4

5

0 0.5 1 1.5 2 2.5

VARIABLES

TIME

S I M P L E X

B E H A V I O R

700
nodes

sec

������������������

�������������������� ���
���

������������������������������������

Time

Dual value

Back to Farkas’ Lemma

Question: given a capacity vector x∗, is there a flow vector f such that:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij ≤ x∗ij + uij ∀(i, j)

fk,ij ≥ 0 ∀k, (i, j)

Answer: there is no such vector, if and only if there are quantities πij ≥ 0 (for each arc (i, j)) such
that:

Σij πij(x
∗
ij + uij) < Σi,k Lk

i (π) dk
i

Here, Lk
i (π) = shortest path, to node i, from the source of commodity k, using arc lengths π

Stronger valid inequalities for network design

(B. and Mattia)

Question: given a capacity vector x∗, is there a flow vector f for which the capacities uij + x∗
ij suffice?

Let (p, q) be an arc with x∗
pq fractional

Stronger question: are there vectors (x1, f1) and (x2, f2), each feasible for:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij − xij ≤ uij ∀(i, j)

xij, fk,ij ≥ 0 ∀k, (i, j)

and such that x1
pq = bx∗

pqc and x2
pq = dx∗

pqe

and x∗ = λ x1 + (1 − λ) x2, for some 0 < λ < 1?

Disjunctive programming, lift-and-project (Balas; Balas, Ceria, Cornuéjols)

⇒ The separation problem is twice as large

Stronger valid inequalities for network design

(B. and Mattia)

Question: given a capacity vector x∗, is there a flow vector f for which the capacities uij + x∗
ij suffice?

Let (p, q) be an arc with x∗
pq fractional

Stronger question: are there vectors (x1, f1) and (x2, f2), each feasible for:

∑
(j,i)

fk,ji −
∑
(i,j)

fk,ij = dk
i ∀k, i

∑
k

fk,ij − xij ≤ uij ∀(i, j)

xij, fk,ij ≥ 0 ∀k, (i, j)

and such that x1
pq = bx∗

pqc and x2
pq = dx∗

pqe

and x∗ = λ x1 + (1 − λ) x2, for some 0 < λ < 1?

Disjunctive programming, lift-and-project (Balas; Balas, Ceria, Cornuéjols)

⇒ The separation problem is twice as large

Further strengthening is possible in the 0/1 case (x a 0/1 vector), e.g.

5xa + 4xb + xc + xd ≥ 8 implies 2xb + xc + xd ≥ 2

(follows from xb + xc ≥ 1, xb + xd ≥ 1)

Stronger formulations for set covering-like problems

(B. and Zuckerberg, 2002)

Motivated by “lift-and-project” algorithms: Balas; Lovász and Schrijver, Sherali and Adams; Balas, Ceria, Cornuéjols,
Lasserre

→ Expand the formulation of a 0/1-integer program by adding new variables. The new variables express logical relation-
ships between the other variables (and constraints).

Example: Suppose we have the inequalities:

x1 + x2 + x3 + x4 ≥ 1

x1 + x2 + x3 + x5 ≥ 1

New variables:

• α = 1 when x1 = x2 = x3 = 0

• β1 = 1 when x1 = 1, x2 = x3 = 0 (similarly, β2, β3)

• ν = 1 when at least two of x1, x2, x3 equal 1

• α(j) = α xj (all j), ν(j) = ν xj (all j)

Then we can impose, e.g.:

α +
∑
j

βj + ν = 1

∑
j=1

ν(j) ≥ 2ν

Consequences

Theorem (B. and Zuckerberg, 2002): Given any set covering problem and any integer k ≥ 1, in
polynomial time we can generate a linear program each of whose solutions satisfies all valid inequalities
with coefficients in {0, 1, 2, . . . , k}.

→ k = 2 requires exponential time using Sherali-Adams or Lovász-Schrijver

Theorem (B. and Zuckerberg, 2003): Given any set covering problem, an integer r ≥ 1, and 0 < ε < 1,
in polynomial time we can solve the rank- r Chvátal-Gomory relaxation to tolerance ε.

→ r = 1 and ε = 1
2 requires exponential time using Sherali-Adams or Lovász-Schrijver.

Ongoing work: network design for electrical transmission networks

(with S. Mattia)

Large-scale blackouts: Brazil (1999), North America (2003), France-Switzerland-Italy (2003)

The facts:

• In an electrical network, power flows obey the laws of physics

• If a fault occurs, the network topology is effectively changed

• In the new topology, the resulting power flows may overwhelm equipment

• This may trigger a new set of faults, or equipment shut-downs

FAULT
INITIAL

NEW
TOPOLOGY

POWER FLOWS
NEW

MORE
FAULTS

Ongoing work: network design for electrical transmission networks

Large-scale blackouts: Brazil (1999), North America (2003), France-Switzerland-Italy (2003)

The facts:

• In an electrical network, power flows obey the laws of physics

• If a fault occurs, the network topology is effectively changed

• In the new topology, the resulting power flows may overwhelm equipment

• This may trigger a new set of faults, or equipment shut-downs

• The process can cascade

Problem 1: how to upgrade a network, at low cost, so that the probability of a catastrophic cascade is low

Problem 2: how to react in real-time

