Interior Point Methods

- Fiacco \& McCormick (1968)
handling inequality constraints - logarithmic barrier; minimization with inequality constraints
replaced by a sequence of unconstrained minimizations
- Lagrange (1788)
handling equality constraints - multipliers
minimization with equality constraints
replaced by unconstrained minimization
- Newton (1687)
solving unconstrained minimization problems;

Marsten, Subramanian, Saltzman, Lustig and Shanno

"Interior point methods for linear programming
Just call Newton, Lagrange, and Fiacco and McCormick!",
Interfaces 20 (1990) No 4, pp. 105-116.

First Order Optimality Conditions

Simplex Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =0 \\
x, s & \geq 0 .
\end{aligned}
$$

Basic: $\mathrm{x}>0, \mathrm{~s}=0$

Nonbasic: $\mathrm{x}=0, \mathrm{~s}>0$

Interior Point Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
x, s & \geq 0 .
\end{aligned}
$$

Theory: IPMs converge in $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations
Practice: IPMs converge in $\mathcal{O}(\log n)$ iterations
... but one iteration may be expensive!

Practical Aspects of Large Scal Interior-Point Methods

Jacek Gondzio

SIAM, Stockholm, Mav 2005
J. Gondzio

Outline

Interior Point Methods

- have been around for over 20 years..
- are competitive for small problems ($\leq 1,000,000$ variables)
- are the only real approach for large problems ($\geq 1,000,000$ variables)

Why are IPMs so efficient?

What can we do to improve them further?

Direct Methods: Symmetric $L D L^{T}$ Factorization

Indefinite

Quasidefinite
$H=\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]$
2×2 pivots needed
$\left[\begin{array}{ll}0 & a \\ a & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & a \\ a & d\end{array}\right]$
strongly factorizable

Positive Definite

$$
H=A Q^{-1} A^{T}
$$

1×1 pivots (positive)
easy

Vanderbei, SIOPT (1995): Symmetric QDFM's are strongly factorizable. For any quasidefinite matrix there exists a Cholesky-like factorization

$$
\bar{H}=L D L^{T},
$$

where D is diagonal but not positive definite:
D has n negative pivots and m positive pivots.
SIAM, Stockholm, May 2005
J. Gondzio

Interior Point Methods
Minimum Degree Ordering

Sparse Matrix
Pivot h_{11}
Pivot h_{22}
Piv

$$
\left[\begin{array}{llllll}
x & & x & x & x & \\
& \mathbf{p} & & & \mathbf{x} & \\
x & & x & & & x \\
x & & & x & & x \\
x & \mathbf{x} & & & x & \\
& & x & x & & x
\end{array}\right]
$$

Minimum degree ordering:

choose a diagonal element corresponding to a row with the min number of nonzeros. Permute rows and columns of H accordingly.

Optimality Conditions:

Newton Direction:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
x, s & \geq 0
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
\xi_{p} \\
\xi_{d} \\
\xi_{\mu}
\end{array}\right]
$$

Linear Algebra involves an (ill-conditioned) scaling matrix $\Theta=X S^{-1}$.

Augmented System vs Normal Equations

$\left.\begin{array}{cc}\mathbf{L P} & \text { QP } \\ {\left[\begin{array}{cc}\Theta^{-1} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]} & {\left[\begin{array}{cc}Q+\Theta^{-1} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right] \quad\left[\begin{array}{cc}Q(x, y) & A(x)^{T} \\ A(x) & -Z Y^{-1}\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]} \\ \left(A \Theta A^{T}\right) \Delta y=g & \left(A\left(Q+\Theta^{-1}\right)^{-1} A^{T}\right) \Delta y=g\end{array}\left(A Q^{-1} A^{T}+Z Y^{-1}\right) \Delta y=g\right]$

[^0]J. Gondzio

Theory of Interior Point Methods:

- very well understood for LP/QP problems

Wright, "Primal-Dual Interior-Point Methods", SIAM, 1997.

- ongoing research on IPMs for NLP problems

Nocedal \& Wright, "Numerical Optimization", Springer, 1999.
Conn, Gould \& Toint, "Trust-Region Methods", SIAM, 2000.

Newton Liberation Front (Ph. Toint, 2004)

"Let the Newton method do the optimization"
in: Hager et al. (eds) Multiscale Optimization Methods and Applications.
The rest of the talk
\longrightarrow focuses on linear algebra issues.

From Sparsity to Block-Sparsity:

$$
\begin{aligned}
H & =\left[\begin{array}{llll}
x & x & x & x \\
x & x & & \\
x & & x & \\
x & & & x
\end{array}\right] \Rightarrow L=\left[\begin{array}{llll}
x & & & \\
x & x & & \\
x & x & x & \\
x & x & x & x
\end{array}\right] \\
P H P^{T} & =\left[\begin{array}{llll}
x & & & x \\
& x & & x \\
& & x & x \\
x & x & x & x
\end{array}\right] \Rightarrow L=\left[\begin{array}{llll}
x & & & \\
& x & & \\
& & x & \\
x & x & x & x
\end{array}\right]
\end{aligned}
$$

Block-Sparse Matrix

Object-Oriented Parallel Solver \Rightarrow problems of size $10^{6}, 10^{7}, 10^{8}, 10^{9}, \ldots$
G. \& Sarkissian, MP 96 (2003) 561-584.
G. \& Grothey, SIOPT 13 (2003) 842-864.
G. \& Grothey, $A O R$ (to appear).

Talk of Andreas Grothey later today 4.00-4.25.
SIAM, Stockholm, May 2005
J. Gondzio

Inefficient Direct Approach

Cholesky factors get sometimes hopelessly dense.
QAP (Quadratic Assignment Problems).

Problem	Dimensions		
	rows	columns	nonzeros
qap12	3192	8856	38304
qap15	6330	22275	94950

Problem	Normal Equations			Augmented System		
	nz(AAt)	nz(LLt)	Flops	$n z(A)$	nz(LLt)	Flops
qap12	74592	2135388	$2.378 \mathrm{e}+9$	38304	1969957	$2.046 \mathrm{e}+9$
qap15	186075	8191638	$1.792 \mathrm{e}+10$	94950	7374972	$1.522 \mathrm{e}+10$

SIAM, Stockholm, Mav 2005
J. Gondzio

The Preconditioner $P=E E^{T}$ should:

- be easy to compute
(significantly less expensive than Cholesky factor)
- be easy to invert
- produce good spectral properties of $E^{-1} H E^{-T}$ (that is $P^{-1} H$): either have few distinct eigenvalues;
or have all eigenvalues in a small cluster: $\lambda_{\text {min }} \leq \lambda \leq \lambda_{\text {max }}$.

Examples:

- Gill, Murray, Ponceleon \& Saunders, SIMAX 13 (1992) 292-311.
- Murphy, Golub \& Wathen, SISC 21 (2000) 1969-1972.
- Keller, Gould \& Wathen, SIMAX 21 (2000) 1300-1317.

Gould, Hribal \& Nocedal, SISC 23 (2001) 1376-1395.

- Bergamaschi, G. \& Zilli, COAP 28 (2004) 149-171.
- Golub \& Grief, SISC 24 (2003) 2076-2092;

Grief, Golub \& Varah, SIMAX (to appear).

- Bai, Golub \& Ng, SIMAX 24 (2003) 603-626.

$$
\text { SIAM, Stockholm, May } 2005
$$

J. Gondzio

Interior Point Methods

Gill, Murray, Ponceleón, Saunders, SIMAX 13 (1992) 292-311.
Compute Bunch-Parlett-Kaufmann factorization

$$
L D L^{T}=\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]
$$

where D is block-diagonal with 1×1 and 2×2 blocks.
Define the preconditioner $P=L \bar{D} L^{T}$, where \bar{D} is a pdf approximation of D :
For 1×1 pivot:
replace $d_{i i}$ by $\bar{d}_{i i}=\left|d_{i i}\right|$.
For 2×2 pivot:
replace $D_{i, i+1}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \gamma\end{array}\right]=\left[\begin{array}{rr}c & s \\ s & -c\end{array}\right]\left[\begin{array}{ll}\lambda_{1} & \\ & \lambda_{2}\end{array}\right]\left[\begin{array}{rr}c & s \\ s & -c\end{array}\right]$
by $\quad \bar{D}_{i, i+1}=\left[\begin{array}{cc}\bar{\alpha} & \bar{\beta} \\ \bar{\beta} & \bar{\gamma}\end{array}\right]=\left[\begin{array}{rr}c & s \\ s & -c\end{array}\right]\left[\begin{array}{ll}\left|\lambda_{1}\right| & \\ & \left|\lambda_{2}\right|\end{array}\right]\left[\begin{array}{rr}c & s \\ s & -c\end{array}\right]$.
The preconditioned matrix has at most two distinct eigenvalues +1 and -1 . \rightarrow Use SYMMLQ (Paige and Saunders).

Iterative Methods

Normal Equations or Augmented System:

- NE is positive definite: can use conjugate gradients;
- AS is indefinite: can use BiCGSTAB, GMRES, QMR;

Oliveira PhD, Rice U., 1997; Oliveira \& Sorensen LAA 394 (2005) 1-24. \rightarrow It is better to precondition AS.
O, OS show that all preconditioners for the NE have an equivalent for the A while the opposite is not true.
After all, NE is equivalent to a restricted order of pivoting in AS.

$$
\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
d
\end{array}\right]
$$

- Optimization: KKT System
- PDE: Saddle Point Problem

Benzi, Golub \& Liesen, "Numerical Solution of Saddle Point Problems", Acta Numerica 2005 (to appear).

SIAM, Stockholm, Mav 2005
J. Gondzio

CG with Indefinite Preconditioner

Consider the indefinite matrix

$$
H=\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]
$$

where $Q \in \mathcal{R}^{n \times n}$ is positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.
The CG method may fail when applied to an indefinite system.
Rozlozník \& Simoncini, SIMAX 24 (2002) 368-391.
RS consider the preconditioner P which guarantees that all eigenvalues of t preconditioned matrix $P^{-1} H$ are positive and bounded away from zero.

Although $P^{-1} H$ is indefinite

- the CG can be applied to this problem,
- the asymptotic rate of convergence of CG is approximately the same that obtained for a positive definite matrix with the same eigenvalues as t original system.

How to choose G ?

Bergamaschi, G. \& Zilli, COAP 28 (2004) 149-171.
Augmented system in QP, NLP

$$
H=\left[\begin{array}{cc}
\mathrm{Q}+\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]
$$

Drop off-diagonal elements from Q :
Replace $\mathbf{Q}+\Theta^{-1}$ by $D=\operatorname{diag}(\mathbf{Q})+\Theta^{-1}$.

- With diagonal matrix D we have a choice between $\left[\begin{array}{cc}D & A^{T} \\ A & 0\end{array}\right]$ and $A D^{-1} A^{T}$.
- It is important to keep Θ^{-1} in the preconditioner. Θ is ill-conditioned:
For "basic" variables:
$\Theta_{j}=x_{j} / s_{j} \rightarrow \infty \quad \Theta_{j}^{-1} \rightarrow 0$
For "non-basic" variables:
$\Theta_{j}=x_{j} / s_{j} \rightarrow 0 \quad \Theta_{j}^{-1} \rightarrow \infty$.

SIAM, Stockholm, May 2005
J. Gondzio

Interior Point Methods

Motivation: Sparsity issues: irreducible blocks in QP.
Consider the matrices

$$
\begin{aligned}
& Q=\left[\begin{array}{lllll}
\mathbf{x} & \mathbf{x} & & & \\
\mathbf{x} & \mathbf{x} & & & \\
& & x & & \\
& & & x & \\
& & & & x
\end{array}\right] \text { and } \quad A=\left[\begin{array}{llll}
x & & & x \\
x & & x & \\
& x & x & \\
& x & & x
\end{array}\right] .
\end{aligned}
$$

Low Degree Minimum Polynomial

Murphy, Golub \& Wathen, SISC 21 (2000) 1969-1972.
Consider the matrix

$$
H=\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]
$$

where $Q \in \mathcal{R}^{n \times n}$ is positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.
Consider the preconditioner which incorporates an exact Schur complement $A Q^{-}$ For example:

$$
P_{1}=\left[\begin{array}{cc}
Q & 0 \\
0 & A Q^{-1} A^{T}
\end{array}\right] \quad \text { or } \quad P_{2}=\left[\begin{array}{cc}
Q & A^{T} \\
0 & A Q^{-1} A^{T}
\end{array}\right] .
$$

The preconditioned matrices $P^{-1} H$ have only two or three distinct eigenvalues.
MGW conclude:
"The approximations of the Schur complement lead to preconditioners which c be very effective even though they are in no sense approximate inverses".

SIAM, Stockholm, Mav 2005
J. Gondzio

Indefinite Block Preconditioner

Consider again the matrix

$$
H=\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]
$$

where $Q \in \mathcal{R}^{n \times n}$ is positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.
Consider a preconditioner of the form:

$$
P=\left[\begin{array}{cc}
G & A^{T} \\
A & 0
\end{array}\right]
$$

where $G \in \mathcal{R}^{n \times n}$ is positive definite.
Keller, Gould \& Wathen, SIMAX 21 (2000) 1300-1317.
Theorem. Assume that A has rank $m(m<n)$.
Then, $P^{-1} H$ has at least $2 m$ unit eigenvalues, and the other eigenvalues a positive and satisfy

$$
\lambda_{\min }\left(G^{-1} Q\right) \leq \lambda \leq \lambda_{\max }\left(G^{-1} Q\right)
$$

SIAM, Stockholm, May 2005

Primal and Dual Regularization

Primal Problem

$\min z_{P}=c^{T} x+\frac{1}{2} x^{T} Q x-\mu \sum_{j=1}^{n} \ln x_{j}$ s.t. $A x=b, x \geq 0$

$$
\left[\begin{array}{cc}
Q+\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
h
\end{array}\right]
$$

Dual Problem

$$
\begin{array}{cl}
\max & z_{D}=b^{T} y-\frac{1}{2} x^{T} Q x+\mu \sum_{j=1}^{n} \ln s_{j} \\
\text { s.t. } & A^{T} y+s-Q x=c, \\
& s \geq 0 \\
& {\left[\begin{array}{cc}
Q+\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
h
\end{array}\right]}
\end{array}
$$

Primal Regularized Problem

$\min z_{P}+\frac{1}{2}\left(x-x_{0}\right)^{T} R_{p}\left(x-x_{0}\right)$
s.t. $A x=b, x \geq 0$
$\left[\begin{array}{cc}Q+\Theta^{-1}+R_{p} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f^{\prime} \\ h\end{array}\right]$

Dual Regularized Problem

$$
\begin{array}{cl}
\max & z_{D}+\frac{1}{2}\left(y-y_{0}\right)^{T} R_{d}\left(y-y_{0}\right) \\
\text { s.t. } & A^{T} y+s-Q x=c, \\
& s \geq 0 \\
{\left[\begin{array}{cc}
Q+\Theta^{-1} & A^{T} \\
A & -R_{d}
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f^{\prime} \\
h
\end{array}\right] .}
\end{array}
$$

Augmented Lagrangian Regularization

Golub \& Grief, SISC 24 (2003) 2076-2092;
Grief, Golub \& Varah, SIMAX (to appear)
see also Fletcher (1975).
Replace $H=\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]$ by $H_{W}=\left[\begin{array}{cc}Q+A^{T} W A & A^{T} \\ A & 0\end{array}\right]$
Replace $\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]$ by $\left[\begin{array}{cc}Q+A^{T} W A & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}f+A^{T} W d \\ d\end{array}\right]$, where W is a weight matrix, say, $W=\gamma I$.

Dostál \& Schöberl, COAP 30 (2005) 23-43.
\rightarrow Use $Q+A^{T} W A$ only in matrix-vector multiplications.
Application to numerical solution of elliptic variational inequalities.

Spectral Analysis:

Eigenvalues of $P^{-1} H$ satisfy

$$
\begin{aligned}
Q x+A^{T} y & =\lambda D x+\lambda A^{T} y \\
A x & =\lambda A x .
\end{aligned}
$$

If $\lambda=1$, we are done. If $\lambda \neq 1$ the second equation yields $A x=0$. After multiplying the first equation with x^{T}, we get:

$$
x^{T} Q x=\lambda x^{T} D x \quad \Rightarrow \quad \lambda=\frac{x^{T} Q x}{x^{T} D x}=q\left(D^{-1} Q\right) .
$$

The Rayleigh quotient of the generalized eigenproblem: $D v=\mu Q v$. Since both D and Q are positive definite we have for every $x \in \mathcal{R}^{n}$

$$
0<\lambda_{\min }\left(D^{-1} Q\right) \leq \frac{x^{T} Q x}{x^{T} D x} \leq \lambda_{\max }\left(D^{-1} Q\right)
$$

and finally

$$
\lambda_{\min }\left(D^{-1} Q\right) \leq \lambda \leq \lambda_{\max }\left(D^{-1} Q\right)
$$

Conclusion:
The preconditioner satisfies the requirements of Rozlozník \& Simoncini.
SIAM, Stockholm, May 2005
J. Gondzio

Primal-Dual Regularization

Altman \& G., OMS 11-12 (1999) 275-302.
Interpretation: proximal terms added to primal/dual objectives; Dynamic regularization: correct only suspicious pivots.
Replace $H=\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]$ by $H_{R}=\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]+\left[\begin{array}{cc}R_{p} & 0 \\ 0 & -R_{d}\end{array}\right]$.
Replace $P=\left[\begin{array}{cc}D & A^{T} \\ A & 0\end{array}\right]$ by $P_{R}=\left[\begin{array}{cc}D & A^{T} \\ A & 0\end{array}\right]+\left[\begin{array}{cc}R_{p} & 0 \\ 0 & -R_{d}\end{array}\right]$.
Eigenvalues of the preconditioned matrix change:
$\lambda\left(P^{-1} H\right)=\frac{x^{T} Q x}{x^{T} D x}$ is replaced by $\lambda\left(P_{R}^{-1} H_{R}\right)=\frac{x^{T} Q x+\delta}{x^{T} D x+\delta}$,
where $\delta=x^{T} R_{p} x+y^{T} R_{d} y>0$.
The use of regularization improves the clustering of eigenvalues.

Keller, Gould \& Wathen, SIMAX 21 (2000) 1300-1317.
Gould, Hribar \& Nocedal, SISC 23 (2001) 1376-1395.
Null space representation of A : given a basic/nonbasic partition $A=[B \mid N]$ with nonsingular B the columns of $Z=\left[\begin{array}{c}-B^{-1} N \\ I\end{array}\right]$ span null space of A.

Constraint Preconditioner

Replace $H=\left[\begin{array}{cc|c}Q_{B B}+\Theta_{B}^{-1} & Q_{B N} & B^{T} \\ Q_{N B} & Q_{N N}+\Theta_{N}^{-1} & N^{T} \\ \hline B & N & 0\end{array}\right]$ by $P=\left[\begin{array}{cc|c}G_{B B} & G_{B N} & B^{T} \\ \hline G_{N B} & G_{N N} & N^{T} \\ \hline B & N & 0\end{array}\right]$
Many options:

- drop $Q_{N B}, Q_{B N}$ (that is, set $G_{N B}=0$ and $G_{B N}=0$);
- replace $Q_{B B}+\Theta_{B}^{-1}$ by $G_{B B}=\operatorname{diag}\left(Q_{B B}+\Theta_{B}^{-1}\right)$;
- replace $Q_{N N}+\Theta_{N}^{-1}$ by $G_{N N}=\operatorname{diag}\left(Q_{N N}+\Theta_{N}^{-1}\right)$.

SIAM. Stockholm. Mav 200.5
J. Gondzio

Interior Point Methods

Dollar, Gould \& Wathen, RAL-TR-2004-036 (2004).
Two Options:
Option 1: $V=\left[\begin{array}{ll}V_{1} & V_{2} \\ A\end{array}\right], \Sigma=\left[\begin{array}{ll}\Sigma_{1} & \Sigma_{2}^{T} \\ \Sigma_{2} & \Sigma_{3}\end{array}\right]$
$P=V \Sigma V^{T}=\left[\begin{array}{cc}V_{1} \Sigma_{1} V_{1}^{T}+V_{2} \Sigma_{2} V_{1}^{T}+V_{1} \Sigma_{2}^{T} V_{2}^{T}+V_{2} \Sigma_{3} V_{2}^{T} & V_{1} \Sigma_{1} A^{T}+V_{2} \Sigma_{2} A^{T} \\ A \Sigma_{1} V_{1}^{T}+A \Sigma_{2}^{T} V_{2}^{T} & A \Sigma_{1} A^{T}\end{array}\right]$
Option 2: $U=\left[\begin{array}{ll}U_{1} & A^{T} \\ U_{2} & \end{array}\right], \Lambda=\left[\begin{array}{ll}\Lambda_{1} & \Lambda_{2}^{T} \\ \Lambda_{2} & \Lambda_{3}\end{array}\right]$
$P=U \Lambda U^{T}=\left[\begin{array}{cc}U_{1} \Lambda_{1} U_{1}^{T}+A^{T} \Lambda_{2} U_{1}^{T}+U_{1} \Lambda_{2}^{T} A+A^{T} \Lambda_{3} A & U_{1} \Lambda_{1} U_{2}^{T}+A^{T} \Lambda_{2} U_{2}^{T} \\ U_{2} \Lambda_{1} U_{1}^{T}+U_{2} \Lambda_{2}^{T} A & U_{2} \Lambda_{1} U_{2}^{T}\end{array}\right]$
Option 2 offers more flexibility in reproducing:

- $(2,1)$ block equal to A; and
- $(2,2)$ block equal to 0 .

[^1]
Skew-Hermitian Preconditioning

Bai, Golub \& Ng, SIMAX 24 (2003) 603-626.
Replace $\left[\begin{array}{cc}Q & A^{T} \\ A & -R_{d}\end{array}\right]$ by $H=\left[\begin{array}{cc}Q & A^{T} \\ -A & R_{d}\end{array}\right]$.
Define: $\mathcal{H}=\frac{1}{2}\left(H+H^{T}\right)=\left[\begin{array}{ll}Q & \\ & R_{d}\end{array}\right]$ and $\mathcal{K}=\frac{1}{2}\left(H-H^{T}\right)=\left[\begin{array}{cc}A^{T} \\ -A & \end{array}\right]$.
Two splittings:

$$
\begin{aligned}
H & =\mathcal{H}+\mathcal{K} \\
H & =(\mathcal{H}+\alpha I)-(\alpha I-\mathcal{K}), \\
H+\mathcal{K} & =(\mathcal{K}+\alpha I)-(\alpha I-\mathcal{H}) .
\end{aligned}
$$

Stationary iteration alternating between these two splittings:

$$
\begin{array}{ll}
(\mathcal{H}+\alpha I) v & =(\alpha I-\mathcal{K}) u_{k}+b \\
(\mathcal{K}+\alpha I) u_{k+1} & =(\alpha I-\mathcal{H}) v+b
\end{array}
$$

SIAM. Stockholm. May 2005
J. Gondzio

After eliminating the intermediate variable v we get

$$
u_{k+1}=\mathcal{T}_{\alpha} u_{k}+g
$$

where

$$
\mathcal{T}_{\alpha}=(\mathcal{K}+\alpha I)^{-1}(\alpha I-\mathcal{H})(\mathcal{H}+\alpha I)^{-1}(\alpha I-\mathcal{K})
$$

An alternative correction form:

$$
u_{k+1}=u_{k}+P_{\alpha}^{-1} r_{k} \quad\left(r_{k}=b-H u_{k}\right),
$$

with the preconditioner

$$
P_{\alpha}=\frac{1}{2 \alpha}(\mathcal{H}+\alpha I)(\mathcal{K}+\alpha I) .
$$

Inversions of the regularized matrices are needed:
$\mathcal{H}+\alpha I=\left[\begin{array}{ll}Q & \\ & R_{d}\end{array}\right]+\alpha I \quad$ and $\quad \mathcal{K}+\alpha I=\left[\begin{array}{cc} & A^{T} \\ -A & \end{array}\right]+\alpha I$.
Worry: it may be difficult to satisfy constraints with this preconditioner.
\rightarrow Thorough computational study needed.

Conclusions:

Direct Methods are reliable and well-suited to structure exploitation
but occasionally get excessively expensive.
Iterative Methods are promising
but need tuning and depend upon preconditioners.

What do we need?

- new inverse representation
- new preconditioners

Ultimate Objective

Find an inverse of $\left[\begin{array}{cc}Q & A^{T} \\ A & 0\end{array}\right]$ with $\mathcal{O}(n z Q)+\mathcal{O}(n z A)$ nonzeros.

[^0]: SIAM, Stockholm, May 2005

[^1]: SIAM, Stockholm, May 2005

