Siam ANNUAL MEETING

July 16-20, 1990

Short Course on Chaotic Dynamics, An Emerging Science
July 15, 1990

Hyatt Regency Hotel
Illinois Center
Chicago, Illinois

SUBJECTS OF THE MEETING

For session titles by subject, see "Program Overview" on pages 2 and 3.

Algebraic and Symbolic Computing
Computer Science
Control and Systems Theory
Discrete Mathematics
Dynamical Systems and Chaos
Fluid Mechanics
Free Boundary Problems
Integer Programming
Interior Point Methods
Inverse Problems
Mathematical Biology
Mathematics Education
Numerical Methods and Computing
Optimal Design
Optimization
Parallel Computing
Probability and Statistics
Semiconductor Device Simulation
Solid Mechanics
Special Functions
Wave Equations
Wavelets and Applications

Prize Awards
Special Sessions
**CONTENTS**

- Short Course ........................................... 2
- Program Overview ....................................... 2–3
- Invited Presentations ...................................... 4–5
- Special Presentations and Prize Awards ................. 5
- Student Paper Competition ................................ 5
- Professional Seminars ..................................... 6
- Get-Togethers ............................................... 6
- Program-At-A-Glance ....................................... 16–18
- Minisymposia .............................................. 7–15, 19
- Contributed Presentations ................................ 20–24
- Poster Presentations ....................................... 24
- Exhibitors .................................................... 25
- Transportation Information ............................... 29
- Hotel Information ......................................... 29
- Registration Information ................................. 30
- Registration Forms: Conference and Hotel .......... 31

**DEADLINE DATES**

**Hotel Reservations**
June 25, 1990

*Please note* that hotel rooms will be difficult to acquire after June 25, 1990 as there is another convention in the hotel over the same days as the SIAM conference.

**Advance Conference Registration**
July 9, 1990

**PROGRAM COMMITTEE**

**Andre Z. Manitius, Chair**
Department of Electrical and Computer Engineering
George Mason University

**Jerry L. Bona**
Department of Mathematics
Pennsylvania State University, University Park

**Raymond C.Y. Chin**
Division of Computational Physics
Lawrence Livermore National Laboratory
Livermore, CA

**Fan R. K. Chung**
Bellcore

**Celso Grebogi**
Laboratory for Plasma and Fusion Energy Studies
University of Maryland, College Park

**Simon A. Levin**
Department of Ecology and Systematics
Cornell University

**Samuel M. Rankin**
Department of Mathematics
Worcester Polytechnic Institute

**Donald G. Saari**
Department of Mathematics
Northwestern University

**SHORT COURSE**

**Chaotic Dynamics, an Emerging Science**

*July 15, 1990*

Hyatt Regency Hotel
Chicago, Illinois

**Organizers:**
Celso Grebogi, Laboratory for Plasma Research, and James A. Yorke, Institute for Physical Science and Technology, University of Maryland, College Park.

Even relatively simple deterministic systems can behave in an apparently unpredictable and chaotic manner. This type of behavior is one of the attributes of chaotic dynamics. Within the last decade there have been an explosion of interest and major developments in chaotic dynamics.

The organizers will review the field of chaotic dynamics of dissipative systems and will present some examples of some recent developments. Topics to be covered include strange attractors, how chaos comes about with variation of a system parameter, transient chaos, fractal basin boundaries and their effect on predictability. These phenomena will be illustrated with examples. Videos demonstrating the computer imaging of chaotic dynamics will also be shown.

**PROGRAM**

- **9:00 AM** Introduction and Basic Concepts
- **10:30 AM** Coffee and Discussion
- **11:00 AM** Strange Attractors
- **12:30 PM** Lunch and Discussion
- **2:00 PM** Bifurcations to Chaos
- **3:30 PM** Coffee and Discussion
- **4:00 PM** Fractal Basin Boundaries
- **5:30 PM** Discussion
- **6:00 PM** Adjournment

**Registration Fees**

<table>
<thead>
<tr>
<th></th>
<th>SIAM Member</th>
<th>Non-Member</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance</td>
<td>$115</td>
<td>$140</td>
<td>$75</td>
</tr>
<tr>
<td>On-Site</td>
<td>135</td>
<td>150</td>
<td>95</td>
</tr>
</tbody>
</table>

*Registration fee for the Short Course includes preprints, coffee and lunch. Please use the registration card found at the inside back cover of this program brochure.

Attendees should preregister for the Short Course, as on-site registration can not be guarantined. Preprints of the lecture materials will be distributed upon check-in at the registration desk.

**PROGRAM OVERVIEW**

Following are subject classifications of titles of invited presentations and minisymposia. (Codes in parentheses designate session numbers for invited presentations (IP) and minisymposia (MS) or day and time of sessions in the pages that follow).

**Algebraic and Symbolic Computing**

Algebraic Computation Comes of Age (IP1)
Algebraic and Discrete Algorithms (MS5)
Symbolic Computing in Science and Engineering (MS11)

**Computer Science**

Geometric Bounds for Eigenvalues (IP6)
Parallel Coordinates: A Tool for Visualizing Multidimensional Problems (MS4)
Communication Complexity and Lower Bounds (MS6)
DIMACS — The Center for Discrete Mathematics and Theoretical Computer Science (MS10)
Graph Algorithms (MS18)
Computational Geometry (MS55)
Fortran 90: The Language, Numerical Applications, and Implementation Issues (MS59)
Mathematics in Neurocomputing (MS60)
Parallel Computation Networks (MS61)

**Discrete Mathematics**

Geometric Bounds for Eigenvalues (IP6)
DIMACS — The Center for Discrete Mathematics and Theoretical Computer Science (MS10)
Coding Theory (MS12)
Graph Algorithms (MS18)
Cryptography (MS29)
Computational Integer Programming (MS54)

**Dynamical Systems and Chaos**

Recent Mathematical Developments in Chaotic Dynamics (MS1)
Disorderly Growth (MS8)
Analysis of Chaotic Experimental Data (MS15)
Dynamics of Nonlinear Waves (MS24)
Chaos in Control Systems (MS28)
Granular Flow (MS51)
Nonlinear Patterns and Dynamical Behavior of Biological Reaction Diffusion Systems (MS54)
Fluid Mechanics
Fingers, Dendrites, and Cracks: Modelling Unstable Growth Processes (IP5)
Ill-Posed Problems in Granular Flow (IP11)
Fluid Dynamic Stability (Part 1: MS25; Part 2: MS35)
Numerical Vortex Methods (MS26) Vorticity, Turbulence, and Acoustics in Fluid Flow (Thursday, 2:00 PM)
Granular Flow (MS51)

Free Boundary Problems
Nonlinear Morphologies in Directional Solidification (IP10)
Interface Instabilities During Solidification (Part 1: MS20; Part 2: MS27)
Dynamics of Pattern Formation (MS23)
Free Boundary Problems in Fluid Mechanics (Part 1: MS45; Part 2: MS50)
Vorticity, Turbulence, and Acoustics in Fluid Flow (Thursday, 2:00 PM)

Integral Programming
Solving Large Integer Programming Problems (MS39)
Integer Programming (MS49)
Computational Integer Programming (MS55)

Interior Point Methods
Interior Point Methods for Linear Programming — State-of-the-Art (IP12)
Interior Point Methods for Linear Programming (MS48)
Interior-Point Algorithms for Nonlinear Programming (MS56)
Interior Point Methods in Optimization (MS64)

Inverse Problems
Multidimensional Inverse Problems (MS9)

Numerical Methods and Computing
Numerical Solution of Wave Problems in Unbounded Domains (MS3)
Numerical Methods in Control (MS19)
Recent Developments on Newton’s Method (MS34)
Reliability of Finite Element Computations: Part 1: A Posteriori Error Estimation and Adaptive Computational Methods of Transient Problems (MS44); Part 2: Control of Idealization and Discretization Errors in Computational Solid Mechanics (MS58)

Optimal Design
Optimal Design of Structures and Materials (Part 1: MS52; Part 2: MS41)
Application of Dynamic Programming to Problems of Optimal Habitat Choice and Optimal Timing of Metamorphosis (Wednesday, 11:30 AM)

Optimization
Solving Large-Scale Combinatorial Optimization Problems in Practice (IP13)
Nonlinear Optimization 1 (MS33)
Solving Large Integer Programming Problems (MS39) Parallel Optimization Methods (MS40)
Linear Programming — Theory and Practice (MS42)
Nonlinear Optimization 2 (MS57)
Combinatorial Optimization (MS62)
Network Optimization (MS63)

Parallel Computing
The Matrix Sign Function and Large-Scale Riccati Equations (IP7)
Parallel Computation Networks (MS61)
Scientific Computing on Shared Memory Multiprocessors (MS66)

Probability and Statistics
Geometric Bounds for Eigenvalues (IP6)
Sampling Theory and Practice (MS7)
Analysis of Chaotic Experimental Data (MS15)
Analysis of Queuing Models (MS17)

Semiconductor Device Simulation
The Hydrodynamic Model for Semiconductor Device Simulation (MS65)

Solid Mechanics
Fingers, Dendrites, and Cracks: Modelling Unstable Growth Processes (IP3)
Crystal Microstructure Via Elasticity Theory (IP9)
Reliability of Finite Element Computations: Part 2: Control of Idealization and Discretization Errors in Computational Solid Mechanics (MS58)

Special Functions
Orthogonal Polynomials and Special Functions (MS14)

Wavelets and Applications
Wavelets Making Waves in Mathematics and Engineering (IP2)
Applications of Wavelets; Part 1: Numerical Analysis (MS2); Part 2: Signal Processing (MS16)

Wave Equations
Numerical Solution of Wave Problems in Unbounded Domains (MS3)
Dynamics of Nonlinear Waves (MS24)
Geometric Singular Perturbation Methods with Applications to Travelling Waves (Part 1: MS31; Part 2: MS43)

Prize Awards
Mathematical Contest in Modeling — Modeling at the Undergraduate Level (MS13)
Student Paper Competition Award and Presentation — The Three Best Papers in Applied and Computational Mathematics (Tuesday, 3:15 PM)
The John von Neumann Lecture (Thursday, 2:00 PM)

Special Sessions
AWM-SIAM Women in Applied Mathematics (MS22)
Success in Industry—What Does It Take? (Tuesday, 3:15 PM)
From Manuscript to Bound Book — Becoming a Published Author (Wednesday, 3:15 PM)
1990 SIAM Annual Business Meeting (Thursday, 3:15 PM)
Writing, Speaking, Communicating to Get Acceptance — Are We Doing A Good Job? (Thursday, 4:15 PM)
Monday, July 16/8:30 AM
Invited Presentation 1
Algebraic Computation Comes Of Age
Algebraic computation is the science and technology that aims to automate a wide range of the computation involved in mathematical problem solving. It emphasizes discrete computation on symbols representing mathematical objects. Although it has played an important part in many scientific calculations, its role is not yet fully understood. A recent report to the United States National Science Foundation, however, concludes that this field is now at a turning point. Improvements in computer hardware and new algorithms and software create exciting new possibilities for the future. The speaker will review the conclusions of this report, and discuss in detail its recommendations for making algebraic computation even more effective than it is today.

Anthony C. Hearn
The RAND Corporation
Santa Monica, CA

Monday, July 16/9:15 AM
Invited Presentation 2
Wavelets Making Waves in Mathematics and Engineering
The basic idea of wavelet theory is to decompose functions (e.g., time-dependent signals) into elementary building blocks that have good localization in both time and frequency with the additional feature that their localization is proportional to their scale (fine scale wavelets are very much localized, coarse scale wavelets are more spread out). Such decompositions can be done in various ways (continuous, discrete but redundant, orthonormal). Orthonormal wavelet bases are related to subband coding with exact reconstruction, as used in electrical engineering. They have also led to exciting new developments in numerical analysis. The speaker will present an overview of wavelets and their applications.

Ingrid Daubechies
AT&T Bell Laboratories, Murray Hill, NJ and Department of Mathematics
University of Michigan, Ann Arbor

Monday, July 16/2:00 PM
Invited Presentation 3
Fingers, Dendrites, and Cracks: Modelling Unstable Growth Processes
The growth and propagation of viscous fingers in flow processes, dendrites in directional solidification, and cracks in solids manifest similar geometrical characteristics. This suggests some physical phenomena in common between these as well as other growth processes. In this presentation, the speaker will demonstrate this geometrical similarity with a number of visualizations, and illustrate that the common physical processes involve front propagation into a diffusion field. In the singular limit of zero surface energy, some connections can be made with diffusion limited aggregation. A substantial complication involves the influence of the surface energy, usually very small, on the global growth characteristics. The speaker will discuss some of these complications from both a mathematical and physical perspective.

George M. Homsy
Department of Chemical Engineering
Stanford University

Monday, July 17/9:15 AM
Invited Presentation 5
Wanted: Applied Mathematicians to Try the Fruit Fly Challenge
Developmental biologists and molecular geneticists have recently made astonishing breakthroughs in probing how spatio-temporal patterns of gene expression arise in the fruit fly egg, and how these patterns propel the larva's segmented body plan. Result: an experimental data base that all biological pattern formation enthusiasts should covet. Half the talk will be a precise show and narrative sketching the extent and significance of this data base. Half will concern mathematical models that characterize simultaneously embryological cell determination (what bifurcation mechanism impels originally "identical" cells to make different tissues?) as well as the mechanisms that create the spatio-temporal patterns of gene expression that developmental biologists recently discovered. The idea is that the patterns of gene expression are also patterns of incipient cell determination. A model of one must also be a model of the other.

Garrett M. Odell
Department of Zoology
University of Washington

Tuesday, July 17/12:00 PM
Invited Presentation 6
Geometric Bounds for Eigenvalues
A variety of problems in probability, computer science, graph theory, and other areas require bounds on the second largest eigenvalue of a positive matrix. A variety of bounds have emerged from differential geometry (Cheeger-like inequalities) that have been good enough to deal with some applications. The speaker will review these ideas and focus on some new methods. He will also show how his ideas work in some problems.

Percy Diaconis
Department of Mathematics
Harvard University

Wednesday, July 18/8:30 AM
Invited Presentation 7
The Matrix Sign Function and Large-Scale Riccati Equations
The speaker will give an overview of the matrix sign function and its application to the numerical solution of matrix Riccati equations. The Riccati equation plays a fundamental role throughout modern control and filtering and its relaxation becomes crucial to a wide variety of commonly used design and analysis algorithms. A new family of rational iterations for the matrix sign function based on Padé approximations of a certain hypergeometric function will be described. These algorithms are particularly attractive for the solution of large-scale problems because they have exploitable features for implementation on vector supercomputers and parallel computers. The main diagonal and first subdiagonal Padé recurrences, which include Newton's and Halley's methods as special cases, can be shown to be generally convergent and can be implemented in a "multiplier-rich" fashion which is computationally competitive with polynomial recursions (which are not globally convergent).

Alan J. Laub
Department of Electrical and Computer Engineering and Department of Computer Science
University of California, Santa Barbara

Wednesday, July 18/9:15 AM
Invited Presentation 8
Control Of Systems Arising in Flexible Structures
Recent applications in such areas as large space flexible structures, robotic manipulators, and flutter suppression, have brought forth the need to control and stabilize dynamical equations which are of hyperbolic or Petrovski type (they model waves, beams, plates, etc.). A key limit for these models is that uniform stabilization cannot be achieved if the feedback operator is of finite rank (as in the case of finitely many actuators) and relatively bounded with respect to the basic operator of the free dynamics. Thus, the successful stabilizing feedback of this sort must possess a degree of unboundedness higher than that of the original operator of the free dynamics. This leads to boundary condition types such as the Laplace transform of the spatial domain) or point feedback operators (concentrated at a point).

The speaker will describe recent developments, theoretical as well as numerical, in the area of boundary point control and stabilization of these dynamics which are naturally unstable (for instance, conservative) as free systems. In particular, stabilizing feedbacks based on Riccati operators will be discussed. Mathematical difficulties related to the inherent "high" unboundedness of the stabilizing feedback will be pointed out as well as implications for practical realization aspects.

Irena Lasiecka
Department of Applied Mathematics
University of Virginia, Charlottesville

Wednesday, July 18/2:30 PM
Invited Presentation 9
Crystal Microstructure Via Elasticity Theory
When cooled below a critical temperature at which a phase transformation occurs, crystals typically develop characteristic patterns of microstructure, consisting in the simplest case of many fine parallel bands (microtwinning). Why does such a pattern form, and how can one predict its geometric features be predicted? The speaker will describe a new theory which is providing some answers to these questions. The main ingredients of the theory are (1) the use of finite elasticity to model the crystal, and (2) techniques of the calculus of variations (such as the Young measure, and special properties of Jacobians). The crucial observation is that the elastic energy, though bounded below, may not attain a minimum.

John M. Ball
Department of Mathematics
Heriot-Watt University
Edinburgh, Scotland

Thursday, July 19/8:30 AM
Invited Presentation 10
Nonlinear Morphologies in Directional Solidification
Unidirectional solidification of a binary mixture is a means of studying the controlled phase transformation of a liquid into a crystalline solid. The solid-liquid interface is a free boundary that is the site of the liberation of latent heat, the rejection of solute, and the presence of surface energy. These three factors coalesce to determine the conditions for morphological instability that lead to a transition from a planar to a cellular interface.
**SPECIAL PRESENTATIONS**

**Wednesday, July 18/10:30 AM**

**New Directions in Mathematical Sciences Education**

The quality of the U.S. educational system is now a major concern of policy makers in government, industry and academia, and reform is starting at various places within the educational enterprise. Because of its fundamental role in a wide variety of disciplines, the mathematical sciences occupy a special position in the reform movement. The mathematics community has responded to this challenge and is currently engaged in activities to educate high level students in the field. The need to expand these activities and to have a coordinated action that involves the community as a whole.

Under the auspices of the National Research Council, the Mathematical Sciences Education Board, the Board on Mathematical Sciences and the project Mathematical Sciences in the Year 2000, a strategic plan for mathematical sciences education at all levels is being developed. A portion of the plan is already in place with the publication of “Everybody Counts” and the update of the National Research Council. The third and final element, the report of the MS 2000 Committee on college and university mathematics education, will appear this fall. The issues that MS 2000 identifies are complex, and the goals and recommendations it makes will make planning a difficult and far reaching task.

The topic of this presentation will be the scope of the MS 2000 report and the role of the mathematics community in carrying out the report’s recommendations.

William E. Kirwan
President, University of Maryland, College Park
Chairman, MS 2000 Committee

**Thursday, July 20/2:00 PM**

**The John von Neumann Lecture: Vorticity, Turbulence, and Acoustics in Fluid Flow**

The speaker will discuss current research directions in understanding phenomena in fluid flow through modern applied mathematics. First, the role of vorticity amplification in the generation of small scales for incompressible fluid flow will be elucidated. Then, the important practical problem of determining effective diffusivities in turbulent transport will be discussed. Finally, new mechanisms for instability in supersonic shear layers involving the nonlinear interaction of acoustics and vorticity will be described. The role of highly interdisciplinary research involving the interaction of ideas from large and small scale computing, asymptotic methods, and rigorous mathematical theory will be emphasized.

Andrew J. Majda
Department of Mathematics
Princeton University

**Application of Dynamic Programming to Problems of Optimal Habitat Choice and Optimal Timing of Metamorphosis**

The field of behavioral ecology has been enriched by ideas from the calculus of variations and optimal control theory. Most of the previous theory has been for stochastic models, and has relied upon numerical methods. The present work deals with deterministic models and the analytical objections which may be interpreted graphically. Specific applications are habitat choice when there is a tradeoff between rapid growth and predation risk, a similar tradeoff between early and late metamorphosis for amphibians, and the timing of fledging in birds.

Donald A. Ludwig
University of British Columbia, Canada

---

**PRIZE AWARDS**

**Monday, July 18/3:15 PM**

**Mathematical Contest in Modeling Awards**

The Sixth Mathematical Contest in Modeling, cosponsored by SIAM, was held in February, with teams of three undergraduates devoting a weekend to modeling either of two applied problems. From among the teams judged outstanding, two of the graders selected one for a SIAM award in special recognition of the quality of the team’s solution. The award honors three students for excellence in collaborative mathematical modeling.

**Tuesday, July 17/3:15 PM**

**Annual SIAM Student Paper Competition**

The student authors of the three best papers in applied and computational mathematics submitted to SIAM by April 2, 1980, will present their papers. The judging for the competition, which is sponsored by SIAM, was held in February, with the three authors selected for their papers. The award honors three students for excellence in collaborative mathematical modeling. The award will be presented to the authors during the meeting.

**Thursday, July 19/3:15 PM**

**1990 SIAM Annual Business Meeting**

The annual business meeting of SIAM will be held on Thursday, July 19 at 3:15 PM. This annual meeting is held for you, the members of SIAM, to provide you with the opportunity to meet face-to-face with the officers you have elected to serve you. You will be apprised of SIAM's financial status, hear about our past successes, and be asked for your ideas regarding future directions of our society. This meeting will benefit all of us. We urge you to attend.

Ivor Stakgold, President
PROFESSIONAL SEMINARS

Tuesday, July 17/3:15 PM
Professional Seminar 1
Success in Industry — What Does It Take?
What is "industrial mathematics?" For many, it is a
tory of life, not a branch of mathematics. Success in
an industrial environment depends in part on having
a strong mathematical foundation built with
materials from an appropriate curriculum.
Just as important, however, are the right attitudes,
good communication skills, a willingness to listen,
and a healthy curiosity. Mathematical life in industry
involves working with people in other fields and
and capacities — technical workers, managers and
planners and salespeople, and learning about a
wide variety of products and processes.
The speakers will present their views of mathematica-
cal careers in industry the various aspects of the
environment, the mathematical preparation
needed for mathematical work in industry, and some
guidelines for success.
Chair: Peter E. Castro, Eastman Kodak
Company, Rochester, NY
Speakers and topics to be announced

Wednesday, July 18/3:15 PM
Professional Seminar 2
From Manuscript to Bound Book—
Becoming a Published Author
You've made the decision to write that book you've
been thinking about for years. How do you find the
publisher who will do the best job for you? What are
your rights and responsibilities as an author? What is
the production process all about? How will your
book be marketed?
These and other questions will be answered by
publishers representatives who have worked closely
with mathematicians for many years. You will be
given suggestions that will make the publication of
your book an enjoyable and exciting experience.
Chair: Vickie Kearn
SIAM, Philadelphia
Selecting a Publisher
Klaus Peters
Academic Press, Inc., Cambridge, MA
The Review Process
Edwin Beschier
Birkhauser Boston, Inc.
The Production Process
Maria C. Taylor
John Wiley & Sons, Inc. New York
Promotion and Marketing
Speaker to be announced
Springer-Verlag New York, Inc.

Thursday, July 19/3:15 PM
Professional Seminar 3
Writing, Speaking, Communicating to Get Acceptance — Are We Doing A
Good Job?
Most applied mathematicians want their work
recognized and used. Presenting that work
effectively is essential to their success. While doing
the "right" research and obtaining important results
is paramount, it is almost as important to present the
right material to the targeted audience in a style that
is clear and easily understood.
Most mathematical presentations conform to a
traditional style that has been adequate in a world
where support for research and other mathematical
work was readily obtained. Little attention has been
given to presentations that win support. But, there is
increasing competition for support and a prolifera-
tion of proposals, conferences, and publications
where good work can be buried.
Presentations to win support are becoming an
increasingly important component of the research
effort, even more so for the "industrial mathe-
maticians" who must interact with engineers, scientists,
and management. The speakers will examine some
of the shortcomings in mathematical communica-
tions, and suggest some ways to improve them.
Chair: Donald E. Miller
Saint Mary's College, Notre Dame
It's Not an Art, But a Problem of Attitude and Training
To be presented by Chair
Visual Aids—A Catalyst for Effective Presentations
Robert Nicholson, Boeing Computer Services,
Seattle
Plain Writing—What's Needed and Why
I. Edward Block, SIAM, Philadelphia

GET-TOGETHERS

SIAM Welcoming Reception
Sunday, July 15, 1990, 7:00 PM — 9:00 PM
Cash Bar

SIAM Idea Exchange $18
Monday, July 16, 1990, 6:00 PM — 7:30 PM
This is a great time to get together with your
colleagues. The party will consist of three
stations where the chefs are creating th dishes
right before your eyes. Snacks will consist of
chicken and steak fajitas, freshly made rotini,
tortellini and fettucini with marinara and alfredo
sauce, and oriental stir fry consisting of shrimp,
scallops, chicken and chinese vegetables.
Domestic beer and assorted sodas will also be available.

Western Dinner Theater/Play $36.00
Tuesday, July 17, 1990, 6:00 PM — 10:30 PM
High steppin' dance hall girls, toe tappin' fiddler,
guitar and banjo pickin' slick card tricks and lots
of cold beer, wine and apple cider is only part of
this two and a half hour western adventure. After
boarding the buses at the Hyatt Regency, you'll
arrive at Dry Gulch, a western dinner theater
where you'll be greeted with a 1½ hour cocktail
reception followed by a feast consisting of a six
course dinner of assorted cheeses and breads, a
fresh vegetable tray and dip, soup of the day,
tangy beef ribs, cornish hens, corn on the cob,
and dessert. All this while experiencing a musical
comedy revue featuring Sheriff Bob and his Band,
Miss Kitty and her Dance Hall Girls and Slippery
Sam the Magic Man. This promises to be a
fun-filled casual evening.

Exhibit Hours:
Please be sure to visit the computer and book
exhibitors located in East Wacker Exhibit Hall.
The hours for book purchases and computer
demonstration will be as follows:

Monday, July 16
9:30 AM — 7:30 PM
Tuesday, July 17
8:00 AM — 6:00 PM
Wednesday, July 18
8:00 AM — 4:00 PM
Thursday, July 19
8:00 AM — 4:30 PM
Friday, July 20
8:00 AM — 11:00 AM
Minisymposia

Please note that for presentations with more than one author, the names of the presenters are in italics.

Monday, July 16/10:30 AM
Minisymposium 1
Recent Mathematical Developments in Chaotic Dynamics
An understanding of the mathematical basis for chaotic dynamics is a central problem in the study of dynamical systems. The speakers in this minisymposium will examine conditions which cause complicated dynamical behavior, including properties of chaotic systems, and the manner in which they arise from regular behavior as the system evolves.
Organizer: Timothy Sauer
George Mason University

Forced Coexistence of Periodic Orbits in Dimension Two
Philip Boyland, Mathematical Sciences Research Institute, and University of Minnesota, Minneapolis

Bifurcation to Horseshoes and Attractor
Clark Robinson, Northwestern University

Decay of Correlations for Maps and Flows
Marek Rychlik, University of Arizona

Monday, July 16/10:30 AM
Minisymposium 2
Applications of Wavelets
Part I: Numerical Analysis
Several recent results involving wavelet decompositions as the basic tool have led to a number of major developments in numerical analysis and signal processing. A number of large-scale computational problems have been made tractable by the appearance of fast algorithms for multiplying a vector by a dense matrix, multiplying two dense matrices, and finding the generalized inverse of a dense matrix. These algorithms are applicable to matrices that arise from wide classes of operators, such as Calderon-Zygmund or Pseudodifferential Operators. Algorithms involving wavelets for image and sound processing achieve remarkable compression rates and permit manipulation of compressed data. These new developments will be presented by the speakers of this minisymposium.
Organizer: Gregory Beylkin
Schlumberger-Doll Research, Ridgefield, CT

Fast Wavelet Transforms
To be presented by organizer

Fast Evaluation of Functions of Dense Matrices
Vladimir Rokhlin, Yale University

Non-Interacting Wavelets for Adaptive Numerical Algorithms
Bradley Alpert, Yale University

Fast Numerical Algorithms for Nonlinear Operator Valued Functional Integrals
Ronald R. Coifman, Yale University

Monday, July 16/10:30 AM
Minisymposium 3
Numerical Solution of Wave Problems in Unbounded Domains
The numerical solution of wave problems in an unbounded domain usually requires the introduction of an artificial boundary in order to make the computational domain finite. On this artificial boundary one has to impose a boundary condition which would absorb all the waves that reach the boundary and would not give rise to spurious reflections. Interest in non-reflecting waves has been growing constantly in the last several years. Both local and nonlocal conditions have been proposed in conjunction with different numerical schemes. The speakers in this minisymposium will focus on recent developments related to nonreflecting boundaries in various fields of application.
Organizer: Dan Givoli
Technion-Israel Institute of Technology, Israel

A-posteriori Error Estimate for the Acoustic Wave Equation in Heterogeneous Media
Alain Bamberger, Alain Sei and Lionel Jannaud, Institut Francais du Petrole, France

Absorbing Boundary Conditions for Acoustic and Elastic Waves
Robert L. Higdon, Oregon State University

Numerical Solution of Helmholtz Problems in Unbounded Domains
Charles L. Goldstein, Brookhaven National Laboratory

The Coupling Method Between Variational Formulation and Integral Representation Applied to the Scattering of Electromagnetic Waves
Marc Lenoir, Laboratoire de Mecanique et Energetique, France

Numerical Experiments for Absorbing Boundaries

A Non-Reflecting Boundary Condition for Elastic Waves
Dan Givoli, Technion-Israel Institute of Technology, Israel and Joseph B. Keller, California Institute of Technology

Monday, July 16/10:30 AM
Minisymposium 4
Parallel Coordinates: A Tool for Visualizing Multidimensional Problems
By means of a multidimensional system of parallel coordinates, subsets of \( R^n \) are represented by (e.g., mapped nonprojectively onto) subsets of \( R^2 \). A duality between points \( \leftrightarrow \) line, and a new duality for convex sets are induced for \( n = 2 \) giving rise to optimal convexity algorithms. Representations of lines and hyperplanes in \( R^n \) are obtained enabling some geometrical constructions and the representation of polyhedra. The representation of certain convex and non-convex hypersurfaces is known. There is an algorithm for constructing and displaying interior/exterior or surface points (together with proximity information) for this class of hypersurfaces, with potential applications to process control.
The speakers in this minisymposium will describe mathematical foundations and the applications of this methodology to automatic conflict resolution in air traffic control, computer vision, exploratory data analysis in statistics and phase-space analysis of multidimensional bifurcations and chaos.
Organizer: Alfred Inselberg
IBM Scientific Center, and University of Southern California, Los Angeles

Mathematical Foundations of Parallel Coordinates and Some Applications
To be presented by organizer

Finding In Data Sets Using Parallel Coordinates
E. Weyman, George Mason University

Phase-Space Analysis for Multidimensional Chaos and Bifurcations Using Parallel Coordinates
D. J. Rivero, IBM Scientific Center, Venezuela

Monday, July 16/10:30 AM
Minisymposium 5
Theory and Algorithms for Symbolic Computing
Algorithmic research is one of the components that has made modern symbolic computation possible. In this minisymposium, the speakers will present several important aspects of current algorithmic research including work necessary to do a complete and effective implementation of the Risch algorithm for integration in finite terms, uses of probabilistic methods to speed up computations, the building area of symbolic approximations, and some recent research on the ubiquitous problem of algebraic simplification.
Organizer: B.F. Caviness
University of Delaware

Symbolic Integration in Computer Algebra
Manuel Bronstein, IBM T.J. Watson Research Center, Yorktown Heights

Approximating Solutions of Ordinary Differential Equations Symbolically
Robert Grossman, University of Illinois, Chicago

Simplification of Nested Radicals
Susi Landau, University of Massachusetts, Amherst

Probabilistic Methods in Symbolic Mathematics
B. David Saunders, University of Delaware

Monday, July 16/10:30 AM
Minisymposium 6
Communication Complexity and Lower Bounds
Since its introduction about ten years ago, communication complexity has become an established field of study within theoretical computer science. It has generated beautiful and interesting combinatorial problems, and has found applications in areas as diverse as VLSI theory, lower bounds on computation time, and circuit complexity. The minisymposium will consist of a survey talk, and several new results: an algebraic characterization of symmetric communication complexity, communication-space tradeoffs, and space-bounded communication complexity.
Organizer: Janos Simon
University of Chicago

Multiparty and Symmetric Communication Complexity
Laszlo Babai, University of Chicago, and Eotvos University, Hungary

Communication Complexity and Overview
To be presented by organizer

Resource Tradeoffs for Universal Hashing
Prasoon Tiwari, IBM T.J. Watson Research Center

Communication Space Tradeoffs
Paul Beame and Martin Tompa, University of Washington, and Pei-Yuan Pan, Lycoming College

Monday, July 16/10:30 AM
Minisymposium 7
Sampling Theory and Practice
The speakers in this minisymposium will present new developments in the theory of reconstruction of signal recovery from nonuniform samples or uniform samples when some of the samples are lost. Besides the theory, the speakers will describe the applications to speech processing, filtering signal from noise, and applications to coding theory.
Organizer: Farokh A. Marvasti
Illinois Institute of Technology

Reconstruction of a Speech Signal from Missing Samples
Peter Clarkson, Illinois Institute of Technology

Recovery of Signal from Noise Using Non-Uniform Samples
I. Podlipsky, Concordia University, Canada

A Real Analysis Approach to the Irregular Sampling Problem
Hans F. Feichtinger, University of Vienna, Austria, and University of Maryland, College Park; and Karlheinz Grochenig, University of Connecticut, Storrs

Nonuniform Sampling Theory as an Alternative to Error Correction Codes
To be presented by organizer
Monday, July 16/3:15 PM
Minisymposium 8
Disorderly Growth

Many simple models for growth under non-equilibrium conditions lead to the formation of complex, often disorderly patterns that closely resemble those seen in nature. Our understanding of these pattern formation processes has advanced substantially in recent years but even simple models such as DLA (Diffusion-Limited Aggregation) pose major theoretical challenges. It has been suspected for some time that a close relationship exists between the spatially chaotic structures generated by disorderly growth processes and the deterministic chaos associated with non-linear systems. However, a precise relationship between these phenomena has not yet been found.

The objective of this minisymposium is to review recent progress, indicate where understanding is lacking and identify promising research directions. The growth of complex (often fractal) structures will be emphasized as well as the physical properties of these structures. It is hoped that this will stimulate a productive exchange of ideas concerning the relationship between chaos and disorderly growth.

Organizer: Paul Meakin
E.T. du Pont de Nemours and Company, Wilmington

Random Walks and the Double-Layer Impedance
T.C. Halsey, University of Chicago

Dendrites-Round and Faceted
David A. Kessler, University of Michigan

The Growth of Fractal Aggregates
To be presented by organizer

Thin Film Growth and Erosion and the Shadow Instability
Joseph Rudnick, University of California, Los Angeles

Monday, July 16/3:15 PM
Minisymposium 9
Multidimensional Inverse Problems

The speakers in this minisymposium will present analytical and numerical strategies for solving multidimensional inverse problems. A review of new results in nonlinear equations and solutions of one- and two-dimensional inverse-scattering problems by nonlinear equations is presented. Stability of an explicit formula for recovering the potential from a three-dimensional fixed-frequency scattering data is investigated. A relaxed least-squares algorithm based on event recovery is examined for a non-linear inverse scattering inversion. Iteration of band-limited, aperture-limit data obtained from common shot experiments is discussed. New algorithms for computing electrical conductivity from a finite number of measurements are presented.

Organizer: John Lacey
Office of Naval Research

Nonlinear Wave Equations and Inverse Scattering in Multidimensions
Mark J. Ablowitz, University of Colorado, Boulder

Stability of the Inversion of 3D Fixed Frequency Scattering Data
Alex C. Ramm, Kansas State University

Coherency-Based Algorithms for Reflection Seismology
William W. Symes and Robert M. Lewis, Rice University

Velocity Analysis from Band-Limited, Aperture-Limited Data
Norman Bleistein, and Jack K. Cohen, Colorado School of Mines

Inverse Spectral Results for Bounded Domains
Joyce R. McLaughlin, Rensselaer Polytechnic Institute and University of California, Berkeley

Effects of Measurement Precision and Finite Numbers of Electrodes on Linear Impedance Imaging Algorithms
Margaret Cheney and David Isaacson, Rensselaer Polytechnic Institute

Monday, July 16/3:15 PM
Minisymposium 10
DIMACS

DIMACS, the Center for Discrete Mathematics and Theoretical Computer Science, is a science and technology center of the National Science Foundation. It is a project of four institutions—AT&T Bell Laboratories, Bell Communications Research, Princeton University and Rutgers University. The speakers will present an overview of the kinds of scientific issues that are of interest to DIMACS as well as some of its other activities, including its programs in discrete mathematics for high school teachers and students. Each year a substantial research activity at DIMACS revolves around a special year theme. The speakers will survey the research questions of the 1989-90 special year (discrete and computational geometry) and the 1990-91 special year (complexity theory of interactive computation).

Organizers: David Bright, Prateek, Princeton University

DIMACS Programs for High School Teachers and Students
Joseph G. Rosenblum, Rutgers University

Order Types in Discrete and Computational Geometry
Jacob E. Goodman, City College of New York

Complexity Theory of Interactive Computation
Andrew C. Yao, Princeton University

Probabilistic Analysis of Packing and Partitioning Problems
Edward G. Coffman, Jr., AT&T Bell Laboratories, Murray Hill, NJ

Spanning Trees of Different Weight
Paul Seymour, Bellcore, Morristown, NJ

Monday, July 16/3:15 PM
Minisymposium 11
Symbolic Computing in Science and Engineering

Symbolic computation has played an important but limited role in the twentieth century advancement of science and engineering. However the emergence of inexpensive but powerful workstations has made such techniques available to a much wider audience. In this minisymposium, the speakers will present some applications of these techniques. These include the use of window-based symbolic tools for engineering design, the solution of non-linear polynomial equations, the design of error-correcting codes and the preparation of numerical programs for parallel supercomputers.

Organizer: Anthony C. Henau
The RAND Corporation, Santa Monica, CA

Symbolic Computing in Engineering Design and Environments
Terry B. Cline, Hewlett Packard Laboratories, Palo Alto, CA

Symbolic Computation of Error Control Codes on Algebraic Curves
Martin Flascher, IBM Almaden Research Center, San Jose, CA

Solution of Polynomial Systems of Equations by Groebner Bases
Herbert Melenk, Konrad-Zuse-Zentrum fuer Informationstechnik, W. Germany

Automatic Production of Parallel Supercomputer Codes by Symbolic Computation
Paul S. Wang, Kent State University

Monday, July 16/3:15 PM
Minisymposium 12
Coding Theory

The speakers in this minisymposium will present recent results in several active areas of coding theory. The areas include the covering radius, relations between codes and designs, and algebraic-geometric codes.

Organizer: Vera Pless
University of Illinois, Chicago

Orphan Structure of the First Order Reed-Muller Code
Richard A. Brualdi, University of Wisconsin, Madison

Hadamard Matrices, Their Designs and Their Codes
Edward Assmus, Jr., Lehigh University

On the Covering Radii and Optimality of Algebraic Geometric Codes
Heeralal Janwa, Michigan State University

On Extremal Quaternary Codes with Automorphisms of Order a Power of Three
W. Cary Huffman, Loyola University of Chicago

Covering Radius of Shortened Codes and Applications
Gerard Cohen, Telecom Paris, France

Monday, July 16/3:15 PM
Minisymposium 13
Mathematical Contest in Modeling: Modeling at the Undergraduate Level

There will be a presentation by the SIAM winners of the Mathematical Contest in Modeling. This will be followed by presentations by practitioners in applied mathematics. The program will be of interest to anyone interested in the output from a weekend contribution of three undergraduates or interested in introducing an undergraduate course in modeling.

Organizer: Ben Fusaro
Salisbury State University, Salisbury, MD

Presenters and titles of presentations will be included in the Final Program

Monday, July 16/3:15 PM
Minisymposium 14
Orthogonal Polynomials and Special Functions
(Sponsored by the SIAM Activity Group on Orthogonal Polynomials and Special Functions)

The newly established SIAM Activity Group on Orthogonal Polynomials and Special Functions has chosen this minisymposium as one of the first of its organized events.

The speakers in this minisymposium will present an overview of some of the work in this field and its wide range of applications. Examples from computer algebra, computed tomography, topological dynamics, physics, optics and statistics will be presented.

Organizer: Charles F. Dunkl
University of Virginia

Computer Algebra, Positivity, and the Riemann Hypothesis
George Gasper, Northwestern University
Orthogonal Polynomials, Limit Periodic Jacobi Matrices and Julia Sets
Jeffrey S. Garnim, Georgia Institute of Technology
The Role of Orthogonal Polynomials in
Computed Tomography
Eric Todd Quinto, Tufts University
Symmetry and Orthogonal Polynomials in
Several Variables
To be presented by organizer

Tuesday, July 17/10:30 AM
Minisymposium 15
Analysis of Chaotic Experimental Data
Ideas from the mathematics of nonlinear chaotic dynamics have been successfully applied to the study of irregular physical processes. Most of the dynamical behavior complex enough to be interesting occurs in a multi-dimensional phase space. Yet most often a physical experiment monitors only a single scalar variable, and furthermore this measurement process introduces inevitable small errors. The successful reconstruction of the original dynamics of the system is thus a fundamental problem, and it requires a variety of techniques. The speakers in this minisymposium will examine topics relevant to a realization of an accurate and efficient reconstruction of the dynamical system.
Organizer: Stephen M. Hammel
Naval Surface Warfare Center, Silver Springs, MD
Low Dimensional Chaos in Laboratory
Experiments
Eric Kostelich, Arizona State University
Local Geometric Analysis for Topological
Dimensions
Guan-Hung Hsu, University of Missouri, and Robert
Cayley, Naval Surface Warfare Center
Methods for Analyzing Experimental Data:
Noise Reduction, Reconstruction and Prediction
Reggie Brown
University of California, San Diego
Noise Amplification and Takens' Embedding
Theorem
Martin Casdagli, Los Alamos National Laboratory

Tuesday, July 17/10:30 AM
Minisymposium 16
Application of Wavelets
Part II: Signal Processing
See description for Part I, Minisymposium 2 on July 16 at 10:30 AM
Organizer: Gregory Beylkin
Schlumberger-Doll Research, Ridgefield, CT
Reconstruction of Functions from the Wavelet
Transform Local Maxima
Stephane Mallat and Siten Zhong, Courant Institute
of Mathematical Sciences, New York University
Compression of Wavelet Decompositions and
Applications
B. Jawerth, University of South Carolina
Acoustic Signal Compression with Wave
Packets
Victor Wickerhauser, Yale University and University of
Georgia
Multiscale Stochastic Models and Signal
Processing
Alan S. Willsky, Kenneth C. Chou, Massachusetts
Institute of Technology; Albert Benveniste and
Michelle Basville, Institut de Recherche en
Informatique et Systemes Aleatoires, France

Tuesday, July 17/10:30 AM
Minisymposium 17
Analysis of Queueing Models
Queueing models play an important role in the
performance evaluation of systems, e.g. computer,
communications and manufacturing, in which users contend for the limited number of system resources. Performance, for others, such as throughputs, delays and utilizations, are used to characterize the system behavior. These measures are obtained from solutions of equations, such as difference and differen-
tial-difference equations, which often prove difficult to solve.
The speakers in this minisymposium will focus on several different approaches, both exact and approximate, for obtaining formulas for the perform-
ance measures of systems using queueing models.
Organizer: Charles Tier
University of Illinois, Chicago
Heavy Traffic Analysis of the Sojourn Time in
a Three-Node Jackson Network with Overtaking
Charles Kness, University of Illinois, Chicago and
John A. Morrison, AT&T Bell Laboratories, Murray Hill
Sojourn Time Distribution in the Finite
Capacity M/M/1-FS Queue
Charles Kness, University of Illinois, Chicago
Multidimensional Residues, Generating Func-
tions, and Their Applications to Queueing
Networks
Andrea Bertozzi, Princeton University, and James
McKenna, Belcore
Approximate Analysis of a Voice-Data
Communications Model
Margo L. Mankus and Charles Tier, University of
Illinois, Chicago

Tuesday, July 17/10:30 AM
Minisymposium 18
Graph Algorithms
(Sponsored by the SIAM Activity Group on
Discrete Mathematics)
Algorithmic graph theory has developed into an area
marked by a richness and diversity of research
results, of both fundamental interest and practical
application. The speakers in this minisymposium will explore
several current research directions in graph algorithms. These include the design of parallel
algorithms for searching undirected graphs and for
determining reachability in directed graphs, the
design of algorithms to recognize families of graphs
characterized by finite obstructions sets under
well-parallel-orders, and the design of efficient graph
algorithms through the use of parametric search.
Organizer: Greg N. Frederickson
Purdue University
A Framework for Parallel Algorithm Design for
Undirected Graphs
Vijaya Ramachandran, University of Texas, Austin
Towards Overcoming the Transitive-Closure
Bottleneck: Efficient Parallel Algorithms for
Planar Digraphs
Ming-Yang Kao, Duke University and Philip N. Klein,
Brown University
On Recognizing Graphs of Bounded Width
Michael A. Langston, University of Tennessee,
Knoxville and M. R. Fellows, University of Idaho
The Role of Parametric Search in the Design of
Efficient Graph Algorithms
To be presented by organizer

Tuesday, July 17/10:30 AM
Minisymposium 19
Numerical Methods in Control
The speakers in this minisymposium will present
some recent developments on computational
methods for control. This includes applications of
optimization techniques such as conjugate gradient
method for numerical solution of the algebraic
Riccati equations and Bryden's quasi-Newton
method for optimal control problems. Implementa-
tion issues arising in numerical approximations of
distributed parameter systems include precondi-
tioning techniques and moving grids strategies will be
discussed. In addition, the control of fluid flow
problems and discrete-time systems will be presented.
Organizers: H. Tran and K. Ito
North Carolina State University
Finite Element Methods in Control Design
John A. Burns, Virginia Polytechnic Institute and
State University, and University of Southern California
Control of Navier-Stokes Equations
Mihir Desai, University of Southern California
Fast Quasi-Newton Methods for Control
Carl T. Kelley, North Carolina State University
Conjugate Gradient Methods for Algebraic
Riccati Equations
Ali R. Ghavami, Charles S. Kenney, and Alan J. Laub,
University of California, Santa Barbara
Approximation in the Identification and
Control of Degenerate Distributed Parameter
Systems
I. Gary Rosen, University of Southern California

Tuesday, July 17/10:30 AM
Minisymposium 20
Interface Instabilities During
Solidification
Part 1 of 2
Situations involving a change in the phase of a
material, such as the growth of a crystal from its
molten state, lead to a wide variety of interesting free
boundary problems. For many important applica-
tions, it is necessary to generalize the classical Stefan
day by including such effects as solute diffusion,
fluid flow in the liquid phase, elastic effects in the
solid phase, or boundary forces from applied electric
magnetic fields.
In this first of two sessions, the speakers will
describe instabilities of the solid-liquid interface aris-
ing from the effects of solute diffusion and undercooling of the liquid phase.

Organizer: Geoffrey B. McFadden
National Institute of Standards and Technology
Kirk Braitkus, California Institute of Technology, and
Chaoqui Maibah, University Paris VII
Connections Between Bifurcation Structure
and Wavelength Selection in Cellular Patterns
Grown by Directional Solidification
Kostas Tsiourisiotis and R.A. Brown, Massachusetts
Institute of Technology
Kinetic Effects in Directional Solidification
Greg Merchant, Northwestern University
Laser Melting of Thin Films
Geoffrey B. McFadden, and S.R. Correll, National
Institute of Standards and Technology, and L.N.
Brush, University of Washington

Tuesday, July 17/10:30 AM
Minisymposium 21
Spatio-Temporal Patterns in Neural
Systems
This minisymposium will focus on topics connected
with dynamic behavior and pattern formation in
neurophysiology, cellular interactions, and neural
networks. The speakers will describe theoretical ap-
proaches to neural networks with refractory states,
the complex behavior of model neural systems in
which recurrent inhibitory loops and mixed
feedback are present, models of cellular and neural
interactions in which competition for dominance
leads to pattern selection, and models for oscillations
in populations of pancreatic cells, close relatives of
cerebral motor cells. This minisymposium will complement an
invited lecture by N. Kopell (Networks in Neurophys-
iology). After the formal presentations, a forum for
Tuesday, July 17/3:15 PM
Minisymposium 26
Chaos in Control Systems
(Sponsored by the SIAM Activity Group on Control and Systems Theory)
The study of chaos involves, nonlinear differential and difference equations, topological or differenti- al dynamics, strange attractors and their invariant measures, the reconstruction of state trajectories from observations, and bifurcation phenomena, all of which are of interest to control theorists. Control theorists have their own questions and concerns: What are good criteria for occurrence of chaotic behavior in nonlinear systems? Can bounds be prescribed? Are chaotic systems good models for naturally occurring wide-band noise? The speakers in this minisymposium will address such issues and specifically consider: How can complex time-series be extrapolated? When and why does chaos arise in adaptive controllers, computer-controlled systems (and others with step-star- quantizers) and the quadratic dynamics of the Ricci equations of Kalman filtering.
Organizer: David L. Elliott
Washington University

Ahmed F. Ghorbal and Omar M. Knio, Massachus- setts Institute of Technology
The Random Vortex Method and Flow Past a Cylinder
Claude Greengard, IBM T.J. Watson Research Center, Yorktown Heights
The Application of Vortex Methods to Mathematical Computation
Michael Shelley, University of Chicago
On Vortex Sheet Roll-up at High Reynolds Numbers
Greg Tryggvason, University of Michigan
Computation of Vortex Sheet Roll-Up
To be presented by organizer
Optimal State Space Reconstructions for Nonlinear Prediction of Noisey Chaotic Time Series
Martin Casdagli, Los Alamos National Laboratory
Bifurcations and Complicated Dynamics in Continuous-Time Adaptive Control Systems
Fatih M.A. Salam, Michigan State University
Adopting a Prescriptive Attitude Toward Complicated Dynamical Phenomena in Feedback Control Systems
David F. Delchamps, Cornell University
Predictability and Unpredictability in Kalman Filtering
C.T. Byrnes, T. McGregor, Washington University;
and A. Lindquist, Royal Institute of Technology, Sweden

Tuesday, July 17/3:15 PM
Minisymposium 29
Cryptography
The speakers in this minisymposium will highlight the variety of recent work in cryptography: new techniques both for performing cryptographic tasks and for attacking certain cryptosystems, and theoretical investigation of the inherent cost of solving computational problems.
Organizer: Stuart Haber
Belcore, Morristown, NJ
Experimental Quantum Cryptography
Gilles Brassard, Charles H. Bennett, and John Smolin, Universite de Montreal, Canada
Locally Random Reductions: Theory and Applications
Joan Feigenbaum, AT&T Bell Laboratories, Murray Hill, NJ
(Title to be announced)
Amos Fiat, Tel Aviv University, Israel
Progress in Factoring
Arjen Lenstra, Belcore

Tuesday, July 17/7:15 PM
Minisymposium 30
The Geometry and Topology of DNA (Sponsored by the Society for Mathematical Biology)
The DNA of a living organism is a complex thread-like object which experiences interesting and nontrivial geometric and topological changes during vital cellular life processes. During the last decade, molecular biologists have developed techniques which use differential geometry and knot theory in the analysis of experiments on circular DNA. The aim of these experiments is to understand and quantify spatial molecular conformation and DNA enzyme mechanism. This new and perhaps unexpected interplay between experimental molecular biology and "pure" mathematics will be the subject of this minisymposium.
Organizer: De Witt L. Sumners
Florida State University
The Biological Implications of DNA Topology
Nicholas R. Cozzarelli, University of California, Berkeley
The Topology of DNA Recombination
To be presented by organizer
The Geometry of Supercollie DNA
James H. White, University of California, Los Angeles
Topological Quantum Field Theory and DNA Topology
Louis H. Kauffman, University of Illinois, Chicago

Wednesday, July 18/3:15 PM
Minisymposium 31
Geometric Singular Perturbation Methods with Applications to Travelling Waves
Applications (Part 1 of 2)
(A panel discussion sponsored by the SIAM Activity Group on Dynamical Systems)
In recent years, many different methods have been developed to study the ordinary differential equations resulting from the existence and stability questions for travelling waves. In complicated systems, the methods achieve their strongest results in the cases of singularly perturbed problems. On the other hand, singular structures are a common feature of many physical phenomena such as phase transitions in materials science, fast chemical reactions, and nerve activation. The aim of this minisymposium is to discuss the needs of the applications and then to compare and contrast the different methods in the context of those applications.
This minisymposium is organized as a two part panel discussion. The first part will address applications.
Organizer and Moderator: Christopher K.R.T. Jones
University of Maryland, College Park
Panels:
Martin Feinberg, University of Rochester
Paul Fife, University of Utah
James Keener, University of Utah
Nancy Kopell, Boston University
M. Mimura, Hiroshima University, Japan

Wednesday, July 18/3:15 PM
Minisymposium 32
Optimal Design of Structures and Materials (Part 1 of 2)
One obtains an optimal design when the best use is made of available resources. Across a broad class of applications this "best use" is accomplished by a fine-scale mixing of the available materials. Experience with this phenomenon has led to the isolation of several best mixing strategies, called optimal microstructures.
In this minisymposium, the speakers will present recent progress in the systematic use of these microstructures as building blocks in optimal design procedures. In addition, the effect of such microstructure on the reflection and propagation of waves will be addressed. Our understanding of optimal microstructures is limited by our knowledge of material properties. The speakers will present recent progress in shape-memory and ferromagnetic materials.
Organizer: Steven Cox
Rice University
Shape Optimization for Minimum Compliance in Plane Stress Using Optimal Microstructures
Gregoire Allaire and Robert V. Kohn, Courant Institute of Mathematical Sciences, New York University
Topology and Shape Optimization of Three-Dimensional Shell Structures
Noboru Kikuchi and Katsuyuki Suzuki, University of Michigan, Ann Arbor
Scale Effects in the Optimal Design of a Microstructured Medium Against Buckling
Nicholas Triantafyllidis, University of Michigan, and Martin Bendsoe, The Technical University of Denmark, Lyngby, Denmark
Stress Minimum Forms for Elastic Solids
Lewis Wheeler, University of Houston
Theory of Games Approach to Structural Design
Konstantin Lurie, Worcester Polytechnic Institute

Wednesday, July 18/3:15 PM
Minisymposium 33
Nonlinear Optimization I
(Sponsored by the SIAM Activity Group on Optimization)
The development of algorithms and software for the solution of optimization problems with nonlinear constraints is of vital importance. Of special interest are algorithms for the solution of large scale problems. Applications include chemical engineering, process optimization, aircraft design, and financial planning. The speakers in this minisymposium will explore three of the leading approaches for the solution of nonlinear programming problems: interior point methods, sequential quadratic programming, and decomposition methods.
Organizer: Jorge Moré
Argonne National Laboratory
Issues in Using Reduced Hessians for Successive Quadratic Programming
Richard H. Byrd and Yuanfou Xie, University of Colorado, Boulder
Accelerating the Convergence of Interior Point Methods
Richard A. Tapia and Yin Zhang, Rice University
Interior Methods for Nonlinearly Constrained Optimization
Margaret Wright, AT&T Bell Laboratories, Murray Hill, NJ
Coercive Methods for Decomposition of Multicommodity Generalized Network Problems
Stavros Zenios and Pamela K. Armstrong, University of Pennsylvania

Wednesday, July 20/3:15 PM
Minisymposium 34
Recent Developments on Newton's Method
According to a theorem of Dennis and Moré, the full-step Newton iteration is the generic superlinearly convergent method in the vicinity of regular roots. Its perceived drawbacks are the cost of forming and factoring the Jacobian and the need to enforce or accelerate convergence, especially in the vicinity of singularities. In this minisymposium, the speakers will present simple line-search strategies to improve the local and global convergence properties, and it will be shown that, for some problem classes, Newton-steps can be computed at a cost of the same order of magnitude as the cost of evaluating the vector-functions.
Organizer: Andreas Griewank
Argonne National Laboratory
Treating Dependencies in Interval Newton Methods with the Augmented System
R. Baver Kearfott, University of Southwestern Louisiana
Efficient Implementation of Newton's Method for Optimal Control
Joseph Dunn, North Carolina State University
A New-Line Search for Gauss-Newton on Potentially Singular Problems
Richard Drake, Washington State University
The Computational Complexity of Newton-Steps on Composite Functions
To be presented by organizer

Wednesday, July 18/3:15 PM
Minisymposium 35
Fluid-Dynamic Stability (Part 2 of 2)
(See description for Part I, Minisymposium 25 on July 17 at 3:15 PM)
The speakers in this minisymposium will present recent results on the stability properties of fluid flows
The Robustness of Boundary Stabilized Elastic Systems with Respect to Time Delays
Richard Datko, Georgetown University

Operator Theory Methods for Robust Control
Troyhon T. Georgiou, University of Minnesota, Minneapolis, and Malcolm C. Smith, The Ohio State University

Affine Control Problems with Perturbations
Leszek S. Zaremba, University of Michigan

To be presented by organizer

Algorithms for DNA Sequence Matching and Analysis
(Sponsored by the Society for Mathematical Biology)
This session focuses on new algorithms for use in DNA sequence and analysis. The problems solved by these algorithms have recently taken on new importance with the start of the Human Genome Project and the enormous amount of partial and complete DNA sequence data and map information that is expected to be generated in the near future. Most algorithms in this problem domain have been based on fairly straightforward dynamic programming. With increasing amounts of data and increasing sequence and pattern lengths, much more attention to time and space efficiency will be needed. The talks in this session address this issue for different specific problems in DNA analysis. Talks show how to speedup dynamic programming for particular problems, or how to avoid dynamic programming entirely for problems where dynamic programming has previously been the method of choice in DNA algorithms.

An Overview of Old and New Approaches to DNA Sequence Analysis
To be presented by organizer

Analysis of Restriction Maps
Weib Miller, Pennsylvania State University, University Park

Sparse Dynamic Programming
Raffaele Giancarlo, Columbia University

Sublinear Algorithm for Similarity Searching
Gene Myers, University of Arizona

Solving Large Integer Programming Problems
Many practical problems fall into the class of combinatorial optimization problems, including the optimal design of VLSI circuits, the laying out of circuits to minimize the area dedicated to wires, the dispatching and routing of vehicles, the scheduling of crews to flights, as well as problems in physics and chemistry such as the determination of ground states of spin glasses, and determining the minimum energy states for alloy construction. Only recently has it been possible to solve problems having more than a few hundred variables. The speakers in this minisymposium will present recent research in this area of polyhedral theory, constraint generation, problem reformulation, linear programming technology and heuristics which allow the solution of such problems.

Extended Coefficient Reduction Methods for 0-1 Programming
Brenda Dietrich and Lew erroano Escudero, IBM T.J. Watson Research Center, Yorktown Heights, NY

Approximation Algorithms for Constrained Machine Scheduling Problems
Leslie Hall, Princeton University, and David Shmoys, Cornell University

(S.K.) Cover Facet Inequalities for the Generalized Assignment Problem
Elsie Gottlieb, CUNY-Baruch College

Extended Coefficient Reduction Methods for 0-1 Programming
Brenda Dietrich and Lew erroano Escudero, IBM T.J. Watson Research Center, Yorktown Heights, NY

Approximation Algorithms for Constrained Machine Scheduling Problems
Leslie Hall, Princeton University, and David Shmoys, Cornell University

(S.K.) Cover Facet Inequalities for the Generalized Assignment Problem
Elsie Gottlieb, CUNY-Baruch College

Parallel Optimization Methods
(Sponsored by the SIAM Activity Group on Optimization)
Optimization problems arise in a wide variety of scientific and engineering applications. Although significant progress has been made in optimization methodology, the time required to solve difficult large problems can be prohibitive. The potential power of parallel computers offers some hope of obtaining more rapid solutions, hence expanding the class of problems that can be considered "solvable." The solution of optimization problems in parallel poses new challenges. Factors that determine the efficiency of a sequential method often differ and sometimes are in contrast to those determining the efficiency of a parallel approach.

The speakers in this minisymposium will address some of the problems faced and ideas developed for solving optimization problems in parallel.

Organizer: Ariela Sofer
George Mason University

Parallel Proximal Point Decomposition of Linear Programming Constraints
Renato De Leone, and Ohri Mangasarian, University of Wisconsin, Madison

Parallel Computation of Convex Hull in R^d by Linear Programming
J.B. Rosen and G.L. Xue, University of Minnesota, Minneapolis

Massively Parallel Algorithms for Multicommodity Networks
Yair Censor, University of Haifa, Israel, and Stavros Zenios, University of Pennsylvania

A General Purpose Parallel Algorithm for Unconstrained Minimization
Stephen Nash and Ariela Sofer, George Mason University

Optimal Design of Structures and Materials (Part 2 of 2)
(See previous description for Part 1, Minisymposium 32, July 18 at 3:15 PM)
Organizer: Steven Cox
Rice University

Plane Waves in Layered Elastic Media
Rouben Rostamian, University of Maryland, Baltimore County

A Dispersive Effective Medium for Wave Propagation in Periodic Composites
Fadl Santosu, University of Delaware, and William W. Symes, Rice University

Young's Measure Minimizers in Ferromagnetism
Robert Rogers, Virginia Polytechnic Institute and State University

Domain Structure in Ferromagnetic Materials and the Coercivity Paradox
Rick D. James, University of Minnesota, Minneapolis

Nonlinear Multipolar Fluids: A New Model for Viscous Fluid Flows
Frederick Bloom, Northern Illinois University

Existence and Stability of Plane Poiseuille Flow of a Nonlinear Incompressible Bipolar Fluid
Hamed Bellout, Northern Illinois University

Theoretical and Numerical Structure for Unstable Detonations
Anne Bourlioux, Princeton University

The Convergence of the Vortex Method for Vortex Sheets
John S. Lowengrub, Stanford University

New Methods in Control of Distributed Parameter Systems
The speakers in this minisymposium will survey some of the important new methods in the study of control of distributed parameter systems. They will discuss the Hilbert uniqueness method, the use of multiplier methods and nonharmonic Fourier series, the boundary element method, and control and stabilization of systems with hidden variables such as viscoelastic systems.

Organizers: David L. Russell and Robert L. Wheeler, Virginia Polytechnic Institute and State University

The Boundary Element Methods for Boundary Control of Distributed Parameter Systems
Guoqiong Chen and Jianxin Zhou, Texas A&M University

Exact Boundary Controllability in Short Time and Rapid Boundary Stabilization
Vilmos Komornik, Université de Bordeaux I, France

The Hilbert Uniqueness Method: Origins and Applications
John E. Lagnese, Georgetown University

On Control and Stabilization of Systems with Internal Variables
G. Leugering, Georgetown University

Views on Robustness of Control Systems
Robustness of control systems is roughly defined as the ability to provide good performance (in particular, stability) under perturbations within some specified bounds. The last decade witnessed a rapid growth of interest in the robustness area. The four talks in this session represent four different approaches to robustness. The paper by R. Datko shows how a feedback algorithms for boundary control of large systems fail to stabilize in an arbitrarily small time delay is present in the feedback loop. M. Smith will give a characterization of nondestabilizing parametric perturbations by boundary perturbations. The paper by L. Zaremba contributes to building bridges between differential games and robust control theory. Finally, the paper by A. Olbrot elaborates on stability margins, how to define them in general and how to calculate them.

Andrzej W. Olbrot
Wayne State University

Linear Programming Tools for Integer Programming
Robert E. Bixby, Rice University

Optimal Design of Structures and Materials (Part 2 of 2)
(See previous description for Part 1, Minisymposium 32, July 18 at 3:15 PM)
Organizer: Steven Cox
Rice University

Plane Waves in Layered Elastic Media
Rouben Rostamian, University of Maryland, Baltimore County

A Dispersive Effective Medium for Wave Propagation in Periodic Composites
Fadl Santosu, University of Delaware, and William W. Symes, Rice University

Young's Measure Minimizers in Ferromagnetism
Robert Rogers, Virginia Polytechnic Institute and State University

Domain Structure in Ferromagnetic Materials and the Coercivity Paradox
Rick D. James, University of Minnesota, Minneapolis
Linear Programming — Theory and Practice

The speakers of this minisymposium will present some recent results relating to theoretical issues in linear programming, including duality, irreducible linear programs, randomized algorithms in parallel, and continuous trajectories of interior point algorithms. One of the speakers will also present results relating to the practical implementation of an interior point algorithm for network flow models.

Organizer: Ilan Adler
University of California, Berkeley

Parallel Linear Programming in Fixed Dimension Almost Surely in Constant Time
Noga Alon, Tel-Aviv University, Israel and Nimrod Megiddo, IBM Almaden Research Center, San Jose, CA

On the Continuous Trajectories for a Potential Reduction Interior Point Algorithm
Renato D.C. Monteiro, AT&T Bell Laboratories, Holmdel, NJ

Irreducible Dual Classes of Linear Programs
Ilan Adler and Alan Sanstad, University of California, Berkeley

An Implementation of the Dual Affine Scaling Algorithm for Network Flow Problems
Mauricio G.C. Resende, AT&T Bell Laboratories, Murray Hill, NJ and Geraldo Veiga, University of California, Berkeley

Viscous Sheets and Drops on an Inclined Plane
Leslie Hocking, University College London, United Kingdom

Interfacial Dynamics in the Pulmonary System
D. Halsen and James B. Groeteb, Northwestern University

Control and Identification of Distributed Parameter Systems (Part 1 of 2)
(Sponsored by the SIAM Activity Group on Control and Systems Theory)

The subject of this minisymposium is control and identification of systems represented by partial differential equations. The speakers will address several issues including open-loop stability, stabilization, optimal control, approximation theory for control system design, and combined control/structure design and system identification. While some of the theoretical methods apply to several classes of distributed systems, the specific examples involve distributed models of flexible mechanical systems, particularly beams and rods. Both theoretical and numerical results will be discussed in the minisymposium.

Organizer: J.S. Gibson
University of California at Los Angeles

Boundary Stabilization of Nonlinear Beams
John E. Lagnese, Georgetown University

Preservation of Stabilizability and Detectability of the Control System in Approximation
Chunming Wang, University of Southern California

A Method for Combined Control-Structure Optimization
Mark H. Milman, Jet Propulsion Laboratory

Thursday, July 19/10:30 AM
Minisymposium 45
Free Boundary Problems in Fluid Mechanics (Part 1 of 2)

The flow of a viscous fluid with a free surface occurs in a host of applications. Examples of these are coating flows, flows in a Hele-Shaw cell and the flows of films in the pulmonary system. Some questions associated with the modeling and evolution of these flows are the behavior of the contact line, the stability of the interface and the effects of surfactants on the stability and motion. The speakers will address these questions.

Organizer: Michael J. Miksis
Northwestern University

Viscous Fingering with a Moving Contact Line
Steven J. Weinstein, Eastman Kodak Company, Rochester, NY; Elizabeth B. Dussan V; Schlumberger-Doll Research, Ridgefield, CT, and Lyle H. Ungar, University of Pennsylvania

Fingering Instabilities and Spreading Liquid Layers
Eric Herbolzheimer, Sandra M. Troian, and Samuel A. Safar, Exxon Research and Engineering Company, Annandale, NJ

Thursday, July 19/10:30 AM
Minisymposium 44
Reliability of Finite Element Computation

Part I: A Posteriori Error Estimation and Adaptive Computational Methods of Transient Problems

The complexity of modern scientific and engineering computations has led to a need for greater software reliability. Research activity in developing adaptive numerical procedures for partial differential equations arose in part to address this need. Current state-of-the-art adaptive techniques automatically enhance solution bases by mesh refinement, mesh redistribution and/or variable order of accuracy. Efficient, accurate and robust a posteriori error estimates add the necessary measure of confidence in the computed results. While work in this area is far from complete, it is desirable from the point of view of reliability to also assess and control, where possible, the errors associated with idealization in a systematic manner, i.e. treat mathematically uncertainties inherited from the selection of computational method for the particular choice of boundary value problem intended to model the physical, chemical or biological phenomena being investigated. Issues of errors present in numerical computation and their relation to mathematical modeling are addressed in a two-part symposium having the titles:

Part I: A Posteriori Error Estimation and Adaptive Computational Methods of Transient Problems

Part II: Mesh Refinement and Discretization Errors in Computational Solid Mechanics

The speakers in this session will present recent results on a posteriori error estimation and adaptive computational methods focussing on the important problem of balancing spatial and temporal errors in transient problems.

Organizers: Joseph E. Flaherty, Rice University, and Soren Jensen, University of Maryland, Baltimore County

A Posteriori Error Estimates and Adaptive Refinement for Elliptic Equations
Randolph E. Bank, and Bruno D. Welfert, University of California, San Diego

Error Balancing and Control in Method of Lines Solvers for Time-Dependent Partial Differential Equations
Martin Bernits, University of Leeds, United Kingdom

A Posteriori Error Estimation and Adaptive Mesh Refinement for Transient Flow Problems
Richard E. Ewing, University of Wyoming

Error Estimation and Adaptive Solution of Parabolic Equations Using Finite Element-Galerkin Discretizations in Space and SBK's in Time
Peter K. Moore, Tulane University

Thursday, July 19/10:30 AM
Minisymposium 43
Geometric Singular Perturbation Methods with Applications to Travelling Waves (Part 2 of 2)

(See description for Part 1, Minisymposium 31, July 18 at 3:15 PM)

(Sponsored by the SIAM Activity Group on Dynamical Systems)

In recent years many different methods have been developed to study the ordinary differential equations resulting from the existence and stability questions for travelling waves. In complicated systems, the methods achieve their strongest results in the cases of singularly perturbed problems. On the other hand, singular structures are a common feature of many physical phenomena, such as phase transitions in materials science, fast chemical reactions, and nerve activation. The aim of this minisymposium is to firstly discuss the needs of the applications and then to compare and contrast the different methods in the context of those applications.

This minisymposium is organized as a two part panel discussion. The second part will address methods.

Organizer and Moderator: Christopher K.R.T. Jones
University of Maryland, College Park

Panelists:
Jack Dockery, Montana State University
Robert Gardner, University of Massachusetts
Y. Nishiura, Hiroshima University, Japan
K. Sakamoto, Emory University
David Terman, Ohio State University
Annual Meeting

MINISYMPOSIA

Langenl Studies of Ion Motion in Framework Electrolytes
Mark Rainer, Rush Medical College and Northwestern University; and Abraham Nitzen, Tel Aviv University, Israel

Thursday, July 19/4:15 PM
Minisymposium 48
Interior-Point Methods for Linear Programming
(Sponsored by the SIAM Activity Group on Optimization)

Speakeheded by Karmarkar's linear programming algorithm and many of his novel ideas, research related to interior-point algorithms has revolutionized the field of linear programming, both from a theoretical and a computational viewpoint. The speakers in this minisymposium will present some of the most recent developments in this field.

Organizer: Robert M. Freund
Massachusetts Institute of Technology

Large Steps Potential Reduction Algorithms for Linear Programming
Claudio Gonzaga, Universidade Federal do Rio de Janeiro, Brazil

Recent Results and Perspectives on Solving Linear Programming from Infeasible "Warm Start"
To be presented by organizer.

"Anticipated" Behavior of Interior Point Algorithms for Linear Programming
A. Mizuno, Tokyo Institute of Technology, Japan; Michael J. Todd, Cornell University; and Yinyu Ye, University of Iowa

"Anticipated" Behavior of Path-Following Algorithms for Linear Programming
S. Mizuno, Tokyo Institute of Technology, Japan; Michael J. Todd, Cornell University; and Yinyu Ye, University of Iowa

Thursday, July 19/4:15 PM
Minisymposium 49
Integer Programming

The speakers in this minisymposium will address four topics related to the theory and application of integer programming. Tabu search as an alternative to integer programming for multi-machine scheduling problems will be discussed as well as the use of integer programming in propositional calculus. Solution techniques for binary programming problems and for integer programs, viewed as linear programs with exponentially many constraints, will also be discussed.

Organizer: Neal D. Glassman
Air Force Office of Scientific Research

Expedients for Solving Some Specially-Structured 0-1-Programming Problems
Warren Adams, Clemson University

Scheduling on Parallel Processors with Linear Delay Penalties Using Tabu Search
J. Wesley Barnes, and Manuel Laguna, University of Texas, Austin

Solving LP Problems with Exponentially Many Constraints
Pravin Vaidya, University of Illinois, Urbana-Champaign

Branch-and-Cut Solution of Inference Problems in Propositional Logic
John Hooker, Carnegie-Mellon University, and C. Pediki, Ecolle El Ghazali, Constantine, Algeria

Thursday, July 19/4:15 PM
Minisymposium 50
Free Boundary Problems in Fluid Mechanics (Part 2 of 2)
(See description for Part 1, Minisymposium 45, July 19 at 10:30 AM)
Free boundary problems occur in many areas of fluid mechanics. Some examples are the dynamics of bubbles, films and fluid layers. One of the physical parameters associated with the solution of the interface is surface tension. It influences the stability and evolution of the interface. The speakers in this session will discuss several problems in this area.

Organizer: Michael J. Miksis
Northwestern University

On the Stability of Rising Gas Bubbles
Daniel Miron, California Institute of Technology

Numerical Computation of Solitary Waves of Finite Amplitude
Jean-Marc Yandus-Brodey, University of Wisconsin, Madison

Nonlinear Rupture of Free Films
Thomas Enneux and S.H. Davis, Northwestern University

Interaction of a Shock Wave with an Interface Separating Two Fluids
Michael J. Miksis, Northwestern University, and Lu Ting, Courant Institute of Mathematical Sciences, New York University

Thursday, July 19/4:15 PM
Minisymposium 51
Granular Flow
The subject of dynamical flow of granular materials (such as sand) has enjoyed a surge of interest. The speakers in this minisymposium will present the two quite distinct, reasons for this. Recent detailed experiments have helped determine the essential ingredients that describe real granular flow and thus characterize the governing dynamical equations. From a much broader perspective, sandpiles provide a prototypical dynamical system for discussing a new and far-reaching (it still speculative) theory known as self-organized criticality. In both instances, models using cellular automaton dynamics are playing a helpful theoretical role.

Organizer: Kurt Wiesenfeld
Georgia Institute of Technology

Self-Organized Criticality in Sandpiles and Earthquakes
Per Bak, Brookhaven National Laboratory

Time-Dependence and Pattern Formation in Flowing Sand
Robert P. Behringer, Duke University

Critical Dynamics of an Evolving Sandpile
G. A. Held, IBM T. J. Watson Research Center; Per Bak, C. Tung, Brookhaven National Laboratory; and K. Wiesenfeld, Georgia Institute of Technology

Flow in Granular Materials
Sidney Nagel, University of Chicago

Thursday, July 19/4:15 PM
Minisymposium 52
Control and Identification of Distributed Parameter Systems (Part 2 of 2)
(Sponsored by the SIAM Activity Group on Control and Systems Theory)
(See description for Part 1, Minisymposium 46, July 19 at 10:30 AM)

Organizer: J. S. Gibson
University of California, Los Angeles

Control and Approximation of Thermosclerotic Systems
Zhuangyi Liu, University of Minnesota, Duluth

LQG Optimal Control of a Thermoelastic Beam
J.S. Gibson, University of California, Los Angeles, and I.G. Rosenberg, University of Southern California

Shape Identification Problems Arising in Thermotropography
Fumio Kojima, ICASE-NASA Langley Research Center; H. T. Banks, University of Southern California; and W. P. Winfree, NASA Langley Research Center

Thursday, July 19/4:15 PM
Minisymposium 53
Extreme-Point Results in Robust Control
A central problem in robust control is to determine whether every member in a family of polynomials (or rational functions) possesses a common desired property. Extreme-point results deal with the possibility of establishing such properties from evaluations of the family's extreme points. The proposed session will present some of the most recent results in this area of research.

Organizers: C. V. Hollot (Chair), University of Massachusetts, Amherst; and B. Ross Barmish, University of Wisconsin, Madison

Robust Stabilization of Interval Plants with First Order Compensators
C. V. Hollot, University of Massachusetts, Amherst; F. J. Kraus, Swiss Federal Institute of Technology, ETH-Zentrum, Switzerland; R. Tempo, Politecnico di Torino, Italy; and B. Ross Barmish, University of Wisconsin, Madison

Extremal Properties of Kharitonov Segments and Their Role in Robust Stability of Interval Control Systems
Herve Chapellalt, M. Dales, and S. P. Bhatacharya, Texas A&M University

Vertex Implications for Frequency Response of Interval IIR Filters
N. K. Bose, Pennsylvania State University

Robust Schur Stability of Interval Polynomials
M. Mansour, Swiss Federal Institute of Technology, ETH-Zentrum, Switzerland

Thursday, July 19/4:15 PM
Minisymposium 54
Nonlinear Patterns and Dynamical Behavior of Biological Reaction-Diffusion Systems
With the increasing use of mathematical analysis in the life sciences, the application of reaction-diffusion equations to biological processes has become of interest to many fields. Developmental biology and population ecology have proven themselves to be especially fruitful ground for such an endeavor. The minisymposium will concentrate on specific models in these two areas and present analysis of their dynamical behavior by a variety of analytical and numerical techniques. Emphasis will be given to pattern formation when diffusion is present or the possibility of deterministic chaos in its absence.

Organizer: David J. Wollkind
Washington State University

A Cascading Development Model for Amphibian Embryos
Kenneth R. Yates, Southern Oregon State College

Complex Spatial Patterns from Tissue Interactions
Valipour and S. Ganruan, University of Surrey, United Kingdom
Friday, July 20/10:30 AM  
Minisymposium 55  

Computational Integer Programming  
Tremendous strides have been made in the last several years in the computational aspects of integer programming and combinatorial optimization. A variety of changes and ideas have contributed. Computer architectures have certainly played a role, and should lead to effective parallelization of the basic branch-and-bound search. Recent mathematical developments have been even more important, including ideas from polyhedral combinatorics and the theory of integral lattices.  
Organizer: Robert E. Bixby  
Rice University  

Strategies for Parallel Integer Programming Algorithms  
Russell A. Rushmeier, Georgia Institute of Technology, and Rice University  

A Computational Approach to the Max-Cut Problem  
Sanjay Saigal, Rice University  

A Branch and Cut Optimizer for Set-Partitioning Problems  
Kartal L. Hoffman, George Mason University, and Manfred Padberg, New York University  

Computational Experience with the Lovasz-Szegedy Basis Reduction Algorithm for Mixed Integer Linear Programming  
W. Cook, Bellcore and T. Rutherford, University of Western Ontario, Canada; and H. Scarf, Yale University  

Friday, July 20/10:30 AM  
Minisymposium 56  

Interior-point Algorithms for Nonlinear Programming  
The aim of this minisymposium is to describe recent developments and provide a perspective on new directions in interior-point algorithms for nonlinear programming, such as quadratic and convex programming. The speakers will present both theoretical and computational results for various nonlinear optimization problems.  
Organizer: Yinyu Ye  
University of Iowa  

New Algorithm for Minimizing Convex Function Over Convex Sets  
Pravin M. Vaidya, University of Illinois, Urbana-Champaign  

Path-Following Methods for Convex Programming  
Jie Sun and Sanjay Mehrotra, Northwestern University  

Newton’s Method for Parametric Center Problems  
Robert Freund and Kok Choon Tan, Massachusetts Institute of Technology  

Computational Aspects of an Interior-point Algorithm for Quadratic Problems with Box Constraints  
Panos Pardalos and Chi-Geun Han, Pennsylvania State University, and Yinyu Ye, University of Iowa  

(Title to be announced)  
Yuri E. Nesterov and Arkady S. Nemirovsky, USSR Academy of Sciences, USSR  

Friday, July 20/10:30 AM  
Minisymposium 57  

Nonlinear Optimization  
(See description for Part I, Minisymposium 33, July 18 at 3:15 PM)  
Nonlinear optimization models are a powerful class of models with numerous applications. Their flexibility carries a price since they can be much more difficult to solve than linear models. The speakers in this minisymposium will address the following topics—first, the uses of nonlinear optimization, describing multilevel optimization models and an application of nonlinear optimization to neural networks, and second, methods for their solution, with discussions of the theory and practical behavior of particular optimization algorithms.  
Organizer: Stephen G. Nash  
George Mason University  

Multilevel Optimization  
Zhiyong Bi, Paul Calamai and Andrew Conn, University of Waterloo, Canada  

Neural Nets, Digt Recognition, and Nonlinear Programming  
Garth P. McCormick, George Washington University  

Theory and Practice with the Symmetric Rank One Update for Unconstrained Optimization  
Richard H. Byrd, Hunaid Khattan and Robert B. Schnabel, University of Colorado, Boulder  

Globally Convergent Inexact Newton Methods  
Stanley C. Eisenstat, Yale University; and Horner F. Walker, Utah State University  

Friday, July 20/10:30 AM  
Minisymposium 58  

Reliability of Finite Element Computations  
Part II: Control of Idealization and Discretization Errors in Computational Solid Mechanics  
(See Part I — A Posteriori Error Estimation and Adaptive Computational Methods of Transient Problems, for description, Minisymposium 44, July 19 at 10:30 AM)  
The speakers in Part II will present an assessment of the influence of various choices of constitutive equations, geometry, boundary and junction conditions of the "exact" and discrete solutions of problems.  
Organizers: Joseph E. Flaherty, Rensselaer Polytechnic Institute, and Soren Jensen, University of Maryland, Baltimore County  

Reliability Problems of Idealizations in Solid Mechanics  
Ivo Babuska, University of Maryland, College Park  

Uncertainties Associated with Constitutive Law Parameter Identification  
Kenneth L. Jerina, Washington University  

Mathematical Treatment of Problems Appearing in the Study of Some Models for Plasticity  
Eric Bonnietter, Centre de Mathématiques Appliquées, Ecole Polytechnique, France  

Mathematical Models for Structural Connecions  
Bonna A. Seabro and Jacob Bortman, Washington University  

Friday, July 20/10:30 AM  
Minisymposium 59  

Fortran 90: The Language, Numerical Applications, and Implementation Issues  
(Sponsored by ACM-SIGNUM)  
Fortran 90 is the draft standard for Fortran, currently in the final stages of approval. The proposed language is an upward compatible extension of Fortran 77 with additional features in seven major areas: arrays, numerical computation, parameterized intrinsic data types, user-defined data types, pointers, and data abstraction. The speakers in this minisymposium survey Fortran 90 as an extension of Fortran 77, discuss the use of Fortran 90 to develop portable numerical software in root-finding, and dense and sparse linear algebra, and describe one implementation of Fortran 90 in progress. The minisymposium will end with a question/answer session about Fortran 90.  
Organizer: Brian T. Smith  
University of New Mexico  

A Survey of the Fortran 90 Programming Language  
Jenrod L. Wegener, Amoco Production Research  

Using Fortran 90 for Zero-Finding Algorithms  
To be presented by organizer  

Using Fortran 90 for Data Abstraction—Multiprecision Packages and Varying Character Packages  
J. L. Schonfelder, University of Liverpool, United Kingdom  

Using Fortran 90 for Linear Algebra Packages  
John K. Reid, AERE Harwell, United Kingdom  

A Fortran 90 to Fortran 77 Translator Using TOOLPACK 8x  
Malcolm S. Cohen, Numerical Algorithms Group, Ltd., United Kingdom  

Friday, July 20/10:30 AM  
Minisymposium 60  

Mathematics in Neurocomputing  
Neurocomputing and machine learning are burgeoning areas of research that lead to interesting problems in applied mathematics and computing. The speakers in this minisymposium will address topics at the interface between statistics, numerical analysis, machine learning and neural networks. All presentations will begin with a tutorial overview and then lead to a discussion of mathematical results in the field.  
Organizer: George Cybenko  
University of Illinois, Urbana-Champaign  

Statistical Properties of Artificial Neural Networks  
Andrew Barron, University of Illinois, Urbana-Champaign  

Learnability and Vapnik-Chervonenkis Dimension  
Anselm Blumer, Tufts University  

Efficient Neural Network Learning Algorithms  
George Cybenko and Sirpa Saarinen, University of Illinois, Urbana-Champaign  

Stochastic Neural Dynamics  
Jack Cowan, University of Chicago  

Friday, July 20/10:30 AM  
Minisymposium 61  

Parallel Computation Networks  
Efficient message transmission is critical to the success of massively parallel computer architectures. The speakers in this minisymposium will present recent developments in the design of message routing algorithms that are provably efficient and robust under node failures.  
Organizer: Sandeep Bhart  
California Institute of Technology  

Asymptotically Optimal Schedules for Packet Routing  
Bruce M. Maggs, Massachusetts Institute of Technology  

Minisymposia continued on page 19
PROGRAM-AT-A-GLANCE

**SHORT COURSE ON CHAOTIC DYNAMICS, AN EMERGING SCIENCE**

**ORGANIZERS:**
CELSO GREBOGIO and JAMES A. YORKE

**Saturday, July 14/PM**
5:00 PM - 8:00 PM Registration for Short Course

---

**Sunday, July 15/AM**
8:00 AM Registration for Short Course
9:00 AM Introduction and Basic Concepts
10:30 AM Coffee and Discussion
11:00 AM Strange Attractors
12:30 PM Lunch and Discussion
2:00 PM Bifurcations to Chaos
3:30 PM Coffee and Discussion
4:00 PM Fractal Basin Boundaries
4:00 PM Registration Desk Closes
5:30 PM Discussion
6:00 PM Adjourning

---

**Sunday, July 15/PM**
6:00 PM Registration for meeting
7:00 PM - 9:00 PM SIAM Welcoming Reception Cash Bar
9:00 PM Registration Desk Closes

---

**Monday, July 16/AM**
7:30 AM Registration Opens
8:15 AM Welcoming Remarks
8:30 AM - 10:00 AM Invited Presentations 1 and 2
8:30 AM Algebraic Computation Comes of Age
Anthony C. Hearn
The RAND Corporation
Santa Monica, CA
9:15 AM Wavelets Making Waves in Mathematics and Engineering
Ingrid Daubechies
AT&T Bell Laboratories and University of Michigan, Ann Arbor
10:00 AM - 10:30 AM Coffee
10:30 AM - 12:30 PM CONCURRENT SESSIONS
Minisymposium 1 Recent Mathematical Developments in Chaotic Dynamics
Chair: Timothy Sauer
George Mason University
Minisymposium 2 Applications of Wavelets Part 1: Numerical Analysis
Chair: Gregory Beylkin
Schumacher Doll Research, Ridgefield, CT
Minisymposium 3 Numerical Solution of Wave Problems in Unbounded Domains
Chair: Dan Givoli
Technion-Israel Institute of Technology, Israel
Minisymposium 4 Parallel Coordinates: A Tool for Visualizing Multidimensional Problems
Chair: Alfred Inselberg
IBM Scientific Center, Los Angeles and University of Southern California
Minisymposium 5 Theory and Algorithms for Symbolic Computing
Chair: B.F. Caviness
University of Delaware
Minisymposium 6 Communication Complexity and Lower Bounds
Chair: James Simon
University of Chicago
Minisymposium 7 Sampling Theory and Practice
Chair: Farokh Marvasti
Illinois Institute of Technology
Contributed Presentations 1 Matrix Eigenvalue Problems
Contributed Presentations 2 Discrete Mathematics and Computer Science
Contributed Presentations 3 Communication Systems, Estimation and Learning

---

**Monday, July 16/PM**
12:30 PM - 2:00 PM Lunch
2:00 PM - 2:45 PM Invited Presentation 3
Fingers, Dendrites, and Cracks: Modelling Unstable Growth Processes
George M. Homsy
Stanford University
2:45 PM - 3:15 PM Coffee
3:15 PM - 5:45 PM CONCURRENT SESSIONS
Minisymposium 8 Disorderly Growth
Chair: Paul Meakin
E.I. du Pont de Nemours and Co., Wilmington
Minisymposium 9 Multidimensional Inverse Problems
Chair: John Lowery
Office of Naval Research
Minisymposium 10 DIMACS—The Center for Discrete Mathematics and Theoretical Computer Science
Co-Chairs: Daniel Goreinstein, Rutgers University
Robert E. Tarjan, Princeton University
Minisymposium 11 Symbolic Computing in Science and Engineering
Chair: Anthony C. Hearn
The RAND Corporation
Santa Monica
Minisymposium 12 Coding Theory
Chair: Vera Pless
University of Illinois, Chicago
Minisymposium 13 Mathematical Contest in Modelling—Modeling at the Undergraduate Level
Chair: Ben Fusaro
Salisbury State University
Minisymposium 14 Orthogonal Polynomials and Special Functions
(Sponsored by the SIAM Activity Group on Orthogonal Polynomials and Special Functions)
Chair: Charles F. Dunkl
University of Virginia
Contributed Presentations 4 Computational Methods for Ordinary Differential Equations and Integral Equations
Contributed Presentations 5 Algebraic Equation Solvers and Preconditioners
Contributed Presentations 6 Stochastic Problems
6:15 PM - 7:45 PM SIAM Idea Exchange
<table>
<thead>
<tr>
<th>Time</th>
<th>Tuesday, July 17/AM</th>
<th>Tuesday, July 17/PM</th>
<th>Wednesday, July 18/AM</th>
<th>Wednesday, July 18/PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 AM - 10:00 AM</td>
<td>Invited Presentations 4 and 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 AM</td>
<td>Networks In Neuropsychology</td>
<td></td>
<td>Contributor Presentations 20</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>Nancy Kopell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15 AM</td>
<td>Wanted: Applied Mathematicians to Try the Fruit Fly Challenge</td>
<td></td>
<td>Contributor Presentations 21</td>
<td>Optimization Methods</td>
</tr>
<tr>
<td>Garrett M. Odell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Washington</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM - 10:30 AM</td>
<td>Coffee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 AM - 12:30 PM</td>
<td>CONCURRENT SESSIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 1</td>
<td>Analysis Of Chaotic Experimental Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Stephen M. Hammel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Surface Warfare Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 16</td>
<td>Application of Wavelets Part 2: Signal Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Gregory Beylkin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlumberger-Doll Research, Ridgefield, CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 17</td>
<td>Analysis of Queueing Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Charles Tier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Illinois, Chicago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 18</td>
<td>Graph Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sponsored by the SIAM Activity Group on Discrete Mathematics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Greg M. Fredrickson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 19</td>
<td>Numerical Methods in Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: H. Tran and M. Ito</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina State University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 20</td>
<td>Interface Instabilities During Solidification (Part 1 of 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Geoffrey B. McFadden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 21</td>
<td>Spatiotemporal Patterns in Neural Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-Chairs: Leah Edelstein-Keshet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of British Columbia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada and G. Bard Ermentrout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minisymposium 22</td>
<td>AWM-SIAM Women in Applied Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Jill Meadov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking Machines Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor Presentations 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Propagation and Scattering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor Presentations 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transform and Complex Function Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Seminar 1</td>
<td>Success in Industry — What Does It Take?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Peter Castro, Eastman Kodak Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 PM - 10:30 PM</td>
<td>Western Dinner Theater/Play</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thursday, July 19/AM

8:30 AM - 10:00 AM Invited Presentations 10 and 11
8:30 AM
Nonlinear Morphologies in Directional Solidification
Stephen H. Davis
Northwestern University

9:15 AM
Ill-Posed Problems in Granular Flow
David G. Schaeffer
Duke University

10:00 AM - 10:30 AM Coffee

10:30 AM - 12:30 PM CONCURRENT SESSIONS

Minisymposium 39
Solving Large Integer Programming Problems
Chair: Karla Hoffman
George Mason University

Minisymposium 40
Parallel Optimization Methods (Sponsored by the SIAM Activity Group on Optimization)
Chair: Ariela Sofer
George Mason University

Minisymposium 41
Optimal Design of Structures and Materials (Part 2 of 2)
Chair: Steven Cox
Rice University

Minisymposium 42
Linear Programming — Theory and Practice
Chair: Ilan Adler
University of California, Berkeley

Minisymposium 43
Geometric Singular Perturbation Methods with Applications to Traveling Waves (Part 2 of 2)
Chair: Christopher K.R.T. Jones
University of Maryland, College Park

Minisymposium 44
Reliability of Finite Element Computations
Part 1: A Posteriori Error Estimation and Adaptive Computational Methods of Transient Problems
Co-Chairs: Joseph E. Flaherty
Rensselaer Polytechnic Institute and Soren Jensen
University of Maryland, Baltimore County

Minisymposium 45
Free Boundary Problems in Fluid Mechanics (Part 1 of 2)
Chair: Michael J. Miksis
Northwestern University

Minisymposium 46
Control and Identification of Distributed Parameter Systems (Part 1 of 2)
Sponsored by the SIAM Activity Group on Control and Systems Theory
Chair: J.S. Gibson
University of California, Los Angeles

12:30 PM - 2:00 PM Lunch

2:00 PM - 3:00 PM
The John von Neumann Lecture
Vorticity, Turbulence, and Acoustics in Fluid Flow
Andrew J. Majda
Princeton University

3:15 PM - 4:15 PM
1985 SIAM Annual Business Meeting

4:15 PM - 4:45 PM Coffee

4:45 PM - 6:30 PM CONCURRENT SESSIONS

Minisymposium 48
Interior Point Methods for Linear Programming
Chair: Robert M. Freund
Massachusetts Institute of Technology

Minisymposium 49
Integer Programming
Chair: Neal D. Glassman
Air Force Office of Scientific Research

Minisymposium 50
Free Boundary Problems in Fluid Mechanics (Part 2 of 2)
Chair: Michael J. Miksis
Northwestern University

Minisymposium 51
Granular Flow
Chair: Kurt Wiesenfeld
Georgia Institute of Technology

Minisymposium 52
Control and Identification of Distributed Parameter Systems (Part 2 of 2)
Sponsored by the SIAM Activity Group on Control and Systems Theory
Chair: J.S. Gibson
University of California, Los Angeles

Minisymposium 53
Extreme-Point Results in Robust Control
Chair: C.V. Hollot
University of Massachusetts, Amherst

Minisymposium 54
Nonlinear Patterns and Dynamical Behavior of Biological Reaction Diffusion Systems
Chair: David J. Wollkind
Washington State University

Minisymposium 55
Contributed Presentations 24
Reconstruction, Convection, and Diffusion Equations
Contributed Presentations 25
Finite Element Methods
Contributed Presentations 26
Computational Fluid Mechanics

Professional Seminar 3
Writing, Reading, Communicating to Get Acceptance — Are We Doing A Good Job?
Chair: Donald E. Miller
Saint Mary's College, Notre Dame

Thursday, July 19/PM

8:30 AM - 10:00 AM Invited Presentations 12 and 13
8:30 AM
Interior Point Methods for Linear Programming—State-of-the-Art
David F. Shanno
Rutgers University

9:15 AM
Solving Large-Scale Combinatorial Optimization Problems in Practice
Martin Grötschel
Universität Augsburg, West Germany

10:00 AM - 10:30 AM Coffee

10:30 AM - 12:30 PM CONCURRENT SESSIONS

Minisymposium 55
Computational Integer Programming
Chair: Robert E. Bixby
Rice University

Minisymposium 56
Interior-Point Algorithms for Nonlinear Programming
Chair: Ying Ye
University of Iowa

Minisymposium 57
Nonlinear Optimization 2
Chair: Stephen G. Nash
George Mason University

Minisymposium 58
Reliability of Finite Element Computations
Part 2: Control of Idealization and Discretization Errors in Computational Solid Mechanics
Co-Chairs: Joseph E. Flaherty
Rensselaer Polytechnic Institute and Soren Jensen
University of Maryland, Baltimore County

Minisymposium 59
Fortran 90: The Language, Numerical Applications, and Implementation Issues
Chair: Brian F. Smith
University of New Mexico

Minisymposium 60
Mathematics in Neuroscience
Chair: George Cybenko
University of Illinois, Urbana-Champaign

Minisymposium 61
Parallel Computation Networks
Chair: Sandeep Bhattacharya
California Institute of Technology

Friday, July 20/AM

8:30 AM - 10:00 AM Invited Presentations 14 and 15
8:30 AM
Contributed Presentations 27
Free Boundary and Interface Problems
Contributed Presentation 28
Numerical Computational Methods for PDEs

12:30 PM - 2:00 PM Lunch

2:00 PM - 4:00 PM CONCURRENT SESSIONS

Minisymposium 62
Combinatorial Optimization
Chair: Giovanni Rinaldi
Instituto di Analisi dei Sistemi ed Informatica del CNR, Italy and New York University

Minisymposium 63
Network Optimization
Chair: Robert R. Meyer
University of Wisconsin, Madison

Minisymposium 64
Interior Point Methods in Optimization
Chair: Pravin M. Vaidya
University of Illinois, Urbana-Champaign

Minisymposium 65
The Hydrodynamic Model for Semiconductor Device Simulation
Chair: Carl L. Gardner
Duke University

Minisymposium 66
Scientific Computing on Multiprocessors
Chair: Ahmed Sameh and George Cybenko
University of Illinois, Urbana-Champaign

Minisymposium 67
Contributed Presentations 29
Partial Differential Equations

Minisymposium 68
Contributed Presentations 30
Computational Methods for Partial Differential Equations

Contributed Presentations 31
Fluid Mechanics: Perturbations, Asymptotics and Stability

Contributed Presentations 32
Neural Computing and Neural Networks

Friday, July 20/PM

4:30 PM Meeting Adjourned
Friday, July 20/2:00PM
Minisymposium 64
Interior-Point Methods in Optimization
During the past few years, there have been rapid developments in interior-point methods in optimization. The speakers in this minisymposium will review some of these developments and describe their use in constructing algorithms for problems such as integer programming and robust control.
Organizer: Pravin M. Valdia
University of Illinois, Urbana-Champaign

Interior-Point Approach to NP-complete Problems
Narendra K. Karmarkar, AT&T Bell Laboratories, Murray, NJ
A Generalized Quadratic Form Potential for an Interior-Point Algorithm for Integer Programming
M.G.C. Resende, AT&T Bell Laboratories, Murray Hill, NJ
Robust Control System Models and Their Solution by the Karmarkar Algorithm
Narendra K. Karmarkar and R.G. Ramakrishnan, AT&T Bell Laboratories, Murray Hill, NJ

Friday, July 20/2:00PM
Minisymposium 65
The Hydrodynamic Model for Semiconductor Device Simulation
The hydrodynamic model plays an important role in simulating the behavior of charge carriers in submicron semiconductor devices, since it exhibits hot carrier effects missing in the standard drift-diffusion model. The hydrodynamic equations are just the Euler equations of gas dynamics for a gas of charge particles in an electric field, with the addition of a heat conduction term. Thus the hydrodynamic model PDEs have hyperbolic, parabolic, and elliptic modes.
The speakers in this minisymposium will present recent theoretical and computational work on submicron devices, including applications of state-of-the-art hyperbolic methods, physical models for simulations, boundary conditions for 2D simulations, and simulations of a steady-state electron shock wave.
Organizer: Carl L. Gardner, Duke University

Physical Models for Hydrodynamic Device Simulations
William Coughran, AT&T Bell Laboratories, and Wolfgang Pfeffer, ETH Zurich, Switzerland

Higher-Order Upwinding Methods for the Hydrodynamic Device Model
Emad Fatemi, University of California, Los Angeles, Joseph Jerome, Northwestern University, and Stanley Osher, University of California, Los Angeles

Boundary Conditions for 2D Hydrodynamic Device Simulations
Farnoud Odeh, IBM T.J. Watson Research Center, Yorktown Heights, NY and Enrique Thomann, Oregon State University
Numerical Simulation of a Steady-State Electron Shock Wave in a Submicron Semiconductor Device
To be presented by organizer
### CONTRIBUTED PRESENTATIONS

**Monday, July 16/10:30 AM**
**Contributed Presentations 1**

**Matrix Eigenvalue Problem**

**Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz-Plus-Hankel Matrices**
William F. Trench, Trinity University

**Random Eigenvalue Problems and Structural Dynamics**
H. Benaroya, Rutgers University

**Iterative Convergence Rates for Perturbed Domains of Eigenvalues**
Xiezhang Li, Kent State University

**Parallel Connection in Infinite Network and Norm Convergence**
Mohammad R. Khadivi, Jackson State University

**Leverrier’s Algorithm for Orthogonal Polynomial Bases**
Stephen Barnett, University of Bradford, United Kingdom

**A Tree of Generalizations of the Ordinary Singular Value Decomposition**
Bart L. R. De Moor, Katholieke Universiteit Leuven, Belgium

**Direct Use of Kuhn-Tucker Theory in the Computation of Eigenvalues**
Kevin Y. K. Ng and Man Lam Wong, City Polytechnic of Hong Kong, Hong Kong

**Asymptotic Behavior of Jacobi Methods**
Vjeran Hari, University of Zagreb, Yugoslavia

**Monday, July 16/10:30 AM**
**Contributed Presentations 2**

**Discrete Mathematics and Computer Science**

**A Diophantine Description of Graphs and Networks**
Bruce Jeffrey Layman, Westinghouse Hanford Company, Richland, WA

**Improving the Reliability of Communication Networks**
Weigeng Shi and Brigitte Servatius, Worcester Polytechnic Institute

**Uncovering Generalized-Network Structure in Matrices**
Collette R. Couillard, Purdue University, West Lafayette; John G. del Greco, Loyola University of Chicago; and Donald K. Wagner, Purdue University, West Lafayette

**A Graph Representation of Software Procedure Interfaces**
Narayan C. Debnath, Winona State University

**Scientific Visualization in Discrete Domains**
Gregory E. Shannon, Indiana University, Bloomington

**On Generalized Partitions of an N-set**
Zhu-Xin Hu, University of Illinois, Urbana

**Deciding Identities: Nonassociative Algebraic Computation**
David Pokrass Jacobs, Clemson University

**Some Identities Relating to Partitions and Repetitions of Parts**
Muhammed Serdar Kirdar, University of Technology, Iraq

**Monday, July 16/10:30 AM**
**Contributed Presentations 3**

**Communication Systems, Estimation and Learning**

**Minimum Bound of Auto and Cross Correlations of Sequences**
Shuo-Yen Robert Li, Bellcore, Morristown, NJ and Ning Zhang, Pacific Bell, San Ramon, CA

**Musical Aperiodic Binary Sequences**
David C. O'Grady, Naval Postgraduate School

**Over Sampling as an Alternative to Error Correction Codes in Digital Communication Systems**
F. Marvasti and Chuande Liu, Illinois Institute of Technology

**An Algorithm for Polynomial Based Non-Recursive Digital Filters**
Richard W. Reichardt, Northwestern Illinois University

**Error Analysis of a Pairwise Summation Algorithm to Compute the Sample Variance**
Jesse L. Barlow, Pennsylvania State University

**LIRMA: A Software for Linear Regression Models and Regression Analysis**
Guoqiu Wu, Purdue University, West Lafayette and Zhe Xu, Central Iron and Steel Research Institute, People's Republic of China

**A Stochastic Intelligence Learning Model for Adaptive Expert Systems**
P-S. Deng, Sangamon State University

**A Memory-Based Inductive Inference Approach to Knowledge Acquisition**
P-S. Deng, Sangamon State University

**Monday, July 16/13:15 PM**
**Contributed Presentations 4**

**Computational Methods for Ordinary Differential Equations and Integral Equations**

**Software Improvements for Multibody System Analysis**
Joseph F. McGrath, Rajiv Rampalli and Michael Steigerwald, KMS Fusion, Ann Arbor, MI

**Parallel and Interval Automatic Differentiation for Initial Value Problems**
J. Daniel Layne, Martin Marietta Astronautics Group, Denver, CO

**Concurrent DASSL: Solving Systems of Differential-Algebraic Equations on Multicomputers**
Anthony Skjellum, California Institute of Technology

**Krylov Methods in the Solution of Nonlinear Initial Value Problems**
Steven L. Lee, University of Illinois, Urbana

**Mathematical Software for Sturm-Liouville Problems**
Steven Pruess, Colorado School of Mines

**Recent Parallelization and Vectorization of Homotopy Algorithm for Symmetric Eigenvalue Problems**
Hong Zhang, Clemson University

**Unconventional Methods for Singular Integral Equations**
Edo Venturino, University of Iowa

**Numerical Solutions of a Second Order Boundary Value Problem**
H. M. Atasi and M. Ser, University of Notre Dame

**A Solution Corrector of Computation History in Differential Equation Problems**
Yi-Feng CHANG, The William Paterson College of New Jersey and Jih-Hu Lai, New Jersey Institute of Technology

**Monday, July 16/3:15 PM**
**Contributed Presentations 5**

**Algebraic Equation Solvers and Preconditioners**

**Branch Switching for Continuation for Algebraic Systems**
Michael E. Henderson, IBM T. J. Watson Research Center

**Preconditioned Iterative Methods for Homotopy Curve Tracking**
Colin deSa, Kathrin M. Irani, Calvin J. Ribbens and Layne T. Watson, Virginia Polytechnic Institute and State University and Homer F. Walker, Utah State University

**Design and Analysis of Toeplitz Preconditioners**
C-C. Jay Kuo, and Takang Ku, University of Southern California

**Fast Preconditioners for Toeplitz Systems**
Mathew Koshay, University of California, San Francisco

**Stability of Banded Toeplitz Solvers**
Eliot Linzer, Columbia University

**Rapid Transpose Methods on Massively Parallel SIMD Computers**
Chris Kazmaier, MasPar Computer Corporation, Sunnyvale, CA

**Attractive Basins for Braitlow's Method**
David J. Uherka, University of North Dakota

**New Preconditioners Based on Low-Rank Elimination**
Asanobu Yamazaki, Murata Machinery Ltd., Japan

**Monday, July 16/3:15 PM**
**Contributed Presentations 6**

**Stochastic Problems**

**The Pricing of Call Options When the Investor is Totally Risk Averse**
Emmanuel Bajran and Robert Jensen, Loyola University of Chicago

**New Developments in Almost Sure Sample Stability of Nonlinear Stochastic Dynamic Systems**
Zhi Ya Zhang, Polytechnic University, Brooklyn and Frank Kozin, Polytechnic University, Farmingdale

**Nonlinear Thermodynamics and Modeling of Ergodic Hamiltonian Systems by Mecovias Processes**
Victor Bendichenkov, Georgia Institute of Technology

**A Modification of Dorfman's Group Testing Procedure for Use on a Markov Chain**
Kenneth E. Schwartz, University of Toledo

**Asymptotic Bounds on the Reliability of an m-Consecutive-k-out-of-s Reliability System**
Anant P. Godbole, Michigan Technological University

**Parallel Optimization of Monte Carlo Methods**
Gary W. Howell, Pavlos Kalnis, and Kamal Rekab, Florida Institute of Technology

**Tuesday, July 17/10:30 AM**
**Contributed Presentations 7**

**Wave Propagation and Scattering**

**Energy Leakage and Reflection in Underwater Upset Acoustic Wave Propagation**
William L. Katt, Northwestern University; Antonia A. Minzoni, Northwestern University and University of Mexico, Mexico; Gregory A. Kriegsmann and Edward L. Reiss, Northwestern University

**Dynamics of Coupled Solitons in Nonlinear Optical Fibers**
Tetsuji Ueda and William L. Katt, Northwestern University

**Absorbing Boundary Conditions for the Wave Equation; Low Frequency Corrections**
T. M. Hagstrom, State University of New York, Stony Brook; S. S. Hariharan, University of Akron; and R. C. MacCamy, Carnegie-Mellon University

**An Exact Solution of the (Heilmoltz) Weyl Composition Equation**
Louis Fishman, Colorado School of Mines

**Asymptotic Solution of Weakly Nonlinear Wave Equations**
Chunhua V. Easwaran and Sunday C. Chikwendu, State University of New York, New Paltz
Solitary Wave Solutions of Nonlinear PDEs Using MACSYMA
Willy Hereman, Colorado School of Mines and Masanori Takaoka, Kyushu University, Japan

Multiple Scattering of Elastic Waves by a Distribution of Identical Spheres
D. D. Phanord, University of Alabama, Huntsville

Transform and Complex Function Methods
Numerical Inversion of Two-Dimensional Laplace Transform Using Double Orthogonal Series of Generalized Laguerre Polynomials
M. Vinagreamoiothry, Marquette University

Fourier Transforms of the Class of Functions
Henry C. Foehl, Philadelphia College of Pharmacy and Science

Absolute Invariants of Images Under Translation
Robert D. Brandt and Feng Lin, Wayne State University

The Hankel Transform of Second Kind
Mihir J. Shah, Kent State University

T-Polynomials on Regular Polygons in the Complex Plane
Henry C. Thacker and David J. Hickman, Santa Cruz, CA

Numerical Conformal Mapping Methods for Exterior Regions
Thomas K. Delillo and Alan R. Elcrat, Wichita State University

The Sum of Like Powers of the Zeros of the Riemann Zeta Function—High Precision Values
T. Y. Li, State University College of New York, Plattsburgh

Stability in Gabor Frame Reconstructions
David F. Walnut, Yale University

Bounds for the Ballian-Low Theorem
Christopher E. Heil, The MITRE Corporation, McLean, VA

Non-Interacting Wavelets for Adaptive Numerical Algorithms
Bradley K. Alpert, Yale University

The Discrete Frazier-Jawerth Transform
Daniel R. Fuhrmann and Arun Kumar, Washington University

Identification of Event Scales from Global Wavelet Statistics
L. Mahrt, Oregon State University

Approximation of Optimal Boundary Controls for the Navier Stokes Equations
T. P. Svobodny, Wright State University, M. D. Gunzburger, Virginia Polytechnic Institute and State University and L. S. Hou, Universite Le Havre, Canada

Thermal Boundary Control of a One-Dimensional Linear Thermoelectric Rod
Scott W. Hansen, Virginia Polytechnic Institute and State University

Boundary Control of the Korteweg-de Vries-Burgers Equation
Bingguang Zhang, University of Wisconsin, Madison

An Optimization Problem in Electromagnetic Wave Propagation
Robert Ochs, University of Toledo and Curtis Vogel, Montana State University

Control and Observation for Hereditary Systems of Neutral Type
Boris S. Mordukhovich, Wayne State University

Stabilizability of Large-scale Nonlinear Infinite Delay Systems
A. S. C. Sinha, Purdue University, Indianapolis

An Abstract Theory for Initial Boundary-Value Problems
Cesar Palencia, Universidad de Valladolid, Spain

Inverse Problems and Parameter Estimation
Identification of Parameters in a Weakly-Singular Kernel Arising in Viscoplasticity
Robert K. Poures and Dennis W. Brewer, University of Arkansas, Fayetteville

Solvability Conditions for Overposed Inverse Problems in Compressible Flows
Prabir Daripa, Texas A&M University, College Station

Bayesian Analysis and Regularization in Parameter Identification
Ben G. Fitzpatrick, University of Tennessee, Knoxville

A Multigrid Algorithm for Direct Algebraic Reconstruction of Medical Tomographic Images
William P. Tribbey, Computer Tech & Imaging, Knoxville, TN

Application of the Least Squares Approximation to the Design of Superconducting Toroidal Magnet Systems
Joseph W. Johnson, Astronautics Technology Center, Madison, WI

On the Mathematical Modelling of a Solid State Laser System
Thomas G. Wangler and John J. Sweetits, Old Dominion University

Theory and Experiments for a Stress Controlled Rheometer
Leela Rakesh and James Angelos, Central Michigan University

A Theoretical Model for Voids Distribution in Polymer Composites
Aliadin M. Bokir, Rice University; Mahmoud M. El-Alem, Alexandria University, Egypt; John E. Akin and Constantine D. Armatides, Rice University

Interactive Sparse Matrix Computations in CLAM

s-step Bi-orthogonal Lanczos Method
Sankyung Kim and Anthony T. Chronopoulos, University of Minnesota, Minneapolis

A Tricyclic Tridiagonal Equation Solver
Stefan A. Lesin, Mobil Research and Development, Dallas, TX and David S. Dodson, Convex Computer Corporation, Dallas, TX

Foundation Vertices in the Parallel Solution of Sparse Nonlinear Least-Squares Problems
Paul E. Plassmann, Argonne National Laboratory

Sparse Matrix Methods in MSC/NASTRAN
Shoun Shamsian and Louis Komiskis, The MacNeal-Schwendler Corporation, Los Angeles, CA

Wavelets
Stability in Gabor Frame Reconstructions
David F. Walnut, Yale University

Bounds for the Ballian-Low Theorem
Christopher E. Heil, The MITRE Corporation, McLean, VA

Non-Interacting Wavelets for Adaptive Numerical Algorithms
Bradley K. Alpert, Yale University

The Discrete Frazier-Jawerth Transform
Daniel R. Fuhrmann and Arun Kumar, Washington University

Identification of Event Scales from Global Wavelet Statistics
L. Mahrt, Oregon State University

Robust Control
Robust Control of Constrained Discrete Time Linear Systems
Mario Sinnia, California Institute of Technology

Reliable Controller Design Against Arbitrary Loop Failures
Belinda Y. Harris and L. H. Keel, Tennessee State University

Some Adaptive Optimal Filters for Linear, Discrete-Time, State-Space Models
Richard H. Burkhart, Boeing Computer Services, Seattle, WA

A New Approach to Equality State Constraints in Optimal Control
Gianna Stefanelli, Universita de Napoli, Italy and Pietro Luigi Zezza, Universita de Firenze, Italy

Wednesday, July 18/11:30 AM
Contributed Presentations 14
Computer Arithmetic
Supercomputers Need Super Arithmetic
D. W. Lozier, National Institute of Standards and Technology and Peter D. Turner, US Naval Academy

Precise Computation Using Range Arithmetic, via C++
Oliver Aberth and Mark Schaefer, Texas A&M University, College Station

Implementation Experience for Log, Exp, and Power on SIMD Machines
Dennis Weeks, MasPar Computer Corp., Sunnyvale, CA

Wednesday, July 18/11:30 AM
Contributed Presentations 15
Robotics and Control Applications
A Parallel VI.SI Architecture for Robot Motion Computations
Joseph R. Cavallaro, Rice University; Anne C. Elster, Cornell University and Ian D. Walker, Rice University

Optimization Methods for Robot Trajectory Planning
Eike Haenre, Universitat Trier, Federal Republic of Germany and University of Iowa; Rainer Heitcheid, Universitat Trier, Federal Republic of Germany; and Kenneth O. Kortanek, University of Iowa

A Kalman Filter Approach to Computer Antenna Pointing
Brian Bourgeois, University of Houston, Downtown and Jerry Suddath, NASA Johnson Space Center

Applying Control Theory in the Hydrocarbon Industry: What Is Being Done?
Gary L. Funk and Edward Gidone, Instrument Technology International, Houston, TX

Wednesday, July 18/11:30 AM
Contributed Presentations 16
Robust Control
Robust Control of Constrained Discrete Time Linear Systems
Mario Sinnia, California Institute of Technology
Wednesday, July 18/11:30 AM
Contributed Presentations 17
Mathematics Education
Teaching Applied Mathematics Early
Gilbert Strang, Massachusetts Institute of Technology

Computer Algebra Systems and Their Impact on Mathematics Education
David C. Arney and Michael C. Talbott, United States Military Academy

Teaching a First Course in Fourier Analysis
David W. Kammerl, Southern Illinois University

Using the Supercomputer to Enhance Undergraduate Education
Kris Stewart, San Diego State University

Mathematics for Biology Majors
Torcom Chorbajian, University of Northern Colorado

Numerical Systems Design
Beatriz Regina Tavares Fonseca and Dalcidio Morais Claudio, Instituto de Informatica, Brazil

Wednesday, July 18/11:30 AM
Contributed Presentations 18
Interior Point Methods
On Combined Phase-1-Phase2 Projective Methods for Linear Programming
Michael J. Todd and Yuefei Wang, Cornell University

Implementation of a Primal-Dual Interior Point Method
Sanjay Mehrotra, Northwestern University

On Finding a Vertex Solution Using Interior Point Methods
Sanjay Mehrotra, Northwestern University

Interior Point Methods, Nonlinear and Parallel Optimization
Roman Polyak, IBM T. J. Watson Research Center

Wednesday, July 18/11:30 AM
Contributed Presentations 19
Nonlinear Programming
Minimizing a Non-convex Quadratic Subject to Two Quadratic Constraints in Two Dimensions
J. E. Dennis, Jr. and Karen A. Williamson, Rice University

A Superlinearly Convergent Reduced Hessian Updating Method
Chaya Gurvitz, Brooklyn College of CUNY

Nonsmooth Optimization in Structural Design
Aharon Ben-Tal, Technion-Israel Institute of Technology, Israel

Solving Box-Constrained Quadratic Programming on Shared Memory Multiprocessors
F. Perla, Universita di Napoli, Italy and G. Toraldo, Universita della Basilicata, Italy

Wednesday, July 18/3:15 PM
Contributed Presentations 20
Linear Programming
A Non-Interior Point Approach to Linear Programming
Ma Chen and Gerry M. Klein, University of Missouri, Columbia

A Hybrid Polynomial Algorithm for Linear Programming
Sining Huang, University of Iowa

Strong Linear Programming Relaxations for the Orienteering Problem
Adrienne Lieber, Stanford University and Moshe B. Rosenau, AT&T Bell Laboratories, Holmdel, NJ

Isometric Plane Algorithm (IPA) for Linear Programming (LP)
Xu Shurong, Zhejiang University, and Nie Yiyou, ShengYang Institute of Computing Technology, Academia Sinica, People's Republic of China

Wednesday, July 18/3:15 PM
Contributed Presentations 21
Optimization Methods
On Finding the Global Minima of a Function of One Variable
L. C. W. Dixon, Numerical Optimisation Centre, Hatfield Polytechnic, United Kingdom

Parallel Simulated Annealing for Finding Minima of Functions on a Hypercube Multiprocessor
Kuang-Geun Lee and Soo-Young Lee, Cornell University

Large Scale Nonlinear Programming Using Interior Point and Successive Linear Programming Methods
Kumaraswamy Ponnambalam, University of Waterloo, Canada

A Primal-Relaxed Dual Global Optimization Approach
Christodoulos A. Floudas and Vishy Visweswaran, Princeton University

A Projected Gradient Method
P. L. de Angelis, Universita di Napoli, Italy and G. Toraldo, Universita della Basilicata, Italy

Convergence of Iterative Methods for Convex Linear Complementarity Problems
Alvaro Rodolfo De Piero, State University of Campinas, Brazil

A Parallel Nonlinear Programming Method for Solving Optimal Control Problems
Joao Laura Dorneles Faco, Universite de Paris-Sud, France

Wednesday, July 18/3:15 PM
Contributed Presentations 22
Mathematical Models in Population Dynamics and Physiology
Juvenile Dispersal, Limited Breeding Sites, and Metapopulation Dynamics in a Class of BIDE Models
Gregory J. Davis and Robert W. Howe, University of Wisconsin, Green Bay

Simulation of Epidemics for Diseases Which May Cause Immunity in Age Structured Populations
Fabio A. Milner, Ila Universita de Roma, Italy

A Nonlinear Poroelastic Model of Flow and Deformation in the Pulmonary Interstitium
Jeffrey R. Sachs, James B. Grossberg and Matthew R. Chluckleberg, Northwestern University

A Three Dimensional, Hexagonal Lattice Theory of Muscular Mechanics
Theodore S. Fei, Burbank Imaging, Burbank, CA

Geometric Analysis of the Carpal Complex
Deborah P. Levinson, University of South Florida

Threshold Behavior and Propagation for a Differential-Difference System
Wei-sheng Cao, State University of New York, Buffalo

Canonical Pharmacokinetic Compartment Modeling
Patrick D. McCray, Searle Research and Development, Skokie, IL

Thursday, July 19/10:30 AM
Contributed Presentations 23
Asymptotic Analysis and Solid Mechanics
Homogenization by Limit Process Expansions
Julian B. Cole, Rensselaer Polytechnic Institute

The Global Structure of Buckled States for Compressible Columns
Stuart S. Antman, University of Maryland, College Park and John F. F. Pierce, U. S. Naval Academy

The Buckling of Elastic Spherical Shells
Frank E. Baginski, George Washington University

On a Nonlinear Volterra Integral Equation Arising in a Dynamic Elastic Crack Model
Jay R. Walton, Texas A&M University, College Station

Predictive Formalism for Scattering in Brittle Fracture
Alexander Chudnovsky and Boris Kunin, University of Illinois, Chicago

The Computer-aided Analytic Solution of Stress Fields of Screw Dislocations in Multilaminated Elastic Materials — In “Reduce 3” Environment —
Yao-huan Xu, Grove City College

Thursday, July 19/4:15 PM
Contributed Presentations 24
Reaction, Convection, and Diffusion Equations
Nonlinear Hydrodynamic Stability and Spinning Deformation of Liquid Propellants
John K. Bechtold and Stephen B. Margolis, Sandia National Laboratories

Shock-Layer Bounds for a Singularly Perturbed Equation
Jeffrey S. Scroggs, ICASE, NASA Langley Research Center

Ignition in the Boundary Layer Behind a Shock Propagating into a Reactive Gas
D. Glenn Lasosigne and Thomas L. Jackson, Old Dominion University

Structural Stability in Strongly Monotone Dynamical Processes
Peter Takac, Vanderbilt University

Kernel Based Methods for Nonlinear Parabolic Equations
James P. Epperson, University of Alabama, Huntsville

Software for a Diffusion-Reaction Problem
Granville Sm Brut, University of Texas, El Paso and H. G. McMith, Exxon Chemical Corporation, Baytown, TX

Nonlinear Diffusion of Impurities in Semiconductors
Donald Schwendeman, Rensselaer Polytechnic Institute

A Symmetrization Procedure for Convection-Diffusion Problems Solved by Incomplete Orthogonalization
C.-C. Jay Kuo, and Hwang-Cheng Wang, University of Southern California

Travelling Wave Solutions of Some Reaction-Diffusion Equations in Cylindrical Domains
Jose M. Vega, Universidad Politecnica de Madrid, Spain

Nonlinear Stability of Pulsating Flames
Carlos Alvarez-Pereira and Jose M. Vega, Universidad Politecnica de Madrid, Spain

The Steady States of Some Reaction-Diffusion Equations in Slender Cylindrical Domains
Ignacio E. Farina and Jose M. Vega, Universidad Politecnica de Madrid, Spain
**CONTRIBUTED PRESENTATIONS**

Thursday, July 18/4:15 PM  Contributed Presentations 25

**Finite Element Methods**

**Boundary Element Methods in Three Dimensions: An Empirical Exploration**  
Kendall E. Atkinson, University of Iowa

**A 3-D h-Adaptive Finite Element Scheme**  
Joseph H. Schmidt and Graham F. Carey, University of Texas, Austin

**Sum-Accelerated Pseudospectral Methods: The Euler-Accelerated Slac Algorithm**  
John P. Boyd, University of Michigan, Ann Arbor

**Polar-spline Approximation**  
Cun-Quan Zhang, West Virginia University

**Analysis of a Finite Element Method for the Drift-Diffusion Model of the Semiconductor Device Equations**  
Bernardo Cockburn and Ioana Triandaf, University of Minnesota, Minneapolis

**An Interpolation Result**  
Soren Jensen, University of Maryland, Baltimore

**Hybridization of Finite-Element and Finite-Difference Methods for Evolutionary PDEs**  
Cholam-Alii Zakeri, University of Wisconsin, La Crosse

**A Least-squares Method for Stokes Problem Acceleration-Pressure Formulation**  
Chung Lung Chang, Cleveland State University

**Numerical Schemes for the Acoustic Wave Equation in Heterogeneous Media**  
Alain Sei and F. Collino, Institut Français du Petrole, France

**A Posteriori Error Estimate for the Acoustic Wave Equation in Heterogeneous Media**  
Alain Sei, L. Jannaud and A. Bamberger, Institut Français du Petrole, France

---

Thursday, July 19/4:15 PM  Contributed Presentations 26

**Computational Fluid Mechanics**

**Parallel Domain Decomposition Algorithms in CFD**  
David Keyes, Yale University

**A Second-Order Accurate Scheme for the Compressible Navier-Stokes Equations**  
John C. Strikwerda, University of Wisconsin, Madison

**Multidomain Adaptive Pseudospectral Methods for Compressible Flows**  
Problems Patrick Hanley, University of Connecticut, Storrs

**Spectral Element Solution of Fluid Flow Problems**  
Mark Schumack, William W. Schultz and John P. Boyd, University of Michigan, Ann Arbor

**Particle-Mesh Methods for the Evaluation of Fields Induced by Vortex Sheets**  
Anita Mayo, IBM T. J. Watson Research Center

**Existence, Uniqueness, and Computation of Solutions of the Double-Piston Problem for Viscous, Incompressible Flow**  
Roger E. Zarnowski, University of Oklahoma, Norman

**Numerical and Asymptotic Solutions for the Peristaltic Transport of a Heat-Condensing Fluid**  
Dalin Tang, Worcester Polytechnic Institute

**Thermal Simulation of Pipeline Flow**  
Philip Thomas Keenan, University of Chicago

---

Friday, July 20/10:30 AM  Contributed Presentations 28

**Numerical and Computational Methods for PDEs**

**A Multidomain Pseudospectral Method for Elastic Wave Calculations in Layered Media**  
Jeffrey M. Augustin, University of Connecticut, Storrs

**Numerical Analysis of a 1-Dimensional Immersed-Boundary Method**  
Richard P. Bever, Jr. and Randall J. LeVeque, University of Washington

**A Numerical Method for Detecting Singular Minimizers of Multidimensional Problems in Nonlinear Elasticity**  
Pablo V. Negro-Marrero, University of Puerto Rico

**Incomplete Block Factorization on Multiprocessor/Vector Computers**  
Douglas E. Saltine, City University of New York, John Jay College

**Preconditioned Krylov Methods in the Method of Lines Setting**  
George D. Byrne, Excon Research and Engineering Company, Annandale, NY

**Parallel ELPACK for Shared-Memory Machines**  
Calvin J. Ribbens, Virginia Polytechnic Institute and State University

**Total Flux for Mixed Boundary Value Problems for Diffusion Systems: Time-dependent Boundary Conditions**  
Davis K. Cope, North Dakota State University

**Simplex Methods for Manifolds and Applications Geovan Tavares, Catholic University, and Instituto de Matematica Pura e Aplicada, Brazil**

---

Friday, July 20/2:00 PM  Contributed Presentations 31

**Fluid Mechanics: Perturbation, Asymptotics and Stability**

**Moderate Speed Low Aspect-ratio Flat Ship Theory**  
Susan L. Cole, Rensselaer Polytechnic Institute

**Thermocapillary Convection in Thin Liquid Films**  
A. Oron, Los Alamos National Laboratory and P. Rosenau, Technion-Israel Institute of Technology, Israel and Los Alamos National Laboratory

**Analytic Solutions to Semi-Infinite End Condition Problems in Fluid Dynamics and Elasticity**  
Demonstrating the Existence of Waves with Positive and Negative Phase Velocities  
Robert T. Folks, Lehigh University and Inui S. Goldberg, St. Mary's University

**Application of Quasilinearization to Viscous Fluid Flow Through a Porous Annulus**  
R. K. Bhaimar, University of Pittsburgh, Greensburg

**Surface Waves on Thin Liquid Films at High Flow Rates**  
L. Michael Santi, Christian Brothers College
CONTRIBUTED PRESENTATIONS

Symmetry and Semi-Symmetry Reduction of Reynolds Equation
Martha L. Abell, Georgia Southern College and William F. Ames, Georgia Institute of Technology

Stability of Flows of Viscoelastic Fluids With a Differential Constitutive Equation
Colette Guilleau, Universite Paris-Sud and C.N.R.S., France

A Stability Problem in Anisotropic MHD
Michele Maiellaro, University of Bari, Italy

Friday, July 20/2:00 PM
Contributed Presentations 32

Neural Computing and Neural Networks

A Nonlinear Pattern Classification Device
V. W. Noonburg and Chris Armen, University of Hartford

An Analysis of the Capacity of Associative Memory Neural Nets
Lauren V. Fausett, Florida Institute of Technology

Neural Network Training Via Interior Point Methods
Robert H. Leary, San Diego Supercomputer Center

Strictly Local Backpropagation
Donald W. Fausett, Florida Institute of Technology

Recurrent Associative Memories and Linear Programming
James Moore, University of Southern California

On Maximum Picking Neural Networks
Bruce W. Suter, Air Force Institute of Technology

Tolerance Vision Model of Neural Network Computer
Ming Zhang, Rui Wang, and Yiming Gong, Shanghai Institute of Technical Physics, The Chinese Academy of Sciences, People's Republic of China

POSTER SESSION

Wednesday, July 19/11:30 AM

Direct Approximation Techniques for Solving Feed Forward Networks: Linear and Nonlinear Techniques
James K. Peterson, Kentwood, MI

Molecular Dynamics Simulations of Microscopic Structures in Fluids
Jeffrey H. Dunn, S. G. Lambrakos and P. G. Moore, Naval Research Laboratory

Modelling Complex Intramolecular Processes on an Intermolecular Time-scale using Constrained Molecular Dynamics
S. G. Lambrakos and Jeffrey H. Dunn, Naval Research Laboratory

Molecular Dynamics Simulations at Constant Pressure
P. G. Moore, S. G. Lambrakos and Jeffrey H. Dunn, Naval Research Laboratory

Roots of a Polynomial Via a Parallel Newton’s Method
D. A. Linwood, California State University, Fresno

Flow Inside a Triangle with Moving Boundaries
Calvin J. Ribbens and Layne T. Watson, Virginia Polytechnic Institute and State University, and C.-Y. Wang, Michigan State University

Bound Smoothing Under Chirality Constraints
T. F. Havel, University of Michigan, Ann Arbor and W. M. Dress, University Bielefeld, West Germany

Finite Amplitude Shear Waves in a Channel with Compliant Boundaries
James M. Rosenberry, Southern Methodist University

Fractal Basin Boundaries in a Chaotic Adaptive Controller
Faramarz Mossoyebi and Tom T. Hartley, University of Akron

Superconvergent Grids for Two-Point Boundary Value Problems
William C. Connett, Wojciech L. Golik, and Alan-L. Schwartz, University of Missouri, St. Louis

Detection and Analysis of Concentrated Shear Zones in Turbulent Flows Using Wavelet Transform Methods
N. K. K. Cemage, Oregon State University
EXHIBITORS

Academic Press, Inc.

American Institute of Physics
The American Institute of Physics is now the exclusive U.S. and Canadian distributor of books published by Adam Hilger, the imprint of the Institute of Physics, U.K. On display at our booth are the latest titles in Mathematical Physics from both AIP and Adam Hilger, including: Dr. Milo Nakahara’s Geometry, Topology and Physics, V.B. Glasko’s Inverse Problems of Mathematical Physics, I.M. Benn and R.W. Tucker’s An Introduction to Spinors and Geometry with Applications in Physics, and the second of three-volume translation, New Methods in Celestial Mechanics by Henri Poincare.

American Mathematical Society
Visit the American Mathematical Society’s booth to see a selection of new and recent books and journals from one of the world’s largest publishers of mathematical literature. You’ll be able to view MathSci Databases and MathSci, the online database with over one million records in mathematics, computer science, statistics and related disciplines. Recently added to MathSci are Association of Computing Machinery (ACM) subfields. Also playing are AMS videotapes, including the popular “Chaos, Fractals and Dynamics.” Membership information also available.

Butterworth Publishers
Butterworth Publishers will be displaying three of their best selling journals: Applied Mathematical Modelling, Interacting with computers, and Knowledge-Based Systems. Order forms will be available.

Cambridge University Press
Stop by our booth to review these and other new titles: Kome: Fourier Analysis (pb); Becker/Dorfler: Dynamical Systems and Fractals; Ruelle: Chaotic Evolution and Strange Attractors; Press: Numerical Recipes (in C), FORTRAN, Mazurani: Introduction to Mathematical Physics and Biology; Stephani: Differential Equations; Champeney: Handbook of Fourier Theorems; Drazin: Solitons and Berry/Humble:Norcliffe: Introductory Mathematics through Scientific Applications.

Chapman and Hall

Elsevier North-Holland publishes the finest books and journals in applied mathematics, including the prestigious Linear Algebra and Its Applications, as well as Applied Mathematics and Computation and Studies in Applied Mathematics. Stop by our booth to peruse our titles and to pick up your free sample journal copies.

Plenum Publishing Corporation
Plenum Publishers announces a new journal: Computational Mathematics and Modeling. Articles for the journal will be carefully selected from the Transactions of the Faculty of Computational Mathematics and Cybernetics of Moscow State University.


Springer-Verlag New York, Inc.
Visit Springer-Verlag's display for excellent, high-quality research monographs, textbooks and journals on probability in science and engineering as well as more areas. Find recently released titles such as Proctor's Stochastic Integration and Differential Equations along with the classics. Remember to ask Springer's representative for their special exhibit discount on these and other important titles.

SOFTWARE EXHIBITS

IMSL, Inc.
The IMSL Libraries are a comprehensive resource of FORTRAN subroutines. MATH/LIBRARY contains over 400 mathematical subroutines for applications requiring accurate, reliable computation. STAT/LIBRARY offers a wide selection of statistical capabilities for analyzing and presenting data in scientific and business applications. SPUN/LIBRARY evaluates special functions in applied mathematics and scientific applications.

The MathWorks, Inc.
MATLAB, an interactive software program for scientific and engineering applications, creates a high-productivity environment for numerical computation and graphic display. It combines numerical analysis, matrix computation, signal processing, and 2D and 3D graphics in an easy-to-use environment. MATLAB provides interactive access to state-of-the-art linear algebra and matrix algorithms from LINPACK and EISPACK as well as other numerical techniques. In addition to its comprehensive set of scientific functions and matrix operations, MATLAB is fully extensible, allowing users to create existing functions and to create new ones.

Soft Warehouse, Inc.
Derive is a menu-driven computer algebra system for IBM PC and compatible computers. It eliminates the drudgery of solving problems that scientists, educators, students and engineers might otherwise have done by hand. Derive does symbolic and numerical algebraic, differential and recurrence equation solving. It also does exact approximations arithmetic to thousands of digits, calculus, trig, matrices, vectors, and 2D and 3D plots. The suggested list price is $200.

SYSTAT, Inc.
SYSTAT, Inc. offers statistical analysis and graphics software for education, research, business, and scientific applications. Products range from instructional MYSTAT versions, to FASTAT, an intermediate business and educational tool, to SYS-TAT/SYGRAPH, a comprehensive scientific research tool. Software available for PC's, Macintosh, and a variety of minicomputers. Supplementary modules for SYSTAT and SYGRAPH provide highly specialized analyses, dynamic graph rotation, and data transfer.

Wolfram Research, Inc.
Mathematica is both an interactive calculation tool and a programming language. Its numerical capabilities include arbitrary precision arithmetic and matrix manipulation and it can manipulate formulae directly in algebraic form. Mathematica can also generate two-dimensional plots, contour plots, and shaded-color threedimensional pictures. Mathematica runs on Apollo, Ardent, Cray, DEC, Data General, Hewlett-Packard, IBM-RT, MIPS, 386-based MS-DOS, Macintosh, NeXT, Silicon Graphics, Sony, Stellar, and Sun computers.

HARDWARE EXHIBITS

IBM
IBM will be featuring math based applications on the recently announced IBM RISC System/6000 workstation. The RISC System/6000 family (nine models) is designed to connect to everything from IBM mainframes to PS/2's, as well as the full range of non-IBM systems. The operating system for the RISC System/6000 is AIX, IBM's version of UNIX. It supports C, Fortran, COBOL, AIXwindows as a graphical user interface.

Symbols
MACSYMA is the most powerful symbolic-numerical mathematics software Package on mainframes. A complete MACSYMA for 386 DOS PC's is exhibited, with over 1,300 commands.

Highlights
- Arithmetic: Exact arithmetic arbitrary size integers, floats, arbitrary precision floats, complex numbers.
- Algebra: simplification, factoring, trigonometry, matrices, solving equations, summing series, special functions.
- Numerical analysis.
- Graphics: two and three dimensions, adaptive density plotting.
- Programming tools: language, pattern matchers, data base, compiler, debugger.
- Interfaces to Fortran, C, TeX.
NEW BOOKS AND JOURNALS IN APPLIED MATHEMATICS

CURRENT ALGEBRAS AND GROUPS
by Jouko Mickelsson
Mickelsson presents the mathematical techniques of modern theory of current algebras and groups, and explains some appropriate physical applications to illustrate the use of current algebra methods. New aspects are revealed on the generalization of Kac-Moody theory to higher dimensions; the geometrical construction of groups corresponding to Kac-Moody algebras and their generalizations; and the interplay between algebra, geometry, and quantum field theory. Packed with useful introductions to theory, basic definitions, detailed constructions of algebras and related facets, applications, and more, this volume is a synthetic and comprehensive guide to current algebras and groups. The inaugural volume in the series Plenum Monographs in Nonlinear Physics.
0-306-43363-X/332 pp./ill./1989/679.50

MATHEMATICAL METHODS IN KINETIC THEORY
Second Edition
by Carlo Cercignani
This revision of Carlo Cercignani's acclaimed text, Mathematical Methods in Kinetic Theory, provides all the essential information on the mathematical theory of rarefied gases, highlighting the boundary value problems that arise in connection with the Boltzmann equation. Discussions include the effects of the boundary conditions describing the interaction of gas molecules with a solid body. Also presented are model equations which provide specific examples of analytical and other methods of solution. New features include an appendix that details the technique for solving singular integral equations and the system of such equations, and an introduction to important developments concerning purely mathematical theory, particularly the existence and uniqueness theorems.
0-306-43282-5/approx. 275 pp./ill./1990

COMPUTATIONAL MATHEMATICS AND MODELING
A translation of selected articles from Sbornik Trudov Fakulteta Vysshieho Matematiki i Kibernetiki Moskovskogo Gosudarstvennogo Universiteta (Transactions of the Faculty of Computational Mathematics and Cybernetics of the Moscow State University, USSR)
Editors: W. A. Light and A. N. Tikhonov
Computational Mathematics and Modeling focuses on the type of computational mathematics that will provide tools for the applied scientist or engineer. Special emphasis is given to numerical analysis, but other areas will also be featured. This new journal also emphasizes the uses of modeling for both applying computational mathematics to real-life problems and providing mathematical descriptions of problems.
Subscription: Volume 1, 1990 (4 issues)
$295.00 in US/$345.00 elsewhere
Send for a free examination copy!

FRACTALS
by Jens Feder
"It is well written and careful. . . . I highly recommend it for those who are interested in using fractal geometry . . . It would also provide a sound basis for a course in fractal geometry."
—Paul Meakin, Science
Mathematicians, physicists and geologists will be fascinated by Feder's use of fractals to describe the relationship of microscopic behavior to macroscopic observations. Illustrations include full-color representations of fractal landscapes generated by computer algorithms. A volume in the series Physics of Solids and Liquids.
0-306-42851-2/310 pp./ill./1988/49.50

Book prices are 20% higher outside US & Canada.

Visit the Plenum Booth at the SIAM meeting!

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS
edited by Michael A. Golberg
Integral equation techniques are playing an increasingly important role in the solution of many scientific and engineering problems. This new volume presents significant advances on such topics as Cauchy singular and related hypersingular equations, the boundary integral method, equations of the first kind, fast methods, superconvergence, and engineering and related applications. The implementation of numerical algorithms on multi-processor computers and important developments in Abel integral equations are also discussed. Volume 42 in the series Mathematical Concepts and Methods in Science and Engineering.
0-306-43460-1/410 pp. + index/ill./1990
MATLAB

High-Performance Numeric Computation and Data Analysis

MATLAB has rapidly become an industry standard for engineering and scientific research. Its unique interactive interface, algorithmic foundation, easy extensibility, and speed make MATLAB the software system of choice for high productivity and high creativity research.

Problems and solutions are expressed just as they are written mathematically – without the need for traditional programming. As a result, you can solve numerical problems in a fraction of the time required to write a program in Fortran, Basic, or C. Then plot the results as 2-D and 3-D graphics, with publication-quality output to plotters, dot-matrix printers, and laser printers.

“I can create algorithms so easily that it almost seems like cheating.”

Amnon Alighas, Personal Engineering & Instrumentation News

Add to MATLAB your choice of tools for digital signal processing, system identification, control system design, and more. MATLAB’s open-system design lets you see the algorithms and the implementations, even change them to suit your specific requirements.

MATLAB is developed by The MathWorks, a leader in software for data analysis and mathematics. Our users – in thousands of companies and universities – know that MATLAB enables them to work more creatively and productively. Take a look at how MATLAB can do the same for you.

To find out more about MATLAB, call us at (508) 653-1415. Or simply return the completed coupon to the address below.

Computers supported

PCs and ATs
386-based PCs
Macintosh
Sun
Apollo
HP 9000/300
DECstation
VAX/VMS
VAX/Ultrix
Stardent
Convex
Encore
Alliant
Cray
and more

The MathWorks
21 Eliot Street
South Natick, MA 01760
Phone: (508) 653-1415
Fax: (508) 653-2997

MATLAB is the undisputed choice for computation-intensive engineering work.”
Charles Seiter, Macworld

“MATLAB’s power and ease of use go a long way toward taking the drudgery out of repetitive analysis projects.”
Richard Santaleca, IEEE Spectrum

Name ________________________
Company ________________________
Department ________________________
Address ________________________
City, State ________________________
Zip __________ Country __________
Telephone ________________________

Computer(s) ________________________

SIAMC 4/90
Notes on Numerical Fluid Mechanics

The aim of this series is to publish quickly and in a detailed form new material from the field of Numerical Fluid Mechanics, including the use of advanced computer systems. Published are reports on specialized conferences, workshops, research programs, and monographs.

Series Editors: Ernst Heinrich-Ammel, Munich; Kozo Hui, Tokyo; Keith Williams, Oxford; Earl M. Muma, M.I.T., Cambridge; Maurizio Pardalos, Tomio; Arthur Rizzi, Stockholm; Bernard Roux, Marseille.

Bernard Roux (Ed.)

**Numerical Simulation of Oscillatory Convection in Low-Pr Fluids**

Hardcover US $78.00
ISBN 3-528-07628-3

**Volume 27** contains twenty-eighth contributions to a workshop on 2D oscillatory convection in differentially heated cavities with low-Pr fluids, which was held in 1988 in Marseille. It presents accurate benchmark solutions of mandatory cases, and deals with various related problems, such as thresholds for the onset of oscillations, thermocapillary effects in open cavities, and 3D simulations. Period doubling, quasi-periodic behaviour, reverse transition, and hysteresis loops are reported for high Grashof numbers. The book also contains contributions from stability theory and experiments, which allow an assessment to be made of the domains of validity of the 2D (and 3D) simulations.

Kenneth Grant Powell

**Vortical Solutions of the Conical Euler Equations**

Hardcover US $73.50
ISBN 3-528-07627-5

**Volume 28** contains a study of the numerical modeling of supersonic flows past delta wings. A solution algorithm that allows the problem to be solved on grids with embedded regions of finer mesh is developed. The characteristics of the solutions provided by the scheme are studied with emphasis on the large total pressure loss, which occurs in the vicinity of the vortex. The magnitude of the loss is found to be independent of computational parameters and to agree well with that seen experimentally. A model for the loss that is consistent with these results is presented. It relies on a new similarity solution to the conical, axisymmetric Navier-Stokes equations.

Pieter Wesseling

**Proceedings of the Eighth GAMM-Conference**

Hardcover US $98.00
ISBN 3-528-07629-1

**Volume 29** contains 62 papers, presented at the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics held in Delft, The Netherlands, September 27-29, 1989, at Delft University of Technology. This international conference is organized bi-annually at various locations in Europe. The papers cover a broad range of topics in computational fluid dynamics, including numerical methods, large scale computations and applications. Problems from the fields of fluid mechanics, combustion and reacting flows, hypersonic aerodynamics, gas dynamics, convection and heat transfer, flows in turbomachinery, hydrodynamics etc. are treated. A report on a GAMM Workshop on "Numerical Simulation of Oscillatory Convection in Low-Pr-Fluids" is included.

Wolfgang Hackbusch and Rolf Rannacher (Eds.)

**Numerical Treatment of the Navier-Stokes Equation**

1990. VII. 166 pp.
Hardcover US $45.00
ISBN 3-528-07630-5

**Volume 30** contains 15 contributions to the topic "Numerical Treatment of the Navier-Stokes-Equations", which was the title of the Fifth GAMM-Seminar held from January 20 to 22, 1989, in Kiel at the Christian- Albrechts-Universität. The articles present new methods for the accurate discretization of the compressible as well as the incompressible Navier-Stokes equations and certain of its nonviscous approximations, and for the efficient solution of the arising algebraic systems. These approaches include self-adaptive mesh refinement and extrapolation techniques, and preconditioned conjugate gradient and multi-grid algorithms.

To order these books please contact: BALLEN BOOKSELLERS INTERNATIONAL, INC., Dept. Vieweg, 125 Ricefield Lane, Hauppauge, New York 11786, USA Tel.: (516) 543-5600 Toll Free: (800) 645-5237, Telex: 9103600079, Telefax: (516) 864-5850
TRANSPORTATION

BY AIR

American Airlines has been chosen as the official carrier for this conference. You can fly to Chicago and save on travel from July 12 - 22, 1990 inclusive.

In a special arrangement with SIAM, American Airlines is offering you the services of their toll free convention reservation desk, along with a complement of discounts.

- 5% off any fare for which you qualify, including First Class and Ultra Saver fares. THE DISCOUNTS CAN RANGE FROM 40% - 70% OFF NORMAL COACH FARES!

OR . . . for those of you who do not qualify for the above discounts.

- American Airlines will offer a minimum of 45% off regular coach fares. Those passengers originating in Canada will be offered a 35% discount off full coach fares. Both of these rates require a 7 day advance purchase.

To make reservations for one of the above discounted fares:

- Call American Airlines Convention Desk, at 1-800-431-1790, seven days a week 8:00 A.M. to 11:00 PM Eastern Time. Be sure to mention the SIAM account number: S0320CN. American Airlines will arrange to mail your tickets to your home or office.

- For those of you having to use a corporate or university travel agent, you may still purchase your ticket through the local agent, just be sure to mention to the agent the above discounts. Your local agent can call the American Airlines Convention Desk to make your reservation. Make sure that the agent uses the SIAM account number: S0320CN.

Courtesy Airport Transportation: There is no courtesy van service available to the hotel from the airport.

CAR RENTAL

Dollar Rent A Car has been selected as the official car rental agency for the 1990 SIAM Annual Meeting. The following rates will apply:

<table>
<thead>
<tr>
<th>Type of Car</th>
<th>Daily Rate</th>
<th>Weekly Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>$39</td>
<td>$149.99</td>
</tr>
<tr>
<td>Intermediate</td>
<td>$42</td>
<td>$169.99</td>
</tr>
<tr>
<td>Standard</td>
<td>$42</td>
<td>$169.99</td>
</tr>
<tr>
<td>Premium</td>
<td>$49</td>
<td>$249.99</td>
</tr>
</tbody>
</table>

- These rates are valid July 12 - 22, 1990 and are available at the airport location.
- Unlimited Mileage.
- Rental Requirements
- Cars must be picked up and dropped off at the same location.
- You must be 21 years of age and have a valid U.S. or International Driver’s License.
- You must have one of the following credit cards to rent a car: AMEX, MasterCard, VISA or Diners Club.
- The prices quoted do not include refueling services, tax, optional collision damage waiver and personal accident insurance.

Reservations

We encourage you to make an advance reservation, as on-site availability cannot be guaranteed. Make reservations by calling: 1-800-421-6878. Make sure to give them the SIAM account code: CCSI17. Be certain to mention that you are attending the 1990 SIAM Annual Meeting, July 15 - 20, in Chicago, Illinois.

DIRECTIONS FOR DRIVING FROM THE AIRPORT

Take Kennedy Expressway east to the Ohio exit. Take Ohio exit until you come to Michigan Avenue. At Michigan and Ohio take a right. Follow this to South Water Street. At South Waters and Michigan Avenue, make a U-turn and go back one block to Michigan and Wacker. At Michigan and Wacker make a left then proceed for half a block and the Hyatt Regency is on your right. The Hyatt is approximately 15 miles from the airport.

PUBLIC TRANSPORTATION FROM THE AIRPORT

There is no complimentary bus or van service from the airport to the Hyatt Regency Hotel. Outside the baggage claim terminal at each airline, you can catch the Continental Bus Line (blue and white buses). The cost is $10.75 to the Hyatt Regency. They continually pass in front of all the terminals. Once aboard the bus, ask to be dropped off at the Hyatt Regency.

Taxicab service is also available outside the baggage claim areas. The average cost of the cab service is $25.00 to $30.00.

ABOUT THE HOTEL

Hyatt Regency Hotel
In Illinois Center
151 East Wacker Drive
Chicago, Illinois 60601
(312) 565-1234

SIAM is holding a block of rooms at the Hyatt Regency Hotel on a first come first served basis at the specially discounted rates of $86/Single and $116.00/Double. There is a 10.1% occupancy tax that is added to your room rate. These rooms will be held for our exclusive use only until June 25, 1990, after which date reservations will depend on availability and the above rates may not be in effect. We urge you to make your reservations as soon as possible. You may do so by telephoning (312) 565-1234, or via the Hotel Reservation Form on the inside back page of this brochure (domestic mail only). When making reservations by telephone, be certain to obtain the discounted rate by identifying yourself as an attendee at the 1990 SIAM Annual Meeting.

Arrivals and Departures: Your room will be reserved for you until 6:00 PM. If later arrival is anticipated, please guarantee your reservation by credit card or advance deposit. Check-out time is 12:00 PM.

Facilities: At the Hyatt Regency you have ten restaurants and lounges from which to choose. Stetson's Chop House emphasizes steaks, lobsters and roast duckling. At Scampi you'll enjoy a relaxed island setting featuring 24 hour service. Sample the deli sandwiches at Mrs. O'Leary's...or enjoy a kosher restaurant, La Misada. The Hyatt Regency is located just minutes away from Chicago's Art Institute and walking distance from many shops and restaurants.

The Hyatt Regency is affiliated with the Downtown Health Club located 441 North Wabash (directly across the bridge on Michigan Avenue and the North side of the Wrigley Building). Cost for Hyatt guests is $12.00 by showing the club attendant your Hyatt Passport (received upon check-in). If you would like to swim, you must go to the health club as the hotel does not have a pool on site.

Parking: At the Hyatt Regency parking rates are $7 for 1 hour, $11 for 2 to 11 hours and $15 for 12 to 24 hours. Alternative parking is available at the following locations: Standard Oil Building — 200 East Randolph Street located two block south of the Hyatt, within walking distance to the hotel. RATE: $6.00 flat fee for up to 12 hours.
- Three Illinois Center — Lower Columbus Drive and South Waters Street connected to Hyatt by enclosed concourse. Enter at Lower Columbus Drive. RATES: $7.50 for 4 - 12 hours; $8.50 for 12 - 24 hours.
REGISTRATION INFORMATION

Please complete the Advance Registration Form found on the back page of this brochure and return it in the envelope provided in the middle section of this program. We urge attendees to register in advance as the registration fee is lower for advance registrants. Advance registration must be received by July 9, 1990.

The registration desk will be open as listed below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday, July 14</td>
<td>5:00 PM - 8:00 PM</td>
</tr>
<tr>
<td>Sunday, July 15</td>
<td>8:00 AM - 4:00 PM</td>
</tr>
<tr>
<td>Monday, July 16</td>
<td>6:00 PM - 9:00 PM</td>
</tr>
<tr>
<td>Tuesday, July 17</td>
<td>7:30 AM - 4:30 PM</td>
</tr>
<tr>
<td>Wednesday, July 18</td>
<td>8:00 AM - 4:30 PM</td>
</tr>
<tr>
<td>Thursday, July 19</td>
<td>8:00 AM - 4:30 PM</td>
</tr>
<tr>
<td>Friday, July 20</td>
<td>8:00 AM - 2:00 PM</td>
</tr>
</tbody>
</table>

REGISTRATION FEE:

<table>
<thead>
<tr>
<th>Type</th>
<th>Member</th>
<th>Non-Member</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Course</td>
<td>Advance $115</td>
<td>$140</td>
<td>$75</td>
</tr>
<tr>
<td></td>
<td>On-Site $135</td>
<td>$150</td>
<td>$95</td>
</tr>
<tr>
<td>Conference</td>
<td>Advance $100</td>
<td>$135</td>
<td>$15</td>
</tr>
<tr>
<td></td>
<td>On-Site $130</td>
<td>$165</td>
<td>$15</td>
</tr>
</tbody>
</table>

Non-SIAM Members
Non-member registrants are encouraged to join SIAM in order to obtain the member rate for conference registration and enjoy all the other benefits of SIAM membership. You can join SIAM by filling out a membership form at the SIAM Registration Desk. If you join for this meeting, SIAM will retroactively give you the member rate for registration.

Notice
There will be no prorated fees. No refunds will be issued once the conference has started.

If SIAM does not receive your Advance Registration Form by July 9th, you will be asked to give us a check or a credit card number at the conference. We will not process either until we have ascertained that your registration form has gone astray. In the event that we receive your form after July 9, 1990, we will destroy your check or credit card slip.

Telephone Messages
The telephone number at the Hyatt Regency Hotel is 1-(312)-565-1234. The Hyatt will either connect you with the SIAM registration desk or forward a message.

Credit Cards
SIAM accepts VISA, MasterCard and American Express for the payment of registration fees and special functions. When you complete the Advance Registration Form, please be certain to indicate the type of credit card, the number, and the expiration date.

GET-TOGETHERS

SIAM Welcoming Reception
Sunday, July 15th 7:00 PM - 9:00 PM
Cash Bar

SIAM Idea Exchange $18
Monday, July 16th, 6:00 PM - 7:30 PM
This a great time to get together with your colleagues to exchange ideas and get your questions answered. This get-together will consist of three stations where the chefs are creating the dishes right before your eyes. Menus will consist of chicken and steak fajitas, freshly made rotini, tortellini and fettucini and marinara and alfredo sauce, and oriental stir fry consisting of shrimp scallops, chicken and Chinese vegetables. Domestic beer and assorted sodas will also be available.

Western Dinner Theater/Play $36.00
Tuesday, July 17th, 1990, 6:00 PM - 10:30 PM
High steppin' dance hall girls, toe tappin' fiddler, guitar and banjo pickin' slick card tricks and lots of cold beer, wine and apple cider is only part of this two and a half hour western adventure. After boarding the buses at the Hyatt Regency, you'll arrive at Dry Gulch, a western dinner theater where you'll be greeted with a 1/2 hour cocktail reception followed by a feast consisting of a six course dinner of assorted cheeses and breads, a fresh vegetable tray and dip, soup of the day, tangy beef ribs, corn on the cob, and dessert. All this while experiencing a musical comedy revue featuring Sheriff Bob and his Band, Miss Kitty and her Dance Hall Girls and Slippery Sam the Magic Man. This promises to be a fun-filled casual evening.

SIAM Corporate Members
Non-member attendees who are employed by the following institutions are entitled to the SIAM member rate.
Aerospace Corporation
Amoco Production Company
AT&T Bell Laboratories
Bell Communications Research
The Boeing Company
BP America
E.I. duPont de Nemours and Company
Eastman Kodak Company
Exxon Research and Engineering Company
General Motors Corporation
GTE Laboratories, Inc.
Hollander Signaalapparaten B.V.
IBM Corporation
ICASE-NASA Langley Research Center
IMSL, Inc.
MacNeal-Schwendler Corporation
Martin Marietta Energy Systems
Mathematical Sciences Research Institute
Schlumberger Industries
Supercomputing Research Center, a division of Institute for Defense Analyses
Texaco, Inc.
United Technologies Corporation

UPCOMING CONFERENCES

November 5 - 8, 1990
Second SIAM Conference on Linear Algebra in Signals, Systems and Control
Cathedral Hill Hotel, San Francisco, CA
Sponsored by the SIAM Activity Group on Linear Algebra
January 7 - 9, 1991
SIAM Workshop on Automatic Differentiation
Hilton Hotel
Breckenridge, CO
January 28 - 30, 1991
ACM/SIAM Symposium on Discrete Algorithms
Cathedral Hill Hotel
San Francisco, CA
March 25 - 27, 1991
Fifth SIAM Conference on Parallel Processing for Scientific Computing
The Westin Hotel
Houston, TX

May 6 - 8, 1991
SIAM Conference on Domain Decomposition Methods for Partial Differential Equations
Omni Hotel
Norfolk, VA
July 8 - 12, 1991
Second International Conference on Industrial and Applied Mathematics (ICIAM 91)
Sheraton Washington Hotel
Washington, D.C.
September 16 - 19, 1991
Fourth SIAM Conference on Applied Linear Algebra
Radisson University Hotel
Minneapolis, MN
HOTEL RESERVATION FORM
1990 SIAM Annual Meeting
July 15–20, 1990
Hyatt Regency Hotel
Chicago, Illinois

PLEASE SEND ME A CONFIRMATION NOTICE
Specially discounted rooms are being held for our exclusive use until June 25, 1990. After that date, reservations will depend on availability. Your reservation is not confirmed until acknowledged in writing by the hotel or verified by phone. When making reservations by phone, be certain to identify yourself as an attendee at the 1990 SIAM Annual Meeting. Telephone 1-(312)-565-1234.

Name: ____________________________ Phone: ____________________________
First Last
Address: ____________________________ State: __________ Zip: __________
City: ____________________________

Please reserve [ ] Single($86) [ ] Double($116) Arrival Date ____________________________
[ ] Check-Out Date ____________________________

Guarantee my room for late arrival (after 6:00 PM) [ ] Yes [ ] No
I choose to pay by [ ] AMEX [ ] VISA [ ] MC [ ] Check

Credit Card Number*: ____________________________
Expiration Date ____________________________ Deposit $ ____________________________ (Late Arrivals Only)

Signature: ____________________________
*You only need to list your credit card number if you want to guarantee your room for late arrival.

ADVANCE REGISTRATION FORM
1990 SIAM Annual Meeting
July 15–20, 1990
Hyatt Regency Hotel Chicago, Illinois

Advance registration form must be received at the SIAM office by July 9, 1990. If paying by check, please make check payable to SIAM.

REGISTRATION FEE:

<table>
<thead>
<tr>
<th>Short Course</th>
<th>SIAM Member</th>
<th>Non-Member</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance</td>
<td>$115</td>
<td>$140</td>
<td>$75</td>
</tr>
<tr>
<td>On-Site</td>
<td>$135</td>
<td>$150</td>
<td>$95</td>
</tr>
<tr>
<td>Meeting</td>
<td>$100</td>
<td>$135</td>
<td>$15</td>
</tr>
<tr>
<td>On-Site</td>
<td>$130</td>
<td>$165</td>
<td>$15</td>
</tr>
</tbody>
</table>

Registration Fee:

| Short Course | $ __________ | $ __________ | $ __________ |
| Meeting      | $ __________ | $ __________ | $ __________ |
| Idea Exchange | $ __________ | $ __________ | $ __________ |
| Western Dinner/Play | $ __________ | $ __________ | $ __________ |
| Total        | $ __________ | $ __________ | $ __________ |

Please Print
Name (First) (Last)
Affiliation
Department
Address
City State Zip
Telephone Number
Local Address in Chicago
I wish to pay by [ ] AMEX [ ] VISA [ ] MC [ ] Check
Credit Card Number
Expiration Date
Signature
I have enclosed the registration fee along with the hotel reservation. The total amount due is $ __________. I wish to attend: [ ] Regular [ ] Student [ ] Non-Member.

Signature

Detach card and enclose with payment in the envelope provided (domestic mail only) and mail to: SIAM, 3600 University City Science Center, Philadelphia, PA 19104-2688. Tel: (215) 665-2600, Fax: (215) 665-3596.