Semidefinite Programming in Polynomial Optimization

Monique LAURENT

CWI, Amsterdam

SIAM Conference on Optimization
Stockholm
2005

Polynomial Optimization Problem (\mathbf{P})

$$
p_{\min }:=\inf _{x \in K} p(x)
$$

\square
and p, g_{1}, \ldots, g_{m} are polynomials in n variables

Unconstrained Polynomial Minimization

$$
p_{\min }:=\inf _{x \in \mathbb{R}^{n}} p(x)
$$

Example: An $n \times n$ matrix M is copositive if $p_{\min } \geq 0$ for $p(x):=\sum_{i, j=1}^{n} x_{i}^{2} x_{j}^{2} M_{i j}$, i.e., $p(x)$ is nonnegative on \mathbb{R}^{n}

Example: A sequence $a_{1}, \ldots, a_{n} \in \mathbb{N}$ can be partitioned if $p_{\text {min }}=0$ for $p(x)=\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{2}+\sum_{i=1}^{n}\left(x_{i}^{2}-1\right)^{2}$

0/1 Linear Programming

$$
\min c^{T} x \text { s.t. } A x \leq b, x_{i}^{2}=x_{i} \forall i
$$

Example: The stability number $\alpha(G)$ of $G=(V, E)$ can be computed via any of the programs:

$$
\begin{gathered}
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i}+x_{j} \leq 1(i j \in E), x_{i}^{2}=x_{i}(i \in V) \\
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x \text { s.t. } \sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V)
\end{gathered}
$$

Hence: (P) is an NP-hard problem

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Shor (1987), Nesterov, Lasserre, Parrilo (2000-)

Such relaxations can be constructed using
representations of nonnegative polynomials as sums of squares of polynomials
and
the dual theory of moments

Underlying paradigm:

Testing whether a polynomial p is nonnegative is hard but
one can test whether p is a sum of squares of polynomials efficiently via semidefinite programming

Some notation about polynomials

- Multivariate polynomial:

$$
p(x)=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} p_{\alpha} \underbrace{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}_{x^{\alpha}}=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} p_{\alpha} x^{\alpha}
$$

- $\operatorname{deg}\left(x^{\alpha}\right)=|\alpha|:=\sum_{i=1}^{n} \alpha_{i}$
- $\operatorname{deg}(p)=\max \operatorname{deg}\left(x^{\alpha}\right)$ s.t. $p_{\alpha} \neq 0$
- We identify a polynomial $p(x)$ with its sequence of coefficients
$p=\left(p_{\alpha}\right)_{|\alpha| \leq d}$, if $\operatorname{deg}(p)=d$
- $p(x)$ is a sum of squares of polynomials (SOS) if

$$
p(x)=\sum_{j=1}^{m}\left[u_{j}(x)\right]^{2} \quad \text { for some polynomials } u_{1}, \ldots, u_{m}
$$

Then, $\operatorname{deg}(p)$ is even and $\operatorname{deg}\left(u_{i}\right) \leq \operatorname{deg}(p) / 2$

Example: $x^{2}+y^{2}+2 x y+z^{6}=(x+y)^{2}+\left(z^{3}\right)^{2}$ is SOS

Recognizing SOS of pol's via SDP

$$
\begin{gathered}
p(x)=\sum_{|\alpha| \leq 2 d} p_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials } \\
\text { i.e., } p(x)=\sum_{j}\left[u_{j}(x)\right]^{2}, \text { where } \operatorname{deg}\left(u_{j}\right) \leq d \\
p(x)=z^{T}(\underbrace{\left.\sum_{j} u_{j} u_{j}^{T}\right)}_{X \succeq 0} z, \text { setting } z:=\left(x^{\beta}\right)_{|\beta| \leq d} \\
\mathbb{y}
\end{gathered}
$$

The following semidefinite program is feasible:

$$
\left\{\begin{array}{c}
X \succeq 0 \\
\sum_{\substack{|\beta|,|\gamma| \leq d \\
\beta+\gamma=\alpha}} X_{\beta, \gamma}=p_{\alpha} \quad(|\alpha| \leq 2 d)
\end{array}\right.
$$

\rightsquigarrow system in matrix variable X of order $\binom{n+d}{d} \times\binom{ n+d}{d}$, with $\binom{n+2 d}{2 d}$ equations
\rightsquigarrow polynomial size fixing either n or d

When does a polynomial have a decomposition as a sum of squares?

Hilbert [1888] classified the pairs (n, d) for which every nonnegative polynomial of degree d in n variables is a sum of squares of polynomials:

- $n=1$
- $d=2$
- $n=2, d=4$
E.g., the Motzkin polynomial: $x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$ is nonnegative but not a SOS

Artin [1927] solved Hilbert's 17th problem [1900]

$p \geq 0$ on $\mathbb{R}^{n} \Longrightarrow p=\sum_{i}\left(\frac{p_{i}}{q_{i}}\right)^{2}$, where $p_{i}, q_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
That is,

$$
p \cdot q^{2} \text { is SOS for some } q \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

Sometimes, the common denominator is known:
Pólya [1928] + Reznick [1995]: For p homogeneous
$p>0$ on $\mathbb{R}^{n} \backslash\{0\} \Longrightarrow p \cdot\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r}$ SOS for some $r \in \mathbb{N}$

(Dual) SOS approximations for (P)

following [Lasserre 2001]

$$
\text { Recall: } K=\left\{x \in \mathbb{R}^{n} \mid g_{\ell}(x) \geq 0(\ell=1, \ldots, m)\right\}
$$

$$
p_{\min }:=\inf _{x \in K} p(x)=\sup \lambda \text { s.t. } p(x)-\lambda \geq 0 \forall x \in K
$$

Replacing the nonnegativity condition by a stronger $S O S$ condition: formulate (SOSt)

$$
\begin{aligned}
\sigma_{t}:=\sup \lambda \text { s.t. } & p(x)-\lambda=s_{0}(x)+\sum_{\ell=1}^{m} s_{\ell}(x) g_{\ell}(x) \\
& s_{0}, s_{\ell} \text { are } \operatorname{SOS} \\
& \operatorname{deg}\left(s_{0}\right), \operatorname{deg}\left(s_{\ell} g_{\ell}\right) \leq 2 t
\end{aligned}
$$

for any $t \geq\lceil\operatorname{deg}(p) / 2\rceil,\left\lceil\operatorname{deg}\left(g_{\ell}\right) / 2\right\rceil$

$$
\sigma_{t} \leq \sigma_{t+1} \leq p_{\min }
$$

Example: $K=\mathbb{R}^{n}$ (unconstrained case), $\operatorname{deg}(p)=2 d$ $\sigma_{t}=\sigma_{d} \leq p_{\min }$, with equality iff $p(x)-p_{\min }$ is SOS

Equality in the univariate case (Shor [1987], Nesterov [2000])

(Primal) Moment Approximations

$$
p_{\min }=\inf _{x \in K} p(x)=\inf _{\mu \in \mathcal{P}_{K}} \int p(x) \mu(d x)=\inf _{y \in \mathcal{M}_{K}} p^{T} y
$$

$$
\int p(x) \mu(d x)=\sum_{\alpha} p_{\alpha} \int x^{\alpha} \mu(d x)
$$

$\mu \in \mathcal{P}_{K}$ if μ is a probability measure supported by K

$$
y \in \mathcal{M}_{K} \text { if } y_{\alpha}=\underbrace{\int x^{\alpha} \mu(d x)}_{\substack{\text { moment of order } \alpha \\ \text { of the measure } \mu}} \forall \alpha, \text { for some } \mu \in \mathcal{P}_{K}
$$

Lemma:

If y is the sequence of moments of $\mu \in \mathcal{P}_{K}$ then

$$
y_{0}=1
$$

$$
\begin{aligned}
M_{t}(y):= & \left(y_{\alpha+\beta}\right)_{|\alpha|,|\beta| \leq t} \succeq 0 \quad \text { for } t \geq 0 \\
& \text { moment matrix of order } t
\end{aligned}
$$

$$
M_{t}\left(g_{\ell} y\right):=\left(\sum_{\gamma}\left(g_{\ell}\right)_{\gamma} y_{\alpha+\beta+\gamma}\right)_{|\alpha|,|\beta| \leq t} \succeq 0 \quad \text { for } t \geq 0
$$

localizing matrix
Moreover: $\operatorname{supp}(\mu) \subseteq \operatorname{Zeros}(p) \quad \forall p \in \operatorname{Ker} M_{t}(y)$

Proof:

For $p=\left(p_{\alpha}\right)_{|\alpha| \leq t}$,

$$
\begin{gathered}
p^{T} M_{t}(y) p=\int p(x)^{2} \mu(d x) \geq 0 \\
p^{T} M_{t}\left(g_{\ell} y\right) p=\int g_{\ell}(x) p(x)^{2} \mu(d x) \geq 0
\end{gathered}
$$

If we relax the moment condition " $y \in \mathcal{M}_{K}$ " by requiring positive semidefiniteness of its moment matrix, we obtain a hierarchy of tractable SDP relaxations:
(MOMt)

$$
\begin{aligned}
p_{t}:=\inf p^{T} y \text { s.t. } & y_{0}=1, M_{t}(y) \succeq 0 \\
& M_{t-d_{\ell}}\left(g_{\ell} y\right) \succeq 0(\ell=1, \ldots, m)
\end{aligned}
$$

for any $t \geq\lceil\operatorname{deg}(p) / 2\rceil, d_{\ell}:=\left\lceil\operatorname{deg}\left(g_{\ell}\right) / 2\right\rceil$

$$
p_{t} \leq p_{t+1} \leq p_{\min }
$$

Lemma:

The semidefinite programs (SOSt) and (MOMt) are dual of each other.

No duality gap, e.g., if K has a nonempty interior

Properties of the bounds

$$
\sigma_{t} \leq p_{t} \leq p_{\min }
$$

- For fixed t, one can compute σ_{t}, p_{t} in polynomial time (to any fixed precision)
- Asymptotic (finite) convergence to $p_{\text {min }}$
via some representation theorems for positive polynomials from real algebraic geometry
- Optimality certificate
via some theorems of Curto and Fialkow about moment matrices
- Extracting global minimizers
via the eigenvalue method for solving systems of polynomial equations

Asymptotic convergence

Representation theorem: [Putinar 1993] (more elementary proof by [Schweighofer 2003])

$$
\begin{equation*}
\text { If } \quad \exists u_{\ell} \operatorname{SOS}:\left\{x \mid \sum_{\ell} u_{\ell}(x) g_{\ell}(x) \geq 0\right\} \text { is compact } \tag{*}
\end{equation*}
$$

then

$$
p>0 \text { on } K \Longrightarrow p=s_{0}+\sum_{\ell} s_{\ell} g_{\ell} \text { with } s_{0}, s_{\ell} \mathrm{SOS}
$$

Convergence theorem: [Lasserre 2001]

$$
\text { If }(*) \text { then } \quad \lim _{t \rightarrow \infty} \sigma_{t}=\lim _{t \rightarrow \infty} p_{t}=p_{\min }
$$

Note: (*) holds, e.g.,

- if $\left\{x \mid g_{\ell}(x) \geq 0\right\}$ is compact for some ℓ
- if the equations $x_{i}^{2}=x_{i}$ are present in the description of K ($\mathbf{0} / 1 \mathbf{~ c a s e) ~}$
- if the radius R of a ball containing K is known, then add the (redundant) constraint $R^{2}-\sum_{i} x_{i}^{2} \geq 0$ to the description of K

Note: A representation result valid for " $p \geq 0$ on K " would give a finite convergence result

Finite Convergence: Finite Variety

Assume the equations: $h_{1}(x)=0 \ldots h_{k}(x)=0$ are present in the description of K and

$$
V:=\left\{x \in \mathbb{C}^{n} \mid h_{1}(x)=0 \ldots h_{k}(x)=0\right\} \text { is finite }
$$

Then: $\quad p_{t}=p_{\text {min }} \quad$ for t large enough
[Laurent 2002]

Moreover: $\quad \sigma_{t}=p_{t}=p_{\text {min }} \quad$ for t large enough
if h_{1}, \ldots, h_{k} form a Groebner basis [Laurent 2002] or if they generate a radical ideal [Parrilo 2002]
Representation result in radical case: [Parrilo 2002]
$p \geq 0$ on $K \Longrightarrow p=s_{0}+\sum_{\ell} s_{\ell} g_{\ell}\left(s_{0}, s_{\ell}\right.$ SOS)

In the 0/1 case

$$
\begin{gathered}
\qquad p_{t}=p_{\min } \quad \text { for } t \geq n+d \\
\text { where } d:=\max _{\ell}\left\lceil\operatorname{deg}\left(g_{\ell}\right) / 2\right\rceil \quad[\text { Lasserre 2001] }
\end{gathered}
$$

The hierarchy of bounds p_{t} refines other combinatorial hierarchies, e.g., by Lovász-Schrijver [1991] (cf. [Laurent 2003])

Note: One can use the equations $h_{1}(x)=0 \ldots h_{k}(x)=0$ to reduce the number of variables in the moment relaxations (MOMt)

Optimality Certificate

Theorem: [Henrion-Lasserre 2005]
If y is an optimum solution to the program (MOMt) satisfying:
(RC) $\quad \operatorname{rank} M_{t}(y)=\operatorname{rank} M_{t-d}(y)$,
where $d=\max _{\ell}\left\lceil\operatorname{deg}\left(g_{\ell}\right) / 2\right\rceil$
then: $\quad p_{t}=p_{\text {min }}$

Proof

By a theorem of [Curto-Fialkow 1996] (cf. [Laurent 2004])
y is the sequence of moments of an r-atomic nonnegative measure μ

$$
\begin{gathered}
\mu=\sum_{i=1}^{r} \lambda_{i} \delta_{x_{i}}, \text { where } \lambda_{i}>0, \sum_{i} \lambda_{i}=1, x_{i} \in K \\
\Longrightarrow y=\sum_{i=1}^{r} \lambda_{i}\left(x_{i}^{\alpha}\right)_{|\alpha| \leq 2 t} \\
\Longrightarrow \quad p_{\min } \geq p_{t}=p^{T} y=\sum_{i=1}^{r} \lambda_{i} p\left(x_{i}\right) \geq p_{\min }
\end{gathered}
$$

Moreover: $\quad x_{1}, \ldots, x_{r}$ are global minimizers over K

Extracting global minimizers

Then, $\operatorname{supp}(\mu)=\left\{x_{1}, \ldots, x_{r}\right\} \subseteq\{$ global minimizers $\}$
Moreover,

$$
\operatorname{supp}(\mu)=\bigcap_{p \in \operatorname{Ker} M_{t}(y)} \operatorname{Zeros}(p)
$$

Therefore: One can find the global minimizers x_{1}, \ldots, x_{r} by computing the common zeros to a system of polynomial equations
\rightsquigarrow Use the 'eigenvalue method'
Based on computing the eigenvalues of the $r \times r$ multiplication matrices in the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$, where I is the ideal generated by the kernel of $M_{t}(y)$

Implementations of the SOS/moment relaxation method

GloptiPoly by Henrion, Lasserre

SOSTOOLS by Prajna, Papachristodoulou, Parrilo

$$
\begin{array}{ll}
\min & p=-25\left(x_{1}-2\right)^{2}-\left(x_{2}-2\right)^{2}-\left(x_{3}-1\right)^{2} \\
& -\left(x_{4}-4\right)^{2}-\left(x_{5}-1\right)^{2}-\left(x_{6}-4\right)^{2} \\
\text { s.t. } & \left(x_{3}-3\right)^{2}+x_{4} \geq 4, \quad\left(x_{5}-3\right)^{2}+x_{6} \geq 4 \\
& x_{1}-3 x_{2} \leq 2,-x_{1}+x_{2} \leq 2, x_{1}+x_{2} \leq 6 \\
& x_{1}+x_{2} \geq 2,1 \leq x_{3} \leq 5,0 \leq x_{4} \leq 6 \\
& 1 \leq x_{5} \leq 5,0 \leq x_{6} \leq 10, x_{1}, x_{2} \geq 0
\end{array}
$$

order t	bound p_{t}	solution extracted
1	unbounded	none
2	-310	$(5,1,5,0,5,10)$

The global minimum is found at the relaxation of order $t=2$

$$
\begin{array}{ll}
\min & p=-x_{1}-x_{2} \\
\mathrm{s.t.} & x_{2} \leq 2 x_{1}^{4}-8 x_{1}^{3}+8 x_{1}^{2}+2 \\
& x_{2} \leq 4 x_{1}^{4}-32 x_{1}^{3}+88 x_{1}^{2}-96 x_{1}+36 \\
& 0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 4
\end{array}
$$

order t	bound p_{t}	solution extracted
2	-7	none
3	-6.6667	none
4	-5.5080	$(2.3295,3.1785)$

The global minimum is found at the relaxation of order $t=4$

Unconstrained polynomial minimization

As $K=\mathbb{R}^{n}$, the relaxation scheme just gives one bound: $\sigma_{d}=p_{d} \leq p_{\min }$, with equality iff $p(x)-p_{\min }$ is SOS

Idea:
Get better bounds by transforming the unconstrained problem into a constrained problem

If p has a minimum:

$$
p_{\min }=p_{\mathrm{grad}}:=\inf _{x \in V_{g r a d}^{\mathbb{R}}} p(x)
$$

where $V_{\text {grad }}^{\mathbb{R}}:=\left\{x \in \mathbb{R}^{n} \left\lvert\, \frac{\partial p}{\partial x_{i}}=0(i=1, \ldots, n)\right.\right\}$

If, moreover, a bound R is known on the norm of a global minimizer:

$$
p_{\min }=p_{\text {ball }}:=\inf _{R^{2}-\sum_{i} x_{i}^{2} \geq 0} p(x)
$$

When p attains its minimum:

The 'ball approach':

- $p_{\text {ball }}$ can be approximated via Lasserre's relaxation scheme (asymptotic convergence, as Putinar's assumption holds!)
- seems to work well only if the radius R of the ball is not too large ...

The 'gradient variety' approach:

Representation result: [Demmel, Nie, Sturmfels 2004]

$$
p>0 \text { on } V_{\mathrm{grad}}^{\mathbb{R}} \Longrightarrow p=s_{0}+\sum_{i=1}^{n} u_{i} \frac{\partial p}{\partial x_{i}}
$$

where s_{0} SOS, $u_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

Convergence result: [Demmel, Nie, Sturmfels 2004] There is asymptotic convergence of the SOS and moment bounds to $p_{\text {grad }}$

Moreover: When $\frac{\partial p}{\partial x_{1}}, \ldots, \frac{\partial p}{\partial x_{n}}$ generate a radical ideal, the representation result holds for $p \geq 0$, implying the finite convergence

What if p is not known to have a minimum?

Strategy: Perturb the polynomial p
[Hanzon-Jibetean 2003] [Jibetean-Laurent 2004]

$$
p_{\epsilon}(x):=p(x)+\epsilon\left(\sum_{i=1}^{n} x_{i}^{2 d+2}\right) \quad \text { for small } \epsilon>0
$$

- p_{ϵ} has a minimum and $\quad \lim _{\epsilon \rightarrow 0}\left(p_{\epsilon}\right)_{\text {min }}=p_{\text {min }}$
- the gradient variety of p_{ϵ} is finite
\rightsquigarrow one can compute $\left(p_{\epsilon}\right)_{\text {min }}$ via the 'gradient variety' approach
\rightsquigarrow finite convergence of the moment bounds to $\left(p_{\epsilon}\right)_{\min }$ (in $2 n d$ steps)
- one can use the gradient equations:

$$
\frac{\partial p_{\epsilon}}{\partial x_{i}}=(2 d+2) x_{i}^{2 d+1}+\frac{\partial p}{\partial x_{i}}=0 \quad \forall i
$$

to reduce \# variables (\rightsquigarrow only variables y_{α} with $\alpha_{i} \leq 2 d \forall i$) and to express $\left(p_{\epsilon}\right)_{\min }$ via a SDP with a single LMI

- the limits of global minimizers of $p_{\epsilon}($ as $\epsilon \rightarrow 0)$ are global minimizers of p (if any)

Motzkin polynomial: $p=x^{2} y^{2}\left(x^{2}+y^{2}-3\right)+1$
Then, $p_{\text {min }}=0$, attained at $(\pm 1, \pm 1)$, and p is not SOS

ϵ	order t	$\left(r_{t}, r_{t-1}, r_{t-2}\right)$	$\left(p_{\epsilon}\right)_{t}$	extracted solutions
	3	$(10,6,3)$	-3.507010^{4}	none
10^{-1}	4	$(4,4,4)$	0.0316	$(\pm 0.9453, \pm 0.9453)$
10^{-2}	4	$(4,4,4)$	5.017710^{-4}	$(\pm 0.9935, \pm 0.9935)$
10^{-3}	5	$(4,4,4)$	5.295110^{-6}	$(\pm 0.9993, \pm 0.9993)$
10^{-4}	5	$(4,4,4)$	5.317010^{-8}	$(\pm 0.9999, \pm 0.9999)$

$$
p=(x y-1)^{2}+y^{2} \quad \text { Then, } p_{\min }=0 \text { is not attained }
$$

ϵ	order t	$\left(r_{t}, r_{t-1}, r_{t-2}\right)$	$\left(p_{\epsilon}\right)_{t}$	extracted solutions
	2	$(4,2,1)$	6.879110^{-5}	none
10^{-2}	3	$(2,2,2)$	0.3385	$\pm(1.3981,0.4729)$
10^{-3}	3	$(2,2,2)$	0.2082	$\pm(1.9499,0.4060)$
10^{-4}	3	$(2,2,2)$	0.1232	$\pm(2.6674,0.3287)$
10^{-5}	3	$(2,2,2)$	0.0713	$\pm(3.6085,0.2574)$
10^{-6}	3	$(2,2,2)$	0.0408	$\pm(4.8511,0.1977)$
10^{-7}	3	$(3,2,2)$	0.0231	$\pm(6.4986,0.1503)$
10^{-8}	3	$(3,2,2)$	0.0131	$\pm(8.6882,0.1136)$
10^{-9}	3	$(8,4,2)$	0.0074	none
10^{-10}	3	$(7,4,2)$	0.0041	none

Testing copositivity of a matrix M

M copositive iff $p_{\min }=0$ for $p(x):=\sum_{i, j=1}^{n} x_{i}^{2} x_{j}^{2} M_{i j}$

Example 1:

$$
M=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

M is copositive, e.g., since $\left(\sum_{i} x_{i}^{2}\right) p$ is SOS [Parrilo 2000]

ϵ	order t	$\left(r_{t}, r_{t-1}, r_{t-2}\right)$	$\left(p_{\epsilon}\right)_{t}$	extracted solutions
	2	$(5,15)$	-1.495510^{6}	none
10^{-2}	3	$(18,6,3)$	-1.5407	none
10^{-2}	4	$(4,4,4)$	1.385410^{-5}	$(\pm 0.7058,0,0, \pm 0.7058)$
10^{-4}	4	$(9,7,5)$	1.554410^{-7}	none

Example 2:

$$
M=\left(\begin{array}{rrrrr}
1 & -1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

ϵ	order t	$\left(r_{t}, r_{t-1}, r_{t-2}\right)$	$\left(p_{\epsilon}\right)_{t}$	extracted solutions
1	3	$(8,7,4)$	-1.3333	none
1	4	$(8,8,7)$	-1.3333	$\pm(0.8165,0.8165,0.8165,0,0)$
10^{-1}	3	$(8,7,4)$	-133.3333	none
10^{-1}	4	$(8,8,7)$	-133.3333	$\pm(2.5820,2.5820,2.5820,0,0)$
10^{-2}	3	$(8,7,4)$	-1.333310^{4}	none

\rightsquigarrow certificate that M is not copositive

Pólya's representation result

[de Klerk-Pasechnik 2002] [Parrilo 2000]

$$
\begin{aligned}
& M \text { strictly copositive, i.e., } p_{M}:=\sum_{i, j=1}^{n} x_{i}^{2} x_{j}^{2} M_{i j}>0 \text { on } \mathbb{R}^{n} \backslash\{0\} \\
& \stackrel{\stackrel{[\text { Pólya] }]}{\Longrightarrow}\left(\sum_{i} x_{i}^{2}\right)^{r} p_{M} \text { is SOS for some } r \in \mathbb{N}}{\Longrightarrow M \text { copositive }}
\end{aligned}
$$

[Motzkin-Straus 1965]

$\alpha(G)=\min t$ s.t. $\quad t\left(I+A_{G}\right)-J$ is copositive

$$
\text { Define: } \quad \vartheta^{(r)}(G):=\min t \text { s.t. } t\left(I+A_{G}\right)-J \in \mathcal{K}^{(r)}
$$

$$
\text { where } \mathcal{K}^{(r)}:=\left\{M \mid\left(\sum_{i} x_{i}^{2}\right)^{r} p_{M} \text { is SOS }\right\}
$$

Theorem: [dKP] $\left\lfloor\vartheta^{(r)}(G)\right\rfloor=\alpha(G)$ if $r \geq \alpha(G)^{2}$
Conjecture: [dKP] $\vartheta^{(r)}(G)=\alpha(G)$ if $r \geq \alpha(G)-1$
Motivation: this rate of convergence holds for other hierarchies, e.g., by Lovász-Schrijver, Lasserre

Theorem: [Gvozdenović-L 2004] True for $\alpha(G) \leq 8$
Lasserre's hierarchy refines the hierarchy $\vartheta^{(r)}(G)$
Other results by [Peña-Vera-Zuluaga 2005]

Yet another representation result

Theorem: [Lasserre 2004]
$p \geq 0$ on $\mathbb{R}^{n} \Longrightarrow \forall \epsilon>0 \exists r \in \mathbb{N}$ for which

$$
p_{r, \epsilon}:=p+\epsilon\left(\sum_{k=0}^{r} \sum_{i=1}^{n} \frac{x_{i}^{2 k}}{k!}\right) \text { is SOS }
$$

Note: $\left\|p_{r, \epsilon}-p\right\|_{1} \rightarrow 0$ as $\epsilon \searrow 0$

Although there are much more nonnegative polynomials than SOS polynomials (at fixed degree, when $n \rightarrow \infty$) [Blekherman 2003]
\rightsquigarrow new relaxation scheme for $p_{\text {min }}=\inf _{x \in \mathbb{R}^{n}} p(x)$

$$
\inf y^{T} p_{r, \epsilon} \text { s.t. } M_{r}(y) \succeq 0, y_{0}=1
$$

\rightsquigarrow extension to the constrained case

Many other interesting results unfortunately not covered here

- SDP versus LP relaxations [Sherali-Adams] [Lasserre]
- Exploiting the symmetry to reduce the size of the SDP
[Parrilo-Gaterman] [Schrijver] [Dukanovic-Rendl] [de Klerk-Pasechnik-Schrijver] [Laurent] ...
\rightsquigarrow invariant theory, block-diagonalization of C^{*}-algebras
- Exploiting the sparsity of the polynomials to reduce the size of the SDP
[Reznick 1978] [Kim-Kojima-Muramatsu-Waki] ...
- Extension to matrix polynomial optimization
[Kojima] [Hol-Scherer] [Henrion-Lasserre] ...

