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““PDEPDE--constrainedconstrained”” optimizationoptimization

•• Optimization of systems governed by Optimization of systems governed by PDEsPDEs and and variationalvariational
inequalitiesinequalities

•• Brings together approaches from finiteBrings together approaches from finite--dimensional largedimensional large--
scale optimization and infinitescale optimization and infinite--dimensional analysisdimensional analysis

•• Work in this area dates back several decadesWork in this area dates back several decades
•• Recent years have seen acceleration of interest and Recent years have seen acceleration of interest and 

activityactivity
oo VPI workshop 1994VPI workshop 1994
oo ICASE workshop 1995ICASE workshop 1995
oo Santa Fe workshops 2001, 2004Santa Fe workshops 2001, 2004
oo OberwolfachOberwolfach workshops 2003, 2004, 2005, 2006workshops 2003, 2004, 2005, 2006
oo IMA workshop 2003IMA workshop 2003
oo Various workshops at Graz, Heidelberg, Various workshops at Graz, Heidelberg, TrierTrier, etc., etc.

•• See article by E. Sachs in 2003 SIAG/OPT News & ViewsSee article by E. Sachs in 2003 SIAG/OPT News & Views



The The ““simulation problemsimulation problem””
(forward, state, direct)  (forward, state, direct)  



The The ““optimization problemoptimization problem””
(inverse, design, control)  (inverse, design, control)  



PDEPDE--constrained optimization vs. general NLPconstrained optimization vs. general NLP

•• Problem size:Problem size:
oo NNuu=up to O(10=up to O(1099) state variables (per time step)) state variables (per time step)
oo NNdd=O(1)=O(1)——O(10O(1099) decision variables) decision variables
oo Generally cannot afford more than small number of PDE Generally cannot afford more than small number of PDE 

““solvessolves””
•• Structure of PDE constraints must be exploitedStructure of PDE constraints must be exploited

oo Iterative solvers necessary in 3DIterative solvers necessary in 3D
oo Parallelism often necessaryParallelism often necessary
oo Preconditioning essentialPreconditioning essential

•• Solver requirements vs. optimizer requirementsSolver requirements vs. optimizer requirements
oo Many PDE codes are often Many PDE codes are often JacobianJacobian--freefree
oo PDE PDE JacobianJacobian often approximated in many codesoften approximated in many codes

•• Infinite dimensional setting Infinite dimensional setting 
oo Existence and irregularity of Lagrange multipliersExistence and irregularity of Lagrange multipliers
oo DiscretizeDiscretize--thenthen--optimize vs. optimizeoptimize vs. optimize--thenthen--discretizediscretize
oo Convergence theoryConvergence theory

•• No such thing as a generalNo such thing as a general--purpose PDE solver purpose PDE solver 
→→ no generalno general--purpose PDE optimizer!purpose PDE optimizer!



KarushKarush--KuhnKuhn--Tucker first order optimality Tucker first order optimality 
conditionsconditions



DiscretizationDiscretization issuesissues

•• Often DTO != OTD (nonOften DTO != OTD (non--GalerkinGalerkin discretizationdiscretization of of 
optimality system, optimality system, nonsymmetricnonsymmetric treatment of time treatment of time 
discretizationdiscretization, stabilization methods, , stabilization methods, subgridsubgrid scale models, scale models, 
shape optimization, shape optimization, nonsmoothnessnonsmoothness, etc.), etc.)

•• OTD: aids in understanding nature of optimality equations, OTD: aids in understanding nature of optimality equations, 
opens way to different (adaptive) opens way to different (adaptive) discretizationsdiscretizations for state for state 
and and adjointadjoint equations, avoids differentiating artifacts of the equations, avoids differentiating artifacts of the 
state state discretizationdiscretization, provides guidance on stabilizations for , provides guidance on stabilizations for 
adjointadjoint, etc. , etc. 

•• Drawback of OTD is that resulting Drawback of OTD is that resulting discretizeddiscretized gradient is gradient is 
not guaranteed to be the derivative of the not guaranteed to be the derivative of the discretizeddiscretized
objective (but often within objective (but often within discretizationdiscretization error)error)

•• Which is preferable is problemWhich is preferable is problem--dependentdependent
•• Best advice is to use infinite dimensional optimality system Best advice is to use infinite dimensional optimality system 

as a guide, but strive to as a guide, but strive to discretizediscretize it in a way that is it in a way that is 
compatible with DTO  compatible with DTO  



Solver issuesSolver issues

•• Even in simplified setting of no inequalities, Even in simplified setting of no inequalities, 
optimization problem may be very difficultoptimization problem may be very difficult

•• State PDE constraints can beState PDE constraints can be
oo nonlinear nonlinear PDEsPDEs
oo timetime--dependent problemsdependent problems
oo vector unknowns, coupled systemsvector unknowns, coupled systems

•• Full space methodsFull space methods solve for states, controls, solve for states, controls, 
and and adjointsadjoints simultaneouslysimultaneously

•• Reduced space methodsReduced space methods solve in space of solve in space of 
controls; for nonlinear problems, we have controls; for nonlinear problems, we have 
choice:choice:
oo eliminate states and eliminate states and adjointsadjoints first, then first, then linearizelinearize

(unconstrained method)(unconstrained method)
oo linearizelinearize then eliminate states and then eliminate states and adjointsadjoints (e.g. (e.g. 

reduced SQP)reduced SQP)



Illustrative ExamplesIllustrative Examples

•• Artificial heart designArtificial heart design
•• ImageImage--driven cardiac diagnosisdriven cardiac diagnosis
•• Inverse contaminant transportInverse contaminant transport
•• Accelerator designAccelerator design
•• Earthquake inversionEarthquake inversion



MultiscaleMultiscale blood flow modeling for artificial heart device designblood flow modeling for artificial heart device design
James James AntakiAntaki, Guy , Guy BlellochBlelloch, Omar Ghattas, Judy Hill, , Omar Ghattas, Judy Hill, 
Marina Marina KamenevaKameneva (Pitt), Robert (Pitt), Robert KormosKormos (Pitt), Ivan (Pitt), Ivan 
MalcevicMalcevic (GE), Gary Miller, K. (GE), Gary Miller, K. RajagopalRajagopal (Texas A&M), (Texas A&M), 
George George TurkiyyahTurkiyyah (Washington), Noel (Washington), Noel WalkingtonWalkington

At macroscopic (device) scales:At macroscopic (device) scales:
•• Development of artificial heart assist Development of artificial heart assist 

device at device at UnivUniv Pitt Med Center (Pitt Med Center (AntakiAntaki))
•• Numerous advantages (size, power, Numerous advantages (size, power, 

reliability, nonreliability, non--invasiveness)invasiveness)
•• Design challenge: overcome tendency to Design challenge: overcome tendency to 

damage red blood cellsdamage red blood cells
•• Need macroscopic blood flow theory that Need macroscopic blood flow theory that 

accounts for blood (cell) microstructureaccounts for blood (cell) microstructure

At microscopic (cell) scales:At microscopic (cell) scales:
•• Macroscopic model fails in smallMacroscopic model fails in small--lengthlength--

scale regions (blade tip, rotor bearing)scale regions (blade tip, rotor bearing)
•• Need modeling at cell scales to account Need modeling at cell scales to account 

for blood damagefor blood damage
•• Our Our mesoscopicmesoscopic simulations resolve simulations resolve 

interaction of RBCs elastic membrane interaction of RBCs elastic membrane 
with plasma fluid dynamicswith plasma fluid dynamics

•• Prospects for 3D simulation of bladeProspects for 3D simulation of blade--tip tip 
region: 1 week at sustained 1 region: 1 week at sustained 1 petaflops/spetaflops/s

J. J. AntakiAntaki & G. & G. BurgreenBurgreen



ImageImage--based patientbased patient--specific inversionspecific inversion--based cardiac modelingbased cardiac modeling

medical medical 
imagingimaging

4D image 4D image 
registrationregistration

5D model 5D model 
inversioninversion

diagnosis & diagnosis & 
planningplanning

imaging imaging 
lab serverlab server

institutional institutional 
clustercluster

regional regional 
supercomputing supercomputing 
centercenter

physician physician 
desktopdesktop

VolkanVolkan AkcelikAkcelik (CMU) , George Biros (Penn), (CMU) , George Biros (Penn), AlfioAlfio BorziBorzi (Graz), (Graz), 
Alex Alex CunhaCunha (CMU), (CMU), ChristosChristos DavatzikosDavatzikos (Penn), Omar Ghattas (Penn), Omar Ghattas 
(CMU), William (CMU), William GroppGropp (Argonne), Michael (Argonne), Michael HintermuellerHintermueller (Graz), (Graz), 
EldadEldad HaberHaber (Emory), David Keyes (Columbia), Jan (Emory), David Keyes (Columbia), Jan ModersitzkiModersitzki
((LubekLubek), Jennifer ), Jennifer SchopfSchopf (Argonne)(Argonne)



Real time optimization for dynamic inversion & controlReal time optimization for dynamic inversion & control
VolkanVolkan AkcelikAkcelik (CMU), Roscoe Bartlett ((CMU), Roscoe Bartlett (SandiaSandia), Lorenz ), Lorenz BieglerBiegler
(CMU), George Biros ((CMU), George Biros (UPennUPenn), Andrei ), Andrei DragenscuDragenscu ((SandiaSandia), Frank ), Frank 
FendellFendell (TRW), Omar Ghattas (CMU), Matthias (TRW), Omar Ghattas (CMU), Matthias HeinkenshlossHeinkenshloss
(Rice), Judy Hill (CMU), David Keyes (Columbia), Carl Laird (Rice), Judy Hill (CMU), David Keyes (Columbia), Carl Laird 
(CMU), John (CMU), John ShadidShadid ((SandiaSandia), Bart van ), Bart van BloemenBloemen WaandersWaanders
((SandiaSandia), Andreas ), Andreas WachterWachter (IBM), David Young (Boeing)(IBM), David Young (Boeing)

Inversion and control for airborne contaminant transportInversion and control for airborne contaminant transport

Water network contaminant inversion/controlWater network contaminant inversion/control
•• Nonlinear optimization problem with >300K Nonlinear optimization problem with >300K 

variables and >100k controls variables and >100k controls 
•• Solution time < 2 CPU minutes             Solution time < 2 CPU minutes             

real time source detection real time source detection 
•• Algorithm successful on thousands of Algorithm successful on thousands of 

numerical tests on several municipal water numerical tests on several municipal water 
networksnetworks

•• Formulation tool links to existing modeling Formulation tool links to existing modeling 
software (EPANET) and powerful NLP solver software (EPANET) and powerful NLP solver 
(IPOPT)(IPOPT)

•• sensor data provides sensor data provides 
concentrations of concentrations of 
hazardous agents hazardous agents 

•• inverse problem inverse problem 
solved to reconstruct solved to reconstruct 
initial conditionsinitial conditions

•• control problem control problem 
solved to find optimal solved to find optimal 
remediation strategyremediation strategy J. J. ShadidShadid, , SandiaSandia

L. L. BieglerBiegler et al.et al.

http://www.cmu.edu/


Shape optimization of accelerator structures  Shape optimization of accelerator structures  

VolkanVolkan AkcelikAkcelik (CMU) , Lori (CMU) , Lori FreitagFreitag (LLNL), Omar Ghattas (LLNL), Omar Ghattas 
(CMU), David Keyes (Columbia), Patrick (CMU), David Keyes (Columbia), Patrick KnuppKnupp (SNL), (SNL), 
Kwok Kwok KoKo (SLAC), Lie(SLAC), Lie--QuanQuan (Rich) Lee (SLAC), (Rich) Lee (SLAC), EsmondEsmond Ng Ng 
(LBNL), Mark Shepherd (RPI), Tim (LBNL), Mark Shepherd (RPI), Tim TautgesTautges (SNL)(SNL)

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given GeometryBasic Analysis Loop for given Geometry

Omega3POmega3P

S3PS3P

T3PT3P

Tau3PTau3P

•• Computer modeling has replaced trial and Computer modeling has replaced trial and 
error prototypingerror prototyping
•• Next generation accelerators have complex Next generation accelerators have complex 
cavities that require shape optimization for cavities that require shape optimization for 
improved performance and reduced costimproved performance and reduced cost

•• Shape optimization problem governed by Shape optimization problem governed by 
electromagnetic electromagnetic eigenvalueeigenvalue problemproblem
•• Cost functions involve target frequency, Cost functions involve target frequency, 
surface integrals of magnetic field, line surface integrals of magnetic field, line 
integrals of electric field  integrals of electric field  

http://www.cmu.edu/
http://www.osti.gov/scidac/index.html


Earthquake modeling for seismic hazard assessment Earthquake modeling for seismic hazard assessment 
AysegulAysegul AskanAskan, , VolkanVolkan AkcelikAkcelik , , JacoboJacobo BielakBielak, George , George 
Biros (Biros (UPennUPenn), Steven Day (SDSU), Omar Ghattas, ), Steven Day (SDSU), Omar Ghattas, LoukasLoukas
KallivokasKallivokas (Texas), Harold (Texas), Harold MagistraleMagistrale (SDSU), David (SDSU), David 
OO’’HallaronHallaron, Leonardo Ramirez, , Leonardo Ramirez, TiankaiTiankai TuTu

Region of interest for  Region of interest for  
1994 Northridge 1994 Northridge 
earthquake simulation earthquake simulation 

Adaptive grid resolves up to 1Hz freq. Adaptive grid resolves up to 1Hz freq. 
w/100 million grid pts; uniform grid w/100 million grid pts; uniform grid 
would require 2000x more pointswould require 2000x more points

SCEC geological model provides 3D soil SCEC geological model provides 3D soil 
properties in Greater LA Basinproperties in Greater LA Basin

Snapshot of simulated ground motion Snapshot of simulated ground motion 
(simulation requires 3hr on 6Tflops PSC (simulation requires 3hr on 6Tflops PSC 
machine, running at >80% parallel machine, running at >80% parallel effeff))

Comparison of observation with Comparison of observation with 
simulation (improved prediction simulation (improved prediction 
requires requires petaflopspetaflops capability)capability)

Inversion of surface observations Inversion of surface observations 
for 17 million elastic parameters for 17 million elastic parameters 
(right: target; left: inversion result)(right: target; left: inversion result)

http://www.cmu.edu/
http://www.osti.gov/scidac/index.html


Overall goal:Overall goal:
Assess seismic hazard by computer simulation of Assess seismic hazard by computer simulation of 
earthquake scenariosearthquake scenarios

SCECSCEC



Surface geologySurface geology

http://www.scec.org/phase3/images.htmlhttp://www.scec.org/phase3/images.html



Complexity of earthquake ground motion Complexity of earthquake ground motion 
simulationsimulation

•• multiple spatial scalesmultiple spatial scales
oo wavelengths vary from O(10m) to O(1000m)wavelengths vary from O(10m) to O(1000m)
oo Basin/source dimensions are O(100km) Basin/source dimensions are O(100km) 

•• multiple temporal scales multiple temporal scales 
oo O(0.01s) to resolve highest frequencies of source O(0.01s) to resolve highest frequencies of source 
oo O(10s) to resolve of shaking within the basinO(10s) to resolve of shaking within the basin

•• highly irregular basin geometryhighly irregular basin geometry
•• highly heterogeneous soils material properties highly heterogeneous soils material properties 
•• geology and source parameters observable geology and source parameters observable 

only indirectlyonly indirectly



Earthquake wave propagation modelEarthquake wave propagation model

USGS

Variable-slip 
kinematic
source model



WavelengthWavelength--adaptive adaptive octreeoctree--
based wave propagation solverbased wave propagation solver

•• GalerkinGalerkin trilineartrilinear finite elements in spacefinite elements in space
•• explicit central differences in timeexplicit central differences in time
•• octreeoctree wavelengthwavelength--adaptive meshes adaptive meshes 

oo typical 10typical 103 3 X reduction in # grid pts vs. structured gridX reduction in # grid pts vs. structured grid
oo wavelengthwavelength--adaptivityadaptivity insures that CFLinsures that CFL--limited time step limited time step 

of order of accuracyof order of accuracy--driven time stepdriven time step
oo low memory of stencillow memory of stencil--based methodsbased methods
oo adaptivityadaptivity of unstructured mesh methodsof unstructured mesh methods

•• algebraic constraints at hanging grid pts to maintain algebraic constraints at hanging grid pts to maintain 
continuity of finite element approximation continuity of finite element approximation 

•• elementelement--based based matvecsmatvecs results in good cache results in good cache 
performance (25% scalar efficiency on EV68 Alpha)performance (25% scalar efficiency on EV68 Alpha)

•• MPI implementation (87% parallel efficiency on 2K MPI implementation (87% parallel efficiency on 2K PEsPEs))
•• extensively verified with Greenextensively verified with Green’’s functions & FD codess functions & FD codes



Performance of forward Performance of forward octreeoctree--based earthquake based earthquake 
modeling code on PSC HP modeling code on PSC HP AlphaServerAlphaServer clustercluster

•• Largest (partial) simulationLargest (partial) simulation
oo 28 Oct 2001 Compton aftershock in Greater LA Basin 28 Oct 2001 Compton aftershock in Greater LA Basin 
oo maximum resolved frequency: 1.85Hzmaximum resolved frequency: 1.85Hz
oo 100m/s min shear wave velocity100m/s min shear wave velocity
oo physical size: 100x100x37.5 kmphysical size: 100x100x37.5 km33

oo # of elements: 899,591,066# of elements: 899,591,066
oo # of grid points: 1,023,371,641 # of grid points: 1,023,371,641 
oo # of slaves: 125,726,862# of slaves: 125,726,862
oo 25 sec 25 sec wallclockwallclock/time step on 1024 /time step on 1024 PEsPEs
oo 65 65 GbGb inputinput

lemieuxlemieux at PSCat PSC



Old forward simulation: offline, fileOld forward simulation: offline, file--basedbased



New forward simulation: New forward simulation: 
online, parallel, lightweightonline, parallel, lightweight

Joint work with KwanJoint work with Kwan--Liu Ma Liu Ma 
and and HongfengHongfeng YuYu



Joint work with KJoint work with K--L. Ma L. Ma 
and H. Fu, UC Davisand H. Fu, UC Davis




Surface visualization, aftershockSurface visualization, aftershock

Animation by Greg Foss, PSCAnimation by Greg Foss, PSC




1994 Northridge earthquake1994 Northridge earthquake

Octree-based hex mesh, partitioned by ParMetis

Computational domain Surface shear wave velocity Shear wave velocity at depth

Detail of hexahedral mesh



Rupture ModelRupture Model

WaldWald et al. (1996)et al. (1996)
Strike=122 (S58E), Dip=40 (S32W), Rake=101Strike=122 (S58E), Dip=40 (S32W), Rake=101
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Rupture propagation (velocity)Rupture propagation (velocity)



Snapshots of surface velocity Snapshots of surface velocity 

Peak observed Peak observed 
ground velocity ground velocity 
((USGS)USGS)



Comparison with observationsComparison with observations

OBG: OBG: ObregonObregon ParkPark

HSL: Hollywood StorageHSL: Hollywood Storage



Verification Verification 
against against 
other codesother codes

--R. GravesR. Graves
--ArchimedesArchimedes
--QuakeQuake



SCEC Community Velocity Model for SCEC Community Velocity Model for SoCalSoCal, v.3 , v.3 
(H. (H. MagistraleMagistrale, S. Day, R. Clayton, R. Graves), S. Day, R. Clayton, R. Graves)

Harold Harold MagistraleMagistrale, SDSU, SDSU



Inverse problem: Use records of past Inverse problem: Use records of past 
seismic events to improve velocity model seismic events to improve velocity model 

SCEC Phase III strong motion database: SCEC Phase III strong motion database: 

Observations from 28 earthquakes and 281 stationsObservations from 28 earthquakes and 281 stations



Least squares parameter estimation Least squares parameter estimation 
formulation of inverse wave propagation formulation of inverse wave propagation 

receiverssources
data misfit

inversion fields

displacements

forward 
wave 
propagation
model

target unregularized
solution
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Least squares parameter estimation Least squares parameter estimation 
formulation of inverse wave propagation formulation of inverse wave propagation 

receiverssources
data misfit

inversion fields

displacements

forward 
wave 
propagation
model

target Tikhonov reg.
+ multiscale

TV regular.
+ multiscale

TV reg., sectionlocal minimumlocal minimumunregularized
solution



Least squares parameter estimation Least squares parameter estimation 
formulation of inverse wave propagation formulation of inverse wave propagation 

receiverssources
data misfit

inversion fields

target TV regular.
+ multiscale

TV reg., section

displacements

forward 
wave 
propagation
modelsecond variation



Simpler problem: inverse scalar wave Simpler problem: inverse scalar wave 
propagation (propagation (antiplaneantiplane shear)shear)

ΓAB

ΓFS

ΓAB

ΓABΩ

Σ



LagrangianLagrangian and weak form of optimality systemand weak form of optimality system



Strong form of first order necessary conditionsStrong form of first order necessary conditions



The Newton stepThe Newton step



The Newton step, symbolicallyThe Newton step, symbolically



•• How to solve? How to solve? StraighforwardStraighforward dense approach dense approach 
intractable, e.g. for largest problem we solve:intractable, e.g. for largest problem we solve:
oo 17 million wave propagations to set up linear system17 million wave propagations to set up linear system
oo 2 2 petabytespetabytes to store itto store it
oo 3 hours on an 3 hours on an exaflops/sexaflops/s machine for one Newton machine for one Newton 

iterationiteration
oo (for 1Hz LA model, (for 1Hz LA model, zettascale/yottascalezettascale/yottascale computing computing 

needed; arrives in ~2050 per needed; arrives in ~2050 per DemiDemi MooreMoore’’s law)s law)

A GaussA Gauss--NewtonNewton--SchurSchur--CG methodCG method

•• Instead, use GaussInstead, use Gauss--Newton approximation and solve by Newton approximation and solve by 
matrixmatrix--free conjugate gradients:free conjugate gradients:
oo form Hessianform Hessian--vector products on the fly, terminate early vector products on the fly, terminate early 

per per EisenstatEisenstat--Walker Walker 
oo Hessian guaranteed to be positive definite Hessian guaranteed to be positive definite 
oo quadratic convergence for good fit problems, linear quadratic convergence for good fit problems, linear 

otherwiseotherwise
oo each CG iteration requires 1 forward, 1 each CG iteration requires 1 forward, 1 adjointadjoint wave wave 

propagation propagation --> parallelizes as well as forward problem (N> parallelizes as well as forward problem (Ns s 
forw/adjforw/adj wave propagations for multiple sources)wave propagations for multiple sources)

oo need good need good preconditionerpreconditioner (but difficult, since Hessian not (but difficult, since Hessian not 
available)available)



Spectrum of reduced Hessian & Spectrum of reduced Hessian & 
preconditioning issuespreconditioning issues

differential part

combined spectrum

==
compact part

++



Solution algorithm:Solution algorithm:
MultiscaleMultiscale--GaussGauss--NewtonNewton--CGCG--LMBFGS LMBFGS 

•• MultiscaleMultiscale continuation over grid and source frequency continuation over grid and source frequency 
((ChaventChavent ‘‘95)95)

oo Inexact GaussInexact Gauss--Newton nonlinear iteration with Newton nonlinear iteration with ArmijoArmijo
backtracking line searchbacktracking line search

•• MatrixMatrix--free conjugate gradient solution of reduced free conjugate gradient solution of reduced 
Hessian system (each Hessian system (each matvecmatvec requires requires NNss forward & forward & 
adjointadjoint wave propagation solutions) wave propagation solutions) 

–– Preconditioner: Preconditioner: 
»» limited memory BFGS (Moraleslimited memory BFGS (Morales--NocedalNocedal ‘‘00)00)
»» initialized with several iterations of Frankelinitialized with several iterations of Frankel’’s s 

method (twomethod (two--step stationary method) to step stationary method) to 
““invertinvert””



Algorithmic scalability for 3D acoustic Algorithmic scalability for 3D acoustic 
inversion exampleinversion example

Mesh independence of Mesh independence of 
nonlinear iterations nonlinear iterations 

Mesh independence Mesh independence 
of linear iterations of linear iterations 

But even with mesh But even with mesh 
independence, # of wave independence, # of wave 
propagations still large!propagations still large!



Inversion examplesInversion examples

•• 2D shear, 3D acoustic, and 3D elastic models2D shear, 3D acoustic, and 3D elastic models
•• Synthetic inversion (some with 5% added noise) using Synthetic inversion (some with 5% added noise) using 

SCEC community velocity model  SCEC community velocity model  
•• Piecewise bi/Piecewise bi/trilineartrilinear finite element approximation of finite element approximation of 

state, state, adjointadjoint, and material property in space, and material property in space
•• Explicit central difference time approximation in time Explicit central difference time approximation in time 
•• PETScPETSc ((www.petsc.anl.govwww.petsc.anl.gov) parallel implementation ) parallel implementation 
•• Up to 257x257x257 grid (17 million inversion Up to 257x257x257 grid (17 million inversion 

parameters) on 2048 processors (~12h)parameters) on 2048 processors (~12h)
•• Up to 225 surface receiversUp to 225 surface receivers

http://www.petsc.anl.gov/


Material inversion: Material inversion: multiscalemultiscale continuation continuation 
(64 receivers)(64 receivers)



Material inversion: target vs. inverted Material inversion: target vs. inverted 
displacement history at a receiver displacement history at a receiver 



Material inversion: target vs. inverted Material inversion: target vs. inverted 
displacement history at nondisplacement history at non--receiver receiver 
location location 



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 1, level 1



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 2, level 2



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 3, level 3



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 4, level 4



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 5, level 5



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 6, level 6



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 7, level 7



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 8, level 8



MultiscaleMultiscale inversion:inversion:
Target vs. inverted Target vs. inverted isosurfacesisosurfaces, level 9, level 9



Comparison of target and inverted Comparison of target and inverted 
material models: 3D acoustic and elasticmaterial models: 3D acoustic and elastic

Acoustic medium, pAcoustic medium, p--wave velocitywave velocity Elastic medium, sElastic medium, s--wave velocitywave velocity



inverted, 128inverted, 1283 3 gridgrid targettarget



Prospects for 3D Prospects for 3D elastodynamicelastodynamic inversion inversion 
with observations from multiple events?with observations from multiple events?
•• 5x2 earthquake simulations per CG iteration5x2 earthquake simulations per CG iteration
•• 20 CG iterations per Gauss20 CG iterations per Gauss--Newton iterationNewton iteration
•• 20 Gauss20 Gauss--Newton iterationsNewton iterations
•• Inversion costs 4000x a single forward simulation  Inversion costs 4000x a single forward simulation  
•• Assume Assume petaflopspetaflops machine has 100,000 x 60 machine has 100,000 x 60 GflopsGflops PEsPEs

(i.e. 30x number of 30x faster (i.e. 30x number of 30x faster PEsPEs)  )  
•• Inverse problem can easily absorb 30x increase in Inverse problem can easily absorb 30x increase in PEsPEs

(assuming network keep up with faster processors; (assuming network keep up with faster processors; 
granularity will be 2.5k pts/PE)granularity will be 2.5k pts/PE)

•• Therefore inverse problem can be solved in Therefore inverse problem can be solved in 
4000*3/1000 hr, or ~12h on 6 Pflops machine (!)4000*3/1000 hr, or ~12h on 6 Pflops machine (!)

•• Important role for Grid computing: loose coupling of Important role for Grid computing: loose coupling of 
tightlytightly--coupled wave propagationscoupled wave propagations



Conclusions: Conclusions: 
Forward earthquake modelingForward earthquake modeling

•• OctreeOctree--based wavelengthbased wavelength--adaptive method adaptive method 
scaled to billion element simulationsscaled to billion element simulations

•• Excellent parallel scalability and good scalar Excellent parallel scalability and good scalar 
performance on thousands of processors of performance on thousands of processors of 
commoditycommodity--based machinebased machine

•• Permits us to perform earthquake simulations Permits us to perform earthquake simulations 
to frequencies of engineering interest on to frequencies of engineering interest on 
todaytoday’’s s terascaleterascale machinesmachines

•• Critical issue is to address uncertainties in Critical issue is to address uncertainties in 
material and source modelsmaterial and source models



Conclusions: Conclusions: 
Inverse earthquake modelingInverse earthquake modeling

•• Multilevel continuation appears to force successive Multilevel continuation appears to force successive 
iterates to remain within basin of attraction of global iterates to remain within basin of attraction of global 
minimum minimum 

•• Total variation regularization very effective at localizing Total variation regularization very effective at localizing 
sharp material interfaces sharp material interfaces 

•• Outer and inner iterations are meshOuter and inner iterations are mesh--independent, once independent, once 
nonlinearities have been resolvednonlinearities have been resolved

•• Algorithmic, parallel, and overall scalability followAlgorithmic, parallel, and overall scalability follow
•• Despite algorithmic and parallel scalability, number of Despite algorithmic and parallel scalability, number of 

forward/forward/adjointadjoint solutions is large (equivalent to ~800 solutions is large (equivalent to ~800 
wave propagations for 129^3 grid)wave propagations for 129^3 grid)

•• HighHigh--fidelity inverse earthquake modeling w/multiple fidelity inverse earthquake modeling w/multiple 
earthquake sources is a earthquake sources is a petaflopspetaflops--level challengelevel challenge



Ongoing and future workOngoing and future work

•• Incorporation of parallel adaptive Incorporation of parallel adaptive octreeoctree grids grids 
•• Hessian preconditioner and nonlinear solver Hessian preconditioner and nonlinear solver 

improvements necessaryimprovements necessary
•• Regularization parameter selection for real dataRegularization parameter selection for real data
•• Bound inequalities for material properties Bound inequalities for material properties 
•• Treatment of correlated variables Treatment of correlated variables 
•• Estimation of uncertainty in parameters Estimation of uncertainty in parameters 
•• Incorporation of prior (SCEC community velocity model)Incorporation of prior (SCEC community velocity model)
•• Inversion for attenuation parametersInversion for attenuation parameters
•• Inversion for fault parameters Inversion for fault parameters 
•• Inversion for fault location (shape optimization problem)Inversion for fault location (shape optimization problem)
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