
PROCEEDINGS
OF THE FIFTH
SIAM INTERNATIONAL
CONFERENCE
ON DATA MINING

SIAM PROCEEDINGS SERIES LIST

Glowinski, R., Golub, G. H., Meurant, G. A., and Periaux, J., First International Conference on Domain
Decomposition Methods for Partial Differential Equations (1988)

Salam, Fathi M. A. and Levi, Mark L., Dynamical Systems Approaches to Nonlinear Problems in Systems
and Circuits (1988)

Datta, B., Johnson, C., Kaashoek, M., Plemmons, R., and Sontag, E., Linear Algebra in Signals, Systems
and Control (1988)

Ringeisen, Richard D. and Roberts, Fred S., Applications of Discrete Mathematics (1988)

McKenna, James and Temam, Roger, ICIAM ‘87: Proceedings of the First International Conference on
Industrial and Applied Mathematics (1988)

Rodrigue, Garry, Parallel Processing for Scientific Computing (1989)

Caflish, Russel E., Mathematical Aspects of Vortex Dynamics (1989)

Wouk, Arthur, Parallel Processing and Medium-Scale Multiprocessors (1989)

Flaherty, Joseph E., Paslow, Pamela J., Shephard, Mark S., and Vasilakis, John D., Adaptive Methods for
Partial Differential Equations (1989)

Kohn, Robert V. and Milton, Graeme W., Random Media and Composites (1989)

Mandel, Jan, McCormick, S. F., Dendy, J. E., Jr., Farhat, Charbel, Lonsdale, Guy, Parter, Seymour V., Ruge,
John W., and Stüben, Klaus, Proceedings of the Fourth Copper Mountain Conference on Multigrid
Methods (1989)

Colton, David, Ewing, Richard, and Rundell, William, Inverse Problems in Partial Differential Equations (1990)

Chan, Tony F., Glowinski, Roland, Periaux, Jacques, and Widlund, Olof B., Third International Symposium
on Domain Decomposition Methods for Partial Differential Equations (1990)

Dongarra, Jack, Messina, Paul, Sorensen, Danny C., and Voigt, Robert G., Proceedings of the Fourth SIAM
Conference on Parallel Processing for Scientific Computing (1990)

Glowinski, Roland and Lichnewsky, Alain, Computing Methods in Applied Sciences and Engineering (1990)

Coleman, Thomas F. and Li, Yuying, Large-Scale Numerical Optimization (1990)

Aggarwal, Alok, Borodin, Allan, Gabow, Harold, N., Galil, Zvi, Karp, Richard M., Kleitman, Daniel J.,
Odlyzko, Andrew M., Pulleyblank, William R., Tardos, Éva, and Vishkin, Uzi, Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms (1990)

Cohen, Gary, Halpern, Laurence, and Joly, Patrick, Mathematical and Numerical Aspects of Wave
Propagation Phenomena (1991)

Gómez, S., Hennart, J. P., and Tapia, R. A., Advances in Numerical Partial Differential Equations and
Optimization: Proceedings of the Fifth Mexico-United States Workshop (1991)

Glowinski, Roland, Kuznetsov, Yuri A., Meurant, Gérard, Périaux, Jacques, and Widlund, Olof B., Fourth
International Symposium on Domain Decomposition Methods for Partial Differential Equations (1991)

Alavi, Y., Chung, F. R. K., Graham, R. L., and Hsu, D. F., Graph Theory, Combinatorics, Algorithms, and
Applications (1991)

Wu, Julian J., Ting, T. C. T., and Barnett, David M., Modern Theory of Anisotropic Elasticity and
Applications (1991)

Shearer, Michael, Viscous Profiles and Numerical Methods for Shock Waves (1991)

Griewank, Andreas and Corliss, George F., Automatic Differentiation of Algorithms: Theory,
Implementation, and Application (1991)

Frederickson, Greg, Graham, Ron, Hochbaum, Dorit S., Johnson, Ellis, Kosaraju, S. Rao, Luby, Michael,
Megiddo, Nimrod, Schieber, Baruch, Vaidya, Pravin, and Yao, Frances, Proceedings of the Third Annual
ACM-SIAM Symposium on Discrete Algorithms (1992)

Field, David A. and Komkov, Vadim, Theoretical Aspects of Industrial Design (1992)

Field, David A. and Komkov, Vadim, Geometric Aspects of Industrial Design (1992)

Bednar, J. Bee, Lines, L. R., Stolt, R. H., and Weglein, A. B., Geophysical Inversion (1992)

O'Malley, Robert E. Jr., ICIAM 91: Proceedings of the Second International Conference on Industrial and
Applied Mathematics (1992)

Keyes, David E., Chan, Tony F., Meurant, Gérard, Scroggs, Jeffrey S., and Voigt, Robert G., Fifth
International Symposium on Domain Decomposition Methods for Partial Differential Equations (1992)

Dongarra, Jack, Messina, Paul, Kennedy, Ken, Sorensen, Danny C., and Voigt, Robert G., Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing (1992)

Corones, James P., Kristensson, Gerhard, Nelson, Paul, and Seth, Daniel L., Invariant Imbedding and
Inverse Problems (1992)

Ramachandran, Vijaya, Bentley, Jon, Cole, Richard, Cunningham, William H., Guibas, Leo, King, Valerie,
Lawler, Eugene, Lenstra, Arjen, Mulmuley, Ketan, Sleator, Daniel D., and Yannakakis, Mihalis, Proceedings
of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (1993)

Kleinman, Ralph, Angell, Thomas, Colton, David, Santosa, Fadil, and Stakgold, Ivar, Second International
Conference on Mathematical and Numerical Aspects of Wave Propagation (1993)

Banks, H. T., Fabiano, R. H., and Ito, K., Identification and Control in Systems Governed by Partial
Differential Equations (1993)

Sleator, Daniel D., Bern, Marshall W., Clarkson, Kenneth L., Cook, William J., Karlin, Anna, Klein, Philip N.,
Lagarias, Jeffrey C., Lawler, Eugene L., Maggs, Bruce, Milenkovic, Victor J., and Winkler, Peter,
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (1994)

Lewis, John G., Proceedings of the Fifth SIAM Conference on Applied Linear Algebra (1994)

Brown, J. David, Chu, Moody T., Ellison, Donald C., and Plemmons, Robert J., Proceedings of the
Cornelius Lanczos International Centenary Conference (1994)

Dongarra, Jack J. and Tourancheau, B., Proceedings of the Second Workshop on Environments and Tools
for Parallel Scientific Computing (1994)

Bailey, David H., Bjørstad, Petter E., Gilbert, John R., Mascagni, Michael V., Schreiber, Robert S., Simon,
Horst D., Torczon, Virginia J., and Watson, Layne T., Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing (1995)

Clarkson, Kenneth, Agarwal, Pankaj K., Atallah, Mikhail, Frieze, Alan, Goldberg, Andrew, Karloff, Howard,
Manber, Udi, Munro, Ian, Raghavan, Prabhakar, Schmidt, Jeanette, and Young, Moti, Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (1995)

Becache, Elaine, Cohen, Gary, Joly, Patrick, and Roberts, Jean E., Third International Conference on
Mathematical and Numerical Aspects of Wave Propagation (1995)

Engl, Heinz W., and Rundell, W., GAMM–SIAM Proceedings on Inverse Problems in Diffusion Processes (1995)

Angell, T. S., Cook, Pamela L., Kleinman, R. E., and Olmstead, W. E., Nonlinear Problems in Applied
Mathematics (1995)

Tardos, Éva, Applegate, David, Canny, John, Eppstein, David, Galil, Zvi, Karger, David R., Karlin, Anna R.,
Linial, Nati, Rao, Satish B., Vitter, Jeffrey S., and Winkler, Peter M., Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms (1996)

Cook, Pamela L., Roytburd, Victor, and Tulin, Marshal, Mathematics Is for Solving Problems (1996)

Adams, Loyce and Nazareth, J. L., Linear and Nonlinear Conjugate Gradient-Related Methods (1996)

Renardy, Yuriko Y., Coward, Adrian V., Papageorgiou, Demetrios T., and Sun, Shu-Ming, Advances in
Multi-Fluid Flows (1996)

Berz, Martin, Bischof, Christian, Corliss, George, and Griewank, Andreas, Computational Differentiation:
Techniques, Applications, and Tools (1996)

Delic, George and Wheeler, Mary F., Next Generation Environmental Models and Computational
Methods (1997)

Engl, Heinz W., Louis, Alfred, and Rundell, William, Inverse Problems in Geophysical Applications (1997)

Saks, Michael, Anderson, Richard, Bach, Eric, Berger, Bonnie, Blum, Avrim, Chazelle, Bernard,
Edelsbrunner, Herbert, Henzinger, Monika, Johnson, David, Kannan, Sampath, Khuller, Samir, Maggs,
Bruce, Muthukrishnan, S., Ruskey, Frank, Seymour, Paul, Spencer, Joel, Williamson, David P., and
Williamson, Gill, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (1997)

Alexandrov, Natalia M. and Hussaini, M. Y., Multidisciplinary Design Optimization: State of the Art (1997)

Van Huffel, Sabine, Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling
(1997)

Ferris, Michael C. and Pang, Jong-Shi, Complementarity and Variational Problems: State of the Art (1997)

Bern, Marshall, Fiat, Amos, Goldberg, Andrew, Kannan, Sampath, Karloff, Howard, Kenyon, Claire,
Kierstead, Hal, Kosaraju, Rao, Linial, Nati, Rabani, Yuval, Rödl, Vojta, Sharir, Micha, Shmoys, David,
Spielman, Dan, Spinrad, Jerry, Srinivasan, Aravind, and Sudan, Madhu, Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (1998)

DeSanto, John A., Mathematical and Numerical Aspects of Wave Propagation (1998)

Tarjan, Robert E., Warnow, Tandy, Amenta, Nina, Benham, Craig, Corneil, Derek G., Edelsbrunner,
Herbert, Feigenbaum, Joan, Gusfield, Dan, Habib, Michel, Hall, Leslie, Karp, Richard, King, Valerie, Koller,
Daphne, McKay, Brendan, Moret, Bernard, Muthukrishnan, S., Phillips, Cindy, Raghavan, Prabhakar,
Randall, Dana, and Scheinerman, Edward, Proceedings of the Tenth ACM-SIAM Symposium on Discrete
Algorithms (1999)

Hendrickson, Bruce, Yelick, Katherine A., Bischof, Christian H., Duff, Iain S., Edelman, Alan S., Geist,
George A., Heath, Michael T., Heroux, Michael H., Koelbel, Chuck, Schrieber, Robert S., Sincovec, Richard
F., and Wheeler, Mary F., Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing (1999)

Henderson, Michael E., Anderson, Christopher R., and Lyons, Stephen L., Object Oriented Methods for
Interoperable Scientific and Engineering Computing (1999)

Shmoys, David, Brightwell, Graham, Cohen, Edith, Cook, Bill, Eppstein, David, Gerards, Bert, Irani, Sandy,
Kenyon, Claire, Ostrovsky, Rafail, Peleg, David, Pevzner, Pavel, Reed, Bruce, Stein, Cliff, Tetali, Prasad, and
Welsh, Dominic, Proceedings of the Eleventh ACM-SIAM Symposium on Discrete Algorithms (2000)

Bermúdez, Alfredo, Gómez, Dolores, Hazard, Christophe, Joly, Patrick, and Roberts, Jean E., Fifth
International Conference on Mathematical and Numerical Aspects of Wave Propagation (2000)

Kosaraju, S. Rao, Bellare, Mihir, Buchsbaum, Adam, Chazelle, Bernard, Graham, Fan Chung, Karp,
Richard, Lovász, László, Motwani, Rajeev, Myrvold, Wendy, Pruhs, Kirk, Sinclair, Alistair, Spencer, Joel,Stein,
Cliff, Tardos, Eva, Vempala, Santosh, Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms (2001)

Koelbel, Charles and Meza, Juan, Proceedings of the Tenth SIAM Conference on Parallel Processing for
Scientific Computing (2001)

Grossman, Robert, Kumar, Vipin, and Han, Jiawei, Proceedings of the First SIAM International Conference
on Data Mining (2001)

Berry, Michael, Computational Information Retrieval (2001)

Eppstein, David, Demaine, Erik, Doerr, Benjamin, Fleischer, Lisa, Goel, Ashish, Goodrich, Mike, Khanna,
Sanjeev, King, Valerie, Munro, Ian, Randall, Dana, Shepherd, Bruce, Spielman, Dan, Sudakov, Benjamin,
Suri, Subhash, and Warnow, Tandy, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (2002)

Grossman, Robert, Han, Jiawei, Kumar, Vipin, Mannila, Heikki, and Motwani, Rajeev, Proceedings of the
Second SIAM International Conference on Data Mining (2002)

Estep, Donald and Tavener, Simon, Collected Lectures on the Preservation of Stability under Discretization
(2002)

Ladner, Richard E., Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments (2003)

Barbará, Daniel and Kamath, Chandrika, Proceedings of the Third SIAM International Conference on
Data Mining (2003)

Olshevsky, Vadim, Fast Algorithms for Structured Matrices: Theory and Applications (2003)

Munro, Ian, Albers, Susanne, Arge, Lars, Brodal, Gerth, Buchsbaum, Adam, Cowen, Lenore, Farach-
Colton, Martin, Frieze, Alan, Goldberg, Andrew, Hershberger, John, Jerrum, Mark, Johnson, David,
Kosaraju, Rao, López-Ortiz, Alejandro, Mosca, Michele, Muthukrishnan, S., Rote, Günter, Ruskey, Frank,
Spinrad, Jeremy, Stein, Cliff, and Suri, Subhash, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (2004)

Arge, Lars and Italiano, Giuseppe F., Proceedings of the Sixth Workshop on Algorithm Engineering and
Experiments and the First Workshop on Analytic Algorithms and Combinatorics (2004)

Hill, James M. and Moore, Ross, Applied Mathematics Entering the 21st Century: Invited Talks from the
ICIAM 2003 Congress (2004)

Berry, Michael W., Dayal, Umeshwar, Kamath, Chandrika and Skillicorn, David, Proceedings of the Fourth
SIAM International Conference on Data Mining (2004)

Azar, Yossi, Buchsbaum, Adam, Chazelle, Bernard, Cole, Richard, Fleischer, Lisa, Golin, Mordecai,
Goodrich, Michael, Grossi, Roberto, Guha, Sudipto, Halldorsson, Magnus M., Indyk, Piotr, Italiano,
Giuseppe F., Kaplan, Haim, Myrvold, Wendy, Pruhs, Kirk, Randall, Dana, Rao, Satish, Shepherd, Bruce,
Torng, Eric, Vempala, Santosh, Venkatasubramanian, Suresh, Vu, Van, and Wormald, Nick,
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2005)

Kargupta, Hilol, Srivastava, Jaideep, Kamath, Chandrika, and Goodman, Arnold, Proceedings of the
Fifth SIAM International Conference on Data Mining (2005)

Society for Industrial and Applied Mathematics

Philadelphia

Edited by
Hillol Kargupta
University of Maryland Baltimore County
Baltimore, Maryland

Jaideep Srivastava
University of Minnesota
Minneapolis, Minnesota

PROCEEDINGS
OF THE FIFTH
SIAM INTERNATIONAL
CONFERENCE
ON DATA MINING

Chandrika Kamath
Lawrence Livermore National

Laboratory
Livermore, California

Arnold Goodman
University of California, Irvine
Irvine, California

PROCEEDINGS OF THE FIFTH SIAM INTERNATIONAL
CONFERENCE ON DATA MINING

Proceedings of the Fifth SIAM International Conference on Data Mining, Newport Beach,
CA, April 21–23, 2005

Copyright © 2005 by the Society for Industrial and Applied Mathematics.

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Catalog Card Number: 2005923615

ISBN 0-89871-593-8

is a registered trademark.

CONTENTS

xi Message from the Conference Co-Chairs

xiii Preface

1 Computational Developments of ψ-learning
Sijin Liu, Xiaotong Shen, and Wing Hung Wong

12 A Random Walks Perspective on Maximizing Satisfaction and Profit
Matthew Brand

20 Surveying Data for Patchy Structure
Ronald K. Pearson

32 2-Dimensional Singular Value Decomposition for 2D Maps and Images
Chris Ding and Jieping Ye

44 Summarizing and Mining Skewed Data Streams
Graham Cormode and S. Muthukrishnan

56 Online Analysis of Community Evolution in Data Streams
Charu C. Aggarwal and Philip S. Yu

68 Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window
Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, and Arbee L. P. Chen

80 On Abnormality Detection in Spuriously Populated Data Streams
Charu C. Aggarwal

92 Privacy-Preserving Classification of Customer Data without Loss of Accuracy
Zhiqiang Yang, Sheng Zhong, and Rebecca N.Wright

103 Privacy-Aware Market Basket Data Set Generation: A Feasible Approach for Inverse
Frequent Set Mining
Xintao Wu, Ying Wu, Yongge Wang, and Yingjiu Li

115 On Variable Constraints in Privacy Preserving Data Mining
Charu C. Aggarwal and Philip S. Yu

126 Clustering with Model-Level Constraints
David Gondek, Shivakumar Vaithyanathan, and Ashutosh Garg

138 Clustering with Constraints: Feasibility Issues and the k-Means Algorithm
Ian Davidson and S. S. Ravi

150 A Cutting Algorithm for the Minimum Sum-of-Squared Error Clustering
Jiming Peng and Yu Xia

161 Dynamic Classification of Defect Structures in Molecular Dynamics Simulation Data
Sameep Mehta, Steve Barr, Tat-Sang Choy, Hui Yang, Srinivasan Parthasarathy, Raghu
Machiraju, and John Wilkins

173 Striking Two Birds with One Stone: Simultaneous Mining of Positive and Negative Spatial
Patterns
Bavani Arunasalam, Sanjay Chawla, and Pei Sun

183 Finding Young Stellar Populations in Elliptical Galaxies from Independent Components of
Optical Spectra
Ata Kabán, Louisa A. Nolan, and Somak Raychaudhury

195 Hybrid Attribute Reduction for Classification Based on a Fuzzy Rough Set Technique
Qinghua Hu, Daren Yu, and Zongxia Xie

vii

205 HARMONY: Efficiently Mining the Best Rules for Classification
Jianyong Wang and George Karypis

217 On Error Correlation and Accuracy of Nearest Neighbor Ensemble Classifiers
Carlotta Domeniconi and Bojun Yan

227 Lazy Learning for Classification Based on Query Projections
Yiqiu Han and Wai Lam

239 Mining Non-derivable Association Rules
Bart Goethals, Juho Muhonen, and Hannu Toivonen

250 Depth-First Non-derivable Itemset Mining
Toon Calders and Bart Goethals

262 Exploiting Relationships for Domain-Independent Data Cleaning
Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen

274 A Spectral Clustering Approach to Finding Communities in Graphs
Scott White and Padhraic Smyth

286 Mining Behavior Graphs for "Backtrace'' of Noncrashing Bugs
Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S. Yu

298 Learning to Refine Ontology for a New Web Site Using a Bayesian Approach
Tak-Lam Wong and Wai Lam

310 Exploiting Parameter Related Domain Knowledge for Learning in Graphical Models
Radu S. Niculescu, Tom M. Mitchell, and R. Bharat Rao

322 Exploiting Geometry for Support Vector Machine Indexing
Navneet Panda and Edward Y. Chang

334 Parallel Computation of RBF Kernels for Support Vector Classifiers
Shibin Qiu and Terran Lane

346 Loadstar: A Load Shedding Scheme for Classifying Data Streams
Yun Chi, Philip S. Yu, Haixun Wang, and Richard R. Muntz

358 Topic-Driven Clustering for Document Datasets
Ying Zhao and George Karypis

370 Variational Learning for Noisy-OR Component Analysis
Tomas Singliar and Milos Hauskrecht

380 Summarizing Sequential Data with Closed Partial Orders
Gemma Casas-Garriga

392 SUMSRM: A New Statistic for the Structural Break Detection in Time Series
Kwok Pan Pang and Kai Ming Ting

404 Markov Models for Identification of Significant Episodes
Robert Gwadera, Mikhail Atallah, and Wojciech Szpankowski

415 Efficient Mining of Maximal Sequential Patterns Using Multiple Samples
Congnan Luo and Soon M. Chung

427 Gaussian Processes for Active Data Mining of Spatial Aggregates
Naren Ramakrishnan, Chris Bailey-Kellogg, Satish Tadepalli, and Varun N. Pandey

439 Correlation Clustering for Learning Mixtures of Canonical Correlation Models
Xiaoli Z. Fern, Carla E. Brodley, and Mark A. Friedl

449 On Periodicity Detection and Structural Periodic Similarity
Michail Vlachos, Philip Yu, and Vittorio Castelli

461 Cross Table Cubing: Mining Iceberg Cubes from Data Warehouses
Moonjung Cho, Jian Pei, and David W. Cheung

viii Contents

466 Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases
Amir Bar-Or, Assaf Schuster, Ran Wolff, and Daniel Keren

471 Slope One Predictors for Online Rating-Based Collaborative Filtering
Daniel Lemire and Anna Maclachlan

476 Sparse Fisher Discriminant Analysis for Computer Aided Detection
M. Murat Dundar, Glenn Fung, Jinbo Bi, Sandilya Sathyakama, and Bharat Rao

481 Expanding the Training Data Space Using Emerging Patterns and Genetic Methods
Hamad Alhammady and Kotagiri Ramamohanarao

486 Making Data Mining Models Useful to Model Non-paying Customers of Exchange Carriers
Wei Fan, Janak Mathuria, and Chang-tien Lu

491 Matrix Condition Number Prediction with SVM Regression and Feature Selection
Shuting Xu and Jun Zhang

496 Cluster Validity Analysis of Alternative Results from Multi-objective Optimization
Yimin Liu, Tansel Özyer, Reda Alhajj, and Ken Barker

501 ClosedPROWL: Efficient Mining of Closed Frequent Continuities by Projected Window List
Technology
Kuo-Yu Huang, Chia-Hui Chang, and Kuo-Zui Lin

506 Three Myths about Dynamic Time Warping Data Mining
Chotirat Ann Ratanamahatana and Eamonn Keogh

511 PCA without Eigenvalue Calculations: A Case Study on Face Recognition
E. Kokiopoulou and Y. Saad

516 Mining Top-K Itemsets over a Sliding Window Based on Zipfian Distribution
Raymond Chi-Wing Wong and Ada Wai-Chee Fu

521 Hierarchical Document Classification Using Automatically Generated Hierarchy
Tao Li and Shenghuo Zhu

526 On Clustering Binary Data
Tao Li and Shenghuo Zhu

531 Time-Series Bitmaps: A Practical Visualization Tool for Working with Large Time Series
Databases
Nitin Kumar, Venkata Nishanth Lolla, Eamonn Keogh, Stefano Lonardi, Chotirat Ann
Ratanamahatana, and Li Wei

536 Pushing Feature Selection Ahead of Join
Rong She, Ke Wang, Yabo Xu, and Philip S. Yu

541 Discarding Insignificant Rules During Impact Rule Discovery in Large, Dense Databases
Shiying Huang and Geoffrey I. Webb

546 SPID4.7: Discretization Using Successive Pseudo Deletion at Maximum Information Gain
Boundary Points
Somnath Pal and Himika Biswas

551 Iterative Mining for Rules with Constrained Antecedents
Zheng Sun, Philip S. Yu, and Xiang-Yang Li

556 Influence in Ratings-Based Recommender Systems: An Algorithm-Independent Approach
Al Mamunur Rashid, George Karypis, and John Riedl

561 Mining Unconnected Patterns in Workflows
Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, and Domenico Saccà

566 The Best Nurturers in Computer Science Research
Bharath Kumar M. and Y. N. Srikant

Contents ix

571 Knowledge Discovery from Heterogeneous Dynamic Systems Using Change-Point
Correlations
Tsuyoshi Idé and Keisuke Inoue

576 Building Decision Trees on Records Linked through Key References
Ke Wang, Yabo Xu, Philip S. Yu, and Rong She

581 Efficient Allocation of Marketing Resources Using Dynamic Programming
Giuliano Tirenni, Abderrahim Labbi, André Elisseeff, and Cèsar Berrospi

586 Near-Neighbor Search in Pattern Distance Spaces
Haixun Wang, Chang-Shing Perng, and Philip S. Yu

591 An Algorithm for Lattice-Structured Subspace Clusters
Haiyun Bian and Raj Bhatnagar

596 CBS: A New Classification Method by Using Sequential Patterns
Vincent S. M. Tseng and Chao-Hui Lee

601 SeqIndex: Indexing Sequences by Sequential Pattern Analysis
Hong Cheng, Xifeng Yan, and Jiawei Han

606 On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering
Chris Ding, Xiaofeng He, and Horst D. Simon

611 Kronecker Factorization for Speeding up Kernel Machines
Gang Wu, Zhihua Zhang, and Edward Chang

616 Symmetric Statistical Translation Models for Automatic Image Annotation
Feng Kang and Rong Jin

621 Correcting Sampling Bias in Structural Genomics through Iterative Selection of
Underrepresented Targets
Kang Peng, Slobodan Vucetic, and Zoran Obradovic

626 Statictical Models for Unequally Spaced Time Series
Emre Erdogan, Sheng Ma, Alina Beygelzimer, and Irina Rish

631 CLSI: A Flexible Approximation Scheme from Clustered Term-Document Matrices
Dimitrios Zeimpekis and Efstratios Gallopoulos

636 WFIM: Weighted Frequent Itemset Mining with a Weight Range and a Minimum Weight
Unil Yun and John J. Leggett

641 Model-Based Clustering with Probabilistic Constraints
Martin H. C. Law, Alexander Topchy, and Anil K. Jain

647 Author Index

x Contents

MESSAGE FROM THE CONFERENCE CO-CHAIRS

The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open
forum for the presentation and discussion of innovative algorithms as well as novel applications of data
mining. This is reflected in the talks by the four keynote speakers, who will discuss a diverse set of topics
from models for customer-based analysis (Peter S. Fader), through embedded sensor networks (Mark
Hansen) and the practice of cluster analysis (Jon R. Kettenring), to visual data mining (Edward J.
Wegman).

In addition to the keynote talks, the conference also features two tutorials and six workshops on a
range of subjects. The tutorials will provide the participants an in-depth exposition on segmentation
algorithms for time series data and pattern discovery in biosequences. The workshops are a forum for
discussing new ideas, brainstorming on work in progress, and identifying new algorithms and
application areas for data mining. The workshops this year include several traditional favorites as well as
a couple of new ones. The topics of the workshops are data mining in sensor networks; feature
selection for data mining; clustering high-dimensional data and its applications; link analysis, counter-
terrorism, and security; high-performance and distributed mining; and mining scientific and engineering
datasets. These workshops and tutorials, in addition to the papers and the poster session, provide an
exciting environment in which the participants can interact with each other.

This year, we also have two special sessions. The first, on industrial and government applications, is being
organized by Mehran Sahami and Ashok Srivastava; it builds on the success of a similar session last year.
The second, organized by Amy Braverman and Michael Turmon, is on statistics and data mining; it
underlines the connections between the two fields and provides a venue for the practitioners of each
to exchange ideas.

We would like to thank the entire organizing committee for the terrific job they have done in putting
together a strong technical program: Hillol Kargupta and Jaideep Srivastava for assembling a well-
rounded program committee and for overseeing the paper selection process; Philip Yu and his team for
selecting the best papers; Eamonn Keogh for soliciting and assembling a top-notch tutorial program;
Bing Liu and Ke Wang for selecting workshops on a diverse range of subjects, all of current interest;
Osmar Zaiane for identifying sponsors for the conference; and finally, the international publicity team of
Philip Chan, Daniel Keim, and Kyuseok Shim for their tireless efforts in publicizing the conference.

We would like to acknowledge our sponsor, the Center for Applied Scientific Computing at the
Lawrence Livermore National Laboratory, for its generous support, in particular the funding of student
travel grants. This conference is being co-sponsored by the American Statistical Association; we hope
that this will lead to greater collaboration between the two communities.

Finally, we thank the authors and the participants who are the primary reason for the success of the
conference. We hope you all enjoy the conference!

Chandrika Kamath and Arnold Goodman, Conference Co-Chairs

Vipin Kumar, Steering Committee Chair

xi

xiii

PREFACE

We are pleased to present the proceedings of the 2005 SIAM International Conference on Data Mining.
The pervasiveness of data mining in fundamental research and applications continues to grow, and we
are pleased to witness the growing contribution of this conference in further development of this field.
We are excited to have a record number of paper submissions (218) this year as well as a record
number of program committee members (94). Both of these are a testament to the growing
importance of the SIAM series of conferences as the preferred venue for publishing exciting new results
in the area. In addition, this year we had nine vice chairs for facilitating the review process. We hope
that the research and experiences captured in these proceedings are insightful to both expert and
novice users and practitioners of data mining approaches.

We received 218 paper submissions from 19 countries. Each submitted paper was reviewed by at least
three members of the program committee. The reviewing period was followed by a discussion phase.
Finally 40 papers (18.3%) were selected to appear in the program as regular papers, and another 37
papers (17%) were accepted as poster presentations. Full papers received 12 pages, and poster papers
received five pages in the proceedings.

We would like to thank our program committee, consisting of high visibility researchers, whose
dedication and diligence made the selection of papers for these proceedings possible. Special thanks
go to the Vice Chairs: Chid Apte, Joydeep Ghosh, Diane Lambert, Lim Ee Peng, Sanjay Ranka, Jude
Shavlik, Domenico Talia, Ramaswamy Uthurusamy, and Rebecca Wright. They brought their expertise
into handling the review and discussion of papers in their respective areas, and helped us decide the
final program.

We are grateful to Microsoft Corporation for providing the Conference Management Tool (CMT) that
facilitated the collection and management of paper submissions. Special thanks to Chani Johnson for
his help with the CMT and for troubleshooting when needed. We also thank the staff at SIAM
(particularly Darrell Ross, Laura Helfrich, and Simon Dickey) for their help in the production of these
proceedings and in all the necessary arrangements for the conference.

Of course, this conference would not be possible without the excellent papers and presentations
represented by these proceedings. We thank all the authors for their participation in SDM 2005!

Hillol Kargupta and Jaideep Srivastava, Program Co-Chairs

Computational developments of �-learning�

Sijin Liu
Department of Statistics

The Ohio State University
Columbus, OH 43210

Xiaotong Shen
School of Statistics

University of Minnesota
Minneapolis, MN 55455

Wing Hung Wong
Department of Statistics

Stanford University
Stanford, CA 94305

Summary

One central problem in science and engineering is predicting
unseen outcome via relevant knowledge gained from data, where
accuracy of generalization is the key. In the context of classifi-
cation, we argue that higher generalization accuracy is achiev-
able via �-learning, when a certain class of non-convex rather
than convex cost functions are employed. To deliver attainable
higher generalization accuracy, we propose two computational
strategies via a global optimization technique–difference convex
programming, which relies on a decomposition of the cost func-
tion into a difference of two convex functions. The first strat-
egy solves sequential quadratic programs. The second strategy,
combining this with the method of Branch-and-Bound, is more
computationally intensive but is capable of producing global op-
tima. Numerical experiments suggest that the algorithms realize
the desired generalization ability of �-learning.

� Shen’s research is supported in part by NSF Grant IIS-
0328802. Wong’s research is supported by a grant from
NSF-DMS.

Key words: DC programming, global optimization, se-
quential quadratic programming, support vectors.

1 Introduction

How does one accurately predict unseen outcome using
relevant information? The simplest problem of this kind
is classification. In statistical and computer sciences, clas-
sification has been particularly vital. Margin-based clas-
sification techniques are at the core of progress. Essen-
tially all these techniques construct a classifier by mini-
mizing a convex cost function. Examples include support

vector machines (SVM, Boser, Guyon and Vapnik, 1992;
Cortes and Vapnik, 1995), import vector machines (Zhu
and Hastie, 2004), among others.

Key issues: Convex vs Non-convex. While the
margin-based techniques have proven effective and have
achieved state-of-the-art performance, the recent work of
Shen, Tseng, Zhang, and Wong (2003) suggests that sub-
stantial higher generalization accuracy can be achieved if
one steps out from the paradigm of convexity; see also
Lin (2000, 2002). Specifically, they constructed a certain
class of � cost functions and showed that �-learning re-
alizes sharp generalization error rates in some examples.
The rationale behind their methodology is that classifi-
cation is non-convex in nature and ultimately should be
treated via non-convex cost functions. Indeed, any con-
vex cost function is generally bound to suffer a loss in
generalization accuracy as the price for easing computa-
tion (Fung and Mangasarian, 2000). An important practi-
cal issue then is how to meet the computational challenge
of non-convex minimization.

Global optimization. On the basis of recent advances
in global optimization, we develop computational tools
for �-learning. This allows us to realize the generaliza-
tion ability of �-learning in practice. The key ingredient
of our proposed methods is difference convex (DC) pro-
gramming, which uses a decomposition of the cost func-
tion into a difference of two convex functions. In our de-
composition, the leading convex function is an equivalent
SVM cost function, while the trailing one can be thought
of as a correction to the SVM cost function so that the
result is closer to the true generalization error. With this
decomposition, a sequence of monotone approximations
to the SVM cost function are constructed, and a sequence
of quadratic programs are solved to yield an approximate

1

solution. We develop an efficient algorithm and refer this
as SQP. This algorithm can be further enhanced by com-
bining with the branch-and-bound (BB) search to obtain
a provable convergence to global optima, which we call
SQP-BB.

Numerical experiments suggest SQP performs well for
large problems, whose termination requires only a small
number of iterations, for instance, 4-7 iterations would be
common. We use SQP-BB to check globality of the solu-
tions of SQP in some examples. The result indicates that
SQP yields global optima with high likelihood of occur-
rence.

Six benchmark examples are examined using SQP-
BB. Computational results demonstrate that the signifi-
cant generalization advantage of �-learning is realized by
the computational tools developed here. For every sin-
gle example, �-learning yields higher generalization ac-
curacy than SVM.

2 �-learning

From a statistical perspective, training data ���� ������� are
sampled from a true yet unknown probability distribution,
with �� � �� in binary classification.

Linear classification uses hyperplanes ����� �
��� ��� as decision functions, with �� � ��� �� and
� ����� ����� � ���� � � � � ��� ����� � ����.
Here ��� �� represents the inner product in the corre-
sponding Euclidean space. The basic form of linear
SVM, originated from the optimal separating hyper-plane
in the separable case, minimizes a convex cost func-
tion: ���� � �

�������	
��

��� ��������������� where
�����
� � ��	
�� is the hinge loss, and
� represents
the positive part of
. Instead of using ����, linear �-
learning seeks � to minimize

���� �
�

�
����� � 	

��
���

������������ (1)

where 	 � � controls the balance between the margin
and training, and �

����� is the geometric margin in the
separable case. Here � is required to satisfy the property:

�
 ��
� � � if
 � ���
 	
��
� � ���	 �����
�� otherwise�

(2)

where � �
 � � and � � � are some constants.

In implementation, a specific choice of � should be
chosen depending on one’s optimization strategy. In what
follows, we shall use a � function, defined as ��
� � �
if

 �, ��
� � ��� 	
� if � �
 � �, and � oth-
erwise. This � function, as displayed in Figure 2, has
the desirable DC property in that it has a DC representa-
tion. This property is the key to develop efficient compu-
tational algorithms. Since no differentiability is used in
our algorithms, there is no obvious advantage of applying
a smooth version of �. See Shen et. al (2003) for some
discussions with regard to the choice of �.

Nonlinear classification uses flexible rep-
resentations, with ����� � ������, � �
���� ����� � ���� � � � � ����� � ����, and
�� � ����� ���� � � � ����� ���� ��, defined by ker-
nel ���� �� mapping from � � � to �. The kernel is
required to satisfy Mercer’s condition, which assures that
���� � �

��
���

��
��� ��������� ����

�	� is a proper
norm. The theory of reproducing kernel Hilbert space
(RKHS), c.f., Wahba (1990, 1999), is useful to construct
such a kernel. Then the cost function of nonlinear
�-learning becomes

���� �
�

�
����� � 	

��
���

������������ (3)

In the sequel, we shall adopt a generic form ����� �
������ and the norm ���� � ���� ��� to represent both
the linear and nonlinear cases with � being respectively
��� and ��� dimensional. The estimated decision func-
tion of �-learning is then
����� � �
�� ���, where
� is the
minimizer of (1) or (3).

3 Non-convex minimization

For high-dimensional non-convex minimization, there is
generally no efficient method to compute global optima.
Figure 1 illustrates the level of difficulty of optimization
in (1) and (3). Fortunately, by exploiting the DC property
of the �-function, we are able to develop efficient algo-
rithms.

2

-40

-20

 0

20

40

w1

-40

-20

 0

20

40

w2

2
e
8

3
e
8

4
e
8

5
e
8

6
e
8

7
e
8

8
e
8

9
e
8

p
s
i

Figure 1: Perspective plot of � as a function ���� ��� and
�� � ���� for the example described in Section 4 with
� � ��, 	 � ��� and ��� flipping.

3.1 DC decompositions

There have been major advances in computation of global
optima when an objective function has a DC representa-
tion (An and Tao, 1997). Such a decomposition plays an
extremely critical role in determining the speed of con-
vergence, stability, robustness, and globality of sought so-
lutions. For our problem, we utilize the problem structure
and decompose our cost function � in (1) or (3) into:

���� � ����� 	 ������ (4)

where �� � �
������ � 	

��
��� ������������ and �� �

	
��

��� ������������ are both convex in �. This de-
composition is obtained from a DC decomposition of
��
� � ���
� 	 ���
�, where ���
� is � if

 � and
	��
 	 �� otherwise; ���
� is � if

 � and 	�
 oth-
erwise. The plot of this decomposition is given in Figure
2. Note that �� is equivalent to the SVM cost function in-
duced by twice of the hinge loss. Further, since the true
generalization error is defined by a bounded loss function
� 	 ����, the unbounded nature of the SVM cost func-
tion introduces obvious bias when it is used to estimate

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
1

2
3

4
5

z

f(z
)

f = ψ
f = ψ1
f = ψ2

Figure 2: Plot of functions ��, �� and �, where � �
�� 	 �� is a DC decomposition of �.

the generalization error. In light of this, we interpret �� in
(4) as a bias correction to the SVM cost function.

3.2 Differenced Convex Algorithms

Differenced convex algorithm (DCA) is among the rare
algorithms which allow to solve large-scale non-convex
minimization problems. As shown in An and Tao (1997),
when a DC decomposition is available, DCA constructs
non-increasing upper envelopes of �, which yield sequen-
tial convex subproblems. This permits developing effi-
cient algorithms for �-learning, especially so for large-
scale problems.

There are basically two versions of DCA, regular and
simplified, and we apply the simplified DCA. When (4)
is given, the simplified DCA solves a sequence of primal
and dual subproblems. It proceeds with construction of
two sequences ���
�� ��
�� iteratively. Given ���
�� ��
��,
the �th primal subproblem is ����� 	 �����
�� 	 �� 	
��
�� ��
��, obtained by replacing �� by its affine mi-
norization function �����
�����	��
�� ��
��. Minimiz-
ing it with respect to � yields ��
���. Similarly, ��
���

is the minimizer of the �th dual subproblem after obtain-
ing ��
���, which amounts to selecting a suitable sub-

3

gradient of �� at ��
�. By convexity, these subproblems
provide a sequence of non-increasing upper approxima-
tions to the original problem, leading to convergence of
��
�.

In our case, we derive a subgradient of �� at
��
� without solving the dual problem. Specifically,
this subgradient
�����
�� is defined as ��

�
�
� � �

�
�
� �,

where � �
�
� is 	

��
���
������ �
�� ���������, � �
�

� is
	
��

���
������ �
�� �������, and � �
�� ���� is ���
�� ����.
Here
���
� � � if
 � � and
���
� � 	� other-
wise.

Our algorithm solves a sequence of subproblems. At it-
eration �, only the primal subproblem is required to solve,
which is equivalent to

��
�

������	 ���
�����
����� (5)

This problem can be solved via quadratic programming
(QP). By Kuhn-Tucker (KKT)

�

s condition, it is equivalent
to the dual QP in Theorems 1 and 2.

Theorem 1: (Linear) The �th dual subproblem of (5)
with � � ���� � � � � ��� is

��
�
� ��� �

��
���

����	 ���� �
�
� � ���	

	 �

�

��
�����

������������ ����
(6)

subject to
��

��� ���� � 	� �
�
� , �	 � �� � �; � �

�� � � � � �. Then the solution of (5) ���
���
� � � � � � ��
���

� �

is ���
��

��� �
�
�
� ����, �

�
���
��� satisfies KKT’s condition:

�����
���� ���� � � for any � with �	 � �
�
�
� � �. Here

���
�� ����� is the solution of (6).
Theorem 2: (Nonlinear) The dual subprob-
lem of (5) is (6) with ���� ��� being replaced

by ����� ��� and �� �
�
� � ��� being replaced by

	
��

��� �
�

�����
�
�������������� ���. The so-

lution ���
�� ����� yields that of (5) �
�
���
� �

����
�
�
� � 	
������ �
��������; � � �� � � � � �, and

�
�
���
��� satisfies KKT’s condition: �����
���� ���� � � for

any � with �	 � �
�
�
� � �.

Algorithm 1: (SQP, Linear and Nonlinear)
Step 1: (Initialization) Specify initial value � �	� and tol-
erance error � � �.
Step 2: (Iteration) At iteration �, compute � �
��� by
solving (6).
Step 3: (Stopping rule) Stop if �����
����	����
��� � �.
Then the final solution�� is ��
���, which yields
����� �
���� ��� for (1) or (3).

Our numerical experience suggests that a good initial
value enhances the chance of DCA to locate global op-
tima. For both Algorithms 1 and 2, we recommend to use
a SVM solution or any point with a smaller cost function
value.

Two important features are built into SQP to guard
against potential numerical problems and enhance its sta-
bility. First, linear programming (LP) is employed for
���� or ���� when there are no instances �	 �
�� �
� such that they can be determined by KKT’s condi-
tion. Specifically, minimize (5) with respect to ���� or
���� via LP after substituting the values of ���
�� �����
in � �
���. Second, a regularization technique is applied
to replace the leading matrix � in QP by � � �� for
small � � � when it becomes ill-posed, although �
is supposed to be positive definite. This regularization
technique is equivalent to a different DC decomposition:
� � ��� � �� � ��� 	 ��� � �� � ���� for some � � � for
improving the strength of convexity of the decomposition.
Theorem 3: (Convergence) The sequence ��� �
�� is
non-increasing, ��

�� ���

�
��

��� ����, and
��

�� ���
��� 	 ����� � � for some ����.
Moreover, convergence of SQP is superlinear in that
��

�� ���
���	���������
�	����� � � provided
that there does not exist an instance �� on the decision
boundary such that � ������� � ������ ���� � �.

As shown in Theorem 3, SQP converges superlinear in
that the number of iterations required for it to achieve pre-
cision � is �����������. Based on our numerical experi-
ence, it normally terminates in 4-10 steps. The computa-
tional complexity of ����������� multiplied by that of QP,
which is usually ����.

An improvement over SVM in generalization usually
occurs even when global optima have not been reached
by SQP; see Tables 1 and 2. This is mainly because ��
corrects the bias due to imposed convexity to �� in (4).
This aspect has been confirmed by our numerical experi-

4

ence.

3.3 DCA and Branch-and-Bound

The method of BB can be used to globally solve mini-
mization in (1) and (3). When it is suitably combined with
SQP, it leads to a promising global minimization routine,
which can substantially improve efficiency of BB and en-
hance globality of DCA. In what follows, we shall derive
such an algorithm.

BB is composed of two critical operations: bounding
and subdivision. The bounding operation constructs both
upper and lower bounds of �, while the subdivision op-
eration divides regions. A combination of both exclude
infeasible regions and determine optimality of a solution.
Because SQP tends to yield a sharp upper bound when
it does not give global optima, convergence of BB expe-
dites.

For the bounding operation, we obtain a good up-
per bound via the solution �� of SQP in that �����

��� ����. To construct a good lower bound, we first
construct a tight convex envelop of the concave function
	�� in (4) over a simplex � using a result of Falk and
Hooeman (1976). Specifically in the linear case, let ! � �
� ���; � � �� � � � � � � �, be a collection of vertices of �.
The convex envelop "���� of	����� is �#� ���#���, ob-
tained by solving a linear system of ����� equations with
respect to �# � �#�� � � � � #���� #����: "��!�� � 	���!��;
� � �� � � � � � � �. By concavity, 	�����
 "���� for
� � �. Second, solve a quadratic problem:

$��� �
��
��

������ � "������ (7)

yielding a lower bound$���, which is equivalent to solv-
ing the following problem.
Theorem 4: (Lower bound, Linear) The dual problem of
(7) is

��
�
� �
� �

�

�

�%
 	 ��
 (8)

subject to �	 � �� � �; � � �� �� � � � � �, & � �, ' � �,
(� �, and

��
��� ���� � &

�)� � ')
 	 (#� � #�. The
solution � ���� � � � � ���� of (7) is

��
���
������ �)�

�

& �

')�
� 	#�	
(#�, and ����� is chosen so that ��� ��� ���� � �

for any � with �	 �
�� � �. Here �
��� � � � �
���
&�
'�
(�

is the solution of (8), and %� ��)�; � � �� � � � � �, #�; � �
�� � � � � �, are defined in the Appendix.

For the subdivision operation, we use a simplicial sub-
division, and combine bisection via the longest edge with
the radial partition, c.f., Horst and Tuy (1989). An adap-
tive partition is possible but will not be studied in here.
A simplex subdivision divides � into � � � subsimplices
���������� , and replaces each vertex !� of � by a subdivi-
sion point !, which is the average of the vertices of � for
the radial partition and is the middle point of the longest
edge for the longest edge partition. Note that the latter
partition only generates two non-degenerate subsimplices.

Our subdivision rule first uses the radial partition, then
switches to bisection via the longest edge once the lower
bounds become sufficiently good. This allows us to com-
bine the advantages of the both partitions to enhance com-
putational efficiency. Note that the first yields good lower
bounds due to division of smaller subsimplices but does
not assure convergence, while the second one assures
convergence but is inefficient with computation of lower
bounds for a large simplex. As a result, computational ef-
ficiency is enhanced. In the partition process, switching
takes place for � if one of three conditions is met: 1) Five
consecutive partitions have been completed, 2) $��� be-
comes positive, and 3) the shortest edge of � is less than
10. Here 3) is for numerical stability.

To define an initial simplex �	 centered at ��	� �

��
�	�
� � � � � � ��	�

����, we first construct a cube centered at

��	� with half width *. Let �� � �
�	�
� 	 *; � �

�� � � � � � � � and � �
����

��� �
�	�
� � �� � ��*. This

defines the smallest simplex containing the cube: �	 �

�� � +��� � �� 	�� � ��
����

��� �� 	 � � �� with ver-
tices !	 � ���� � � � � ����� and !� � ���� � � � � ����� �	�

���� ��� ����� � � � � �����; � � �� � � � � �� �.
Let +
, � � �, ��, and , be a collection of feasi-

ble regions at iteration �, prespecified tolerance error, the
final solution, and the upper bound of the numbers of iter-
ations, respectively. Here , and * control run time with
suitable choice of , and * yielding global optima while
expedite convergence.
Algorithm 2:(SQP-BB)
Step 1: (Initialization) Specify ��	�, *, , , and �. With
��	� the current best feasible point, compute upper bound
���	� obtained via the solution of SQP with initial value
as the solution from lower bound$��	� via the solution of

5

(7) via (8) with � � �	. If ���	�	 $��	� � ��$��	� �
��, then +	 � � and terminate; otherwise +	 � �	.

Iteration � � �� � � �
Step 2: (Check optimality) If +
 � �, then terminate
with �� � ��
�.
Step 3: (Selection) If +
 �� �, then select �
 � +
 such
that ���
� �
������� � � � +
�.
Step 4: (Division) For each �
� ; � � �� � � � � �
, apply the
subdivision rule to divide �
 into subsimplices �
� and
compute $��
�� via (8) with � � �
� .
Step 5: (Updating and elimination) Apply SQP to �
�
using the lower bound solution as an initial value and
compute ���
��; � � �� � � � � �
. Update the current
best feasible point ��
��� and the best upper bound
�
�� �
������
�� � � � �� � � � � �
� at iteration �.
Let+
�� � �� � �
�� � �
��	$��� � ��$�������,
where �
�� � �+
 � �
� � ��
� � � � �� � � � � �
�.
Theorem 5: (Convergence) The sequence � �
� con-
verges to the global minimizer, i.e., ��

�� ���

�
���� �

��� ����. Moreover, SQP-BB terminates finitely with
precision � � � in that ������	
��� ����� � �.

Theorem 5 says that �� is an �-global minimizer.
Our numerical experience suggests that SQP-BB usu-
ally converges reasonably fast but more slowly than
SQP. Computational complexity of SQP-BB is roughly
����������,���, with an upper bound of , being of or-
der of ���. Note that SQP is a special case of SQP-BB
when * �� and, � �.

As shown in Table 1, even if, is set to be small, it usu-
ally yields better solution than SQP. The computational
cost of SQP-BB for linear problems is acceptable, while
SQP with a good initial value is recommended for large
problems. Interestingly, SQP-BB is parallelizable, per-
mitting fast computation.

4 Numerical Analysis

The following numerical example examines the effective-
ness of SQP and SQP-BB in terms of speed of conver-
gence and globality of sought solutions. Here the QP and
LP involved in SQP and SQP-BB are implemented via the
IMSL QP and LP routines.

Consider a two-dimensional linear example of Shen et
al. (2003), in which ���� �

��
��� ���� � ��. A random

Table 1: Globality of SQP and SQP-BB(N) in percent
over 100 simulation replications as well as the average
number of iterations for SQP.

C=�
Flip SQP Ave # iter SQP-BB SQP-BB

(N=100) (N=200)
0% 95% 2.43 100% 100%

10% 92% 2.82 100% 100%
20% 83% 2.85 99% 100%

C=���

Flip SQP Ave # iter SQP-BB SQP-BB
(N=100) (N=200)

0% 99% 1.20 99% 99%
10% 46% 2.07 95% 97%
20% 29% 2.10 85% 93%

training sample �-��� -��� .������ is generated as fol-
lows. First, �-��� -���

�
��� are sampled from the uniform

distribution over the unit disk ����� ��� � ��� � ��� � ��,
and .� is assigned to � if -��
 � and 	� otherwise.
Then randomly selected labels �.������ are flipped, which
generates a random sample for non-separable cases.

Three levels of contamination are considered: �-flip,
���-flip and ���-flip, each with two different values
	 � �� ���. In each case, the percents of time for SQP to
yield global optima based on 100 simulation replications
are reported in Table 1. The globality of solutions of SQP
is determined by its agreement with the solutions of SQP-
BB(N=�), ignoring numerical rounding error that is less
than � � � used by SQP-BB. In the simulations, � is set
to be ����	.

Numerical analyses for this linear problem indicate that
SQP yields global optima with high likelihood, and ter-
mination occurs in 2-3 steps on average. It appears that
whether it does so is random. This conclusion seems
concordant with that of An and Tao (1997) for differ-
ent problems, where numerical experiments for up to 30-
dimensional problems were conducted. Furthermore, BB
with N=100 seems to suffice in the case.

6

5 Performance Comparison

In this section we investigate the effectiveness of �-
learning via SQP and SQP-BB(N), and compare it to
SVM, in both simulated and benchmark examples. A test-
ing error / ��� is used for any given method, which is av-
eraged over ��� independent testing samples.

For simulation comparisons, we define the amount of
improvement of �-learning over SVM as the percent of
improvement of in terms of corresponding Bayesian re-
grets, that is,

�/ ���0�	 / �1#�2���	 ��/ ���	 / �1#�2���
/ ���0�	 / �1#�2�� � (9)

where / ���0�, / ���, and / �1#�2�� are the testing er-
rors for SVM, �-learning, and the Bayes error, respec-
tively, with / ���0�	/ �1#�2�� and / ���	/ �1#�2��
the corresponding Bayesian regrets. This measure seems
to be more sensible because a comparison is performed
against the baseline error–the Bayes error / �1#�2��,
which is the testing error over a testing sample of large
size, say ���.

For benchmark comparisons, because / �1#�2�� is un-
known, we then define the amount of improvement as

/ ���0�	 / ���
/ ���0�

� (10)

which may underestimate the improvement from the base-
line error.

5.1 Simulation

For �-learning, SQP is applied to Examples 1 and 2 with
the corresponding SVM solution as an initial value. To
eliminate dependence of the performances of SVM and�-
learning on tuning parameters, we perform a grid search
to maximize the performances with respect to the tuning
parameters.

Example 1 (Linear): A random training sample of
size � � ��� is generated as follows. First, generate
�(�� (�� from the standard bivariate (-distribution with de-
gree 1. Second, randomly assign �� to each �(�� (��.
Third, generate ���� ��� as: �� � (� � #� ; � � �� �,
with �#�� #�� � ��

�
���� ����� �	�����	����� for posi-

tive and negative classes, respectively. In this example,

Table 2: Bayesian regrets defined in (9), for SVM and
�-learning as well as the standard errors (in parentheses)
in Example 1, minimized over tuning parameter 	. The
Bayes error is 15.18%.

Testing # SV
n=150 SVM 19.04(0.826)% 109.88

� 16.10(0.469)% 54.05
% Improv 76.2%

we maximize the performance with respect to C over an
interval ��� ��
	, with 9, 9, 9, 9, 99, and 10 uniformly
grid points over ������ �����, ������ �����, ������ ��,
��� ���, ���� ���� and ����� ��
	, for evaluation, that is,
�����; � � �� � � � � �, �����; � � �� � � � � �, �����;
� � �� � � � � �, �; � � �� � � � � �,���; � � �� � � � � ��, ����;
� � �� � � � � ��. The smallest average testing errors as well
as the average number of support vectors of SVM and �-
learning are summarized in Table 2.

Example 1 shows that �-learning is more robust to out-
liers than SVM.

Example 2 (Nonlinear): A random sample of size
� � ���� ��� is generated as follows. First, randomly
sample positive and negative class labels. For the posi-
tive class, generate ���� ��� from the standard bivariate
(-distribution with degree 1. For the negative class, ran-
domly generate ���� ��� from the mixture of the standard
bivariate (-distribution with degree 1 and the standard bi-
variate normal distribution. Gaussian kernel ���� �� �
����	 �

�� �� 	 ���� is applied to SVM and �-learning.
Here the optimal 	 is chosen via grid search over interval
��� ��
	, to maximize the performance of each method,
The grid points are chosen in the same manner as in Ex-
ample 1. For 3, it is set to be the median distance between
the positive and negative classes. This is because 	 and
3� play the similar role, and it is easier to optimize over	
if 3� is estimated. The numerical results are summarized
in Table 3.

As expected, �-learning outperforms SVM as in Ex-
ample 1. The amount of improvement, however, depends
on the sample size. In this nonlinear case, the choice of
tuning parameters 	 and 3� appears to be more critical.

In summary, �-learning outperforms SVM in both the
linear and nonlinear cases with improvement ranging
from 20.5% to 76.2%. In addition, the average number

7

Table 3: Bayesian regrets defined in (9), for SVM and �-
learning as well as the standard errors (in parentheses) in
Example 2, minimized over tuning parameters 	 and 3 �.
The Bayes error is 24.90%.

Testing # SV
n=150 SVM 29.16(0.467)% 132.77

� 28.29(0.432)% 87.9
% Improv 20.5%

n=300 SVM 27.47(0.361)% 23.71
� 26.40(0.319)% 15.72

% Improv 41.6%

of support vectors of �-learning is smaller than that of
SVM in all the cases. This suggests that �-learning yields
more sparse solutions than SVM. Moreover,�-learning is
insensitive to outliers while SVM seems quite sensitive.

5.2 Benchmark

We now examine �-learning using SQP-BB(N=100) and
compare it to SVM on 6 different benchmark examples:
Wisconsin Breast Cancer (WBC , Wolberg and Mangasar-
ian, 1990), Liver-disorders and Page-Block (the UCI Ma-
chine Learning Repository, Murphy and Aha, 1992), and
Heart, Breast Cancer (Breast C) and Thyroid (Rätsch, On-
oda and Müller, 2001). The examples used here are those
reasonable for linear or kernel-based learning. For WBC,
Liver and Page-Block examples, we randomly divide each
data set into two halves, for testing and training. In the
Page-Block example, in particular, we choose the hori-
zontal line and picture classes with 329 and 115 cases
respectively to be the binary classes. In the case where
the sample size is odd, the size of training is one larger
than that of testing. For Heart, Breast C, and Thyroid
examples, they are originally not binary classification,
hence that a random partition into two classes is applied
and are available on http://mlg.anu.edu.au/�raetsch/data/,
c.f.,Rätsch et al. (2001).

For the same randomly selected training and testing
sets, SVM and �-learning are compared, where SQP-
BB(N=100) is used for �-learning, with , � ��� and
* � �� for linear training. Their performances aver-
aged over these 100 randomly selected pairs are com-
pared, which are minimized over 	 in interval ��� ��
	.

Table 4: Averages of testing errors of linear SVM and �-
learning as well as the standard errors (in parentheses),
minimized over tuning parameter C in the five benchmark
examples.

Data Testing # SV
Obs�Dim

WBC SVM 3.48(0.05)% 30.71
682 � 9 � 3.05(0.04)% 16.26

% Improv 12.4%
Liver SVM 32.00(0.29)% 123.46

345 � 6 � 30.38(0.28)% 51.69
% Improv 5.1%

Heart SVM 16.99(0.30)% 60.35
270 � 13 � 16.58(0.33)% 32.80

% Improv 2.4%
Breast C SVM 28.87(0.43)% 138.17
277 � 9 � 23.56(0.37)% 53.70

% Improv 18.4%
Thyroid SVM 9.43(0.25)% 35.26
215 � 5 � 7.39(0.27)% 16.02

% Improv 21.6%

Table 5: Averages of testing errors of SVM and �-
learning as well as the standard errors (in parentheses),
minimized over C in polynomial learning in the two
benchmark examples.

Data Testing # SV
Obs�Dim

Liver SVM 27.46(0.225)% 101.29
345 � 6 � 26.63(0.210)% 53.13

% Improv 3.0%
Breast C SVM 29.09(0.475)% 92.82
277 � 9 � 27.26(0.462)% 67.51

% Improv 6.3%

8

Table 6: Averages of testing errors of SVM and �-
learning as well as the standard errors (in parentheses),
minimized over tuning parameters 	 and 3 � in learning
with Gaussian kernels for the benchmark example.

Data Testing # SV
Obs�Dim

Page Block SVM 5.06(0.202)% 50.46
444 � 10 � 4.96(0.222)% 43.50

% Improv 1.87%

Particularly, 5, 45, 10 uniformly grid points respectively
over ��� ��	, ���� ���	, and ����� ��
	 are used, which are
��; � � �� � � � � �, ���; � � �� � � � � ��, �����; � � �� � � � � �.
For the Gaussian kernel, 3� is set to the same as in Exam-
ple 2. The average smallest testing errors as well as the av-
erage number of support vectors for SVM and �-learning
are summarized in Table 4 for linear learning with SQP-
BB(N=100), in Table 5 for polynomial kernels, and in
Table 6 for Gaussian kernels with SQP. Here ���� �� �
��� �� in the linear case, ���� �� � �� � ��� ���� in the
polynomial kernel case, and ���� �� ����	 �

�� ��	 ����
in the Gaussian kernel case.

We make the following observations regarding SVM
and �-learning based on Tables 4-6.

(1) Testing correctness of �-learning is higher than
SVM on all benchmark datasets, for both linear and
nonlinear learning.

(2) On average, �-learning reduces the number of sup-
port vectors of SVM. The percent of reduction, how-
ever, varies.

(3) Computing times for �-learning were about 7 times
higher than those of SVM on average. The additional
times are used for iteration, correcting the bias intro-
duced by imposed convexity for SVM, while storage
space for �-learning is only slightly higher.

In Tables 5 and 6, the percentage improvement is very
modest. This is likely due to the fact that with kernel
learning, the excess error rate (9) of the SVM over the
Bayes error rate is probably of less than 10% already; so
even if �-learning can reduce the excess error rate (9) by
50%, it will only show up as an improvement of just a

few percent according the computable index (10), which
is only a lower bound of (9).

The numerical results here are consistent with the the-
oretical findings in Shen et al. (2003).

6 Appendix

Proof of Theorem 1: The �th subproblem (5) can be writ-
ten as �

�������	
��

��� ������������	��� � �
���which,
after introducing � slack variables 4�; � � �� � � � � �, is
equivalent to
����

�
������ � 	

��
��� 4� 	 ��� � �
���

with constraints: 4�
 ��� 	 ���������; 4�
 �, or
����� ����
 �	 �

�4�; � � �� � � � � �.
To solve this problem, we introduce Lagrangian multi-

pliers to yield

$��� 4� �� 5� �
�

�
���� ���� 	

��
���

4�

	
��
���

��������� �����	 � �
�

�
4�	

	
��
���

5�4� 	 ���
�����
����

(11)

where ��
 � and 5�
 �; � � �� � � � � �. After differenti-
ating $ with respect to ��� 4� �� 5� and letting the deriva-

tives be zero, we obtain that �� � � �
�
� 	��

��� ������ �

�, 	 	 �
��� 	 5� � �, and 	� �
�

� �
��

��� �����
Substituting these identities in (11), $��� 4� �� 5� ���

��� ����	���� �
�
� � ���		 �

�

��
����� ������������ ���	

�
� �� �
�

� � �
�
�
� �� This yields (6) after ignoring constant

terms. To derive the corresponding constraints, we note
that 	 	 �

��� 	 5� � �, together with 5�
 �, im-
plies �� � �	. Furthermore, 4� �� � implies that
5� � � and �� � �	. Hence, KKT’s condition be-
comes �������� ���� 	 �� �

�4�	 � � and 4���� 	 �		 � �;
� � �� � � � � �, implying that non-zero 4�’s can only occur
when �� � �	.
Proof of Theorem 2: The proof is essentially the same
as that in Theorem 1 with slight modifications, and thus is
omitted.
Proof of Theorem 3: We will only prove the linear case
as the nonlinear case can be treated similarly. It follows
from Theorem 6 of An and Tao (1997) that ��� �
�� is

9

non-increasing with respect to � and ��

�� ���
��� 	
����� � �. ¿From (6), we know that ��
��� �
��
� � 6 ���
��, where 6 is a continuous mapping from
+��� to +���. By the assumption, there does not ex-
ist �� such that ������ ��� � �. By continuity, this
property holds in a small �-neighborhood of � ���. Be-
cause ��
� is smooth when
 stays away from the origin,
the derivative 6

�

exists and satisfies the Lipschitz condi-
tion �6 �

��� 	 6 �

������� � 7�� 	 ����� for a con-
stant 7 � � for any � in a small neighborhood of � ���.
The convergence result then follows from Theorem 2.2 of
Dennis and Moré (1974).

Proof of Theorem 4: We will solve the problem via
QP. Let ! � �!�� � � � � !���� be the vertices of a sim-
plex, with !� � �!��� � � � � !�������. Invoking the sim-
plex representation, any point � � ���� ����� within
the simplex can be written as � �

����
��� 8�!�� 8�
 �;

� � �� � � � � � � �, ��8 � �, where � � ��� �� � � � � ���

and 8�8�� � � � � 8����. Since 8��� � �	����
��� 8�, � can

be written as)8�!��� with) � �!�	!���� � � � � !���	
!����. This yields that 8 �)���� 	 !����, subject to
8
 � and ��8 � �. Write the convex envelop "���� as
�#�� ���� #����� � #���, where #� and #� are �����-
dimensional and one-dimensional, respectively. Then (7)
becomes
����

�
�������	

��
��� �������������#

�
� �

��
#������ subject to)���� 	 !���� � ����)���� 	
!���� � �. After introducing � slack variables 4�;
� � �� � � � � �, it reduces to

��
�

�
�

�
����� � 	

��
���

4� � #
�
� �

� � #������

subject to)��
� �)����� � #��)��

� �)
���� �
#
� #��

� � #����� � #�� ����� ���� � � 	 �
�4�� 4� �

�� � � �� � � � � �. Let)�� be

�
)�)�

)�)

�
, where

)�; � � �� �� � are � � �, � � � and � � �, !��� �
�!����� !(����� #� �)�!

�
����)�!(���� #
 �)�!

�
����

)
!(���� #� � �
�)� �)�� #� � �

�)� �)
� and
#� � � � ���)� �)��!

�
��� � ���)� �)
�!(��� �

� � �
�#� � #
. Now introduce the Lagrangian multipli-

ers:

$ �
�

�
����� � 	

��
���

4� � #
�
� �

� � #�����

	
��
���

�������� ���� 	 � �
�

�
4��	

��
���

9�4�

	&� �)��
� �)����� 	 #��

	'�)��
� �)
���� 	 #
�

�(�#��
� � #����� 	 #���

where � � �, 9 � �, & � �, ' � �, and (� �. Af-
ter differentiating $ with respect to ��� 4� and letting the
derivatives be zero, we obtain that 	 � �

��� � 9�� �
� ���

��� ������ �)
�
� & � ')�

� 	 #� 	 (#�� ,
��

��� ���� �
#� � (#� 	 &�)� 	 ')
. Therefore, $ � 	 �

�

�%
 �

��
	 �
�#�#

�
� , where the matrix% � �*���, *�� � ����� ,

*�� � *��� � ��)
�
� , *�� � *��� � ��)

�
� , *�
 � *�
� �

	��#�� , *�� �)�)
�
� , *�� � *��� �)�)

�
� , *�
 �

*�
� �)�#
�
� , *�� �)�)

�
� , *�
 � *�
� �)�#

�
� ,

*

 � #�#
�
� , � � �#�� �

�
� � �

� � #��)
�
� � #�� � #

�
�)

�
� �

#
�	#�� #�� 	 #��, and ��� � ������ � � � � �����. This
yields the desired result. Similarly as in the proof of The-
orem 1, the corresponding constraints can be derived.
Proof of Theorem 5: Note that ���� 	 $��� �
����
������� 	 ������, where � � ���� is the coef-
ficient vector for "�. Furthermore, when the longest edge
partition is employed, the volume of � shrinks to zero,
thus ��	
������� � �. Consequently, �����	$����
shrinks to zero as the number of iterations increases. The
algorithm stops finitely when � � �.

References

[1] An, L. T. H., and Tao, P.D. (1997). Solving a class of
linearly constrained indefinite quadratic problems by
D.C. algorithms. J. global opt., 11, 253-285.

[2] Boser, B., Guyon, I., and Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. Fifth
Annual Conference on Computational Learning The-
ory, Pittsburgh ACM, 142-152.

[3] Cortes, C., and Vapnik, V. N. (1995). Support-vector
networks. Machine Learning, 20, 273-297.

10

[4] Dennis and Moré (1974). A characterization of super-
linear convergence and its application to quasi-Newton
methods. Math. comput., 28, 549-560.

[5] Fung, G., and Mangasarian, O.L. (2000). Data selec-
tion for support vector machine classifiers. Proceed-
ings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Au-
gust 20-23, 2000, Boston, MA, R. Ramakrishnan & S.
Stolfo, editors, ACM, NY 2000, 64-70.

[6] Falk, J. E., and Hooeman, K. L. (1976). A succes-
sive underestimation method for concave minimization
problems. Mathematics of operations research, 1, 251-
259.

[7] Horst, R., and Tuy, H. (1989). Global optimization-
deterministic approaches. Springer-Verlag.

[8] Lin, Y. (2000) Some Asymptotic Properties of the
Support Vector Machine. Technical report 1029r. Re-
vised February 2002. Department of Statistics, Univer-
sity of Wisconsin.

[9] Lin, Y. (2002) Support Vector Machines and the
Bayes Rule in Classification. Data Mining and Knowl-
edge Discovery., 6, 259-275.

[10] Murphy, P.M., and Aha, D.W. (1992). UCI
repository of machine learning databases.
(www.ics.uci.edu/�mlearn /MLRepository.html).

[11] Rätsch. G., Onoda, T., and Müller, K.R (2001). Soft
Margins for AdaBoost. Machine Learning, 42, 287-
320.

[12] Shen, X., Tseng, G., Zhang, X., and Wong, W. H.
(2003). On �-learning. J. Ameri. Statist. Assoc., 98,
724-734.

[13] Wahba, G. (1990).Spline models for observational
data. CBMS-NSF Regional Conference Series in Ap-
plied Mathematics. SIAM, Philadelphia, xii + 169 pp,
Vol. 59.

[14] Wahba, G. (1999). Support vector machines, re-
producing kernel Hilbert spaces and the randomized
GACV. Advances in Kernel Methods Support Vector
Learning, MIT Press, 69-88.

[15] Wolberg, W.H., and Mangasarian, O. L. (1990).
Multisurface method of pattern separation for medical
diagnosis applied to breast cytology. Proc. Natl. Acad.
Sci., 87, 9193-9196.

[16] Zhu, J., and Hastie, T. (2004). Kernel logistic regres-
sion and the import vector machine. Journal of Com-
putational and Graphical Statistics, to appear.

11

A random walks perspective on maximizing satisfaction and profit

Matthew Brand∗

Abstract

We model consumer behavior such as web browsing, shop-
ping, and entertainment choices as random walks on a
weighted association graph. The graph is derived from a
relational database that links products, consumers, and at-
tributes such as product categories, consumer demograph-
ics, market segments, etc. The Markov chain that describes
this walk amalgamates consumer behavior over the whole
population; individuals are distinguished by their current
state in the chain. We develop a geometrization of the
chain that furnishes a key similarity measure for informa-
tion retrieval—the cosine (correlation) angle between two
states. Empirically, this proves to be highly predictive of
future choices made by individuals, and is useful for recom-
mending and semi-supervised classification. This statistic
is obtained through a sparse matrix inversion, and we de-
velop approximation strategies that make this practical for
very large Markov chains. These methods also make it prac-
tical to compute recommendations to maximize long-term
profit.

Keywords: collaborative filtering; random
walks; Markov chain; cosine correlations;
semi-supervised classification.

1 Introduction

Collaborative filtering seeks to make recommendations to
individuals based on the choices made by a population. An
extensive literature treats this as a missing value problem,
wherein an individual’s history of choices is a fragment of
a hypothetical vector containing that individual’s ratings or
rankings of all possible consumables. The goal is to fill in
that vector (imputation) or identify the relative ranking of
the of the unknown elements. A rich literature has grown
up around this problem, with successful demonstrations of
Bayesian, nonparametric, and even linear methods; see [1]
for a broad survey. All methods essentially match the
individual to others who have made similar choices, and
use some combination of their experiences to predict future
choices.

In this paper we explore the idea of making recommen-
dations on the basis of associations in a relational database.
The database may connect categories to products to pur-

∗Mitsubishi Electric Research Labs, Cambridge MA 02139 USA

User 234

female

Movie 1325
forties romance

adventure

executive 1992
occupation

gender

age

released

genre

genre

rating=4

Figure 1: A fragment of an association graph representing
a relational database. Affinities between pairs or groups of
vertices can be computed from statistics of a random walk
on the entire graph.

chasers to demographics, etc., and we may be interested
in finding out what products a customer is likely to buy
next, what product categories are preferred by specific de-
mographic groups, or even how to sequence sales pitches
to maximize likely profits. We answer these questions by
looking at the expected behavior of a random walk on the
database’s association graph (e.g., see figure1). The ex-
pected travel time between states gives us a distance met-
ric that has a natural transformation into a similarity mea-
sure. The random walks view has been highly successful
in social networks analysis (e.g., [10, 13]) and web search
(e.g., [4, 11, 3]) and in many respects is formally identical
to the analysis of electrical resistive networks [5]. We de-
velop a novel measure of similarity based on random walk
behavior—thecosine correlation between states—and show
that it is much more predictive of individual’s future choices
than classic graph-based dissimilarity measures. A particu-
larly nice feature of the random walks view is that it can nat-
urally incorporate large amounts of contextual information
beyond the usual who-liked-what of collaborative filtering,
including categorical information. All this comes at a heavy
computational price, but we outline approximation strategies
that make these computations practical for very large graphs.
These also make it practical to compute a classically useful
statistic—the expected discounted profit of states, and make
recommendations that optimize vendor profit.

2 Markov chain statistics

Let W ∈ RN×N be a sparse nonnegative matrix that specifies
the edges of a graph.W may count events, e.g.,Wi j is the
number of times eventj followed eventi, or more generally,

12

http://www.merl.com/people/brand/

we may viewW as an arbitrarily weighted association matrix
with Wi j > 0 iff personi has viewed moviej, or if web pagei
contains keywordj, etc. We are interested in a random walk
on the directed graph specified byW. (If W is symmetric the
graph is undirected.) The row-normalized stochastic matrix
T = diag(W1)−1W contains the transition probabilities of
the associated Markov chain (1 is a vector of 1’s). We
assume that the chain is irreducible and has no unreachable
or absorbing states; it may be asymmetric and self-transitions
are allowed to model repeat purchases. If the statistics inW
are a fair sample of the collective behavior of a population,
then a random walk on this Markov chain will mimic, over
the short term, the behavior of individuals randomly drawn
from this population.

Various statistics of this walk are useful for prediction
tasks. Thestationary distributions ∈ RN describes the
relative frequencies of visiting each state in an infinitely
long random walk, and can be used to flag the most popular
products. Formally,s> .= 1>T∞ satisfiess> = s>T and

s>1 = 1. If W is symmetric thens = 1>W
1>W1

; otherwise it

may be computed from the recurrences>i+1 ← s>i T, s0 =
1/N. The recurrence times r ∈ RN : r i = s−1

i describes the
expected time between two visits to the same state (and
should not be confused with the self-commute timeCii = 0
described below). Theexpected hitting time Hi j for a random
walk starting at statei to hit statej can be computed from

A .= (I −T−1f>)−1(2.1)

for any vectorf > 0 satisfyingf>s 6= 0 as

Hi j = (A j j −Ai j)/sj(2.2)

and the expected round-tripcommute timeis

Ci j = Cji = Hi j +H ji .(2.3)

For the special case off = s, A is the inverse of thefunda-
mental matrixand we recover the classic formula for hitting
times [2]. The two dissimilarity measuresCi j andHi j have
been proposed as a basis for making recommendations [6]
but they can be dominated by the stationary distribution, of-
ten causing the same popular items to be recommended to ev-
ery consumer, regardless of individual consumer tastes. Ad-
hoc normalizations have been proposed, but none are clearly
advantageous. In this regard, it will prove useful to develop
an understanding of how the chain embeds in normed spaces.

2.1 Random walk correlations Here we establish a con-
nection to one of most useful statistics of information re-
trieval: thecosine correlation. In information retrieval, items
are often represented by vectors that count various attributes.
For example, if we view a document as a sample from a pro-
cess that generates a particular distribution of words, its at-
tribute vector counts (or log-counts) how many times each

(stemmed) word appears. Similar documents employ similar
vocabulary, thus the inner product of their attribute vectors
is large. However, longer documents sample this distribution
more, resulting in more words and larger inner products. In
order to be invariant to this sampling artifact, one normalizes
the vectors, so that the inner product measures the empirical
correlation between any two word distributions. This mea-
sure is called the cosine correlation because the normalized
inner product is the cosine of the angle between two vectors.

To extend this idea to random walks, we will take two
states to be similar if their relations to all other states are
similar, just as similar documents have similar relationships
to words.

The key idea for formalizing this intuition is a ge-
ometrization of the chain’s long-term behavior: The square-
root commute times are metric, satisfying the triangle in-
equality

√
Ci j +

√
Cjk ≥

√
Cik, symmetry

√
Ci j =

√
Cji ,

and identity
√

Cii = 0 [7]. Identifying commute times with
squared distancesCi j ∼ ‖xi − x j‖2 sets the stage for a geo-
metric embedding of a Markov chain in a Euclidean space1,
with each state assigned to a pointxi ∈RN, and similar states
located near to each other. Because raw commute times re-
flect the stationary distribution, popular states will crowd
near the origin regardless of dissimilarity, so raw Euclidean
distance is unsuitable for most applications. However, the
angleθi j

.= ∠(xi ,x j) between the embedding vectorsxi ,x j

of statesi and j factors out the centrality of popular states.
More importantly, its cosine measures the correlation be-
tween these two state’s travel times to the rest of the graph—
how similar their roles are in a random walk. E.g., if two
states are perfectly correlated (cosθi j = 1), then jumping in-
stantaneously from one to the other would not change the
statistics of the random walk over the remaining states.

We need not actually compute the embedding to obtain
the cosines. We can convert the matrix of squared distances
C to a matrix of inner productsP by observing that

Ci j = ‖xi−x j‖2(2.4)

= x>i xi−x>i x j −x>j xi +x>j x j(2.5)

1Both
√

Ci j andCi j are metrics; why prefer
√

Ci j ? Consider square
lattice graphs of varying dimension and uniform transition probabilities.
The identificationCi j ∼ ‖xi −x j‖ leads to embeddings of 1D lattice graphs
with uniform distances between adjoining states, but higher dimensional
lattices are embedded with a pin-cushion radial distortion (corners are pulled
away from the origin). Concentrating the graph in the corner spikes makes
near-corner vertices have larger distances but smaller angles to central
vertices than other non-corner vertices—undesirable because they are not
similar to central vertices. The identificationCi j ∼ ‖xi − x j‖2 leads to
embeddings with a lattice-axis-parallel barrelling distortion (straight lines
in the lattice are preserved, but the spacing of lattice lines is compressed
according to the sigmoidx→ sinx on (−π,π); angles properly increase
with distance in the graph. Proof: Embedding uses the (nonconstant)
eigenvectors of the graph Laplacian which comprise the lowest frequencies
of a Fourier basis on the domain of grid spacings.

13

= Pii −Pi j −Pji +Pj j .(2.6)

Thus, removing the row- and column-averagesPii = x>i xi

andPj j = x>j x j from C by a double-centering

−2·P = (I − 1
N

11>)C(I − 1
N

11>)(2.7)

yieldsPi j = x>i x j [12]. The cosine correlation is then

cosθi j =
x>i x j

‖xi‖ · ‖x j‖
=

x>i x j√
x>i xi ·

√
x>j x j

=
Pi j√
Pii Pj j

.(2.8)

In appendixA we will show efficient ways to computeP
directly from sparseT or W without computing denseC.
One result established there is that for the special case of
symmetric, zero-diagonalW, P simplifies to the pseudo-
inverse of the graph Laplacian diag(W1)−W.

For an alternate geometric interpretation of the cosine
correlations, consider projecting all embedded points onto
a unit hypersphere (thereby removing the effect of generic
popularity) and denoting the resulting pairwise Euclidean

distances as
◦
di j . Then

cosθi j = 1− (
◦
di j)2/2.(2.9)

In this embedding the correlation between two states is
negatively proportional to their squared Euclidean distance.
Thus summing and averaging correlations is a geometrically
meaningful way to measure similarity between twogroups
of states.

In large chains the norm‖xi‖ =
√

Pii is usually a close
approximation (up to a constant factor) of the recurrence
time r i = s−1

i , roughly the inverse “popularity” of a state,
so the cosine correlations may be interpreted as a measure
of similarity that factors out artifacts of uneven sampling.
For example, if two web pages are very popular the expected
time to hit either from any page will be low, thus they will
have a small mutual commute time. But if they are usually
accessed by different groups of people or are connected to
different sets of attributes, the angle between them may be
large, implying decorrelation or anticorrelation. Similarly,
with a movie database described below we find that the
horror thriller “Silence of the Lambs” to the children’s film
“Free Willy” have a smaller than average mutual commute
time because both were box-office successes, yet the angle
between them is larger than average because there was little
overlap in their audiences.

As presented, these calculations require the construction
and inversion of a denseN×N matrix, anO(N3) proposition
that is clearly impractical for large chains. It is also wasteful
because most queries will involve submatrices ofP and
the cosine matrix. SectionA will show how to efficiently
estimate the submatrices directly from the sparse Markov
chain parameters.

3 Recommending as semi-supervised classification

To make recommendations, we select one or more query
states and then rank other states by their summed (or aver-
aged) correlation to the query states. The query states may
represent customers, recent purchases, demographic cate-
gories, etc.

Recommending in this model is strongly related to
the semi-supervised classification problem: The states are
embedded in a space as points, one or more points are
given class labels, and we seek to compute an affinity
(similarity measure) between each unlabelled point and each
class. Unlike fully supervised classification, the affinity
between a point and the labelled examples is mediated by the
distribution of other unlabelled points in the space, because
they influence the (locally varying) distance metric over the
entire space. Similarly, in a random walk on a graph, the
similarity between two states depends on the distribution of
all possible paths in the graph.

To make this visually intuitive, we revisit a classification
problem recently proposed by Zhou & Schölkopf [14] in
the machine learning literature (see figure2): 80 points
are arranged in two normally distributed clusters in the 2D

plane, surrounded by an arc of 20 points. An undirected
graph is made by connecting every point to itsk nearest
neighbors (figure2 left), giving a sparse graph, or to all
neighbors within some distanceε (figure 2 right), giving a
denser graph. Edge weights are chosen to be a fast-decaying
function of Euclidean distance, e.g.,Wi j ∝ exp(−d2

i j /2).
Although connectivity and edge weights are loosely related
to Euclidean distance, similarity is mediated entirely by the
graph, not its layout on the page. Given three labelled
points (one on the arc and one on each cluster) representing
two classes, Zhou & Schölkopf ask how the rest should be
classified, and propose the similarity measure((1−α)I +
αN)−1, with N = I − diag(W1)−1/2Wdiag(W1)−1/2 the
normalized combinatorial Laplacian, and 0< α < 1 a user-
specified regularization parameter. This is similar to our
framework in the special case of an undirected graph with
no self-arcs, but whereas we normalize the pseudo-inverted
Laplacian to obtain cosines, they normalize the Laplacian,
then regularize to make ordinary inversion feasible2.

The similarity measure should be relatively insensitive
to perturbations of the graph, especially those inflicted by a
user varying the graph parameterk or ε. Since these mainly
affect the density of edges and thus the stationary distribu-
tion, we may expect some classification robustness from co-
sine correlations. Figure2 shows two such labellings. Clas-

2Zhou & Schölkopf suggest their measure is the cosine associated with
commute time norms on a “lazy” random walk, but equations 3.4, 3.8 and
3.9 in their analysis only hold forα = 1 (where their inverse is undefined),
and neither the inverse nor the pseudo-inverse will yield true cosines unless
α = 0 (i.e., the graph is ignored). A secondary motivation from calculus on
graphs is much more satisfying.

14

k−nearest neighbor graph ε−ball graph

arc <−− | −−> clusters (vertex index)

0

cl
as

si
fic

at
io

n
sc

or
e

cosines
commute times
normalized commutes
((1−α) I+αN), best−1 α

arc <−− | −−> clusters (vertex index)

0
cl

as
si

fic
at

io
n

sc
or

e

Figure 2: TOP: Classification of graph vertices according to random walk cosine correlations with labelled (boxed) vertices.
Size and color of each vertex dot indicates the magnitude and sign of its classification score. BOTTOM: Point-by-point
classification scores using various graph-based similarity and dissimilarity matrices. Each horizontal ordinate represents a
point; the vertical ordinate is its classification score. Points scoring> 0 are classified as belonging to the arc. Classification
scores are connected into lines only for the purpose of visual grouping. The cosine matrix offers the widest classification
margin and most stability to small changes in the graph.

sification scores, depicted by the size and color of the graph
vertices, are simply the difference between the recommen-
dation score for two classes. The left and right panels il-
lustrate how the classification varies when the criteria for
adding edges to the graph changes. We experimented with
different values fork andε, and found that cosine correla-
tions and commute times both perform well, in the sense of
giving an intuitively correct classification that is relatively
stable as the density of edges in the graph is varied . How-
ever, cosines offer a considerably wider classification margin
and thus more robustness to graph perturbations. Normal-
ized commute times, the Zhou & Schölkopf measure, hit-
ting times, reverse hitting times, and their normalized vari-
ants (not shown) classify poorly to well on denser graphs but
quite poorly on sparser graphs. The Zhou & Schölkopf mea-
sure in particular has a small margin because it is designed

to vary smoothly over the graph. From this small informal
experiment we may expect cosine correlations to give consis-
tent recommendations under small variations in the associa-
tion graph; this is borne out below in large cross-validation
experiments.

4 Expected profit

While the consumer is interested in finding the next most
interesting product, the vendor wants to recommend prod-
ucts that are also profitable. Assuming that most customers
will make more than one purchase in the future and that cus-
tomers’ purchase decisions are independent of vendor profit
margins, decision theory tells us that the optimal strategy is
to recommend the product (state) with the greatest expected
profit, discounted over time. That is, the vendor wants to
nudge a consumer into a state from which a random walk

15

will pass through highly profitable states (hence retail strate-
gies such as “loss leaders”). Moreover, these states should
be traversed early in the walk, because money is worth more
now than it is in the indefinite future.

Let p ∈ RN be a vector of profit (or loss) for each state,
ande−β,β > 0 be a discount factor that determines the time
value of future profits. The expected discounted profitvi of
the ith state is the averaged profit of every state reachable
from it, discounted for the time of arrival. In vector form:

v = p+e−βTp +e−2βT2p+ · · · .(4.10)

Using the identity∑∞
i=0X i = (I −X)−1 for matrices of less

than unit spectral radius (λmax(X) < 1), we rearrange the
series into a sparse linear system:

v = (
∞

∑
t=0

e−βtTt)p = (I −e−βT)−1p.(4.11)

The most profitable recommendation for a consumer in state
i is thus the statej in the neighborhood ofi that has the
largest expected discounted profit:j = argmaxj∈N (i) Ti j v j .
If the chain is structured so that states representing saleable
products arek steps away from the current state, then the
appropriate term is argmaxj∈N (i) Tk

i j v j .

5 Experiments

The MovieLens database [8] contains ratings on a scale of 1-
5 for 1682 movies by 943 individuals. The data is a snapshot
of what movies the university community considered worth
seeing in 1997. Viewers rated 20-737 movies (average=106);
movies received 1-583 ratings (average=60). The ratings
table is 93.7% empty, which we interpret to mean that
most viewers have not seen most movies. Movies are
also tagged with nonexclusive memberships in 19 genres;
individuals have 2 possible genders, 21 possible vocations,
and 8 overlapping age groups. We constructed anN =
2675 state Markov chain withWi j = 1 for each of these
connections, except for movie ratings, which were copied
directly into W on the principle that more highly rated
movies are more likely choices.W is very sparse with less
than 3% nonzero values. To evaluate the many measures of
similarity and dissimilarity described above, we compared
their performance in the following tasks.

5.1 Recommendation to maximize satisfactionWe per-
formed extensive cross-validation experiments to determine
which statistic can best predict one part of the data from the
rest. In each trial we randomly partitioned the data into a test
set containing 10 ratings from each viewer, and a training set
containing the remainder of the data. The goal is to “predict”
each viewer’s held-out movies. A Markov chain was con-
structed from the training set and a variety of similarity (e.g.,
cosine correlation) and dissimilarity (e.g., commute times)

0

1

2

3

4

5

6

7

co
si

ne
 c

or
re

la
tio

n
co

m
m

ut
e

tim
es

st
at

io
na

ry
 d

is
tri

bu
tio

n

hi
tti

ng
 ti

m
es

no
rm

al
iz

ed
 h

itt
in

g
tim

es
no

rm
al

iz
ed

 c
om

m
ut

es

Cumulative rating of top 10 recommendations, averaged over users & trials

Figure 3: Cosine correlation is almost twice as effective as
all other measures for predicting what movies a viewer will
see and like.

matrices were computed. Sorting the rows of these matrices
gives a predicted per-viewer ranking of all movies. To score
each measure’s prediction quality, we took as recommenda-
tions the 10 top-ranked movies that were not in the training
set, and summed the viewer’s held-out ratings of each rec-
ommended movie. A cumulative score of zero means that
the viewer did not elect to rate (or presumably, see) any of
the recommendations. A cumulative score of 50 would mean
that the viewer did indeed see all 10 recommendations and
gave all the highest possible rating. When the data’s average
rating and sparsity is considered, an omniscient oracle could
score no better than 35.3 on average; random guessing will
score 2.2 on average. We performed 2500 trials with differ-
ent random partitions and averaged scores over all viewers
and trials. Figure3 shows that cosine correlation is almost
twice as successful as any other measure, with an average
score slightly over 7. We also looked at how the predictors
ranked the held-out movies: If a viewer had three held-out
movies that the predictor ranked 5th, 17th, and 205th in her
personalized recommendation list, then that predictor would
be assessed a penalty of 5+ 17+ 205= 227. Cosine corre-
lation had the smallest average penalty, roughly 1/4 the aver-
age penalty of commute times, the next best predictor.

Both sets of experiments were repeated with all ratings
flattened to 1 (Wi j ∈ {0,1}), yielding almost identical com-
parative results. When ratings are not flattened, all methods
show a bias for highly rated movies.

Consistent with results reported in [6], we found that
commute times are slightly more informative than hitting
times. That paper advocated commute times and demon-

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ex

pe
ct

ed
 d

is
co

un
te

d
pr

of
it

co
si

ne
, p

ro
fit

ab
le

 s
ub

se
t

co
si

ne
, f

ul
l s

et
co

m
m

ut
e

tim
es

hi
tti

ng
 ti

m
es

st
at

io
na

ry
 d

is
tri

bu
tio

n

Discounted profit of top 10 recommendations, averaged over users and trials

Figure 4: Making recommendations that maximize long-
term profit is a much more successful strategy than recom-
mending strictly profitable films, and profit-blind recommen-
dations make no profit at all.

strated that they outperformk-nearest neighbors, Katz’ in-
fluence measure [10], Djikstra shortest-path distances, and
cosine coefficient computed from attribute vectors (not to
be confused with cosine correlations of the random walk).
However, we found that recommending from commute times
is only slightly better than simply recommending the most
popular movies identified by the stationary distribution, most
likely because the commute and hitting times are both domi-
nated by the stationary distribution. We tried several ways of
pre-normalizing the data matrixW or post-normalizing the
hitting/commute times to ameliorate this problem but failed
to improve their predictions substantially and usually wors-
ened performance, presumably because most normalizations
are not consistent with the geometry of these statistics. For
example, because commute times are small where station-
ary probabilities are large, [14, eq. (3.6-7)] proposed post-
normalizing the commute times by the recurrence time (i.e.,
Ci j /
√

r ir j = Ci j ·
√

sisj); we found this promoted unpopu-
lar movies so strongly that recommendation scores averaged
worse than chance. The most successful normalization, after
cosine correlations, was obtained by projecting the transi-
tion matrix to the closest doubly stochastic matrix prior to
computing commute times, which makes the stationary dis-
tribution uniform (when such a projection exists).

5.2 Recommendations to maximize profitWe repeated
the experiments above with a slightly different scoring pro-
tocol: Before trials, each movie was randomly assigned a
unique profit (or loss)p j from a unit normal distribution.

stationary distribution correlated to ‘male’ correlated to ‘female’

Star Wars Star Wars The English Patient

Fargo Contact Contact

Return of the Jedi Fargo Titanic

Contact Return of the Jedi Jerry Maguire

Raiders of the Lost Ark Air Force One Conspiracy Theory

The Godfather Scream Sense and Sensibility

Toy Story Toy Story The Full Monty

Silence of the Lambs Liar Liar L.A. Confidential

Scream The Godfather Good Will Hunting

Table 1: Top recommendations made from the stationary
distribution and by correlation to ‘male’ and ‘female’ states.

During trials, ten recommendations are given to the viewer
in sequence; if theith recommendation is in the viewer’s
held-out list, the viewer accepts the movie and we receive
a time-discounted profit ofe−iβ p j , with e−β = 0.9. The goal
is to maximize the profit over the entire sequence. In addition
to the profit-blind predictors evaluated above, we considered
a short-term profit maximizer—a cosine correlation predic-
tor that only recommends movies with positive profits—and
the long-term profit maximizer of section4. This works by
first suggesting the movie in a local graph neighborhood of
the viewer’s state that has maximum expected discounted
profit. If the user declines, it suggests the next most prof-
itable movie in the same neighborhood. If the user accepts,
the state shifts to that of the accepted movie and the next
suggestion comes from the graph neighborhood of that state.
(This is one of many ways in which the state could be up-
dated.) Figure4 shows that the expected discounted profit
maximizer strongly outperforms the greedy short-term max-
imizer, and that profit-blind recommenders effectively make
no profit at all. (They show slight losses only because the
random pricing happened to make some of the more popular
movies unprofitable.)

5.3 Market analysis Recommendations can be made
from any state in the chain, making it possible to identify
products that are particularly successful with a consumer de-
mographic, or customers that are particularly loyal to spe-
cific product categories. For example, the MovieLens data
hasmale andfemale attributes that are indirectly linked to
all movies through the viewers, and thus we may ask which
movies are preferentially watched by men or women. Rank-
ing movies by their commute times or expected hitting times
from these states turns out to be uninformative, as the rank-
ing is almost identical to the stationary distribution rank-
ing. (This is understandable for men because the database
is mostly male.) However, ranking by cosine correlation
produces two very different lists, with males preferring ac-

17

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0 10 20 30 40 50 60 70 80

co
rr

el
at

io
n

age

Interest in film genres as a function of age

adventure
sci-fi

drama
film noir

Figure 5: Correlation of age to genre preferences is weak
but clearly shows that interest in sci-fi peaks in the teens and
twenties. Soon after, interest in adventure peaks and interest
in drama begins to climb.

tion and sci-fi movies and females preferring romances and
dramas. Table1 lists the top ten recommendations for each
gender.

By the same method, we can ask which genres are
preferentially watched by people of particular occupations
and/or age groups. Figure5 shows that age is indeed weakly
predictive of genre preferences.

6 Conclusion

The random walks view of association graphs is a very nat-
ural way to study affinity relations in a relational database,
providing a way to make use of extensive contextual infor-
mation such as demographics and product categories in col-
laborative filtering tasks. We derived a novel measure of
similarity—the cosine correlation of two states in a random
walk—and showed that it is highly predictive for recom-
mendation and semi-supervised classification tasks. Cross-
validation experiments indicate that correlation-based rank-
ings are more predictive and robust to perturbations of the
graph’s edge set than rankings based on commute times, hit-
ting times, normalized Laplacians, and related graph-based
dissimilarity measures. This is very encouraging because
recommendations ought to be stable with respect to random
omissions in the database, a challenge presented by most
data-collection scenarios. We also sketched some efficient
approximation methods for very large graphs; a forthcoming
paper will detail very fast exact methods based on a modified
sparse L-U decomposition.

Acknowledgments Thanks to anonymous readers and re-
viewers for helpful comments and pointers to [6, 14].

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. Rec-
ommendation technologies: Survey of current methods
and possible extensions. MISRC working paper 03-
29, http://misrc.umn.edu/workingpapers/abstracts/0329.aspx,
May 2003.

[2] D. Aldous and J. Fill. Reversible Markov chains
and random walks on graphs. Manuscript,
http://www.stat.berkeley.edu/users/aldous/RWG/book.html,
In prep.

[3] P. Baldi, P. Frasconi, and P. Smyth.Modeling the Internet and
the Web: Probabilistic Methods and Algorithms. John Wiley
and Sons, 2003.

[4] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual web search engine. InProc. 7th International World
Wide Web Conference, 1998.

[5] P.G. Doyle and J.L. Snell. Random Walks and Electric
Networks. Mathematical Association of America, 1984.

[6] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and
Marco Saerens. A novel way of computing dissimilarities
between nodes of a graph, with application to collaborative
filtering. InProc., ECML workshop on Statistical Approaches
for Web Mining, 2004.

[7] F. Gobel and A. Jagers. Random walks on graphs.Stochastic
Processes and their Applications, 2:311–336, 1974.

[8] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering.
In Proc. 1999 Conference on Research and Development in
Information Retrieval, 1999.

[9] Ngoc-Diep Ho and Paul Van Dooren. On the pseudo-inverse
of the Laplacian of a bipartite graph. InProc. AML’04, 2004.

[10] L. Katz. A new status index derived from sociometric
analysis.Psychometrika, 18(1):39–43, 1953.

[11] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment.Journal of the ACM, 46(5):604–632, 1999.

[12] J. B. Kruskal and M. Wish.Multidimensional Scaling. Sage
Publications, Beverly Hills, CA, 1978.

[13] J. Scott. Social Network Analysis: A Handbook. Sage
Publications, London, 2000.

[14] D. Zhou and B. Schölkopf. Learning from labeled and
unlabeled data using random walks. 2004.

A Computational strategies

For chains withN� 103 states, it is currently impractical to
compute the full matrix of commute times or even a large
matrix inversion of the form(I − X)−1 ∈ RN×N. To get
aroundO(N2) memory andO(N3) time costs, we exploit
the fact that most computations have the form(I −X)−1G
where X is sparse andG has only a few columns. For
many queries, only a subset of states are being compared
(G is sparse as well), making only a subset of columns of
the inverse necessary. These can be computed via the series
expansions

(I −X)−1 =
∞

∑
i=0

X i =
∞

∏
i=0

(I +X2i
),(1.12)

18

which can be truncated to yield good approximations for
fast-mixing sparse chains. In particular, ann-term sum of the
additive series (middle) can be evaluated via 2 log2n sparse
matrix multiplies via the multiplicative expansion (right).
For any one column of the inverse this reduces to sparse
matrix-vector products.

One problem is that these series only converge for ma-
trices of less than unit spectral radius (λmax(X) < 1). For
inverses that do not conform, the associated series expan-
sions will have a divergent component that can be incremen-
tally removed to obtain the numerically correct result. For
example, in the case of hitting times, we haveX = T +1s>

which has spectral radius 2. By expanding the additive series
one can see that unwanted multiples of1s> accumulate very
quickly in the sum. Instead, we construct an iteration that
removes them as they arise:

A0 ← I −1s>(1.13)

B0 ← T(1.14)

A i+1 ← A i +Bi−1s>(1.15)

Bi+1 ← TB i ,(1.16)

which converges to

A i→∞→ (I −T−1s>)−1 +1s>.(1.17)

Note that this is easily adapted to compute an arbitrary sub-
set of the columns ofA i and Bi , making it economical to
compute submatrices ofH. Because sparse chains tend to
mix quickly, Bi rapidly converges to the stationary distribu-
tion 1s>, and we often find thatA i is a good approximation
even fori < N. We can construct a much faster converging
recursion for the multiplicative series:

A0 ← I −1s>(1.18)

B0 ← T(1.19)

A i+1 ← A i +A iBi(1.20)

Bi+1 ← B2
i .(1.21)

This converges exponentially faster but requires computation
of the entireBi . In both iterations, one can substitute1/N for
s; this merely shifts the column averages, which are removed
in the final calculation

H← (1diag(A i)>−A i)diag(r).(1.22)

The recurrence timesr i = s−1
i can be obtained from the

convergedBi = 1s>.
It is possible to compute the inner product matrixP

directly from the Markov chain parameters. The identity

P = (Q+Q>)/2(1.23)

with

Q− 1
iN

11> = (I −T− i
N

r1>)−1diag(r)

= (diag(s)−diag(s)T− i
N

11>)−1, 0 < i ≤ N(1.24)

can be verified by expansion and substitution. For a subma-
trix of P, one need only compute the corresponding columns
of Q using appropriate variants of the iterations above.

Once again, ifs (and thusr) are unknown prior to the
iterations, one can make the substitutions→ 1/N; at conver-
gence the resultingA′= A i− 1

N 11>, s= 1>Bi/cols(Bi), r i =
s−1
i satisfy

A′− 1
N

(A′r −1)s> = (I −T− 1
N

r1>)−1(1.25)

and

Q = A′diag(r)(I − 1
N

11>).(1.26)

However, one pays a price for not pre-computing the station-
ary distributions: The last two equalities require full rows of
A i , which defeats our goal of economically computing sub-
matricesP.

Such partial computations are quite feasible for undi-
rected graphs with no self-loops: WhenW is symmetric and
zero-diagonal,Q (equation1.24) simplifies to the Laplacian
kernel

Q = P = (1>W1) · (diag(W1)−W)+,(1.27)

a pseudo-inverse because the Laplacian diag(W1)−W has
a null eigenvalue. In our setting, the Laplacian has a sparse
block structure that allows the pseudo-inverse to computed
via smaller singular value decompositions of the blocks
[9], but even this can be prohibitive. We avoid expensive
pseudo-inversion entirely by shifting the null eigenvalue
to 1, inverting via series expansion, and then shifting the
eigenvalue back to zero. These operations are collected
together in the equality

1
1>W1

P = D((I −{D(W− i
N

11>)D})−1D

− 1
iN

11>,(1.28)

whereD .= diag(W1)−1/2 and i > 0. By construction, the
term in braces{·} has spectral radius< 1 for i ≤ 1, thus any
subset of columns of the inverse (and ofP) can be computed
via straightforward additive iteration.

One advantage of couching these calculations in terms
of sparse matrix inversion is that new data, such as a series of
purchases by a customer, can be incorporated into the model
via lightweight computations using the Sherman-Woodbury-
Morrison formula for low-rank updates of the inverse.

19

Surveying Data for Patchy Structure

Ronald K. Pearson∗

Abstract

The term “data surveying” refers to the preliminary ex-

amination of a dataset to assess its overall character, and

this process typically involves simple descriptive statistics

to characterize the available variables, along with detection

of data anomalies (e.g., outliers or incomplete records) and

possibly other “interesting” or “unusual” features that may

be worthy of careful scrutiny. In the survey sampling liter-

ature, an important distinction is made between responses

that are missing at random, the simplest form of ignorable

missing data, and non-random alternatives that can lead to

non-ignorable missing data. The distinction is practically

important because non-ignorable missing data can cause se-

vere biases in analytical results, while ignorable missing data

typically causes an undesirable but less serious increase in

the variability of these results. Analogous distinctions can

also be usefully made for other types of data anomalies (e.g.,

i.i.d. vs. correlated outliers) or other unusual data subsets of

potential interest. In particular, the observation of system-

atic behavior with respect to time, position, or other ordered

index sequences (e.g., primary key in a database) can often

give insight into the nature or generation mechanism of these

data subsets. Motivated by these observations, this paper

considers the problem of detecting structure in distinguished

subsets of data records, including missing data, outliers and

other “interesting data records.” Depending on the nature of

the dependences considered, this problem is closely related

to a number of others, including the detection of “streaks”

in athletic performance records, the quantification of associ-

ation between variables, or binary classification.

1 Introduction

Pyle [18] describes data mining in terms of three com-
ponents: data preparation, data surveying, and data
modeling. The second of these steps—data surveying—
is concerned with identifying and characterizing what is
present in the dataset. Useful data surveying tools in-
clude simple descriptive statistics (e.g., how many vari-
ables constitute each data record? what kind are they
(nominal, ordinal, or real)? what are the ranges and
typical values for each?), along with somewhat more
complex characterizations like entropy measures [18,
Ch. 11]. In addition, it is also useful to characterize

∗ProSanos Corporation, Harrisburg, PA.

both data anomalies (e.g., outliers and missing data)
and other “interesting” or “unusual” data subsets that
may be worthy of separate analysis. The problem of in-
terest in this paper is the detection of significant struc-
ture in these subsets, which may lead to useful insights
concerning their nature and origin.

As a particularly important example, a useful dis-
tinction is made in the survey sampling literature be-
tween data values that are missing at random (MAR)
and those that are systematically missing [20]. The
MAR model generally represents ignorable missing data,
which may be regarded as a nuisance that causes the
uncertainty of our analytical results to increase, effec-
tively reducing our sample size. Conversely, nonignor-
able missing data patterns in which the probability of
being included in the dataset depends on the missing
data values themselves are generally more serious as
they can cause large biases in our results. Further, the
identification of nonignorable missing data can be the
first step in discovering why these data values are miss-
ing, which can have important practical implications.

Although it is not as widely discussed, a somewhat
analogous distinction is that between outliers that are
randomly distributed throughout the dataset and de-
pendent outliers, sometimes known as “patchy outliers.”
In particular, Davies and Gather [6] express concern
that, “in almost all simulations in the literature the out-
liers are taken to be iid random variables.” To illustrate
that such working assumptions are not always appropri-
ate, they discuss a highly contaminated weather balloon
dataset in which the outliers do not conform to this as-
sumption. This distinction is important because outlier
sequences of the same magnitude and concentration but
with different dependence structures can have very dif-
ferent influences on dynamic characterizations like spec-
trum analysis or linear system identification [16]. Again,
detection of systematic patterns in outliers or other data
anomalies can be useful in determining the mechanisms
and sources responsible for these anomalies.

The analogy between dependent outliers and sys-
tematic missing data becomes clear if we adopt the re-
placement model for outliers [14]. There, the sequence
{yk} of available data samples is modelled as:

yk = (1− zk)xk + zkok,(1.1)

20

where {xk} is the nominal (i.e., uncontaminated) data
sequence of interest, {ok} is a sequence of outlying val-
ues, and {zk} is a binary selection sequence, assuming
the value zk = 0 whenever the nominal data value is ob-
served, and zk = 1 whenever the outlying data value is
observed. The outlier analog of the missing at random
data model then corresponds to assuming that {zk} is
an iid binary sequence (i.e., a sequence of Bernoulli tri-
als). Similarly, the outlier analog of systematic missing
data corresponds to the case where the binary sequence
{zk} either exhibits a significant dependence structure
(e.g., patchy outliers) or depends on other contaminated
variables. In particular, common mode effects (e.g., par-
tial system failures) can be responsible for the presence
of outliers in several different variables simultaneously,
again in violation of the random occurrance model. The
influence of these strongly correlated outlier sequences
in different variables can profoundly influence the re-
sults of otherwise reasonable joint characterizations like
cross-correlation analysis [15, Sec. 8.1.2].

Useful distinctions can also be made between ran-
dom and systematic occurrance of other types of anoma-
lous, interesting, or unusual data records Rk within a
dataset D. Specific examples include inliers, defined as
observations that lie within the distribution of nomi-
nal (i.e., non-anomalous) data values, but which are in
error [21], near-duplicate records (e.g., web documents)
[3], or subsets of data records that have been deemed
“interesting” by some quantitative interestingness mea-
sure [12]. DesJardins [7] notes that isolated inliers may
not be a problem and may be almost indistinguishable
from nominal data values, but that moderate-sized sets
of inliers can have more serious analytical consequences.
(It is important to note that the term “inlier” is some-
times used as a synonym for “nominal data” [13], quite
distinct from the meaning assumed here.) Finally, an-
other case where data records of particular interest are
not randomly distributed thoughout a dataset is the
case of alarms in telecommunication network data [22].
There, different alarm sequences are known to be cor-
related and to occur in intermittent bursts; one of the
key practical challenges is in extracting cause informa-
tion from the complicated patterns generated by these
related alarm sequences.

The general problem considered in this paper is the
following one. We are given a class K of data records
{Rk} that are of particular interest. This class could
consist of missing or incomplete records, outliers, inliers,
near-duplicate records, or records identified on the basis
of some interestingness measure, either objective or
subjective [12]. The essential requirement here is that
we have available a classification scheme that partitions
data records into those belonging to class K and those

not belonging to this class. Given this partitioning,
define the status sequence {zk} as:

zk =
{

1 if Rk ∈ K
0 if Rk /∈ K,(1.2)

generalizing the binary sequence {zk} on which the re-
placement outlier model (1.1) is based. An obvious ex-
tension of this idea would be to consider multiple classes
of interesting data records, but this paper considers only
a single class K. The key problem of interest here thus
reduces to the characterization and interpretation of
the binary sequence {zk}. As one reviewer noted, it
is important to emphasize that the utility of the re-
sults obtained from analyses like those described here
depends strongly on the accuracy of the classification
procedure that generates the status sequence {zk}. To
keep the length of this paper manageable, the problem
of missclassification is minimized here by considering
cases like missing data where accurate construction of
the sequence {zk} is straightforward.

2 The problem of assessing patchiness

The primary question considered in this paper is
whether the records belonging to class K occur ran-
domly or systematically through the dataset D, based
on their record index k. If the dataset consists of a se-
quence of real values indexed by time and if the class
K corresponds to local outliers in this sequence, the
question considered here reduces to one of determining
whether these outliers are isolated or patchy. More gen-
erally, even if the records are much more complex and
the record index has no obvious interesting interpreta-
tion, the detection of patchiness in the status sequence
{zk} can lead us to discover unexpected structure in
these records, a point illustrated in Sec. 6.

Despite the simplicity of the concept—records from
class K are either grouped together into patches or they
are not—the practical assessment of patchiness in bi-
nary data sequences is harder than it sounds. This point
is illustrated in Fig. 1, which shows a portion of the
status sequence {zk} discussed in Sec. 6.2. Briefly, this
sequence identifies a subset of adverse event incident
reports in the U.S. Food and Drug Administration’s
Adverse Event Reporting System (AERS) database in
which an outcome of “death” is listed. The visual ap-
pearance of this binary sequence is strongly suggestive
of patchiness, but it is desirable to have a quantitative
characterization that permits us to objectively assess
patchiness and quantify its extent.

The assessment of patchiness in status sequences is
essentially the same as that of detecting “streakiness”
in sports performance statistics. As a specific exam-
ple, Albert and Williamson consider the question, “Was

21

Sample Index, k

S
ta

tu
s

In
di

ca
to

r,
 z

(k
)

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Binary status sequences derived from the
AERS database example discussed in Sec. 6.2.

Javy Lopez a ’streaky hitter’ when he played for the
Atlanta Braves in 1998?” [1]. These authors discuss
several different approaches to this problem, and the
one they adopt is a simulation-based Bayesian strategy
that incorporates any one of several different paramet-
ric streakiness models and draws inferences about the
model parameters. In addition, this approach also re-
quires a “streakiness statistic” and the authors consider
six of these: two are based on moving averages, two are
based on characterization of runs of successive 0’s or
1’s in individual at-bat results, one is based on a logis-
tic model relating the probability of hitting in a given
game to batting averages in previous games, and one
is based on the standard deviation of batting averages
across subgroups of games.

The approach to assessing patchiness adopted in
this paper is based on the empirical patchiness measures
described in Sec. 4, together with a random permuta-
tion strategy that provides a reference standard for tests
of the patchiness hypothesis. To assess the performance
of these measures, they are first applied to simulated se-
quences based on the patchy sequence model described
in Sec. 3. One of these measures is then applied in Sec.
6 to the AERS database mentioned above.

3 A patchy sequence model

To assess the performance of patchiness characteriza-
tions like those described here, it is useful to have a
simulation procedure for generating patchy sequences
with well-defined, controllable characteristics. Here, the
following patchy sequence model is used as the basis for
for such a procedure. The idea is to specify a distribu-
tion {pw} of patch widths w and use this distribution

to generate a binary sequence {zk} of length N having
patches of successive 1’s that are drawn from this dis-
tribution. Specifically, given {pw}, the sequence {zk}
is generated as follows. First, a sequence {wk} of N
possible patch widths is generated having probabilities
pw for w = 0, 1, . . . , w∗ where w∗ ≤ N is width of the
widest patch considered. The binary sequence {zk} is
then constructed according to the following procedure:

0. Initialize: set k = 1

1. Do while k ≤ N :

- wk = 0 ⇒ zk = 0 and k → k + 1,

- wk = 1 ⇒ zk = 1 and k → k + 1,

- wk = w > 1 ⇒ zk = zk+1 = · · · = zk+w = 1
and k → k + w.

2. Return {zk} for k = 1, 2, . . . , N .

Note that taking p1 = q and p0 = 1−q yields a Bernoulli
sequence with probability q that zk = 1; an example is
shown in the upper plot in Fig. 2, which was obtained
by taking p0 = 0.95 and p1 = 0.05. Conversely, taking
pw > 0 for w > 1 yields binary sequences with patches
of width w. As a specific example, the sequence shown
in the lower plot in Fig. 2 was obtained by setting
p0 = 0.95 and p3 = 0.05, giving a sequence that always
exhibits patches of length 3, an outcome that occurs 5%
of the time. Note, however, that since each 1 generated
by this model occurs three times in succession, the
probability that zk = 1 is 15% rather than 5% as in
the Bernoulli example. More generally, note that the
expected number of 1’s in the binary sequence {zk}
generated according to the procedure just described is

Na = N
N∑

w=0

wpw.(3.3)

Hence, if we wish to generate a patchy sequence of
fixed length N having a specified value for Na (e.g.,
a patchy outlier sequence with “10% contamination”),
it is necessary to reduce the probabilities pw accordingly
for w > 0 to account for the patch effects. This
modification is equivalent to increasing the probability
p0, an idea closely related to the use of zero-inflated
Poisson models [4, 11], zero-inflated binomial models
[11], or zero-inflated negative binomial models [4] in
analyzing count data.

4 Empirical measures of patchiness

To assess the patchiness of a status sequence {zk} of
length N , this paper considers three closely related em-
pirical measures. The first is the empirical concentration

22

Data Sample, k

S
ta

tu
s

In
di

ca
to

r,
 z

(k
)

100 120 140 160 180 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expanded Portion of a Non-patchy Binary Sequence

Data Sample, k

S
ta

tu
s

In
di

ca
to

r,
 z

(k
)

100 120 140 160 180 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expanded Portion of a Patchy Binary Sequence

Figure 2: Two simulated binary sequences: a non-
patchy Bernoulli sequence, assuming the value zk = 1
with probability 5% (top), and a sequence that exhibits
only patches of width 3 (bottom).

measure:

φ̂w =
Nw(w + 1)

N − 1
,(4.4)

which represents the fraction of the maximum possible
number of patches of width w, based on the following
definitions. A patch of width w in the binary sequence
{zk} is defined by the following two conditions, which
must hold for some index k satisfying k ≥ 2 and
k ≤ N − w:

zk = zk+1 = · · · = zk+w−1 = 1
and zk−1 = zk+w = 0.(4.5)

It follows from this definition that the maximum possi-
ble number of patches satisfies:

Nww ≤ (N − 2)− (Nw − 1).(4.6)

The term on the left-hand side of this inequality counts
the number of points included in the patches of width
w, while the first term on the right-hand side is the
maximum number of points in the sequence {zk} that
can assume the value zk = 1 (i.e., z1 and zN must both
be zero), and the second term on the right-hand side is
the minimum number of zero values required to separate
successive patches of width w. It follows from Eq. (4.6)
that

Nw ≤ N − 1
w + 1

,(4.7)

meaning that the empirical concentration measure φ̂w

satisfies 0 ≤ φ̂w ≤ 1 for all patch widths w.
The numerical results presented in the following

examples were computed in the S-plus software package;

while it is possible to compute φ̂w by brute force, this
involves a very slow nested loop construction, and it is
much faster to use an algorithm based on the following
observations. First, define the complementary sequence
{zc

k} to the status sequence {zk} by:

zc
k = 1− zk.(4.8)

Next, note that the two defining conditions given in Eq.
(4.5) for a patch of width w may be expressed as:

zc
k−1 = zk = zk+1 = · · · = zk+w−1 = zc

k+w = 1
⇔ zc

k−1 · zk · zk+1 · · · zk+w−1 · zc
k+w = 1.(4.9)

The advantage of this observation is that it immediately
yields the following expression for the number Nw of
patches of width w in the sequence {zk}, i.e.

Nw =
N−w∑

k=2

zc
k−1 · zk · zk+1 · · · zk+w−1 · zc

k+w.(4.10)

To compute φ̂w over a range of values from 1 to
some maximum patch width w∗, simply construct a
matrix with N rows and w∗ columns where each column
contains the vector appearing on the right-hand side of
Eq. (4.10). The number Nw can then be efficiently
computed as the vector of row sums of this matrix and
φ̂w can be computed directly from this result.

By itself, a sequence of values {φ̂w} computed from
a given binary status sequence {zk} is not easy to in-
terpret: does φ̂w = 0.3 give strong or weak evidence
in support of the hypothesis that {zk} exhibits an un-
usually large number of patches of width w? Con-
versely, how small must φ̂w be to suggest fewer patches
of width w than we would expect under the homoge-
neous Bernoulli alternative? In subsequent discussions,
this latter phenomenon will be called sparseness. To ad-
dress these questions, this paper adopts a permutation
strategy [10], analogous to that used previously in as-
sessing the significance of clustering results [17]. Specif-
ically, given a sequence {zk}, applying a random permu-
tation to the index sequence should destroy any patch-
iness that may be present, effectively reducing the ran-
domized sequence {z̃k} to a Bernoulli sequence. Hence,
if the number of patches of width w is unusually large
in the original sequence, relative to a Bernoulli alter-
native, this randomization should cause φ̂w to decrease
significantly. Similarly, if the sequence {zk} contains
significantly fewer patches of width w than expected
under the Bernoulli alternative, randomization should
cause φ̂w to increase. Repeating this process for M
statistically independent random permutations gives a
sequence {φ̃j

w} of patchiness measures that can be used

23

0.
0

0.
05

0.
10

0.
15

1 2 3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

n
of

 P
os

si
bl

e
P

at
ch

es
 o

f W
id

th
 w

Figure 3: Empirical patchiness characterization for the
Bernoulli sequence shown in the upper plot in Fig. 2.
The line through the solid circles corresponds to the
computed values of φ̂w. The boxplots each summarize
the φ̃j

w values obtained from 200 randomizations of the
original sequence.

to assess the significance of the original patchiness mea-
sure φ̂w. In particular, φ̂w gives evidence of patchiness if
it lies above the range of the randomization results, and
it gives evidence of sparseness if it lies below this range.
Since these comparisons define a two-sided hypothesis
test, φ̂w values falling outside this range are significant
at the level 2/M .

Fig. 3 summarizes the results obtained for the
Bernoulli sequence shown in the upper plot in Fig. 2 us-
ing the empirical patchiness characterization proposed
here, for patch widths between w = 1 and w = 10.
The values of φ̂w computed from the original sequence
{zk} are shown in Fig. 3 as solid circles, connected
by a line, and the results {φ̃j

w} obtained for 200 inde-
pendent randomizations are summarized with boxplots.
Overall, the results are exactly what we expect for a
Bernoulli sequence, which may be taken as a reference
standard of “non-patchiness.” Specifically, these results
show no evidence of patchiness since none of the φ̂w

values fall outside the range of values generated by the
200 randomizations. Also, note that the quantity φ̂w

shown here is not the same as the patchy contamination
at width w γ̂w, defined as the number of contaminants
contributed by patches of width w and given by

γ̂w =
Nww

N
=

(
w

w + 1

)(
N − 1

N

)
φ̂w.(4.11)

In particular, note that γ̂1 ' 0.05, corresponding to
the total contamination level of the Bernoulli sequence
considered here, while φ̂1 ' 0.10, twice this level.

For comparison, Fig. 4 shows the corresponding
results obtained from the patchy sequence shown in
the bottom plot in Fig. 2, which consists entirely of
patches of width 3. As before, the original φw values
are represented by the solid circles connected with
the smooth curve, and the 200 randomization results
{φ̃j

w} are summarized with boxplots. Because of the
special character of the status sequence {zk} considered
here, these results illustrate both significant patchiness
and significant sparseness, relative to the Bernoulli
alternative. In particular, since no patches of widths 1
or 2 appear in this sequence, φ̂1 = φ̂2 = 0 here and these
results fall well below the range of the corresponding
randomization values. In other words, these results
correctly reflect the extreme sparseness of the sequence
{zk} with respect to patches of widths w = 1 and w = 2.
Conversely, the results for φ̂3 lie well above the range
of the randomization results, giving strong evidence
in support of the patchiness hypothesis for w = 3.
None of the other results are significant, as they all fall
within the range of the corresponding randomizations.
Note, however, that although the value of φ̂6 is not
significant relative to the randomizations, it is the only
nonzero result other than φ̂3, reflecting the fact that
two successive patches of width 3 were generated here
by the random sequence generator described in Sec. 3
with no intervening zero value, converting them into a
single patch of width 6.

The visual similarity of this result to a second har-
monic in a power spectrum suggests the following alter-
native graphical representation of the results presented
here. Define ψ̂w as the patch spectrum of width w, given
by

ψ̂w =
Nww∑N
k=1 zk

=

(
(N − 1)w

(w + 1)
∑N

k=1 zk

)
φ̂w.(4.12)

Note that this quantity represents the fractional contri-
bution of patches of width w to the total number of 1’s
in the {zk} sequence. Because ψ̂w is linearly related to
φ̂w by a constant that is invariant under random per-
mutations, it follows that the randomization results ψ̃j

w

may be computed directly from the corresponding ran-
domization results φ̃j

w, i.e.,

ψ̃j
w =

(
(N − 1)w

(w + 1)
∑N

k=1 zk

)
φ̃j

w.(4.13)

An advantage of ψ̂w over φ̂w is that, while both patchi-
ness measures are normalized to lie in the unit interval
[0, 1], this upper limit has a more useful interpretation

24

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

1 2 3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

n
of

 P
os

si
bl

e
P

at
ch

es
 o

f W
id

th
 w

Figure 4: Empirical patchiness characterization φ̂w for
the patchy binary sequence shown in the lower plot in
Fig. 2, in the same format as Fig. 3.

for the patch spectrum ψ̂w than it does for the empir-
ical patchiness measure φ̂w. For example, note that if
φ̂1 = 1, the sequence {zk} is completely specified: it
is a periodic sequence of odd length N that takes the
value zk = 0 whenever k is odd and zk = 1 whenever k
is even. Although this sequence certainly can arise, it
is not a typical status sequence we might expect to see
in practice. Conversely, the result ψ̂1 = 1 is easily seen
to arise if and only if every data anomaly is isolated, a
much more likely situation in practice, and one that we
might well be interested in detecting.

More generally, the scaling of the patch spectrum
ψ̂w appears to be much more informative than that of
the empirical patchiness measure φ̂w, as may be seen by
comparing Figs. 4 and 5. In particular, the fact that
ψ̂3 ' 1 demonstrates clearly that almost all of the 1’s
in the sequence {zk} appear in patches of width w = 3,
a point that is not obvious from the numerical values
of φ̂w plotted in Fig. 4. Similar conclusions apply for
the Bernoulli sequence: the patch spectrum results in
Fig. 6 show that ∼ 65% of the 1’s in this sequence
occur in patches of width w = 1, ∼ 20% in patches of
width w = 2, and the remaining ∼ 15% in patches of
width w = 3. Again, this quantitative interpretation is
not obvious from the numerical values for φ̂w shown in
Fig. 3. Overall, because the results for ψ̂w are easier to
interpret than those for φ̂w, the remainder of this paper
focuses entirely on the patch spectrum ψ̂w.

5 Two numerical summary statistics

Although plots like Figs. 3 through 6 give useful qualita-
tive characterizations of patchiness, it is desirable to also

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 5: Computed patch spectrum ψ̂w for the patchy
binary sequence shown in the lower plot in Fig. 2, in
the same format as Fig. 3.

have simple numerical summary statistics. The follow-
ing discussion presents two such summaries: the z-score
zw of the patch spectrum ψ̂w relative to the randomized
results {ψ̃j

w}, and a quantity αw that gives a normalized
measure of the distance ψ̂w lies from the most extreme
ψ̃j

w value, relative to the range of possible ψ̂w values.
More specifically, let µ̃w denote the mean of the

M randomized values {ψ̃j
w} and let σ̃w denote the

standard deviation of these values. The z-score for the
ψ̂w value computed from the original data sequence is
then defined as

zw =
ψ̂w − µ̃w

σ̃
.(5.14)

If, as in the case of ψ̂w for w > p, all of the randomized
values ψ̃j

w are equal (e.g., zero in this case), it follows
that σ̃ = 0. When ψ̂w also exhibits this common value,
again as in the case of ψ̂w for w > p, the value of zw

will be defined as zero; otherwise, zw will be defined as
±∞, depending on the sign of ψ̂w − µ̃w.

If the randomized values {ψ̃j
w} exhibit an approxi-

mately normal distribution, we would expect to see no z-
scores larger in magnitude than |zw| ∼ 3 for non-patchy
status sequences {zk} (specifically, the probability of ob-
serving a normal random variable with a z-score of mag-
nitude larger than 3 is approximately 0.3%). However,
the shape of some of the boxplot summaries is strongly
suggestive of significant asymmetry, bringing the appro-
priateness of approximate normality assumptions seri-
ously into question. Still, it follows from Chebyshev’s
inequality [2, p. 75] that:

P
{∣∣∣∣

x− µ

σ

∣∣∣∣ > β

}
= P{|z| > β} ≤ 1

β2
,(5.15)

25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 6: Computed patch spectrum ψ̂w for the
Bernoulli sequence shown in the upper plot in Fig. 2,
in the same format as Fig. 3.

for any finite variance distribution. Hence, even under
this very weak distributional assumption, it follows that
z-scores of large magnitude are unlikely. In particular,
note that |zw| > 10 has probability less than 1% even
under this extremely conservative working assumption.

The second summary statistic considered here is
αw, defined as follows. First, define the minimum and
maximum random permutation values as:

ψ̃−w = min
j
{ψ̃j

w},

ψ̃+
w = max

j
{ψ̃j

w}.(5.16)

The αw value is then defined as:

αw =





ψ̂w−ψ̃+
w

1−ψ̃+
w

ψ̂w > ψ̃+
w

0 ψ̃−w ≤ ψ̂w ≤ ψ̃+
w

−
(

ψ̃−w−ψ̂w

ψ̃−w

)
ψ̂w < ψ̃−w .

(5.17)

Note that αw is nonzero if and only if ψ̂w is signifi-
cant with respect to the random permutation values
{ψ̃j

w}. For ψ̂w values lying above the range of these
permutation values, αw is positive, bounded above by
its maximum achievable value of 1. Since this behavior
is precisely what we expect for a patchy status sequence,
positive αw values may be interpreteted as a measure of
the strength of evidence in support of the hypothesis
that {zk} exhibits an unusally large number of patches
of width w, relative to the Bernoulli model. In particu-
lar, note that αw ' 1 implies that essentially all of the
anomalies identified by the status sequence {zk} occur
in a patch of width w that has low probability under
the Bernoulli model. Conversely, a sparse sequence will

exhibit fewer patches of width w than expected under
the Bernoulli model, and this will give rise to negative
αw values, with the same general interpretation. Specif-
ically, negative αw values lie between−1 and 0, and they
may be viewed as a measure of the strength of evidence
in support of the sparseness hypothesis that {zk} ex-
hibits significantly fewer patches of width w than would
be expected under the Bernoulli model. More specifi-
cally, αw ' −1 implies that patches of width w that are
expected to be present under the Bernoulli model are
largely absent in the observed status sequence {zk}.

For the patchy status sequence {zk} shown in the
bottom plot in Fig. 2, nonzero αw values are observed
only for w = 1, 2, and 3, and these values are α1 =
α2 = −1 and α3 = 0.95. These results reflect first, the
complete absence of patches of width w = 1 and w = 2,
both expected under the Bernoulli alternative, and an
overwhelming predominance of patches of width w = 3,
which are relatively rare under the Bernoulli alternative.
For comparison, none of the αw values computed from
the Bernoulli sequence shown in the upper plot in Fig. 2
are nonzero, in perfect agreement with our expectations.

It is particularly instructive to consider the z-scores
for this example. For the patchy sequence shown in the
bottom plot in Fig. 2, nonzero z-scores are obtained for
all patch widths w between 1 and 7, although four of
these values are quite small in magnitude (specifically,
z4 = −0.4, z5 = −0.1, and z7 = −0.1. The results
for patch widths of 1 and 2 exhibit negative z-scores,
consistent with the absence of expected patches of these
widths in this example: z1 = −15.1 and z2 = −4.3.
Not surprisingly, the results for patches of width 3
exhibit the largest magnitude z-score seen: z3 = 32.6.
What is somewhat surprising is that z6 = 9.9, an
extremely large z-score, especially for a result that is not
significant with respect to the random permutations.
Less extreme but somewhat similar results are obtained
for the Bernoulli sequence shown in the top plot in
Fig. 2: z1 = −3.6, z2 = 2.2, and z3 = 5.0, with
much smaller values for w = 4 and w = 5 (z4 =
z5 = −0.1). The large magnitudes of some of these
non-significant z-scores further emphasizes the point
noted above that approximate normality should not be
assumed for the permutation values {φ̃j

w} here, since
many of these z-scores would be extremely significant
under the Gaussian model. As a practical matter, the
best strategy is probably to consider only the z-scores
for those values having nonzero αw values.

6 Applications to the AERS database

The following examples serve both to illustrate the ap-
plication of the patch spectrum ψ̂w to real data, and
to demonstrate that the characterization of patchiness

26

can lead to the identification of unusual structure even
when applied to record indices (i.e., access keys) k with
little or no inherent real-world significance. Both ex-
amples are based on the U.S. Food and Drug Admin-
istration’s Adverse Event Reporting System (AERS)
database, which summarizes medical adverse events re-
ported in conjunction with the use of specific drugs.
A detailed description is available through the website
http://www.fda.gov/cder/aers/. In general terms,
exploratory analysis of this database is of interest be-
cause it can provide evidence of significant associations
between specific drugs and adverse reactions, or be-
tween pairs of drugs. As a specific example, DuMouchel
presents a Bayesian characterization of interesting drug-
event combinations [9]. This database is examined here
for two reasons: first, that it represents a real database
of moderately large size as a practical testbed for the
analysis methods described here and second, because
unrecognized structure in a dataset can have a delete-
rious influence on analyses based on working assump-
tions that are inconsistent with this structure. As a
specific example, Dodge [8] discusses the analysis of a
dataset that has been adopted as a standard benchmark
in the applied statistics literature (the Brownlee stack-
loss dataset), noting that many authors have analyzed
this dataset based on the assumption that the measure-
ments represented a uniformly sampled time-series. He
argues convincingly that this is not the case, bringing a
number of these earlier conclusions (e.g., identification
of specific observations as outliers) into question.

The AERS database is organized by quarter and
year, and the specific data values used in both exam-
ples considered here were obtained from the the fol-
lowing five datasets from first quarter 2001 portion
of this database: DEMO01Q1 gives demographic in-
formation, REAC01Q1 lists specific adverse reactions,
DRUG01Q1 lists the drugs involved, OUTC01Q1 gives
outcome information (e.g., “death,” “hospitalization,”
or “other”), and RPSR01Q1 gives information pertain-
ing to the source of each adverse event report. These
files are linked via an integer primary key designated the
ISR (Individual Safety Report) number for each record,
which corresponds to a report logged by the FDA. For
example, each record in the DEMO01Q1 dataset con-
sists of the ISR, together with 13 other values, includ-
ing the date the manufacturer first recieved information
reported to the FDA, the name of the manufacturer
sending the report, and the age and gender of the pa-
tient associated with the report. Similarly, each record
in the REAC01Q1 data file consists of the ISR and a
single character string describing a reported reaction.
Since each report typically lists more than one adverse
reaction, however, ISR’s generally appear more than

once in the REAC01Q1 dataset, unlike the DEMO01Q1
dataset, where each ISR appears only once. Analogous
observations apply to the DRUG01Q1 and OUTC01Q1
data files: each adverse event report may have more
than one entry.

6.1 Application 1: missing data As is often the
case, the fraction of missing data in the datasets that
make up the AERS database varies strongly between
fields. For example, the file DEMO01Q1 contains
51, 012 records, each corresponding to a unique ISR
number. Since this field is used as the primary access
key for matching records across the first quarter 2001
datasets, is extremely well-maintained, containing nei-
ther duplicate nor missing entries. Similarly, the FDA
report date, the field indicating the date that the FDA
was notified of the reported adverse event, is also free
of missing data. In contrast, some of the other twelve
fields exhibit significant fractions of missing data:

• patient age: ∼ 27.5% missing,

• patient gender: ∼ 6.8% missing,

• manufacturer reporting date: ∼ 8.4% missing,

• date of adverse event: ∼ 28.7% missing.

Further, certain subsets of the data may exhibit much
higher missing data percentages. As a specific example,
consider the set of records for which both the manu-
facturer reporting date and the date of adverse event
are missing. While this situation only arises in ∼ 0.9%
of the total data records, within this subset of records,
gender is also missing about 38% of the time, and age
is also missing about 59% of the time.

To explore this case further, consider the follow-
ing question: do these missing records occur at random
throughout the DEMO01Q1 data file, or do they exhibit
evidence of significant patchiness? One reason this ques-
tion is interesting is that, if these particular incomplete
records group together by ISR number, they may also
exhibit other common characteristics that are of signifi-
cantly greater interest. To consider this question, define
the binary status sequence {zk} as:

zk =





1 if both event date and manufacturer date
are missing,

0 otherwise.
(6.18)
Values of ψ̂w were computed for w = 1 to w = 20
and these results satisfied the normalization condition,
indicating that all patches had been found. Comparing
these results with the corresponding values ψ̃j

w for M =
200 random permutations show that too few patches of

27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 7: Computed patch spectrum ψ̂w and M =
200 corresponding random permutation results for the
AERS missing data status sequence {zk} for patch
widths w = 1, 2, and 3.

width w = 1 were seen in the sequence {zk} relative
to the Bernoulli alternative, and too many patches of
widths 2, 3, 4, 5 and 7 were observed.

Fig. 7 shows these results for patch widths w = 1,
2 and 3. Specifically, the solid circles in this plot
represent the patch spectrum values ψ̂w computed from
the original status sequence for these values of w, while
the boxplots summarize the range of ψ̃j

w values obtained
for the 200 random permutations considered here. It is
clear from this plot that the value ψ̂1 lies well below the
range of the randomizations, indicating as noted above
that there are too few patches of width w = 1, relative
to the Bernoulli alternative. Similarly, the values of ψ̂2

and ψ̂3 both lie above the range of the randomization
values.

The patch spectrum results ψ̂w and their associated
randomizations ψ̃j

w are summarized in Fig. 8 for patch
widths w = 3 through w = 10. This plot was separated
from Fig. 7 to emphasize small but significant details;
in particular, note that the scale of Fig. 7 spans the
range from 0 to 1 on the vertical axis, while Fig. 8
spans the narrower range from 0 to 0.05. This plot
emphasizes that, while patches of width w = 3 do occur
in the randomizations, they are much less frequent than
in the non-randomized results. In addition, it is clear
that patches of width w = 4, 5, and 7 appear in the
original sequence but not in the 200 randomizations.

It is instructive to examine the results for w = 7 in
more detail, which corresponds to a single patch. Ex-
amination of these seven adverse event reports reveals
that:

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 8: Computed patch spectrum ψ̂w and M =
200 corresponding random permutation results for the
AERS missing data status sequence {zk} for patch
widths w = 3 through w = 10.

• the same FDA report date is listed for all ISR’s,

• both age and gender are always missing,

• none of the fields in dataset DEMO01Q1 that
identify manufacturer contain entries,

• none of these ISR’s have a corresponding entry in
the RPSR01Q1 report source information file,

• the ISR’s all implicate different drugs,

• all ISR’s list the same, single reaction: “drug
maladministration.”

The key points here are first, that this collection of
seven successive records share many unusual character-
istics in common. Hence, even though ISR number is a
completely un-interesting data field by itself, patches of
successive ISR’s sharing a few anomalous characteristics
(here, missing manufacturer report date and event date)
actually share a much wider range of unusual character-
istics. The second key point is that the patches detected
by the method described here represent extremely small
subsets of the data: in this example, a sequence of 7
anomalous records is detected, out of a total of 51, 012
(approximately 0.01%).

6.2 Application 2: death outcomes Of the
51, 012 adverse event reports with records in the
DEMO01Q1 dataset, 5, 048 have “death” listed as an
outcome in the OUTC01Q1 dataset. Here, we adopt
this outcome as a subjective interestingness measure

28

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 9: ISR patch spectrum ψ̂w for patches of width
w = 1, 2 or 3 for the 1Q 2001 AERS data listing “death”
as the outcome.

[12] and consider the following status sequence:

zk =
{

1 if ISR k has outcome “death,”
0 otherwise.(6.19)

Fig. 9 shows the patch spectrum ψ̂w values for w = 1,
2, and 3, denoted by solid circles connected by a line,
with the results from 200 random permutations shown
as boxplots. It is clear from this plot that isolated ISR’s
(i.e., patches of width w = 1) occur less frequently than
would be expected under the Bernoulli alternative, that
patches of width w = 2 are consistent with what we
would expect from a Bernoulli sequence, and patches
of width w = 3 occur more frequently than we would
expect for a Bernoulli sequence. Fig. 10 shows the
corresponding results for w between 3 and 20, again
plotted on a different scale to show the details more
clearly. It may be seen from this figure that the
status sequence {zk} defined in Eq. (6.19) exhibits an
unusually large number of patches of widths 3 through
10. Even more unusual is the result for patches of width
w = 19, which have essentially zero probability under
the Bernoulli model.

A more complete quantitative summary of these re-
sults is given in Table 1, which lists the values computed
for ψ̂w, the associated z-score zw, the corresponding αw

value, and the number of patches Nw for all results giv-
ing nonzero ψ̂w values between w = 1 and w = 50.
Since these ψ̂w values sum to 1, they account for all of
the ISR’s listing “death” as their associated outcome.
In fact, it follows from the results shown in Table 1
that approximately 12.5% of the death ISR’s occur in
successive groupings of width 3 or more, with the most
extreme one having a width of w = 35. Also, note that

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 10: ISR patch spectrum ψ̂w for patches of width
w = 3 through w = 20 for the 1Q 2001 AERS data
listing “death” as the outcome.

this example illustrates the separate utility of the zw

and αw values. In particular, the fact that the αw val-
ues are small but nonzero means that, while no single
patch width w > 2 contributes a majority of interesting
ISR’s, these patches are all significant relative to the
Bernoulli alternative. In particular, it is not difficult to
show that αw ≤ ψ̂w whenever αw > 0 and that this
bound holds with equality if and only if ψ̃+

w = 0, further
implying that ψ̃j

w = 0 for all randomizations j. In this
case it also follows that σ̃ = 0, which is responsible for
the infinite z-scores shown in Table 1 for w = 8, 9, 10,
12, 19, and 35 since this condition holds for these cases.

It is particularly instructive to look at the most
extreme case, w = 35. As indicated in Table 1, only
a single patch of this width occurs, and examining the
corresponding records from the DEMO01Q1 file reveal
that 31 of these 35 successive ISR’s share a common
reporting manufacturer (Company A). To examine this
result further, we can adopt this reporting manufacturer
as a measure of interestingness and repeat the previous
analysis. Specifically, define the binary status sequence:

zk =
{

1 if reported by Company A,
0 otherwise.(6.20)

A plot of the patch spectrum computed from this
sequence is shown in Fig. 11 for w = 1 through w = 10.
Although this plot does not show the peak at width
w = 31 that led to the construction and examination of
this status sequence, it is clear from Fig. 11 that the
number of isolated ISR’s is vastly smaller than would
be expected under the Bernoulli alternative, and that
the number of patches of widths 2 through 8 is much
larger than would be expected. Even more significantly,

29

w ψ̂w zw αw Nw

1 0.7173 −13.0 −0.0918 3621
2 0.1573 −0.7 0.0000 397
3 0.0576 9.5 0.0228 97
4 0.0166 9.0 0.0088 21
5 0.0149 24.0 0.0119 15
6 0.0059 22.5 0.0036 5
7 0.0055 56.5 0.0042 4
8 0.0079 +∞ 0.0079 5
9 0.0018 +∞ 0.0018 1

10 0.0020 +∞ 0.0020 1

12 0.0024 +∞ 0.0024 1
19 0.0038 +∞ 0.0038 1
35 0.0069 +∞ 0.0069 1

Table 1: Patch spectrum ψ̂w, z-scores zw, αw values
and number of patches of width w present in the status
sequence for the AERS ISR’s with outcome “death.”

the single patch of width 31 in the Company A status
sequence—the only patch of width wider than 10 in this
sequence—accounts for approximately 26% of the total
number of ISR’s associated with this manufacturer.

Further examination of the Company A results
reveals the following details. Altogether, this company
appears as reporting manufacturer in 118 ISR’s. Of
these, 111 list “death” as an outcome, with the following
additional characteristics:

a. patient gender is missing in all ISR’s,

b. one or both of the following reactions is listed for
every ISR: “Non-Accidental Overdose,” or “Over-
dose Nos (Not Otherwise Specified),”

c. the same manufacturer date is listed, corresponding
to the date the manufacturer initially recieved
notification of the adverse event.

In view of these results, it seems likely that the patch-
iness seen in these ISR sequence is due to the manner
in which these adverse events were reported and pro-
cecessed by the FDA. Despite the fact that this patch
generation mechanism is not especially interesting, it
has led us to focus on a very interesting group of ISR’s.
In particular, the results presented here demonstrate
that the detection and interpretation of patchiness in se-
quences of data records can ultimately lead us to groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

Patch Width, w

F
ra

ct
io

na
l C

on
tr

ib
ut

io
n

fr
om

 P
at

ch
es

 o
f W

id
th

 w

Figure 11: Patch spectrum for the Company A binary
sequence defined in Eq. (6.20).

of records that are very strongly associated by charac-
teristics that may be of significant interest (e.g., death
by drug overdose).

7 Summary

This paper has considered the problem of detecting,
characterizing, and interpreting non-random member-
ship patterns of some class K of data records in a larger
dataset. Specific examples include missing or incom-
plete records, various types of data anomalies (e.g., out-
liers, inliers, or near-duplicate records), or record classes
selected by either objective or subjective interestingness
measures. The fundamental basis for these results is the
binary status sequence {zk} defined in Eq. (1.2) indi-
cating whether the record Rk belongs to class K or not.
The main tools introduced here to characterize this se-
quence are the patch spectrum ψ̂w introduced in Sec.
4 and the associated summary statistics zw and αw in-
troduced in Sec. 5. The effectiveness of these tools was
demonstrated first for a pair of simulation-based exam-
ples (a non-patchy Bernoulli sequence and a sequence
exhibiting only random patches of width w = 3), and
then with respect to status sequences constructed from
the FDA’s AERS adverse event database. These exam-
ples illustrate that, even though the patches appearing
in these record sequences are almost certainly data en-
try artifacts, they are interesting because the records
involved were processed together for a reason related to
some underlying common structure. For example, ob-
servation that 31 of 35 records in the longest observed
patch of successive ISR’s with “death” listed as an out-
come were associated with the same manufacturer led
to an examination of all ISR’s associated with this man-

30

ufacturer. In turn, this led to the discovery that 111 of
the 118 reports associated with this manufacturer were
fatal drug overdoses, all with the same reporting date.

These examples also illustrated that, even in very
long binary status sequences, the observation of wide
patches is rare enough that they are easy to detect even
if they represent an extremely small portion of the total
sequence. For example, the AERS sequences considered
here were of length 51, 012, but the analysis methods
presented here had no difficulty detecting single patches
of width ∼ 10 as unexpected features in the data,
even though they correspond to ∼ 0.02% of the data.
As a corollary, this observation means that even if
some unusual event or data recording anomaly places
a single small patch of interesting records together, the
fact that they are grouped together greatly enhances
our ability to detect them. As a practical matter,
even if this grouping is primarily due to the details
of the data entry procedure, the fact that a group of
records sharing the same characteristic of interest were
entered together usually means that these records share
several characteristics in common, as in the examples
considered here. The results presented here suggest that
patchiness analysis may be a very useful first step in
uncovering these associations.

Finally, note that once we have constructed the bi-
nary status sequence {zk}, we can apply a range of stan-
dard binary data analysis methods like logistic regres-
sion to explore possible relationships with other vari-
ables [5]. Alternatively, since {zk} defines a binary clas-
sification of records, we can also adopt the methodol-
ogy of case-control studies [5, p. 217] or case-referent
studies [19, p. 7]. There, the idea is to match each
member of the “interesting class” (i.e., each record Rk

with zk = 1) to one or more records from the “nominal
class” (i.e., records Rk with zk = 0), usually subject
to an approximate matching constraint on other record
characteristics. The objective of these studies is to iden-
tify systematic differences in other characteristics that
may be responsible for the difference in interestingness.

References

[1] J. Albert and P. Williamson, “Using Model/Data
Simulations to Detect Streakiness,” Amer. Statistician,
vol. 55, 2001, pp. 41–50.

[2] P. Billingsley, Probability and Measure, 2nd ed., Wiley,
1986.

[3] A.Z. Broder, “Identifying and Filtering Near-Duplicate
Documents,” in Combinatorial Pattern Matching, R.
Giancarlo and D. Sankoff, eds., Springer-Verlag, 2000,
pp. 1–10.

[4] Y.B. Cheung, “Zero-inflated models for regression

analysis of count data: a study of growth and develop-
ment,” Statist. Med., v. 21, 2002, pp. 1461–1469.

[5] D. Collett, Modelling Binary Data, 2nd ed., Chapman
and Hall, 2003.

[6] L. Davies and U. Gather, “The identification of multi-
ple outliers,” J. Amer. Statist. Assoc., v. 88, 1993, pp.
782–801.

[7] D. DesJardins, “Outliers, Inliers and Just Plain Liars—
New Graphical EDA+ (EDA Plus) Techniques for
Understanding Data,” CEASAR Conf. Proc. Statistics
Italy, Rome, 2001, paper no. 169–26.

[8] Y. Dodge, “The Guinea Pig of Multiple Regression,”
in Robust Statistics, Data Analysis, and Computer
Intensive Methods, H. Rieder, ed., Springer-Verlag,
1986, pp. 91–117.

[9] W. DuMouchel, “Bayesian Data Mining in Large Fre-
quency Tables, with an Application to the FDA Spon-
taneous Reporting System (with discussion),” Ameri-
can Statistician, v. 53, 1999, pp. 177–202.

[10] P. Good, Permutation Tests, Springer-Verlag, 2000.
[11] D.B. Hall and K.S. Berenhaut, “Score tests for hetero-

geneity and overdispersion in zero-inflated Poisson and
binomial regression models,” Canadian J. Statistics, v.
30, 2002, pp. 1–16.

[12] R.J. Hilderman and H.J. Hamilton, “Evaluation of In-
terestingness Measures for Ranking Discovered Knowl-
edge,” Proc. 5th Pacific-Asia Conf. Knowledge Discov-
ery and Data Mining, 2001, pp. 247–259.

[13] K.-M. Lee, P. Meer, and R.-H. Park, “Robust Adaptive
Segmentation of Range Images,” IEEE Trans. Pattern
Analysis Machine Intelligence, v. 20, 1998, pp. 200–
205.

[14] R.D. Martin and V.J. Yohai, “Influence functionals for
time-series,” Ann. Statist., vol. 14, 1986, pp. 781–785.

[15] R.K. Pearson, Discrete-Time Dynamic Models, Oxford,
1999.

[16] R.K. Pearson, “Outliers in Process Modelling and Iden-
tification,” IEEE Trans. Control Systems Technology,
v. 10, 2001, pp. 55–63.

[17] R.K. Pearson, T. Zylkin, J.S. Schwaber, and G.E.
Gonye, “Quantitative Evaluation of Clustering Results
Using Computational Negative Controls,” Proc. 2004
SIAM International Conference on Data Mining, April,
2004, Lake Buena Vista, Florida, pp. 188–199.

[18] D. Pyle, Data Preparation for Data Mining, Academic
Press, 1999.

[19] P.R. Rosenbaum, Observational Studies, 2nd ed.,
Springer-Verlag, 2002.

[20] D.B. Rubin, Multiple Imputation for Nonresponse in
Surveys, Wiley, 1987.

[21] W.E. Winkler, “Problems with Inliers,” paper pre-
sented at the European Conference of Statisticians,
Prague, October, 1997.

[22] Q. Zheng, K. Xu, W. Lv, and S. Ma, “Intelligent
Search of Correlated Alarms from Database Containing
Noise Data,” Proc. 8th IEEE/IFIP Network and Op-
erations Management Symposium (NOMS), Florence,
Italy, 2002, pp. 405–419.

31

2-Dimensional Singular Value Decomposition for 2D Maps and Images

Chris Ding∗ and Jieping Ye†

LBNL-56481. October 3, 2004.

Abstract

For a set of 1D vectors, standard singular value de-
composition (SVD) is frequently applied. For a set of
2D objects such as images or weather maps, we form
2dSVD, which computes principal eigenvectors of row-
row and column-column covariance matrices, exactly as
in the standard SVD. We study optimality properties
of 2dSVD as low-rank approximation and show that it
provides a framework unifying two recent approaches.
Experiments on images and weather maps illustrate the
usefulness of 2dSVD.

1 Introduction

Singular value decomposition (SVD)[5, 7] plays the cen-
tral role in reducing high dimensional data into lower
dimensional data which is also called principal compo-
nent analysis (PCA)[8] in statistics. It often occurs that
in the reduced space, coherent patterns can be detected
more clearly. Such unsupervised dimension reduction is
used in very broad areas such as meteorology[11], image
processing[9, 13], and information retrieval[1].

The problem of low rank approximations of ma-
trices has recently received broad attention in areas
such as computer vision, information retrieval, and ma-
chine learning [1, 2, 3, 12]. It becomes an important
tool for extracting correlations and removing noise from
data. However, applications of this technique to high-
dimensional data, such as images and videos, quickly
run up against practical computational limits, mainly
due to the high time and space complexities of the SVD
computation for large matrices.

In recent years, increasingly more data items come
naturally as 2D objects, such the 2D images, 2D weather
maps. Currently widely used method for dimension
reduction of these 2D data objects is based on SVD.
First, 2D objects are converted into 1D vectors and
are packed together as a large matrix. For example,
each of the 2D maps of Ai, Ai ∈ �

r×c , i = 1, · · · , n is
converted to a vector ai of length rc. The standard

∗Lawrence Berkeley National Laboratory, University of Cali-
fornia, Berkeley, CA 94720. Email: chqding@lbl.gov

†Department of Computer Science, University of Minnesota,
Minneapolis, MN 55455. Email: jieping@cs.umn.edu

SVD is then applied to the matrix containing all the
vectors: A = (a1, · · · ,an). In image processing, this is
called Eigenfaces[9]. In weather research, this is called
Empirical Orthogonal Functions (EOF) [11]. Although
the conventional approach is widely used, it does not
preserve the 2D nature of these 2D data objects.

Two recent studies made first proposals to cap-
ture the 2D nature explicitly in low rank approximation.
Yang et al. [13] propose to use the principal components
of (column-column) covariance matrix for image repre-
sentation. Ye et al. [14, 15] propose to use a LMiR

T

type decomposition for low rank approximation.
In this paper, we propose to construct 2-

dimensional singular value decomposition (2dSVD)
based on the row-row and column-column covariance
matrices. We study various optimality properties of
2dSVD as low-rank approximation. We show that the
approach of Yang et al. [13] can be casted as a one-sided
low-rank approximation with its optimal solution given
by 2dSVD. 2dSVD also gives a near-optimal solution for
the low rank approximation using LMiR

T decomposi-
tion by Ye [14]. Thus 2dSVD serves as a framework
unifying the work of Yang et al. [13] and Ye [14].

Together, this new approach captures explicitly the
2D nature and has 3 advantages over conventional SVD-
based approach: (1) It deals with much smaller matrices,
typically r × c matrices, instead of n × (rc) matrix
in conventional approach. (2) At the same or better
accuracy of reconstruction, the new approach requires
substantially smaller memory storage. (3) Some of the
operations on these rectangular objects can be done
much more efficiently, due to the preservation of the 2D
structure.

We note there exists other type of decompositions
of high order objects. The recently studied orthogonal
tensor decomposition [16, 10], seeks an f -factor trilinear
form for decomposition of X into A, B, C: xijk =∑f

α=1

∑f
β=1

∑f
γ=1 aiαbjβckγ where columns of A, B, C

mutually orthogonal within each matrices.
Our approach differs in that we keep explicit the 2D

nature of these 2D maps and images. For weather map,
the i, j dimensions are longitude and latitude which are
of same nature. For 2D images, the i, j dimensions are
vertical and horizontal dimensions, which are of the same

32

nature. The k dimension refers to different data objects.
(In contrast, in the multi-factor trilinear orthogonal
decomposition, the i, j, k dimensions are of different
nature, say “temperature”, “intensity”, “thickness”.)

These inherently 2D datasets are very similar to
1D vector datasets, X = (x1, · · · ,xn), for which the
singular value decomposition (SVD) is often applied to
obtain the optimal low-rank approximation:

(1.1) X ≈ X̃, X̃ = UkΣkV T

k , Σk = UT

kXVk,

where Uk contains k principal eigenvectors of the covari-
ance matrix1 XXT and V contains k principal eigenvec-
tors of the inner-product matrix XTX .

We define 2-dimensional SVD for a set of 2D maps
in the same way as SVD is computed for a set of
1D vectors. Define the averaged row-row and column-
column covariance matrices,

F =
n∑

i=1

(Ai − Ā)(Ai − Ā)T ,

G =
n∑

i=1

(Ai − Ā)T (Ai − Ā).(1.2)

where Ā =
∑

i Ai/n.1 F corresponds to XXT and G
corresponds to XTX . Let Uk contains k principal eigen-
vectors of F and Vs contains s principal eigenvectors of
G:

F =
r∑

�=1

λ�u�uT

� , Uk ≡ (u1, · · · ,uk);(1.3)

G =
c∑

�=1

ζ�v�vT

� , Vs ≡ (v1, · · · ,vs).(1.4)

Following Eq.(1.1), we define

(1.5) Ãi = UkMiV
T

s , Mi = UT

k AiVs, i = 1, · · · , n,

as the extension of SVD to 2D maps. We say
(Uk, Vs, {Mi}ni=1) form the 2dSVD of {Ai}ni=1. In stan-
dard SVD of Eq.(1.1), Uk provides the common subspace
basis for 1D vectors to project to. In 2dSVD, Uk, Vs

provide the two common subspace bases for 2D maps to
(right and left) project to (this will become more clear
in §3, §4 §5). Note that Mi ∈ �k×s is not required to be
diagonal, whereas in standard SVD, Σk is diagonal.

For standard SVD, the eigenvalues of XXT and
XTX are identical, λ� = ζ� = σ2

� . The Eckart-Young
Theorem[5] states that the residual error

(1.6)

∥∥∥∥∥X −
k∑

�=1

u�σ�vT

�

∥∥∥∥∥
2

=
r∑

�=k+1

σ2
� .

1In general, SVD is applied to any rectangular matrix. while
PCA applying SVD on centered data: X = (x1 − x̄, · · · ,xn − x̄),
x̄ =

�
i xi/n. In the rest of this paper, we assume Ā = 0 to

simplify the equations. This can be recovered by Ai → Ai − Ā.

We will see that 2dSVD has very similar properties.
Obviously, 2dSVD provides a low rank approxima-

tion of the original 2D maps {Ai}. In the following we
provide detailed analysis and show that 2dSVD provides
(near) optimal solutions to a number of different types
of approximations of {Ai}.

2 Optimality properties of 2dSVD

Definition. Given a 2D map set {Ai}ni=1, Ai ∈ �r×c ,
we define the low rank approximation

Ai ≈ Ãi, Ãi = LMiR
T,

L ∈ �
r×k , R ∈ �c×s , Mi ∈ �k×s .(2.7)

Here k, s are input parameters for specifying the rank of
the approximation. We require L, R have orthonormal
columns LTL = Ik, RTR = Is. A less strict requirement
is: columns of L be linearly independent and columns
of R be linearly independent. However, given a fixed
L, R with these constraints, we can do QR factorization
to obtain L = QLL̃ and R = QRR̃ where QL, QR are
orthogonal. We can write LMiR

T = QLL̃MiR̃QT

R =
QLM̃iQ

T

R. This is identical to the form of LMiR
T.

The 2dSVD of Eq.(1.5) is clearly one such approxi-
mation:

L = Uk, R = Vs, Mi = UT
k AiVs.(2.8)

What’s the significance of 2dSVD?

• The optimal solution for the low-rank approxima-
tion using the 1-sided decomposition
(2.9)

min
Mi∈�r×k,R∈�c×k

J1({Mi}, R) =
n∑

i=1

||Ai −MiR
T||2

is given by the 2dSVD: R = Vk, Mi = AiVk.

• The optimal solution for the 1-sided low-rank ap-
proximation
(2.10)

min
L∈�r×k,Mi∈�c×k

J2(L, {Mi}) =
n∑

i=1

||Ai − LMT
i ||2

is given by the 2dSVD: L = Uk, Mi = AT
i Uk.

• The 2dSVD gives a near-optimal solution for the
low-rank approximation using the 2-sided decom-
position [14]

min
L∈�r×k,R∈�c×s,Mi∈�k×s

J3(L, {Mi}, R)

=
n∑

i=1

||Ai − LMiR
T||2.(2.11)

When k = r, min J3 reduces to min J1. When s = c,
min J3 reduces to min J2.

33

• When Ai = AT
i , ∀i, the 2dSVD gives a near-optimal

solution for the symmetric approximation
(2.12)

min
L∈�r×k,Mi∈�k×k

J4(L, {Mi}) =
n∑

i=1

||Ai−LMiL
T||2.

2dSVD provides a unified framework for rectangular
data matrices. Our 2dSVD generalizes the work of
Yang et al. [13] where they consider only the matrix
G, but give no discussion on the optimality property
and the objective of the approximation. On other
hands, the 2dSVD provides a near-optimal solution of
the 2D low rank approximation of Ye [14], the symmetric
decomposition of J3 which we believe is key to the low
rank approximation of these rectangular data matrices.

We discuss the 3 decompositions in details in §3, §4,
§5.

3 Ai = MiR
T Decomposition

Theorem 1. The global optimal solution for Ai =
MiR

T approximation of J1 in Eq.(2.9) is given by

R = Vk, Mi = AiVk,(3.13)

Jopt
1 =

∑
i

||Ai −AiVkV T
k ||2 =

c∑
j=k+1

ζj .

Remark. Theorem 1 is very similar to Eckart-Young
Theorem of Eq.(1.6) in that the solution is given by the
principal eigenvectors of the covariance matrix and the
residual is the sum of the eigenvalues of the retained
subspace.

Note that this solution is unique2 up to an arbitrary
k-by-k orthogonal matrix Γ: for any given solution
(L, {Mi}), (LΓ, {MiΓ}) is also a solution with the same
objective value. When k = c, R becomes a full rank
orthogonal matrix, i.e., RRT = Ic. In this case, we set
R = Ic and Mi = Ai.
Proof. Using ||A||2 = Tr(AT A), and Tr(AB) =
Tr(BA), we have

J1 =
n∑

i=1

Tr(Ai −MiR
T)T(Ai −MiR

T)

= Tr
n∑

i=1

[AT
i Ai − 2AT

i MiR
T + MiM

T
i]

This is a quadratic function w.r.t. Mi. The minimum
occur at where the gradient is zero: 0 = ∂J1/∂Mi =
−2AiR + 2Mi. Thus Mi = AiR. With this, we have

J1 =
n∑

i=1

||Ai||2 − Tr[RT(
n∑

i=1

AT
i Ai)R]

2If eigenvalue ζj , j ≤ k is degenerate, the corresponding
columns of Vk could be any orthogonal basis of the subspace,
therefore not unique.

Now minR J1 becomes

max
R|RT R=Ik

J1a = Tr(RTGR)

By a well-known result in algebra, the optimal solution
for R is given by R = (v1, · · · ,vk)Γ, Γ is an arbitrary
k-by-k orthogonal matrix noted earlier. The optimal
value is the sum of the large k eigenvalues of G: Jopt

1a =∑k
j=1 ζj . Note that

(3.14)
c∑

j=1

ζj = Tr(V T
c GVc) = Tr(G) =

∑
i

||Ai||2.

Here we have used the fact that VcV
T
c = I because

Vc is a full rank orthonormal matrix. Thus Jopt
1 =∑n

i=1 ||Ai||2 −
∑k

j=1 ζj =
∑c

j=k+1 ζj .
To see why this is the global optimal solution, we

first note that for any solution M̃i, R̃, the zero gradient
condition holds, i.e, M̃i = AT

i R̃. With this, we have J1 =∑n
i=1 ||Ai||2−TrR̃TGR̃. Due to the positive definiteness

of G, the solution for the quadratic function must be
unique, up to an arbitrary rotation: R̃ = RΓ. �

4 Ai = LMT
i Decomposition

Theorem 2. The global optimal solution for Ai = LMT
i

approximation of J2 in Eq.(2.10) is given by

L = Uk, Mi = AT
i Uk,(4.15)

Jopt
1 =

∑
i

||Ai − UkUT
k Ai||2 =

r∑
j=k+1

λj .

The proof is identical to Theorem 1, using the
relation

(4.16)
r∑

j=1

λj = Tr(UT
r FUr) = Tr(F) =

∑
i

||Ai||2.

For this decomposition, when k = r, we have L = Ir

and Mi = AT
i .

5 Ai = LMiR
T Decomposition

Theorem 3 The optimal solution for Ai = LMiR
T

approximation of J3 in Eq.(2.11) is given by

L = Ũk = (ũ1, · · · , ũk),(5.17)

R = Ṽs = (ṽ1, · · · , ṽs), Mi = ŨT

kAiṼs,

where ũk, ṽk are simultaneous solutions of the eigenvec-
tor problems

(5.18) F̃ ũk = λ̃kũk, G̃ṽk = ζ̃kṽk,

34

of the reweighted covariance matrices F̃ and G̃ (see
Eq.(1.2)) :

F̃ =
∑

i

AiRRTAT

i =
∑

i

AiṼsṼ
T

s AT

i ,

G̃ =
∑

i

AT

i LLTAi =
∑

i

AT

i ŨkŨT

kAi.(5.19)

The optimal objective function value is given by

Jopt
3 (k, s) =

∑
i

||Ai − ŨkŨT
k AiṼsṼ

T
s ||2

=
∑

i

||Ai||2 −
k∑

j=1

λ̃j(5.20)

≥
r∑

j=k+1

λ̃j +
c∑

j=s+1

ζj ,(5.21)

(5.22)

Jopt
3 (k, s) =

∑
i

||Ai||2 −
s∑

j=1

ζ̃j ≥
r∑

j=k+1

λj +
c∑

j=s+1

ζ̃j .

In the following special cases, the problem of max-
imization of J3 is greatly simplified:
(A) When k = r, L becomes a full rank orthogonal ma-
trix. In this case, LLT = Ic, and we can set L = Ir. G̃
becomes identical to G. The problem of maximization
of J3 is reduced to the maximization of J2.
(B) When s = c, R becomes a full rank orthogonal ma-
trix. and can be set as R = Ic. F̃ becomes identical to
F . Maximization of J3 is reduced to the maximization
of J1.
(C) When k = r and s = c, the optimization problem
becomes trivial one: L = Ir, R = Ic, Mi = Ai.
Proof. We write J3 =

∑n
i=1 Tr[AT

i Ai − 2LMiR
TAT

i +
MT

i Mi]. Taking ∂J3/∂Mi = 0, we obtain Mi = LTAiR,
and J3 =

∑n
i=1 ||Ai||2 −

∑n
i=1 ||LTAiR||2. Thus min J3

becomes

(5.23) max
L,R

J3a(L, R) =
n∑

i=1

||LTAiR||2.

The objective can be written as

J3a(L, R) = TrLT(
n∑

i=1

AiRRTAT
i)L = TrLTF̃L

= TrRT(
n∑

i=1

AT
i LLTAi)R = TrRTG̃R(5.24)

As solutions for these traces of quadratic forms, L, R are
given by the eigenvectors of F̃ , G̃, and the optimal value
are given by the equalities in Eqs.(5.21, 5.22).

To prove the inequality in Eq.(5.21), we note

r∑
j=1

λ̃j = TrŨT
r (
∑

i

AiṼsṼ
T

s AT

i)Ũr(5.25)

= Tr
∑

i

AiṼsṼ
T

s AT

i(5.26)

= TrṼ T

s (
∑

i

AT

i Ai)Ṽs(5.27)

≤ TrV T

s (
∑

i

AT

i Ai)Vs =
s∑

j=1

ζj(5.28)

Re-writing the RHS of above inequality using Eq.(3.14)
and splitting the LHS into two terms, we obtain

k∑
j=1

λ̃j +
r∑

j=k+1

λ̃j ≤
∑

i

||Ai||2 −
c∑

j=s+1

ζj .

This gives the inequality in Eq.(5.21). The inequality in
Eq.(5.22) can be proved in the same fashion. �

In practice, simultaneous solutions of the Ũ , Ṽ
eigenvectors are achieved via an iterative process:
Iterative Updating Algorithm. Given initial r-by-
k matrix L(0), we form G̃ and solve for the k largest
eigenvectors (ṽ1, · · · , ṽs) which gives R(0). Based on
R(0), we form F̃ and solve for the k largest eigenvectors
(ũ1, · · · , ũk) which gives L(1). This way, we obtain
L(0), R(0), L(1), R(1), · · · .
Proposition 6. J3a(L, R) is step-wise nondecreasing,
i.e.,

J3a(L(0), R(0)) ≤ J3a(L(1), R(0)) ≤ J3a(L(1), R(1)) ≤ · · · .

Proof. Suppose we have currently L(t), R(t). Using L(t)

we form G̃, solve for k largest eigenvectors and obtain
a new R(t+1). By definition, R(t+1) is the one that
maximizes

TrRT(
∑

i

AT

i L
(t)L(t)T

Ai)R =
∑

i

||L(t)T AiR||2.

Thus
∑

i ||LT AiR||2 must be non-decreasing. Similarly,
using R(t) we can form F̃ , solve for k largest eigenvectors
and obtain a new L(t+1).

∑
i ||LT AiR||2 must be also

non-decreasing. �

Proposition 7. An upper-bound exists for
max

∑
i ||LT AiR||2:

max
L∈�r×k,R∈�c×s

∑
i

||LT AiR||2 < min(
k∑

j=1

λj ,

s∑
j=1

ζj).

Proof. Assume k < r. For any r-by-k matrix L, with
orthonormal columns, we can always find additional r−k

35

orthonormal columns L̃ such that (L, L̃) span the space.
Thus LLT + L̃L̃T = Ir. Noting that

∑
i AT

i (L̃L̃T)Ai is
positive definite, we have

maxR TrRT(
∑

i

AT

i LLTAi)R

< max
R

TrRT(
∑

i

AT

i (LLT + L̃L̃T)Ai)R

= max
R

TrRT(
∑

i

AT

i Ai)R.

From Eqs.(1.2,1.4), the solution to the right-hand-side is
given by the 2dSVD: R = Vs. We can similarly show the
upper-bound involving Uk. The eigenvalues arise from
Eqs.(1.2,1.4). �

From Proposition 6, we obtain a simple lower
bound,

(5.29) Jopt
3 (k, s) ≤

∑
i

||Ai||2 −min(
s∑

j=1

λj ,

s∑
j=1

ζj)

With the nondecreasing property (Proposition 6)
and the upper-bound (proposition 7), we conclude that
the iterative update algorithm converges to a local
maximum.

Is the local maximum also a global maximum?
We have several arguments and some strong numerical
evidence to support
Observation 8. When Ai = LMiR

T decomposition
provides a good approximation to the 2D data, the
iterative update algorithm (IUA) converges to the global
maximum.
Discussion. (A) For n = 1, 2dSVD reduces to usual
SVD and the global maximum is well-known. Fixing
L, J3a is a quadratic function of R and the only local
maximum is the global one, achieved in IUA. Similarly,
fixing R, IUA achieves the global maximum. (B) We
may let L(0) = Uk as in 2dSVD, any random matrices,
or a matrix of zeroes except one element being 1. For
any of these starting point, IUA always converges to
the same final solution (L∗, R∗) in 3 iterations. (C) We
initialize L as L(0) ⊥ L∗, i.e, as L(0) has zero overlap
with the solution L∗. We run IUA again. Typically in
3 iterations, the IUA converges to the same (L∗, R∗).3

These three experiments indicate it is unlikely IUA can
be trapped in a local maximum, if it exists.

5.1 Comparison with Ai = LMi, Ai = MiR
T

We compare Ai = LMiR
T with Ai = MiR

T and

3Due to existence of Γ as discussed in Theorem 1, we measure
the angle between the two subspaces. For 1-D subspaces, it is
the angle between the two lines. This is generalized to multi-
dimensional subspaces [7].

Ai = LMT
i . The computer storage for the three

approximations are

SLMR = rk + nks + sc = 204, 000,(5.30)
SMR = nrk + kc = 1, 002, 000,(5.31)
SLM = rk + nkc = 1, 002, 000,(5.32)

where the last number assumes r = c = 100, n = 500
and k = s = 20. The reconstruction errors, i.e., the
objective function values, have the relationship:

(5.33) Jopt
1 (s) < Jopt

3 (k, s), k < r; Jopt
1 (s) = Jopt

3 (r, s).

(5.34)
Jopt

2 (k) < Jopt
3 (k, s), s < c; Jopt

2 (k) = Jopt
3 (k, c).

This comes from Proposition 7 and noting Jopt
1 =∑c

j=s+1 ζj and Jopt
2 =

∑r
j=k+1 λj from Theorems 1 and

2.
From the expressions for Jopt

1 , Jopt
2 , and Jopt

3 in
Eqs.(3.13, 4.15), and Theorem 5, we see that Ai is either
left projected to the subspace UkUT

k , right projected to
the subspace VkV T

k or left and right projected simulta-
neously.

2dSVD as near-optimal solution for J3

6 Bounding J3 by 2dSVD

In this section, we give upper bounds on J3 and
show 2dSVD is the solution for minimizing these upper
bounds.

Upper bound J3L

We first let Ri ∈ �c×k be a temporary replacement
of MiR

T. Using triangle inequality of Frobenius norm,
we can write J3 as

J3 =
n∑

i=1

||Ai−LRT

i +LRT

i−LMiR
T||2

≤
n∑

i=1

||Ai − LRT

i ||2 +
n∑

i=1

||LRT

i − LMiR
T||2 ≡ J3L.

Since L has orthonormal columns, the second term
becomes ||RT

i − MiR
T||2 = ||Ri − RMT

i ||2. Thus the
optimization of J3L can be written as

min
L, Ri

n∑
i=1

||Ai − LRT

i ||2 + min
R, Mi

Ri fixed

∑
i

||Ri −RMT
i ||2.

The first term is identical to min J2, and the optimal
solution is given by Theorem 2,

L = Uk, Ri = AT
i Uk, J

(1)
3L =

r∑
j=k+1

λj .(6.35)

36

The second term of J3L is equivalent to min J2, and by
Theorem 2 again, optimal solution are given by
(6.36)

R = V̂s ≡ (v̂1, · · · , v̂s), Mi = UT
k AiR, J

(2)
3L =

c∑
j=k+1

ζ̂j ,

where v̂k, ζ̂k are eigenvectors and eigenvalues of the
weighted covariance matrix Ĝ:

(6.37) Ĝv̂k = ζ̂kv̂k, Ĝ =
∑

i

AT

i UkUT

k Ai.

Combining these results, we have
Theorem 5. Minimizing the upper bound J3L leads to
the following near-optimal solution for J3:

L = Uk, R = V̂s, Mi = UT
k AiV̂s,(6.38)

Jopt
3 ≤

r∑
j=k+1

λj +
c∑

j=s+1

ζ̂j .(6.39)

To implement Theorem 5, we (1) compute Uk;
(2) construct the reweighted row-row covariance Ĝ of
Eq.(6.37) and compute its s eigenvectors which gives
Ṽs; (3) compute Mi = UT

k AiV̂s. This U → V → Mi

procedure is a variant of 2dSVD, instead of computing
Uk and Vs independent of each other (see Eqs.(1.3, 1.4)).
The variant has the same computational cost. We call
this LRMi. Note that, in the iterative update algorithm
of J3, if we set L(0) = Uk, then R(0) = Ṽk. This 2dSVD
variant can be considered as the initialization of the
iterative update algorithm.

Upper bound J3R

Alternatively, we may first let Li ∈ �c×k be a tem-
porary replacement of LMi. Using triangle inequality,
we obtain another upper bound of J3,

J3 =
n∑

i=1

||Ai−LiR
T+LiR

T−LMiR
T||2

≤
n∑

i=1

||Ai − LiR
T||2 +

n∑
i=1

||LiR
T − LMiR

T||2 ≡ J3R.

R has orthonormal columns and drops out of the second
term. The optimization of J3R can be written as

min
Li, R

n∑
i=1

||Ai − LiR
T||2 + min

L, Mi

Li fixed

∑
i

||Li − LMi||2.

Following the same analysis leading to Theorem 5, we
obtain
Theorem 6. Minimizing the upper bound J3R leads to

the following near-optimal solution for J3:

L = Ûk ≡ (û1, · · · , ûk), R = Vs,(6.40)

Mi = ÛT
k AiVs,(6.41)

Jopt
3 ≤

r∑
j=k+1

λ̂j +
c∑

j=s+1

ζj ,(6.42)

where p̃k are eigenvectors of the weighted covariance
matrix F̂

(6.43) F̂ ûk = ζ̂kûk, F̂ =
∑

i

AiVsV
T

s AT

i .

The implementations are: (1) compute Vs; (2) construct
the reweighted row-row covariance F̂ . of Eq.(6.43) and
compute its k eigenvectors which gives Ũk; (3) compute
Mi. This is another variant of 2dSVD, which we call
RLMi.

7 Error Analysis of J3 and 2dSVD

For Ai = LMiR
T decomposition, from Theorems 5 and

6, and Eqs.(5.21 , 5.22), we obtain the following lower
and upper bounds for J3:

(7.44) lb(k, s) ≤ Jopt
3 (k, s) ≤ ub(k, s),

(7.45)

lb(k, s) = max(
r∑

j=k+1

λ̃j +
c∑

j=s+1

ζj ,

r∑
j=k+1

λj +
c∑

j=s+1

ζ̃j),

(7.46)

ub(k, s) = min(
r∑

j=k+1

λ̂j +
c∑

j=s+1

ζj ,

r∑
j=k+1

λj +
c∑

j=s+1

ζ̂j).

We have seen how 2dSVD arises in minimizing the
upper bounds J3L and J3R. Now we analyze it in
subspace approximation point of view. Let Ūk be the
subspace complement of Ũk, i.e., (Ũk, Ūk) spans the
entire space. Thus (Ũk, Ūk)(Ũk, Ūk)T = I. We say that
the dominant structures of a 2D map dataset are well
captured by the subspace ŨkŨT

k if
∑

i

AT

i ŨkŨT

k Ai 	
∑

i

AT

i (ŨkŨT

k + ŪkŪT

k)Ai =
∑

i

AT

i Ai.

which will happen if the largest k eigenvalues dominate
the spectrum:

k∑
j=1

λ̃j

/ r∑
j=1

λ̃j 	 1, and
s∑

j=1

ζ̃j

/ r∑
j=1

ζ̃j 	 1.

This is because the importance of these subspaces is
approximately measured by their eigenvalues. This
situation is similar to the standard SVD, where the first

37

k singular pairs provide a good approximation to the
data when

k∑
j=1

σ2
j

/ r∑
j=1

σ2
j 	 1

This situation occurs when the eigenvalues λj approach
zero rapidly with increasing j. The space is dominated
by a few eigenstate.

In this case, the 2D maps can be well approximated
by the 2dSVD, i.e., 2dSVD provides a near-optimal
solution to J3(·). In this case, the differences between
λ̂j , λ̃j , λj tend to be small, and we set approximately

r∑
j=k+1

λ̂j 	
r∑

j=k+1

λ̃j 	
r∑

j=k+1

λj .

Similar results also hold for ζ̂j , ζ̃j , ζj . we obtain error
estimation,

Jopt
3 (k, s) 	

r∑
j=k+1

λj +
c∑

j=s+1

ζj(7.47)

≤
∑

i

||Ai − UkUT
k AiVsV

T
s ||2,(7.48)

similar to the Eckart-Young Theorem. The two accumu-
lative sums of eigenvalues correspond to the simultane-
ous left and right projections.

8 Ai = LMiL
T for symmetric Ai

Consider the case when Ai’s are symmetric: AT
i =

Ai, for all i. We seek the symmetric decomposition
Ai = LMiL

T of J4 in Eq.(2.12). Expand J4 and take
∂J4/∂Mi = 0, we obtain Mi = LTAiL, and J4 =∑n

i=1 ||Ai||2 −
∑n

i=1 ||LTAT
i L||2. Thus minJ4 becomes

(8.49)

max
L

J4a(L) =
n∑

i=1

||LTAiL||2 = TrLT(
n∑

i=1

AiLLTAi)L

Similar to the Ai = LMiR
T decomposition, 2dSVD

gives an near-optimal solution

(8.50) L = Uk, Mi = UT
k AiUk.

Starting with this, the exact optimal solution, can be
computed according to the iterative update algorithm
in §6. We write
(8.51)

max
L(t+1)

J4a(L(t+1)) = TrL(t+1)T(
n∑

i=1

AiL
(t)L(t)TAi)L(t+1).

From a current L(t), we form F̃ =
∑

i AiL
(t)L(t)TAi

and compute the first k-eigenvectors, which gives L(t+1).

From the same analysis of Propositions 6 and 7, we have

J4a(L(0)) ≤ J4a(L(1)) ≤ J4a(L(2)) ≤ · · ·

≤ max
L

TrLT(
n∑

i=1

AiAi)L =
n∑

i=1

||UkAi||2.(8.52)

Thus the iterative algorithm converges to the optimal
solution, L(t) → Ũ = (ũ1, · · · , ũk), where

(8.53) F̃ ũj = λ̃j ũ, F̃ =
n∑

i=1

AiŨkŨT

k Ai.

The optimal objective value has the lower and upper
bounds:

(8.54)
r∑

j=k+1

(λj + λ̃j) ≤ Jopt
4 ≤

r∑
j=k+1

(λj + λ̂j)

where λ̂j are the eigenvalues of F̂ :

(8.55) F̂ ûj = λ̂j û, F̂ =
n∑

i=1

AiUkUT

k Ai.

If eigenvalues λ̃j fall rapidly as j increases, the
principal subspace Ũk captures most of the structure,
and 2dSVD provides a good approximation of the data.
i.e., 2dSVD is the near-optimal solution in the sense of
J4(·). Thus we have

(8.56) Jopt
4 	 2

r∑
j=k+1

λj .

9 Application to images reconstruction and
classification

Dataset A. ORL 4 is a well-known dataset for face
recognition. It contains the face images of 40 persons,
for a total of 400 images of sizes 92 × 112. The major
challenge on this dataset is the variation of the face pose.
Dataset B. AR 5 is a large face image dataset. The in-
stance of each face may contain large areas of occlusion,
due to sun glasses and scarves. The existence of occlu-
sion dramatically increases the within-class variances of
AR face image data. We use a subset of AR which con-
tains 65 face images of 5 persons. The original image size
is 768 × 576. We crop face part of the image reducing
size to 101× 88.

9.1 Image Reconstruction Figure 1 shows 8 recon-
structed images from the ORL dataset, with a rather
small k = s = 5. Images in the first row are recon-
structed by the Ai = LMi decomposition using row-row

4http://www.uk.research.att.com/facedatabase.html
5http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html

38

Table 1: Test datasets and related storages for k = s = 15.
Dataset n Dimensions # of classes 2dSVD Storage SVD storage
ORL 400 92× 112 40 93060 160560
AR 65 88× 101 5 16920 143295

Figure 1: Reconstructed images by 2dLRi (first row), 2dLiR (second row), 2dSVD (third row), and LMR (fourth
row) on ORL dataset at k = s = 5.

10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

re
co

ns
tr

uc
tio

n
er

ro
r

SVD
2dSVD
LMR
LRMi
RLMi
LiR
LRi

10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

k

re
co

ns
tr

uc
tio

n
er

ro
r

SVD
2dSVD
LMR
LRMi
RLMi
LiR
LRi

Figure 2: Reconstruction error for ORL dataset (left) and AR dataset (right). Compression methods, from left to
right, are indicated in the insert panel.

39

Table 2: Convergence of LMR
t 2dSVD Random Rank-1 Orthogonal
0 0.15889029408304 0.58632462287908 0.99175445002735 0.96285808073065
1 0.15872269104567 0.15872372559621 0.15875108000211 0.15878339838255
2 0.15872268890982 0.15872268893458 0.15872268927498 0.15872268953111
3 0.15872268890976 0.15872268890977 0.15872268890981 0.15872268890981
4 0.15872268890976 0.15872268890976 0.15872268890976 0.15872268890976

angle 0 4.623e-10 3.644e-10 2.797e-10

correlation matrix F . We can see clearly the blurring
along horizontal direction. Images in the second row
are reconstructed by the Ai = MiR decomposition us-
ing column-column correlation matrix G. We can see
clearly the blurring along vertical direction. Images in
the 3rd row are reconstructed by the 2dSVD; Images in
the 4th row are reconstructed by the LMiR

T decomposi-
tion; The symmetric decomposition of LMR and 2dSVD
give better quality reconstruction. Figure 3 shows the
same 8 reconstructed images from the ORL dataset, at
k = s = 15 for 2dSVD and traditional SVD. One can
see that 2dSVD gives better quality reconstruction.

Figure 2 shows the reconstruction errors for LMR
of §6, 2dSVD, MiR

T decomposition of §3, LMT
i decom-

position of §4, LRMi of §6, and RLMi of §7. These
experiments are done on AR and ORL datasets, with
k = s ranging between 10 and 20. We have the follow-
ing observations: (a) LRi and LiR achieve the lowest
residue errors; (b) LMR, 2dSVD, LRMi and RLMi lead
to similar residue errors, with LMR the best; (c) SVD
has the largest residue errors in all cases.

9.2 Convergence of Ai = LMiR
T decomposition

We examine the sensitivity of LMR on the initial choice.
In Table 2, we show J3 values for several initial choices
of L(0) as explained in Discussion of Observation 8:
2dSVD, random matrices, Rank-1 start (L(0) is a matrix
of zeros except L

(0)
1,1 = 1), and orthogonal start (L(0) is

orthogonal to the solution L∗).
We have the following observations. First, starting

with all 4 initial L(0)’s, the algorithm converges to the
same final solution. In the last line, the angle between
the different solutions and the one with 2dSVD start are
given. They are all around 10−10, practically zero within
the accuracy of the computer precision. Considering the
rank-1 start and the orthogonal start, this indicates the
algorithm does not encounter other local minimums.

Second, 2dSVD is a good approximate solu-
tion. It achieves 3 effective decimal digit accuracy:
(J3(2dSVD) − Jopt

3)/Jopt
3 = 0.1%. Starting from the

2dSVD, it converges to the final optimal solution in 3
iterations; it gets 6 digits accuracy in 1 iteration and
gets 12 digit accuracy in 2 iterations.

Third, the convergence rate is quite good. In 1
iteration, the algorithm converges to 4 digits accuracy
for all 4 initial starts. With 4 iterations, the algorithm
converges to 14 digits, the computer precision with 64-
bits, irrespective of any odd starting points.

To further understand the rapid convergence, we
set k = s = 1 and run two experiments, one with
L(0) = e1 and the other with L(0) = e2, where ei is
a vector of zeroes except that the i-th element is 1.
The angle between the solutions at successive iterations,
L

(t)
1 and L

(t)
2 , are given in Table 3. One can see that

even though the solution subspaces are orthogonal (π/2)
at beginning, they run towards each other rapidly and
become identical in 4 iterations. This indicates the
solution subspace converges rapidly.

9.3 Bounds on Jopt
3 In Figure 4, we show the

bounds of Jopt
3 provided by 2dSVD, Eq.(5.29) and

Eq.(7.48). These values are trivially computed once
2dSVD are obtained. Also shown are the exact solutions
at k = s = 10, 15, 20. We can see the 2dSVD provides
a tight upper bound, because it provides a very close
optimal solution. This bounds are useful in practice.
Suppose one computes 2dSVD and wishes to decide the
parameter k and s. Given a tolerance on reconstruction
error, one can easily choose the parameters from these
bound curves.

9.4 Classification One of the most commonly per-
formed tasks in image processing is the image retrieval.
Here we test the classification problem: given a query
image, determine its class. We use the K-Nearest-
Neighbors (KNN) method based on the Euclidean dis-
tance for classification [4, 6]. We have tested k = 1, 2, 3
in KNN. k = 1 always leads to the best classification
results. Thus we fix k = 1. We use 10-fold cross-
validation for estimating the classification accuracy. In
10-fold cross-validation, the data are randomly divided
into ten subsets of (approximately) equal size. We do the
training and testing ten times, each time leaving out one
of the subsets for training, and using only the omitted
subset for testing. The classification accuracy reported
is the average from the ten different random splits. The

40

Figure 3: Reconstructed images by 2dSVD (first row), and SVD (second row) on ORL dataset at k = s = 15.

Table 3: Convergence of LMR: k = s = 1 case
t 0 1 2 3 4

angle 1.571=π/2 1.486e-03 4.406e-05 1.325e-06 3.985e-08

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k=s

Figure 4: Lower and upper bounds of Jopt
3 provided by

2dSVD. Also shown are the exact solutions at k = s =
10, 15, 20.

distance between two images ||Ai − Aj || are computed
using the compressed data: ||Mi −Mj || for LMR, MR,
and LM. For SVD, let (ai, · · · , an) = UΣ(v1, · · · ,vn).
The pairwise distance is ||Σ(vi − vj)||. The results are
shown in Fig.5. We see that LMR and 2dSVD consis-
tently leads to small classification error rates, outper-
forming LiR, LRI and SVD, expect for AR dataset at
large value of k (such as k ≥ 16) where SVD is compet-
itive.

9.5 Convergence for symmetric 2D dataset We
tested the algorithm for the symmetric 2D dataset by
generating the synthetic datasets Bi = AT

i Ai, i =
1, · · · , n for the ORL image dataset. Setting k = 15,

the reconstruction error J4 is shown in Table 4. The
iteration starts with 2dSVD solution, which is already
accurate to 5 digits. After 1 iteration, the algorithm
converges to the machine precision.

Table 4: Convergence for symmetric case
t J4

0 0.01245341543106
1 0.01245337811927
2 0.01245337811927

10 Surface temperature maps

The datasets are 12 maps, each of size 32 (latitude) x
64 (longitude). Each shows the distribution of average
surface temperature of the month of January (100 years).

Table 5 shows the reconstruction of the temperature
maps. One see that 2dSVD provides about the same or
better reconstruction at much less storage. This shows
2dSVD provides a more effective function approximation
of these 2D maps. The temperature maps are shown in
Figure 6.

11 Summary

In this paper, we propose an extension of standard
SVD for a set of vectors to 2dSVD for a set of 2D
objects {Ai}ni=1. The resulting 2dSVD has a number
of optimality properties which make it suitable for low-
rank approximation. We systematically analyze the
four decompositions, Ai = MiR

T , Ai = LMT
i , Ai =

LMiR
T , and Ai = LMiL

T for symmetric Ai. Their
relationship with 2dSVD are shown. This provides a

41

10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

k

m
is

cl
as

si
fic

at
io

n
ra

te

SVD
2dSVD
LMR
LRMi
RLMi
LiR
LRi

10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

k

m
is

cl
as

si
fic

at
io

n
ra

te

SVD
2dSVD
LMR
LRMi
RLMi
LiR
LRi

Figure 5: Classification (cross validation) error rate for ORL (left) and for AR (right)

Table 5: Reconstruction of the temperature maps
Method k,s storage error
2dSVD k = 4, s = 8 1024 0.0030
2dSVD k = 8, s = 16 2816 0.0022
SVD k = 4 8244 0.0040
SVD k = 8 16488 0.0022

framework unifying two recent approaches by Yang et
al.[13] and by Ye [14] for low-rank approximations which
captures explicitly the 2D nature of the 2D objects,
and further extend the analysis results. We carry out
extensive experiment on 2 image datasets and compare
to standard SVD. We also apply 2dSVD to weather
maps. These experiments demonstrate the usefulness
of 2dSVD.

Acknowledgements. We thank Dr. Haesun Park for
discussions. This work is partially supported by Depart-
ment of Energy under contract DE-AC03-76SF00098.

References

[1] M.W. Berry, S.T. Dumais, and Gavin W. O’Brien.
Using linear algebra for intelligent information retrieval.
SIAM Review, 37:573–595, 1995.

[2] Deerwester, S., Dumais, S., Furnas, G., Landauer, T.,
& Harshman, R. (1990). Indexing by latent semantic
analysis. Journal of the Society for Information Scienc,
41, 391–407.

[3] Dhillon, I., & Modha, D. (2001). Concept decomposi-
tions for large sparse text data using clustering. Ma-
chine Learning, 42, 143–175.

[4] R.O. Duda, P.E. Hart, and D. Stork. Pattern Classifi-
cation. Wiley, 2000.

[5] C. Eckart and G. Young. The approximation of one
matrix by another of lower rank. Psychometrika, 1:183–
187, 1936.

[6] K. Fukunaga. Introduction to Statistical Pattern Clas-
sification. Academic Press, San Diego, California, USA,
1990.

[7] G. Golub and C. Van Loan. Matrix Computations, 3rd
edition. Johns Hopkins, Baltimore, 1996.

[8] I.T. Jolliffe. Principal Component Analysis. Springer,
2nd edition, 2002.

[9] M. Kirby and L. Sirovich. Application of the karhunen-
loeve procedure for the characterization of human faces.
IEEE Trans. Pattern Analysis Machine Intelligence,
12:103–108, 1990.

[10] T.G. Kolda. Orthogonal tensor decompositions. SIAM
J. Matrix Analysis and App., 23:243–255, 2001.

[11] R. W. Preisendorfer and C. D. Mobley. Principal
Component Analysis in Meteorology and Oceanography.
Elsevier Science Ltd, 1988.

[12] N. Srebro & T. Jaakkola. Weighted low-rank approxi-
mations. ICML Conference Proceedings (pp. 720–727).

[13] J. Yang, D. Zhang, A. Frangi, and J. Yang. Two-
dimensional pca: A new approach to appearance-based
face representation and recognition. IEEE Trans. Pat-
tern Analysis Machine Intelligence, 26:131–137, 2004.

[14] J. Ye. Generalized Low Rank Approximations of Ma-
trices. Proceedings of the Twenty-First International
Conference on Machine Learning. 887–894, 2004.

[15] J. Ye, R. Janardan, and Q. Li. GPCA: An Efficient
Dimension Reduction Scheme for Image Compression
and Retrieval. Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. 354–363, 2004.

[16] T. Zhang and G. H. Golub. Rank-one approximation to
high order tensors. SIAM Journal of Matrix Analysis
and Applications, 23:534–550, 2001.

42

10 20 30 40 50 60

5

10

15

20

25

30

Original

10 20 30 40 50 60

5

10

15

20

25

30

2D−SVD, 4x8

10 20 30 40 50 60

5

10

15

20

25

30

SVD, 4x4

100 200 300

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60

5

10

15

20

25

30

2D−SVD, 8x16

10 20 30 40 50 60

5

10

15

20

25

30

SVD, 8x8

Figure 6: Global surface temperature. Top left: original data (January temperature for a randomly picked year. One
can see that the central area of Australia is hottest spot on Earth). Top right: matching continental topography for
location specification. Middle left: 2dSVD with k = 4, s = 8. The reduction ratio are kept same for both columns
and rows: 8=32/4=64/8. Middle right: 2D-SVd with k = 8, s = 16. Bottom left: conventional SVD with k = 4.
Bottom right: conventional SVD with k = 8.

43

Summarizing and Mining Skewed Data Streams

Graham Cormode∗ S. Muthukrishnan†

Abstract

Many applications generate massive data streams. Sum-
marizing such massive data requires fast, small space algo-
rithms to support post-hoc queries and mining. An important
observation is that such streams are rarely uniform, and real
data sources typically exhibit significant skewness. These
are well modeled by Zipf distributions, which are character-
ized by a parameter,z, that captures the amount of skew.

We present a data stream summary that can answer point
queries withε accuracy and show that the space needed
is only O(ε−min{1,1/z}). This is the firsto(1/ε) space
algorithm for this problem, and we show it is essentially
tight for skewed distributions. We show that the same data
structure can also estimate theL2 norm of the stream in
o(1/ε2) space forz > 1

2 , another improvement over the
existingΩ(1/ε2) methods.

We support our theoretical results with an experimental
study over a large variety of real and synthetic data. We
show that significant skew is present in both textual and
telecommunication data. Our methods give strong accuracy,
significantly better than other methods, and behave exactly
in line with their analytic bounds.
Keywords: data stream analysis, data mining, Zipf distribution,
power laws, heavy hitters, massive data.

1 Introduction

A number of applications—real-time IP traffic analy-
sis, managing web clicks and crawls, sensor readings,
email/SMS/blog and other text sources—are instances of
massive datastreams. Here new data arrives very rapidly
and often we do not have the space to store all the data.
Hence, managing such streams needs algorithmic methods
that supportfast updatesand have asmall footprintof space.
See [17] for a detailed motivation for these constraints in
the context of IP traffic analysis. Similar motivation can be
found in high performance web data analysis [25], mining
email streams [40], aggregating sensor data [39], analyzing

∗cormode@bell-labs.com Work completed while author was at
Center for Discrete Mathematics and Computer Science (DIMACS) Rutgers
University, Piscataway NJ. Supported by NSF ITR 0220280 and NSF EIA
02-05116.

†muthu@cs.rutgers.edu Division of Computer and Information
Systems, Rutgers University. Supported by NSF CCR 0087022, NSF ITR
0220280, NSF 0430852 and NSF EIA 02-05116.

financial time series [52], processing high-volume scientific
measurements [30], detecting communities in communica-
tion graphs [7] and others.

There are typically two aspects to analyzing data
streams. The first issummarizingdata streams for post-hoc
queries. Data stream methods use asynopsisto summarize
the data stream on the fly. “Synopsis” means a small space
representation of the data stream that can be rapidly updated
as the data stream unravels; typical synopses are samples and
sketches. The second aspect of analyzing data streams is the
type of queries that are supported, whether using synopses or
without. Since many of these data stream applications tend
to be about monitoring data sources say for adverse events
such as intrusion detection, fraudulent communities, etc., an
essential set of problems are of the datamining genre. For
example, how to find heavy hitters or frequent items, large
changes and evolving trends, or perform clustering and sim-
ilarity searching, decision tree classification, regression and
other statistical analyses. See the ensemble of websites for
project descriptions [41, 26, 48, 1, 15, 28, 45], bibliogra-
phies [50], tutorials [20, 34], surveys [5, 24, 44] in addition
to a number of special issues in journals, workshops, etc.

We study both summarization and mining problems
with data streams. Our work here was initiated by our
experience with IP traffic analysis using Gigascope [15],
AT&T’s IP traffic analysis system, as well as our work on
mining text streams [40]. Our observation was that data
streams involved distributions that were not arbitrary, but
rather typically quiteskewed. For example, if one studied
the distribution of the IP addresses that used a link of the
backbone network or the distribution of flows or bytes sent
by each IP address, the distribution was zipfian, fractal
or multi-fractal. This has been studied in detail in [33].
Similarly, the word frequencies in natural text is well known
to be zipfian; word frequencies in text streams such as email
or blogs tend to be heavy-tailed [36]. In nature, zipfian
distributions (also known as power laws) abound in citation
distributions to web accesses for different sites, file sizes
transferred over the Internet, etc [8].

Motivated by our experience and the widely-prevalent
evidence of skew in data streams, we study summarization
and mining problems with skewed data streams. We take a
formal approach, focusing on zipfian (more generally,Zipf-
like which we define later and which is quite general) skew
on the domain1 . . . U . The Zipf distribution is also known

44

as the Pareto distribution, and is essentially identical to so-
called “power-laws” [2] with transformation of parameters.
We work in well-established data stream algorithm model
and studyprobabilistic, approximatealgorithms, that is al-
gorithms that provideε approximation with probability of
success at least1 − δ. As is usual, we study the trade-off
between space used by the synopsis and the time per new
data update versus the quality of estimations given byε and
δ. Our theoretical contributionsare as follows.

1. We present a synopsis that uses space
O(ε−min{1,1/z} ln 1/δ) for (ε, δ) point queries on
z-skewed data streams.

For z > 1, the space used iso(1/ε); this is the
first known o(1/ε) space algorithm known forany
synopsis—sample or sketch based—known for such
problems. This is of interest since theO(1/ε) space
bound has long been taken as the gold-standard target
for data stream algorithm design.

We can use this synopsis for a variety of mining tasks
such as finding heavy-hitters, frequent items for associ-
ation rule mining, finding significant changes from one
time to another, significant differences between differ-
ent streams, estimating wavelet decomposition of data
stream, and so on. In all these cases, our methods
improve theO(1/ε) factor in previously known algo-
rithms toO(ε−min{1,1/z}) for space usage.

2. We prove a matching lower bound, that is, we show that
any(ε, O(1)) algorithm for point queries needs at least
Ω(ε−min{1,1/z}) space.

3. We extend our synopsis to estimate the second fre-
quency moment, ie., the sum of squares of the frequen-
cies of items in the data stream. It is equivalently (the
square of) theL2 norm of the vector of frequencies of
items in the data stream. The space used isO(ε

−4
1+2z)

for 1/2 < ε ≤ 1 andO(ε
−2
1+z) for z > 1.

For z ≥ 1/2, the space used iso(1/ε2); all previ-
ously known algorithms in contrast use at leastΩ(1/ε2)
space. Our bound above is additionally interesting be-
cause the synopsis methods forL2 norm are implemen-
tations of the Johnson-Lindenstrauss lemma [29]. The
lemma states that a set of vectors in Euclidean space
can each be replaced by a vector inO(1

ε2)-dimensional
space, and inter-vector distances are preserved up to a
(1±ε) factor with high probability. This dependency on
ε is tight since a lower bound ofΩ(1

ε2) has recently been
shown [51] for general distributions. Our results show
that for skewed data, this lower bound can be avoided.

We can use this result for a variety of mining tasks.
For example, anomaly detection methods in IP traffic
analysis use the second frequency moment [35]. Also, it

is used as a subroutine in counting subgraphs in massive
web graphs in [6], and for quantiles, histograms and
other statistical descriptors of the data stream [21].

Our synopsis above is a sketch, ie., inner products of
the input distribution with certain random vectors. There are
many known sketches [4, 10, 23, 49, 13]. Here, we adopt the
Count-Min sketch [13] which dominates all other sketches
in terms of space and update time needed to guarantee
ε‖a‖ accuracy. Our main theoretical contribution here is to
analyzeestimation methods based on this sketch and prove
improved bounds on space usage without compromising any
of the other parameters, ie., update time and accuracy. Our
algorithms are essentiallyobliviousof the skew value,z but
our analysis is skew-aware. We can approach this in two
ways: given a desired error boundε and bound on the skew
z, we can allocate space to the sketch as a function of these
parameters; alternatively, we can allocate a fixed amount of
space for the sketch, and based on the observed skewz, give
tight bounds on the worst case error as a function ofz. In
the latter case irrespective of the data distribution, a simple
analysis gives a universal bounds on the error, and using the
skew of the distribution we can give tighter bounds.

Our results give additional evidence that CM sketch is
versatile and suited for a variety of problems under a range
of data distributions. This, coupled with their proven perfor-
mance within the operational AT&T’s IP traffic analysis tool
Gigascope [11] at the rate of OC48 links, makes our meth-
ods for skewed data stream summarization and mining suit-
ably efficient for real-life data stream management systems
in practice.

Our experimental contributionsare as follows. We
consider large streams of both real and synthetic data. We
observe that all the real data we consider, from IP network
and phone call data to “blogs” and Shakespeare’s plays,
exhibit significant skew to varying degrees, and our methods
capitalize on this. Not only do they outperform other
methods, but they behave closely in accordance with our
stated bounds. The correlation is sufficiently good that
not only can we compare our method to that predicted by
our theory, but also we can use our results to compute the
skewness of the data with high accuracy. Our conclusion is
that by understanding and building skew into our model of
data streams, we can realize much stronger results, both in
terms of theoretical analysis and practical performance.

1.1 Map.
We give preliminaries in Section 2, then define the CM
Sketch in Section 3. We discuss skewed distributions and
related work in Section 4. Section 5 gives our results for
Point Queries, and Section 6 those forL2 norm estimation.
Our experimental study on a mixture of real and synthetic
data is reported in Section 7.

45

2 Model and Queries

We consider a vectora, which is presented in an implicit,
incremental fashion. This vector has dimensionn, and its
current state at timet is a(t) = [a1(t), . . . ai(t), . . . an(t)].
For convenience, we shall usually dropt and refer only to
the current state of the vector. Initially,a is the zero vector,
0, soai(0) is 0 for all i. Updates to individual entries of the
vector are presented as a stream of pairs. Thetth update is
(it, ct), meaning that

ait(t) = ait(t− 1) + ct

ai′(t) = ai′(t− 1) i′ 6= it

We assume throughout that although values ofai in-
crease and decrease with updates, eachai ≥ 0. Our results
all generalize to the case whereais can be less than 0, with
small factor increases in space, but we omit details of these
extensions for simplicity of exposition.

It is easy to see how this model maps to the motivating
data stream applications. For example, for the IP traffic
case, each new IP packet with source IP addresss and size
of the packetp may be seen as updatinga[s] ← a[s] + p
to count the total size of flows from source IP addresss.
Similarly, in the text streaming application, when new text
input such as email arrives, we can parse it into words and
track word usage frequency in order to track frequent and
recently popular (“bursty”) words, to attribute authorship
based on usage patterns, etc. Here, each new text input
updates many newa[w]’s for different words or phrasesw
in the input. See [44] for more examples. We consider two
particular types of queries for summarization and mining.

• Point query. A point query is, giveni, to return an es-
timate ofai. Our goal is to give(ε, δ) approximations:
the answer should be correct to within additive error of
ε‖a‖1 with probability at least1 − δ. We will analyze
the space required as a function ofε andδ required to
achieve this.

• Second Frequency Moment andL2 Norm The L2

norm of a vector,‖a‖2, is defined as(
∑

i a2
i)

1
2 . The

goal is to estimate this within additive error ofε‖a‖2
(equivalently, with relative error1 + ε) with probability
at least1 − δ. The second frequency moment in our
model is the square of theL2 norm,‖a‖22.

These two queries appear to be abstract, but they have
many concrete applications in a number of mining problems
on data streams. Point queries can be used for estimating
frequent items for association rule mining [42], heavy hit-
ters1 [12], significant differences [10] and significant rel-
ative changes [14], etc. TheL2 norm estimation is use-

1The heavy hitters problem is to find alli such thatai ≥ ‖a‖1/k for
some constantk.

ful in anomaly detection [35], counting triangles in mas-
sive web graphs in [6], and for quantiles [23], wavelets [22],
histograms [21] and other statistical descriptors of the data
stream. They are also useful for partitioning data stream
into multiple zones of interest [16]. There is a maturing
theory of data stream algorithms with many such applica-
tions. Rather than list these applications and show the im-
provements obtained by using our methods we focus on these
primary queries and demonstrate the nature of our improve-
ments in depth.

3 The CM Sketch

Many sketches are known [4, 10, 49, 13]. Here, we briefly re-
cap the data structure that is used throughout. The important
property is that, given the parameters of the sketch structure,
the update procedure is the same no matter what the ultimate
query operations are.

The CM sketch is simply an array of counters of width
w and depthd, count[1, 1] . . . count[d, w]. Each entry of the
array is initially zero. Additionally,d hash functions

h1 . . . hd : {1 . . . n} → {1 . . . w}

are chosen uniformly at random from a pairwise-
independent family. Oncew and d are chosen, the space
required is fixed as thewd counters and thed hash func-
tions (which can each be represented inO(1) machine
words [43]).

Update and Query Procedure. When an update(it, ct)
arrives, meaning that itemait

is updated by a quantity of
ct, thenct is added to one count in each row; the counter is
determined byhj . Formally, we set

∀1 ≤ j ≤ d : count[j, hj(it)]← count[j, hj(it)] + ct

The query procedure is similar: given a query pointi,
return min1≤j≤d count[h, hj(i)] as the estimate. In [13],
it was shown that the error for point queries, irrespective
of the distribution, isε‖a‖1 = e/w‖a‖1 with probability
1 − δ = 1 − e−d. Hence, in order to getε approximation
with probability1 − δ for point queries, we needw = e/ε
andd = log(1/δ).

4 Skew in Data Stream Distributions

In almost every practical setting, the distribution of fre-
quencies of different items displays some amount of skew.
Throughout, we will use the popular Zipf distribution to
model skewed distributions. The Zipf distribution accurately
captures a large number of natural distributions. It was intro-
duced in the context of linguistics, where it was observed that
the frequency of theith most commonly used word in a lan-
guage was approximately proportional to1/i [53]. Zipf dis-
tributions are equivalent to Pareto distributions and power-
laws [2].

46

Formally, a Zipf distribution with parameterz has the
property thatfi, the (relative) frequency of theith most
frequent item is given byfi = cz

iz , wherecz is an appropriate
scaling constant. We will consider distributions over the
range[1 . . . U], whereU is the range, or universe size. For
the skewed distributions we consider, we can often allowU
to be∞. cz is determined byz (andU) since for a probability
distribution we must have

∑U
i=1 fi = 1. Given a vectora

whose entries are distributed according to a Zipf distribution,
the count of theith most frequent item is simply‖a‖1fi.

Many skewed distributions are well captured by Zipf
distributions with appropriate parameters. Natural phenom-
ena, such as sizes of cities, distribution of income, social
networks and word frequency can all be modeled with Zipf
distributions. Even the number of citations of papers demon-
strates a highly skewed Zipf distribution [47]. More relevant
to our study of large data streams, web page accesses for
different sites have been observed to obey a skewed Zipf dis-
tribution with parameter between 0.65 and 0.8. [9]. The
“depth” to which surfers investigate websites is also captured
by a Zipf distribution, with parameter 1.5 [27]. Files com-
municated over the Internet display Zipf distribution in a va-
riety of ways: transmission times are Zipf with parameter
approximately 1.2; the size of files requested, transmitted,
and available for download are all Zipf with parameters re-
spectively measured as 1.16, 1.06 and 1.06 [8]. FTP traffic
sizes was estimated to havez in the range 0.9 to 1.1. More
strongly, such skewed behavior of requests appears not only
over individual addresses but also when grouped into subnets
or larger networks [33], meaning that the skewed distribution
is self-similar (multi-fractal).

Related work on Mining Skewed Streams.A distinguish-
ing element of our work is to bring the skew of the data into
the analysis of summarizing and mining data whereas much
of the extant work deals with arbitrary distributions (with
some exceptions). For the heavy hitters problem Manku and
Motwani [42] presented the “lossy counting” algorithm that
requires spaceO(1

ε log ε‖a‖1) to give the same accuracy
bounds as our results in general; but under the assumption
that each new item is drawn from a fixed probability distri-
bution, then the space is (expected)O(1

ε) and the error guar-
anteed. Our results are dual to this, given guaranteed space
bounds and expected error bounds; however, with more in-
formation about the distribution, our bounds are dependent
on skewz, being much better for moderate to large skew, but
never worse. For the topk problem, [10] specifically stud-
ied Zipfian data and showed that forz > 1

2 , O(k
ε2) space

suffices. For large skew, our methods improve this bound
to O(k

ε). Using data skew is not uncommon in database re-
search, but only recently there are examples of data mining
in presence of skew in massive data such as [18] of analyzing
trading anomalies. Our work differs from previous works by
being a systematic algorithmic study of summarization and

mining problems in data streams with skew to give much im-
proved bounds and performance.

Zipf tail bounds. For our analysis, we will divide up
the range of the parameterz into three regions. We refer
to 1

2 < z ≤ 1 as moderate skew, and1 < z as skewed.
Otherwise, whenz ≤ 1

2 , we will say that the distribution has
light skew.

The following facts result from bounding the discrete
distribution by its continuous counterpart.

FACT 4.1. For z > 1, 1− 1
z ≤ cz ≤ z − 1.

FACT 4.2. For z > 1,

czk
1−z

z − 1
≤

U∑
i=k

fi ≤
cz(k − 1)1−z

z − 1

FACT 4.3. For z > 1
2 ,

c2
zk

1−2z

2z − 1
≤

U∑
i=k

f2
i ≤

c2
z(k − 1)1−2z

2z − 1

Our analyses generalize to when the data distribution is
dominated by zipfian or more generally, what we callZipf-
like distributions: a distribution isZipf-like with parameter
z > 1 if the tail after k largest items has weight at most
k1−z of the total weight (one could also allow scaling by
a constant, eg, the tail has weight at mostck1−z; such
extensions follow easily). Although we state results in this
paper for zipfian data, with a few more technical details, the
results hold for Zipf-like distributions as well.

5 Point Queries

5.1 Upper Bounds
The crucial insight for giving better bounds for the Count-
Min sketch in the presence of skewed distributions is the
observation that items with large counts can cause our esti-
mates to be poor if they collide with other items in the array
of counters. In a skewed distribution a few items consume a
large fraction of the total count. When estimating the count
of an item, if none of these large items collide with it un-
der the hash functions, then we can argue that the estimates
will be better than thew = 1/ε bound given by the generic
argument in [13].

THEOREM 5.1. For a Zipf distribution with parameter
z, the space required to answer point queries with er-
ror ε‖a‖1 with probability at least1 − δ is given by
O(ε−min{1,1/z} ln 1/δ).

Proof. For z ≤ 1, the best results follow from analysis
in [13]. Forz > 1, we use the same estimation technique to
return an estimate forai asâi = minj count[hj(i)], but give

47

a new analysis. The estimate returnsai plus some additional
“error” coming from the counts of items that collide withi
under the hash functions. We split the error in our estimate
into two parts: (i) collisions with some of the largest items
and (ii) noise from the non-heavy items. If the sketch has
width w, then letk = w/3. With constant probability (23)
over the choice of hash functions, none of thek heaviest
items collide with the point we are testing in any given row.

The expectation of the estimate fori is

ai +
1
w

U∑
x=k+1,x 6=i

ax ≤ ai + ‖a‖1k1−z/w. (5.1)

This uses Fact 4.2 from Section 4 to bound the weight
of the tail of the Zipf distribution after thek largest items
are removed. Settingk1−z/w = ε/3 and recalling that
w = 3k leads us to choosew = 3k = 3(1

ε)1/z. We can
now apply the Markov inequality to show that the error is
bounded byε‖a‖1 with probability at least1− 1

3 −
1
3 = 1

3 .
This applies to each estimate; since we take the minimum of

all the estimates, then this probability is amplified to1− 2
3

d

over thed separate estimations. �

5.2 Lower Bounds
We now present lower bounds for the space required to
answer point queries, which shows that our analysis above
is asymptotically tight (since [13] shows the CM sketch data
structure givesε error over general distributions withO(1

ε)
space).

THEOREM 5.2. The space required to answer point queries
correctly with any constant probability and error at most
ε‖a‖1 is Ω(ε−1) over general distributions, andΩ(ε−1/z)
for Zipf distributions with parameterz, assumingn =
Ω(ε−min{1,1/z}).

Proof. Our proof relies on a reduction to the Index problem
in communication complexity. There are two players,A
andB. A holds a bitstring of lengthn, and is allowed to
send a message toB who wishes to compute theith bit
of the bitstring. SinceB is not allowed to communicate
with A, then any protocol to solve this problem, even
probabilistically, requiresΩ(n) bits of communication [37].
We will reduce to this problem by encoding a bitstring
in such a way that if we could answer point queries with
sufficient accuracy, we could recover bits from the bitstring.
This is sufficient to show a lower bound on the size of the
data structure required to answer such queries.

For general distributions, we take a bitstringB[1 . . . 1
2ε]

of lengthn = 1
2ε bits, and create a set of counts. We set

ai = 2 if B[i] = 1. Otherwise, we setai = 0 otherwise,
and add2 to a0. Now, observe that whatever the value ofB,
‖a‖1 = 1/ε. If we can answer point queries with accuracy
ε‖a‖1 = 1, then we can test anyai and determine the value

of B[i] by reporting 1 if the estimated value ofai is above
εN , and 0 otherwise. Therefore, the space used must be at
leastΩ(1

ε) bits.
The same idea applies when we restrict ourselves to

Zipf distributions. However, the counts must follow the Zipf
pattern. We again encode a bitstringB, this time using thek
largest counts from the Zipf distribution. Now we seta2i =
fiN (for some suitably large value ofN) if B[i] = 1, else
we seta2i+1 = fiN if B[i] = 0. This time, we can recover
the firstk bits of B provided thatfk ≥ 2ε: if fk is less than
this, then the error in approximation does not allow us to
distinguish this value from zero. Using the bounds onfi for
skewed Zipf distributions, we havefk = cz

kz ≥ 2ε. To get the
best lower bound, we choosek as large as possible subject to

these constraints, Solving fork, we findk = cz

2
1/z 1

ε

1/z
. The

term cz

2
1/z is bounded below by(z − 1)/2 for 1 < z ≤ 2,

and may be treated as a constant. Thus,k is fixed asc 1
ε

1/z

bits ofB for some constantc. This results in the stated space
bounds by again appealing to the Index problem. �

5.3 An example application: Top-k items
As mentioned earlier, supporting point queries post-hoc on
data stream synopsis has many applications. Here, we focus
on describing one of them.

A common query for a variety of management and
analysis settings is to find the top-k: for example, find the top
100 users of bandwidth on a network, or find the top 10 new
terms in a message stream. Such queries can be answered
by point queries, by tracking the most frequent items that are
seen as the stream unravels. We need to choose the parameter
ε appropriately: too large, and we will not be able to answer
the query with sufficient accuracy, and the results may be
unreliable. When the distribution is skewed, we can apply
our above results and give very tight bounds.

To give the correct answer, we need to bound the error
by εak (where, here, we useak to denote the frequency of
the kth most frequent item ina) instead ofε‖a‖1. Using
the above analysis for the expectation of the error in the
estimation of any frequency from equation (5.1), we set the
expected error equal toεak:

‖a‖1k1−z

w
=

ε‖a‖1k−z

2

and sow = O(k
ε) for z > 1. This improves the results

in [10], which showed that forz > 1
2 , O(k

ε2) space suffices
with a Count sketch. In both cases, occurrences ofz cancel,
so there is no dependency onz provided the distribution is
skewed withz > 1. We can set the space based onk and
ε without needing to knowz exactly. Further, using a CM
Sketch, one can simulate the sketch of [10] by computing
(count[j, 2i]− count[j, 2i− 1]) for all 1 ≤ j ≤ d, 1 ≤ i ≤
w/2. The converse is not possible.

48

6 Second Frequency Moment Estimation

The second frequency moment, and the closely relatedL2

norm, have been the focus of much study in the data stream
community. The work of Alon, Matias and Szegedy [4]
spurred interest in the data stream model of computation.
One of their results was an efficient algorithm to compute
the second frequency moment of a stream of values in space
O(1

ε2). As was observed by the authors of [19], the same
algorithm also allowed theL2 difference of two streams
to be computed in a very general model. The algorithm
can also be viewed as a streaming implementation of the
Johnson-Lindenstrauss lemma [29] with limited randomness
and bounded space. The lemma states that a set of vectors in
Euclidean space can each be replaced by a vector inO(1

ε2)-
dimensional space, and inter-vector distances are preserved
up to a(1±ε) factor with high probability. This dependency
on ε is essentially tight in terms of the dependency onε for
general distributions: a lower bound ofΩ(1

ε2) has recently
been shown [51]. This is problematic for applications that
require a very fine quality approximation, sayε = 1%
or 0.1% error, since the dependency onε−2 means a high
space cost. Here, we show how the CM sketch can be
used to approximate this heavily studied quantity with strong
guarantees of accuracy, and how, for skewed distributions,
theΩ(ε−2) space bounds can be beaten for the first time.

6.1 Skewed Data
We describe the estimation procedure for theL2 norm; to
estimate the second frequency moment, we return the square
of this value. When the distribution is skewed (z > 1),
there are a few items with high frequency, and so a simple
method to approximate the norm suffices. That is, we simply
compute our estimate of theL2 norm as

min
j

(
∑

k

count[j, k]2)1/2

which is minimum of theL2 norm of the rows of the sketch.
We refer to this method as CM+.

THEOREM 6.1. This procedure estimates theL2 norm of
streams with Zipf skewness parameter> 1

2 , with error

bounded byε‖a‖2 whereε = O(w
−(1+z)

2), with probability

at least1− δ = 1− 3
4

−d
.

Proof. Let m = w1/2. Then, with constant probability, in
any row the largestm items fall in different buckets within
the CM sketch. This follows from the pairwise independence
of the hash functions used.

We compute the (squared) error in thejth estimator as
Xj =

∑
i count[j, i]2 − ‖a‖22. Consider the expectation of

this quantity when the above condition holds, that is, when
them largest counts are inm distinct buckets:

E(Xj) =
U∑

i=1

a2
i +

U∑
i=1

U∑
j=1,j 6=i

aiajPr[h(i) = h(j)]− ‖a‖22

≤ ‖a‖22 +
1
w

(
U∑

i=1

U∑
j=1,j 6=i

aiaj −
m∑

i=1

m∑
j=1,j 6=i

aiaj)− ‖a‖22

≤ ‖a‖
2
1

w
(2

m∑
i=1

fi

U∑
j=m+1

fj + (
U∑

i=m+1

fi)2)

≤ 2
‖a‖21

w
(

U∑
i=1

fi

U∑
j=m+1

fj)

≤ 2‖a‖21czm
1−z

w(z − 1)
≤ 2‖a‖22cz(2z − 1)

c2
z(z − 1)

w
−(1+z)

2

This makes use of the Facts 4.2 and 4.3 to bound the sum
of the tail of the distribution and to relate theL1 norm to the
L2 norm. Note that, sinceai = ‖a‖1fi and‖a‖22 =

∑
i a2

i ,
we can write‖a‖22 = ‖a‖21

∑
i f2

i . We can substitute this
inequality, and then use the lower bound of Fact 4.3 to
rewrite

∑
i f2

i in terms ofz and cz. We set the expected

squared error equal toε‖a‖22/2, which givesw = O(ε
−2
1+z).

We treat the terms polynomial inz as effectively constant.
We then apply the Markov inequality, so with proba-

bility 3
4 , Xj < 2ε‖a‖22. This implies that‖a‖22 ≤ Xj ≤

(1 + ε)2‖a‖22. Taking the square root of all terms in this
inequality bounds theL2 norm ofa. For each row the prob-
ability of this failing to hold is no more than34 : 1

2 for the
m items not falling in different counters,14 from the Markov
inequality. Taking the minimum of these estimates amplifies

the probability of success to1− 3
4

d
. �

6.2 Moderate Skew
For the moderate skew (z < 1), and unskewed cases, we
use the CM Sketch data structure to effectively simulate the
sketch proposed by Alon Matias and Szegedy [4]. This
shows the flexibility of the CM Sketch. In order for the re-
sults to be provable, we need to strengthen the hash func-
tions used, from pairwise independent to 4-wise indepen-
dent2. Apart from this change, the data structure is con-
structed and maintained in the same way as before.

Again, let m = w1/2; it remains the case that them
largest items will not collide, although these contribute a
smaller amount to theL2 norm. Now, compute the estimate
(denoted CM−) of theL2 norm for each row by taking the
square root of

Yj =
∑w/2

k=1(count[j, 2k]− count[j, 2k − 1])2.

2In [4], the authors argue that in practice, pairwise or other hash
functions will often suffice.

49

THEOREM 6.2. With constant probability,

(1− ε)‖a‖22 ≤ Yj ≤ (1 + ε)‖a|22

for ε = w
−(1+2z)

4 .

Proof. We will define some functions derived from the hash
functions,h, in order to simplify the notation and clarify the
analysis. We definegj(x) = +1 if hj(x) ≡ 0 mod 2, and
−1 otherwise. We also defineh′j(x) = dhj(x)/2e.

First, we will show that in expectation,E(Yj) = ‖a‖22.
Observe that
E(Yj) =

∑
x,y axaygj(x)gj(y)Pr[h′j(x) = h′j(y)]

=
∑

x a2
x = ‖a‖22

using the pairwise independence of the functiong (which
follows from the pairwise independence ofh). Secondly, we
compute the variance ofYj as
Var(Yj) = E(Y 2

j)− E(Yj)2

= (
∑w/2

i=1 (
∑

x,h′j(x)=i axgj(x))2)2 − ‖a‖4

≤
∑

v,x,y,z 4gj(v)gj(x)gj(y)gj(z)avaxayaz

∗ Pr[h′j(v) = h′j(x) = h′j(y) = h′j(z)]
= 4

∑U
x=1

∑U
y=1,y 6=x a2

xa2
yPr[h′j(x) = h′j(y)]

= 4
w

∑U
x=1

∑U
y=1,y 6=x a2

xa2
y

This uses the4-wise independence of the functionh
to imply 4-wise independence ofg, and hence to show
that products of4 or fewer independent terms ing have
expectation zero.

We again argue that, with probability at least1
2 , the

m = w1/2 largest counts fall into different buckets. Consider
the distribution of counts in the CM sketch only for such
settings where this event occurs. For such distributions, then
Var(Yj) is bounded as:

Var(Yj) ≤ 4‖a‖4
1

w (2
∑m

i=1 f2
i

∑U
j=m+1 f2

j

+ (
∑U

i=m+1 f2
i)2)

≤ 4‖a‖2
1

w (2
∑U

i=1 f2
i

∑U
j=m+1 f2

j)
≤ 8‖a‖42m1−2z/w = 8‖a‖42w

−1−2z
2

Setting this equal toε2‖a‖42 lets us apply the Chebyshev
bound. This shows thatPr[|Yj − ‖a‖22| > 2ε‖a‖22] < 1

4

provided we haveε2 ≥ 8w
−(1+2z)

2 . We can take the median
of O(ln 1

δ) independent repetitions of the estimatorYj and
apply Chernoff bounds in usual way to amplify this constant
probability of success to1 − δ. The space required is
O(ε

−4
1+2z ln 1

δ) for z > 1
2 . �

6.3 Light Skew Case and Summary
For the case wherez ≤ 1

2 , we observe that by simply taking
the variance of the CM− estimator over all distributions, then
it is directly bounded asVar(Yj) ≤ 8‖a‖42/w. Following
the Chebyshev and Chernoff arguments results in space
bounds ofO(1

ε2). This matches the space requirements
for the previously best known algorithms forL2 estimation
of [4, 13, 49] up to small constant factors. Observe that

the update time is the same as the usual cost for updating
a CM Sketch, which isO(d) = O(ln 1

δ). Here we give
much improved dependency onε on space used for skewed
distributions, as summarized in the table below.

Value ofz z ≤ 1
2

1
2 < z ≤ 1 1 < z

Space required O(ε−2) O(ε
−4

1+2z) O(ε
−2
1+z)

7 Experimental Study

We carried out an extensive experimental analysis of the
Count Min sketch for point estimation andL2 estimation.
We made use of the public implementations of the data struc-
ture available fromhttp://www.cs.rutgers.edu/
˜muthu/massdal-code-index.html as well as the
Count sketch [10] for comparison. The Count sketch can
also be used to answer point queries, and has a similar struc-
ture to the Count-Min sketch, being based around an array of
counters. So in all experiments, the two methods were given
exactly the same amount of space, in each case arranged as
an array of counters with the same dimensions. This should
give a fair comparison between the two methods. We refer
to the Count-Min sketch as “CM”, and the Count sketch as
“CCFC” (after the initials of its creators) for brevity. We
considered synthetic datasets generated from Zipf distribu-
tions with known values ofz, so that we could compare the
behavior of the algorithm with that predicted by our analy-
sis. We also considered various real data sets, two data sets
in each category, text and network data.

7.1 Synthetic Data
We made our synthetic data sets by using standard routines to
draw values from a Zipf distribution with specified parameter
z. Each experiment consisted of drawing107 items from a
domain of sizen = 106 and computing theL2 norm and all
point queries over this domain. In evaluating the quality of
our algorithms, we computed the exact solutions to all these
queries, and so could compute the error in each result. For
L2 norms, we computed the fractional error as the difference
between the estimated and actual value, scaled by the actual
value. For simplicity, we worked withF2 = L2

2. For
point queries, we computed the difference between the actual
value and the estimate, and scaled by the number of items.
We computed the maximum error observed, and the 99.9th
percentile of the error (that is, sort the observed errors, and
take the one whose rank is9991000N). Since our algorithms
give guaranteed bounds with a small probability of failure,
this should test how well these bounds are met.

The first results are shown in Figure 1. These show the
effect of fixing the spaces for algorithms, but varying the
skewness parameter of the input. Our theory predicts that
the performance of the Count-Min sketch should beε ∝ 1/s
for z < 1, andε ∝ 1/sz for z > 1. We observe that this
seems to be borne out in Figure 1(a): the error is roughly flat

50

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

99.9% Error on Zipf data with 27KB space

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Zipf parameter

99
.9

%
ile

 e
rr

o
r

CM

CCFC

Maximum Error on Zipf data with 27KB space

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Zipf parameter

O
b

se
rv

ed
 e

rr
o

r

CM

CCFC

(a) (b)

Figure 1: Testing point estimation on synthetic data

Point Queries from Zipf(1.2)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 10 100 1000Size / KB

99
.9

%
ile

 e
rr

o
r

fr
ac

ti
o

n CM

CCFC

x^-1.2

Max Error on Point Queries from Zipf(1.6)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

M
ax

 E
rr

or

CM

CCFC

x^-1.6

(a) (b)

Figure 2: Testing space dependency of point estimation on synthetic data

for 0.5 < z < 1, and then falls off smoothly for largerz. We
see that forz > 1 then the observed error is better for CM
than for CCFC, justifying our analysis of the performance
of these algorithms for skewed data sets. For distributions
with skewz ≥ 2, the observed error is sufficiently small to
be negligible. A similar pattern of behavior is seen when we
take the maximum observed error, in Figure 1(b). The main
observation is that for skewed data, the largest error from the
CCFC approach can become very high compared to that of
CM, which is not much greater than in the previous case.3

Our theory predicts that, as spaces increases, the error
ε should decrease ass−z. We show this to be the case
in Figure 2. We plot the observed error when we fix the
Zipf parameter, and increase the space for the sketch from

3We do not know why the CCFC algorithm appears to have a “bell-
curve”-like behavior asz increases. This may be of interest for future
analysis.

1KB to 1MB. Plotting observed error vs. space on a log-
log plot should reveal a straight line with slope equal to
−z. This is seen clearly in Figure 2(a), where we have
plotted a liney ∝ x−1.2 for comparison. Note that this
is a logarithmic scale plot, so the separation between the
two lines is quite significant: CCFC consistently has about
twice as much error. It appears to show a similarx−1.2

dependency on size. Although the maximum error is much
more variable, the same behavior occurs forz = 1.6
(Figure 2(b)), where CCFC has on average 10 times the error
of CM, an order of magnitude worse. Several data mining
problems need to manipulate item counts by summing and
subtracting estimated values, so often this very fine accuracy
is required, hence the need to get as good quality estimates
as possible in small space.

For F2 estimation, the results are less clearcut. We
have two methods to use the Count-Min sketch in order to
estimate the second frequency moment. The first, CM+,

51

F2 Estimation with space 27KB

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.50 0.75 1.00 1.25 1.50 1.75 2.00

Zipf parameter

O
b

se
rv

ed
 E

rr
o

r CM+

CM-

Error in F2 Estimation on Zipf(1.6)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100Size of sketch / KB

O
b

se
rv

ed
 e

rr
o

r

CM+

CM-

x^-1.05

(a) (b)

Figure 3: Testing spaceL2 estimation on synthetic data

99.9 percentile error of Point Queries on Blogs Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 10 100 1000Space / KB

O
b

se
rv

ed
 E

rr
o

r

CM

CCFC

F2 Estimation on Shakespeare

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100 1000Space / KB

O
bs

er
ve

d
E

rr
or

CM+

CM-

(a) (b)

Figure 4: Results of experiments on text data

which has the best analytic results forz > 1, is to sum the
squares of the counters. The second, CM−, sums the squares
of the differences of adjacent counters. In our experiments
on synthetic data, illustrated in Figure 3, we were not able
to observe a clear difference between the two approaches.
As we increasedz while keeping the space fixed, we saw
that both methods seem to give about the same error. In
Figure 3 (a), over the different values ofz, CM+ gets lower
error more often than CM−, but there is no clear trend.
Figure 3 (b) shows the effect of increasing the size of the
sketch for data withz = 1.6. Our theory predicts that
the error of CM− should behave ass−

1+2z
4 = s−1.05, and

CM+ ass−
1+z
2 = s−1.3. We have plotted the first of these

on the same graph, since on this data set we can see this
behavior for CM−. The results for CM+ are much less
clear here, however when we examine real data sets we shall
see the algorithms performing very closely in line with their
predicted behavior.

7.2 Text Data
Zipf’s law was first proposed in the context of linguistics,
based on the observation that the frequency of theith most
frequent word in written text seemed to be roughly propor-
tional to 1/i [53]. So it is fitting that we test our methods
on mining textual data. We considered two data sources of
seemingly very different nature. First, we used the complete
plays of Shakespeare. This consists of 5MB of data, totaling
approximately 1 million words. As a data source, it is quite
‘clean’, since words are spelled consistently throughout, and
has been checked by many editors. Our second source of
data consisted of a large amount text harvested from we-
blogs (“blogs”), totaling 1.5GB. This totaled over 100 mil-
lion words from a large number of different authors, written
in colloquial English (and some other languages mixed in),
with no editing, in inconsistent styles and many errors left
uncorrected. We did not attempt to clean this data, but ran
our algorithms on it directly.

52

Max Error on Telephone Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

O
b

se
rv

ed
 E

rr
o

r

CCFC

CM

F2 Estimation on IP Request Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

O
b

se
rv

ed
 E

rr
o

r

CM+

CM-

(a) (b)

Figure 5: Results of experiments on network data

We show some of the results in Figure 4. We do not
show all results for space reasons, but they are similar to
those we present. On the log-log plot in Figure 4 (a) we
can see a very clear linear gradient with slope approximately
-1.2. This suggests that the Blog data is well-modeled by
a Zipf distribution with parameter 1.2. We took the word
frequencies from this data, and plotted those on a log-log
chart, then computed the line of best fit; its slope was
indeed approximately 1.2.4 For the Shakespeare dataset,
we measuredz as 1.2—1.3, implying that Shakespeare had
similar relative frequencies of word usage as a Blog writer.
In both cases, we see significant accuracy gains using CM
Sketch over CCFC.

The linear behavior of the CM+ estimation in Fig-
ure 4 (b) is quite striking. For sketch sizes 10KB—1MB, we
measured a dependency ofε ass−1.15. This implies a corre-
sponding value ofz = 1.3. The same trend is not obvious for
the CM− approach, but a best fit line gives the dependency
ε ∝ s−0.85, which corresponds toz = 1.2. Recall that in
both cases, we use the same sketch as the basis of the both es-
timation procedures (as well as for point queries). These re-
sults show us that using the CM− estimation technique (sum
of squares of differences) gives better results than the CM+

approach (sum of squares). If the data is very skewed, or
very fine accuracy is required, then CM+ should be used,
since asymptotically it has better bounds, but for this kind
of data the CM− method is preferable. The important fea-
ture is that we can make the sketch oblivious to the nature
of the data, and only at query time decide which estimation
technique to use, based on the observed skew.

4 In order to get a good fit of real data to a Zipf distribution, one typically
has to drop the first few readings, and not fit the entire tail. Based on
different sections of this chart, we measured Zipf parameters in the range
1.15 to 1.30, and so we conclude that 1.2 is within the bounds of uncertainty.

7.3 Network Data
We considered two types of data drawn from communication
networks: a data set of 1.9 million phone calls, where we
tracked the called exchange (a range of 1 million values); and
a data set of Internet requests to 32-bit IP addresses, taken
from the Internet Traffic Archive [38], LBL-CONN7 [46],
totaling 800,000 requests. The maximum error on the phone
call data is plotted in Figure 5 (a). Although it is a little
fuzzier than the corresponding 99.9% error plot, the linear
dependency on the log-log plot can be easily seen. The slope
of the CM line is -1.16, predicting a skewness parameter
of 1.16, while the slope of the CCFC line is around -0.8.
Again, there is an order of magnitude improvement in the
accuracy of CM over CCFC. For the Internet data, the error
in point queries implies a skew ofz = 1.3. This means that
the slope forF2 estimation should be1.15, which is indeed
what we measure on Figure 5 (b) for sketches between 10KB
and 1MB using CM+ for estimation. The slope of the CM−

line is less steep, about -0.9 as predicted, although again
the observed error is less throughout most of the region of
interest.

7.4 Timing Results
Since the update procedure is essentially the same for every
update, the time cost is not much affected by the nature
of the data. We conducted experiments on 1GHz and
2.4GHz processor machines, and observed similar update
performance on each (since the algorithm is essentially
bound by cache/memory access times), of about 2–3 million
updates per second. By comparison, the implementation of
the CCFC Count Sketch achieves a somewhat slower rate
(40–50% slower), since it requires additional computation
of a second hash function for ever update. Greater speed can
be achieved by taking advantage of the natural parallelism
inherent in sketch data structures.

53

8 Conclusions

We have defined the problem of summarizing and mining
data streams when these streams exhibit a skewed distribu-
tion. We have given practical algorithms for key post-hoc
analysis problems with strong theoretical bounds ofo(1/ε)
ando(1/ε2) where previously known results that did not ex-
ploit skew used spaceΩ(1/ε) andΩ(1/ε2) respectively. In
experiments, we have shown our CM sketch data structure
to be a practical and flexible summary: not only does it out-
perform other methods for point queries and give accurate
estimates forL2 estimation, but it does this based on a sim-
ple update procedure. This approach can be employed with-
outa priori knowledge of the distribution or skewness of the
data: given fixed space, we can then bound the approxima-
tion quality based on the observed skew.

The two queries that we considered are fundamental
to top-k items, change detection, approximate quantiles,
anomaly detection and so on. Many other summarization
and mining tasks can also benefit from the insight that data
is rarely uniform, and realistic data is frequently highly
skewed. For example, we remark that our methods in this
paper will give estimates forinner-product queriesbetween
data streams as well in a straightforward way as an extension
of [13]. This has applications to join size estimation in
databases [3], to principal component analysis [31] and
sparse correlation matrix estimation [32], but we do not
elaborate further on this here. Likewise, the fact that skew is
frequently seen at multiple levels of aggregation [33] means
that our analysis can be immediately applied tohierarchical
computations, such as computing range sums, estimating
quantiles and so on (see [13] for these computations using
CM sketch). With appropriate analysis and testing, methods
that capitalize on data skew could improve our understanding
of existing algorithms, inspire new methods, and move some
tasks previously thought unachievable into the practical.

Acknowledgments We thank Yinmeng Zhang for some
useful discussions, and the referees for their suggestions.

References

[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin,
A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. Zdonik. Aurora: a data stream management system. In
Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 666–666, 2003.

[2] L. Adamic. Zipf, power-law, pareto - a ranking tu-
torial. http://www.hpl.hp.com/research/idl/
papers/ranking/ , 2000.

[3] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking
join and self-join sizes in limited storage. InProceedings of
the Eighteenth ACM Symposium on Principles of Database
Systems, pages 10–20, 1999.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. InProceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, pages 20–29, 1996. Journal version inJournal of
Computer and System Sciences, 58:137–147, 1999.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InProceedings of
ACM Principles of Database Systems, pages 1–16, 2002.

[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions
in streaming algorithms, with an application to counting
triangles in graphs. InProceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 623–632,
2002.

[7] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace.
Discovering hidden groups in communication networks. In
2nd NSF/NIJ Symposium on Intelligence and Security Infor-
matics, pages 126–137, 2004.

[8] A. Bestavros, M. Crovella, and T. Taqqu.Heavy-Tailed
Probability Distributions in the World Wide Web, pages 3–25.
Birkhäuser, 1999.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. InINFOCOM, pages 126–134, 1999.

[10] M. Charikar, K. Chen, and M. Farach-Colton. Finding fre-
quent items in data streams. InProcedings of the Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), pages 693–703, 2002.

[11] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson,
O. Spatscheck, and D. Srivastava. Holistic UDAFs at stream-
ing speeds. InProceedings of ACM SIGMOD International
Conference on Management of Data, pages 35–46, 2004.

[12] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking most frequent items dynamically. InProceed-
ings of ACM Principles of Database Systems, pages 296–306,
2003.

[13] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. InLatin
American Informatics, pages 29–38, 2004.

[14] G. Cormode and S. Muthukrishnan. What’s new: Finding sig-
nificant differences in network data streams. InProceedings
of IEEE Infocom, 2004.

[15] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 647–651, 2003.

[16] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. InPro-
ceedings of the 2002 ACM Sigmod International Conference
on Management of Data, pages 61–72, 2002.

[17] C. Estan and G. Varghese. Data streaming in computer net-
works. InProceedings of Workshop on Management and Pro-
cessing of Data Streams, http://www.research.att.
com/conf/mpds2003/schedule/estanV.ps , 2003.

[18] W. Fei, P. S. Yu, and H. Wang. Mining extremely skewed
trading anomalies. InInternational Conference on Extending
Database Technology, pages 801–810, 2004.

[19] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan.
An approximateL1-difference algorithm for massive data

54

http://www.hpl.hp.com/research/idl/papers/ranking/
http://www.hpl.hp.com/research/idl/papers/ranking/
http://www.research.att.com/conf/mpds2003/schedule/estanV.ps
http://www.research.att.com/conf/mpds2003/schedule/estanV.ps

streams. InProceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 501–511, 1999.

[20] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: You only get one look. InProceedings
of ACM SIGMOD International Conference on Management
of Data, 2002.

[21] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan,
and M. Strauss. Fast, small-space algorithms for approximate
histogram maintenance. InProceedings of the 34th ACM
Symposium on Theory of Computing, pages 389–398, 2002.

[22] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for approx-
imate aggregate queries. InProceedings of the International
Conference on Very Large Data Bases, pages 79–88, 2001.
Journal version inIEEE Transactions on Knowledge and Data
Engineering, 15(3):541–554, 2003.

[23] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. InProceedings of the International Conference on
Very Large Data Bases, pages 454–465, 2002.

[24] L. Golab and M. T.Özsu. Issues in data stream management.
SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 32(2):5–14, June 2003.

[25] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing
on data streams. Technical Report SRC 1998-011, DEC
Systems Research Centre, 1998.

[26] The himalaya project. http://www.cs.cornell.
edu/database/himalaya/Himalaya.htm .

[27] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose. Strong
regularities in world wide web surfing.Science, pages 95–97,
April 1998.

[28] IBM Research — stream data mining. http:
//www.research.ibm.com/compsci/project_
spotlight/kdd/ .

[29] W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz
mapping into Hilbert space.Contemporary Mathematics,
26:189–206, 1984.

[30] NASA jet propulsion laboratory. http:
//www7.nationalacademies.org/bms/
BravermannasPDF.pdf .

[31] H. Kargupta and V. Puttagunta. An efficient randomized
algorithm for distributed principal component analysis for
heterogenous data. InWorkshop on high performance data
mining at SIAM Intl Conf on Data mining, 2004.

[32] H. Kargupta and V. Puttagunta. Onboard vehicle data stream
monitoring and fast computation of sparse correlation matri-
ces. InWorkshop on data mining in resource constrained en-
vironments at SIAM Intl Conf on Data mining, 2004.

[33] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed
structure of addresses in IP traffic. InACM SIGCOMM
Internet Measurement Workshop, pages 253–266, 2002.

[34] N. Koudas and D. Srivastava. Data stream query processing:
A tutorial. In Proceedings of the International Conference on
Very Large Data Bases, page 1149, 2003.

[35] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based change detection: Methods, evaluation and applica-
tions. InProceedings of the ACM SIGCOMM conference on
Internet measurement, pages 234–247, 2003.

[36] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. InProceedings of the WWW
Conference, pages 568–576, 2003.

[37] E. Kushilevitz and N. Nisan.Communication Complexity.
Cambridge University Press, 1997.

[38] Internet traffic archive.http://ita.ee.lbl.gov/ .
[39] S. Madden and M. J. Franklin. Fjording the stream: An archi-

tecture for queries over streaming sensor data. InProceedings
of 18th International Conference on Data Engineering, pages
555–566, 2002.

[40] D. Madigan. DIMACS working group on monitor-
ing message streams.http://stat.rutgers.edu/
˜madigan/mms/ , 2003.

[41] MAIDS : Mining alarming incidents in data streams.http:
//maids.ncsa.uiuc.edu/ .

[42] G.S. Manku and R. Motwani. Approximate frequency counts
over data streams. InProceedings of the International Con-
ference on Very Large Data Bases, pages 346–357, 2002.

[43] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[44] S. Muthukrishnan. Data streams: Algorithms and applica-
tions. InProceedings of the 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2003.

[45] Ohio State CSE — algorithms for mining data streams.
http://www.cse.ohio-state.edu/˜agrawal/
Research_new/mining.htm .

[46] V. Paxson. Empirically derived analytic models of wide-area
TCP connections.IEEE ACM Transactions on Networking,
2(4):316–336, 1994.

[47] S. Redner. How popular is your paper? An empirical study of
the citation distribution.The European Physical Journal B,
pages 131–134, 1998.

[48] Stanford stream data manager. http://www-db.
stanford.edu/stream/sqr .

[49] M. Thorup and Y. Zhang. Tabulation based 4-universal
hashing with applications to second moment estimation. In
Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 615–624, 2004.

[50] H. Wang. Bibliography on mining data streams.http://
wis.cs.ucla.edu/˜hxwang/stream/bib.html .

[51] D. Woodruff. Optimal space lower bounds for all frequency
moments. InProceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 167–175, 2004.

[52] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of
thousands of data streams in real time. InProceedings of the
International Conference on Very Large Data Bases, pages
358–369, 2002.

[53] G. Zipf. Human Behavior and the Principle of Least Effort:
An Introduction to Human Ecology. Addison Wesley, 1949.

55

http://www.cs.cornell.edu/database/himalaya/Himalaya.htm
http://www.cs.cornell.edu/database/himalaya/Himalaya.htm
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://ita.ee.lbl.gov/
http://stat.rutgers.edu/~madigan/mms/
http://stat.rutgers.edu/~madigan/mms/
http://maids.ncsa.uiuc.edu/
http://maids.ncsa.uiuc.edu/
http://www.cse.ohio-state.edu/~agrawal/Research_new/mining.htm
http://www.cse.ohio-state.edu/~agrawal/Research_new/mining.htm
http://www-db.stanford.edu/stream/sqr
http://www-db.stanford.edu/stream/sqr
http://wis.cs.ucla.edu/~hxwang/stream/bib.html
http://wis.cs.ucla.edu/~hxwang/stream/bib.html

Online Analysis of Community Evolution in Data Streams

Charu C. Aggarwal, Philip S. Yu

IBM T. J. Watson Research Center

{ charu, psyu }@us.ibm.com

Abstract

This paper discusses the problem of online change de-
tection in a large set of interacting entities. Such trends
include the gradual formation and dissolution of differ-
ent communities of interaction. Our results are focussed
on the case where the interacting entities are received
in the form of a fast data stream of interactions. In
such cases, a user may wish to perform repeated ex-
ploratory querying of the data for different kinds of user-
defined parameters. This is difficult to perform in a fast
data stream because of the one-pass constraints on the
computations. We propose an online analytical process-
ing framework which separates out online data summa-
rization from offline exploratory querying. The result
is a method which provides the ability to perform ex-
ploratory querying without compromising on the quality
of the results. The algorithms are tested over large sets
of graph data streams with varying levels of evolution.

1 Introduction

The data stream has gained importance in recent years
because of the greater ease in data collection method-
ologies resulting from advances in hardware technology.
This has resulted in a host of papers on the extension
of data mining techniques to the case of data streams
[1, 2, 3, 8, 13]. In this paper, we discuss the problem
of detecting patterns of interaction among a set of enti-
ties in a stream environment. Examples of such entities
could be a set of businesses which interact with one an-
other, sets of co-authors in a dynamic bibliography data
base, or it could be the hyperlinks from web pages. In
each of these cases, the interaction among different en-
tities can rapidly evolve over time.

A convenient way to model the entity interaction
relationships is to view them as graphs in which the
nodes correspond to entities and the edges correspond
to the interactions among the nodes. The weights
on these edges represent the level of the interaction
between the different participants. For example, in the
case when the nodes represent interacting entities in a
business environment, the weights on the edges among
these entities could represent the volume of business

transactions. A community of interaction is defined to
be a set of entities with a high degree of interaction
among the participants.

The problem of finding communities in dynamic and
evolving graphs been discussed in [6, 7, 9, 10, 11, 12,
14, 15, 16]. Since most of the current techniques are
designed for applications such as the web, they usually
assume a gradually evolving model for the interaction.
Such techniques are not very useful for a fast stream
environment in which the entities and their underlying
relationships may quickly evolve over time. In addition,
it is important to provide a user the exploratory capa-
bility to query for communities over different time hori-
zons. Since individual points in the data streams can-
not be processed more than once, we propose a frame-
work which separates out the offline exploratory algo-
rithms from the online stream processing part. The on-
line stream processing framework creates summaries of
the data which can then be further processed for ex-
ploratory querying. This paper is focussed on an On-
line Analytical Processing (OLAP) approach for provid-
ing offline exploratory capabilities to users in perform-
ing change detection across communities of interest over
different time horizons.

Some examples of exploratory queries in which a
user may be interested are as follows:
(1) Find the communities with substantial increase in
interaction level in the interval (t − h, t). We refer to
such communities as expanding communities.
(2) Find the communities with substantial decrease in
interaction level in the interval (t−h, t) We refer to such
communities as contracting communities.
(3) Find the communities with the most stable interac-
tion level in the interval (t − h, t).

We note that the process of finding an emerging or
contracting community needs to be carefully designed in
order to normalize for the behavior of the community
evolution over different time horizons. For example,
consider a data stream in which two entities n1 and n2

share a high level of interaction in the period (t − h, t).
This alone does not mean that the interaction level
between n1 and n2 is stable especially if these entities

56

had a even higher level of interaction in the previous
period (t − 2 · h, t − h). Thus, a careful model needs
to be constructed which tracks the behavior of the
interaction graph over different time horizons in order
to understand the nature of the change.

This paper is organized as follows. In the next sec-
tion, we discuss notations for modelling the interaction
among different entities. We also discuss methods for
modelling the change in interaction among different en-
tities. In section 4, we discuss methods to accumulate
the statistics of the aggregate interaction among dif-
ferent entities. We also discuss methods to derive the
change in interaction from these aggregate statistics. In
section 5, we present the empirical results. Section 6
contains the conclusions and summary.

1.1 Contributions of this Paper This paper dis-
cusses new algorithms for online analysis of commu-
nity detection in data streams. The paper discusses
an OLAP-style framework in which the online prepro-
cessing of the data stream is separated from the offline
querying of the stream. Thus, the user can have the flex-
ibility to query these summaries in an interactive way
in order to find detailed information about the commu-
nities in the most relevant horizons. We design an inno-
vative clustering algorithm which can determine clus-
ters of interactions with the most significant change.
This includes information about the disposition of the
communities in terms of their expansion or contraction.
Thus, the paper discusses a general framework for online
analysis of the data stream.

2 Online Summarization of Graphical Data
Stream

In this section, we will discuss the overall interaction
model among the different entities. We will also discuss
the process of online summarization of the data stream.
This interaction model is stored as a graph G = (N, A),
in which N denotes the set of nodes, and A denotes the
set of edges. Each node i ∈ N corresponds to an entity.
The edge set A consists of edges (i, j), such that i and j
are nodes drawn from N . Each edge (i, j) represents an
interaction between the entities i and j. Each edge (i, j)
also has a weight wij(t) associated with it. This weight
corresponds to the number of interactions between the
entities i and j. For example, when the interaction
model represents a bibliography database, the nodes
could represent the authors and the weights on the
edges could represent the number of publications on
which the corresponding authors occur together as co-
authors. As new publications are added to the database
the corresponding weights on the individual edges are
modified. It is also possible for new nodes to be added

to the data as new authors are added to the original
mix. In this particular example, the weight on each edge
increases by one, each time a new co-authorship relation
is added to the database. However, in many applications
such as those involving business interaction, this weight
added in each iteration can be arbitrary, and in some
cases even negative.

In order to model the corresponding stream for
this interaction model, we assume that a current graph
G(t) = (N(t), A(t)) exists which represents the history
of interactions at time t. At time (t + 1) new additions
may occur to the graph G(t). Subsequently, each new
arrival to the stream contains two elements:

• An edge (i, j) corresponding to the two entities
between whom the interaction has taken place.

• An incremental weight δwij(t) illustrating the ad-
ditional interaction which has taken place between
entities i and j at time t.

We refer to the above pair of elements as representative
of an interaction event. We note that the nodes i, j,
or the edge (i, j) may not be present in N(t) and A(t)
respectively. In such a case, the node set N(t) and edge
set A(t) need to be modified to construct N(t + 1) and
A(t + 1) respectively. In the event that a given edge
does not exist to begin with, the original weight of (i, j)
in G(t) is assumed to be zero. Also, in such a case, the
value of the edge set A(t + 1) is augmented as follows:

A(t + 1) = A(t) ∪ {(i, j)}(2.1)

In the event that either the nodes i or j are not
present in N(t), the corresponding node set needs to
be augmented with the new node(s). Furthermore, the
weight of the edge (i, j) needs to be modified. If the edge
(i, j) is new, then the weight of edge (i, j) in G(t + 1)
is set to δwij . Otherwise, we add the incremental
weight δwij to the current weight of edge (i, j) in G(t).
Therefore, we ave:

wij(t + 1) = wij(t) + δwij(t)(2.2)

We assume that the set of interaction events re-
ceived at time t are denoted by E(t). In each iteration,
the stream maintenance algorithm adds the interaction
events in E(t) to G(t) in order to create G(t + 1). We
refer to the process of adding the events in E(t) to G(t)
by the ⊕ operation. Therefore, we have:

G(t + 1) = G(t) ⊕ E(t)(2.3)

At each given moment in time, we maintain the
current graph of interactions G(t) in main memory. In
addition, we periodically store the graph of interactions

57

on disk. We note that the amount of disk storage
available may often be limited. Therefore, it is desirable
to store the graph of interactions in an efficient way
during the course of the stream arrival. We will refer to
each storage of the graph of interactions at a particular
moment as a frame. Let us assume that the storage
limitation for the number of frames is denoted by S. In
this case, one possibility is to store the last S frames at
uniform intervals of t′. The value of S is determined by
the storage space available. However, this is not a very
effective solution, since it means that a history of larger
than S · t′ cannot be recalled.

One solution to this problem is to recognize that
frames which are more stale need not be stored at the
same frequency as more recent frames. Let tc be the
current time, and tmin be the minimum granularity at
which 0th tier snapshots are stored. We divide the set
of S frames into θ = log2(tc/tmin) tiers. The ith tier
contains snapshots which are separated by a distance
of tmin · 2i−1. For each tier, we store the last S/θ
frames. This ensures that the total storage requirement
continues to be S. Whenever it is desirable to access
the state of the interaction graph for the time t, we
simply have to find the frame which is temporally closest
to t. The graph from this temporally closest frame is
utilized in order to approximate the interaction graph
at time t. The tiered nature of the storage process
ensures that it is possible to approximate recent frames
to the same degree of (percentage) accuracy than less
recent frames. While this means that the (absolute)
approximation of stale frames is greater, this is quite
satisfactory fir a number of real scenarios. We make the
following observations:

Lemma 2.1. Let h be a user-specified time window, and
tc be the current time. Then a snapshot exists at time
ts, such that h/(1 + θ/S) ≤ tc − ts ≤ (1 + θ/S) · h.

Proof. This is an extension of the result in [3]. The
proof is similar.

In order to understand the effectiveness of this simple
methodology, let us consider a simple example in which
we store (a modest number of) S = 100, 000 frames
for a stream over 10 years, in which the minimum
granularity of storage tmin is 1 second. We have
intentionally chosen an extreme example (in terms of
the time period of the stream) together with a modest
storage capability in order to show the effectiveness of
the approximation. In this case, the number of tiers
is given by θ = log2(10 ∗ 365 ∗ 24 ∗ 3600) ≈= 29. By
substituting in Lemma 2.1, we see that it is possible to
find a snapshot which is between 99.97% and 100.03%
of the user specified value.

In order to improve the efficiency of edge storage
further, we need to recognize the fact that large por-
tions of the graph continue to be identical over time.
Therefore, it is inefficient for the stream generation pro-
cess to store the entire graph on disk in each iteration.
Rather, we store only incremental portions of the graph
on the disk. Specifically, let us consider the storage of
the graph G(t) for the ith tier at time t. Let the last
time at which an (i + 1)th tier snapshot was stored be
denoted by t′. (If no snapshot of tier (i+1) exists, then
the value of t′ is 0. We assume that G(0) is the null
graph.) Then, we store the graph F (t) = G(t) − G(t′)
at time t. We note that the graph F (t) contains far
fewer edges than the original graph G(t). Therefore, it
is more efficient to store F (t) rather than G(t). An-
other observation is that a snapshot for the ith tier can
be reconstructed by summing the snapshots for all tiers
larger than i.

Lemma 2.2. We assume that the highest tier is defined
by m. Let ti be the time at which the snapshot for tier i
is stored. Let ti+1, ti+2 . . . tm be the last time stamps of
tiers (i + 1) . . .m (before ti) at which the snapshots are
stored. Then the current graph G(ti) at the time stamp
ti is defined as follows:

G(ti) =

m∑
j=i

F (tj)(2.4)

Proof. This result can be proved easily by induction.
We note that the definition of F (·) implies that:

G(ti) − G(ti+1) = F (ti)

G(ti+1) − G(ti+2) = F (ti+1)

. . .

G(tm−1) − G(tm) = F (tm−1)

G(tm) − 0 = F (tm)

By summing the above equations, we obtain the desired
result.

The above result implies that the graph at a snapshot
for a particular tier can be reconstructed by summing
it with the snapshots at higher tiers. Since there are at
most θ = log2(S/tmin) tiers, it implies that the graph
at a given time can be reconstructed quite efficiently in
a practical setting.

3 Offline Constructon and Processing Of
Differential Graphs

In this section, we will discuss the offline process of
generating differential graphs and their application to

58

the evolution detection process. The differential graph
is generated over a specific time horizon (t1, t2) over
which the user would like to test the behavior of the
data stream. The differential graph is defined over
the interval (t1, t2) and is defined as a fraction of
the interactions over that interval by which the level
of interaction has changed during the interval (t1, t2).
In order to generate the differential graph, we first
construct the normalized graph at the times t1 and
t2. The normalized graph G(t) = (N(t), A(t)) at time
t is denoted by G(t), and contains exactly the same
node and edge set, but with different weights. Let
W (t) =

∑
(i,j)∈A wij(t) be the sum of the weights over

all edges in the graph G(t). Then, the normalized
weight wij(t) is defined as wij(t)/W (t). We note that
the normalized graph basically comprises the fraction of
interactions over each edge.

Let t′1 be the last snapshot stored just before time t1
and t′2 be the snapshot stored just before time t2. The
first step is to construct the graphs G(t′1) and G(t′2)
at time periods t′1 and t′2 by adding the snapshots at
the corresponding tiers as defined by Lemma 2.2. Then
we construct the normalized graph from the graphs at
times t′1 and t′2. The differential graph is constructed
from the normalized graph by subtracting out the
corresponding edge weights in the original normalized
graphs. Therefore, the differential graph ∆G(t′1, t

′
2)

basically contains the same nodes and edges as G(t′2),
except that the differential weight ∆wij(t

′
1, t
′
2) on the

edge (i, j) is defined as follows:

∆wij(t
′
1, t
′
2) = wij(t′2) − wij(t′1)(3.5)

In the event that an edge (i, j) does not exist in
the graph G(t′1), the value of wij(t

′
1) is assumed to

be zero. We note that because of the normalization
process, the differential weights on many of the edges
may be negative. These correspond to edges over
which the interaction has reduced significantly during
the evolution process. For instance, in our example
corresponding to a publication database, when the
number of jointly authored publications reduces over
time, the corresponding weights in the differential graph
are also negative.

Once the differential graph has been constructed,
we would like to find clusters of nodes which show a
high level of evolution. It is a tricky issue to determine
the subgraphs which have a high level of evolution. A
natural solution would be find the clustered subgraphs
with high weight edges. However, in a given subgraph,
some of the edges may have high positive weight while
others may have high negative weight. Therefore, such
subgraphs correspond to the entity relationships with
high evolution, but they do not necessarily correspond

Algorithm FindEvolvingCommunities(Graph: (N, A),
EdgeWeights: ∆wij(t1, t2), NumberOfClusters: k);

begin
Randomly sample nodes n1 . . . nk as seeds;
Let B be the bias vector of length |N |;
Set each position in B to 0;
while not(termination criterion) do

begin
(N1 . . . Nk) =AssignNodes(N , B, {n1 . . . nk});
B =FindBias(N1 . . .Nk);
(N ′

1
. . . N ′

k
) = RemoveNodes(N1 . . . Nk);

{ Assume that the removed nodes are null partitions }
(n1 . . . nk) =RecenterNodes(N1 . . .Nk);
end

end

Figure 1: Finding Evolving Communities

to entity relationships with the greatest increase or
decrease in interaction level. In order to find the
community of interaction with the greatest increase in
interaction level, we need to find subgraphs such that
most interactions within that subgraph have either a
high positive or high negative weight. This is a much
more difficult problem than the pure vanilla problem of
finding clusters within the subgraph ∆G(t′1, t

′
2).

3.1 Finding Evolving Communities In this sec-
tion, we will define the algorithm for finding evolution
clusters in the interaction graph based on the user de-
fined horizon. The process of finding the most effective
clusters is greatly complicated by the fact that some
of the edges correspond to an increase in the evolution
level, whereas other edges correspond to a decrease in
the evolution level. The edges corresponding to an in-
crease in interaction level are referred to as the positive
edges, whereas those corresponding to a reduction in the
interaction level are referred to as the negative edges.

We design an algorithm which can effectively find
subgraphs of positive or negative edges by using a
partitioning approach which tracks the positive and
negative subgraphs in a dynamic way. In this approach,
we use a set of seed nodes {n1 . . . nk} in order to create
the clusters. Associated with each seed ni is a partition
of the data which is denoted by Ni. We also have a bias
vector B which contains |N | entries of +1, 0, or −1. The
bias vector is an indicator of the nature of the edges in
the corresponding cluster. The algorithm utilizes an
iterative approach in which the clusters are constructed
around these seed nodes. The overall algorithm is
illustrated in Figure 1. As illustrated in Figure 1, we
first pick the k seeds randomly. Next, we enter an
iterative loop in which we refine the initial seeds by
performing the following steps:

59

• We assign each nodes to one of the seeds. The
process of assignment of an entity node to a given
seed node is quite tricky because of the fact that we
would like a given subgraph to represent either in-
creasing or decreasing communities. Therefore, we
need to choose effective algorithms which can com-
pute the distances for each community in a different
way. We will discuss this process in detail slightly
later. We note that the process of assignment is
sensitive to the nature of the bias in the node. The
bias in the node could represent the fact that the
cluster seeded by that node is likely to become one
of the following: (1) An Expanding Community (2)
A Contracting Community (3) Neutral Bias (Initial
State). Therefore, we associate a bias bit with each
seed node. This bias bit takes on the values of +1,
or −1, depending upon whether the node has the
tendency to belong to an expanding or contracting
community. In the event that the bias is neutral,
the value of that bit is set to 0. We note that an ex-
panding community corresponds to positive edges,
whereas a contracting community corresponds to
negative edges. The process of assignment results
in k node sets which are denoted by N1 . . .Nk. In
the assignment process,we compute the distance of
each seed node to the different entities. Each entity
is assigned to its closest seed node. The algorithm
for assignment of entities to seed nodes is denoted
by AssignNodes in Figure 1.

• Once the assignment step has been performed, we
re-assess the bias of that seed node. This is denoted
by FindBias in Figure 1. The overall approach
in finding the bias is to determine whether the
interactions in the community attached to that seed
node represent expansion or contraction. We will
discuss the details of this algorithm slightly later.
The bias bit vector B is returned by this procedure.

• Some of the seed nodes may not represent a co-
herent community of interaction. These seed nodes
may be removed by the community detection algo-
rithm. This process is achieved by the algorithm
RemoveNodes. The new set of nodes is denoted by
N ′1 . . .N ′k. We note that each N ′i is either Ni or
null depending upon whether or not that node was
removed by the algorithm.

• The final step is to re-center the seeds within their
particular subgraph. The re-centering process es-
sentially reassigns the seed node in a given sub-
graph N ′i to a more central point in it. In the event
that N ′i is a null partition, the recentering process
simply picks a random node in the graph as the

corresponding seed. Once the recentering process
is performed, we can perform the next iteration of
the algorithm. The recentering procedure is de-
noted by RecenterNodes in Figure 1. The new set
of seeds n1 . . . nk are returned by this algorithm.

3.2 Subroutines for Determination of the Com-
munities In the afore-mentioned discussion, we de-
scribed the overall procedure for finding the commu-
nities of interaction. In this section, we will discuss the
details of the subroutines which are required for deter-
mination of these communities. We will first discuss the
procedure AssignNodes of Figure 1. The process of as-
signing the nodes to each of the centroids requires the
use of the bias information stored in the bias nodes.
Note that if a seed node has positive bias, then it needs
to be ensured that the other nodes which are assigned
to this seed node are related to it by positive interac-
tions. The opposite is true if the bias on the seed node
is negative. Finally, in the case of nodes with neutral
bias, we simply need to find a path with high absolute
interaction level. In this case, the positivity or nega-
tivity of the sign matters less than the corresponding
absolute value. In order to achieve this goal, we define
a bias sensitive distance function f(n1, n2, b) between
two nodes n1 and n2 for the bias bit b. For a given path
P in the graph ∆G(t1, t2), we define the average inter-
action level w(P) as the sum of the interaction levels on
P divided by the number of edges on P . Therefore, we
have:

w(P) =
∑

(i,j)∈P

∆wij(t1, t2)/|P |(3.6)

We note that a path with high average positive weight
corresponds to a set of edges with increasing level of
interaction. This can also be considered an expanding
community. The opposite is true of a path with
high average negative weight, which corresponds to a
contracting community. Therefore, the value of w(P) is
equal to the weight of the path divided by the number of
edges on that path. We also define the average absolute
average interaction level w+(P) as follows:

w+(P) =
∑

(i,j)∈P

|∆wij(t1, t2)|/|P |(3.7)

Note that the absolute interaction level does not
have any bias towards a positive or negative level
of interaction. Once we have set up the definitions
of the path weights, we can also define the value of
the interaction function f(n1, n2, b). This interaction
function is defined over all possible pairs of nodes
(n1, n2).

f(n1, n2, b) = Most positive value of w(P) ∀ paths

60

P between n1 and n2 if b = 1
Modulus of most negative value of w(P)
∀ P between n1 and n2 if b = −1
Largest value of w+(P) ∀ paths
P between n1 and n2 if b = 0

We note that the above interaction function is
defined on the basis of the sum of the interaction values
over a given path. In some cases, this interaction
function can provide skewed results when the path
lengths are long. This could result in less effective
partitioning of the communities. A different interaction
function is defined as the minimum interaction on the
path between two entities. However, the bias of the
corresponding centroid on that path is used in order
to define the interaction function. This minimum
interaction w(P) is defined as follows:

w(P) =min(i,j)∈P max{∆wij(t1, t2), 0}
if b = 1

max(i,j)∈P min{∆wij(t1, t2), 0}
if b = −1

min(i,j)∈P |∆wij(t1, t2)|
if b = 0

We note that the above mentioned function simply finds
the minimum (absolute) weight edge of the correspond-
ing sign (depending on the bias) between the two nodes.
The corresponding interaction function f(n1, n2, b) is
defined in the same way as earlier. Henceforth, we will
refer to the two above-defined functions as the average-
interaction function and minimum interaction function
respectively. In the latter case, the interaction distance
corresponds to the interaction on the weakest link be-
tween the two nodes. As our experimental results will
show, we found the minimum function to be slightly
more robust than the average interaction function.

During the assignment phase, we calculate the value
of the function f(ni, n, b) from each node ni to the
seed node n using the bias bit b. Each node ni is
assigned to the seed node n with the largest absolute
value of the above-mentioned function. This process
ensures that nodes are assigned to seeds according to
their corresponding bias. The process of computation of
the interaction function will be discussed in some detail
slightly later.

Next, we determine the bias of each seed node in
the procedure FindBias. In order to do so, we calculate
the bias-index of the community defined by that seed
node. The bias index of the community Ni is denoted
by I(Ni), and is defined as the edge-weight fraction of
the expanding portion of Ni. In order to do, so we

divide the positive edge weights in the community by
the total absolute edge weight in the same community.
Therefore, we have:

I(Ni) =

∑
(p,q)∈Ni

max{0, ∆wpq(t1, t2)}∑
(p,q)∈Ni

|∆wpq(t1, t2)|
(3.8)

We note that the bias index is 1 when all the edges in
the community corresponding to increasing interaction,
and is 0 when all the edges correspond to reducing
interaction. Therefore, we define a threshold t ∈
(0, 0.5). If the value of I(Ni) is less than t then the
bias bit is set to -1. Similarly, if the value of I(Ni) is
larger than 1− t, the bias bit is set to 1. Otherwise, the
bias bit is set to zero.

Once the bias bits for the nodes have been set,
we remove those seeds which have very few nodes
associated with them. Such nodes usually do not
correspond to a coherent community of interaction.
This procedure is referred to as RemoveNodes. Thus,
each set of nodes Ni is replaced by either itself or a
null set of nodes. In order to implement this step, we
use a minimum threshold on the number of nodes in a
given partition. This threshold is denoted by mnt. All
partitions with less than mnt entities are removed from
consideration, and replaced by the null set.

The last step is to recenter the nodes within their
corresponding partition. This denoted by the procedure
RecenterNodes in Figure 1. The process of recentering
the nodes requires us to use a process in which the
central points of subgraphs are determined. In order
to recenter the nodes, we determine the node which
minimizes the maximum distance of any node in the
cluster. This is achieved by computing the distance
of all points in the cluster starting at each node, and
finding the minimax distance over these different values.
The process of recentering helps to adjust the centers
of the nodes in each iteration such that the process of
partitioning the community sets becomes more effective
over time.

3.3 Approximating Interaction Distances
Among Nodes The only remaining issue is to dis-
cuss the methodology for determining the interaction
distances among nodes. We would like our algorithm
to be general enough to find the maximum interaction
distance for general functions. It is important to
understand that the problem of finding the maximum
interaction distance between two nodes is NP-hard.

Observation 3.1. The problem of determining the
maximum interaction distance between two nodes is NP-
hard for arbitrary interaction functions.

61

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

Number Of Clusters

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 2: Information Gain with Number Of Clusters
(C4.I5.D500)

This observation is easily verified by observing that
the problem of finding the longest path in a graph is
NP-hard [5]. Since the particular case of picking the
interaction function as the edge weight is NP-hard, the
general problem is NP-hard as well.

However, it is possible to approximate the interac-
tion distance of a maximum length using dynamic pro-
gramming. Let wnt

ij be the maximum interaction dis-
tance between two nodes using at most t nodes on that
path. Let P t

ik be the maximum length path between
i and k using t edges. Let PS⊕ikj denote the path ob-

tained by concatenating P t
ik with the edge (k, j). Then,

we define wnt
ij recursively as follows:

wn0
ij = 0;

wnt+1
ij = maxk{wnt

ij , w(PS⊕ikj)}

We note that this dynamic programming algorithm does
not always lead to an optimal solution in the presence
of cycles in the graph [5]. However, for small values
of t, it approximates the optimal solution well. This
is because cycles are less likely to be present in paths
of smaller length. It is also important to understand
that if two entities are joined only by paths containing a
large number of edges, then such pairs of entities should
not be regarded as belonging to the same community.
Therefore, we imposed a threshold maxthresh on the
maximum length of the (shortest interaction distance)
path between two nodes for them to belong to the
same community. For a pair of nodes in which the
corresponding path length was exceeded, the value of
the interaction distance is set to 0.

4 Empirical Results

For the purpose of testing, we generated a number of
graphs with strong correlations of interaction among the
different nodes. In general, it was desirable to generate

2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

10

Number Of Clusters

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 3: Information Gain with Number Of Clusters
(C5.I6.D500)

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

10

Number Of Clusters

In
fo

rm
at

io
n

G
ai

n
Average Distance Function
Minimum Distance Function

Figure 4: Information Gain with Number Of Clusters
(C6.I7.D500)

4 5 6 7 8 9 10
3.5

4

4.5

5

5.5

6

6.5

Average Generating Community Size

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 5: Information Gain with Increasing Community
Set Size

62

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

User Defined Horizon

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 6: Information Gain with Increasing User Spec-
ified Horizon (C4.I5.D500)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

User Defined Horizon

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 7: Information Gain with Increasing User Spec-
ified Horizon (C5.I6.D500)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

User Defined Horizon

In
fo

rm
at

io
n

G
ai

n

Average Distance Function
Minimum Distance Function

Figure 8: Information Gain with Increasing User Spec-
ified Horizon (C6.I7.D500)

3 5 7

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Progression of Stream

P
ro

ba
bi

lit
y

In User Specified Horizon Given Bias >0
Outside User Specified Horizon Given Bias <=0

Figure 9: Effectiveness of finding expanding or contract-
ing communities

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time Elapsed from Beginning

N
um

be
r O

f D
at

a
P

oi
nt

s
P

ro
ce

ss
ed

 p
er

 S
ec

on
d

C4.I5.D500
C10.I11.D500

Figure 10: Stream Processing Rate

2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number Of Clusters

O
nl

in
e

R
un

ni
ng

 T
im

e

Figure 11: Interaction Times for Clustering

63

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

User Defined Horizon

R
un

ni
ng

 T
im

e

Figure 12: Interaction Time for Clustering

graphs in which the nodes showed strong interactions
with each other, as well as variations in behavior over
time. In order to achieve this goal, we used a technique
which draws its motivation from the frequent itemset
generation methodology discussed in [4]. However, the
generation method was modified in order to suit the
community detection problem.

The first step was to generate L = 2000 maximal
“potential communities” over the nodes in the graph.
These potential communities capture the tendencies of
particular groups of entities to interact with one an-
other. We first picked the size of a maximal potentially
large community as a random variable from a poisson
distribution with mean µL. Each successive commu-
nity was generated by picking half of its items from the
current community, and generating the other half ran-
domly. This method ensures that large communities
often have common entities. Each community I has a
weight wI associated with it, which is chosen from an
exponential distribution with unit mean.

The maximal potential communities were then used
in order to generate the community sets of interaction.
First, the size ST of a current community set was chosen
as a poisson random variable with mean µT . Each cur-
rent community set was generated by assigning maximal
potentially large communities to it in succession. The
community to be assigned to a community set was cho-
sen by rolling an L sided weighted die depending upon
the weight wI assigned to the corresponding community
I . If a community did not fit exactly, it was assigned to
the current community set half the time, and moved to
the next community set the rest of the time. In order
to capture the fact that all members in a potentially
large community may not always participate in the cur-
rent interaction, we added some noise to the process by
corrupting some of the added communities. For each
community I , we decide a noise level nI ∈ (0, 1). We
generated a geometric random variable G with parame-

ter nI . While adding a potentially large community to a
community set, we dropped min{G, |I |} random nodes
from the set. The noise level nI for each community I
was chosen from a normal distribution with mean 0.5
and variance 0.1.

We shall also briefly describe the symbols that we
have used in order to annotate the data. The three
primary factors which vary are the average community
set size µT , the size of an average maximal potentially
large community µL, and the number of community sets
being considered. A data set having µT = 10, µL = 4,
and 100 community sets is denoted by C10.I4.D100.

Next, we generate the edges of the graph stream
from these community sets. For this purpose, we use
two parameters which are referred to as the epochsize
and the maxrange. The generation of the graph edges
evolves over time and is divided into different periods
which are referred to as an epoch. Within a given epoch,
the edges of the graph are generated from the same dis-
tribution. At any given epoch, a set of maxrange con-
tiguous community sets are used to generate the inter-
actions among different entities. Within a given epoch,
we generated epochsize such interactions. Each of these
interactions was generated by picking two nodes from
the community set, and assigning a random interaction
level to this edge. Unless otherwise mentioned, we used
a value of maxrange = 21 and epochsize = 500.

The interaction stream was processed in an online
fashion to generate the community graph G(t), which
were stored using our tiered scheme. The stored sum-
mary information could then be utilized by a user to
perform interactive clustering over multiple horizons.
This is a more useful approach because of the poten-
tially exploratory nature of user queries. The process
of matching the output clusters to the original commu-
nity sets was much more difficult since the original com-
munity sets had considerable overlaps with each other.
Therefore, a given node could fall into multiple com-
munity sets, and could not be meaningfully matched
with the original clusters. However, it is possible to
calculate the level of correlation between the input and
the output clusters using a measure called information
gain. This information gain is defined by analyzing the
level of fragmentation of the community sets among the
different clusters. Ideally, we would like to have a situa-
tion in which the community sets do not get fragmented
among the different clusters. Consider a community set
T , which gets distributed among the k clusters such that
the community i contains a fraction pi(T) of the enti-
ties in that cluster. Then, we define the gini index of

64

community set T as follows:

Gini(T) =

k∑
i=1

pi(T)2(4.9)

We note that if the community set T occurs in only one
cluster, then the value of Gini(T) is 1 unit. On the
other hand, when the community gets divided among
the different clusters equally, the value of this function is
1/k. Therefore, the information gain for the community
set T is defined as the ratio of Gini(T) to 1/k.

InformationGain(T) = k · Gini(T)(4.10)

In order to calculate the overall information gain within
a particular range, we need to use all the generating
community sets for a given horizon. Let this generating
community set be denoted by G. Then, the information
gain IN (G) for the community set collection G is defined
as follows:

IN (G) =
∑
T∈G

InformationGain(T)/|T |(4.11)

The value of IN (G) defines an intuitive measure for
the information gain of all community sets in G. A
value of IN (G) which is significantly larger than 1
defines a clustering which is able to distinguish between
the different community sets G very well. The use of
information gain as a clustering measure is specially
effective in situations in which there is considerable
overlap between different communities. In order to test
the quality of the clustering process, we computed the
information gain for all the generating community sets
within the currently specified user horizon.

We tested the information gain for a variety of dif-
ferent data sets and ranges of input/output parameters.
The data sets from which the streams were generated
were C4.I5.D500, C5.I6.D500, and C6.I7.D500. In the
first set of results of Figures 2, 3, and 4 we have illus-
trated the information gain variation with the number
of input clusters. The number of clusters are plotted
on the X-axis, whereas the information gain is plotted
on the Y-axis. The horizon was fixed at 5000 for each
case. Furthermore, for each case we have illustrated
the results for the use of the average distance func-
tion as well as the minimum value distance function.
The general observation was that both distance func-
tions were roughly competitive, though the minimum
distance function provided superior results. A closer
examination of the clusters revealed that the use of the
average distance function resulted in some clusters with
poor locality behavior. Such clusters did not contribute
significantly to the value of the information gain. For

all cases, the information gain was significantly larger
than 1, and increased with the number of input clus-
ters. The increase in information gain with the number
of input clusters is expected since a larger number of in-
put clusters helps separate out the different overlapping
community sets much more effectively.

Another observation from the results of Figures 2,
3, and 4 is that the information gain for the data in
Figure 2 was much higher than the information gain in
either of the other two data sets. The data in Figure 2
corresponds to the case in which the average community
sizes were much smaller. In such cases, there is lower
overlap among the different communities and it is pos-
sible to find more informative clusters. This also results
in a higher level of information gain. In order to test
the behavior with changing community size more ex-
plicitly, we varied the size of the generating community
set. Specifically, we used the generating community set
Cx.I(x+1).D500. The results are illustrated in Figure
5. The value of x was made to vary on the X-axis. It is
clear that the information gain generally reduces with
increasing community size. As in previous cases, the
minimum value distance function provided more effec-
tive results than the average distance function.

We also tested the variation of the information
gain with the user specified horizon. The results are
illustrated in Figures 6, 7, and 8 respectively. The
number of clusters were fixed at 10 in each case. The
user specified horizon is plotted on the X-axis, whereas
the information gain is plotted on the Y-axis. One
of the interesting observations was that in each case,
the information gain peaked at approximately the same
value of the user specified horizon. The exact value of
this user specified horizon was determined by the rate of
evolution of the data stream. This rate of evolution was
in turn determined by parameters such as maxrange and
epochsize. In particular, the value of epochsize (which
was fixed at 500) corresponds to the horizon in which a
clear evolution of the stream can be determined. This
is because within a given epoch, the base community
sets do not change, but their frequency evolves over
time. Correspondingly, the most distinct clusters can
also be determined for this choice of the horizon. The
graphs in Figures 6, 7, and 8 illustrate this trend in
which the information gain peaks at approximately 500,
but can also be a little different in some cases. For
example, in the case of Figure 7, the clustering process
does not peak at any point with the use of the average
distance function. This is because of the randomness
inherent in the clustering process itself. In each case,
the information gain was significantly higher than the
break-even value of 1. Furthermore, the behavior was
quite similar over different data sets and robust over the

65

entire range of horizons tested. This suggest that the
technique is able to find interesting and useful clusters
over different values of the horizon.

While the information gain is an effective mea-
sure of the clustering process, when there are a very
large number of overlapping clusters, we can get a
more intuitive idea of the nature of the community
clusters by using a smaller number of generating
community sets with very large epoch sizes. Therefore,
we used the generating community set C10.I11.D25,
with maxrange = 2 and epochsize = 10, 000. This
effectively means that in a given epoch, 10,000 edges
are generated using two overlapping communities.
Then, we utilized user horizons of size 20,000 to test
how the different clusters correspond to expanding
or contracting communities. In order to provide a
measure of an entity’s interaction, we compared its
level of interaction in the user specified horizon (th, t)
to that in the previous horizon (t − 2 · h, t − ·h). For
a given clustering, we separated out the nodes with
positive bias from the nodes with negative or neutral
bias. For each kind of node, we tested the probability
whether or not its interactions in (t − 2 · h, t) belonged
to the currently specified horizon (t − h, t). The tests
were performed at three different points in the stream
processing. The results are illustrated in Figure 9. It
is clear that a positive bias corresponds to a very high
probability that nodes are present in the user specified
horizon and vice-versa. This is consistent with the
aim of finding expanding or contracting communities.
We note that a perfect classification is not possible
since in some cases, entities were present both inside
and outside the horizon. Such entities could belong to
either expanding or contracting communities depending
upon the relative frequency in either. However, in most
cases, the conditional probability of an interacting
entity (not) belonging to a given horizon, given the
bias bit is greater (less) than zero, is greater than
80%.Therefore, the positive and negative bias cor-
respond to the expected phenomenon of expanding
or contracting communities. It also illustrates that
by using the bias bit of a cluster, it is possible to
identify expanding or contracting communities in a real
application.
To summarize, the following properties of the commu-
nity detection algorithm were observed:
(1) The minimum value distance function provided
more robust results than the average distance function.
This is especially because of the more robust computa-
tion of the minimum distance function in the case of
larger clusters.
(2) The clustering process was more robust when it
was able to separate out the different (overlapping)

clusters. Larger community sets resulted in greater
level of overlap among different clusters. Therefore, the
information gain was much higher when the community
sets were smaller.
(3) A larger number of clusters resulted in a higher
level of information gain. This is because the number
of overlapping community sets were very large and
increasing the number of input clusters also increased
the level of information gain.
(4) The clustering process was most effective when
the horizon was chosen in a way so as to match with
the evolution epoch in the data generation process.
Thus, the clustering process was sensitive to the level
of evolution in the data stream.
(5) The bias bit could be used to identify expanding or
contracting communities.

We tested the scalability of both the online stream
processing component and the offline and interactive
stream clustering component. The stream processing
component is important in order to be able to process
a high number of data points per second. In Figure
10, we have illustrated the scalability of the stream
processing component. The results for the two data
sets C4.I5.D500 and C10.I11.D500 are reported in terms
of the number of data points processed per second.
Therefore, the X-axis illustrates the progression of the
data stream whereas the Y-axis illustrates the number
of data points processed per second at that point in the
stream progression. In each case, the initial processing
rate was much higher than the steady state processing
rate. This is because the initial processing needed
to store very sparse graphs. Such graphs could be
stored away relatively efficiently. We note that the
data sets corresponding to C10.I11.D500 resulted in
denser graphs than those generated from C4.I5.D500.
The generation of such denser graphs also resulted in a
lower processing rate per second. This is clear from the
results illustrated in Figure 10. However, the difference
between the two graphs is relatively minor. In each case,
the data stream mining framework is able to process
thousands of data points per second.

We also tested the interaction time scalability of the
data stream. The scalability was tested with respect to
the number of clusters as well as the value of the user-
specified horizon. In Figure 11, we have illustrated the
scalability of the interaction time results with respect to
the number of the clusters in the data. The user-defined
horizon was fixed at 5000 in this case. In each case,
the results were averaged over 10 different queries. We
found that the interaction time increased approximately
linearly with the number of clusters in the data. The
results with respect to the user-specified horizon are

66

illustrated in Figure 12. The number of clusters in the
data were fixed at 10 in this case. In each case, the
interaction time increased with the horizon, though the
rate of increase was less than linear. This is because
very small horizons lead to extremely sparse graphs
which cluster very fast. With an increasing horizon, the
differential graph grows more dense. This is because
a larger number of edges can be included in a given
horizon. A more dense differential graph also results in
a greater amount of interaction time. However, the rate
at which the interaction time increases with horizon is
sublinear. This is because the denseness in the graph
levels off after a certain point. This behavior also shows
up in the interaction time. In each case, the interaction
times turned out to be extremely small and were usually
smaller than 1 or 2 seconds. This tends to indicate that
the process can be efficiently used in order to perform
online mining of the data streams effectively.

5 Conclusions and Summary

In this paper, we discussed a method for effective
community detection of data streams. The approach
in this paper finds communities in the graph data
stream using an online approach in which we find the
most relevant changes over a pre-defined horizon. The
results show that the techniques can find the relevant
communities in the data effectively even in case of
considerable overlap among the different constituents.
The quality of the clusters were defined in terms of an
intuitive measure known as the information gain. The
clusters in the data were shown to have a very high
level of information gain compared to the breakeven
behavior. The community detection approach separates
out the online stream processing part from the offline
community detection part which is based on user-
defined parameters. Such an approach provides the
maximum flexibility, since it is possible to process
a high speed data stream without losing the ability
to perform exploratory querying. The results show
that the online processing part is very efficient and
can process thousands of interactions per second. At
the same time, the offline interaction component is
able to process large community relationship sets in
online interaction times. This provides a user with a
comprehensive framework to query for changes in the
community behavior in online interaction times.

References

[1] C. C. Aggarwal, A Framework for Diagnosing Changes

in Evolving Data Streams, ACM SIGMOD Conference,
(2003).

[2] C. C. Aggarwal, J. Han, J. Wang, and P. Yu, A Frame-

work for Clustering Evolving Data Streams, VLDB
Conference, (2003).

[3] C. C. Aggarwal, J. Han, J. Wang, and P. Yu, On-

Demand Classification of Evolving Data Streams, ACM
KDD Conference, (2004).

[4] R. Agrawal, and R. Srikant, Fast Algorithms for Mining

Association Rules, VLDB Conference, (1994).
[5] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows:

Theory, Algorithms and Applications, Prentice Hall,
Englewood Cliffs, New Jersey, (1992).

[6] C. Cortes, D. Pregibon, and C. Volinsky, Communities

of Interest, Proceedings of Intelligent Data Analysis,
(2001).

[7] C. Cortes, D. Pregibon, and C. Volinsky, Computa-

tional Methods for Dynamic Graphs, Journal of Com-
putational and Graphical Statistics, 12, (2003), pp.
950-970.

[8] P. Domingos, and G. Hulten, Mining High-Speed Data

Streams, ACM SIGKDD Conference, (2000).
[9] D. Gibson, J. Kleinberg, and P. Raghavan, Inferring

Web Communities from Link Topology, Proceedings of
the 9th ACM Conference on Hypertext and Hyperme-
dia, (1998).

[10] D. Kempe, J. Kleinberg, and E. Tardos, Maximizing

the Spread of Influence Through a Social Network,
ACM KDD Conference, (2003).

[11] J. Kleinberg. Authoritative Sources in a Hyperlinked

Environment, ACM SODA Conference, (1998).
[12] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins,

On the Bursty Evolution of Blogspace, Proceedings of
the WWW Conference, (2003).

[13] G. Hulten, L. Spencer, and P. Domingos, Mining

Time Changing Data Streams, ACM KDD Conference,
(2001).

[14] S. Rajagopalan, R. Kumar, P. Raghavan, and A.
Tomkins, Trawling the Web for emerging cyber-

communities, Proceedings of the 8th WWW confer-
ence, (1999).

[15] N. Imafuji, and M. Kitsuregawa, Finding a Web Com-

munity by Maximum Flow Algorithm with HITS Score

Based Capacity, DASFAA, (2003), pp. 101–106.
[16] M. Toyoda, and M. Kitsuregawa, Extracting evolution

of web communities from a series of web archives,
Hypertext, (2003) pp. 28–37.

67

Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window

Chih-Hsiang Lin Ding-Ying Chiu Yi-Hung Wu
g914346@alumni.nthu.edu.tw dr908312@cs.nthu.edu.tw yihwu@mx.nthu.edu.tw

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Arbee L. P. Chen*

alpchen@cs.nccu.edu.tw
Department of Computer Science

National Chengchi University
Taipei, Taiwan, R.O.C.

Abstract
Mining frequent itemsets has been widely studied over
the last decade. Past research focuses on mining
frequent itemsets from static databases. In many of the
new applications, data flow through the Internet or
sensor networks. It is challenging to extend the mining
techniques to such a dynamic environment. The main
challenges include a quick response to the continuous
request, a compact summary of the data stream, and a
mechanism that adapts to the limited resources. In this
paper, we develop a novel approach for mining
frequent itemsets from data streams based on a
time-sensitive sliding window model. Our approach
consists of a storage structure that captures all
possible frequent itemsets and a table providing
approximate counts of the expired data items, whose
size can be adjusted by the available storage space.
Experiment results show that in our approach both the
execution time and the storage space remain small
under various parameter settings. In addition, our
approach guarantees no false alarm or no false
dismissal to the results yielded.

1 Introduction

Data items continuously flow through the Internet or
sensor networks in applications like network
monitoring and message dissemination. Efforts have
been made at providing a data stream management
system (DSMS), e.g., Telegraph [6], STREAM [25],
Niagara [11], and Aurora [1]. The characteristics of
data streams are as follows [4][17]:
1. Continuity: Data continuously arrive at a high rate.
2. Expiration: Data can be read only once.
3. Infinity: The total amount of data is unbounded.

The above leads to the following requirements:
1. Time-sensitivity: A model that adapts itself to the

time passing of a continuous data stream is needed.
2. Approximation: Because the past data cannot be

stored, a method for providing the approximate
answers with accuracy guarantees is required.

3. Adjustability: Owing to the unlimited amount of
data, a mechanism that adapts itself to available
resources is needed.

 *To whom all the correspondence should be sent.

Among the researches toward DSMS, extending
mining techniques to data streams has attracted much
attention [19][26][28][10][27]. In this paper, we focus
on the problem of mining frequent itemsets over a data
stream. In this problem, a data stream is formed by
transactions arriving in series. The support count of an
itemset means the number of transactions containing it
and a frequent itemset means the one with a sufficient
support count.

Mining frequent itemsets in static databases has
been widely studied over the last decade. Many
methods such as Apriori [2], FP-growth [18], and
OpportuneProject [23] have been proposed. In addition,
the methods that incrementally mine frequent itemsets
in dynamic databases [12][22][8] have been presented
as well. In these methods, all the frequent itemsets and
their support counts derived from the original database
are retained. When transactions are added or expired,
the support counts of the frequent itemsets contained in
them are recomputed. By reusing the frequent itemsets
and their support counts retained, the number of
candidate itemsets generated during the mining process
can be reduced. All these methods have to rescan the
original database because non-frequent itemsets can be
frequent after the database is updated. Therefore, they
cannot work without seeing the entire database and
cannot be applied to data streams.

Recent works on mining frequent itemsets over data
streams are classified into two groups, mining frequent
items and mining frequent itemsets. Most of them
[15][21][24] utilize all the data between a particular
point of time (called landmark) and the current time for
mining. The landmark usually refers to the time when
the system starts. Moreover, the support count of an
itemset in this model is the number of transactions
containing it between the landmark and the current
time. The landmark model is illustrated in Figure 1.

Figure 1: Landmark model

To find frequent items [15][21][24] under this
model, the support count of each incoming item is

68

accumulated on a counter. Since the number of distinct
items is often more than available counters, sampling
techniques are employed to assign items to counters
and then estimate the support counts of all the items.

For mining frequent itemsets, Lossy-counting [24]
is the representative approach under the landmark
model. It keeps monitoring the maximum possible
count of each itemset in the past data, called the
maximum possible error. Given an error tolerance
parameter and a support count threshold, this approach
computes the approximate count of each itemset with
an accuracy guarantee and regards the itemsets whose
approximate counts exceed the support count threshold
as frequent. Since the approximate count of an itemset
keeps growing as time goes by, the support count
threshold is also increasing along the time axis.

All these approaches satisfy one requirement
mentioned above – approximation. However, in many
applications, new data are often more important than
old ones. For example, when mining the Web click
streams, the most recent data usually provides more
useful information than those that arrived previously.
The landmark model is not aware of time and therefore
cannot distinguish between new data and old ones. To
overcome this difficulty, the time-fading model, a
variation of the landmark model, has been presented in
recent works [7][13][16]. It assigns different weights to
transactions such that new ones have higher weights
than old ones. As shown in Figure 2, the weights are
decreasing as time passes by.

Figure 2: Time-fading model

The estDec method in [7] is proposed for mining
frequent itemsets under this model. By using a decay
rate, the effects of old transactions diminish as time
goes by. For example, let the decay rate and the
support count of itemset X be d and v, respectively. As
a new transaction containing X arrives, the new support
count of X is equal to v×d+1. Obviously, when d equals
1, the time-fading model becomes the landmark model.
In [13], a variety of decay functions are also introduced
to maintain aggregates under the time-fading models.

FP-stream approach in [16] provides a way to mine
frequent itemsets under the time-fading model. Two
parameters, the minimum support count σ and the
maximum support error ε where σ ≥ ε, are used to
classify all the itemsets into three categories:
• Frequent: Support count is greater than and equal

to σ.
• Sub-frequent: Support count falls in [ε, σ].
• Infrequent: Support count is smaller than ε.

Next, only frequent and sub-frequent itemsets are
stored and organized as a pattern tree, a variation of
the FP-tree [18]. Figure 3 shows a pattern tree, where a
path starting at the root stands for an itemset. The
count of each itemset is asymmetrically distributed into
multiple time slots such that the recent time period is
assigned more time slots than the past. The assignment
of time slots is illustrated by the tilted time window
shown in Figure 3. It is suitable for people to mine the
recent data at a fine granularity while mining the
long-term data at a coarse granularity.

4 qtrs24 hours31 days12 months
time

Figure 3: Pattern tree and Tilted-time window

All these approaches provide approximate answers
for long-term data and adjust their storage requirement
based on the available space. Therefore, they satisfy
the two requirements – approximation and adjustability.
However, the time-fading model (including the
landmark model) has its essential limitation, i.e., the
support count is computed from the entire data set
between the landmark and the current time. In certain
applications, users can only be interested in the data
recently arriving within a fixed time period. Obviously,
the models previously presented are unable to satisfy
this need. On the contrary, the sliding-window model
shown in Figure 4 achieves this goal. Given a window
size W, only the latest W transactions are utilized for
mining. As a transaction arrives, the oldest transaction
in the sliding window is expired. Therefore, under this
model, the methods for finding the expired transaction
and for discounting the support counts of the itemsets
involved are required.

Figure 4: Sliding-window model

Babcock et al. [5] develop a mechanism, which can
dynamically combine adjacent buckets in a histogram,
to monitor the variance and k-medians in a sliding

69

window. In [9][14][20], hash-based methods are
proposed to mine frequent items. In these methods, a
fixed number of counters and hashing functions are
used. An item is then assigned to the corresponding
counters based on its hashed values. Each counter
accumulates the support counts of the items with the
same value hashed. In this way, the support count of an
item can be estimated from the corresponding counters.
Since these methods assume the expired transaction to
be available, the update of these counters can be fast.
However, the characteristic – expiration, said that it is
not reasonable to have a chance to see the expired
transaction again. In a recent work, Arasu and Manku
[3] extend the Lossy-counting to the sliding-window
model. Their approach can estimate the approximate
counts and quantiles with certain accuracy guarantees.

Compared with the previous models considering
only the insertion of transactions, the sliding-window
model further considers the deletion of transactions.
Therefore, if a method succeeds in the sliding-window
model, it can be easily applied to the previous models.
Moreover, all the previous works consider a fixed
number of transactions as the basic unit for mining,
which is not easy for people to specify. By contrast, it
is natural for people to specify a time period as the
basic unit. Therefore, in this paper, we propose the
time-sensitive sliding-window model, which regards a
fixed time period as the basic unit for mining.

Definition 1.1 Time-sensitive Sliding-window (TS)
Given a time point t and a time period p, the set of all
the transactions arriving in [t-p+1, t] will form a basic
block. A data stream is decomposed into a sequence of
basic blocks, which are assigned with serial numbers
starting at 1. Given a window with length |W|, we slide
it over this sequence to see a set of overlapping
sequences, where each sequence is called the
time-sensitive sliding-window abbreviated as TS.

Let the basic block numbered i be denoted as Bi.
The number of transactions in Bi is denoted as |Bi|,
which is not fixed due to the variable data arrival rate.
For each Bi, the TS that consists of the |W| consecutive
basic blocks from Bi-|W|+1 to Bi is denoted as TSi. Let
the number of transactions in TSi be denoted as ∑i.

Definition 1.2 Frequent Itemsets in TSi/Bi
The support count of an itemset in TSi (Bi) is the
number of transactions in [Bi-|W|+1, … Bi] (Bi)
containing it. Given the support threshold θ, an itemset
is frequent in TSi (Bi) if its support count in TSi (Bi) is
not smaller than θ×∑i (θ×|Bi|).

Owing to the characteristics of data streams, it is not
realistic to scan the past basic blocks again and again
for mining frequent itemsets in each of the subsequent
TS’s. In this paper, we assume that only the summary
information derived from TSi-1 is provided for mining
frequent itemsets in TSi. Such a scenario is illustrated

in Figure 5, where the basic unit is one day and |W| is 3.
As the new basic block B6/21 comes, the oldest basic
block B6/18 in TS6/20 is expired. To find frequent
itemsets in TS6/21, we consider three kinds of itemsets
from two sources, the frequent itemsets in TS6/20 and
the frequent ones in B6/21, as follows:
• For each frequent itemset in TS6/20, the support

count is discounted if it occurs in B6/18 and then
updated by examining B6/21. A mechanism to keep
its support count in B6/18 and a way to find its
support count in B6/21 are needed.

• A frequent itemset in B6/21, which is not frequent in
TS6/20, can be frequent in TS6/21. The methods for
computing its support count in TS6/20 and for mining
frequent itemsets in B6/21 are required.

• An itemset that is not frequent in both TS6/20 and
B6/21 cannot be frequent in TS6/21.

Figure 5: Time-sensitive sliding-window model

Since all the methods developed under other models
accumulate the support count for each frequent itemset,
no discounting information is provided. Furthermore,
the hash-based approaches for mining frequent items
under the sliding-window model assume that the
expired transactions are available. However, for mining
frequent itemsets, it is not reasonable to allow that the
expired transactions can be reexamined. Therefore, in
this paper, we introduce a novel approach to address
the issues described above. First of all, we devise a
data structure named the discounting table (DT) to
retain the frequent itemsets with their support counts in
the individual basic blocks of the current TS. Moreover,
a data structure named the Potentially Frequent-itemset
Pool (PFP) is used to keep the frequent itemsets in TSi
and the frequent ones in Bi. We include the itemsets
that are frequent in Bi but not frequent in TSi-1 in PFP
because they are possibly frequent in TSi.

Definition 1.3 Potentially Frequent Itemset
A frequent itemset in Bi that is not frequent in TSi-1 is
called a potentially frequent itemset. Since its support
count in TSi-1 is not recorded, we estimate that as the

70

largest integer less than θ×∑i-1, i.e., the upper bound of
its support count in [Bi-|W|, … Bi-1]. This is called the
potential count and also recorded in PFP.

For the itemsets in PFP that are not potentially
frequent, the potential counts are set to 0. In this way,
each itemset in PFP is associated with the potential
count and the accumulated count. Moreover, the sum
of the two counts is regarded as the support count of
this itemset in TSi and used to determine whether it
should be kept in PFP. When Bi arrives, three pieces of
information are available for mining and discounting:
• DT: Frequent itemsets with support counts in each

of the basic blocks Bi-|W|, … Bi-1.
• PFP: Frequent itemsets in TSi-1 or Bi-1.
• All the frequent itemsets discovered from Bi.

Mining frequent itemsets in TSi consists of four
steps. At first, the support counts of frequent itemsets
in PFP are discounted according to DT and then the
frequent itemsets in Bi-|W| are removed from DT.
Second, the frequent itemsets in Bi are mined by using
FP-growth [18] and added into PFP with their potential
counts computed. Third, for each itemset that is in PFP
but not frequent in Bi, we scan Bi to accumulate its
support count and then delete it from PFP if it is not
frequent in TSi. At last, two alternatives to determine
the frequent itemsets for output are provided:
1. Recall-oriented: All the itemsets kept in PFP are

output. Since all the frequent itemsets in TSi are in
PFP, it guarantees that no false dismissal occurs.

2. Precision-oriented: We output only those itemsets
whose accumulated counts in PFP satisfy θ×∑i.
Because for the potentially frequent itemsets, these
counts are lower bounds of their support counts, it
guarantees that no false alarm occurs.
In addition to the mining and discounting methods,

we further design the self-adjusting discounting table
(SDT) that can automatically adjust its size when
maintaining the discounting information. Given a
limitation on the size of SDT, we devise a strategy to
merge the information of more than one itemset kept in
SDT. The main idea is to minimize the difference
between the original support count of each itemset and
its approximate count after merging. The most
important finding is that the two guarantees described
above still hold when SDT is deployed. The following
are the contributions of our paper, corresponding to the
three requirements mentioned before.
• Time-sensitive sliding-window model: We propose

a model that is sensitive to time. To our knowledge,
this paper is the first one addressing the issues of
mining frequent itemsets over data streams under
this model.

• Mining and discounting methods: An approach
that continuously provides frequent itemsets over
data streams under our model is introduced. The

accuracy guarantees of no false dismissal or no false
alarm are provided.

• Self-adjusting discounting table: A mechanism
that is self-adjusting under the memory limitation is
presented. The accuracy guarantees still hold.
The remainder of this paper is organized as follows.

Section 2 details the mining and discounting methods,
including the system framework and main operations.
In Section 3, we present the self-adjusting discounting
table. The experiment results are shown and discussed
in Section 4. In Section 5, we conclude this paper.

2 Mining and Discounting

2.1 System framework

Figure 6 shows the system framework of our approach.
The data stream is a series of transactions arriving
continuously. Four parameters, the support threshold θ,
the basic unit of time period for each basic block P, the
length of TS |W|, and the output mode M, are given
before the system starts. As Definition 1.1 states, a data
stream is divided into blocks with different numbers of
transactions according to P. The buffer continuously
consumes transactions and pours them block-by-block
into our system. After a basic block triggers these
operations and goes through our system, it will be
discarded directly.

Figure 6: System framework

Because the basic blocks may have different
numbers of transactions, we dynamically compute the
support count threshold θ×|Bi| for each basic bock Bi
and store it into an entry in the threshold array (TA),
denoted as TA[i]. In our approach, only |W|+1 entries
are maintained in TA. As Bi arrives, TA[j] keeps the
support count threshold of Bi-j for 1≤j≤|W|+1 and i-j>0.
After Bi is processed, the last entry TA[|W|+1] is
ignored and the others are moved to the next positions,
i.e., TA[j]→TA[j+1] for 1≤j≤|W|. Finally, the support
count threshold of Bi is put into TA[1].

In addition to TA_update, the arrival of a basic
block also triggers the other operations in Figure 6,
which are differently executed in three cases. For each
case, Frequent_itemset_output is used to pick up the

71

answers satisfying M from PFP. Figure 7 shows the
main algorithm. First, as B1 comes, two operations are
executed one by one:
• New_itemset_insertion: An algorithm for mining

frequent itemsets is applied to the transactions in the
buffer. Each frequent itemset is inserted into PFP in
the form of (ID, Items, Acount, Pcount), recording a
unique identifier, the items in it, the accumulated
count, and the potential count, respectively. Since an
itemset is added into PFP, Acount accumulates its
exact support counts in the subsequent basic blocks,
while Pcount estimates the maximum possible sum
of its support counts in the past basic blocks. For B1,
Pcount is set as 0.

• DT_maintenance: Each itemset in PFP is inserted
into DT in the form of (B_ID, ID, Bcount), recording
the serial number of the current basic block, the
identifier in PFP, and its support count in the current
basic block, respectively. For B1, B_ID is set as 1.

Input: Stream S, Parameters θ, P, |W|, M
Output: All the frequent itemsets satisfying M
1. Let TA, PFP, and DT be empty //∀j, TA[j]=0
2. While Bi comes //from the buffer
 2.1 If (i = 1) //B1
 2.1.1 New_itemset_insertion
 2.1.2 DT_maintenance
 2.2 Else If (i ≤ |W|) //B2…B|W|
 2.2.1 New_itemset_insertion
 2.2.2 Old_itemset_update
 2.2.3 DT_maintenance
 2.3 Else //B|W|+1…
 2.3.1 Itemset_discounting
 2.3.2 New_itemset_insertion
 2.3.3 Old_itemset_update
 2.3.4 DT_maintenance
 2.4 TA_update //∀j, TA[j+1]=TA[j], TA[1]=θ×|Bi|
 2.5 Frequent_itemset_output

Figure 7: Main algorithm

When Bi arrives, where 1<i≤|W|, three operations
are executed one by one:
• New_itemset_insertion: In this case, we further

check every frequent itemset discovered in Bi to see
whether it has been kept by PFP. If it is, we increase
its Acount. Otherwise, we create a new entry in PFP
and estimate its Pcount as the largest integer that is
less than θ×∑i-1.

• Old_itemset_update: For each itemset that is in
PFP but not frequent in Bi, we compute its support
count in Bi by scanning the buffer to update its
Acount. After that, an itemset in PFP is deleted if its
sum of Acount and Pcount is less than θ×∑i.

• DT_maintenance: This operation is the same as
described previously except that B_ID is set as i.
At last, when Bi arrives, where i>|W|, the window

slides and 4 operations are executed one by one. Before

that, an extra operation is executed:
• Itemset_discounting: Since the transactions in

Bi-|W| will be expired, the support counts of the
itemsets kept by PFP are discounted accordingly.
We classify the itemsets into two groups by Pcount.
If it is nonzero, we repeatedly subtract the support
count thresholds of the expired basic blocks from
Pcount and finally set Pcount to 0. If Pcount is
already 0, we subtract Bcount of the corresponding
entry in DT from Acount. Finally, each entry in DT
where B_ID = i−|W| is removed.

2.2 Main operations

Figure 8 shows the steps of New_itemset_insertion.
First, we adopt the FP-growth algorithm to mine all the
frequent itemsets from Bi. Let Fi denote this set. Next,
we check each itemset in Fi to see whether it has been
kept in PFP and then either update or create an entry.
Input: Bi
Output: Fi, updated PFP
1. Discover Fi from Bi
2. For each itemset f in Fi
 2.1 If (f∈PFP) Increase f.Acount

 2.2 Else Insert f into PFP //Estimate f.Pcount

Figure 8: New_itemset_insertion

At Step 2.2, we need to estimate the Pcount for each
itemset in Fi but not in PFP. The rationale of our
estimation is as follows. Let f be such an itemset. Let S
denote the sequence of basic blocks [Bi-|W|+1, … Bi-1],
which is a subsequence of TSi-1, i.e., [Bi-|W|, … Bi-1].
According to Old_itemset_update, f is not kept by
PFP only if it is non-frequent in TSi-1. Therefore, the
support count of f in TSi-1 cannot be more than θ×∑i-1.
As a result, we estimate Pcount, the maximum possible
count of f in S, as follows:

⎡ ⎤ [])1 (1jTA1ΣθTSPcount at
W

1j
1ii −⎥

⎥

⎤
⎢
⎢

⎡
=−×= ∑

=
−

Figure 9 shows the steps of Old_itemset_update.
For each itemset g that has been kept by PFP but not in
Fi, we compute its support count in Bi to increase its
Acount. Suppose that g was inserted into PFP when Bk
comes (k<i). At this point, we have g.Acount, the exact
support count of g in [Bk, … Bi], and g.Pcount, the
maximum possible support count of g in [Bi-|W|+1, …
Bk-1]. If the sum is less than the support count threshold,
g must not be frequent in TSi and can be safely deleted
from PFP.
Input: Fi, Bi, PFP
Output: updated PFP
1. For each itemset g in PFP but not in Fi
 1.1 Increase g.Acount by scanning Bi once

 1.2 If (g.Acount + g.Pcount < θ×∑i)
 Delete g from PFP

Figure 9: Old_itemset_update

72

DT_maintenance is shown in Figure 10. Each
itemset in PFP is added to DT together with its support
count in Bi. In this section, we assume that there is
unlimited memory space utilized for DT_maintenance.
The DT_maintenance under a limited memory space
will be presented in the next section.
Input: PFP, DT
Output: updated DT
1. For each itemset f in PFP
 Append f to DT

Figure 10: DT_maintenance

We design the steps of Itemset_discounting in
Figure 11. At first, we classify all the itemsets in PFP
into two groups by Pcount. Each itemset uses Pcount to
keep its maximum possible count in the past basic
blocks before it is inserted into PFP. By Formula (1),
since Bi comes, Pcount is computed by including the
support count threshold of an extra basic block, i.e.,
Bi-|W|. As Bi+1 comes, if Pcount is nonzero, we subtract
the support count threshold of Bi-|W| from Pcount. If
Pcount is smaller than the support count threshold of
Bi-|W|+1, Acount should have the exact support counts
from Bi-|W|+2 to Bi-+1.In this case, we set Pcount to 0.
When Pcount is zero, we directly decrease its Acount
by its Bcount of the corresponding entry in DT.
Input: PFP, DT, i
Output: updated PFP, updated DT
1. For each itemset g in PFP
 1.1 If (g.Pcount = 0)
 1.1.1 Find entry h in DT where (g.ID = h.ID) and
 (h.B_ID = i–|W|)
 1.1.2 g.Acount = g.Acount – h.Bcount
 1.2 Else
 1.2.1 g.Pcount = g.Pcount – TA[|W|+1]
 1.2.2 If (g.Pcount < TA[|W|])
 g.Pcount = 0
2. For each entry h in DT
 If (h.B_ID = i–|W|) Remove h from DT

Figure 11: Itemset_discounting

When the first |W| basic blocks come, there is no
extra basic block to overestimate the value of Pcount.
Therefore, Pcount is not decreased at the first time the
window slides, i.e., as B|W|+1 arrives. In this case, Step
1.2.1 has no effect since TA[|W|+1] is 0. After the
discounting, we can safely remove all the entries in DT
belonging to Bi-|W|.

Example 2.1
Take Figure 12 as an example. Let W be 3. Assume that
an itemset g is inserted into PFP in 6/18. By Formula
(1), g.Pcount is computed from the support count
thresholds in 6/15-6/17. When the TS moves to 6/19,
g.Pcount is decreased and only considers 6/16-6/17. As
the TS moves to 6/20, since g.Acount accumulates the
support counts in 6/18-6/20, g.Pcount is set 0. As the

TS moves to 6/21, g.Acount is discounted by dropping
its support count in 6/18.

1
17/6

15/6

−⎥
⎥

⎤
⎢
⎢

⎡ ∗ ∑
=i

iBS

1
17/6

16/6

−⎥
⎥

⎤
⎢
⎢

⎡ ∗ ∑
=i

iBS

Figure 12: An example of Itemset discounting

As mentioned before, PFP keeps not only the
frequent itemsets in TSi but also the ones in Bi. In
Formula (1), Pcount in PFP is overestimated. Therefore,
if all the itemsets in PFP are outputted, it guarantees
that no true answer is missed. It is called the
no-false-dismissal mode (denoted as NFD). In this
mode, an itemset that is frequent in Bi but not in TSi is
still outputted. Sometimes user hopes that all the
itemsets outputted are real answers. Therefore, we also
provide the no-false-alarm mode (denoted as NFA),
which outputs only the itemsets with Acount satisfying
the support count threshold. Since Acount accumulates
the support counts of an itemset in the individual basic
blocks after that itemset is inserted into PFP, this mode
guarantees that no false answer is outputted. The steps
of Frequent_itemset_output are shown in Figure 13.
Input: PFP
Output: The set of frequent itemsets O
1. If (M = NFD)
 For each itemset f in PFP
 O = O + {f}

 2. Else //M=NFA
 For each itemset f in PFP
 If (f.Acount ≥ θ×∑i) O = O + {f}

Figure 13: Frequent_itemset_output

Example 2.2
Let θ, |W|, and P be 0.4, 3, and 1 hour, respectively.
Consider the stream of transactions shown in Table 1.

Table 1: A stream of transactions
 Time period Number of

transactions
Itemset (and its
count)

B1 09:00~09:59 27 a(11),b(20),c(2),ab(6)
B2 10:00~10:59 20 a(20),c(13),ac(13)
B3 11:00~11:59 27 a(19),b(8),c(7),ac(7)
B4 12:00~12:59 23 a(10),c(3),d(10)

73

Initially, PFP and DT are empty and TA[j] = 0 for
all j. For the 1st hour (i.e., B1), the support count
threshold is 0.4×27 (10.8). By New_itemset_insertion,
only a and b are frequent and inserted into PFP with
Pcount 0. In DT_maintenance, both of them are put in
DT. TA is updated and the results are shown in Figure
14, where a and b are outputted for both modes.

Figure 14: A snapshot after B1 passes

For the 2nd hour (B2), the support count threshold is
0.4×20 (8). The itemsets c and ac are inserted into PFP
with Pcount 10, which is the maximum possible count
of a non-frequent itemset in B1. In addition, we
accumulate the support counts of a in 2 hours to get its
Acount (=31). In Old_itemset_update, B2 is scanned
once to compute the support count of b since b is in
PFP but not frequent in B2. Because the support count
threshold is the sum of 10.8 and 8, i.e., 18.8, b is still
kept in PFP. Finally, all the 4 itemsets are appended to
DT and then TA is updated. The results are shown in
Figure 15. Under the NFD mode, all the itemsets in
PFP are outputted, while only a and b are outputted
under the NFA mode.

Figure 15: A snapshot after B2 passes

For the 3rd hour (B3), the support count threshold is
also 10.8. Since the frequent itemset a in B3 also exists
in PFP, we accumulate its support counts in 3 hours to
get its Acount 50. In Old_itemset_update, B3 is
scanned thrice to compute the support counts of b, c,
and ac, respectively. For the support count threshold
29.6, we keep c and ac in PFP but delete b since its
Acount plus its Pcount is 28. All the 3 itemsets are
appended to DT and TA is updated. Figure 16 shows
the results and only a is outputted for the NFA mode.

For the 4th hour (B4), Itemset_discounting is
executed. First, we check and discount the itemsets in
PFP. Since a.Pcount is 0, we decrease a.Acount as 39
according to DT. For c and ac, we first subtract TA[4]
(=0) from their potential counts and then set them to 0
because they are smaller than the support count

threshold of B1. Secondly, all the entries of B1 in DT
are removed. After that, we repeat the remaining
operations as described above. The support count
threshold of B4 is 9.2. Therefore, d is inserted into PFP
with Pcount 29, while a.Acount is increased as 49.
During Old_itemset_update, for c and ac, their sums
of Acount and Pcount are 23 and 20, respectively. Both
of them are deleted because the current support count
threshold is 28 (8+10.8+9.2). The final results are
shown in Figure 17.

Figure 16: A snapshot after B3 passes

Figure 17: A snapshot after B4 passes

3. Self-adjusting Discounting Table

In this section, we refine DT_maintenance to address
the issue of the limited memory space. Among the data
structures maintained for mining and discounting in
our approach, DT often consumes most of the memory
space. When the limit is reached, an efficient way to
reduce the DT size without losing too much accuracy is
required. A straightforward way is to merge the entries
in DT as needed. The main challenge is how to quickly
select the entries for merging such that the resultant DT
still performs well in discounting. In the following, a
naive solution called the naïve adjustment is introduced
first and then our proposed method named the selective
adjustment is presented.

3.1 Naïve adjustment

Since each entry is appended to the end of DT when it
shows up, we can regard DT as a list of triples (B_ID,

74

ID, Bcount) sorted by B_ID and ID, e.g., the figures in
Example 2.2. Let the kth entry in DT be DTk. Every two
adjacent entries satisfy one of the following properties:
1. DTk.B_ID < DTk+1.B_ID
2. DTk.B_ID = DTk+1.B_ID and DTk.ID < DTk+1.ID

When the size of DT reaches its limit, the naïve
adjustment finds the two adjacent entries satisfying the
2nd property and then merges them into one. Figure 18
illustrates the DT_maintenance with naïve adjustment,
where DT_size and DT_limit respectively denote the
number of entries in DT and its upper bound due to the
limited memory space.
Input: PFP, DT, DT_size, DT_limit //DT_limit > |W|
Output: updated DT
1. For each itemset f in PFP
 1.1 If (DT_size = DT_limit) //DT is full
 1.1.1 k = 2 //naïve adjustment
 1.1.2 While (DTk.B_ID≠DTk-1.B_ID) k++
 1.1.3 DTk-1.ID = DTk-1.ID ∪ DTk.ID
 1.1.4 If (M=NFD)
 DTk-1.Bcount=min{DTk-1.Bcount, DTk.Bcount}
 1.1.5 Else //M=NFA
 DTk-1.Bcount=max{DTk-1.Bcount, DTk.Bcount}
 1.1.6 Remove DTk from DT; DT_size--
 1.2 Append f to DT; DT_size++

Figure 18: DT_maintenance with naïve adjustment

At the beginning of naïve adjustment, we scan DT
from top to bottom and merge the first two entries
having the same B_ID. Note that after Step 1.1.2, the
entries DTk-1 and DTk always exist so long as DT_limit
is larger than |W|. In this way, only the adjacent entries
having the same B_ID are merged. The memory space
freed is immediately used for the new entry appended
to DT. Except for the unchanged B_ID, we also assign
ID and Bcount to the new entry after merging. Since
we sort the entries having the same B_ID by ID, the
ID’s from the adjacent entries can be represented as a
range of ID’s, i.e., “smallest ID−largest ID”. Therefore,
as Step 1.1.3 indicates, we use the range covered by the
ID’s from DTk-1 and DTk as the ID of the new DTk-1.

On the other hand, the assignment of Bcount is
different and depends on the output mode M given by
the user. For the NFD mode, we underestimate Bcount
such that the support count of an itemset is discounted
as less as possible and thus overestimated. In this case,
we choose the smaller Bcount between DTk-1 and DTk
as the Bcount of the new DTk-1 as Step 1.1.4 indicates.
By contrast, for the NFA mode, we underestimate the
support count of an itemset by discounting it as more
as possible. Therefore, in Step 1.1.5, the larger Bcount
between DTk-1 and DTk is chosen.

Example 3.1
Suppose that the 6 itemsets in Table 2 will be inserted
into DT but DT_limit is set to 4. In addition, the output
mode is NFD. Initially, DT is empty. The 4 itemsets A,

B, C, and F are added one by one to form Table 3(a).
Since DT is full now, the naïve adjustment is executed
before the addition of AF. Specifically, the entries (1, 1,
12) and (1, 3, 13) are selected and merged into (1, 1−3,
12) as Table 3(b) shows. After that, AF is added to DT.
For the addition of G, the naïve adjustment is executed
again and the first 2 entries are merged into (1, 1−4, 2)
as Table 3(c) indicates.

Table 2: The itemsets to be inserted

Table 3: The process of the naïve adjustment

The naïve adjustment is fast but provides inaccurate

information for discounting when too many entries are
merged together. Take (1, 1−4, 2) in Table 3(c) as an
example. Due to the NFD mode, the value 2 stands for
the minimum Bcount among the merged entries. When
discounting itemsets A, B, and C, the errors are 10, 11,
and 0, respectively. We call the sum of these errors the
merging loss. For an entry in DT, the smaller merging
loss it has, the more accurate Bcount it will provide for
discounting. Next, we will introduce our method that
uses the merging loss to select the entries for merging.

3.2 Selective Adjustment

In our method, each entry DTk is in the new form of
(B_ID, ID, Bcount, AVG, NUM, Loss). DTk.AVG keeps
the average of support counts for all the itemsets
merged into DTk, DTk.NUM is the number of itemsets
in DTk, while DTk.Loss records the merging loss of
merging DTk with DTk-1. The main idea of our method
is to select the entry with the smallest merging loss,

75

called the victim, and merge it into the entry above it.
DT1.Loss and DTk.Loss are set ∞ to avoid being the
victim, ∀k, DTk.B_ID≠DTk-1.B_ID. Since the merging
loss of an entry depends on the output mode M, we
formulate it as follows:

Definition 3.1 Merging loss
For k>1 and DTk.B_ID=DTk-1.B_ID, DTk.Loss under
the NFD mode is computed as follows:
()

{ } ())2(.NUMDT.NUMDT.BcountDT .Bcount,DTmin

.AVGDT.NUMDT.AVGDT.NUMDT

1-kk1-kk

1-k1-kkk

+×
−×+×

DTk.Loss under the NFA mode is computed as follows:
{ } ()

())3(.AVGDT.NUMDT.AVGDT.NUMDT

.NUMDT.NUMDT.BcountDT .Bcount,DTmax

1-k1-kkk

1-kk1-kk

×+×−
+×

According to the same reason for the assignment of
Bcount in the naïve adjustment, we use the minimum
(maximum) Bcount in the computation of merging loss
under the NFD (NFA) mode. As a result, the smaller
merging loss DTk has, after merging, the more accurate
Bcount DTk-1 will provide. Figure 19 illustrates the
DT_maintenance with selective adjustment.
Input: PFP, DT, DT_size, DT_limit
Output: updated DT
1. For each itemset f in PFP
 1.1 If (DT_size = DT_limit)
 1.1.1 Scan DT once to select the victim //DTk
 1.1.2 DTk-1.ID = DTk-1.ID ∪ DTk.ID
 1.1.3 If (M=NFD)
 DTk-1.Bcount=min{DTk-1.Bcount, DTk.Bcount}
 1.1.4 Else //M=NFA
 DTk-1.Bcount=max{DTk-1.Bcount, DTk.Bcount}
 1.1.5 DTk-1.NUM = DTk-1.NUM + DTk.NUM
 1.1.6 Compute DTk-1.AVG
 1.1.7 If (DTk-1.Loss≠∞) Recalculate DTk-1.Loss
 1.1.8 Remove DTk from DT; DT_size--
 1.1.9 If (DTk+1.Loss≠∞) Recalculate DTk+1.Loss
 1.2 Append f to DT; DT_size++
Figure 19: DT_maintenance with selective adjustment

At the beginning of selective adjustment, we scan
DT once to find the victim. Suppose that DTk is the
victim and will be merged into DTk-1. For the new
DTk-1, the assignment of ID and Bcount follows the
same way in the naïve adjustment. Moreover, NUM is
assigned with the sum of DTk-1.NUM and DTk.NUM,
while AVG is computed as follows:

)4 (
.NUM

1k
DT.NUM

k
DT

.NUM
1-k

DT.AVG
1-k

DT.NUM
k

DT.AVG
k

DT

−+

×+×

Based on the new DTk-1.Bcount, DTk-1.AVG, and
DTk-1.NUM, DTk-1.Loss can be computed by Definition
3.1. Note that if the old DTk-1.Loss has been set ∞, it is
unchanged. After the merging, the merging loss of the
entry below the victim, i.e., DTk+1.Loss, is also updated
as Step 1.1.9 indicates.

Example 3.2
Consider Table 2, DT_limit=4, and M=NFD. Table 4(a)
shows the DT as itemset A is added. Since it is the first
entry, its merging loss is set ∞. As itemset B is added,
we compute its merging loss by Formula (2) and the
result is shown in Table 4(b). In the same way, we add
itemsets C and F to form the DT in Table 4(c). Since
DT is full now, the selective adjustment is executed
before the addition of AF. Specifically, the entry (1, 3,
13, 13, 1, 1) is selected as the victim and merged with
(1, 1, 12, 12, 1, ∞). The result after merging forms the
first entry in Table 4(d), where DT1.Loss is ∞ and
DT1.AVG (=12.5) is computed by Formula (4). Notice
that DT2.Loss is changed from 11 to 21 as Step 1.1.9
indicates. Finally, we add itemset G in a similar way to
obtain the final result in Table 4(e).

Table 4: The process of the selective adjustment

Consider the final results in Example 3.1 and 3.2. In

the former, the sum of all the merging losses is (12-2)
+ (13-2) + (2-2) + (10-10) + (10-10) + (8-8) = 21. In
the latter, the sum of all the merging losses is (12-12) +
(13-12) + (2-2) + (10-10) + (10-10) + (8-8) = 1. In this
case, obviously, our method provides a higher accuracy
of discounting information than a naïve solution.

4. Experiments

In this section, we will describe the experimental
evaluation of our algorithms. The experimental setting

76

is first described and then the results are presented.

4.1 Experimental Setting

The experiments are made upon the PC with the Intel
Pentium-M 1.3GHz CPU, 256 MB main memory and
Microsoft Windows XP Professional. The programs are
written in C and compiled using Microsoft Visual C++
6.0. The mining algorithm we applied to find frequent
itemsets in a basic block is the FP-growth. The datasets
streaming into our system are synthesized via the IBM
data generator [2], where we adopt most of its default
values for the command options. For clarity, we name
each dataset in the form of TxxIxxDxx, where T, I, and
D mean the average transaction length, the average
length of the maximum pattern, and the total number of
transactions, respectively. To simulate data streams, we
divide a dataset into basic blocks with equal size (i.e.,
10K transactions) and feed them into the buffer. The
parameter setting used in the experiments (unless
explicitly specified otherwise) is shown in Table 5.

Table 5: Parameter setting
Parameter Value
Number of distinct items 1K
DT_limit 10K
θ 0.0025
|W| 4
T 3~7
I 4
D 150K

Two kinds of experiments have been made. First,
the required execution time and memory usage are two
indicators of the efficiency for mining data streams.
We compare the execution times of our approach in the
PFP maintenance part, the DT maintenance part, and
the mining part (FP-growth). The memory usage
referring to the memory space consumed for both PFP
and DT is reported. In addition, the scalability of our
approach for the minimum support threshold is also
evaluated. On the other hand, under the NFD (NFA)
mode, the number of false alarms (false dismissals) is
also a good indicator of the effectiveness for mining
data streams. We define measures to estimate them and
to compare the two strategies for maintaining the SDT.

4.2 Efficiency on Time and Space

First, we evaluate the execution time of our approach
adopting the selective adjustment for T=3~7. Since the
results show similar trends, only Figure 20 (T=7) is
shown. The 4 curves in it refer to the execution time in
3 parts and the total, respectively. Our observations are
as follows:
• The mining part dominates the total execution time.

That is, New_itemset_insertion is the bottleneck of
our algorithm, while the other operations are fast.

• The execution time of DT maintenance part is close

to zero in most cases. It verifies the feasibility of the
SDT for mining data streams.

• Although the execution time of the mining part is
sensitive to T, the total execution time increases
slowly as the growth of T. It indicates the fast
response time our approach achieved.

0

6

12

18

24

30

36

42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Basic block number

E
x
ec

u
tio

n
tim

e
(S

ec
on

d)

Total
PFP maintenance part
DT maintenance part
Mining

Figure 20: Execution time for T = 7

Figure 21 shows the memory usage under different
values of T. The highest peak of memory usage during
the experiment is not more than 350KB. It verifies the
feasibility of the SDT, especially for the streaming
environment with only a small memory. In all the
figures, the curves are near smooth when the data
stream flows. It implies that our approach adapts itself
very well no matter how long a data stream is.

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Basic Windows

M
em

o
ry

 (
K

B
yt

e)

T3I4D150K
T5I4D150K
T7I4D150K

Figure 21: Memory usage for T = 3, 5, 7

To evaluate the scalability of our approach, we try
θ=0.01~0.002 on the data set T7I4D150K. Intuitively,
a smaller θ implies more frequent itemsets, indicating a
higher execution time. As expected, in Figure 22, the
average execution time grows slowly as the decreases
of θ, but the curve has a sharp rise when θ is changed
from 0.003 to 0.002. We found that the number of
frequent itemsets for θ=0.002 is six times as many as
the case for θ=0.003. Therefore, our approach can be
stable as long as the number of frequent itemsets does
not increase very dramatically.

77

0

10

20

30

40

50

0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002

Minimum support threshold

A
v
er

ag
e

ex
ec

ut
io

n
 ti

m
e(

S
ec

o
n
d) T7I4D150K

Figure 22: Average execution time for θ = 0.01~0.002

4.3 Effectiveness on NFD and NFA

To evaluate the effectiveness of the proposed strategies
for maintaining the SDT, we make an experiment on
the data set T7I4D150K, where the DT_limit is varied
from 4 to 12K. The experiment is performed for the
NFD and NFA modes, respectively.

Under the NFD mode, we overestimate the support
count of each itemset in PFP. Therefore, it guarantees
no false dismissal but allows false alarms. Intuitively,
the smaller the DT_limit is, the more adjustments and
false alarms will occur. In our setting, the case when
DT_limit=4 is the worse case, while the case when
DT_limit=12K is the best case. We define a measure to
evaluate the effectiveness under the NFD mode:

Definition 4.1 False Alarm Rate
The false alarm rate when DT_limit=M (denoted as
FARM) can be computed as follows:

)5 (
casethe worstinalarmsfalseofnumberThe

MitDTwhenalarmsfalseofnumberThe
FAR M

lim_ ==

The results are shown in Figure 23, where the false
alarm rate shrinks as the growth of DT_limit. Consider
the selective adjustment. 40% reduction of FAR is
achieved when DT_limit=2K. As DT_limit=6K, more
than 80% reduction of FAR can be achieved. From the
two curves, it is obvious that the selective adjustment
outperforms the naïve adjustment.

0

20

40

60

80

100

4 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

DT_limit

F
A

R
 (

%
)

Selective adjustment

Naive adjustment

Figure 23: False alarm rate under the NFD mode

On the contrary, we underestimate the support count
of each itemset in PFP under the NFA mode. Therefore,
it guarantees no false alarm but allows false dismissals.
A smaller DT_limit implies more false dismissals. The

worse case and the best case are the same as described
above. Similarly, we define a measure to evaluate the
effectiveness under the NFA mode:

Definition 4.2 False Dismissal Rate
The false dismissal rate when DT_limit=M (denoted as
FDRM) can be computed as follows:

)6 (
casethe worstindismissalsfalseofnumberThe

MitDTwhendismissalsfalseofnumberThe
FDRM

lim_ =
=

The results shown in Figure 24 also indicate that the
false dismissal rate shrinks as the growth of DT_limit.
The selective adjustment again outperforms the naïve
adjustment. For example, the selective adjustment can
achieve 60% reduction of FDR as DT_limit=4K, while
the naïve adjustment cannot make it until DT_limit=9K.
Our approach is both efficient and effective since it
works well in the environment with a small memory
and achieves fast response time without producing too
many false alarms or false dismissals.

0

20

40

60

80

100

4 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

DT_limit

F
D

R
 (

%
)

Selective adjustment
Naive adjustment

Figure 24: False dismissal rate under the NFA mode

5. Conclusion

Mining data streams is an interesting and challenging
research field. The characteristics of data streams make
the traditional mining algorithm unable to be applied.
In this paper, we introduce an efficient algorithm for
mining frequent itemsets over data streams under the
time-sensitive sliding-window model. We design the
data structures for mining and discounting the support
counts of the frequent itemsets when the window slides.
Moreover, two strategies for keeping SDT for the
limited memory are proposed. Finally, the experiment
results demonstrate that the execution time and
required memory of our approach are acceptable under
various parameter settings. On the other hand, the SDT
performs well when the available memory is limited.

From this study, more topics are uncovered. First,
we provide either of the two accuracy guarantees for
the frequent itemsets found in this paper. However, the
errors in the support counts are not precisely estimated
or bounded. The error estimation can help the ranking
of frequent itemsets if only the top-k frequent itemsets
are needed. Second, any other type of frequent patterns
such as the sequential pattern can be the next target.
Finally, the constraints recently discussed in the data
mining field can also be included into this study.

78

Acknowledgement

This work is partially supported by the National
Science Council of the Republic of China under Grant
No. 93-2752-E-007-004-PAE.

Reference

[1] D.J. Abadi, D. Carney, U. Cetintemel, et al.,
“Aurora: A New Model and Architecture for
Data Stream Management,” The VLDB Journal,
12(2): 120-139, 2003.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proc. of VLDB Conf.,
pp. 487-499, 1994.

[3] A. Arasu and G.S. Manku, “Approximate Counts
and Quantiles over Sliding Windows,” Proc. of
ACM PODS Symp., 2004.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom, “Models and Issues in Data Stream
Systems,” Proc. of ACM PODS Symp., 2002.

[5] B. Babcock, M. Datar, R. Motwani, and L.
O’Callaghan, “Maintaining Variance and
k–Medians over Data Stream Windows,” Proc.
of ACM PODS Symp., 2003.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande,
M.J. Franklin, et al., “TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World,”
The First Conf. on Innovative Data Systems
Research (CIDR), 2003.

[7] J.H. Chang and W.S. Lee, “Finding Recent
Frequent Itemsets Adaptively over Online Data
Streams,” Proc. of ACM SIGKDD Conf., pp.
487-492, 2003.

[8] C.H. Chang and S.H. Yang, “Enhancing SWF for
Incremental Association Mining by Itemset
Maintenance,” Proc. of Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, 2003.

[9] M. Charikar, K. Chen, and M. Farach-Colton,
“Finding Frequent Items in Data Streams,” Proc.
of Inter’l Colloquium on Automata, Languages
and Programming (ICALP), pp. 693-703, 2002.

[10] M. Charikar, L. O’Callaghan, and R. Panigrahy,
“Better Streaming Algorithms for Clustering
Problems,” Proc. of ACM Symp. on Theory of
Computing (STOC), pp. 30-39, 2003.

[11] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang,
“NiagaraCQ: A Scalable Continuous Query
System for Internet Databases,” Proc. of ACM
SIGMOD Conf., pp. 379-390, 2000.

[12] D. Cheung, J. Han, V. Ng, and C.Y. Wong,
“Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updating
Technique,” Proc. of ICDE Conf., 1996.

[13] E. Cohen and M. Strauss, “Maintaining Time
Decaying Stream Aggregates,” Proc. of ACM
PODS Symp., 2003.

[14] G. Cormode and S. Muthukrishnan, “What's Hot
and What's Not: Tracking Most Frequent Items
Dynamically,” Proc. of ACM PODS Symp., pp.
296-306, 2003.

[15] E. Demaine, A. Lopez-Ortiz, and J.I. Munro,
“Frequency Estimation of Internet Packet
Streams with Limited Space,” Proc. of European
Symp. on Algorithms (ESA), pp. 348-360, 2002.

[16] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu,
“Mining Frequent Patterns in Data Streams at
Multiple Time Granularities,” H. Kargupta, A.
Joshi, K. Sivakumar, and Y. Yesha (eds.), Next
Generation Data Mining, pp. 191-212, 2003.

[17] L. Golab and M. Ozsu, “Issues in Data Stream
Management,” ACM SIGMOD Record, 32(2):
5-14, 2003.

[18] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining
Frequent Patterns without Candidate Generation:
A Frequent-Pattern Tree Approach,” Data
Mining and Knowledge Discovery, 8(1): 53-87,
Kluwer Academic Publishers, 2004.

[19] G. Hulten, L. Spencer, and P. Domingos,
“Mining Time Changing Data Streams,” Proc. of
ACM CIKM Conf., pp. 97-106, 2001.

[20] C. Jin, W. Qian, C. Sha, J.X. Yu, and A. Zhou,
“Dynamically Maintaining Frequent Items over a
Data Stream,” Proc. of ACM CIKM Conf., 2003.

[21] R.M. Karp, C.H. Papadimitriou, and S. Shenker,
“A Simple Algorithm for Finding Frequent
Elements in Streams and Bags,” ACM Trans. on
Database Systems (TODS), 28(1): 51-55, 2003.

[22] C. Lee, C. Lin, and M. Chen, “Sliding-window
Filtering: An Efficient Algorithm for Incremental
Mining,” Proc. of ACM CIKM Conf., 2001.

[23] J. Liu, Y. Pan, K. Wang, and J. Han, “Mining
Frequent Item Sets by Opportunistic Projection,”
Proc. of ACM SIGKDD Conf., 2002.

[24] G. Manku and R. Motwani, “Approximate
Frequency Counts over Data Streams,” Proc. of
VLDB Conf., pp. 346-357, 2002.

[25] R. Motwani, J. Widom, A. Arasu, and B.
Babcock, “Query Processing, Approximation,
and Resource Management in a Data Stream
Management System,” CIDR Conf., 2003.

[26] L. O’Callaghan, N. Mishra, A. Meyerson, S.
Guha, and R. Motwani, “Streaming-Data
Algorithms for High-Quality Clustering,” Proc.
of ICDE, pp. 685-696, 2002.

[27] W. Teng, M.S. Chen and P. Yu, “A
Regression-Based Temporal Pattern Mining
Scheme for Data Streams,” Proc. of VLDB Conf.,
pp.93-104, 2003.

[28] Y. Zhu and D. Shasha, “StatStream: Statistical
Monitoring of Thousands of Data Streams in
Real Time,” Proc. of VLDB Conf., 2002.

79

On Abnormality Detection in Spuriously Populated Data Streams

Charu C. Aggarwal

IBM T. J. Watson Research Center

charu@us.ibm.com

Abstract

In recent years, advances in hardware technology have
made it increasingly easy to collect large amounts of
multidimensional data in an automated way. Such
databases continuously grow over time, and are referred
to as data streams. The behavior of such streams is sen-
sitive to the underlying events which create the stream.
In many applications, it is useful to predict abnormal
events in the stream in a fast and online fashion. This
is often a difficult goal in a fast data stream because
of the time criticality of the detection process. Fur-
thermore, the rare events may often be embedded with
other spurious abnormalities, which affect the stream
in similar ways. Therefore, it is necessary to be able
to distinguish between different kinds of events in or-
der to create a credible detection system. This paper
discusses a method for supervised abnormality detec-
tion from multi-dimensional data streams, so that high
specificity of abnormality detection is achieved. We
present empirical results illustrating the effectiveness of
our method.

1 Introduction

In recent years, the advances in hardware technology
have made it possible to collect large amounts of data
in many applications. Typically, such databases are
created by continuous activity over long periods of
time, and are therefore databases which grow without
limit. The volume of such transactions may easily range
in the millions on a daily basis. Examples of such
domains include supermarket data, multimedia data
and telecommunication applications. The volume of
such data is so large that it is often not possible to
store it on disk in order to apply standard algorithmic
techniques. Such data are referred to as data streams.
Algorithms which are designed on such data need to
take into account the fact that it is not possible to revisit
any part of the voluminous data. Thus, only a single
scan of the data is allowed during stream processing.

Considerable research has been done on the data
stream problem in recent years [7, 8, 9, 13, 18]. Many
traditional data mining problems such as clustering

and classification have recently been re-examined in
the context of the data stream environment [1, 10, 13].
In this paper, we discuss the problem of abnormality
detection in data streams. In particular, we will
consider the most difficult case, when such events are
embedded with other similar but spurious patterns of
abnormality. Some examples of applications of interest
are as follows:

• In a stock market monitoring application, one may
wish to find patterns in trading activity which are
indicative of a possible stock market crash in an
exchange. The stream of data available may cor-
respond to the real time data available on the ex-
change. While a stock sell-off may be a relatively
frequently occurring event which has similar effects
on the stream, one may wish to have the ability
to quickly distinguish the rare crash from a sim-
ple sell-off. Another example of a valuable event
detection application is that of detection of partic-
ular patterns of trading activity which result in the
sell-off of a particular stock, or a particular sector
of stocks. A quick detection of such events is of
great value to financial institutions.

• In a business activity monitoring application, it
may be desirable to find particular aspects of the
stream which are indicative of events of significance
to the business activity. For example, certain sets
of actions of competitor companies may point to
the probably occurrence of significant events in
the business. When such events do occur, it is
important to be able to detect them very quickly, as
they may be used to trigger other business-specific
actions in a time-critical manner.

• In a medical application, continuous streams of
data from hospitals or pharmacy stores can be used
to detect any abnormal disease outbreaks or bio-
logical attacks. Certain kinds of diseases caused by
biological attacks are often difficult to distinguish
from other background diseases. For example, an
anthrax infection has similar characteristics to the
common flu attack. However, it is essential to be

80

able to make such distinguishing judgements in real
time in order to create a credible event detection
system.

Many of the events discussed above are inherently
rare. For example, events such as disease outbreaks or
stock market crashes may happen rarely over long pe-
riods of time. On the other hand, the value of event
detection is highly dependent on the latency of the de-
tection process. This is because most event detection
systems are usually coupled with time-critical response
mechanisms. Furthermore, because of efficiency con-
siderations, it is possible to examine a data point only
once throughout the entire computation. This creates
an additional constraint on how abnormality detection
algorithms may be designed. While event detection and
anomaly detection are important problems in the data
mining community [4, 6, 15, 17], these models do not
address the problem in the context of predicting rare
anomalies in the presence of many spurious (but similar)
patterns. In order to achieve the specificities in abnor-
mality detection, we will utilize a supervised approach
in which the abnormality detection process learns from
the data stream. A considerable level of specificity may
be achieved by using the behavior of the combination of
multiple streams which are able to distinguish between
different kinds of seemingly similar anomalies.

Thus, the additional complexities of the generic
event detection problem may be summarized as follows:

• In most real-life situations, data streams may show
abnormal behavior for a wide variety of reasons.
It is important for an event detection model to be
specific in its ability to focus and learn a rare event
of a particular type. Furthermore, the spurious
events may be significantly more frequent than the
rare events of interest. Such a situation makes the
event detection problem even more difficult, since
it increases the probability of a false detection.

• In many cases, even though multiple kinds of
anomalous events may have similar effects on the
individual dimensions, the relevant event of interest
may only be distinguished by its relative effect on
these dimensions. Therefore, an event detection
model needs to be able to quantify such differences.

• Since the data stream is likely to change over time,
not all features remain equally important for the
event detection process. While some features may
be more valuable to the detection of an event in
a given time period, this characteristic may vary
with time. It is important to be able to modify
the event detection model appropriately with the
evolution of the stream.

• We note that a supervised abnormality detection
problem is very different from a data stream clas-
sification problem in which each record has a la-
bel attached to it. In an abnormality detection
problem, individual records are unlabeled, whereas
the abnormalities of importance are attached only
to particular moments in time. Since individual
records do not have class labels, the training of the
event detection process is more constrained from
the limited information availability. Furthermore,
the rarity of the abnormality adds an additional
level of complexity to the detection process.

• Unlike a traditional data source, a stream is a con-
tinuous process which requires simultaneous model
construction and event reporting. Therefore, it
is necessary for the supervision process to work
with whatever information is currently available,
and continue to update the abnormality detection
model as new events occur.

In this paper we will design an abnormality detection
algorithm which can handle the afore-mentioned com-
plexities. Furthermore, the algorithms discussed in this
paper do not require any re-scanning of the data, and
are therefore useful for very fast data streams.

This paper is organized as follows. In the remainder
of this section, we formalize the contributions of this
paper and discuss the notations. In the next section
we will discuss the algorithm for event detection. We
will discuss the empirical results in section 3. Finally,
section 4 contains the conclusions and summary.

1.1 Contributions of this paper This paper
presents an effective method for learning rare abnor-
malities from fast data streams. Since a data stream
may contain many different kinds of abnormalities, it is
necessary to be able to distinguish their characteristic
behavior. Therefore, we propose a technique which is
able to distinguish particular kinds of events by learn-
ing subtle differences in how different streams are af-
fected by different abnormalities. The algorithm per-
forms statistical analysis on multiple dimensions of the
data stream in order to perform the detection. Since
the technique is tailored for fast responses to contin-
uous monitoring of processes, the entire framework of
the algorithm is constructed to facilitate online event
monitoring of data streams. Therefore, the process can
detect the abnormalities with any amount of historical
data, but the accuracy is likely to improve with progres-
sion of the stream, as more data is received.

1.2 Notations and Definitions We discretize the
points in time at which the behavior of the stream

81

is monitored as ticks. The time stamps associated
with the ticks are denoted by t(1), t(2), . . . t(k). We
distinguish between the ticks and time stamps, since
the behavior may not necessarily be monitored at equal
time intervals. It is assumed that the data points arrive
only at one of these ticks or time stamps.

The total number of data streams is N , and the set
of data points associated with the ith stream at tick k is
denoted by Yi(k). The data points in the stream Yi(k)
are denoted by yi(1), yi(2), . . . yi(k). It is assumed that
for each stream i, the data point yi(j) arrives at the
time stamp t(j). The entire feed of N streams at tick k
is therefore denoted by Y(k) = {Y1(k) . . . YN (k)}.

We assume that the time stamps at which the
rare events occur in the data stream are denoted by
T (1) . . . T (r). These events may either be the primary
events that we wish to detect, or they may be spurious
events in the stream. We will also refer to the spurious
events as the secondary events. Associated with each
event k at time T (k), we maintain flag(k) which is 1
only when this event is a primary event. In addition, we
also maintain Q(k), which is the time stamp of the last
reported occurrence of any event. The value of Q(k) is
typically larger than the true time of event occurrence
T (k). This is because the value of Q(k) refers to the
event report time, whereas the value of T (k) refers to
the occurrence time. The last report time is typically
larger than time of the actual event itself, since the ex-
ternal sources reporting the abnormality would need a
lag to verify it. These external sources may use a variety
of domain specific methods or simply personal observa-
tion to decide on the final verification of abnormality
occurrence. It is assumed that the report of an event is
an external input to the algorithm, and is available only
after a reasonable lag after the actual occurrence of the
event. Clearly, a detection algorithm is useful only if it
can report events and abnormalities before they are in-
dependently reported and verified by external sources.
Let us assume that k(r) events have occurred till tick
r. We denote the sequence {(Q(1), T (1), f lag(1)) . . .
(Q(k(r)), T (k(r)), f lag(k(r)))} until tick r by the event
vector E(r). We note that the length of this sequence
depends upon the number of events which have tran-
spired till tick r.

The abnormality detection algorithm outputs a set
of time stamps T ∗(1) . . . T ∗(n) at which it has predicted
the detection. A particular detection T ∗(i) is referred
to as a true detection, when for some lag threshold
maxlag, some time stamp T (j) exists, such that 0 ≤
T ∗(i) − T (j) ≤ maxlag. Otherwise, the detection
is referred to as a false positive. Clearly, there is a
tradeoff between being able to make a larger number of
true detections and the number of false alarms. If the

Algorithm StreamEvent(Initial Stream/Event History: (Yh, Eh),
Current Stream/Event Feeds: (Y(·), E(·)))

begin
{ Create the initial specificity model based on
initial stream history available }

M = LearnStream(Yh ,Eh)
r = 1;
for each tick r do

begin
SZ = ComputeStatisticalDeviations(Y(r + 1));
AL = PredictEvent(SZ, M);
if any event has occurred on tick k then

M = LearnStream(Y(k), E(k))
{ This updating of the model by LearnStream is

done as a (background) offline process }
end

end

Figure 1: The Abnormality Monitoring Algorithm

algorithm outputs a larger number of detection time
stamps in order to reduce the latency, it is likely to
report a greater number of false positives and vice-versa.
We will discuss more about this issue in a later section.

2 The Abnormality Detection Model

The supervised abnormality detection algorithm contin-
uously detects events utilizing the data from the history
of previous event occurrences. In addition, a learning
phase is triggered once after every reported occurrence
of a primary or secondary event in order to update the
model. As discussed earlier, the reporting of an abnor-
mality is an independent external process and is not
dependent upon the actual detection of an abnormal-
ity by the algorithm. In most practical applications,
abnormalities are eventually detected and reported be-
cause of a variety of factors such as the actual practical
consequences of the abnormality. These report times
are often too late to be of practical use for event re-
sponses. However, they can always be used to improve
the accuracy of the abnormality detection model when
required.

The model is initialized at the beginning of the
detection process. Both the process of initialization and
updating are performed by the subroutine LearnStream
of Figure 1. The learning phase is performed as a
background offline process, whereas the abnormality
detection phase is performed as an online process.
Therefore, the abnormality detection phase is performed
at each tick and it consists of two steps:

• Computation of abnormal statistical deviations at
a given instant. This is performed by the Com-
puteStatisticalDeviations procedure of Figure 1.

• Computation of specificity of statistical deviations

82

y(.)

Time

Line

Deviation
yf(r+1) - y(r+1)

Actual

signal

Regression

Figure 2: Deviations in data stream values

to occurrences of the primary event. This is
performed by the PredictEvent procedure of Figure
1.

It is assumed that at the beginning of the stream
monitoring process, some amount of historical data is
available in order to construct an initial model of event
behavior. This historical data consists of the stream
and the events in the past time window at the beginning
of the event monitoring process. The initial stream is
denoted by Yh, and the initial set of events is denoted
by Eh. Once the event detector has been initialized, it
then moves to an iterative phase of continuous online
monitoring together with occasional offline updating.

Because of the speed of a data stream and the time-
criticality of the event reporting process, it is essential
that each of the above computations can be performed
rapidly during real time. In the remainder of this
section, we will describe each of these steps in some
detail.

2.1 Detection of Rare Events in the Stream
The first step is to find deviations in the streams from
the expected values based on the historical trends. The
computation of the level of statistical deviations at a
given instant is needed both for the alarm prediction
phase as well as learning model. This process is denoted
by ComputeStatisticalDeviations of Figure 1. For this
purpose, we use a polynomial regression technique
which can compute the statistically expected value of
the data stream at a given moment in time.

Consider the tick r at which the points yi(1) . . . yi(r)
have already arrived for stream i. For each l ∈ {1, . . . r},
the technique approximates the data point yi(l) by a
polynomial in t(l) or order k. In other words, we
approximate the data point yi(l), by the polynomial

Algorithm ComputeStatisticalDeviations(Stream: Y(r + 1))
begin
Determine the set of points in the past window ht

together with their weights;
for each stream i ∈ {1, . . .N} do

begin
Compute coefficients ai0 . . . aik ;
Compute Erri(r) and yfi(r + 1) using polynomial

function f(·, ·);

Compute zi(r + 1) = (yfi(r + 1) − yi(r + 1))/Erri(r);
end

return(z1(r + 1) . . . zN (r + 1));
end

Figure 3: Computation of Statistical Deviations in the
Data Stream

function fi(k, l), where:

fi(k, l) =

k∑
j=0

al
ij · t(l)

j(2.1)

Here, the coefficients of the polynomial function are
al

i1 . . . a
l
ik. The values of al

ij need to be computed
using the actual data points in order to find the best
fit. Specifically, the data points within a maximum
window history of ht are used in order to compute the
coefficients of this polynomial function. While these
coefficients can be estimated quite simply by using a
polynomial fitting technique technique, we note that
not all points are equally important in characterizing
this function. Those points which have arrived recently
should be given greater importance in the computation.
For this purpose, we use the exponential fading function
K · eλt(r) in order to compute the importance of each
data point. Here K and λ are constants which are
specific to that particular time window. Thus, for each

83

data point arriving at time t, it is replaced by bK ·eλt(r)c
data points while computing the polynomial function.
Then a polynomial fitting technique is used in order to
compute the coefficients. The value of λ is chosen such
that the ratio of the weight of the data point at t(r)−ht

to the data point arriving at t(r) is given by maxratio.
Therefore, we have:

K · eλt(r)/(K · eλ(t(r)−ht)) = eλ·ht = maxratio(2.2)

The value of K is automatically chosen that the value
of the fading function is equal to 1 at the time stamp
t(r) − ht. Therefore, once the value of λ has been set,
the value of K is chosen using the following relationship:

K · eλ(t(r)−ht) = 1(2.3)

The two intuitive parameters which are chosen by the
user are the maximum window ht and the maximum
ratio maxratio. The choice of ht depends upon the
amount of memory buffer available. This is because all
the data points in the past window of ht need to be
held in the memory buffer while processing the stream
at a given tick. It is necessary to keep such a buffer
because of the large volume of data points arriving in
each unit of time. At each tick, when new data points
enter the system, the set of points outside the window
of ht are discarded, and the new set of points arriving at
the current tick are included. We also note that while
the computation of the coefficients of the polynomial
function requires a matrix inversion operation [14], the
order of the matrix inverted is given by the maximum
order of the polynomial function. For polynomials of
small order up to 2 or 3, this computation can be
performed in a small constant number of operations at
each tick. This is a very small overhead compared to
the processing of the points in the data stream.

Once the coefficients of the polynomial function
fi(k, r) has been computed, we calculate the fitted
values yfi(r − ht) . . . yfi(r) of the points in the data
stream. (The value of yfi(r) is simply the instantiation
of the function fi(k, r) at the tick r.) The average
standard error of fitting is given by:

Erri(r) =

√∑r

q=r−ht
eλ(q)(yi(q)− yfi(q))2∑r

q=r−ht
eλ(q)

(2.4)

The predicted value of the data point from stream i at
the tick (r+1) is given by yfi(r+1). Since, the predicted
value yfi(r + 1) is based on the behavior of the stream
i up to tick r, the true value may vary considerably
from the prediction when a rare event occurs. An
example of such an occurrence is illustrated in Figure
2. We quantify this deviation at tick (r + 1) by the

corresponding z-number of the stream:

zi(r + 1) = (yfi(r + 1)− yi(r + 1))/Erri(r)(2.5)

The z-number is equal to the number of standard devi-
ations by which the true value of the stream i at tick
(r+1) is greater than the expected value. A high abso-
lute magnitude of the z-number indicates significant sta-
tistical deviation from expected behavior of the stream.
The process ComputeStatisticalDeviations of Figure 1
outputs SZ = (z1(r + 1) . . . zN(r + 1)) which are the
statistical deviations from the predicted values in each
data stream. A high absolute value of these statistical
deviations is indicative of the occurrence of a rare event
in the streams. However, such an event could either cor-
respond to the primary event or a secondary event. The
event detector needs to distinguish between the two sit-
uations using the property that different kinds of events
have a different signature as to the amount by which
the events affect the different streams. The exact sig-
nature of a particular kind of event needs to be learned
from the previous history of event occurrences. We will
discuss this issue in the next subsection.

2.2 Learning Specific Events from the Data
Stream We note that a given data stream may have
different kinds of events which have different effects
on the various components. For example, consider a
biological attack application in which we are tracking
the number of people admitted to emergency rooms
with flu like symptoms. Let us also assume that we
have different data streams corresponding to adults and
children. While the early phase of a large anthrax attack
may be indistinguishable from a flu epidemic, the data
stream corresponding to children and adults admitted is
likely to be different. For both anthrax attacks and flu
epidemics, the z-numbers of both streams are likely to
rise. However, the z-number of the stream for children
admitted is likely to be affected to a greater extent in
the case of a flu epidemic, while both streams are likely
to be almost equally affected in the case of an anthrax
attack. How do we magnify these subtle differences in
the extent to which the different curves are affected?

In order to achieve this we use the data from previ-
ous event occurrences in order to create a distinguish-
ing model for the particular kind of event which is being
tracked. This model for distinguishing different kinds of
events needs modeling which is done offline. However,
this modeling needs to be done only in the following
cases: (1) At the very beginning of the stream moni-
toring process as an initialization step. It is assumed
that an initial amount of event history Eh and Yh is
available for this purpose. (2) At the occurrence of each
kind of primary event as an updating step. In this case,

84

symptoms

(adult)

z-number
z2

Flu like

(z2-z1)

symptoms

Flu like

(child)
z-number

z1

symptoms
Flu like

(child)
z-number

z1

Flu like

symptoms

(adult)

z-number
z2

Flu Epidemic Anthrax Attack

(z2-z1)

Figure 4: Distinguishing between Primary and Secondary Abnormalities

Algorithm LearnStream(Stream History: Y(·), Event History: E(·))
begin

{ Let T (1) . . . T (s)} be the time-stamps at
which the primary events have occurred }
for each time stamp T (j) ∈ {T (1) . . . T (s)}
and stream i find the largest value maxij for the
z-number of stream i in the interval (T (j), T (j) + maxlag)

Let S be the set of streams such that maxij is greater
than a pre-defined threshold zmin for each j ∈ {1 . . . s};
{ Assume that the ticks at which primary events
have occurred are denoted by j1 . . . js and the
time stamps of secondary events are i1 . . . il; }
for each tick jk in {j1 . . . js} and stream i

find the tick tp∗
i
(k) such that tp∗

i
(k) ∈ {t(jk), t(jk) + maxlag}

and zi(·) attains its maximum value in this time interval;
Tp∗(k) =

∑
i∈S

tp∗
i
(k)/|S|;

for each tick ik in {i1 . . . il} and stream j

find the tick ts∗
j
(k) such that ts∗

j
(k) ∈ {t(ik), t(ik) + maxlag}

and zj(·) attains its maximum value in this time interval;
Ts∗(k) =

∑
i∈S

ts∗
j
(k)/|S|;

Define the algebraic expression Zs(α) =
∑l

k=1

∑
i∈S

αi · zi(Ts∗(k))/l

Define the algebraic expression Zp(α) =
∑s

k=1

∑
i∈S

αi · zi(Tp∗(k))/s

Find the value of the vector α which maximizes
Zp(α) − Zs(α) subject to the constraints
||α|| = 1 and αi = 0 for i 6∈ S

{ The gradient descent method is used for the maximization }
return(α);
end

Figure 5: Learning Specific Events from the Data Stream

85

the model uses the effects of the event on the stream in
order to update the current model.

While the LearnStream procedure is triggered by
the occurrence of a primary event, the iterative event
monitoring process continues in the foreground. There-
fore, if another primary event occurs before the Learn-
Stream procedure has finished execution, the slightly
stale model is always available for the detection process.

We note that in many cases, even when streams
are similarly affected by different kinds of events, the
relative magnitudes of different streams could vary
considerably. Our aim is to create a function of the z-
numbers of the different streams which is a “signature”
of that particular kind of event. In order to achieve
this goal, we create a new signal at each tick which is
a linear combination of the signals from the different
streams. Let α1 . . . αN be N real coefficients. We define
the following new signal Z(r) in terms of the original
signal and the α values:

Z(r) =

N∑
i=1

αi · zi(r)(2.6)

For example, in the case illustrated in Figure 4, the
signals for the two streams corresponding to adult and
children admission to hospitals are illustrated. The
signal for the adult stream is denoted by z2 and the
signal for the child stream is denoted by z1. A choice of
(α1, α2) = (−1, 1) creates the composite signal z2− z1.
In Figure 4(a), the different signals for the case of a flu
epidemic are illustrated, whereas in the case of Figure
4(b) the signals for an anthrax attack are illustrated. It
is clear that even though both streams are affected in
a similar way by either a flu epidemic or an anthrax
attack, the proportional effects are different. These
effects can be magnified by the use of the composite
signal z2 − z1, which is affected in a clearly different
way in the two cases.

We note that many of the data streams may be
noisy and will not have any correlation with the pri-
mary event. Such streams need to be discarded from
the event distinguishing process. In other words, the
corresponding values of αi need to be set to zero. The
first step is to identify such streams. For each of the time
stamps T (j) ∈ {T (1) . . . T (s)} at which an event of in-
terest has occurred, we find the largest value1 maxij of
zi(r) for each r such that T (j) ≤ t(r) ≤ T (j)+maxlag.

1Strictly speaking, the value of maxij should be based on the
absolute value of the z-numbers. However, the above definition
does not lose generality. For those streams in which events of
interest correspond to highly negative z-numbers, the sign of the
stream is flipped.

A stream i is said to be interesting to the event detec-
tor, when for each j ∈ {1 . . . s} the value of maxij is
larger than a pre-defined threshold zmin.2 We denote
this subset of streams {i1 . . . iw} ∈ {1, . . .N} by S.

Once we have selected a small number of streams
which are meaningful for the event detection process,
we need to find the value of the discrimination vector α
which distinguishes the primary events from other simi-
lar events. The main idea is to choose α in such a way so
that the value of Z(r) peaks just after the occurrence of
each primary event to a much greater extent that any
other event. Let us assume that the time stamps at
which all secondary events which have happened within
the previous history of ht, are given by t(i1) . . . t(il),
whereas the time stamps of the primary event are given
by {T (1) . . . T (s)} = {t(j1) . . . t(js)}. For each sec-
ondary event ik and each stream j, we compute the
maximum value of zj(r) for each value of r, such that
t(r) ∈ (t(ik), t(ik) + maxlag). Let the corresponding
time stamp be given by ts∗j (k) for each k ∈ {1 . . . l}.
This time stamp is then averaged over all streams which
lie in S. Therefore, for each secondary event k, we com-
pute Ts∗(k) =

∑
i∈S ts

∗
j (k)/|S|. Similarly, for each oc-

currence of the primary event, we can compute the aver-
age time stamp Tp∗(k) for each k ∈ {1, . . . s}. In order
for the discrimination between primary and secondary
events to be as high as possible, the difference in the av-
erage value of the composite signal at the time stamps of
the true and spurious events must be maximized. The
average composite signal Zs(α) at the time of occur-
rences of the true events is given by the following:

Zs(α) =

l∑
k=1

∑
i∈S

αi · zi(Ts
∗(k))/l(2.7)

Similarly, the average composite signal at the time
of occurrence of the primary events is given by the
following expression:

Zp(α) =

s∑
k=1

∑
i∈S

αi · zi(Tp
∗(k))/s(2.8)

For maximum discrimination between true and spu-
rious occurrences of primary events, we must choose
α in such a way that the difference Zp(α) − Zs(α) is
maximized. Therefore, we have:

Maximize Zp(α)− Zs(α)
subject to:
αj = 0 j ∈ {i1 . . . iw}
||α|| = 1

2For a normal distribution, more than 99.9% of the points are
located within 3 standard deviations from the mean.

86

Algorithm PredictEvent(Statistical Deviations: SZ,
Learned Data:M)

begin
{ The learned data M consists of the
vector α. The deviations SZ
consist of the statistical deviations at tick (r + 1) }

ZP (r + 1) =
∑N

i=1
αi · zi(r + 1)

Output event detection signature ZP (r + 1);
end

Figure 6: Rare Event Prediction

Latency 2
Latency 1

(no detection)

False

Positive

Time

Event

Detection

Signature

Threshold=a

Threshold=b

primary event
Occurrence of

Detection time

using threshold=b
Detection time using

threshold=a

Threshold=c

Figure 7: Illustrating the trade-off between Latency and
False Positives

The first set of constraints corresponds to the fact that
only the subset of streams which were determined to
be significant to the event detection process are used
for detection. The second constraint on α is required
simply for the purpose of scaling as a boundary
condition to the maximization problem. (Without the
boundary condition, the maximization problem has an
infinite solution.) We note that the objective function
is linear in α, and all constraints are either linear or
convex. Therefore, the optimum value of α can be
found using a simple iterative gradient descent method
which is discussed in [3].

2.3 Rare Event Prediction Process The event
prediction is done by the procedure PredictEvent using
the statistical information collected by the other proce-
dures. The event prediction process uses the statistical
deviations calculated by ComputeStatisticalDeviations,
and the combination vector α computed by the Learn-
Stream procedure. Let SZ = (z1(r + 1) . . . zN (r + 1))
be the statistical deviations returned by ComputeStatis-
ticalDeviations and α be the combination vector com-

puted by LearnStream. The PredictEvent procedure
then computes the value ZP (r + 1) which is defined
as follows:

ZP (r + 1) =
∑
i∈S

αi · zi(r + 1)(2.9)

This value is the signal which is specific to the primary
event. The greater this value, the higher the likelihood
that a primary event has indeed occurred in the stream.
A primary event is predicted by using a minimum
threshold on the value of ZP (r + 1). Whenever the
value of ZP (r + 1) exceeds this threshold, a discrete
signal is output which indicates that the event has
indeed occurred. The use of higher thresholds on
the event detection signature results in lower number
of false positives, but lower detection rates as well
as higher lags. For example, in Figure 7, we have
illustrated the variation in latency level with time. We
have illustrated two different thresholds on the event
detection signature. It is clear that with the use of the
lower threshold value of a, at least one false positive
is created, which does not appear with the use of the
higher threshold value of b. On the other hand, when
the event does occur, it is detected much later with the
use of the higher threshold. Therefore, the latency of
detection is also much higher, when the threshold value
of b is used. If the threshold level were increased even
further to a value of c as indicated in Figure 7, then the
algorithm misses detection completely. We will explore
the effects of these trade-offs on a number of data sets in
the empirical section. For the purpose of the algorithmic
description of Figure 6, we output the value of ZP (r+1)
as the event detection indicator.

3 Empirical Results

In this section, we will illustrate the effectiveness of the
event detection system. Since many of the application-
specific methods such as those in [15] were designed with
the assumption of a single channel (stream) of data for
classification purposes, it is difficult to make a direct
comparison with any previous algorithm. Furthermore,
in many cases, the algorithms were not designed to han-
dle the computational issues arising in the context of
handling the massive volumes of a fast, spuriously popu-
lated data stream. We found however, that the anomaly
detection method of [15] could be adapted to the data
stream environment in a relatively straightforward way.
The algorithm in [15] uses a nearest neighbor classifi-
cation on the previous event history in order to output
the detection of an event. By calculating the distance
using multiple features, the technique could be applied
to the more general data stream problem discussed in
this paper. We will refer to this technique as the CL

87

detector in the empirical results.
In order to test the algorithm, we used a num-

ber of data sets. The synthetic data sets were cre-
ated by first generating each base stream j from a nor-
mal distribution with mean µj and standard deviation
σj = (1/3) · µj . The value of µj for each stream is gen-
erated from a uniform distribution in the range [0, 1].
The events of significance are assumed to occur at w
randomly distributed times t1 . . . tw throughout the dis-
tribution of the data stream. We assume that there are
f different types of events. Only one of these f differ-
ent types of events corresponds to the primary event
and the remaining events correspond to the secondary
event. It is assumed that the occurrence of any event is
equally likely to be of any type. Let us now consider a
particular event at time tr ∈ {t1 . . . tw} which is of type
l ∈ {1 . . . f}. The event of type l results in addition of
a further signal to each data stream j. This signal is
normally distributed with a mean of φlj(t − tr) and a
standard deviation of ψlj(t − tr). The value of φlj(s)
was chosen to be quadratic function of s with a maxima
at s = θlj and a maximum value of blj . The values of
θlj and blj are chosen depending upon the event type
and data stream. For each event type l and stream
j, the value of θlj and blj are chosen from a uniform
data distribution with ranges [5, 50] and [0, 1] respec-
tively. The value of ψlj(s) at each point was chosen to
be (1/3) · φlj(s). A value of f = 5 was used in each
case. Two 10-dimensional synthetic data sets (for dif-
ferent random seeds) were generated using this method-
ology and are referred to as SStream-A and SStream-B
respectively. In addition, two 20-dimensional data sets
were generated with the same methodology. These are
referred to as SStream-C and SStream-D respectively.

An interesting question which arises in the context
of an empirical evaluation is that of choice of appro-
priate metrics. This is because a trade-off exists be-
tween the latency time and the number of false posi-
tives. Therefore, if the latency time of two algorithms
is compared, it needs to be evaluated for the same num-
ber of false positives, and vice-versa. For this purpose,
we need to provide a measure of the benefit that a true
detection provides for a given level of detection latency.
A more precise way of defining this would be with the
use of a benefit function. While the exact function de-
pends heavily on the application at hand, we designed a
function which seems to be a reasonably intuitive metric
for a variety of applications. We designated a maximum
period of time latency δz after which detection provided
no benefit. This is because anomalies of importance are
often discovered in most applications through external
factors such as simple human observation. There is no
benefit to a detection, when the detection latency is

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 8: False Positives versus Benefits of Quick
Detection (SStream-A)

larger than such external latencies. Thus, when the la-
tency of detection is larger than δz, the benefit function
is set to zero. For latencies less than δz, a linear function
was used in order to characterize the benefit. Therefore,
for a latency of t, the the benefit function B(t) is defined
as follows:

B(t) = max{0, δz − t}(3.10)

We note that in this case, t is the latency of first
detection of the anomaly after its actual occurrence.
Similarly, the number of false positives is defined as
the number of times an alarm is raised outside the δz

interval after the true occurrence of any anomaly. The
value of δz was chosen to be 100 in each case.

The detector proposed in this paper outputs an
analogue signature level which is used for the prediction
process. This analog signature can easily be converted
into a binary decision by using thresholding on the
intensity of the signature. When the signature level
exceeds a given threshold, the detector outputs an
anomaly detection indicator. The higher the threshold,
the greater the latency3 but the greater number of false
positives. Therefore, higher number of false positives
correspond to lower values of the benefit function and
and vice-versa. In order to quantify this relationship,
we create a corresponding AMOC curve which plots the
false positives on the X-axis and the benefits on the Y -
axis. Since the CL detector also uses thresholding on a
similarity measure for the classification process [15], it
is also possible to create AMOC curves for that case by
varying this threshold.

3We note that in many cases, higher values of the threshold
result in the detector completely missing the anomaly detection.
This corresponds to infinite latency, and therefore zero benefit.

88

Data Set Offline Update Time Maximum Throughput (online)

SStream-A 3 seconds 2881 per second
SStream-B 4 seconds 2755 per second
SStream-C 3 seconds 1829 per second
SStream-D 3 seconds 1954 per second

Table 1: Time Requirements of the Event Detector

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 9: False Positives versus Benefits of Quick
Detection (SStream-B)

0 20 40 60 80 100 120
50

55

60

65

70

75

80

85

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 10: False Positives versus Benefits of Quick
Detection (SStream-C)

0 20 40 60 80 100 120
50

55

60

65

70

75

80

85

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 11: False Positives versus Benefits of Quick
Detection (SStream-D)

The AMOC curves for both the EventStream and
CL detector are illustrated in Figures 8, 9, 10, and 11
respectively. We note that in each case, the AMOC
curve for the CL-detector algorithm was dominated by
our data stream anomaly detector. In fact, in each
case, there was not even one point at which the CL
detector was superior to the StreamEvent algorithm.
Furthermore, the gap between the two algorithms was
significant in most cases. For example, in most cases,
the StreamEvent algorithm was able to achieve relatively
low latencies for less than 10 false positives. Modest
latencies were usually achieved for only about 0-2 false
positives in a majority of the cases. On the other hand,
the CL Detector was never able to find the anomaly
within the maximum required time latency of δz in the
range of 10 false positives or less. Thus, the region in
which the CL detector provided non-zero benefit was
one in which the number of false positives was too high
for the algorithm to be of practical use. As in the
previous case, the StreamEvent algorithm significantly
outperforms the CL-detector.

We tested the efficiency of the anomaly detection
algorithm for processing large data streams. The algo-
rithm was tested on 2.2 GHz laptop running Windows

89

5 10 15 20 25
1600

1800

2000

2200

2400

2600

2800

3000

Progression of Data Stream (seconds)

P
ro

ce
ss

in
g

R
at

e
(D

at
a

P
oi

nt
s

pe
r s

ec
on

d)

SStream−A
SStream−B
SStream−C
SStream−D

Figure 12: Processing Rate of Data Stream

XP operating system and 256 MB of main memory. We
note that represents very modest hardware available to-
day. There were two aspects which needed to be mea-
sured:

• (1) The online efficiency: This quantity was de-
fined in terms of the maximum number of ticks for
which a prediction could be made per second. We
define this as the maximum throughput, since it is
reflects the maximum processing capabilities of the
algorithm per unit of time. When the stream ar-
rives at a faster rate than the maximum through-
put, then it is necessary to use load shedding tech-
niques in order to reduce the throughput being han-
dled by the data stream. These load shedding tech-
niques can be implemented in the form of sampling
points from the data stream. While sampling re-
duces the effectiveness of the prediction process to
some extent, it is an acceptable solution in many
practical scenarios.

• (2) Efficiency of the model update process:
We computed the time required by the offline
component in order to update the model. As long
as this average time was significantly lower than
the time between the occurrence of two events,
the model was always up to date at the time of
prediction.

In Figure 12. we have illustrated the processing rate of
the online portion of the event detection process. It
is interesting to see that the processing rates for all
the streams were quite stable over time and ranged in
the order of thousands of data points per second. In
Table 1, we have also illustrated the summary of the
overall online efficiency of the algorithm for the entire
data stream. While all the data sets are processed at

the rate of thousands of data points per second, the
differences between the different data sets is because
of the varying dimensionality of the data sets. An
increased dimensionality resulted in lower processing
rates, since a larger number of data points needed to
be processed every second. However, since the absolute
processing rates are quite high, this means that the
streams can be processed efficiently using this technique.

In Table 1, we have also illustrated the time required
by the offline component of the event detector. The
most expensive process in the offline learning algorithm
are the iterations of the gradient descent algorithm for
finding the weights of the different channels. Since the
gradient descent method is an iterative approach, it
required a few computations in order to update the
model. However, in each case, these computations
require less than 5 seconds to execute. On the other
hand, since the algorithm is specifically designed for
detecting rare events in data streams, this time interval
of a few seconds is likely to be negligible compared to
the inter-arrival period between two events. Therefore,
such an offline update process is easily implementable
because of its relative rarity. As in the previous case,
are some differences among the update times for the
different data sets because of varying dimensionality of
different data sets.

4 Conclusions and Summary

In this paper, we proposed a new technique for anomaly
detection in massive data streams. The method is capa-
ble of fast and accurate anomaly detection in the pres-
ence of other non-relevant anomalies in the data. There-
fore, the detector is able to distinguish between spurious
and true anomalies. Such a system is quite unique in
retaining specificity in anomaly detection from multi-
dimensional data streams. It also has applications in
many domains in which real time detection is necessary
for quick response times to anomalous events. In future
work, we will construct a decision support system for
quick anomaly detection in massive data streams. Such
a decision support system would utilize active involve-
ment of the user in making decisions about the data.

References

[1] C. C. Aggarwal, A Framework for Diagnosing Changes

in Evolving Data Streams, Proceedings of the ACM
SIGMOD Conference, (2003).

[2] R. Abbott, and H. Garcia-Molina, Scheduling real-time

transactions with disk resident data, Proceedings of the
VLDB Conference, (1989).

[3] D. Bertsekas, Nonlinear Programming, Athena Scien-
tific, 2nd Edition, (1999).

90

[4] M. Berndtsson, and J. Hansson, Issues in Active Real-

Time Databases, Active and Real-Time Databases,
(1995), pp. 142–157.

[5] D. Bonachea, K. Fisher, A. Rogers, and F. Smith,
Hancock: A language for processing very large data,
USENIX 2nd Conference on Domain-Specific Lan-
guages, (1999), pp. 163–176.

[6] H. Branding, A. Buchmann, T. Kudrass, and J. Zim-
mermann, Rules in an open system: The reach rule

system, First Workshop of Rules in Database Systems,
(1993).

[7] J. Feigenbaum, S. Kannan, M. Strauss, and M. Vish-
wanathan, Testing and spot-checking of data streams,
Proceedings of the ACM SODA Conference, (2000).

[8] J. Fong, and M. Strauss, An approximate L
p-difference

algorithm for massive data streams, Annual Sympo-
sium on Theoretical Aspects in Computer Science,
(2000).

[9] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F.
Smith, Hancock: A Language for Extracting Signatures

from Data Streams, Proceedings of the ACM KDD
Conference, (2000).

[10] P. Domingos, and G. Hulten, Mining High-Speed Data

Streams, Proceedings of the ACM KDD Conference,
(2000).

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan, Mining

Data Streams under block evaluation, ACM SIGKDD
Explorations, Vol. 3(2), (2002).

[12] J. Gehrke, F. Korn, and D. Srivastava, On Computing

Correlated Aggregates over Continual Data Streams,
Proceedings of the ACM SIGMOD Conference, (2001).

[13] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan,
Clustering Data Streams , Proceedings of the IEEE
FOCS Conference, (2000).

[14] R. A. Johnson, and D. W. Wichern, Applied Multivari-

ate Statistical Analysis, Fourth Edition, Prentice Hall,
Upper Saddle River, NJ, (1999).

[15] T. Lane, and C. E. Brodley, An Application of Ma-

chine Learning to Anomaly Detection, Proceedings of
the 20th National Information Systems Security Con-
ference, (1997), pp. 366-380.

[16] W. Labio, and H. Garcia-Molina, Efficient Snapshot

Differential Algorithms for Data Warehousing, Pro-
ceedings of the VLDB Conference, (1996).

[17] W. Lee, S. J. Stolfo, and P. K. Chan, Learning Pat-

terns from Unix Process Execution Traces for Intrusion

Detection, AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, (1997), pp. 50–56.

[18] B-K Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Biliris, Online Data Mining for

Co-Evolving Time Sequences, Proceedings of the ICDE
Conference, (2000).

91

Privacy-Preserving Classification of Customer Data

without Loss of Accuracy∗

Zhiqiang Yang1 Sheng Zhong1,2 Rebecca N. Wright1

1Computer Science Department, Stevens Institute of Technology, Hoboken, NJ 07030
2DIMACS Center, Rutgers University, Piscataway, NJ 08854

Abstract
Privacy has become an increasingly important issue in
data mining. In this paper, we consider a scenario
in which a data miner surveys a large number of
customers to learn classification rules on their data,
while the sensitive attributes of these customers need to
be protected. Solutions have been proposed to address
this problem using randomization techniques. Such
solutions exhibit a tradeoff of accuracy and privacy: the
more each customer’s private information is protected,
the less accurate result the miner obtains; conversely,
the more accurate the result, the less privacy for the
customers.

In this paper, we propose a simple cryptographic
approach that is efficient even in a many-customer
setting, provides strong privacy for each customer, and
does not lose any accuracy as the cost of privacy.
Our key technical contribution is a privacy-preserving
method that allows a data miner to compute frequencies
of values or tuples of values in the customers’ data,
without revealing the privacy-sensitive part of the data.
Unlike general-purpose cryptographic protocols, this
method requires no interaction between customers, and
each customer only needs to send a single flow of
communication to the data miner. However, we are still
able to ensure that nothing about the sensitive data
beyond the desired frequencies is revealed to the data
miner.

To illustrate the power of our approach, we use
our frequency mining computation to obtain a privacy-
preserving naive Bayes classifier learning algorithm.
Initial experimental results demonstrate the practical
efficiency of our solution. We also suggest some other
applications of privacy-preserving frequency mining.

1 Introduction

The rapid growth of the Internet makes it easier than
ever to collect data on a large scale. Data mining, with
its promise to efficiently discover valuable knowledge

∗This work was supported by the National Science Foundation
under grant number CCR-0331584.

from vast amounts of data, is playing an increasingly
important role in the current world. However, data
mining, given its power in knowledge discovery, can be
misused to violate people’s privacy if proper measures
are not taken. Privacy concerns have become one of the
top priorities in technical, business, and political discus-
sions of data mining. Due to these concerns, when cus-
tomer data is collected from a large population, many
people may decide to give false information, or sim-
ply decline to provide any information. Applying data-
analysis tools and knowledge-discovery tools to data col-
lected in this manner can therefore produce results with
unacceptably low accuracy. This is in spite of the fact
that, assuming privacy is properly protected, many peo-
ple say they are willing to provide correct information
in exchange for certain benefits the miner gives based
on the result of mining [Wes99]. For example, a survey
conducted to understand Internet customers’ attitudes
towards privacy showed that only 27% respondents say
they are willing to provide their data without protection
of privacy [Cra99]. Consequently, providing privacy pro-
tection measures may be critical to the success of data
collection, and to the success of the entire task of data
mining.

In this paper, we consider a “fully distributed”
setting, in which each of many customers hold their
own data. Existing solutions [AS00, AA01, ESAG02,
EGS03, RH02, DZ03] to the privacy problem in this
setting depend on randomization of each customer’s
data, which induces a tradeoff between privacy and ac-
curacy: the more privacy of each customer has, the
more accuracy the miner loses in his result. While in
some cases the tradeoff may simultaneously offer suffi-
cient privacy and sufficient accuracy, it is more desir-
able to have solutions that are both fully private and
fully accurate. It has been demonstrated that in many
cases random data distortion preserves very little pri-
vacy [KDWS03]. Related work on confidentiality in
statistical databases [AW89, DN03, DN04] and random
response techniques [War65, AJL04] also give nice dis-

92

cussions of randomization of data.
In contrast, cryptographic solutions to privacy-

preserving data mining that provide strong privacy have
been proposed [LP02, VC02, VC03, KC02, WY04], but
these tend to do so at a high performance cost. In
particular, in order to have efficiency that is reasonable
(say, linear in the size of the “virtual” database),
these solutions require the data to be shared among
only a small number of parties, often just two parties.
In addition, these solutions typically require multiple
rounds of communication between the participants.

In this work, we consider the fully distributed set-
ting described above. Each customer maintains her own
data. This can be thought of a horizontally partitioned
database in which each transaction is owned by a dif-
ferent customer. A data miner wishes to compute some
data mining results based on the customer data. In
some applications, the data miner may also have some
additional information about each customer. Note that
the fully distributed setting can inherently provide more
customer privacy than a horizontal partition into a small
number of partitions, as each customer retains full con-
trol of her data in the fully distributed setting.

We propose a new approach that provides crypto-
graphically strong privacy for each customer, but does
not lose any accuracy as a cost of privacy, and is very
efficient even in the fully distributed setting. In partic-
ular, we consider a scenario in which a miner surveys a
large number of customers to learn classification rules by
mining the set of collected data. In this scenario, we as-
sume each customer is willing to provide her data to the
miner as long as the privacy-sensitive part of her data
is protected. By adding the efficient cryptographic op-
erations we propose, we can prove that each customer’s
privacy is protected in a strong cryptographic sense.

1.1 Related Work We note that our scenario is sim-
ilar to the scenario of electronic voting [BT94]. How-
ever, e-voting systems usually assume that the vot-
ing authority consists of a group of servers that are
threshold-trusted, or that another authority indepen-
dent from the voting authority also participates in the
protocol. Both of these possibilities are not justifiable
in our scenario, however. Another difference is that in
our setting, additional specialized concerns in e-voting
such as receipt-freedom of the protocol are not an issue.

We also note that [AJL04] uses cryptography in
the randomization setting to ensure that participants
properly follow their specified instructions about ran-
domization. However, their solution still has a pri-
vacy/accuracy tradeoff; in contrast, we use cryptogra-
phy to “break” the privacy/accuracy tradeoff. Yet an-
other piece of related work is [KV02], which proposes

a general architecture for privacy-preserving data min-
ing. But their approach needs multiple service providers
that do not collude with each other, which may not be
available in practice.

In the context of privacy-preserving data mining, re-
cent work gives privacy-preserving solutions for mining
a naive Bayes classifier across a database horizontally
or vertically partitioned into a small number of parti-
tions [KV03, VC04]. In contrast, our solution provides
a privacy-preserving method for mining a naive Bayes
classifier in a fully distributed setting where each cus-
tomer holds one record.

1.2 Our Contribution Our key technical contri-
bution is a privacy-preserving method that allows a
data miner to compute frequencies of values or tu-
ples of values in the customers’ data, without reveal-
ing the privacy-sensitive part of the data. Technically,
this can be reduced to a problem of securely sum-
ming private inputs and thus in theory it can be solved
by either a general-purpose protocol for secure multi-
party computation, e.g. [Yao86, GMW87, BGW88], or
a special-purpose protocol for the secure sum problem,
e.g. [Sch96, Chapter 6]. However, our solution has a
number of advantages over the existing general-purpose
protocols:

• Our solution is very efficient, while the existing
general-purpose protocols are prohibitively expen-
sive.

• Our solution does not assume any communication
channels between customers and so is superior in
the fully distributed scenario, where it would be
infeasible to require such channels.

• In our solution, only one round of interaction is
needed between the miner and each customer. This
brings great convenience to the data mining task,
since the customers can “submit data and go.”

To illustrate the power of our proposed approach,
we take naive Bayes classification as an example and
enable a privacy-preserving learning algorithm to pro-
tect customers’ privacy using our privacy-preserving fre-
quency mining computation. We also suggest other
privacy-preserving algorithms that are enabled by joint
frequencies, such as decision trees and association rule
mining.

Cryptographic techniques are often dismissed as be-
ing too expensive to use in practical data mining appli-
cations. Indeed, performance measured from implemen-
tations of cryptographic data mining protocols have of-
ten corroborated this impression [SWY04]. However,
some cryptographic solutions are very efficient, and

93

their performance may be good enough to be useful in
practice. We have implemented our privacy-preserving
frequency mining algorithm and our privacy-preserving
naive Bayes classifier learning algorithm, and show that
both have very reasonable overhead.

We present our privacy-preserving joint frequency
algorithm, including experimental results, in Section 2.
We apply joint frequencies to naive Bayes classification
in Section 3, again including experimental results. We
discuss the application of the frequency algorithm to
decision trees and association rule mining in Section 4,
and we conclude in Section 5.

2 Privacy-Preserving Frequency Mining

This section describes a privacy-preserving primitive for
frequency mining. In Section 2.1, we formulate the
problem of frequency mining. We state our privacy
definition in Section 2.2, and present our privacy-
preserving protocol for frequency mining in Section 2.3.
We give a security proof for this protocol in Section 2.4
and provide experimental results in Section 2.5.

2.1 Problem Formulation We consider a very ba-
sic problem: there are n customers U1, . . . , Un; each cus-
tomer Ui has a Boolean value di; the miner would like
to find out how many di’s are 1’s and how many are 0’s.

This problem essentially amounts to computing the
sum d =

∑n
i=1 di without revealing each di. However,

there are a few important restrictions:

• Each customer only sends one flow of communica-
tion to the miner; there is no further interaction
between the customer and the miner.

• No customer communicates with other customers.

We call this the reduced interaction model. Solu-
tions in this model are highly practical because they
do not need communication channels between different
customers or multi-round interaction between any cus-
tomer and the miner.

In addition, we require that each customer’s di is
protected as defined in Section 2.2.

2.2 Definition of Privacy In the context of the ran-
domization approach of protecting data privacy, there
are two approaches to quantify the privacy-preserving
property of a randomization methods. One approach re-
lies on information theory [AA01], the other approach
is based on the notion of privacy breaches [ESAG02,
EGS03]. In the context of the cryptographic ap-
proach, the definition of privacy can be derived from
the general definition of security in multi-party com-
putations [Gol04]. Our definition of privacy given be-
low, for example, can be viewed as a simplification of

the general definition in the semi-honest model, where
the simplification results from our reduced interaction
model. In our definition, we consider the possibility
that some corrupted customers might share their infor-
mation with the miner in order to help derive the pri-
vate information of honest customers. We require that
no extra information about the honest customers’ val-
ues be leaked even if the miner above receives such help
from corrupted customers. In the following definition,
we do not consider problem of customers sharing their
information with each other since, as we discuss after
the definition, this will not give them any additional
information in the reduced interaction model.

Definition 1. Assume that each customer Ui has pri-
vate keys xi, yi and public keys Xi, Yi. A protocol for the
above defined mining problem protects each customer’s
privacy against the miner and t corrupted users in the
semi-honest model if, ∀I ⊆ {1, . . . , n} such that |I| = t,
there exists a probabilistic polynomial-time algorithm M
such that

{M(d, [di, xi, yi]i∈I , [Xj , Yj]j 6∈I)} c≡
{viewminer,{Ui}i∈I

([di, xi, yi]ni=1)}.
(1)

Here,
c≡ denotes computational indistinguishability

(see a standard book of cryptography, e.g., [Gol04], for a
definition), and {viewminer,{Ui}i∈I

([di, xi, yi]ni=1)} is the
joint view (again, see [Gol04] for a precise definition)
of the miner and the t corrupted customers, {Ui}i∈I .
Intuitively, this definition states that a polynomial-time
algorithm M , called a simulator , can simulate what the
miner and the corrupted customers have observed in
the protocol using only the final result d, the corrupted
users’ knowledge, and the public keys. Therefore, the
miner and the corrupted customers jointly learn nothing
beyond d.

Definition 1 only addresses privacy in the semi-
honest model [Gol04] (which assumes that all parties
follow the protocol). However, in our reduced interac-
tion model, a protocol protecting customer privacy in
the semi-honest model actually also protects customer
privacy even when the miner and the corrupted cus-
tomers are fully malicious (i.e., may deviate arbitrarily
from the protocol). This is because these malicious par-
ties cannot have any influence on the honest customers
due to the restrictions of the reduced interaction model.
In this sense, our solution provides privacy against ma-
licious parties “for free”. We note, however, that the
correct completion of the protocol cannot be guaran-
teed with malicious parties, as they may send garbage
or refuse to send anything at all.

94

2.3 Protocol Our protocol design is based on the ad-
ditively homomorphic property of a variant of ElGamal
encryption, which has been used in, e.g., [HS00]. The
privacy of our protocol is based on the believed com-
putational difficulty of the discrete logarithm problem,
and the related ElGamal cryptosystem, which we will
describe in more detail in Section 2.4. The protocol it-
self uses the mathematical properties of exponentiation,
which allows the miner to combine encrypted results re-
ceived from the customers into the desired sums.

Let G be a group in which discrete logarithm is
hard, and let g be a generator of G. All computations
in this section are carried out in the group G. Suppose
that each customer Ui has two pairs of keys: (xi, Xi =
gxi), (yi, Yi = gyi). Define

X =
n∏

i=1

Xi(2)

Y =
n∏

i=1

Yi(3)

The values xi and yi are private keys (i.e., each xi and
yi is known only to customer Ui); Xi and Yi are public
keys (i.e., they can be publicly known). In particular,
the protocol requires that all customers know the values
X and Y . In addition, each customer knows the group
G and the common generator g.

Recall that each customer Ui holds the Boolean
value di, and the miner’s goal is to learn d =

∑n
i=1 di.

The privacy-preserving protocol for the miner to learn
d is detailed in Figure 1.

Ui → miner : mi = gdi ·Xyi ;
hi = Y xi .

miner: r =
∏n

i=1
mi

hi
;

for d = 1 to n
if gd = r output d.

Figure 1: Privacy-Preserving Protocol for Frequency
Mining.

Theorem 2.1. The protocol for frequency mining pre-
sented in Figure 1 correctly computes the sum of all cus-
tomers’ inputs.

Proof : We show that, in the protocol, when the miner
finds gd = r, the value d is the desired sum. Suppose

that gd = r. Then:

gd = r

=
n∏

i=1

mi

hi

=
n∏

i=1

gdi ·Xyi

Y xi

=
n∏

i=1

gdi ·
n∏

i=1

Xyi

Y xi

= g
Pn

i=1 di ·
n∏

i=1

(
∏n

j=1 Xj)yi

(
∏n

j=1 Yj)xi

= g
Pn

i=1 di ·
n∏

i=1

(g
Pn

j=1 xj)yi

(g
Pn

j=1 yj)xi

= g
Pn

i=1 di · g
Pn

i=1
Pn

j=1 xjyi

g
Pn

i=1
Pn

j=1 yjxi

= g
Pn

i=1 di

Thus, gd = g
Pn

i=1 di , and therefore d =
∑n

i=1 di, as
desired.

2.4 Privacy Analysis Next, we establish our pri-
vacy guarantee based on a standard cryptosystem—the
ElGamal encryption scheme. In this encryption scheme,
to encrypt a message α using public key X, we compute

C = (αXk, gk),

where k is chosen uniformly at random in [0, q −
1]. It has been shown in [TY98] (under standard
complexity-theoretic assumptions) the ElGamal encryp-
tion scheme is secure in the sense of semantic security
(see, e.g., [GM84] for the definition of semantic secu-
rity). Informally, the notion of semantic security means
that whatever the attacker could compute from the ci-
phertext the attacker could compute without ciphertext,
then attacker learns nothing new by seeing ciphertext.

Our protocol makes use of a homomorphic property
of a modified version of ElGamal. Specifically, if the
message α is changed to gα before encrypting, then
from encryptions (gα1Xk1 , gk1) and (gα2Xk2 , gk2) of α1

and α2, respectively, then it is possible to derive an
encryption of α1 + α2, as (gα1Xk1 · gα2Xk2 , gk1 · gk2) =
(g(α1+α2)X(α1+α2), g(k1+k2)).

In our protocol, the message mi sent by customer Ui

is equivalent to the first part of an ElGamal encryption
of di under a private key (

∑
xi)yi, while the message hi

is the second part is part of an ElGamal encryption of di

under private key (
∑

yi)xi. Together, all the customer

95

messages are combined by the miner to be an encryption
of gd. In order to undo the resulting encryption, the
miner must first, in its first step, decrypt to learn r,
which is gd, and then since even the miner cannot take
discrete logarithms, the miner must use trial and error
to learn d. Since the range of possible values of d is not
too large, this use of trial and error is feasible.

In the following, we show that our protocol protects
each customer’s privacy (even if there are up to n − 2
users colluding with the miner) as long as the ElGamal
encryption scheme is secure. Throughout the rest of
this paper, we take the semantic security of ElGamal
encryption as an assumption.

Theorem 2.2. Assuming that all keys have been dis-
tributed properly when the protocol starts, the protocol
for mining frequency presented in Figure 1 protects each
honest customer’s privacy against the miner and up to
n− 2 corrupted customers.

Proof : For honest customers’ privacy, clearly it suf-
fices to consider the case with the maximum number
(n − 2) of corrupted customers. Since our protocol is
symmetric in customer indices, without loss of gener-
ality we assume that I = {3, 4, . . . , n}. Recall that, to
prove the protocol protects customer privacy, we need to
construct a simulator M that can generate an ensemble
indistinguishable from the miner and the corrupted cus-
tomers’ view using only the final result d, the corrupted
users’ knowledge, and the public keys. Given this sim-
ulator algorithm, we can state that the miner and the
corrupted customers jointly learn nothing beyond d.

Instead of describing the entire simulator in detail,
we give an algorithm that computes the view of the
miner and the corrupted customers in polynomial time
using only d, corrupted customers’ knowledge, public
keys, and some ElGamal encryptions. Under the as-
sumption that the ElGamal encryption is semantically
secure, we already know that each ElGamal ciphertext
can be simulated. Therefore, combining our algorithm
with a simulator for ElGamal ciphertexts, we obtain a
complete simulator.

Below is the algorithm that computes the view
of the miner and the corrupted customers. It takes
four encryptions as its input: (u11, v11) = (gd1 ·
gx1y1 , gx1), (u12, v12) = (gd1 · gx2y1 , gx2), (u21, v21) =
(gd2 · gx1y2 , gx1), (u22, v22) = (gd2 · gx2y2 , gx2). Then it
computes m1,m2 by the computation:

(4) m′
1 = u11u12Y

P
i∈I xi

1 ;

(5) m′
2 = u21u22Y

P
i∈I xi

2 .

It computes h1, h2 by the computation:

(6) h′1 = u11u21X
P

i∈I yi

1 /gd−Pi∈I di ;

(7) h′2 = u12u22X
P

i∈I yi

2 /gd−Pi∈I di ,

completing the proof.

We note that the security of ElGamal encryption
depends on new random values being used for each
encryption. In our setting, this means that the xi and
yi values, and associated X and Y , cannot be reused
in different uses of the protocol. However, since these
parameters do not depend on the actual data values,
they can in general be precomputed off-line before the
protocol starts. In particular, if the protocol is to be run
many times, many sets of values could be precomputed
in advance so that only a single phase of key distribution
is required.

2.5 Experimental Results of Frequency Mining
We implemented our privacy-preserving frequency min-
ing algorithm in C, using the OpenSSL libraries for
the cryptographic operations. We ran a series of ex-
periments on a PC with a 1GHz processor and 512MB
memory under NetBSD. In our experiments, the length
of each cryptographic key is 512 bits. We measured
the computing time of the privacy-preserving frequency
mining protocol for different numbers of customers,
from 2, 000 to 10, 000.

To set up for the privacy-preserving frequency min-
ing protocol, the key-generation time for each customer
is 4.2 seconds. Computing the protocol parameters X
and Y for 10, 000 customers takes 140 milliseconds. As
previously noted, these values can precomputed off-line
before the protocol starts.

In the privacy-preserving frequency mining proto-
col, it takes each customer to prepare her message to
the miner only 1 millisecond, as it requires just a sin-
gle modular exponentiation. The miner’s computation
is somewhat longer, but still quite efficient. Figure 2
shows the times the miner uses to compute one fre-
quency for different numbers of customers. For ex-
ample, for 10, 000 customers, the miner’s computation
takes 146 milliseconds. As these results demonstrate,
the privacy-preserving frequency mining protocol is very
efficient.

3 Protecting Customer Privacy in Learning
Naive Bayes Classifier

The primitive of frequency mining is simple, but is very
useful in data mining applications. Correspondingly,
our privacy-preserving frequency mining solution is also

96

42
53

117

146

83

0

20

40

60

80

100

120

140

160

2000 4000 6000 8000 10000

The Number of Customers

Ti
m

e
(m

s)

Figure 2: Server’s Computation Time for a Single
Frequency Calculation

quite simple, but is potentially useful whenever privacy
is a top concern. In this section, we demonstrate the
power of our primitive by showing a privacy-preserving
naive Bayes classifier computation in the fully distrib-
uted setting (which can be thought of a horizontally
partitioned database in which each record is held by a
different party).

3.1 Naive Bayes Learning with Privacy Con-
cerns Naive Bayes classifiers have been used in many
practical applications. They greatly simplify the learn-
ing task by assuming that attributes are independent
given the class. Although independence of attributes is
an unrealistic assumption, naive Bayes classifiers often
compete well with more sophisticated models, even if
there is modest correlation between attributes. Naive
Bayes classifiers have significant advantages in terms of
simplicity, learning speed, classification speed, and stor-
age space. They have been used, for example, in text
classification and medical diagnosis [DP97, Mit97].

In (non-private) naive Bayes learning, the miner is
given a set of training examples. We assume that each
example is an attribute vector of a customer together
with her class label. From these examples the miner
learns a classifier that can be used to classify new
instances.

In this paper, we consider the following scenario:
there are m attributes, (A1, A2, . . . , Am), and one class
attribute V . Without loss of generality, we assume
that each attribute Ai (1 < i < m) has a domain of
{a(1)

i , . . . , a
(d)
i } and the class attribute V has a domain

of {v(1), . . . , v(p)}. We also assume that there are n
customers (U1, . . . , Un), where each customer Uj has a
vector denoted by (aj1, . . . , ajm, vj). In the customer’s
vector, (aj1, . . . , ajm, vj) is an instance of the attributes
vector (A1, . . . , Am) and vj is Uj ’s class label. In our
problem, these data are the training samples from which

the miner learns the classifier without learning the
samples themselves. The miner surveys all customers
for values based on their data, and constructs a classifier
to classify a new instance by selecting the most likely
class label v:

(8) v = argmax
v(`)∈V

Pr(v(`))
m∏

i=1

Pr(ai | v(`)),

where (a1, . . . , am) is the attributes vector of the new
instance.

To learn the naive Bayes classifier, traditionally
the miner collects all customers’ data into one central
site, and then learns the classifier at that cental site.
In our setting, there is a set S of privacy-sensitive
attributes where S ⊆ A. Formally, for any j ∈
{1, . . . , n}, Uj is not willing to reveal any information
about (aji)i∈S to the miner; but she is willing to reveal
to the miner all the remaining non-sensitive attribute
values (aji)i∈{1,...,n}−S . To protect customers’ privacy
and also enable learning classifier, we design a privacy-
preserving protocol for naive Bayes learning.

3.2 A Privacy-preserving Protocol for Naive
Bayes Learning We use the primitive for frequency
mining in Section 2 as a building block to design a
privacy-preserving protocol for naive Bayes learning. In
this protocol the miner knows the schema of customer
data. Without loss of generality, we assume all cus-
tomers’ sensitive attributes need to be protected. We
have two goals to achieve:

• Correctness: the miner learns the naive Bayes
classifier accurately.

• Privacy : the miner learns nothing about each
customer’s sensitive data except the knowledge
derivable from the naive Bayes classifier itself.

To achieve these two goals, we first rewrite (8) as:

(9) v = argmax
v(`)∈V

#(v(`))
m∏

i=1

#(ai, v
(`))

#(v(`))
,

where #(v(`)) (#(ai, v
(`)), resp.) denotes the frequency,

or number of occurrences, of attribute value v(`) (at-
tribute pair value (ai, v

(`)), resp.) in all customers’ data.
To learn the classifier, all the miner needs to do is to
learn #(v(`)) and #(a(k)

i , v(`)) for each i ∈ S, each k,
and each `. Since the occurrence of v(`) or of the pair
(a(k)

i , v(`)) can be denoted by a Boolean value, we can
use the primitive presented in Section 2. A detailed
specification of the protocol is given in Figure 3.

97

. a
(k,`)
ji

def
= 1 if (aji, vj) = (a

(k)
i , v(`));

0 otherwise.
. Uj ’s private keys:

(x
(k,`)
ji)i∈S,1≤k≤d,1≤`≤p, (y

(k)
ji)i∈S,1≤k≤d,1≤`≤p.

. Public keys: X
(k,`)
ji = gx

(k,`)
ji ; Y

(k,`)
ji = gy

(k,`)
ji .

(1 ≤ j ≤ n, i ∈ S, 1 ≤ k ≤ d, 1 ≤ ` ≤ p)

X
(k,`)
i =

Q
1≤j≤m X

(k,`)
ji ; Y

(k,`)
i =

Q
1≤j≤m Y

(k,`)
ji .

(1 ≤ j ≤ n, i ∈ S, 1 ≤ k ≤ d, 1 ≤ ` ≤ p)

Uj : for i ∈ S, 1 ≤ k ≤ d, 1 ≤ ` ≤ p

a
(k,`)
ji = ga

(k,`)
ji · (X(k,`)

i)y
(k,`)
ji ;

h
(k,`)
ji = (Y

(k,`)
i)x

(k,`)
ji .

Uj → miner : (a
(k,`)
ji , h

(k,`)
ji)i∈S,1≤k≤d,1≤`≤p;

(aji)i 6∈S , vj .

miner: for i ∈ S, 1 ≤ k ≤ d, 1 ≤ ` ≤ p

r
(k,`)
i =

Qn
j=1

a
(k,`)
ji

h
(k,`)
ji

;

for #(a
(k)
i , v(`)) = 1 to n

if g#(a
(k)
i ,v(`)) = ri break.

for i 6∈ S, 1 ≤ k ≤ d, 1 ≤ ` ≤ p

count #(a
(k)
i , v(`)).

for 1 ≤ ` ≤ p

count #(v(`)).
output classifier.

Figure 3: Privacy-Preserving Protocol for Naive Bayes
Learning.

3.3 Protocol Analysis In the following theorem, we
implicitly assume that the output classifier is encoded
in such a way that it contains the frequencies #(v(`))
and #(a(k)

i , v(`)) for all (i, k, `).

Theorem 3.1. The protocol for naive Bayes learning
presented in Figure 3 protects each customer’s sensitive
data against the miner and up to n − 2 corrupted
customers.

Proof : Since all the frequency computations are done
independently, the theorem follows immediately from
Theorem 2.2.

For accuracy, we compare our privacy-preserving
protocol with a traditional naive Bayes learning algo-
rithm running on all customers’ data without protection
of privacy. Suppose that the learning algorithm with-
out privacy protection outputs a classifier c and that our
privacy-preserving protocol outputs c′. We claim c = c′,
which means our protocol does not lose any accuracy as
a cost of privacy.

Theorem 3.2. The protocol for naive Bayes learning
presented in Figure 3 does not lose accuracy.

Proof : This is straightforward from our protocol
specification. Our protocol counts each #(v(`)) and
each #(a(k)

i , v(`)) for i 6∈ S directly. It uses the privacy-
preserving method we presented in Section 2 to count
each #(a(k)

i , v(`)) for i ∈ S. Since the method in
Section 2 computes frequencies precisely, our protocol
outputs exactly the same classifier as a non-privacy-
preserving naive Bayes algorithm.

Overhead Analysis Recall that there are n customers
and m attributes and that each (non-class) attribute
has a domain of size d, and the class label has a domain
of size p. Also recall that the set of privacy-sensitive
attributes is S. Assume s = |S| is the number of
sensitive attributes. It is easy to see that each customer
has a computational overhead—as compared to a non-
private solution—of dps ElGamal encryptions. In data
mining applications, we usually have n À dps; thus
the computational overhead for each customer is small.
The computation overhead for the miner is O(dpsn)
modular exponentiations, which is also reasonable. The
communication overhead is dpsn ciphertexts.

3.4 Experimental Results of Bayes Classifier
Learning The basic experimental set-up is the same
here as described in Section 2.5. The Bayes classi-
fier learning algorithm is implemented in C, and uses
the frequency mining implementation as a subroutine.
Again, we ran a series of experiments on a PC with a
1GHz processor and 512MB memory under NetBSD, us-
ing 512 bit cryptographic keys. For the Bayes classifier

4.46

8.97

13.3

17

22

0

5

10

15

20

25

2000 4000 6000 8000 10000

The Number of Customers

Ti
m

e
(S

ec
on

ds
)

Figure 4: Server’s Learning Time for Naive Bayes
Classifier vs. Number of Customers

experiments, we assumed that each customer has ten
attributes, that each attribute has eight nominal val-
ues, and that there are two classes. We measured the

98

computation time of each customer and the miner in our
privacy-preserving protocol for Bayes classifier learning.
Our results show that each customer needs only 120
milliseconds to compute her message flow to the miner.
Figure 4 shows the computation times the miner needs
to learn a naive Bayes classifier for different numbers of
customers. For example, when the number of customers
is 10, 000, the miner’s computation requires only 22 sec-
onds.

Figure 5 further studies how the server’s learning
time changes when both the customer number and the
attribute number vary. In this experiment, we fix the
domain size of each non-class attribute to four and the
domain size of the class attribute to two.

2

4

6

8

10

2000

4000

6000

8000

10000
0

2

4

6

8

10

12

The Number of AttributesThe Number of Customers

S
e
rv

e
r

L
e
a
rn

in
g

 T
im

e
 (

S
e
c
o

n
d

s
)

Figure 5: Server’s Learning Time for Naive Bayes
Classifier vs. Number of Customers and Number of
Attributes

4 Extension to Other Data Mining Algorithms

We describe how our privacy-preserving frequency com-
putation can be used for other important data mining
algorithms in the fully distributed model. In Section 4.1,
we describe a privacy-preserving ID3 decision tree learn-
ing algorithm. In Section 4.2, we sketch a privacy-
preserving association rule mining algorithm. Both al-
gorithms are in the fully distributed model without loss
of accuracy. Both of them leak no information about
the customer data beyond the computed frequencies.
Both can be efficient even if the number of customers
(transactions) is very large. However, both require cer-
tain parameters (such as the number of attributes) are
small, as they require exponential computation in those
parameters, as we discuss further below.

4.1 Privacy-Preserving Learning of ID3 Trees
Using our privacy-preserving frequency primitive, we
can learn ID3 trees in the fully distributed setting
without loss of accuracy. Solutions such as [AS00]
can be used in the fully distributed setting, but they
lose some accuracy as cost of privacy; solutions such
as [LP02] do not lose accuracy for privacy, but they do
not work in the fully distributed setting.

The miner’s algorithm has the same complexity as
the original ID3 tree algorithm, except for an additional
linear overhead factor whose value is determined by the
ElGamal key size used. However, the computation time
of each customer is exponential on the domain size of
her attribute. Therefore, our algorithm is efficiently
applicable only if the attribute domains are small.

We define the problem of privacy-preserving learn-
ing of ID3 decision trees as PPLID3:

Definition 2. PPLID3: A data miner queries n cus-
tomers and learns an ID3 tree based on the customers’
responses. The miner should not be able to derive any
information about each customer’s data beyond the com-
puted frequencies.

In the PPLID3 problem, each customer has a
(m + 1)-tuple of data in which there are m non-
class attributes and one class attribute. The schema
of customer data and the domain of each attribute
are assumed to be publicly known. Our solution
is in the reduced interaction model: each customer
sends only a single message flow to the data miner,
and there is no further communication. Hence, if
customer i sends Ei to the miner, the security goal is
that the miner learns nothing (beyond the computed
frequencies) about customer i’s data from Ei.

First, we give a brief review of ID3 decision trees.
(See [Mit97] for additional details.) An ID3 tree is a
rooted tree containing nodes and edges. Each internal
node is a test node and corresponds to an attribute. The
edges going out of a node correspond to the possible
values of that attribute. The ID3 algorithm works
as follows. The tree is constructed top-down in a
recursive fashion. At the root, each attribute is tested
to determine how well it alone classifies the samples.
The “best” attribute is then chosen and the samples
are partitioned according to this attribute. The ID3
algorithm is then recursively called for each child of this
node, using the corresponding subset of data.

Next, we review how the ID3 algorithm chooses
the best attribute for a node. We use the following
notation. Let A = {Ai | 1 ≤ i ≤ m} be the set
of (non-class) attributes, V the class attribute, and
T the set of samples (or records). For simplicity, we
assume that all attributes have the same domain size d:

99

Ai = {a(j)
i | 1 ≤ j ≤ d}. The set of possible values of

the class attribute is V = {v(i) | 1 ≤ i ≤ p}. Let T (v(i))
be the set of samples with class v(i). Then the entropy
is:

HV (T) =
p∑

i=1

−|T (v(i))|
|T | log

|T (v(i))|
|T | .

Consider an attribute At = {a(j)
t | 1 ≤ j ≤ d}. The

conditional information of T given At is:

HV (T | At) =
d∑

i=1

|T (a(i)
t)|

|T | HV (T (a(i)
t)).

For each attribute At, the information gain is defined
by:

gain(At) = HV (T)−HV (T | At)

The chosen attribute At is the attribute that can
achieve the maximum information gain at each node.
Clearly, the problem of choosing the best attribute can
be reduced to computing entropies. Accordingly, the
PPLID3 problem can be reduced to a problem in which
the miner computes entropies while no sensitive data
of customers are revealed to her. Again, we use our

A1

A3 ?

 1 0
Which attribute
should be chosen?

0 1

1 0

Figure 6: ID3 example

technique of privacy-preserving frequency mining to
solve this problem. The solution is showed in Figure 6.
Suppose that there are n customers, each holding a
record with three Boolean attributes A1, A2 and A3.
The class value is also Boolean. Figure 6 shows an
intermediate state of the ID3 algorithm in which the
algorithm needs to choose an attribute for the node
“?”. To compute the information gain HV (Ai) (for
i = 2 and 3, resp.), we need to compute HV (T) and
HV (T |Ai):

HV (T) = −|T (V = 0)|
|T | log

|T (V = 0)|
|T |

−|T (V = 1)|
|T | log

|T (V = 1)|
|T | ,

HV (T |Ai) =
|T (Ai = 0)|

|T | HV (T (Ai = 0))

+
|T (Ai = 1)|

|T | HV (T (Ai = 1))

The above formulae involve several frequencies: |T |,
|T (V = 0)|, |T (V = 1)|, |T (Ai = 0)|, |T (Ai = 1)|,
etc. All these frequencies can be computed using our
privacy-preserving frequency mining protocol.

The general protocol is sketched in Figure 7, where
A is the attribute set, V the class and T the set of all
customers’ data.

ID3 (A, V, T)
1. If A is empty, the miner returns a leaf node

with the dominating class value in T .
2. Use the privacy-preserving method to count

the number of records with each class label.
If T consists of records which have the same
class label v, return a leaf node with v.

3. Otherwise:
(a) Determine the best attribute Ai for T using

the privacy-preserving method.
(b) For Ai = {a1, ..., ad}, let T (a1), ..., T (ad)

be a partition of T s.t. every record in T (aj)
has attribute value aj .

(c)Return a tree whose root is labeled Ai; the
root has outgoing edges labeled a1, ..., ad

s.t. each edge aj goes to the tree
ID3(A−Ai, V, T (aj)).

Figure 7: Privacy-preserving Protocol for Learning ID3
Tree

Unlike naive Bayes classification, which assumes
independence between non-class attributes given the
class label, attributes are interdependent with ID3. If
the class attribute has p class labels, and each of the m
non-class attributes has a domain of size d, then the
number of joint frequencies that need to be counted
is exponential in m. In some cases we have small m
and d and thus we can still achieve reasonable overhead.
For example, the data set of Car Evaluation Database
from UCI repository [BM98] has six nominal attributes:
buying, maint, doors, persons, lug boot and safety, and
the class attribute has a domain of size four. For such

100

a scenario, we estimate that each customer needs only
one minute to compute her message flow to the miner.
Another example [Mit97, Ch. 3] is a weather data set
containing four data attributes: outlook, temperature,
humidity, and windy, and a class attribute, play. If each
customer holds one weather record, we estimate that
each customer needs only about 0.5 seconds to compute
her message flow to the miner.

4.2 Association Rule Mining The mining of as-
sociation rules can be formulated as follows. Let I =
{i1, i2, ..., im} be a set of items. Let D denote a set of
n transactions (or records), where each transaction T
is a subset of D. Associated with each transaction is a
unique identifier. We say that a transaction T contains
P if P ⊂ T . An association rule is an implication of the
form P ⇒ Q, where P ⊂ I, Q ⊂ I, and P ∩Q = ∅. The
rule P ⇒ Q has support s in D if s% of the transactions
in D contain P ∩Q. P ⇒ Q holds with c confidence if
c% transactions in D that contain P also contain Q.

Association rule mining can be reduced to comput-
ing the frequency of a number of particular sets. Us-
ing the privacy-preserving frequency mining protocol in
Section 2, we enable the miner to compute the frequency
of any set of items from customer response. From these,
the miner can learn all association rules. Note that this
leaks all the computed frequencies to the miner, rather
than only revealing the actual frequent itemsets.

In the fully distributed setting, each customer has
a transaction. The miner wants to learn the association
rules based the customer data, but each customer does
not want to reveal her data to the miner. Consider
a small example in which P = {p1, p2, p3} and Q =
{q1, q2}. We describe how to compute confidence and
support for the rule P ⇒ Q. Each customer sends
the encryptions of the occurrences of {p1, p2, p3, q1, q2},
{p1, p2, p3} and {q1, q2}. By applying the privacy-
preserving frequency-mining protocol, the miner can
easily learn the confidence and support from customers’
output. To learn all association rules with threshold of
c and s on D, each customer must compute all possible
combinations of the occurrence of sets of items, which is
of course exponential on the size m of the item domain.
Hence, the solution is only practical if m ¿ n.

5 Conclusion

In this paper, we proposed a privacy-preserving method
of frequency mining and applied it to naive Bayes learn-
ing in a fully distributed setting. If this problem is
solved using randomization techniques, then there is a
trade-off between privacy and accuracy. However, our
proposed solution enjoys cryptographically strong pri-
vacy without losing any accuracy as cost of privacy.

Furthermore, both theoretical analysis and experimen-
tal results show that the method itself and its applica-
tion to naive Bayes learning are very efficient. Our work
assumes that the data are horizontally partitioned such
that each customer holds a row. Therefore, an immedi-
ate open question is whether a solution similar to ours
can be found for the case in which the data are fully
vertically partitioned among different parties.

We also discussed other possible applications of
the proposed privacy-preserving frequency mining: pri-
vacy-preserving learning of ID3 trees and association
rule mining. These are very practical in some cases,
but rely on certain parameters being small. A second
open question is whether those applications can be
made as efficient as our privacy-preserving protocol for
naive Bayes learning. We conjecture that additional
techniques are needed to make such protocols efficient.

A third open question is whether it is possible to
combine our method with randomization techniques to
further improve efficiency. For example, is there a proto-
col for frequency mining or naive Bayes learning that is
more efficient than the one presented in this paper, but
still enjoys full privacy and does not lose any accuracy?
Alternately, it may be possible to combine some ran-
domization techniques with some cryptographic tech-
niques to further improve the efficiency while the result-
ing loss of privacy can be quantified and thus limited to
an acceptable extent. We believe these questions are
worth further investigation.

Acknowledgement

We thank the anonymous reviewers for their insightful
comments.

References

[AA01] D. Agrawal and C. Aggarwal. On the design and
quantification of privacy preserving data mining algo-
rithms. In Proc. of the 20th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Sys-
tems, pages 247–255. ACM Press, 2001.

[AJL04] A. Ambainis, M. Jakobsson, and H. Lipmaa. Cryp-
tographic randomized response techniques. In Proc. of
the 2004 International Workshop on Practice and The-
ory in Public Key Cryptography (PKC), pages 425–438.
Springer, 2004.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proc. of the ACM SIGMOD Conference on
Management of Data, pages 439–450. ACM Press, May
2000.

[AW89] N. Adam and J. Worthmann. Security-control
methods for statistical databases: a comparative study.
ACM Comput. Surv., 21(4):515–556, 1989.

101

[BGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson.
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. of the 20th
Annual ACM Symposium on Theory of Computing,
pages 1–10. ACM Press, 1988.

[BM98] C. Blake and C. Merz. UCI repository of machine
learning databases, 1998.

[BT94] J. Benaloh and D. Tuinstra. Receipt-free secret-
ballot elections (extended abstract). In Proc. of the
26th Annual ACM symposium on Theory of Comput-
ing, pages 544–553. ACM Press, 1994.

[Cra99] L. Cranor, editor. Comm. ACM 42(2), Special Issue
on Internet Privacy, 1999.

[DN03] I. Dinur and K. Nissim. Revealing information
while preserving privacy. In Proc. of the 22nd ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 202–210. ACM Press, 2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving data-
mining on vertically partitioned databases. In Ad-
vances in Cryptology - Proceedings of CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science,
Santa Barbara, California, August 2004.

[DP97] P. Domingos and M. Pazzani. On the optimality
of the simple Bayesian classifier under zero-one loss.
Machine Learning, 29(2-3):103–130, 1997.

[DZ03] W. Du and Z. Zhan. Using randomized response
techniques for privacy-preserving data mining. In Proc.
of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 505–
510. ACM Press, 2003.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Lim-
iting privacy breaches in privacy preserving data min-
ing. In Proc. of the 22nd ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
pages 211–222. ACM Press, 2003.

[ESAG02] A. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In Proc. of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 217–228. ACM Press, 2002.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryp-
tion. J. Computer and System Sciences, 28:270–299,
1984.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How
to play any mental game. In Proc. of the 19th Annual
ACM Conference on Theory of Computing, pages 218–
229. ACM Press, 1987.

[Gol04] O. Goldreich. Foundations of Cryptography: Basic
Applications. Cambridge University Press, 2004.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free
voting based on homomorphic encryption. Lecture
Notes in Computer Science, 1807:539+, 2000.

[KC02] M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. In The ACM SIGMOD Workshop
on Research Issues on Data Mining and Knowledge
Discovery (DMKD’02), pages 24–31, June 2002.

[KDWS03] H. Kargupta, S. Datta, Q. Wang, and K. Sivaku-

mar. On the privacy preserving properties of random
data perturbation techniques. In The Third IEEE In-
ternational Conference on Data Mining, 2003.

[KV02] M. Kantarcioglu and J. Vaidya. An architecture
for privacy-preserving mining of client information. In
IEEE ICDM Workshop on Privacy, Security and Data
Mining, pages 37–42, 2002.

[KV03] M. Kantarcioglu and J. Vaidya. Privacy preserv-
ing naive Bayes classifier for horizontally partitioned
data. In IEEE Workshop on Privacy Preserving Data
Mining, 2003.

[LP02] Y. Lindell and B. Pinkas. Privacy preserving data
mining. J. Cryptology, 15(3):177–206, 2002.

[Mit97] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[RH02] S. Rizvi and J. Haritsa. Maintaining data privacy

in association rule mining. In Proc. of the 28th VLDB
Conference, 2002.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley
& Sons, second edition, 1996.

[SWY04] H. Subramaniam, R. N. Wright, and Z. Yang.
Experimental analysis of privacy-preserving statistics
computation. In Proc. of the VLDB Worshop on
Secure Data Management, pages 55–66, August 2004.

[TY98] Y. Tsiounis and M. Yung. On the security of
ElGamal-based encryption. In Public Key Cryptog-
raphy’98, volume 1431 of Lecture Notes in Computer
Science, pages 117–134, 1998.

[VC02] J. Vaidya and C. Clifton. Privacy preserving as-
sociation rule mining in vertically partitioned data.
In Proc. of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 639–644. ACM Press, 2002.

[VC03] J. Vaidya and C. Clifton. Privacy-preserving k-
means clustering over vertically partitioned data. In
Proc. of the Ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
206–215. ACM Press, 2003.

[VC04] J. Vaidya and C. Clifton. Privacy preserving naive
Bayes classifier on vertically partitioned data. In 2004
SIAM International Conference on Data Mining, 2004.

[War65] S. L. Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69,
1965.

[Wes99] A. Westin. Freebies and privacy: What net users
think. Technical report, Opinion Research Corpora-
tion, 1999.

[WY04] R. N. Wright and Z. Yang. Privacy-preserving
Bayesian network structure computation on distrib-
uted heterogeneous data. In Proc. of the Tenth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 713–718. ACM Press,
2004.

[Yao86] A. Yao. How to generate and exchange secrets. In
Proc. of the 27th IEEE Symposium on Foundations of
Computer Science, pages 162–167, 1986.

102

Privacy-Aware Market Basket Data Set Generation: A Feasible

Approach for Inverse Frequent Set Mining

Xintao Wu Ying Wu Yongge Wang
UNC at Charlotte

9201 Univ. City Blvd
Charlotte, NC 28223

{xwu,ywu,yonwang}@uncc.edu

Yingjiu Li
Singapore Management University

469 Bukit Timah Road
Singapore 259756
yjli@smu.edu.sg

Abstract

Association rule mining has received a lot of attention in the

data mining community and several algorithms were pro-

posed to improve the performance of association rule or fre-

quent itemset mining. The IBM Almaden synthetic data

generator has been commonly used for performance evalua-

tion. One recent work shows that the data generated is not

good enough for benchmarking as it has very different char-

acteristics from real-world data sets. Hence there is a great

need to use real-world data sets as benchmarks. However,

organizations hesitate to provide their data due to privacy

concerns. Recent work on privacy preserving association rule

mining addresses this issue by modifying real data sets to

hide sensitive or private rules. However, modifying individ-

ual values in real data may impact on other, non-sensitive

rules. In this paper, we propose a feasible solution to the NP-

complete problem of inverse frequent set mining. Since solv-

ing this problem by linear programming techniques is very

computationally prohibitive, we apply graph-theoretical re-

sults to divide the original itemsets into components that

preserve maximum likelihood estimation. We then use iter-

ative proportional fitting method to each component. The

technique is experimentally evaluated with two real data sets

and one synthetic data set. The results show that our ap-

proach is effective and efficient for reconstructing market

basket data set from a given set of frequent itemsets while

preserving sensitive information.

1 Introduction

Since its introduction in [1], association rule mining has
received a lot of attention in the data mining commu-
nity. Several algorithms were proposed to improve per-
formance of association rule or frequent itemset min-
ing. The algorithms developed typically only show the
performance advantage using synthetic data sets (e.g.,
the market basket data generator provided by IBM Al-
maden). Recently, Zheng et al. compared five well-
known association rule algorithms using three real-world

data sets and the artificial data set from IBM Almaden
[22]. One interesting result is that the artificial data
sets from IBM Almaden have very different character-
istics from the real-world data sets and hence there is a
great need to use real-world data sets as benchmarks.

However, organizations hesitate to provide their
real-world data sets as benchmarks due to the potential
disclosure of private information or commercial secret.
Some recent work [3, 6, 9, 10, 14, 16, 10, 17] on pri-
vacy preserving association rule mining considers how
much information can be inferred or computed from
large data made available through data mining algo-
rithms and looks for ways to minimize the leakage of in-
formation. Most ideas are to modify the given database
(e.g., randomization, hiding, replacing individual values
with unknowns) so that the support of a given set of
sensitive rules decreases below some minimum support
thresholds. The problem here is modifying the individ-
ual values of original databases to limit the disclosure of
sensitive rules may impact on other, non-sensitive fre-
quent itemsets.

The frequent sets and their supports (defined as the
number of transactions in the database that contain the
items) can be considered to be a reasonable summary
of the original data set. A natural problem is inverse
frequent set mining, i.e., to find a binary data set that
is compatible with frequent set mining results. The
inverse frequent set mining is related to the questions
of how well privacy is preserved in the frequent sets and
how well the frequent sets characterize the original data
set. The authors, in [13, 5], investigate the problem
whether there exists a data set that is consistent with
the given frequent itemsets and frequencies and show
this problem is NP-Complete.

In this paper, we propose a feasible approach on in-
verse frequent itemset mining. Here the given frequent
itemsets and their frequencies were discovered from the
original one, hence there must exist at least one compat-

103

ible data set. Our focus here is how to generate one ef-
fectively and efficiently. The frequency of each frequent
itemset is taken as a constraint over the original data
set. The problem of inverse frequent set mining then
can be translated to a linear constraint problem. Linear
programming problems can be commonly solved today
in hundreds or thousands of variables and constraints .
However, the number of variables and constraints in our
scenario is far beyond hundreds or thousands (e.g., 2d,
where d is the number of items). Hence it is impractical
to apply linear programming techniques directly. In this
paper, we propose a feasible approach using graphical
decomposition techniques to reconstruct market basket
data sets given a set of frequent itemsets and their sup-
ports.

The constructed market basket data set can be used
as benchmarks for evaluating various different frequent
itemset mining algorithms. Ramesh et al. recently in-
vestigated the relation between the distribution of dis-
covered frequent set and the performance of association
rule mining [15]. It suggests that the performance of as-
sociation rule mining method using the original data set
should be very similar to that using the synthetic one
compatible with the same frequent set mining results.

Furthermore, our approach could achieve better pri-
vacy preserving as it only needs to access the summary
information (i.e., frequencies of given frequent itemsets)
instead of the individual values of the original data set.
If frequencies of some frequent itemsets are considered
confidential information by user, they can be removed
directly from the released list. However, though those
frequencies of the released frequent itemsets are not con-
fidential themselves, attackers may still be able to derive
some confidential or private information (e.g., frequen-
cies of some confidential or sensitive itemsets) from the
released information. We will also address this issue
by using the Frechet Bounds to analyze the potential
disclosure of our approach.

The rest of the paper is organized as follows. In
Section 2 we review the related work. In Section 3
we formalize the problems and in Section 4 present our
method in detail. Experimental results are discussed in
Section 5. In Section 6 we draw conclusions and describe
directions for future work.

2 Related Work
Privacy preserving data mining considers how much in-
formation can be inferred or computed from large data
made available through data mining algorithms and
looks for ways to minimize the leakage of information.
Recent research has been focused on the information
leakage in association rule mining. In [3, 6], the authors
considered the problem of limiting disclosure of sensitive

rules, aiming at selectively hiding some frequent item-
sets from large databases with as little impact on other,
non-sensitive frequent itemsets as possible. The idea
was to modify a given database so that the support of a
given set of sensitive rules decreases below the minimum
support value. Similarly, the authors in [17] presented a
method for selectively replacing individual values with
unknowns from a database to prevent the discovery of
a set of rules, while minimizing the side effects on non-
sensitive rules. The authors studied the impact of hid-
ing strategies in the original data set by quantifying how
much information is preserved after sanitizing a data set
[14]. [16, 10] studied the problem of mining association
rules from transactions in which the data has been ran-
domized to preserve privacy of individual transactions.
One problem is it may introduce some false association
rules.

The authors, in [15], proposed a method to generate
market basket data set for benchmarking when the
length distributions of frequent and maximal frequent
itemset collections are available. Though the generated
synthetic data set preserves the length distributions of
frequent patterns, one serious limitation is that the size
of transactions generated is much larger than that of
original database while the number of items generated
is much smaller. We believe the sizes of items and
transactions are two important parameters as they
may significantly affect the performance of association
rule mining algorithms. In our paper, we will apply
graphical decomposition techniques to estimate the cell
frequencies of the contingency table which is then
used to construct market basket data set. Graphical
modeling and decomposition techniques are well studied
in statistics [12, 19] and were recently used for screening
and interpreting multi-item associations in [20].

A number of researchers from statistics field have
recently been working on the problem of determining
upper and lower bounds on the cells of the cross-
classification given a set of margins [8, 7]. Upper and
lower bounds induced by some fixed set of marginal
on the cell entries of a contingency table are of great
importance in measuring the disclosure risk associated
with the release of these marginal totals.

Wu et al. have proposed a general framework
for privacy preserving database application testing by
generating synthetic data sets based on some a-priori
knowledge about the production databases [21]. The
general a-priori knowledge such as statistics and rules
can also be taken as constraints of the underlying data
records. The problem investigated in this paper can
be thought as a simplified problem where data set here
is binary one and constraints are frequencies of given
frequent itemsets. However, the techniques developed

104

in [21] are infeasible here as the number of items are
much larger than the number of attributes in general
data sets.

3 Problem Formulation

For market basket data, we define each transaction, such
as list of items purchased, as a subset of all possible
items.

Definition 3.1. Let I = {I1, · · · , Id} be a set of d
boolean variables called items. Then a set of transac-
tions T = {t1,· · ·,tN} is a collection of N d-tuples from
{True, False}d which represent a collection of value as-
signments to the d items. The support of an item-
set s over I, denoted support(s, T), is defined as the
number of the transactions that contain s. The fre-
quency of an itemset s, denoted freq(s, T), is defined
as support(s, T)/N .

The well known frequent itemset mining problem is
defined as:

Problem 1. Frequent Itemsets Mining. Given a
transaction database T over I and a threshold τ ∈ [0, 1],
find all frequent itemsets FS such that freq(FS, T) ≥
τ .

In our paper, we focus on the inverse frequent
itemset mining defined as:

Problem 2. Inverse Frequent Itemsets Mining.
Given a finite set FS = {FS1, · · · , FSn} together with
their frequencies {freq(FS1), · · · , freq(FSn)} discov-
ered from the original database D, construct a trans-
action database D̂ such that
1) D̂ satisfies FS and their frequencies and
2) D and D̂ are over the same set I and have the same
number of transactions.

Definition 3.2. We define CTs as a k-dimensional
contingency table for itemset s ⊆ I where | s |= k. Each
dimension has two values (True or False) and each cell
contains the number (or the frequency) of transactions
located in that cell.

The market basket data set in Definition 3.1 can be
easily transformed into one (and only) d-dimensional
contingency table, and vice verse. Table 1 shows a
market basket data set with 9 transactions and three
items and its 3-dimensional contingency table. Note
the contingency table shown in Table 1(c) is equivalent
to that shown in Table 1(b) when the number of
transactions is fixed. The cell(ABC) contains the
number (or frequency) of those transactions which buy
item ABC together (i.e., t8 and t9) while cell(ĀBC)

contains the number (or frequency) of those transactions
which buy BC but do not buy A (i.e.,t6). Hence we
can construct its contingency table by one scan of the
original basket data set if the contingency table is fitted
in memory. On the other hand, we can construct
exactly one market basket data set by scanning each
cell value of the contingency table 1. For example, from
cell(ABC̄) = 2, we generate two transactions which
contain item AB but not C.

As market basket data set is equivalent to its con-
tingency table, Problem 2 can be mapped to the con-
tingency table reconstruction problem, i.e., construct a
feasible contingency table CTI which satisfies the given
marginal frequencies {freq(FS1), · · · , freq(FSn)}.
Here each given frequent itemset and its frequency can
be taken as a constraint or a marginal as shown in
Example 1.

Example 1. For the data set shown in Table 1 , the
frequent itemsets are A, B, C, AB, AC and their
frequencies are 6/9, 7/9, 5/9, 4/9, 4/9 respectively when
support threshold is set as 4/9. Each frequency can be
taken as a constraint:

fq(ABC) + fq(AB̄C̄) + fq(ABC̄) + fq(AB̄C) =
6
9

fq(ABC) + fq(ĀBC̄) + fq(ABC̄) + fq(ABC̄) =
7
9

fq(ABC) + fq(ĀB̄C) + fq(ĀBC) + fq(AB̄C) =
5
9

fq(ABC) + fq(ABC̄) =
4
9

fq(ABC) + fq(AB̄C) =
4
9

(3.1)

It is straightforward to see we can apply linear pro-
gramming techniques to compute frequencies of cells
(e.g., fq(ABC), fq(AB̄C̄), etc.) and the generate mar-
ket basket data using frequencies computed. However,
the number of variables and constraints in our scenario
is too large to be handled by the current linear program-
ming packages.

4 Our Method

Figure 1 illustrates our method. Generally it involves
grouping frequent itemsets into disjoint clusters, decom-
posing each cluster into components that are mutually
independent, deriving or computing the cell frequency of

1Here we assume transactions in market basket data are
unordered.

105

Table 1: An example of data set with three items

TID List of items
t1 A,B
t2 B
t3 B
t4 A,B
t5 A,C
t6 B,C
t7 A,C
t8 A,B,C
t9 A,B,C

(a) market basket
data

B̃ B

Ã A Ã A

C̃ 0 0 2 2
C 0 2 1 2

(b) contingency table

B̃ B

Ã A Ã A

C̃ 0 0 2/9 2/9
C 0 2/9 1/9 2/9

(c) contingency table with
cell value as frequency

the contingency table built from each component, com-
puting the cell frequency of the contingency table for
each cluster, and generating transactions by merging
the contingency table of each cluster.

First we decompose d items into m disjoint item
clusters S = {s1, · · · , sm}, where | si |= ki, si ∩ sj = φ
and

⋃
i=1,···,m si = I, according to the given frequency

sets FS (line 2). it works as follows. We take each
item as one node and add an edge between two nodes
if both nodes are contained in some frequent itemset.
After processing all frequent itemsets, each disconnected
subgraph forms one cluster. For example, if the released
frequency sets are {AB}, {BC}, {DE}, {BF} for 6 items,
we merge to get two clusters {ABCF} and {DE}. As
item clusters here are exclusive disjoint, we can generate
D̂s independently (line 3-9) and join them to get D̂
finally (line 10). Here each D̂s is a vertical partition
where each row contains those items in s.

If the frequency of item cluster s is already con-
tained in the given frequency set, we can generate con-
tingency table directly without further processing (line 4
and 5). For example, assume s = ABC and freq(ABC)
is known, then freq(AB) and freq(AC) must also
be available since the frequency of any set s

′ ⊂ s
is available when the frequency s is available. Hence
we can compute fq(ABC̄) = freq(AB) - freq(ABC),
fq(AB̄C) = freq(AC) - freq(ABC) and so on. If s
is not contained in the given frequency sets, we apply
a divide and conquer approach and decompose s into
components recursively (line 11-21). During this pro-
cess, we apply graphical decomposition techniques to
decompose the independence graph Gs into subgraphs
while keeping the maximum likelihood estimation un-
changed. We leave the discussion of this part in Section
4.2. When the component can not be further decom-

posed and it is not included in the frequent itemsets,
we apply Iterative Proportional Fitting (IPF) method
to estimate its contingency table. We present how to
use IPF to generate contingency table in Section 4.1.

4.1 Iterative Proportional Fitting In this sec-
tion we briefly review the iterative proportional fitting
method. The IPF has been well studied in the statisti-
cal literature. It is an iterative algorithm that converges
to the maximum likelihood estimation. In its simplest
form, the algorithm provides a method of adjusting one
two-way contingency table to conform to the margins.
It begins by scaling the rows of the first table to have
the correct row margins, then it scales the resulting ta-
ble to have the correct column margins, then it scales
the resulting table to have the correct row margins, and
so on, iterating through the cycle of rows and columns,
until convergence is reached.

In our scenario, the underlying contingency table
is d dimensions (d is the number of items contained in
s). IPF starts the reconstruction by initializing each
cell c with frequency 1/2d and computes its marginals
specified by each constraint. At each following iteration,
IPF loops over all constraints and all cells c involved
in each constraint, and adjusts the values of the cells
according to the formula:

f̂ q(c)(t+1) = f̂ q(c)(t)
freq(FSi)

ˆfreq
(t)

(FSi)

here we denote as f̂ q(c)(t) the estimate of the value
of cell c during the t-th iteration of the algorithm

and denote as ˆfreq
(t)

(FSi) the frequency of marginal
cell FSi which is computed from estimated values of
cells (f̂ q(c)(t)) in the t-th iteration of the algorithm.

106

InvseFS(FS, freq(FS), d, N)
input FS, a given set of frequent itemsets

freq(FS), frequencies of given FS
d, number of items
N , number of transactions

outputD̂, generated data set
BEGIN
1 D̂ = φ
2 S = GenItemCluster(FS)
3 For each cluster s ∈ S do
4 If s ∈ FS
5 CTs = GenContingencyTable(s)
6 Else
7 Gs = GenIndependenceGraph(s)
8 CTs = Decompose(s,Gs)
9 Generate data set D̂s from CTs

10 D̂ = D̂ ∪ D̂s

END

Decompose (s, Gs)
input s, a given itemset

Gs, independence graph of s
output CTs, contingency tables of s
BEGIN
11 If s ∈ FS
12 CTs = GenContingencyTable(s)
13 Else
14 If s is irreducible
15 CTs = IPF(s)
16 Else
17 there exists a partition of Gs

into (Gsa , Gsb
, Gsc) such that

sa ⊥ sb | sc and Gsc is a clique
18 Decompose(sa∪c, Gsa∪c)
19 Decompose(sb∪c, Gsb∪c

)
20 Decompose(sc,Gsc)
21 CTs = CTsa∪sc×CTsb∪sc

CTsc

END

Figure 1: Inverse Frequent Set Generation Algorithm

The estimates converge in a monotonically decreasing
fashion, and we commonly choose to terminate the
iterations when the change in each cell estimate becomes
smaller than some user specified threshold value.

As we stated in the introduction, we cannot apply
IPF over the very large contingency table that contains
many items. Usually the contingency table with many
items tends to be sparse, which affects the accuracy
of IPF method. Besides, even if the contingency table
is dense, the complexity of IPF algorithm is generally
iterative oriented and thus computationally expensive
for large tables. In next section, we discuss how to
decompose into subsets and apply IPF only on those
irreducible components without losing any significant
information.

4.2 Graphical Decomposition The graphical de-
composition involves two steps: 1) building one in-
dependence graph for each cluster; 2) applying graph-
theoretical results to decompose the graph into irre-
ducible components.

4.2.1 Building Independence Graph from Fre-
quent Itemsets The independence graph is defined by
making every vertex of the graph correspond to a dis-
crete random variable, and the edges denoting the de-
pendency of the two variables linked. A missing edge
in the graph represents the conditional independence of
the two variables associated with the two vertices. To
build the independence graph, we need to test condi-
tional independence for every pair of variables, control-
ling for the other variables in the same cluster. There
are several approaches to test conditional independence
(See [2]). In our paper, we build the independence graph
by applying the Cochran-Mantel-Hasenzel test.

Here we first assume the contingency table of s is
known and describe how the Cochran-Mantel-Hasenzel
test works. For any pair of two items Ii, Ij from item
set s ⊆ I (| s |= k), we derive one partial 2 × 2
contingency table (stratum) for each possible value from
set s \ {Ii, Ij}. Hence we can have L (L = 2k−2) strata.
For each stratum l, we need to compute the marginal
totals {n(l)

.0 , n
(l)
.1 , n

(l)
0. , n

(l)
1. }, where a dot “.” denotes a

sum along that dimension (e.g., n
(l)
.0 = n

(l)
00 +n

(l)
10). Table

2(a) shows the stratum form for item variable A and B
while Table 2(b) shows one stratum (C = 1). Equation
4.2 shows the summary statistics where m

(l)
11 and V (n11)

is mean and variance respectively.

m
(l)
11 = E(n(l)

11) =
n

(l)
1. n

(l)
.1

n(l)
..

107

Table 2: A 2× 2 contingency table for variable A and B

B B̃
A n11 n10 n1.

Ã n01 n00 n0.

n.1 n.0 n..

(a) stratum form

B B̃
A 2 2 4
Ã 1 0 1

3 2 5

(b) example of
one stratum
C=1

V (n(l)
11) =

n
(l)
1. n

(l)
0. n

(l)
.1 n

(l)
.0

n(l)
.. n(l)

.. (n(l)
.. − 1)

M2 =
(|

∑
n

(l)
11 −

∑
m

(l)
11 | −0.5)

2∑
V (n(l)

11)
(4.2)

The summary statistics M2 has approximately a
chi-squared distribution with d.f. = 1 under the null
hypothesis of conditional independence. Hence, if M2 >
Pα, we can reject the null hypothesis of conditional
independence and include the edge of Ii and Ij in the
interaction graph.

However, the contingency table of s is unknown in
our scenario. We apply a modified summary statistics
version. From frequency itemsets FS, extract FSs =
{FSi1 , · · · , FSil

} such that s ⊂ FSik
. For each FSik

, we
build its stratum and compute its summary statistics.
If all summary statistics are larger than Pα, we can
reject the null hypothesis of conditional independence
and include the edge of Ii and Ij in the interaction
graph.

4.2.2 Decomposing Independence Graph

Theorem 4.1. Graph Factorization ([12, 19]). If there
exists a decomposition of independence graph Gs into
(Gsa , Gsb

, Gsc) such that 1) sa ⊥ sb | sc (i.e., the
variables in Sa are conditionally independent of those
in Sb given the variables in Sc) and neither Gsa nor
Gsb

empty; and 2) the subgraph Gsc is a clique2, the
joint density of s admits the factorization

fs =
fsa∪scfsb∪sc

fsc

2A clique is a subset of vertices which induce a complete
subgraph for which the addition of any further vertex renders the
induced subgraph incomplete. A graph is complete if all vertices
are joined with undirected edges. In other words, the clique is
maximally complete.

The theory may be interpreted by the following
way: if two disjoint subsets of vertices sa and sb are
separated by a subset sc in the sense that all paths
from sa to sb go through sc, then the variables in sa

are conditionally independent of those in sb given the
variables in sc. In other words, the maximum likelihood
estimations (MLEs) for the parameters of the model
can easily be derived by combining the estimates of the
models on the lower dimensional tables represented by
the simpler subgraphs. The subgraphs Gsa∪c and Gsb∪c

may be further decomposed into subgraphs recursively
until the graph is decomposed into basic, irreducible
components. Hence, applying a divide-and-conquer
approach based on the decompositions will make the
procedure applicable to much larger tables.

Example 2. To clarify the concepts and the results
presented so far, we use an example shown in Figure
2. The graph in Figure 2(a) has 7 vertices and 11
edges. The edge {A,C} is a separator for {A,C,G} and
{A,B,C,D,E,F}. The former is a triangle, hence cannot
be further decomposed. Similarly, {B,D} separates
{A,B,C,D} and {B,D,E,F}. Both are a prime subgraph,
therefore we have finished the decomposition. From
Theorem 4.1, we have

fABCDEFG =
fACGfABCDEF

fAC
=

fACGfABCDfBDEF

fACfBD

. The cell values in the original 7-dimensional contin-
gency table (i.e., ABCDEFG) can be computed from the
low dimensional contingency tables explicitly.

In each step, we search the clique separators of a
graph. If there is no clique to be found, it means
we get irreducible components and we apply IPF to
estimate. Please note if the frequency of any component
is already contained in the given frequency set, we
can generate its contingency table directly without
further decomposition (line 11-12 in Figure 1). An
algorithm with a complexity of O(ne + n2) to find
the clique separators of a graph or to find the vertex-
sets of the irreducible components of the graphs was
presented in [18], where n is the number of vertices
and e is the number of edges. We have implemented
the decomposition algorithm in our system. Note
that decomposition step is determined by the size of
independence graph (i.e., the number of variables n and
the number of edges e). Our implementation is able to
handle clusters with larger number of variables 3.

3A widely used graph decomposition package is CoCo [4].
However, it can not decompose a graph with more than 128
variables.

108

DC

G

A B

F

E

(a) independence graph

DD

BA B

CC

A

G

E

F

(b) decomposed component

Figure 2: Composition of independence graph

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

10
1

10
2

10
3

10
4

Support

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

with decomposition

without decomposition

(a) BMS-WebView-1

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
10

1

10
2

10
3

10
4

Support

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

with decomposition
without decomposition

(b) BMS-WebView-2

Figure 3: Performance vs. Varying Supports over BMS-WebView1 and BMS-WebView2

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
0

500

1000

1500

2000

2500

3000

3500

Support

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

with decomposition

without decomposition

(a) IBM-Artificial-1

0.1 0.11 0.12 0.13 0.14 0.15 0.16
0

500

1000

1500

2000

2500

3000

3500

Support

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

with decomposition

without decomposition

(b) IBM-Artificial-2

Figure 4: Performance vs. Varying Supports over two IBM Artificial Datasets

109

4.3 Privacy Aware Generation We have pre-
sented how our approach can effectively generate con-
tingency table given the marginal frequencies. It is no
wonder there may exist many data sets which satisfy
the given frequent itemsets. IPF method itself gener-
ates a data set which converges to the maximum likeli-
hood estimation. All the information contained in the
generated synthetic data set is from the frequencies of
the released frequent itemsets. Though the released fre-
quent itemsets are not considered as confidential infor-
mation, attackers may still be able to derive or estimate
frequencies of some confidential sets.

For example, in the table which records the number
of patients visiting physicians to receive treatments, the
frequencies on Patient-Doctor and Doctor-Treatment
are not sensitive and can be released. However, the
Patient-Treatment information is sensitive, and so, con-
fidential. Disclosure detection addresses to what ex-
tent attackers can infer cell entry values for the Patient-
Treatment table. This entailment of frequent itemsets
problem is defined as:

Problem 3. Entailment of Frequent Itemsets. Given a
finite set FS = {FS1, · · · , FSn} together with their fre-
quencies {freq(FS1), · · · , freq(FSn)} discovered from
the original database D, plus a target private itemset ps
with its original frequency freq(ps), compute the bound
of freq(ps) entailed from FS.

If the induced upper and lower bounds are too tight
or too close to the actual sensitive value in a cell entry,
the information associated with the transactions classi-
fied in that cell may be disclosed. The bound or fea-
sibility interval can be obtained by solving the corre-
sponding linear programming problem generally. The
problem of determining sharp upper and lower bounds
for the cell entries subject to some linear constraints ex-
pressed in this form is known to be NP-hard. Recently,
Dobra and Fienberg have developed generalized Frechet
Bounds for reducible log-linear models with any num-
ber of minimal sufficient statistics and have shown the
upper and lower bounds can be expressed as explicit
functions of marginal totals.

Theorem 4.2. Generalized Frechet Bounds for Re-
ducible Models 4 [8]. Assume that the released set of
marginals is the set of minimum sufficient statistics of
a reducible loglinear model. Then the upper bounds for
the cell entries in the initial table are the minimum of
upper bounds of relevant components, while the lower

4An independence graph that is not necessarily decomposable,
but still admits a proper decomposition, is called reducible. Our
approach assumes reducible models implicitly.

bounds are the maximum of zero, or sum of the lower
bounds of relevant components minus the separators.

Example 3. Using the example shown in Example 2,
we have

fABCDEFG =
fACGfABCDEF

fAC
=

fACGfABCDfBDEF

fACfBD

where we have three components {ACG}, {ABCD},
{BDEF} and two separators {AC}, {BD}. Using The-
orem 4.2, we can compute the bounds of cell values
in the original 7-dimensional contingency table (i.e.,
ABCDEFG) from the low dimensional contingency ta-
bles explicitly. If {ACG}, {ABCD} and {BDEF} are
contained in the released frequency itemsets, we see the
upper bounds for the cell entries in {ABCDEFG} in-
duced by {ACG}, {ABCD} and {BDEF} are the mini-
mum of the corresponding entries in the fixed marginals,
while the lower bounds are the sum of the same en-
tries minus the sum of corresponding entries in the
marginals associated with the separators, i.e., {AC}
and {BD}. If not all components are contained in
the released frequency itemsets, e.g., {ABCD} is not
contained but its subsets {AB}, {AC}, {AD}, {BC},
{BD}, and {CD} are contained in the released frequency
itemsets, we calculate bounds for the cell entries in
the marginal {ABCD} given the margins {AB}, {AC},
{AD}, {BC}, {BD}, and {CD} and then calculate
bounds for the cell entries in the marginal {ABCDEFG}
given the marginals {ACG}, {BDEF} and the computed
marginals {ABCD}.

In our scenario, customers may specify a list of
private itemsets PS together with the set of released
frequent itemsets FS. Each ps in PS may be associated
with a secure interval which customers do not want
attackers to derive the estimation of ps in this interval.
Though we can apply Frechet Bounds to compute the
upper bound and lower bound of ps given the released
FS, however, we do not know which frequencies should
be removed from release list when the computed bounds
are contained in its secure interval. Hence our aim here
is to find F̂S such that 1) F̂S ⊆ FS and 2) no ps in
PS can be entailed from F̂S within a given bound. Our
heuristic method is sketched as follows. For each private
itemset ps ∈ PS, decompose ps and compute its Frechet
Bounds from the current FS. If its bound exceeds the
tolerated threshold, remove its largest component from
FS and recompute the bound until the bound fits in the
threshold. We repeat this process for all private itemset
and the reduced FS can be released as F̂S finally.

110

Table 3: IBM Artificial data sets parameter

ntrans nitems tlen npats patlen corr conf
IBM-Artificial-1 1M 100,000 10 10,000 4 0.25 0.75
IBM-Artificial-2 1M 100,000 12 10,000 6 0.25 0.75

Table 4: Data set characteristics

trans. items max. trans. size avg. trans. size
BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

Table 5: The number of clusters and the maximum cluster size at different minimum support levels on four data
sets

data set support(%) frequent itemset clusters max. cluster size
BMS-WebView-1 0.08 9.934 7 231

0.1 3,648 4 205
0.2 530 8 86
0.4 105 5 39
0.6 32 3 17
0.8 17 3 9

BMS-WebView-2 0.08 39,500 66 231
0.1 22,161 52 140
0.2 3,110 20 77
0.4 443 14 27
0.6 130 7 15

IBM-Artificial-1 0.08 17362 2305 19
0.09 11324 1970 13
0.10 9080 1629 12
0.11 6190 1381 12
0.12 4561 1098 12
0.13 3342 938 10
0.15 1222 608 6

IBM-Artificial-2 0.10 15637 1919 18
0.11 8788 1587 13
0.12 5521 1235 13
0.13 3935 1011 12
0.14 3197 793 12
0.15 2866 646 11

111

5 Empirical Evaluation
In this section we show the experiment results with both
IBM synthetic data sets and two real data sets. IBM-
Artificial-1 and IBM-Artificial-2 are generated using
IBM Almaden association rule synthetic data generator.
The parameters used are shown in Table 3. Please
note all parameters of IBM-Artificial-1 data set are
default setting. We also used two real data sets,
BMS-WebView-1, BMS-WebView-2 in our experiments.
Each transaction in these data sets is a web session
consisting of all the product detail pages viewed in
that session. These two data sets can be found from
KDD-CUP 2000 [11] and were used for performance
evaluation of various association rule mining algorithms
in [22]. Table 4 characterizes these data sets in terms
of the number of transactions, the number of distinct
items, the maximum transaction size, and the average
transaction size. Our focus here is to show the feasibility
of our approach. For each original data set, we first run
Apriori algorithm using different support thresholds and
extract a set of frequent itemsets (together with their
frequencies) for each support threshold value. We then
apply our approach to generate a data set using each set
of frequent itemsets (together with their frequencies).
In section 5.1, we show efficiency of our method by
comparing against a method that does not use graphical
decomposition. In section 5.2, we show effectiveness of
our approach from two aspects. First, mining results
(i.e., frequent itemsets) from original and generated one
should be similar for certain thresholds. Second, the
performance of mining algorithms (e.g., Apriori) on two
sets should be similar. Please note we did not introduce
any private itemsets in this experiment. Comparing
with existing privacy preserving association rule mining
approaches when private itemsets are introduced will be
our future work. The experiments were conducted in a
DELL Dimension 8100, with one 1.7G processor, and
640 Mbytes of RAM.

5.1 Performance Analysis For each data set, we
run Apriori algorithm to generate frequent itemsets.
Our first step is to merge frequent itemsets into disjoint
clusters. Table 5 shows the number of frequent itemsets,
the number of disjoint clusters, the average cluster size,
and the maximum cluster size by varying support values
on each data set. We observe that the items are grouped
into a reasonable number of disjoint clusters for all four
data sets. Each disjoint cluster contains a subset of
items varying dozens to hundreds in most cases. This
validates our strategy that we can generate transactions
for each cluster and merge them later.

We believe that most real world market basket
datasets display this characteristics, i.e., disjoint item

clusters exist. However, we did encounter one real data
set, BMS-POS [11], with all items forming one cluster.
This data set contains several years of point-of-sale data
from an electronics retailer. The transaction in this
data set is a customer’s purchase transaction consisting
of all the product categories purchased at one time.
The reason that all itemsets form one cluster is the
BMS-POS data set was transformed from the original
point-of-sale data by grouping products into category.
Each item thus represents a category, rather than an
individual product.

Though each disjoint cluster contains much fewer
items, it may still be infeasible or impractical to apply
IPF or other linear programming techniques directly on
each cluster. So our following steps are to decompose
each cluster into components, apply IPF to estimate cell
frequencies of contingency table corresponding to each
component, and finally calculate cell frequencies of con-
tingency table corresponding to the original cluster. As
the complexity of graphical decomposition is O(ne+n2)
where n is the number of vertices and e is the number
of edges, it is significantly lower than the complexity of
IPF. Hence applying this divide and conquer strategy
can significantly improves the performance when there
are large clusters which can be decomposed.

Figure 3 shows the execution time of our method
of inverse frequent itemset mining with graphical de-
composition on BMS-WebView data sets. We also in-
clude the execution time of method without graphical
decomposition in Figure 3. Under all support values,
our method is significantly better (2 or 3 orders) than
method without decomposition. For example, under
support threshold 0.55, our method uses 286 seconds to
generate data while the method without decomposition
needs more than 20 hours.

Figure 4 shows the comparison on IBM-Artificial
data sets. Though our method is still with better
performance, the difference is not as significant as BMS-
WebView datasets. The reason is that there are very
few clusters which contain more than 10 items. In
fact, more than 90 % clusters are single or two items
clusters in these two data sets. When the number
of items contained in one cluster is less than 10, the
time of applying IPF method for each component is
trivial. So graphical decomposition does not improve
performance significantly as there are very few clusters
involving decomposition. This experiment also validates
the result discovered in [22], i.e., the artificial data sets
generated using IBM Almaden data generator have very
different characteristics from real-world data sets.

5.2 Accuracy Analysis As we discussed before,
there may exist many data sets which satisfy the given

112

Table 6: Similarity of mining results on original vs.
generated

BMS-Web support Jaccard Dice Overlap
View-1
s = 0.7 0.3 0.367 0.537 0.964

0.4 0.507 0.673 0.986
0.5 0.689 0.816 0.985
0.6 0.817 0.899 0.985
0.7 0.940 0.969 0.992
0.8 0.883 0.938 0.934
0.9 0.893 0.944 0.954
1.0 0.887 0.940 0.959

View-2
s = 0.6 0.6 0.696 0.768 1

0.7 0.708 0.739 0.964
0.8 0.710 0.830 0.928
0.9 0.722 0.838 0.976
1.0 0.701 0.824 0.910
1.1 0.704 0.826 0.962
1.2 0.702 0.825 1

frequent itemsets. During data generation, using IPF
method simply can generate a data set which converges
to the maximum likelihood estimation and graphical de-
composition does not lose any information. Hence we
can expect to get the same frequent itemsets (and also
same frequency values) when we mine from generated
data with support values greater or equal to support
threshold used to extract frequent itemsets. However,
our method introduce errors when we apply graphical
decomposition. Recall statistics we used to build inde-
pendence graph is not complete as we can not compute
statistics over all stratums (we can not access the orig-
inal data set).

Djaccard(FS0,FSf) =
| FS0 ∩ FSf |
| FS0 ∪ FSf |

Ddice(FS0,FSf) =
2× | FS0 ∩ FSf |
| FS0 | + | FSf |

Doverlap(FS0,FSf) =
| FS0 ∩ FSf |

min(| FS0 |, | FSf |)
(5.3)

We use Jaccard, dice and overlap coefficients to
measure the similarity between frequent itemsets (FS0)
mined from original data and frequent itemsets (FSf)
mined from data set generated using our approach. Re-
sults on two IBM-BMS-View data sets are shown in

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

5

10

15

20

25

30

35

40

45

50

support

D
iff

er
en

ce
 o

f e
xe

cu
tio

n
tim

e
(s

ec
on

d)

DB1 s=0.1

DB2 s=0.2

DB3 s=0.3

Figure 5: Performance of the Apriori method on
three data sets generated using different support values
(s=0.1, 0.2, 03) from IBM-Artificial-1

Table 6. For each data, we only show result between
original and one data set generated due to space limi-
tation. We can see FSf and FSf are very similar in
terms of three measures when support threshold values
used for mining are greater than or equal to support
threshold used for data generation. On the other hand,
when support threshold values used for mining are less
than that used for data generation, FSf and FSf are
dissimilar as we expected.

Figure 5 shows difference of performance of Apri-
ori mining algorithm when running on original IBM-
Artificial-1 and three data sets generated by our ap-
proach using support s = 0.1, 0.2 and 0.3 respectively.
As we expected, the execution time on the first data set
DB1 generated using s = 0.1 has the smallest difference
with that on original one while the execution time on
the third data set DB3 generated using s = 0.3 has the
largest difference. Please note we used IBM-Artificial
data instead of BMS-WebView data sets for this exper-
iment because those two real data sets are relatively
small.

6 Conclusions and Future Work

In this paper we presented a feasible solution to the
NP-Complete problem of inverse frequent set mining.
The approach can effectively and efficiently generate a
synthetic market basket data set from the released fre-
quent itemsets and their supports. We also presented
a heuristic method to screen out confidential frequent
itemsets from frequent itemsets used for data gener-
ation. The generated synthetic data set can preserve
most frequent itemset patterns as the original one with-
out disclosing confidential information. Hence it can be
used for benchmarking frequent item set mining algo-

113

rithms.
There are some aspects of this work that merit fur-

ther research. Among them, we are trying to figure out
better solution for the entailment of frequent itemsets
problem, i.e., given a set of frequency constraints plus a
set of private itemsets, how to screen those frequency
constraints to get the best list of released frequency
constraints while guaranteeing no precise information
of private itemsets can be derived.

Another aspect that merits further research is how
to generate market basket data when only frequency
bounds of frequent itemsets are available. In some sce-
nario, customers would only provide several sequences
of frequent itemsets with different support thresholds,
rather than exact frequency of each frequent itemset.
Finally, we will compare our approach with current
privacy preserving association rule mining approaches
and investigate the tradeoff between privacy and per-
formance for each approach.

7 Acknowledgments

This work was supported in part by U.S. National Sci-
ence Foundation CCR-0310974. The authors would like
to thank Christian Borgelt for providing his implemen-
tation of the Apriori algorithm. We would also like to
thank IBM Almaden Quest group for providing the mar-
ket basket data generator.

References

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proceedings of the ACM SIGMOD International
Conference on Management of Database, pages 207–
216, 1993.

[2] A. Agresti. Categorical data anlysis. Wiley, 1990.
[3] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim,

and V. Verykios. Disclosure limitation of sensitive
rules. In Proceedings of the IEEE Knowledge and Data
Engineering Exchange Workshop, pages 45–52, Nov
1999.

[4] J. Badsberg. An environment for graphical models.
Ph.D. Thesis, Aalborg University, Demark, 1995.

[5] T. Calders. Computational complexity of itemset fre-
quency satisfiability. In Proceedings of the 23nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database System, 2004.

[6] E. Dasseni, V. Verykios, A. K. Elmagarmid, and
E. Bertino. Hiding association rules by using confi-
dence and support. In Proceedings of the 4th Interna-
tional Information Hiding Workshop, pages 369–383.
Pittsburg,PA, April 2001.

[7] A. Dobra and S. E. Fienberg. Bounds for cell entries
in contingency tables given marginal totals and decom-
posable graphs. PNAS, 97(22):11885–11892, 2000.

[8] A. Dobra and S. E. Fienberg. Bounds for cell entries
in contingency tables induced by fixed marginal totals
with applications to disclosure limitation. Statistical
Journal of the United Nations ECE, 18:363–371, 2001.

[9] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
Proceedings of the 22nd Symposium on Principles of
Database Systems, pages 211–222, 2003.

[10] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. In
Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 217–228. Edmonton, Canada, July 2002.

[11] KDDCUP2000. http://www.ecn.purdue.edu/KDDCUP.
[12] S. Lauritzen. Graphical Models. Oxford University

Press, 1996.
[13] T. Mielikainen. On inverse frequent set mining. In

Proceedings of the 2nd Worksop on Privacy Preserving
Data Mining, Nov 2003.

[14] S. Oliveira and O. Zaiane. Protecting sensitive knowl-
edge by data sanitization. In Proceedings of the 3rd
IEEE International Conference on Data Mining, pages
211–218. Melbourne, Florida, Nov 2003.

[15] G. Ramesh, W. Maniatty, and M. Zaki. Feasi-
ble itemset distributions in data mining: theory
and application. In Proceedings of the 22nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 284–295. San Diego, CA,
June 2003.

[16] S. Rizvi and J. Haritsa. Maintaining data privacy in
association rule mining. In Proceedings of the 28th
International Conference on Very Large Data Bases,
pages 682–693, August 2002.

[17] Y. Saygin, V. Verykios, and C. Clifton. Using un-
knowns to prevent discovery of association rules. Sig-
mod Record, 30(4):45–54, Dec 2001.

[18] R. Tarjan. Decomposition by clique separators. Dis-
crete Mathematics, 55:221–232, 1985.

[19] J. Whittaker. Graphical Models in Applied Mathemat-
ical Multivariate Statistics. Wiley, 1990.

[20] X. Wu, D. Barbará, and Y. Ye. Screening and
interpreting multi-item associations based on log-linear
modeling. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 276–285. Washinton D.C, August
2003.

[21] X. Wu, Y. Wang, and Y. Zheng. Privacy preserv-
ing database application testing. In Proceedings of
the ACM Workshop on Privacy in Electronic Society,
pages 118–128, 2003.

[22] Z. Zheng, R. Kohavi, and L. Mason. Real world per-
formance of association rule algorithms. In Proceedings
of the 7th ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 401–406.
San Francisco, CA, August 2001.

114

On Variable Constraints in Privacy Preserving Data Mining

Charu C. Aggarwal, Philip S. Yu

IBM T. J. Watson Research Center

{ charu, psyu }@us.ibm.com

Abstract

In recent years, privacy preserving data mining has
become an important problem because of the large
amount of personal data which is tracked by many
business applications. In many cases, users are unwilling
to provide personal information unless the privacy of
sensitive information is guaranteed. A recent framework
performs privacy preserving data mining by using a
condensation based approach. In this framework, the
privacy of all records is treated homogeneously. It is
therefore inefficient to design a system with a uniform
privacy requirement over all records. We discuss a new
framework for privacy preserving data mining, in which
the privacy of all records is not the same, but can
vary considerably. This is often the case in many real
applications, in which different groups of individuals
may have different privacy requirements. We discuss
a condensation based approach for privacy preserving
data mining in which an efficient method is discussed for
constructing the condensation in a heterogeneous way.
The heterogeneous condensation is capable of handling
both static and dynamic data sets. We present empirical
results illustrating the effectiveness of the method.

1 Introduction

Privacy preserving data mining has become an im-
portant problem in recent years, because of the large
amount of consumer data tracked by automated sys-
tems on the internet. The proliferation of electronic
commerce on the world wide web has resulted in the
storage of large amounts of transactional and personal
information about users. In addition, advances in hard-
ware technology have also made it feasible to track in-
formation about individuals from transactions in every-
day life. In many cases, users are not willing to sup-
ply such personal data unless its privacy is guaranteed.
Therefore, in order to ensure effective data collection,
it is important to design methods which can mine the
data with a guarantee of privacy. Some interesting dis-
courses on the nature of privacy in the context of re-
cent trends in information technology may be found in
[6, 9, 10]. The recent focus on privacy in data collec-

tion has resulted to a considerable amount of research
on the subject [1, 2, 3, 4, 5, 7, 11, 12, 15, 16]. A recent
approach to privacy preserving data mining has been
a condensation-based technique [2]. This technique es-
sentially creates condensed groups of records which are
then utilized in one of two ways:

• The statistical information in the pseudo-groups
can be utilized to generate a new set of pseudo-
data which can be utilized with a variety of data
mining algorithms.

• The condensed pseudo-groups can be utilized di-
rectly with minor modifications of existing data
mining algorithms.

The condensation approach of [2] is also referred to
as the k-indistinguishability model. A record is said
to be k-indistinguishable, when there are at least k
other records in the data (including itself) from which
it cannot be distinguished. Clearly, when a record
is 1-indistinguishable, it has no privacy. The k-
indistinguishability of a record is achieved by placing it
in a group with at least (k−1) other records. This model
model shares a number of conceptual characteristics
with the k-anonymity model [18], though the algorithms
for doing so are quite different. Another important dif-
ference between the two schemes is that the former does
not rely on domain specific hierarchies (as in the case
of the k-anonymity model). The k-indistinguishability
model can also work effectively in a dynamic environ-
ment such as that created by data streams.

In the model discussed in [2], it was assumed that all
records have the same privacy requirement. This is also
the case for the k-anonymity model in which the level of
privacy is fixed a-priori. In most practical applications,
this is not be a reasonable assumption. For example,
when a data repository contains records from heteroge-
neous data sources, it is rarely the case that each repos-
itory has the same privacy requirement. Similarly, in an
application tracking the data for brokerage customers,
the privacy requirements of retail investors are likely to
be different from those of institutional investors. Even
among a particular class of customers, some customers

115

(such as high net-worth individuals) may desire a higher
level of privacy than others. In general, we would like
to associate a different privacy level with each record in
the data set.

Let us assume that we have a database D containing
N records. The records are denoted by X1 . . . XN .
We denote this desired privacy level for record Xi by
p(i). The process of finding condensed groups with
varying level of point specific privacy makes the problem
significantly more difficult from a practical standpoint.
This is because it is not advisable to pre-segment
the data into different privacy levels before performing
the condensation separately for each segment. When
some of the segments contain very few records, such a
condensation may result in an inefficient representation
of the data. In some cases, the number of records for a
given level of privacy k′ may be lower than k′. Clearly,
it is not even possible to create a group containing only
records with privacy level k′, since the privacy level of
the entire group would then be less than k′. Therefore,
it is not possible to create an efficient (and feasible)
system of group condensation without mixing records
of different privacy levels. This leads to a number
of interesting trade-offs between information loss and
privacy preservation. We will discuss these trade-offs
and the algorithms to optimize them.

In many cases, the data may be available at one
time or it may be available in a more dynamic and
incremental fashion. We discuss two cases for our
algorithm:

• We discuss an algorithm to perform the condensa-
tion when the entire data is available at one time.

• We discuss an algorithm for the case when the data
is available incrementally. This is a more difficult
case because it is often not possible to design the
most effective condensation at the moment the data
becomes available.

We will show that in most cases, the algorithm for
performing the dynamic group construction is able to
achieve results which are comparable to the algorithm
for static group construction.

This paper is organized as follows. In the next
section, we will discuss some notations and definitions
and also introduce the locality sensitive condensation
approach. We will first discuss the simple case in which
an entire data set is available for application of the
privacy preserving approach. This approach will be
extended to incrementally updated data sets in section
3. The empirical results are discussed in section 4.
Finally, section 5 contains the conclusions and summary.

2 The Condensation Approach

In this section, we will discuss the condensation ap-
proach for privacy preserving data mining. Before de-
scribing details of the algorithm, we will discuss some
notations and definitions. We assume that we have a
set of N records, each of which contain d dimensions.
We also assume that associated with each data point i,
we have a corresponding privacy level p(i). The overall
database is denoted by D whereas the database corre-
sponding to the privacy level p is denoted by Dp. The
privacy level for a record is defined as follows:

Definition 2.1. The privacy level for a given record is
defined as the minimum number of other records in the
data from which it cannot be distinguished.

In the condensation based approach, the data is
partitioned into groups of records. Records within a
given group cannot be distinguished from one another.
For each group, we maintain certain summary statistics
about the records. This summary statistics provides
the ability to apply data mining algorithms directly to
the condensed groups of records. This information also
suffices to preserve information about the mean and
correlations across the different dimensions. The size
of the groups may vary, but its size is at least equal to
the desired privacy level of each record in that group.
Thus, a record with privacy level equal to p(i) may be
condensed with records of privacy levels different from
p(i). However, the size of that group must at least be
equal to the maximum privacy level of any record in
that group.

Each group of records is referred to as a condensed
unit. Let G be a condensed group containing the
records {X1 . . . Xk}. Let us also assume that each
record Xi contains the d dimensions which are denoted
by (x1

i . . . xd
i). The following information is maintained

about each group of records G:

• For each attribute j, we maintain the sum of
corresponding values. The corresponding value is
given by

∑k
i=1 xj

i . We denote the corresponding
first-order sums by Fsj(G). The vector of first

order sums is denoted by Fs(G).

• For each pair of attributes i and j, we maintain
the sum of the product of corresponding attribute
values. The corresponding sum is given by

∑k

t=1 xi
t·

xj
t . We denote the corresponding second order

sums by Scij(G). The vector of second order sums

is denoted by Sc(G).

• We maintain the sum of the privacy levels of the
records in the group. This number of denoted by
Ps(G).

116

x

x

x

o
o o

x x

Privacy Level 4

After Attrition

Privacy Level 3

All data points with

All data points with
x

x

x

o
o o

x x

Before Attrition

Figure 1: The efficiency of Mixing Different Privacy
Levels

• We maintain the total number of records k in that
group. This number is denoted by n(G).

The following facts are true about the records in a
given group.

Observation 2.1. The mean value of attribute j in
group G is given by Fsj(G)/n(G).

Observation 2.2. The covariance between attributes i
and j in group G is given by Scij(G)/n(G) − Fsi(G) ·
Fsj(G)/n(G)2.

We note that the algorithm for group construction must
try to put each record in a group which is at least equal
to the maximum privacy level of any record in the group.
A natural solution is to first classify the records based on
their privacy levels and then independently create the
groups for varying privacy levels. Unfortunately, this
does not lead to the most efficient method for packing
the sets of records into different groups. This is because
the most effective method for constructing the groups
may require us to combine records from different privacy
levels. For example, a record with a very low privacy
requirement may sometimes naturally be combined with
a group of high privacy records in its locality. An
attempt to construct a separate group of records with a
low privacy requirement may lead to an even higher loss
of information. In order to illustrate this point better,
we will provide an example.

Consider the set of records illustrated in Figure 1.
In this case, there are 3 records with privacy level 3 and
5 records with privacy level 4. One way of grouping
the records is to place all the records of privacy level
3 in one group and all records with privacy level 4 in
the other. Unfortunately, the group corresponding to
privacy level 4 turns out to be ineffective in representing
the data. The condensed group utilized from this
set of records has poor statistical characteristics, since
one of the data points is far removed from the group.
Since the condensed statistics of the group does not
represent the variations within it, this can lead to an

Algorithm ConstructGroups(Level: MaxPrivacyLevel,
Database: D);

begin
p = 2;
H1 = Groups from singleton points in D1;
while (p ≤ MaxPrivacyLevel) do

begin
Hp = Segment(Dp, p);
(Hp−1,Hp) = Cannibalize(Hp−1,Hp));
(Hp−1,Hp) = Attrition(Hp−1,Hp);
Hp = Hp ∪ Hp−1;
p = p + 1;

end;
end

Figure 2: The Process of Group Construction for
Privacy Preserving Data Mining

Algorithm Segment(Database: Dp,
Privacy level: p)

begin
while Dp contains at least p data points;

begin
Sample a data point X from Dp;
Find the (p − 1) data points closest to X in Dp;
Create a group G of p data points comprising X
and the p − 1 other closest data points;

Add G to the set of groups H;
end

Assign remaining data points in Dp to closest
groups;

end

Figure 3: Group Segmentation

inefficient representation in many cases. In the situation
illustrated in Figure 1, it is better to place the outlying
record of privacy level 4 into the group with privacy level
3. We also note that it may not be possible to place this
outlying record in a group with only two pre-existing
members, because of the higher privacy requirement of
the record.

First, we need a measure to quantify the effective-
ness of a given condensation based approach. In gen-
eral, this effectiveness is related to the level of compact-
ness with which we can partition the data into different
groups. As a goal, this compactness is not very different
from the aim of most clustering algorithms. However,
the difference here is that there are several constraints
on the cardinality of the data points in each group as

117

Algorithm Cannibalize(Groups: Hp−1, Hp);
begin

for each group G ∈ Hp−1 do
begin

for each point in G perform temporary
assignment to closest group in Hp;
if (SSQ of temporary assignment is lower) or
(Hp−1 contains fewer than (p − 1) members),
then make assignment permanent
else keep old assignment;

end
end

Figure 4: Cannibalization Algorithm

Algorithm Attrition(Groups: Hp−1, Hp,
Privacy Level: p);

begin
for each data point X in Hp do
begin

Distc(X, p) = Distance of X to
centroid of its current group in Hp;

Disto(X, p − 1) = Distance of X to
centroid of its closest viable group in Hp−1;

Improve(X) = Distc(X, p) − Disto(X, p − 1);
end;

for each group in Hp with
at least p′ > p points do

begin
find (if any) the at most (p′ − p) data points
with largest value of Improve(·) function

which is larger than 0;
Assign these at most (p′ − p) points to their

corresponding closest groups in Hp−1;
end

Figure 5: Attrition Algorithm

o
x
x

x

x x

xo

Group 1

Privacy

Level 2
Cannibalized

Group 2

Privacy Level 3

Group 3

Privacy Level 3

o
x
x

x

x x

xo

Group 1

Group 2

Group 3

Figure 6: An example of Cannibalization

well as the identity of the data points which can be
added to a group with given cardinality. Thus, for the
process of quantification of the condensation quality, we
simply use the square sum error of the data points in
each group. While the privacy level of a group is deter-
mined by the number of records in it, the information
loss is defined by the average variance of the records
about their centroid. We will refer to this quantity as
the Sum Squared Error (SSQ).

The method of group construction is different de-
pending upon whether an entire database of records is
available or whether the data records arrive in an in-
cremental fashion. We will discuss two approaches for
construction of class statistics. The first approach is
utilized for the case when the entire database of records
is available. The second approach is utilized in an in-
cremental scheme in which the data points arrive one
at a time. First, we will discuss the static case in which
the entire database of records is available.

The essence of the static approach is to construct
the groups using an iterative method in which the
groups are processed with increasing privacy level. The
overall process of group construction is illustrated in
Figure 2. The input to the algorithm is the database
D and the maximum privacy level which is denoted by
MaxPrivacyLevel. We assume that the segment of the
database with privacy level requirement of p is denoted
by Dp. We also assume that the set of groups with
privacy level of p is denoted by Hp. We note that the
database D1 consists of the set of points which have
no privacy constraint at all. Therefore, the group H1

comprises of the singleton items from the database D1.
Next, we construct the statistics of the groups in

Hp using an iterative algorithm. In each iteration, we
increase the privacy level p by 1, and construct the
condensed groups Hp which have privacy level p. The
first step is to construct the group Hp by using a purely
segmentation based process. This process is denoted by
Segment in Figure 2. This segmentation process is a
straightforward iterative approach. In each iteration, a
record X is sampled from the database Hp. The closest
(p − 1) records to this individual record X are added
to this group. Let us denote this group by G. The
statistics of the p records in G are computed. Next,
the p records in G are removed from Dp. The process
is repeated iteratively, until the database Dp is empty.
We note that at the end of the process, it is possible
that between 1 and (p − 1) records may remain. These
records can be added to their nearest sub-group in the
data. Thus, a small number of groups in the data may
contain larger than p data points. The segmentation
procedure is illustrated in Figure 3.

118

Once the segmentation procedure has been per-
formed, we apply the process of Attrition and
Cannibalize in order to further reduce the level of in-
formation loss without compromising on the privacy re-
quirements. The purpose of the Cannibalize procedure
is slightly different. In this procedure, we intend to can-
nibalize some of the groups in Hp−1 and reassign their
data points to better fitting groups in Hp. Consider
the example illustrated in Figure 6. In this case, we
have illustrated three groups. One of the groups (con-
taining two points) has privacy level of two, and an-
other group (containing three points) has privacy level
of three. However, the group with privacy level two
does not form an natural cluster of data points. In such
a case, it may be desirable to break up the group with
privacy level 2 and assign one point each to the groups
with privacy level 3. Thus, cannibalization is performed
when the group G ∈ Hp−1 does not form a natural clus-
ter. In such cases, it is more effective to cannibalize the
group G and reassign its group members to one or more
clusters in Hp. Another example of a situation when
cannibalization is desirable is when Hp−1 has fewer than
(p − 1) members. Such a situation arises in situations
in which there are very few records for a given privacy
level. Consequently, it is not possible to create a group
containing only the points at a particular privacy level.
We refer to this test for cannibalization as the numerical
test.

If the group passes the numerical test, we perform
an additional qualitative test to see if cannibalization
should be performed. In order to test whether the can-
nibalization procedure should be performed, we calcu-
late the SSQ of the regrouping when a temporary as-
signment of the data points in G is performed to one
or more groups in Hp. If the SSQ of the resulting as-
signment is lower, then we make this assignment perma-
nent. The pseudo-code for the cannibalization process
is illustrated in Figure 4. By performing this operation,
the appropriate privacy level of all data points is main-
tained. This is because the cannibalization process only
assigns data points to groups with higher privacy level.
Therefore, the assigned data points find themselves in a
group with at least their corresponding required privacy.

We note that some groups in Hp may sometimes
contain more than p data points. This is due to
the effects of the Segment and Cannibalize procedures
discussed earlier. The idea in the Attrition procedure
is to move these excess points to a better fitting group
in Hp−1. The movement of these excess points is likely
to improve the quality of data representation in terms
of reducing the level of information loss. An example of
such a case is illustrated in Figure 1. In this case, the
group with five data points contains one record which

does not fit very well with the rest of the group. In
such a case, the reassignment of the data point to a
group with privacy level 3 results in a more compact
representation. We note that the reassigned data point
has privacy level 4. However, the reassignment process
results in the group with privacy level 3 containing 4
data points. Therefore, even though the data point
with privacy level 4 was assigned to a group with lower
privacy level, the resulting group continues to maintain
the desired level of privacy for the reassigned data
point. For this purpose, during the attrition process
we consider only those groups which are viable for
reassignment. For a group to be considered viable, it
must contain at least as many data points as the privacy
level (after the assignment). Furthermore, for a group
G containing p′ data points and with privacy level p,
we can remove at most (p′ − p) data points from it
without disturbing the privacy level of the remaining
group. In order to perform the actual reassignment, we
calculate a function called Improve(X) for each data
point X ∈ G. The value of Improve(X) is defined
to be difference between the distance of X from its
closest viable centroid and the distance from its current
centroid. Clearly, the reassignment of the data point
X to another group is useful only when the value of
Improve(X) is larger than 0. We re-assign the at most
(p′ − p) data points with largest value of Improve(·),
provided that the value of Improve(·) for each of these
data points is larger than 0. The overall attrition
procedure is illustrated in Figure 5.

The processes of segmentation, cannibalization and
attrition are applied iteratively to the segment Dp of
the database for each value of the privacy level p. The
value of p is incremented by 1 in each iteration up to the
maximum privacy level. The set of groups constructed
at this point are returned as the final condensation.

Once the condensed statistics have been con-
structed, anonymized data can be generated as dis-
cussed in [2]. The anonymized data is generated using
the statistical properties which can be derived from the
group. While this new set of points resembles the orig-
inal data distribution, it maintains the privacy of the
data. The process of anonymized group construction is
achieved by first constructing a d ∗ d covariance matrix
for each group G. This matrix is denoted by C(G). The
ijth entry of the co-variance matrix is the co-variance
between the attributes i and j of the set of records in
G. The eigenvectors of this co-variance matrix are deter-
mined by decomposing the matrix C(G) in the following
form:

C(G) = P (G) · ∆(G) · P (G)T(2.1)

The columns of P (G) are the eigenvectors of C(G).
The diagonal entries λ1(G) . . . λd(G) of ∆(G) represent

119

x
x x x

x
x xx

x
x

xx
x

plane

x

x
x

x x

x

a/2

a/2

xo

o
x

Centers of split

 groups

a

bsplit

Figure 7: Splitting Group Statistics (Illustration)

the corresponding eigenvalues. It can be shown that
the eigenvectors of a covariance matrix form an ortho-
normal axis system. This ortho-normal axis-system rep-
resents the directions along which the second order cor-
relations are zero. If the data were represented us-
ing this ortho-normal axis system, then the covariance
matrix would be the diagonal matrix corresponding to
∆(G). The diagonal entries of ∆(G) represent the vari-
ances along the individual dimensions in this new axis
system. We can assume without loss of generality that
the eigenvalues λ1(G) . . . λd(G) are ordered in decreas-
ing magnitude. The corresponding eigenvectors are de-
noted by e1(G) . . . ed(G). The anonymized data for each
group is reconstructed assuming that the data within
each group is independently and uniformly distributed
along the different eigenvectors. Furthermore, the vari-
ance of the distribution along each eigenvector is equal
to the corresponding eigenvalue. These approximations
are reasonable when only a small spatial locality is used.

3 Dynamic Maintenance of Groups

The process of dynamic maintenance of groups is useful
in a variety of settings such as that of data streams.
In the process of dynamic maintenance, the points
in the data stream are processed incrementally. It
is assumed that a set S of the data points (denoted
by InitNumber) are available at the beginning of the
process. The static process ConstructGroups is applied
to this set S. Once the initial groups have been
constructed, a dynamic process of group maintenance
is applied in order to maintain the condensed groups of
varying privacy levels.

The incremental algorithm works by using a nearest
neighbor approach. When an incoming data point Xi

is received, we find the closest cluster to it using the

distance of the data point Xi to the different centroids.
While it is desirable to add Xi to its closest centroid, we
cannot add Xi to a given cluster which has fewer than
p(i)−1 data points in it. Therefore, the data point Xi is
added to the closest cluster which also happens to have
at least p(i) − 1 data points inside it.

In general, it is not desirable to have groups with
high sizes compared to their constituent privacy levels.
When such a situation arises, it effectively means that
a higher level of representational inaccuracy is created
than is really necessary with the privacy requirements of
the points within the group. The average privacy level
of the group G can be computed from the condensed
statistics. This number is equal to Ps(G)/n(G). This is
because Ps(G) is equal to the sum of the privacy levels
of the data points in the group.

The split criterion used by our algorithm is that a
group is divided when the number of items in the group
is more than twice the average privacy level of the items
in the group. Therefore, the group is split when the
following holds true:

n(G) ≥ 2 · Ps(G)/n(G)(3.2)

As in the case of anonymized data construction, we
utilize the uniformity assumption in order to split the
group statistics. In each case, the group is split along
the eigenvector with the largest eigenvalue. This also
corresponds to the direction with the greatest level of
variance. This is done in order to reduce the overall
variance of the resulting clusters and ensure the greatest
compactness of representation. An example of this case
is illustrated in Figure 7. We assume without loss of
generality that the eigenvector e1 with the lowest index
is the chosen direction the split. The corresponding
eigenvalue is denoted by λ1. Since the variance of
the data along e1 is λ1, then the range (a) of the
corresponding uniform distribution along e1 is given1

by a =
√

12 · λ1.
In such a case, the original group of size 2 ·k is split

into two groups of equal size. We need to determine
the first order and second order statistical data about
each of the split groups M1 and M2. We assume that
the privacy component Ps(G) is also equally divided
between the two groups. We first derive the centroid
and eigenvector directions for each group. These values
are sufficient to reconstruct the values of Fsi(G) and
Scij(G) about each group.

Assume that the centroid of the unsplit group M
is denoted by Y (M). This centroid can be computed

1This calculation was done by using the formula for the
standard deviation of a uniform distribution with range a. The

corresponding standard deviation is given by
√

a/12.

120

from the first order values Fs(M) as follows:

Y (M) = (Fs1(M), . . . F sd(M))/n(G)(3.3)

Once the centroid has been computed, those of each
of the split groups can be computed as well. From
Figure 7, it is easy to see that the centroids of each
of the split groups M1 and M2 are given by Y (M) −
(a/4) · e1 and Y (M) + (a/4) · e1 respectively. By
substituting a =

√
12 · λ1, it is easy to see that the

new centroids of the groups M1 and M2 are given by
Y (M)− (

√
12 · λ1/4) · e1 and Y (M) + (

√
12 · λ1/4) · e1

respectively.
We will now discuss how to compute the second

order statistical values. The first step is the determina-
tion of the covariance matrix of the split groups. Let
us assume that the ijth entry of the co-variance ma-
trix for the group M1 is given by Cij(M1). We also
note that the eigenvectors of M1 and M2 are identical
to the eigenvectors of M, since the directions of zero
correlation remain unchanged by the splitting process.
Therefore, we have:

e1(M1) = e1(M2) = e1(M)

e2(M1) = e2(M2) = e2(M)

e3(M1) = e3(M2) = e3(M)

. . .

ed(M1) = ed(M2) = ed(M)

The eigenvalue (in the split groups M1 and M2)
corresponding to e1(M) is equal to λ1/4. This is be-
cause the splitting process along e1 reduces the corre-
sponding variance by a factor of 4. Other eigenvalues
remain unchanged. Let P (M) represent the eigenvec-
tor matrix of M, and ∆(M) represent the correspond-
ing diagonal matrix. Then, the new diagonal matrix
∆(M1) = ∆(M2) of M1 can be derived by dividing
the entry λ1(M) by 4. Therefore, we have:

λ1(M1) = λ1(M2) = λ1(M)/4

The other eigenvalues of M1 and M2 remain the same:

λ2(M1) = λ2(M2) = λ2(M)

λ3(M1) = λ3(M2) = λ3(M)

. . .

λd(M1) = λd(M2) = λd(M)

Thus, the (identical) co-variance matrixes of M1 and
M2 may be determined as follows:

C(M1) = P (M1) · ∆(M1) · P (M1)
T

From Observation 2.2, it is clear that the second order
statistics of M1 may be determined as follows:

Scij(M1) =

k · Cij(M1) + Fsi(M1) · Fsj(M1)/k

An important observation is that even though the co-
variance matrices of M1 and M2 are identical, the val-
ues of Scij(M1) and Scij(M2) are different because of
different first order aggregates substituted in the above
formula for Scij(M1). The overall process for splitting
the group statistics is illustrated in Figure 7. Another
interesting point to be noted is that the entire purpose
of splitting is to keep groups sizes sufficiently compact
for data mining algorithms. The process of splitting
itself can never result in the violation of the privacy
condition, since the split group is based on a split of
the statistics, but not of the data points themselves. In
order to understand this point, let us consider the fol-
lowing “example” of a case where the split condition
seems to violate privacy. Consider a group having 5 tu-
ples, the privacy constraints of the tuples being 2, 2,
2, 3, 5 respectively. The group does not split because
5 < 2 ∗ 14/5. Now, if a new tuple having privacy con-
straint 3 wants to join the group, the splitting condition
is satisfied since 6 > 2 ∗ 17/6. Hence each of the split
group corresponds to statistics of 3 data points. There-
fore, it would apparently seem that the privacy of the tu-
ple with requirement 5 has been violated. This is not the
case since we split the statistics into two pseudo-groups
of 3 points each, rather than actually split the points
themselves. The process of performing the split par-
titions the statistics based on a probability distribution
assumption (uniform distribution) rather than using the
actual points themselves (which have already been lost
in the merged statistics). The tuple with privacy condi-
tion 5 may contribute to the statistics of both groups,
when the splitting condition is used. Each pseudo-group
thus has a privacy level as high as the unsplit group,
from the perspective of the old data points in it, but at
the same time we would need to use the size of the group
while considering the addition of further data points into
the smaller pseudo-groups.

In order to test the quality of our results we applied
our approach to a nearest neighbor classifier. In the
classification process, the condensation process was
performed separately for each class. In the next section,
we will discuss the behavior of this nearest neighbor
classifier.

4 Empirical Results

We tested the privacy preserving approach over a wide
range of data sets and metrics. An important question
which arises in the context of a privacy preserving

121

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Alpha (Maximum Group Size)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Ionosphere Data Set (Classification Accuracy)

Classification Accuracy (Static Condensation)
Classification Accuracy (Dynamic Condensation)
Classification Accuracy (Original Data)

Figure 8: Accuracy of Classifier with Increasing Privacy
Level (Ionosphere Data Set)

0 5 10 15 20 25 30
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Alpha (Maximum Group Size)

C
ov

ar
ia

nc
e

C
om

pa
tib

ili
ty

 C
oe

ffi
ci

en
t

Ionosphere Data Set (Statistical Compatibility)

Covariance Compatibility Coefficient (Static Condensation)
Covariance Compatibility Coefficient (Dynamic Condensation)

Figure 9: Covariance Compatibility of Condensed Data
Set with Increasing Privacy Level (Ionosphere Data Set)

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Alpha (Maximum Group Size)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Ecoli Data Set (Classification Accuracy)

Classification Accuracy (Static Condensation)
Classification Accuracy (Dynamic Condensation)
Classification Accuracy (Original Data)

Figure 10: Accuracy of Classifier with Increasing Pri-
vacy Level (Ecoli Data Set)

0 2 4 6 8 10 12 14 16 18 20
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Alpha (Maximum Group Size)

C
ov

ar
ia

nc
e

C
om

pa
tib

ili
ty

 C
oe

ffi
ci

en
t

Ecoli Data Set (Statistical Compatibility)

Covariance Compatibility Coefficient (Static Condensation)
Covariance Compatibility Coefficient (Dynamic Condensation)

Figure 11: Covariance Compatibility of Condensed
Data Set with Increasing Privacy Level (Ecoli Data Set)

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Alpha (Maximum Group Size)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Pima Data Set (Classification Accuracy)

Classification Accuracy (Static Condensation)
Classification Accuracy (Dynamic Condensation)
Classification Accuracy (Original Data)

Figure 12: Accuracy of Classifier with Increasing Pri-
vacy Level (Pima Indian Data Set)

122

0 5 10 15 20 25 30
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Alpha (Maximum Group Size)

C
ov

ar
ia

nc
e

C
om

pa
tib

ili
ty

 C
oe

ffi
ci

en
t

Pima Data Set (Statistical Compatibility)

Covariance Compatibility Coefficient (Static Condensation)
Covariance Compatibility Coefficient (Dynamic Condensation)

Figure 13: Covariance Compatibility of Condensed
Data Set with Increasing Privacy Level (Pima Indian
Data Set)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Alpha (Maximum Group Size)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Abalone Data Set (Classification Accuracy)

Classification Accuracy (Static Condensation)
Classification Accuracy (Dynamic Condensation)
Classification Accuracy (Original Data)

Figure 14: Accuracy of Classifier with Increasing Pri-
vacy Level (Abalone Data Set)

0 5 10 15 20 25
0.9995

0.9996

0.9997

0.9998

0.9999

1

Alpha (Maximum Group Size)

C
ov

ar
ia

nc
e

C
om

pa
tib

ili
ty

 C
oe

ffi
ci

en
t

Abalone Data Set (Statistical Compatibility)

Covariance Compatibility Coefficient (Static Condensation)
Covariance Compatibility Coefficient (Dynamic Condensation)

Figure 15: Covariance Compatibility of Condensed
Data Set with Increasing Privacy Level (Abalone Data
Set)

approach is the nature of the metric to be used in order
to test the quality of the approach. The first step is to
test the nature of the tradeoff between increased levels
of privacy, and the resulting information loss. While the
level of privacy is controlled by the average condensed
group size, the information loss is measured indirectly
in terms of the effect of the perturbation on the quality
of data mining algorithms. We tested the accuracy of
a simple k-nearest neighbor classifier with the use of
different levels of privacy. The minimum privacy level of
each data point was generated from a (discrete) uniform
distribution in the range [α − β, α]. By changing the
value of α it is possible to vary the level of privacy during
the condensation process. The aim of our approach is
to show that a high level of privacy can be achieved
without significantly compromising accuracy.

Another useful metric for testing the quality of
the privacy preserving process arises from the level of
matching between the original and perturbed data. This
provides insight into the nature of the relationship be-
tween the original data set and perturbed data set.
The first step is therefore to identify the statistics used
for testing the effectiveness of the perturbation process.
One simple method is to test how the covariance struc-
ture of the perturbed data set matched with the original
data set. This is because the covariance structure of the
data identifies the essential data properties up to a sec-
ond order approximation. If the newly created data set
has very similar data characteristics to the original data
set, then the condensed data set is a good substitute for
most data mining algorithms. For each dimension pair
(i, j), let the corresponding entries in the covariance ma-
trix for the original and the perturbed data be denoted

123

by oij and pij respectively. We computed the statistical
coefficient of correlation between the data entry pairs
(oij , pij). Let us denote this value by µ. When the two
matrices are identical, the value of µ is 1. On the other
hand, when there is perfect negative correlation between
the entries, the value of µ is −1.

A number of real data sets from the UCI machine
learning repository2 were used for the testing. We used
the Ionosphere, Ecoli, Pima Indian and Abalone data
sets. The last data set was a regression modeling prob-
lem, and therefore the classification measure needed to
be redefined. For this problem, the classification accu-
racy measure used was the percentage of the time that
the age was predicted within an accuracy of less than
one year by the nearest neighbor classifier. In many
cases, the number of data points for a given privacy
level for lower than the numerical value of the privacy
level itself. In such cases, the mixing of data points for
different privacy levels is inevitable. Thus, the conden-
sation process could not have been performed for such
cases using the homogeneous k -anonymity model or k-
indistinguishability model [2, 18].

The results on classification accuracy for the Iono-
sphere, Ecoli, Pima Indian, and Abalone data sets are
illustrated in Figures 8, 10, 12 and 14 respectively. The
value of β was fixed to 4, whereas the value of α was var-
ied over the different data sets. The range of values of α
is determined by the number of data points in the par-
ticular data set at hand. This value of α is illustrated on
the X-axis. On the Y-axis, we have plotted the classifi-
cation accuracy of the nearest neighbor classifier, when
the condensation technique was used. For each graph,
we have illustrated the results using both static and dy-
namic condensation. In addition, a baseline is marked
on each graph. This baseline is a horizontal line on the
graph which shows the classification accuracy using the
original data. It is clear that in most cases, the accu-
racy of classification reduced with increasing group size.
This is a natural tradeoff because a greater amount of
privacy is achieved with larger groups sizes. At the same
time, it leads to a higher amount of information loss.

In many cases, the quality of the classification
improved because of the condensation process. in most
cases. While the aim of our approach was to provide
a high level of privacy without losing information, it
appears that the process of condensation itself actually
helped in removing the anomalies in the data for the
purpose of classification. This phenomenon is likely
to be helpful over a number of different data mining
problems in which the aggregate behavior of the data is
exposed by the condensation process.

2http : //www.ics.uci.edu/̃ mlearn

Furthermore, the static condensation approach pro-
vided higher quality results than the dynamic technique.
This is because the splitting algorithm of the dynamic
condensation process introduced an additional level of
approximation into the data representation. The split-
ting procedure assumed a uniform distribution of the
data within a condensed group of data points. The ac-
curacy of this approximation reduces when group sizes
are small. In such cases, there are simply too few data
points to make an accurate estimation of the values of
split group statistics. Thus, the use of the uniform dis-
tribution approximation reduces the quality of the co-
variance statistics in the split groups for small group
sizes. For this reason, the dynamic condensation process
was sometimes less effective than the static condensa-
tion approach. However, in all cases, the dynamic con-
densation approach worked almost as effectively as the
classifier on the original data. One notable exception to
the general advantage of the static condensation process
was the behavior on the Pima Indian data set. In this
case, the dynamic condensation process provided results
of higher quality for larger group sizes. The reason for
this was that the splitting process seemed to improve
the quality of the classification. The data set seemed to
contain a number of anomalies. These anomalies were
removed by the splitting process. This resulted in a
higher classification accuracy of the dynamic approach.

We also compared the covariance characteristics of
the data sets. The results are illustrated in Figures
9, 11, 13 and 15 respectively. For most data sets,
the value of the statistical correlation is almost perfect.
This corresponds to the fact that the correlation values
was larger than 0.95 in most cases. For some examples
such as the Abalone data set (illustrated in Figure 15),
the covariance compatibility value was larger than 0.99.
These results emphasize the fact that the perturbed
data is similar to the original data in terms of its
statistical structure. As in the previous case, the
results for the case of static condensation were better
than those for dynamic condensation. This is again
because of the additional inaccuracy introduced by the
splitting process. In all cases, the absolute correlation
provided by the scheme was very high. In the dynamic
case, the correlation coefficient tended to drop for small
group sizes. The only exception to this general rule
was the ionosphere data set in which the covariance
compatibility values were slightly lower for the static
case. The covariance compatibility also reduced for
extremely large group sizes. This is because in such a
case, the pseudo-data no longer represents a particular
data locality well. Thus, the covariance compatibility
was highest in those cases in which the data contained
tight clusters comprising a relatively modest number of

124

data points. This is because of the following reasons:

• When the number of points in each cluster were
large, the accuracy of the uniform distribution
assumption during the splitting process is main-
tained.

• When the clusters are tight, these data points
represent a small spatial locality with respect to
the rest of the data set. An approximation in a
small spatial locality does not significantly affect
the overall correlation structure.

We note that the process of representing a small spatial
locality in a group and that of representing a larger
number of data points in a group are two competing
and contradictory goals. It is important to pick a
balance between the two, since this tradeoff defines
the quality of performance on the underlying data
mining algorithm. This balance is externally defined,
since the average group size is determined by the
privacy requirements of the users. In general, since
our approach continued to be as effective as the base
classification accuracy over a wide range of group sizes,
this illustrates the effectiveness of our methodology in
most practical scenarios.

5 Conclusions and Summary

In this paper, we discussed a scheme for privacy pre-
serving data mining in which the data points are al-
lowed to have variable privacy levels. This is useful in a
number of applications in which different records have
inherently different privacy requirements. We propose
a method for privacy protection in a data stream en-
vironment using condensed statistics of the data set.
These condensed statistics can either be generated stat-
ically or they can be generated dynamically in a data
stream environment. We tested our results on a num-
ber of real data sets from the UCI machine learning
repository. The results show that our method produces
data sets which are quite similar to the original data in
structure, and also exhibit similar accuracy results.

References

[1] C. C. Aggarwal, and S. Parthasarathy, Mining Mas-

sively Incomplete Data Sets by Conceptual Recon-

struction, Proceedings of the ACM KDD Conference,
(2001), pp. 227–232,

[2] C. C. Aggarwal, and P. S. Yu, A Condensation Based

Approach to Privacy Preserving Data Mining, Proceed-
ings of the EDBT Conference, (2004), pp. 183–199.

[3] D. Agrawal, and C. C. Aggarwal, On the Design and

Quantification of Privacy Preserving Data Mining Al-

gorithms, Proceedings of the ACM PODS Conference,
(2002).

[4] R. Agrawal, and R. Srikant, Privacy Preserving Data

Mining, Proceedings of the ACM SIGMOD Confer-
ence, (2000).

[5] P. Benassi, Truste: An online privacy seal program,
Communications of the ACM, 42(2), (1999), pp. 56-
59.

[6] C. Clifton, and D. Marks, Security and Privacy Impli-

cations of Data Mining, ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Dis-
covery, (1996), pp. 15–19.

[7] J. Vaidya, and C. Clifton, Privacy Preserving Associa-

tion Rule Mining in Vertically Partitioned Data, ACM
KDD Conference, (2002).

[8] T. M. Cover, J. A. Thomas, Elements of Information

Theory, John Wiley & Sons, Inc., New York, (1991).
[9] Cranor L. F. (Ed.) Special Issue on Internet Privacy,

Communications of the ACM, 42(2), (1999).
[10] The Economist, The End of Privacy, (1999).
[11] V. Estivill-Castro, and L. Brankovic, Data Swapping:

Balancing privacy against precision in mining for logic

rules, Data Warehousing and Knowledge Discovery,
Springer-Verlag, Lecture Notes in Computer Science
1676, (1999), pp. 389–398.

[12] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke,
Privacy Preserving Mining Of Association Rules, ACM
KDD Conference, (2002).

[13] A. Hinneburg, and D. A. Keim, An Efficient Ap-

proach to Clustering in Large Multimedia Databases

with Noise, ACM KDD Conference, (1998).
[14] V. S. Iyengar, Transforming Data To Satisfy Privacy

Constraints, ACM KDD Conference, (2002).
[15] C. K. Liew, U. J. Choi, and C. J. Liew, A data distor-

tion by probability distribution, ACM TODS Journal,
(1985), 10(3) pp. 395–411.

[16] T. Lau, O. Etzioni, and D. S. Weld, Privacy Interfaces

for Information Management, Communications of the
ACM, 42(10), (1999), pp. 89–94.

[17] S. Murthy, Automatic Construction of Decision Trees

from Data: A Multi-Disciplinary Survey, Data Mining
and Knowledge Discovery, 2, (1998), pp. 345–389.

[18] P. Samarati, and L. Sweeney, Protecting Privacy when

Disclosing Information: k-Anonymity and its Enforce-

ment Through Generalization and Suppression. Pro-
ceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, (1998).

[19] S. L. Warner, Randomized Response: A survey tech-

nique for eliminating evasive answer bias, Journal of
the American Statistical Association, 60(309), (1965),
pp. 63-69.

125

Clustering with Model-Level Constraints

David Gondek ∗ Shivakumar Vaithyanathan † Ashutosh Garg ‡

Abstract

In this paper we describe a systematic approach to un-
covering multiple clusterings underlying a dataset. In
contrast to previous approaches, the proposed method
uses information about structures that are not de-
sired and consequently is very useful in an exploratory
datamining setting. Specifically, the problem is formu-
lated as constrained model-based clustering where the
constraints are placed at a model-level. Two variants
of an EM algorithm, for this constrained model, are de-
rived. The performance of both variants is compared
against a state-of-the-art information bottleneck algo-
rithm on both synthetic and real datasets.

1 Introduction

Clustering is a form of unsupervised learning which
groups instances based on their similarity. Most clus-
tering algorithms either optimize some objective [15] or
make use of a similarity/distance function between in-
stances [13]. In real applications there may be multiple
clusterings underlying the data and the user may typ-
ically not know a priori which clustering is of interest.
A commonly identified liability of clustering is the large
degree to which the solution returned is dictated by as-
sumptions inherent in the choice of similarity of objec-
tive function [12]. To address this, a number of semi-
supervised clustering approaches have been proposed.
They all share a dependency on user-supplied knowl-
edge about the structure of the desired solution. They
differ, however, on how this knowledge is employed. Ap-
proaches vary from enforcing constraints directly within
the algorithm [22], seeding the initialization of clusters
[1], learning distance functions based on user input as
in [23] and [12], or even a combination of these ap-
proaches such as in [3, 2] which learns a distance func-
tion and enforces constraints within the algorithm.

The problem with these approaches is that the user
may be unable to define a useful similarity function or

∗Department of Computer Science, Brown University, Provi-
dence, RI 02912, dcg@cs.brown.edu

†IBM Almaden Research Center, 650 Harry Rd., San Jose, CA
95120, shiv@almaden.ibm.com

‡Google, Inc., 1600 Amphitheater Parkway, Mountain View,
CA 94043, ashutosh@google.com

specify prior knowledge of a desired solution. For exam-
ple, consider the “Yahoo! problem” of [6]: you are given
100,000 text documents and asked to group them into
categories. You are not given any information in ad-
vance about what categories to use or which documents
are related. The goal is then to create a categoriza-
tion which can be browsed and accessed efficiently. In
[6], they propose an iterative solution which supplies
clusterings to the user and receives feedback accord-
ing to three forms. The user may specify “This doc-
ument doesn’t belong in here,” “Move this document to
that cluster,” and “These two documents shouldn’t (or
should) be in the same cluster.” We note that all three
forms of feedback require the user to have information
about a desired clustering. Furthermore, with 100,000
documents, a user may be able to inspect only a small
percentage of the documents. Feedback obtained may
be appropriate for the sample but misleading for the
overall dataset. This will have the effect of biasing the
search and suppressing other interesting clusterings of
which the user is not aware.

We propose as an alternate approach to provide the
user with a series of high-quality non-redundant cluster-
ings. In our case, feedback would not require positive
knowledge about which instances should be assigned
to which cluster. Instead, the user’s interaction would
be to specify, “Find another clustering.” With this in
mind, we develop a mechanism to systematically search
through the clusterings underlying the data. A formal
framework to incorporate this non-redundancy as con-
straints in model-based clustering, as well as associated
algorithms for obtaining high-quality solutions, is the
focus of this paper.

2 Problem Definition

Unsupervised clustering algorithms obtain the natu-
ral grouping underlying the data1. In some cases,
prior knowledge about a desired clustering can be in-
corporated using a variety of constrained clustering
techniques[22] [14] [23]. Briefly, these techniques re-
quire the analyst to provide explicit knowledge of the
target clustering. E.g. in [22]: must-link constraints

1The natural clustering is dependent upon the choice of
objective function.

126

require two instances to be assigned the same cluster
and cannot-link constraints require two instances to be
assigned to different clusters.

In contrast, we consider the less-studied setting in
which the knowledge available pertains to particular
solutions which are not desired. Our goal is to use this
knowledge to discover new clusterings in a systematic
fashion. In this paper this knowledge can be expressed
in the following two ways:

[a.] Known clusterings One or more clusterings are
given.

[b.] Negative features A set of “negative” features
is specified and clusterings associated with these
features are undesired.

In case [a.] above, the goal is to find newer clusterings
which do not resemble the known clusterings. In case
[b.], the goal is to find clusterings not associated with
the negative features.

Table 1: Example: 5-dimensional Dataset
remaining features negative features

i y+
·1 y+

·2 y+
·3 y−

·1 y−
·2

1 1 1 1 1 0
2 1 1 1 1 0
3 1 0 0 0 1
4 1 0 0 0 1
5 0 1 1 1 0
6 0 1 1 1 0
7 0 1 0 0 1
8 0 0 0 0 1

To understand the implications of negative features,
consider the example in Table 1. Each instance has
been separated into “negative” and “remaining” fea-
tures. Clustering only on the negative features produces
clusters {1, 2, 5, 6} and {3, 4, 7, 8}. We desire cluster-
ings that are different from this grouping of the data.
The naive solution of simply ignoring y−

·1 and y−
·2 is not

sufficient since y−
·1 and y−

·2 are correlated with y+
·2 and

y+
·3. Consequently the naive solution will still result in

finding {1, 2, 5, 6} and {3, 4, 7, 8} 2. However, a more
intelligent search may find {1, 2, 3, 4} and {5, 6, 7, 8}
which is a different and meaningful grouping of the data.
What complicates matters is that in general there may
be many natural clusterings and negative features may
have more than one associated clustering. The task at
hand is then to find a meaningful grouping of the data

2Note that even repeated runs of clustering techniques which
depend on random initializations, such as k-means [15], will
typically return this dominant clustering.

which is different from all clusterings associated with
the negative features.

Techniques have been derived from the Information
Bottleneck framework[20] for related problems. The
Information Bottleneck with Side Information[5] may
be applied to clustering and we will use it as a baseline
in our experiments. In [9], the Conditional Information
Bottleneck was proposed as a technique to find a non-
redundant clustering in a dataset given one known
clustering. It is not, however, designed for the setting in
which negative features may be associated with several
known clusterings.

3 Constrained Model-Based Clustering

Mathematically stated, we have a n-instance dataset
Y = {yi : i = 1 . . . n}. Each instance, yi is assumed
to have negative y−

i and remaining y+
i features where

m− is the number of negative features and m+ is the
number of remaining features. y−

ij and y+
ij represent the

jth negative/remaining feature of the ith instance. We
use y−

·j and y+
·j to represent the jth negative/remaining

feature for a generic instance. All features are assumed
to be binary, i.e., y−

i ∈ Y − where Y − is the set of all

such vectors {0, 1}m
−

and y+
i ∈ Y + where Y + is the

set of all such vectors {0, 1}m
+

. The negative features
y−

i are assumed to take one of the following forms:

Known clusterings One or more clusterings are
given. In this case y−

i is represented by a vector
where the entries for the clusters to which i is
assigned are set to 1 and all other entries are 0.

Negative features A set of m− negative fea-
tures, {ν(1) . . . , ν(m−)}, are specified. In this
case y−

i is represented as the vector, y−
i =

[yiν(1), . . . , yiν(m−)].

3.1 Model Recall that our interest is in grouping the
instances to maximize their similarity in y+

i while si-
multaneously searching for structure that is not already
present in y−

i . Intuitively, this suggests a model where
y−

i and the cluster, ck, are independent given y+
i . This

captures that the y−
i for an instance should be a con-

sequence of its y+
i features. Thus, y+

i are assumed to
be drawn from K clusters, c1, . . . , cK , while the y−

i are
drawn conditioned on y+

i . Now, assuming Y is indepen-
dently drawn gives the following log-likelihood, l(Y), for
the dataset:

(3.1) l(Y) =

n
∑

i=1

log

K
∑

k=1

p(y−
i |y

+
i)p(y+

i |ck)p(ck).

3.2 Objective Function for CMBC The uncon-
strained task would be to find a clustering which max-

127

imizes (3.1). Here we extend (3.1) to incorporate the
prior knowledge as model-level constraints. The term
model-level constraints refers to restrictions on the space
of clustering. We begin by representing the prior knowl-
edge as constraints.

3.2.1 Representing Knowledge as Constraints
Recall from above that both forms of knowledge may
be expressed via y−

i . A natural way to express the
constrained problem is [note an implicit assumption
that cluster probabilities are equal]:

max l(Y)(3.2)

s.t. p(cj |y
−
i) = p(ck|y

−
i) ∀i, j, k

where y−
i is negative information.

The intuition behind the constraints is to enforce the
requirement that the value taken by y−

i should not
influence the cluster assignments.

The constraints in (3.2) may be too restrictive
and allow only degenerate solutions. To soften the
constraints, we replace them with the requirement that
the conditional entropy, H(C|Y −), be high, where
H(C|Y −) = −

∑

k,i p(ck,y−
i) log p(ck|y

−
i). Note that

H(C|Y −) is maximized when the constraints in (3.2)
are met. This results in the following objective function:

(3.3) L = (1 − γ)l(Y) + γH(C|Y −).

where γ acts as a tradeoff between the loglikelihood and
the penalty terms. Intuitively, as γ is increased the
resulting solution is farther away from the clusterings
associated with Y −.

3.2.2 Approximating the Objective Function
(3.3) Ultimately, we wish to derive methods to maxi-
mize the objective function (3.3) and in the next section,
we will derive an EM algorithm. Before that, however,
it is necessary to approximate (3.3) to facilitate easier
computation in the EM algorithm. We perform two ap-
proximations: a. bounding the H(C|Y −) term and b.
empirical approximation.

Bounding H(C|Y−) The objective in (3.3) is
problematic in its current form because it contains
H(C|Y −), which is unwieldy to compute from the
parameters p(y−|c) and results in an expression which
is difficult to optimize. We can, however, exploit the
fact that H(C|Y −) = H(C, Y −) − H(Y −) to rewrite
(3.3) as:

(3.4) L = (1− γ)l(Y) + γ
(

H(C, Y −)−H(Y −)
)

.

Then, both terms H(C, Y −) and H(Y −) may be

computed easily from p(y−
i |ck) according to:

(3.5)

H(C, Y −)=−
∑

y
−

i
∈Y −

K
∑

k=1

p(y−
i |ck)p(ck) log

(

p(y−
i |ck)p(ck)

)

,

(3.6)

H(Y −)=−
∑

y
−

i
∈Y −

K
∑

k=1

p(y−
i |ck)p(ck) log

(

K
∑

k=1

p(y−
i |ck)p(ck)

)

.

The remaining hurdle is that each term contains
a log of sums, which prevents us from deriving closed-
form update equations in an EM algorithm: the H(Y −)
sums over k within the log term. Further, as will be
seen in Appendix A, the p(y−

i |ck), which occurs in the
log terms of both H(Y −) and H(C, Y −), also requires
performing a sum. We address this issue by replacing
these entropy terms with quadratic bounds.

The Shannon entropies in (3.5) and (3.6) can be
approximated by the commonly-used Havrda-Charvát
structural δ-entropy[11] to obtain quadratic expressions,
however this approximation can be quite loose3. Instead
we make use of quadratic bounds recently presented in
[10] and [21]. These lower and upper bounds are built
around the index of coincidence (IC), the probability
of drawing the same element in two independent trials.
From [21], we obtain the lower bound which we denote
by Hl(X):

(3.7) H(X) ≥ Hl(X) =̇ δd − βd

∑

x

p(x)2,

where d is the number of elements x, used to define:

δd = ln(d + 1) + d ln(1 +
1

d
),(3.8)

βd =(d + 1)d ln(1 +
1

d
).(3.9)

From [10], we use the upper bound on H(X), which we
denote as Hu(X):
(3.10)

H(X) ≤ Hu(X) =̇ (ln d)·

(

1−
1

1− 1
d

(

∑

x

p(x)2 −
1

d

))

.

Applying (3.7) to H(Y −, C) and (3.10) to H(Y −) in our
objective function (3.4) we obtain:

(3.11) L ≥ (1 − γ)l(Y) + γ
(

Hl(C, Y −)−Hu(Y −)
)

Empirical Approximation We describe how to
compute p(y−

i |ck) and terms in l(Y) in Appendix A.

3We attempted to use this approximation in our experiments
but found the approximations to differ substantially from the
Shannon entropies and result in very poor performance.

128

For this paper we assume the p(ck) are constant. From
the computation in (A.5), it is clear that p(y−

i |y
+
i)

is constant for a given dataset and so can be ignored
in l(Y). Also, from (A.5), we see the p(y−

i |y
+
h) can

be estimated only for those y−
i in the dataset Y−,

which requires that the summation in the entropy terms
Hl(C, Y −) and Hu(Y −) be restricted to those y−

i ∈ Y
−.

We denote these empirical approximations as H̃l(C, Y −)
and H̃u(Y −) which are defined as:

(3.12)

H̃l(C, Y −)=



δ|Y −| − β|Y −|

∑

y
−

i
∈Y−

K
∑

k=1

(

p(y−
i |ck)p(ck)

)2



,

(3.13) H̃u(Y −) =
(

log |Y −|
)

·



1−Q
∑

y
−

i
∈Y−

(

K
∑

k=1

p(y−
i |ck)p(ck)

)2


 .

where Q = 1
1−1/|Y −| and where |Y −| is the num-

ber of unique y− which occur in the dataset. The
Hl(C, Y −) and Hu(Y −) terms of (3.11) are replaced
with H̃l(C, Y −) and H̃u(Y −) to produced the final ap-
proximation of the objective function, L̃:

(3.14) L̃ = l(Y+) + γ(H̃l(C, Y −)− H̃u(Y −)).

4 EM Algorithm

Select annealing rate α < 1. Initialize T to be high.
Randomly initialize p(y+

·j |ck).
Loop until hard-assignment obtained:

1. Loop until converged:

For j = {1 . . .m+}

For k = {1 . . .K}:

E-Step Compute assignment expectations:

• for all instances i = 1 . . . n:

(4.15) q(ck|yi) ∝ p(ck)p(y+
i |ck)1/T

M-step Maximize for p(y+
·j |ck) by solving:

(4.16)
F3p(y+

·j |ck)3+F2p(y+
·j |ck)2+F1p(y+

·j |ck)+F0 = 0

2. Decrease temperature T ← αT

Figure 1: CMBC Algorithm: Partial Maximization
(CMBCpm)

The E-step [shown in (4.15)] is unaffected by the

Select annealing rate α < 1. Initialize T to be high.
Randomly initialize p(y+

·j |ck).
Loop until hard-assignment obtained:

1. Loop until converged:

E-Step Compute assignment expectations:

• for all instances i = 1 . . . n:

(4.17) q(ck|yi) ∝ p(ck)p(y+
i |ck)1/T

M-step For k = {1 . . .K}, j = {1 . . .m+}:

• Maximize for p(y+
·j |ck) by solving:

(4.18)
F3p(y+

·j |ck)3 + F2p(y+
·j |ck)2 + F1p(y+

·j |ck) + F0 = 0

2. Decrease temperature T ← αT

Figure 2: CMBC Algorithm: Batch Update (CMBCbu)

second and third terms from (3.14) 4. The M-step finds
the maximum likelihood estimates for the model pa-
rameters, p(y+

·j |ck), given the q(ck|yi) from (4.15). The
derivation, as described in Appendix B, produces the
cubic equations in (4.16) and (4.18) and has a closed-
form solution due to [4], however in our experiments
for ease of implementation we use a numerical method
to obtain solutions. We may either perform partial
maximization in each iteration using the optimization
method of [17] as in Figure 1 or approximate this using
a faster batch update as shown in Figure 2. For both ap-
proaches, we use a deterministic annealing algorithm[18]
which obtains hard-assignments.

5 Information Bottleneck with Side
Information [IBwS]

A state-of-the-art existing approach, the IBwS algo-
rithm [5], provides a convenient and elegant way of in-
troducing model-level constraints in optimizing the fol-
lowing objective function:

(5.19) min
p(ck|xi)

I(C; X)− β
(

I(C; Y +)− γI(C; Y −)
)

.

I(C; X) measures the compactness of the representation
of instances X by C. The I(C; Y +) term measures how
well the representation retains information about Y +

and the I(C; Y −) term penalizes information which C
conveys about Y −. The value for γ controls the trade-
off between retaining information about Y + and penal-
izing information about Y −. Following an annealing
approach as suggested in [20], β may be increased until
a hard clustering is found.

4The derivation is simple and we have omitted it in the
interests of space

129

6 Experiments

We report experiments on both synthetic and real
datasets using CMBCbu [Fig. 1], CMBCpm [Fig. 2]
and a deterministic annealing version of IBwS (dIBwS).
Results from all experiments are evaluated using the
normalized mutual information (NMI) [8], which for
clustering C and true labeling L measures how much
information C captures about L. It is computed as

NMI(C, L) = I(C,L)
H(L) and ranges from 0 [no information]

to 1 [C = L].

6.1 Synthetic Data We generate synthetic datasets
which contain multiple clusterings to test the ability of
the algorithms to find those clusterings. In particular,
we generate data with 4 underlying clusterings, {Q(1),
Q(2), Q(3), Q(4)}. The strength of the clustering is
controlled by the number of features associated with
it; 6 features are associated with Q(1), 5 with Q(2),
4 with Q(3) and 3 with Q(4), resulting in an 18-
dimensional set. The resultant dataset contains 4
underlying clusterings ordered according to decreasing
strength: Q(1) � Q(2) � Q(3) � Q(4). Each Q(l)

groups the data into 2 clusters where each cluster has a
representative binary vector. Drawing an instance now
consists of, for each of {Q(1), Q(2), Q(3), Q(4)}, randomly
selecting one of the two clusters and assigning the binary
vector for that cluster. Noise is introduced by randomly
flipping each feature with some probability pnoise. We
have divided the experiments according to the two forms
of prior knowledge.

6.1.1 Known Clusterings The first experiment
evaluates the ability of the algorithms to find succes-
sive clusterings and is divided into three sessions. For
Session 1, we assume that one clustering, Q(1), is known,
for Session 2 we assume that Q(1) and Q(2) are known,
and for Session 3, we assume that Q(1), Q(2), and Q(3)

are known. In each session we consider datasets with
pnoise ranging from 0.1 to 0.3. The value of γ for each
of the CMBC and IBwS algorithms is independently
optimized over 20 possible settings for baseline setting
pnoise = 0.1 and this value is retained for all other pnoise

settings. Setting γ in this manner allows us to investi-
gate the robustness with respect to γ of the algorithms
if applied to different datasets. We will later investi-
gate the ranges of effective γ for each of the pnoise. We
compare performance against a deterministic annealing
version of Expectation Maximization (EM) [7], which
does not incorporate any prior knowledge. Results are
shown in Table 2.

Uncovering Underlying Structure We first
evaluate the algorithms over all three sessions for the
baseline setting where pnoise = 0.1. Here we expect the

best performance as this is the setting for which the
algorithms have been tuned. The EM algorithm does
not incorporate any prior knowledge and so obtains the
same solution across sessions. It typically discovers the
most prominent clustering, Q(1). Of the 100 datasets,
EM obtains a solution with NMI(C, Q(1)) > 0.75 for 87
sets and NMI(C, Q(2)) > 0.75 for 13. In none of the tri-
als does EM obtain solutions with NMI(C, Q(3)) > 0.75
or NMI(C, Q(4)) > 0.75 which demonstrates the fail-
ure of random initialization to discover less-prominent
clusterings. Performance among the CMBC and IBwS
algorithms is approximately the same. While the perfor-
mance of CMBCbu at finding the next most prominent
clustering lags somewhat in Session 1, where there is a
single known clustering, it improves relative to the other
two algorithms in Sessions 2 and 3, where there are mul-
tiple known clusterings. The lower score of CMBCbu at
discovering Q(2) in Session 1 occurs because in several
of the trials, it instead discovers Q(3). This is not a fail-
ure of the algorithm; it is successfully accomplishing the
task of discovering a novel clustering, however it is not
discovering the next most prominent clustering. We will
discuss this phenomenon further when looking at other
noise settings.

Examining results for higher noise settings, we find
the performance of dIBwS drops dramatically. For ex-
ample, consider Session 2 with pnoise = 0.20. CMBCbu
finds solutions that average NMI(C, Q(3)) = 0.4782,
and CMBCpm that average NMI(C, Q(3)) = 0.5007
whereas for dIBwS, NMI(C, Q(3)) = 0.0008. The
dIBwS algorithm is finding solutions similar to known
clustering Q(2). This behaviour is consistent for the
higher noise (pnoise ≥ 0.20) settings throughout Ses-
sions 2 and 3 where dIBwS fails to discover unknown
clusterings. Interestingly, in these cases, dIBwS seems
to consistently discover the weakest of the known clus-
terings, as can be seen by looking at Sessions 2 and 3.
In Session 2, where Q(2) is the weakest known cluster-
ing, NMI(C, Q(2)) is 0.8404 and 0.8601 for pnoise set to
0.20 and 0.30. In Session 3, where Q(3) is the weakest
known clustering, NMI(C, Q(3)) is 0.9800 and 0.7270
for pnoiseset to 0.20 and 0.30. For all of these settings,
the solutions obtained by CMBCbu and CMBCpm are
most like the target clustering, whereas dIBwS largely
fails to discover the target clustering.

In comparing CMBCbu and CMBCpm, there is
not a clear winner. As we saw in the baseline setting
of pnoise = 0.10, CMBCbu’s performance relative to
CMBCpm and dIBwS generally improves across sessions
as there are more known clusterings. There does not,
however, appear to be a clear trend within a given
session as the noise is increased.

Finally, in Sessions 1 and 2, where there are multi-

130

Table 2: Mean NMI for 100 synthetic sets generated with 1000 instances according to the procedure in Section
6.1. Parameter settings are: α = 0.5, γCMBCbu = .97, γCMBCpm = .95, γIBwS = 2.5714.

Session 1: Q(1) is known. Goal is discovery of Q(2), Q(3) or Q(4).
Session 1: y− = Q(1)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0007 0.8653 0.0591 0.0006

CMBCpm 0.0008 0.9297 0.0008 0.0006
dIBwS 0.0008 0.9072 0.0173 0.0007
EM 0.8089 0.1217 0.0007 0.0008

0.20 CMBCbu 0.0007 0.6136 0.0531 0.0008
CMBCpm 0.0007 0.6599 0.0163 0.0007
dIBwS 0.0107 0.6595 0.0114 0.0006
EM 0.6443 0.0429 0.0012 0.0015

0.30 CMBCbu 0.0006 0.2546 0.0553 0.0048
CMBCpm 0.0006 0.2796 0.0279 0.0025
dIBwS 1.0000 0.0008 0.0006 0.0008
EM 0.3129 0.0430 0.0022 0.0015

Session 2: Q(1) and Q(2) are known. Goal is discovery of Q(3) or Q(4).
Session 2: y− = Q(1), Q(2)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0006 0.0008 0.8336 0.0009

CMBCpm 0.0005 0.0006 0.8300 0.0008
dIBwS 0.0006 0.0008 0.8235 0.0085
EM 0.8089 0.1217 0.0007 0.0008

0.20 CMBCbu 0.0006 0.0008 0.4782 0.0498
CMBCpm 0.0005 0.0007 0.5007 0.0317
dIBwS 0.0108 0.8404 0.0833 0.0006
EM 0.6443 0.0429 0.0012 0.0015

0.30 CMBCbu 0.0110 0.0009 0.1958 0.0205
CMBCpm 0.0006 0.0006 0.1520 0.0283
dIBwS 0.1407 0.8601 0.0008 0.0007
EM 0.3129 0.0430 0.0022 0.0015

Session 3: Q(1), Q(2) and Q(3) are known. Goal is discovery of Q(4).
Session 3: y− = Q(1), Q(2), Q(3)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0009 0.0006 0.0006 0.8176

CMBCpm 0.0008 0.0006 0.0005 0.7997
dIBwS 0.0007 0.0006 0.0005 0.8068
EM 0.8089 0.1217 0.0007 0.0008

0.20 CMBCbu 0.0009 0.0005 0.0006 0.5220
CMBCpm 0.0009 0.0005 0.0005 0.4351
dIBwS 0.0006 0.0208 0.9800 0.0006
EM 0.6443 0.0429 0.0012 0.0015

0.30 CMBCbu 0.0086 0.0013 0.0068 0.2107
CMBCpm 0.0047 0.0008 0.0101 0.1160
dIBwS 0.0393 0.1985 0.7270 0.0006
EM 0.3129 0.0430 0.0022 0.0015

131

ple unknown clusterings, dIBwS almost always finds the
next most prominent clustering whereas CMBCbu and
CMBCpm occasionally discover less prominent cluster-
ings (e.g. Q(3) and Q(4) in Sessions 1 and 2 in Table 2.)
In general, the CMBC algorithms were more sensitive to
initialization than dIBwS which often obtains the same
solution regardless of initialization. This is despite the
fact that all three algorithms are using a deterministic
annealing framework.

Robustness of γ Parameter. While the perfor-
mance of dIBwS deteriorates for pnoise > 0.10, perfor-
mance can be improved by re-tuning γ. This was tested
on Session 3 with results shown in Figures 4 and 3. It
can easily be seen in Figure 3 that, with CMBCbu, an
optimal γ value for one pnoise setting is successful on
other pnoise settings. For example, γ = .95 is optimal
for pnoise = 0.10, but also scores well for pnoise = 0.20
and pnoise = 0.30. On the other hand, the fact that the
curves are not nested in Figure 4 indicates that dIBwS
is more sensitive to the value of γ. For example, the
optimal γ = 2.6667 on pnoise = 0.10 fails completely on
pnoise = 0.20 and pnoise = 0.30.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

N
M

I(
C

, Q
4)

p
noise

 = 0.1
p

noise
 = 0.2

p
noise

 = 0.3
p

noise
 = 0.4

Figure 3: Similarity to target clustering Q(4) in Session
3 for varying γ, CMBCbu: optimal γ for one pnoise

works for other pnoise

6.1.2 Negative Features Table 3 shows the results
of a similar set of experiments using negative features
instead of known clusterings. Half of the features associ-
ated with each clustering were set to be in y−. The use
of multiple negative features means information which
was previously part of the y+ is now instead part of
the y−. For example, consider Session 1 where in the
previous experiments y+ contained 6 features associ-
ated with the known clustering. In these experiments,
3 of those features are instead part of y− meaning y+

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

N
M

I(
C

, Q
4)

p
noise

 = 0.1
p

noise
 = 0.2

p
noise

 = 0.3
p

noise
 = 0.4

Figure 4: Similarity to target clustering Q(4) in Session
3 for varying γ, pnoise. dIBwS: optimal γ for one pnoise

fails for other pnoise

now contains only 3 remaining features associated with
the known clustering. Examining the baseline settings
(pnoise = 0.10), the algorithms appear competitive ex-
cept for Session 3, where CMBCpm substantially under-
performs CMBCbu and dIBwS. As in the previous set of
experiments, we note for Session 1 that the CMBC tech-
niques do occasionally discover the less prominent clus-
terings, as evidenced by the fact that NMI(C, Q(3)) is
0.0333 and 0.0253 for CMBCbu and CMBCpm whereas
it is 0.0008 for dIBwS. This phenomenon is consistent
across noise settings for Session 1, however in Session 2,
the results are mixed. In Session 2, dIBwS also discovers
less prominent clusterings.

The most striking difference between these results
and the results in the previous section is that the
performance of dIBwS does not deteriorate strongly
as the noise increases. In fact, in Sessions 1 and
3, the dIBwS continues to outperform CMBCpm and
CMBCbu as the noise increases, e.g. in Session 1,
pnoise = 0.30, the NMI(C, Q(2)) is 0.3245 for dIBwS
while for CMBCpm and CMBCbu it is 0.3064 and
0.2148. In Session 3, pnoise = 0.30, NMI(C, Q(3)) is
0.1488 for dIBwS while for CMBCbu and CMBCpm
it is 0.1221 and 0.0578. In these experiments where
noise features are given, dIBwS does not share the
same sensitivity to parameter settings as in the known
clustering experiments.

6.2 Real Data In this section we report our exper-
iments on a sub-set of the RCV-1 corpus [19]. We de-
fine three collections, each with two different clusterings
based on Topic and Region. E.g. in reut2x2a [described
below], documents can be clustered into Topic cate-

132

Table 3: Mean NMI for 100 synthetic sets generated with 1000 instances according to the procedure in Section
6.1. Parameter settings are: α = 0.5, γCMBCbu = .9, γCMBCpm = .9, γIBwS = 1.2222.

Session 1: Some features associated with Q(1) are known. Goal is discovery of Q(2), Q(3) or Q(4).
Session 1: y− = 50 % of the features associated with Q(1)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0008 0.8923 0.0333 0.0006

CMBCpm 0.0008 0.9012 0.0253 0.0007
dIBwS 0.0008 0.9289 0.0008 0.0007

0.20 CMBCbu 0.0007 0.6554 0.0204 0.0007
CMBCpm 0.0032 0.6473 0.0155 0.0030
dIBwS 0.0008 0.6799 0.0006 0.0006

0.30 CMBCbu 0.0025 0.3064 0.0229 0.0012
CMBCpm 0.0062 0.2148 0.0391 0.0089
dIBwS 0.0009 0.3245 0.0044 0.0006

Session 2: Some features associated with Q(1) and Q(2) are known. Goal is discovery of Q(3) or Q(4).
Session 2: y− = 50% of the features associated with Q(1), Q(2)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0007 0.0009 0.8302 0.0006

CMBCpm 0.0007 0.0009 0.8115 0.0167
dIBwS 0.0007 0.0008 0.8224 0.0085

0.20 CMBCbu 0.0010 0.0011 0.5104 0.0269
CMBCpm 0.0323 0.0042 0.4453 0.0299
dIBwS 0.0007 0.0008 0.5269 0.0112

0.30 CMBCbu 0.0063 0.0012 0.2115 0.0103
CMBCpm 0.0212 0.0017 0.1367 0.0215
dIBwS 0.0007 0.0006 0.1153 0.0191

Session 3: Some features associated with Q(1), Q(2) and Q(3) are known. Goal is discovery of Q(4).
Session 3: y− = 50% of the features associated with Q(1), Q(2), Q(3)

pnoise Algorithm NMI(C, Q(1)) NMI(C, Q(2)) NMI(C, Q(3)) NMI(C, Q(4))
0.10 CMBCbu 0.0008 0.0006 0.0006 0.8175

CMBCpm 0.0459 0.0220 0.0128 0.6931
dIBwS 0.0008 0.0006 0.0006 0.8047

0.20 CMBCbu 0.0173 0.0005 0.0006 0.5026
CMBCpm 0.0979 0.0137 0.0119 0.3017
dIBwS 0.0035 0.0006 0.0006 0.5100

0.30 CMBCbu 0.0711 0.0030 0.0017 0.1221
CMBCpm 0.0637 0.0125 0.0145 0.0578
dIBwS 0.0184 0.0006 0.0037 0.1488

133

gories [MCAT, ECAT] or into Region categories [UK,
India].

reut2x2a: Topic = [MCAT (Markets), GCAT (Gov-
ernment/Social)], Region = [UK, India], 3400 doc-
uments, 2513 terms.

reut2x2b: Topic = [I35 (Motor Vehicles and Parts),
I81 (Banking and Financial Services)], Region =
[Germany, USA], 1547 documents, 2235 terms.

reut2x2c: Topic = [GPOL (Domestic Politics),
GDIP (International Relations], Region = [France,
UK], 800 documents, 2194 terms.

For each collection, stopwords were removed and a
frequency cutoff was used to filter out the low frequency
terms. We then evaluated the algorithms according to
two scenarios. Each scenario consists of assuming one
of either Topic or Region clusterings is known and then
evaluating the algorithms on their ability to find the
other clustering. Tables 4 and 5 show the best of 10
random initializations for each of the algorithms.

The experiments on real data confirmed the pat-
terns observed with synthetic data. Specifically, CM-
BCbu and CMBCpm outperform dIBwS on all experi-
ments except for the reut2x2b set in Scenario 2 where
CMBCpm and dIBwS tie and dIBwS scores better than
CMBCbu by 1.28x. For all other experiments the me-
dian performance gain with respect to dIBwS is 1.54x
for CMBCpm and 1.66x for CMBCbu. Performance of
CMBCbu and CMBCpm is considerably stronger than
dIBwS in Scenario 2 - reut2x2a where CMBCbu has
a NMI of 0.7576 and CMBCpm has a NMI of 0.7621
but dIBwS has a NMI of only 0.1600. In Scenario 1 -
reut2x2c, CMBCbu and CMBCpm outperform dIBwS
and find reasonably high quality solutions with NMIs of
0.3162 and 0.3257 for CMBCbu and CMBCpm respec-
tively while dIBwS scores 0.1903, further showing that
the outperformance of CMBCbu and CMBCpm with
respect to dIBwS can be substantial.

We now consider the only experiment where CM-
BCbu and CMBCpm did not outperform dIBwS. On
Scenario 2 - reut2x2b, dIBwS, with a NMI of 0.0934
outscores CMBCbu (NMI = 0.0729) and ties with CM-
BCpm, also with a NMI of 0.0934. In fact, dIBwS ob-
tains the same clustering in both scenarios, highlighting
a difficulty with using extrinsic measures like NMI to
evaluate success. Namely, there may be other promi-
nent structure in the dataset which is not associated
with our known categorizations. Then, the algorithm
may discover this unassociated structure in both sce-
narios.

The presence of other prominent structures is a pos-
sible explanation for for the low NMI scores in Scenario

1 - reut2x2a where CMBCbu (NMI = 0.0189) and CM-
BCpm (NMI = 0.0014) beats dIBwS (NMI = 0.0002).
Clearly the algorithms are not discovering the cluster-
ing we expect. indicating that the “Topic” clustering
we have in mind may not prominent in the data. This
hypothesis is a reasonable explanation for this dataset
which includes substantially more documents (n=3400)
than the other two (n=1547 and n=800.) We intend
to study these effects further to better determine the
causes of the poor performance.

Finally, these experiments confirm there is no
penalty associated with using the batch update ap-
proach of CMBCbu instead of the partial maximization
approach of CMBCpm. This is an advantageous finding
as the runtime of the CMBCbu algorithm is comparable
with dIBwS whereas CMBCpm incurs a greater compu-
tational cost.

7 Conclusions

In this paper we have addressed the problem of sys-
tematically uncovering multiple clusterings underlying
a dataset. We have proposed a constrained likeli-
hood model and an associated EM algorithm with two
variants [CMBCbu and CMBCpm]. These algorithms,
along with an existing state-of-the-art information bot-
tleneck variant [dIBwS], have been evaluated on both
synthetic and real data in their ability to systemati-
cally uncover new clusterings. On synthetic data, all
algorithms showed the ability to uncover multiple un-
derlying clusterings even under noise. The performance
of CMBCbu and CMBCpm was more robust to noise
with respect to parameter settings than dIBwS. With
increasing amounts of information the performance of
the dIBwS algorithm was comparable to that of CM-
BCbu and CMBCpm.

The experiments on real data confirmed the pat-
terns observed with synthetic data. In the high-
dimensional, high-noise and minimal-information set-
ting of real data, the CMBC methods outperformed
dIBwS, where only in one case did dIBwS not come in
last. However, the results of CMBCpm come at a higher
computational cost while the CMBCbu algorithm, on
the other hand, is comparable in runtime to the dIBwS
algorithm. Notably, there appeared to be no penalty for
using the batch update approach of CMBCbu instead
of partial maximization as in CMBCpm.

The CMBC methods rely on several assumptions,
namely: clusters have roughly equal probability, the
prior knowledge is generated according to a mixture of
relevant features, and features are binary. It remains to
be seen whether these methods may be modified to relax
these assumptions. In general, however, the results are
very encouraging and this direction of research certainly

134

Table 4: Scenario 1: Topic clustering is known. NMI of best of 10 random initializations on the Reuters RCV1
sets. The goal is to find the Region clustering. We use δ = 0.5 and γ is tuned for each set. Highest scores are in
bold.

y− = Topic
dataset Algorithm NMI(C; Topic) NMI(C; Region)
reut2x2a CMBCbu(γ = .997) 0.0020 0.0189

CMBCpm(γ = .99) 0.0151 0.0014
dIBwS (γ = 4.8824) 0.0150 0.0002

reut2x2b CMBCbu(γ = .99) 0.0086 0.1245
CMBCpm (γ = .95) 0.0047 0.1155
dIBwS (γ = 3.1667) 0.0934 0.0748

reut2x2c CMBCbu(γ = .99) 0.0019 0.3162
CMBCpm (γ = .95) 0.0031 0.3257
dIBwS (γ = 24) 0.0879 0.1903

Table 5: Scenario 2: Region clustering is known. NMI of best of 10 random initializations on the Reuters RCV1
sets. The goal is to find the Topic clustering. We use δ = 0.5 and γ is tuned for each set. Highest scores are in
bold.

y− = Region
dataset Algorithm NMI(C; Topic) NMI(C; Region)
reut2x2a CMBCbu(γ = .997) 0.7576 0.0001

CMBCpm(γ = .99) 0.7621 0.0001
dIBwS (γ = 4.8824) 0.1600 0.0000

reut2x2b CMBCbu(γ = .99) 0.0729 0.0082
CMBCpm(γ = .95) 0.0934 0.0748
dIBwS (γ = 4.8824 0.0934 0.0748

reut2x2c CMBCbu(γ = .997) 0.4382 0.0001
CMBCpm(γ = .99) 0.4570 0.0001
dIBwS (γ = 4.8824 0.4294 0.0017

warrants further study.

References

[1] S. Basu, A. Banerjee, and R. J. Mooney. Semi-
supervised clustering by seeding. In Proceedings of

the Nineteenth International Conference on Machine

Learning, pages 27–34. Morgan Kaufmann Publishers
Inc., 2002.

[2] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proceed-

ings of the 2004 ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages
59–68. ACM Press, 2004.

[3] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised clus-
tering. In Twenty-first international conference on Ma-

chine learning. ACM Press, 2004.
[4] G. Cardano. Ars Magna. Nurnberg, 1545.
[5] G. Chechik and N. Tishby. Extracting relevant struc-

tures with side information. In Advances in Neural

Information Processing Systems 15, 2002.

[6] D. Cohn, R. Caruana, and A. McCallum. Semi-
supervised clustering with user feedback, 2003.

[7] A. Dempster, N. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data. Journal of the Royal

Statistical Society, Series B, 39(1):1–38, 1977.
[8] X. Z. Fern and C. E. Brodley. Random projection for

high dimensional data clustering: A cluster ensemble
approach. In The 20th International Conference on

Machine Learning, 2003.
[9] D. Gondek and T. Hofmann. Non-redundant data

clustering. In 4th IEEE International Conference on

Data Mining, 2004.
[10] P. Harremoës and F. Topsøe. Details for inequalities

between entropy and index of coincidence derived
from information diagrams. IEEE Transactions on

Information Theory, 47:2944–2960, 2001.
[11] J. H. Havrda and F. Charvát. Quantification meth-

ods of classification processes: Concepts of structural
entropy. In Kybernetica, 3, 1967.

[12] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boost-
ing margin based distance functions for clustering.
In Twenty-first international conference on Machine

learning. ACM Press, 2004.

135

[13] A. K. Jain and R. C. Dubes. Algorithms for clustering

data. Prentice-Hall, 1988.
[14] D. Klein, S. D. Kamvar, and C. D. Manning. From

instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clustering.
In Proceedings of the 19th International Conference on

Machine Learning, 2002.
[15] J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proceedings

of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, volume 1, pages 281–297,
Berkeley, 1967.

[16] R. Neal and G. Hinton. A view of the em algorithm
that justifies incremental, sparse, and other variants.
In M. I. Jordan, editor, Learning in Graphical Models.
Kluwer, 1998.

[17] M. J. D. Powell. A Fortran Subroutine for Solving

Systems of Nonlinear Algebraic Equations, chapter 7.
1970.

[18] K. Rose. Deterministic annealing for clustering, com-
pression, classification, regression, and related opti-
mization problems, 1998.

[19] T. Rose, M. Stevenson, and M. Whitehead. The
reuters corpus volume 1 – from yesterday’s news to
tomorrow’s language resources. In Proceedings of the

Third International Conference on Language Resources

and Evaluation, 2002.
[20] N. Tishby, F. C. Pereira, and W. Bialek. The informa-

tion bottleneck method. In Proc. of the 37th Annual

Allerton Conference on Communication, Control and

Computing, pages 368–377, 1999.
[21] F. Topsøe. Entropy and index of coincidence, lower

bounds. preprint, 2003.
[22] K. Wagstaff and C. Cardie. Clustering with instance-

level constraints. In Proc. of the 17th International

Conference on Machine Learning, pages 1103–1110,
2000.

[23] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning, with application to cluster-
ing with side-information. In Advances in Neural In-

formation Processing Systems, 15, 2003.

A Computation of p(y+
i |ck), p(y−

i |y
+
h) and

p(y−
i |ck)

A.1 Computation of p(y+
i |ck) Assuming class-

conditional independence of the binary features:

p(y+
i |ck) =

m+

∏

j=1

p(y+
ij |ck)(A.1)

=

m+

∏

j=1

p(y+
j |ck)y+

ij (1− p(y+
j |ck))1−y+

ij .(A.2)

A.2 Computation of p(y−
i |y

+
h) Computing

p(y−
i |ck) [described below] requires computing

p(y−
i |y

+
h). To address the sparsity of y+

h in the

observed data and to ensure tractability, we assume y−
i

is generated according to a mixture of the features y+
hj

where we assume that p(y+
hj) is uniform:

p(y−
i |y

+
h) =

m+

∑

j=1

p(y−
i |y

+
hj)p(y+

hj) =
1

m+

m+

∑

j=1

p(y−
i |y

+
hj)

(A.3)

=
1

m+

m+

∑

j

p(y−
i |y

+
·j = 1)y+

hj p(y−
i |y

+
·j = 0)1−y+

hj ,(A.4)

where (A.4) follows from the fact that the data is binary.
The p(y−

i |y
+
·j = 1) and p(y−

i |y
+
·j = 0) are estimated from

data using

p(y−
i |y

+
·j = b) =

|{yt ∈ Y : y−
t = y−

i and y+
tj = b}|

|{yt ∈ Y : y+
tj = b}|

,

(A.5)

for b ∈ {0, 1}.

E.g. for the data in Table 1,

p([1 0] | y+
·1 = 1) = 2/4,

p([1 0] | y+
·2 = 1) = 4/5,

p([1 0] | y+
·3 = 1) = 4/4.

A.3 Computation of p(y−
i |ck) The p(y−

i |y
+
i) are

fixed, so the p(y−
i |ck) are consequences of the choice of

p(y+
·j |ck) as can be seen in Lemma A.1.

Lemma A.1. The p(y−
i |ck) may be expanded as:

p(y−
i |ck) =

1

m+

m+

∑

j

∑

y+

·j
∈{0,1}

p(y−
i |y

+
·j)p(y+

·j |ck).(A.6)

Sketch of proof By marginalizing over all possible y+
h we

obtain: p(y−
i |ck) =

∑

y
+

h
∈Y + p(y−

i |y
+
h)p(y+

h |ck). Sub-

stituting the definitions from (A.2) and (A.4), restating
the summation as used in (A.6), grouping terms, and
simplifying the expression produces the final result.

B Derivation of Class-Conditional M-Step
Equations

Lemma B.1. The p(y+
·j |ck) are maximized for solutions

to the cubic equation:

F3p(y+
·h|ck)3 + F2p(y+

·h|ck)2 + F1p(y+
·h|ck) + F0 = 0.

136

where

F3 =
−2γp(ck)2

m+2

(

Q ln |Y −| − α|Y −|

)

A2(h, h),

F2 =
2γp(ck)2

m+2

(

Q ln |Y −| − α|Y −|

)

A2(h, h)

+
2 ln |Y −| ·Qp(ck)

m+2

(

∑

r,l:(r,l)6=(k,h)

p(cr)A2(h, l)θlk

+ A1(h)
)

−
2 ln |Y −| · β|Y −|p(ck)2

m+2

(

∑

l:l6=h

A2(h, l)θlk + A1(h)
)

,

F1 =− (1− γ)
∑

yi∈Y

q(ck|yi)

+
2 ln |Y −| ·Qp(ck)

m+2

(

∑

r,l:(r,l)6=(k,h)

p(cr)A2(h, l)θlk

+ A1(h)
)

−
2 ln |Y −| · β|Y −|p(ck)2

m+2

(

∑

l:l6=h

A2(h, l)θlk + A1(h)
)

,

F0 =(1− γ)
∑

yi∈Y

q(ck|yi)y
+
ih.

The A terms are defined as:

A2(j, l) =
∑

y
−

i
∈Y−

(p(y−
i |y

+
·j = 1)− p(y−

i |y
+
·j = 0))

· (p(y−
i |y

+
·l = 1)− p(y−

i |y
+
·j = 0)),

A1(j) =
∑

y
−

i
∈Y−

p(y−
i |y

+
·l = 0)

·
(

p(y−
i |y

+
·j = 1)− p(y−

i |y
+
·j = 0)

)

,

A0 =
∑

y
−

i
∈Y−

m+

∑

j,l=1

p(y−
i |y

+
·j = 0)p(y−

i |y
+
·l = 0).

B.1 Expanding the p(y−
i |ck) terms in the

H̃l(C, Y −) term from (3.14) Recall that H̃l(C, Y −) is
defined in (3.13) in terms of p(y−

i |ck). The parameters
for the model, however, are p(y+

i |ck). We now expand
the p(y−

i |ck) according to (A.6) in order to obtain ex-
pressions explicitly in terms of p(y−

i |ck). We will need

the following quantity which appears in H̃l(C, Y −):

(B.1)
∑

y
−

i
∈Y −

K
∑

k=1

p(y−
i , ck) · p(y−

i , ck)

=
∑

y
−

i
∈Y −

K
∑

k=1

p(ck)2
1

m+2

m+

∑

j=1

m+

∑

l=1

[

(p1
ij − p0

ij)(p
1
il − p0

il)

· θjkθlk +
(

p0
il(p

1
ij − p0

ij)
)

θjk +
(

p0
ij(p

1
il − p0

il)
)

θlk

+
(

p0
ijp

0
il

)]

where we have substituted p0
ij = p(y−

i |y
+
·j = 0), p1

ij =

p(y−
i |y

+
·j = 1) and θjk = p(y+

·j |ck) for simplification. To
further simplify the expression, we introduce constants
A0, A1, A2 according to the definitions in (B.1) and
obtain the expanded expression for H̃l(C, Y −):

(B.2) H̃l(C, Y −) = α|Y −| − β|Y −|

K
∑

k=1

p(ck)2
1

m+2

·







∑

j,l

A2(j, l)θjkθlk + 2
∑

j

A1(j)θjk + A0







.

B.2 Expanding the p(y−
i |ck) terms in the H(Y −)

term of (3.14) In a similar fashion, one obtains the
expanded version of H̃u(Y −) from (3.13):

(B.3)

H̃l(Y −) =
(

ln |Y −|
)

·

(

1−Q

K
∑

k=1

K
∑

r=1

p(ck)p(cr)
1

m+2

·

{

∑

j,l

A2(j, l)θjkθlr +2
∑

j

A1(j)θjk +A0

}

−
Q

|Y −|

)

.

B.3 Finding p(y+
i |ck) which maximize (3.14) The

critical points of (3.14) may by obtained as follows:
First, the expanded versions given in (B.2) and (B.3) are
substituted into (3.14). Next, the standard variational
approximation for EM is applied [for details, see [16]].
Finally, the result is differentiated with respect to θhk

and equated to zero. The result is a cubic equation.
This is because the p(y+

i |ck) are linear in the derivatives
of (B.2) and (B.3). The y+

ij appear as the exponent of

p(y+
i |ck) in (A.2) which itself appears in the first term of

(3.14). Since the y+
ij are binary, we are guaranteed that

after differentiating we obtain a cubic equation. Using
the fact that A2(j, l) = A2(l, j), and grouping terms
results in the cubic equation in Lemma B.1.

137

Clustering With Constraints: Feasibility Issues and the k-Means Algorithm

Ian Davidson∗ S. S. Ravi†

Abstract

Recent work has looked at extending the k-Means al-
gorithm to incorporate background information in the
form of instance level must-link and cannot-link con-
straints. We introduce two ways of specifying additional
background information in the form of δ and ε con-
straints that operate on all instances but which can be
interpreted as conjunctions or disjunctions of instance
level constraints and hence are easy to implement. We
present complexity results for the feasibility of cluster-
ing under each type of constraint individually and sev-
eral types together. A key finding is that determining
whether there is a feasible solution satisfying all con-
straints is, in general, NP-complete. Thus, an iterative
algorithm such as k-Means should not try to find a fea-
sible partitioning at each iteration. This motivates our
derivation of a new version of the k-Means algorithm
that minimizes the constrained vector quantization er-
ror but at each iteration does not attempt to satisfy
all constraints. Using standard UCI datasets, we find
that using constraints improves accuracy as others have
reported, but we also show that our algorithm reduces
the number of iterations until convergence. Finally, we
illustrate these benefits and our new constraint types
on a complex real world object identification problem
using the infra-red detector on an Aibo robot.

Keywords: k-Means clustering, constraints.

1 Introduction and Motivation

The k-Means clustering algorithm is a ubiquitous tech-
nique in data mining due to its simplicity and ease of
use (see for example, [6, 10, 16]). It is well known that
k-Means converges to a local minimum of the vector
quantization error and hence must be restarted many
times, a computationally very expensive task when deal-
ing with the large data sets typically found in data min-
ing problems.

Recent work has focused on the use of background

∗Department of Computer Science, University at Al-

bany - State University of New York, Albany, NY 12222.
Email: davidson@cs.albany.edu.

†Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email: ravi@cs.albany.edu.

information in the form of instance level must-link and
cannot-link constraints. A must-link constraint enforces
that two instances must be placed in the same clus-
ter while a cannot-link constraint enforces that two in-
stances must not be placed in the same cluster. We
can divide previous work on clustering under constraints
into two types: 1) Where the constraints help the
algorithm learn a distortion/distance/objective func-
tion [4, 15] and 2) Where the constraints are used
as “hints” to guide the algorithm to a useful solution
[18, 19]. Philosophically, the first type of work makes
the assumption that points surrounding a pair of must-
link/cannot-link points should be close to/far from each
other [15], while the second type just requires that the
two points be in the same/different clusters. Our work
falls into the second category. Recent examples of the
second type of work include ensuring that constraints
are satisfied at each iteration [19] and initializing algo-
rithms so that constraints are satisfied [3]. The results
of this type of work are quite encouraging; in particular,
Wagstaff et al. [18, 19] illustrate that for simple classifi-
cation tasks, k-Means with constraints obtains clusters
with a significantly better purity (when measured on an
extrinsic class label) than when not using constraints.
Furthermore, Basu et al. [5] investigate determining the
most informative set of constraints when the algorithm
has access to an Oracle.

In this paper we carry out a formal analysis of
clustering under constraints. Our work makes several
pragmatic contributions.

• We introduce two new constraint types which act
upon groups of instances. Roughly speaking, the ε-
constraint enforces that each instance x in a cluster
must have another instance y in the same cluster
such that the distance between x and y is at most
ε. We shall see that this can be used to enforce
prior information with respect to how the data
was collected. The δ-constraint enforces that every
instance in a cluster must be at a distance of at least
δ from every instance in every other cluster. We can
use this type of constraint to specify background
information on the minimum distance between the
clusters/objects we hope to discover.

• We show that these two new constraints can be eas-

138

ily represented as a disjunction and conjunction of
must-link constraints, thus making their implemen-
tation easy.

• We present complexity results for the feasibility
problem under each of the constraints individually
and in combination. The polynomial algorithms
developed in this context can be used for initializing
the k-Means algorithm. We show that in many
situations, the feasibility problem (i.e., determining
whether there there is a solution that satisfies all
the constraints) is NP-complete. Therefore, it is
not advisable to attempt to find a solution that
satisfies all the constraints at each iteration of a
clustering algorithm.

• To overcome this difficulty, we illustrate that the
k-Means clustering algorithm can be viewed as a
two step algorithm with one step being to take the
derivative of its error function and solving for the
new centroid positions. With that in mind, we pro-
pose a new differentiable objective function that in-
corporates constraint violations and rederive a new
constrained k-Means algorithm. This algorithm,
like the original k-Means algorithm, is designed to
monotonically decrease its error function.

We empirically illustrate our algorithm’s perfor-
mance on several standard UCI data sets and show that
adding must-link and cannot-link constraints not only
helps accuracy but can help improve convergence. Fi-
nally, we illustrate the use of δ and ε constraints in clus-
tering distances obtained by an Aibo robot’s infra-red
detector for the purpose of object detection for path
planning. For example, we can specify the width of the
Aibo robot as δ; that is, we are only interested in clus-
ters/objects that are more than δ apart, since the robot
can only physically move between such objects.

The outline of the paper is as follows. We begin
by considering the feasibility of clustering under all
four types constraints individually. The next section
builds upon the feasibility analysis for combinations of
constraints. A summary of the results for feasibility can
be found in Table 1. We then discuss the derivation of
our constrained k-Means algorithm. Finally, we present
our empirical results.

2 Definitions of Constraints and the Feasibility
Problem

Throughout this paper, we use the terms “instances”
and “points” interchangeably. Let S = {s1, s2, . . . , sn}
denote the given set of points which must be partitioned
into K clusters, denoted by S1, . . ., SK . For any pair
of points si and sj in S, the distance between them is

denoted by d(si , sj). The distance function is assumed
to be symmetric so that d(si , sj) = d(sj , si). We
consider the problem of clustering the set S under the
following types of constraints.

(a) Must-Link Constraints: Each must-link con-
straint involves a pair of points si and sj (i 6= j). In
any feasible clustering, points si and sj must be in the
same cluster.

(b) Cannot-Link Constraints: Each cannot-link
constraint also involves a pair of distinct points si and
sj . In any feasible clustering, points si and sj must
not be in the same cluster.

(c) δ-Constraint (or Minimum Separation Con-
straint): This constraint specifies a value δ > 0. In any
solution satisfying this constraint, the distance between
any pair of points which are in two different clusters
must be at least δ. More formally, for any pair of clus-
ters Si and Sj (i 6= j), and any pair of points sp and
sq such that sp ∈ Si and sq ∈ Sj , d(sp, sq) ≥ δ. Infor-
mally, this constraint requires that each pair of clusters
must be well separated. As will be seen in Section 3.4,
a δ-constraint can be represented by a conjunction of
instance level must-link constraints.

(d) ε-Constraint: This constraint specifies a value
ε > 0 and the feasibility requirement is the following:
for any cluster Si containing two or more points and
for any point sp ∈ Si , there must be another point
sq ∈ Si such that d(sp, sq) ≤ ε. Informally, this
constraint requires that in any cluster Sj containing
two more more points, each point in Sj must have
another point within a distance of at most ε. As
will be seen in Section 3.5, an ε-constraint can be
represented by a disjunction of instance level must-
link constraints, with the proviso that when none of
the must-link constraints is satisfied, the point is in a
singleton cluster by itself. The ε-constraint is similar
in principle to the ε+minpts criterion used in the DB-
SCAN algorithm [11]. However, in our work, the aim
is to minimize the constrained vector quantization error
subject to the ε-constraint, while in DB-SCAN, their
criterion is central to defining a cluster and an outlier.

Although the constraints discussed above provide a
useful way to specify background information to a clus-
tering algorithm, it is natural to ask whether there is a
feasible clustering that satisfies all the given constraints.
The complexity of satisfying the constraints will deter-
mine how to incorporate them into existing clustering
algorithms.

The feasibility problem has been studied for other
types of constraints or measures of quality [14]. For ex-
ample, the clustering problem where the quality is mea-
sured by the maximum cluster diameter can be trans-

139

formed in an obvious way into a constrained clustering
problem. Feasibility problems for such constraints have
received a lot of attention in the literature (see for ex-
ample [12, 13, 14]).

Typical specifications of clustering problems include
an integer parameter K that gives the number of re-
quired clusters. We will consider a slightly more gen-
eral version, where the problem specification includes a
lower bound K` and an upper bound Ku on the num-
ber of clusters rather than the exact number K. With-
out upper and lower bounds, some feasibility problems
may admit trivial solutions. For instance, if we con-
sider the feasibility problem for a collection of must-
link constraints (or for a δ-constraint) and there is no
lower bound on the number of clusters, a trivial feasi-
ble solution is obtained by having all the points in a
single cluster. Likewise, when there is no upper bound
on the number of clusters for the feasibility problem un-
der cannot-link constraints (or an ε-constraint), a trivial
feasible solution is to make each point into a separate
cluster. Obviously, K` and Ku must satisfy the con-
dition 1 ≤ K` ≤ Ku ≤ n, where n denotes the total
number of points.

For the remainder of this paper, a feasible clustering
is one that satisfies all the given constraints and the
upper and lower bounds on the number of clusters. For
problems involving must-link or cannot-link constraints,
it is assumed that the collection of constraints C =
{C1, C2, . . . , Cm} containing the m constraints is given,
where each constraint Cj = {sj1 , sj2} specifies a pair of
points. For problems involving ε and δ constraints, it
is assumed that the values of ε and δ are given. For
convenience, the feasibility problems under constraints
(a) through (d) defined above will be referred to as
ML-feasibility, CL-feasibility, δ-feasibility and ε-
feasibility respectively.

3 Complexity of Feasibility Problems

3.1 Overview In this section, we investigate the
complexity of the feasibility problems by considering
each type of constraint separately. In Section 4, we
examine the complexity of feasibility problems for com-
binations of constraints. Our polynomial algorithms for
feasibility problems do not require distances to satisfy
the triangle inequality. Thus, they can also be used
with nonmetric distances. On the other hand, the NP-
completeness results show that the corresponding feasi-
bility problems remain computationally intractable even
when the set to be clustered consists of points in <2.

The feasibility algorithms presented in Sections 3
and 4 focus on determining whether there is a partition
that satisfies all the given constraints; they do not at-
tempt to optimize any objective. Thus, these algorithms

may produce solutions with singleton clusters when the
constraints under consideration permit such clusters.

3.2 Feasibility Under Must-Link Constraints
Klein et al. [15] showed that the ML-feasibility problem
can be solved in polynomial time. They considered a
more general version of the problem, where the goal is to
obtain a new distance function that satisfies the triangle
inequality when there is a feasible solution. In our
definition of the ML-feasibility problem, no distances
are involved. Therefore, a straightforward algorithm
whose running time is linear in the number of points
and constraints can be developed as discussed below.

As is well known, must-link constraints are transi-
tive; that is, must-link constraints {si , sj} and {sj , sk}
imply the must-link constraint {si , sk}. Thus, the two
constraints can be combined into a single must-link con-
straint, namely {si , sj , sk}. Thus, a given collection
C of must-link constraints can be transformed into an
equivalent collection M = {M1,M2, . . . ,Mr} of con-
straints, by computing the transitive closure of C. The
sets in M are pairwise disjoint and have the following
interpretation: for each set Mi (1 ≤ i ≤ r), the points
in Mi must all be in the same cluster in any feasible
solution. For feasibility purposes, points which are not
involved in any must-link constraint can be partitioned
into clusters in an arbitrary manner. These facts al-
low us to obtain a straightforward algorithm for the
ML-feasibility problem. The steps of the algorithm are
shown in Figure 1. Whenever a feasible solution exists,
the algorithm outputs a collection of K` clusters. The
only situation in which the algorithm reports infeasibil-
ity is when the lower bound on the number of clusters
is too high.

The transitive closure computation (Step 1 in Fig-
ure 1) in the algorithm can be carried out as follows.
Construct an undirected graph G, with one node for
each point appearing in the constraint sets C, and an
edge between two nodes if the corresponding points ap-
pear together in a must-link constraint. Then, the con-
nected components of G give the sets in the transitive
closure. It can be seen that the graph G has n nodes
and O(m) edges. Therefore, its connected components
can be found in O(n+m) time [8]. The remaining steps
of the algorithm can be carried out in O(n) time. The
following theorem summarizes the above discussion.

Theorem 3.1. Given a set of n points and m must-link
constraints, the ML-feasibility problem can be solved in
O(n + m) time.

3.3 Feasibility Under Cannot-Link Constraints
Klein et al. [15] mention that the CL-feasibility prob-
lem is NP-complete but omit the proof. Since we

140

Note: Whenever a feasible solution exists, the following
algorithm outputs a collection of K` clusters satisfying
all the must-link constraints.

1. Compute the transitive closure of the constraints in
C. Let this computation result in r sets of points,
denoted by M1, M2, . . ., Mr.

2. Let S′ = S −
⋃r

i=1 Mi. (S′ denotes the subset
of points that are not involved in any must-link
constraint.)

3. if r ≥ K` then

(a) Let A = (
⋃r

i=K`
Mi) ∪ S′.

(b) Output M1, . . ., MK`−1, A.

else

if |S′| < K` − r then

Output “There is no solution.”

else

(a) Let t = K` − r. Partition S′ into t
clusters A1, . . ., At arbitrarily.

(b) Output M1, . . ., Mr, A1, . . ., At.

Figure 1: Algorithm for the ML-Feasibility Problem

wish to draw some additional conclusions from the
proof, we have included it in the appendix. The proof
uses a straightforward reduction from the Graph K-
Colorability problem (K-Color).

It is known that the K-Color problem is NP-
complete even for graphs in which the number of edges is
linear in the number of nodes [12]. This fact in conjunc-
tion with the proof in the appendix implies that the CL-
feasibility problem is computationally intractable even
when the number of constraints is linear in the number
of points. Further, the K-Color problem is known to
be NP-complete for every fixed value of K ≥ 3. From
this fact, it follows that the CL-feasibility problem is
also NP-complete when the lower bound on the num-
ber of clusters is 1 and the upper bound is fixed at any
value ≥ 3.

While NP-completeness result indicates that the
CL-feasibility problem is at least as hard as the K-
Color problem, it can also be shown that the feasibility
problem is no harder than the K-Color problem as
follows. For each point si , create a graph node vi ,
and for each cannot-link constraint {si , sj}, create the
undirected edge {vi , vj}. It is easy to verify that the

1. for each point si do

(a) Determine the set Xi ⊆ S − {si} of points
such that for each point xj ∈ Xi , d(si , xj) <
δ.

(b) For each point xj ∈ Xi , create the must-link
constraint {si , xj}.

2. Let C denote the set of all the must-link constraints
created in Step 1. Use the algorithm for the ML-
feasibility problem (Figure 1) with point set S,
constraint set C and the values K` and Ku.

Figure 2: Algorithm for the δ-Feasibility Problem

resulting graph is K-colorable iff there is a solution to
the feasibility problem with at least 1 and at most K
clusters. This reduction to the coloring problem points
out that in practice, one can use known heuristics for
graph coloring in choosing the number of clusters.

Although the coloring problem is known to be hard
to approximate in the worst-case, heuristics that work
well in practice are known (see for example [1, 7]). The
reduction also shows that when the upper bound on the
number of clusters is two, the CL-feasibility problem
can be solved in polynomial time. This is because the
problem of determining whether an undirected graph
can be colored using at most two colors can be solved
efficiently [8].

3.4 Feasibility Under δ-Constraint In this sec-
tion, we show that the δ-feasibility problem can be
solved in polynomial time. The basic idea is simple:
in any feasible solution, every pair of points si and sj

for which d(si , sj) < δ, must be in the same cluster.
Thus, given the value of δ, we can create a collection
of appropriate must-link constraints and use the algo-
rithm for the ML-feasibility problem. This shows that a
δ-constraint can be replaced by a conjunction of must-
link constraints. The steps of the resulting algorithm
are shown in Figure 2.

The running time of the algorithm for δ-feasibility is
dominated by the time needed to complete Step 1, that
is, the time to compute the set of must-link constraints.
Clearly, this step can be carried out in O(n2) time, and
the number of must-link constraints generated is also
O(n2). Thus, the overall running time of the algorithm
is O(n2). The following theorem summarizes the above
discussion.

Theorem 3.2. For any δ > 0, the feasibility problem

141

under the δ-constraint can be solved in O(n2) time,
where n is the number of points to be clustered.

3.5 Feasibility Under ε-Constraint Let the set S
of points and the value ε > 0 be given. For any point
sp ∈ S, the set Γp of ε-neighbors is given by

Γp = {sq : sq ∈ S − {sp} and d(sp, sq) ≤ ε}.

Note that a point is not an ε-neighbor of itself. Two
distinct points sp and sq are are ε-neighbors of each
other if d(sp, sq) ≤ ε. The ε-constraint requires that
in any cluster containing two or more points, each
point in the cluster must have an ε-neighbor within
the same cluster. This observation points out that an
ε-constraint corresponds to a disjunction of must-link
constraints. For example, if {si1 , . . . , sir} denote the ε-
neighbors of a point si, then satisfying the ε-constraint
for point si means that either one or more of the must-
link constraints {si, si1}, . . ., {si, sir

} are satisfied or the
point si is in a singleton cluster by itself. In particular,
any point in S which does not have an ε-neighbor must
form a singleton cluster.

So, to determine feasibility under an ε-constraint for
the set of points S, we first find the subset S1 containing
each point which does not have an ε-neighbor. Let
|S1| = t, and let C1, C2, . . ., Ct denote the singleton
clusters formed from S1. To cluster the points in
S2 = S−S1 (i.e., the set of points each of which has an ε-
neighbor), it is convenient to use an auxiliary undirected
graph defined below.

Definition 3.1. Let a set of points S and a value ε > 0
be given. Let Q ⊆ S be a set of points such that for each
point in Q, there is an ε-neighbor in Q. The auxiliary
graph G(V,E) corresponding to Q is constructed as
follows.

(a) The node set V has one node for each point in Q.

(b) For any two nodes vp and vq in V , the edge {vp, vq}
is in E if the points in Q corresponding to vp and
vq are ε-neighbors.

Let G(V,E) denote the auxiliary graph corresponding
to S2. Note that each connected component (CC) of G
has at least two nodes. Thus, the CCs of G provide a
way of clustering the points in S2. Let Xi , 1 ≤ i ≤ r,
denote the cluster formed from the ith CC of G. The t
singleton clusters together with these r clusters would
form a feasible solution, provided the upper and lower
bounds on the number of clusters are satisfied. So, we
focus on satisfying these bounds.

If S2 = ∅, then the minimum number of clusters is
t = |S1|, since each point in S1 must be in a separate

singleton cluster. Otherwise, we need at least one
additional cluster for the points in S2; that is, the
minimum number of clusters in that case is t+1. Thus,
the minimum number of clusters, denoted by N∗, is
given by N∗ = t + min{1, r}. If Ku < N∗, there is
no feasible solution. We may therefore assume that
Ku ≥ N∗.

As mentioned above, there is a solution with t + r
clusters. If t+r ≥ Ku , then we can get Ku clusters by
simply merging (if necessary) an appropriate number of
clusters from the collection X1, X2, . . ., Xr into a single
cluster. Since each CC of G has at least two points, this
merging step will not violate the ε-constraint.

The only remaining possibility is that the value t+r
is smaller than the lower bound K`. In this case, we can
increase the number of clusters to K` by splitting some
of the clusters X1, X2, . . ., Xr to form more clusters.
One simple way to increase the number of clusters by
one is to create a new singleton cluster by taking one
point away from some cluster Xi with two or more
points. To facilitate this, we construct a spanning tree
for each CC of G. The advantage of having trees is that
we can remove a leaf node from a tree and make the
point corresponding to that node into a new singleton
cluster. Since each tree has at least two leaves and
removing a leaf will not disconnect a tree, this method
will increase the number of clusters by exactly one at
each step. Thus, by repeating the step an appropriate
number of times, the number of clusters can be made
equal to K`.

The above discussion leads to the feasibility algo-
rithm shown in Figure 3. It can be seen that the running
time of the algorithm is dominated by the time needed
for Steps 1 and 2. Step 1 can be implemented to run in
O(n2) time by finding the ε-neighbor set for each point.
Since the number of ε-neighbors for each point in S2 is
at most n − 1, the construction of the auxiliary graph
and finding its CCs (Step 2) can also be done in O(n2)
time. So, the overall running time of the algorithm is
O(n2). The following theorem summarizes the above
discussion.

Theorem 3.3. For any ε > 0, the feasibility problem
under the ε-constraint can be solved in O(n2) time,
where n is the number of points to be clustered.

4 Feasibility Under Combinations of
Constraints

4.1 Overview In this section, we consider the feasi-
bility problem under combinations of constraints. Since
the CL-feasibility problem is NP-hard, the feasibility
problem for any combination of constraints involving
cannot-link constraints is, in general, computationally

142

1. Find the set S1 ⊆ S such that no point in S1 has
an ε-neighbor. Let t = |S1| and S2 = S − S1.

2. Construct the auxiliary graph G(V,E) for S2 (see
Definition 3.1). Let G have r connected compo-
nents (CCs) denoted by G1, G2, . . ., Gr.

3. Let N∗ = t + min {1, r}. (Note: To satisfy the
ε-constraint, at least N∗ clusters must be used.)

4. if N∗ > Ku then Output “No feasible solution”
and stop.

5. Let C1, C2, . . ., Ct denote the singleton clusters
corresponding to points in S1. Let X1, X2, . . ., Xr

denote the clusters corresponding to the CCs of G.

6. if t + r ≥ Ku

then /* We may have too many clusters. */

(a) Merge clusters XKu−t, XKu−t+1, . . ., Xr

into a single new cluster XKu−t.
(b) Output the Ku clusters C1, C2, . . ., Ct,

X1, X2, . . ., XKu−t.

else /* We have too few clusters. */

(a) Let N = t + r. Construct spanning trees
T1, T2, . . ., Tr corresponding to the CCs
of G.

(b) while (N < K`) do
(i) Find a tree Ti with at least two nodes.

If no such tree exists, output “No
feasible solution” and stop.

(ii) Let v be a leaf in tree Ti. Delete v
from Ti.

(iii) Delete the point corresponding to v
from cluster Xi and form a new sin-
gleton cluster XN+1 containing that
point.

(iv) N = N + 1.
(c) Output the K` clusters C1, C2, . . ., Ct,

X1, X2, . . ., XK`−t.

Figure 3: Algorithm for the ε-Feasibility Problem

intractable. So, we need to consider only the combina-
tions of must-link, δ and ε constraints. We show that
the feasibility problem remains efficiently solvable when
both a must-link constraint and a δ constraint are con-
sidered together as well as when δ and ε constraints
are considered together. When must-link constraints
are considered together with an ε constraint, we show
that the feasibility problem is NP-complete. This result
points out that when must-link, δ and ε constraints are
all considered together, the resulting feasibility problem
is also NP-complete in general.

4.2 Combination of Must-Link and δ Con-
straints We begin by considering the combination of
must-link constraints and a δ constraint. As mentioned
in Section 3.4, the effect of the δ-constraint is to con-
tribute a collection of must-link constraints. Thus, we
can merge these must-link constraints with the given
must-link constraints, and then ignore the δ-constraint.
The resulting feasibility problem involves only must-
link constraints. Hence, we can use the algorithm from
Section 3.2 to solve the feasibility problem in polyno-
mial time. For a set of n points, the δ constraint may
contribute at most O(n2) must-link constraints. Fur-
ther, since each given must-link constraint involves two
points, we may assume that the number of given must-
link constraints is also O(n2). Thus, the total number
of must-link constraints due to the combination is also
O(n2). Thus, the following result is a direct consequence
of Theorem 3.1.

Theorem 4.1. Given a set of n points, a value δ > 0
and a collection C of must-link constraints, the feasi-
bility problem for the combination of must-link and δ
constraints can be solved in O(n2) time.

4.3 Combination of Must-Link and ε Con-
straints Here, we show that the feasibility problem
for the combination of must-link and ε constraints is
NP-complete. To prove this result, we use a reduction
from the following problem which is known to be NP-
complete [9].
Planar Exact Cover by 3-Sets (PX3C)

Instance: A set X = {x1, x2, . . . , xn}, where n =
3q for some positive integer q and a collection T =
{T1, T2, . . . , Tm} of subsets of X such that |Ti| = 3, 1 ≤
i ≤ m. Each element xi ∈ X appears in at most three
sets in T . Further, the bipartite graph G(V1, V2, E),
where V1 and V2 are in one-to-one correspondence
with the elements of X and the 3-element sets in T
respectively, and an edge {u, v} ∈ E iff the element
corresponding to u appears in the set corresponding to
v, is planar.

143

Question: Does T contain a subcollection T ′ =
{Ti1 , Ti2 , . . . , Tiq

} with q sets such that the union of the
sets in T ′ is equal to X?

For reasons of space, we have included only a sketch
of this NP-completeness proof.

Theorem 4.2. The feasibility problem under the com-
bination of must-link and ε constraints is NP-complete.

Proof sketch: It is easy to verify the membership of
the problem in NP. To prove NP-hardness, we use a
reduction from PX3C. Consider the planar (bipartite)
graph G associated with the PX3C problem instance.
From the specification of the problem, it follows that
each node of G has a degree of at most three. Every
planar graph with N nodes and maximum node degree
three can be embedded on an orthogonal N × 2N grid
such that the nodes of the graph are grid points, each
edge of the graph is a path along the grid, and no
two edges share a grid point except for the grid points
corresponding to the graph vertices. Moreover, such an
embedding can be constructed in polynomial time [17].
The points and constraints for the feasibility problem
are created from this embedding.

Using suitable scaling, assume that the each grid
edge is of length 1. Note that each edge e of G joins a
set node to an element node. Consider the path along
the grid for each edge of G. Introduce a new point in
the middle of each grid edge in the path. Thus, for
each edge e of G, this provides the set Se of points
in the grid path corresponding to e, including the new
middle point for each grid edge. The set of points
in the feasibility instance is the union of the sets Se,
e ∈ E. Let S′

e be obtained from Se by deleting the
point corresponding to the element node of the edge
e. For each edge e, we introduce a must-link constraint
involving all the points in S′

e. We also introduce a must-
link constraint involving all the points corresponding to
the elements nodes of G. We choose the value of ε to
be 1/2. The lower bound on the number of clusters is
set to m − n/3 + 1 and the upper bound is set to m.
It can be shown that there is a solution to the PX3C
problem instance if and only if there is a solution to the
feasibility problem.

4.4 Combination of δ and ε Constraints In this
section, we show that the feasibility problem for the
combination of δ and ε constraints can be solved in
polynomial time. It is convenient to consider this
problem under two cases, namely δ ≤ ε and δ > ε.
For reasons of space, we will discuss the algorithm for
the first case and mention the main idea for the second
case.

For the case when δ ≤ ε, our algorithm is based

on the following simple observation: Any pair of points
which are separated by a distance less than δ are also
ε-neighbors of each other. This observation allows us
to reduce the feasibility problem for the combination
to one involving only the ε constraint. This is done
as follows. Construct the auxiliary undirected graph
G(V,E), where V is in one-to-one correspondence with
the set of points and an edge {x, y} ∈ E iff the
distance between the points corresponding to nodes
x and y is less than δ. Suppose C1, C2, . . ., Cr

denote the connected components (CCs) of G. Consider
any CC, say Ci, with two or more nodes. By the
above observation, the ε-constraint is satisfied for all the
points corresponding to the nodes in Ci. Thus, we can
“collapse” each such set of points into a single “super
point”. Let S′ = {P1, . . . , Pr} denote the new set of
points, where Pi is a super point if the corresponding
CC Ci has two or more nodes, and Pi is a single point
otherwise. Given the distance function d for the original
set of points S, we define a new distance function d′ for
S′ as follows:

d′(Pi, Pj) = min{d(sp, sq) : sp ∈ Pi, sq ∈ Pj}.

With this new distance function, we can ignore the
δ constraint. We need only check whether there is a
feasible clustering of the set S′ under the ε-constraint
using the new distance function d′. Thus, we obtain a
polynomial time algorithm for the combination of ε and
δ constraints when δ ≤ ε. It is not hard to see that the
resulting algorithm runs in O(n2) time.

For the case when δ > ε, any pair of ε-neighbors
must be in the same cluster. Using this idea, it is pos-
sible to construct a collection of must-link constraints
corresponding to the given δ and ε constraints, and solve
the feasibility problem in O(n2) time.

The following theorem summarizes the above dis-
cussion.

Theorem 4.3. Given a set of n points and values δ > 0
and ε > 0, the feasibility problem for the combination of
δ and ε constraints can be solved in O(n2) time.

The complexity results for various feasibility prob-
lems are summarized in Table 1. For each type of con-
straint, the table indicates whether the feasibility prob-
lem is in P (i.e., efficiently solvable) or NP-complete.
Results for which no references are cited are from this
paper.

5 A Derivation of a Constrained k-Means
Algorithm

In this section we derive the k-Means algorithm and
then derive a new constrained version of the algorithm

144

Constraint Complexity
Must-Link P [15]

Cannot-Link NP-Complete [15]
δ-constraint P
ε-constraint P

Must-Link and δ P
Must-Link and ε NP-complete

δ and ε P

Table 1: Results for Feasibility Problems

from first principles. Let Cj be the centroid of the jth

cluster and Qj be the set of instances that are closest
to the jth cluster.

It is well known that the error function of the k-
Means problem is the vector quantization error (also
referred to as the distortion) given by the following
equations.

VQE =
k∑

j=1

VQE j(5.1)

VQE j =
1
2

∑
si∈Qj

(Cj − si)2(5.2)

The k-Means algorithm is an iterative algorithm
which in every step attempts to further minimize the
distortion. Given a set of cluster centroids, the algo-
rithm assigns instances to their nearest centroid which
of course minimizes the distortion. This is step 1 of the
algorithm. Step 2 is to recalculate the cluster centroids
so as to minimize the distortion. This can be achieved
by taking the first order derivative of the error (Equa-
tion (5.2)) with respect to the jth centroid and setting
it to zero. A solution to the resulting equation gives
us the k-Means centroid update rule as shown in Equa-
tion (5.3).

d(VQE j)
d(Cj)

=
∑

si∈Qj

(Cj − si) = 0(5.3)

Cj =
∑

si∈Qj

si/|Qj |(5.4)

Recall that Qj is the set of points closest to the centroid
of the jth cluster.

Iterating through these two steps therefore mono-
tonically decreases the distortion. However, the algo-
rithm is prone to getting stuck in local minima. Never-
theless, good pragmatic results can be obtained, hence

the algorithm’s popularity. We acknowledge that a more
complicated analysis of the algorithm exists, namely
an interpretation of the algorithm as analogous to the
Newton-Raphson algorithm [2]. Our derivation of a new
constrained version of k-Means is not inconsistent with
these other explanations.

The key step in deriving a constrained version of
k-Means is to create a new differentiable error function
which we call the constrained vector quantization error.
Consider a a collection of r must-link constraints and s
cannot-link constraints. We can represent the instances
affected by these constraints by two functions g(i)
and g′(i). These functions return the cluster index
(i.e., a value in the range 1 through k) of the closest
cluster to the 1st and 2nd instances governed by the ith

constraint. For clarity of notation, we assume that the
instance associated with the function g′(i) violates the
constraint if at all. The new error function is shown in
Equation (5.5).

CVQE j =
1
2

∑
si∈Qj

Tj,1 +(5.5)

1
2

s+r∑
l=1,g(l)=j

(Tj,2 × Tj,3)

where

Tj,1 = (Cj − si)2

Tj,2 =
[
(Cj − Cg′(l))2 ¬∆(g′(l), g(l))

]ml

Tj,3 =
[
(Cj − Ch(g′(l)))2 ∆(g(l), g′(l))

]1−ml
.

Here h(i) returns the index of the cluster (other than i)
whose centroid is closest to cluster i’s centroid and ∆
is the Kronecker Delta Function defined by ∆(x, y) = 1
if x = y and 0 otherwise. We use ¬∆ to denote the
negation of the Delta function.

The first part of the new error function is the
regular distortion. The remaining terms are the errors
associated with the must-link (ml=1) and cannot-link
(ml=0) constraints. In future work we intend to allow
the parameter ml to take any value in [0, 1] so that
we can allow for a continuum between must-link and
cannot-link constraints. We see that if a must-link
constraint is violated then the cost is equal to the
distance between the cluster centroids containing the
two instances that should have been in the same cluster.
Similarly, if a cannot-link constraint is violated the
cost is the distance between the cluster centroid both
instances are in and the nearest cluster centroid to one
of the instances. Note that both violation costs are in
units of distance, as is the regular distortion.

145

The first step of the constrained k-Means algorithm
must minimize the new constrained vector quantization
error. This is achieved by assigning instances so as to
minimize the new error term. For instances that are not
part of constraints, this involves as before, performing
a nearest cluster centroid calculation. For pairs of
instances in a constraint, for each possible combination
of cluster assignments, the CVQE is calculated and the
instances are assigned to the clusters that minimally
increases the CVQE .

The second step is to update the cluster centroids
so as to minimize the constrained vector quantization
error. To achieve this we take the first order derivative
of the error, set to zero, and solve. By setting the
appropriate values of ml we can derive the update
rules (Equation (5.6)) for the must-link and cannot-link
constraint violations. The resulting equations are shown
below.

d(CV QEj)
d(Cj)

=
∑

si∈Qj

(Cj − si) +

s∑
l=1,g(l)=j,∆(g(l),g′(l))=0

(Cj − Cg′(l)) +

s+r∑
l=s+1,g(l)=j,∆(g(l),g′(l))=1

(Cj − Ch(g′(l)))

= 0

Solving for Cj , we get

Cj = Yj/Zj(5.6)

where

Yj =
∑

si∈Qj

si +
s∑

l=1,g(l)=j,∆(g(l),g′(l))=0

Cg′(l) +

s+r∑
l=s+1,g(l)=j,∆(g(l),g′(l))=1

Ch(g′(l))

and

Zj = |Qj |+
s∑

g(l)=j,l=1

(1−∆(g(l), g′(l))) +

s+r∑
g(l)=j,l=s+1

∆(g(l), g′(l)))

The intuitive interpretation of the centroid update
rule is that if a must-link constraint is violated, the
cluster centroid is moved towards the other cluster con-
taining the other point. Similarly, the interpretation of

the update rule for a cannot-link constraint violation
is that cluster centroid containing both constrained in-
stances should be moved to the nearest cluster centroid
so that one of the instances eventually gets assigned to
it, thereby satisfying the constraint.

6 Experiments with Minimization of the
Constrained Vector Quantization Error

In this section we compare the usefulness of our algo-
rithm on three standard UCI data sets. We report the
average over 100 random restarts (initial assignments of
instances). As others have reported [19] for k=2 the ad-
dition of constraints improves the purity of the clusters
with respect to an extrinsic binary class not given to
the clustering algorithm. We observed similar behavior
in our experiments. We are particularly interested in
using our algorithm for more traditional unsupervised
learning where k > 2. To this end we compare regular k-
Means against constrained k-Means with respect to the
number of iterations until convergence and the number
of constraints violated. For the PIMA data set (Fig-
ure 4) which contains two extrinsic classes, we created
a random combination of 100 must-link and 100 cannot-
link constraints between the same and different classes
respectively. Our results show that our algorithm con-
verged on average in 25% fewer iterations while satisfy-
ing the vast majority of constraints.

Similar results were obtained for the BreastCancer
data sets (Figure 6) where 25 must-link and 25 cannot-
link constraints were used and Iris (Figure 8) where 13
must-link and 12 cannot-link constraints were used.

7 Experiments with the Sony Aibo Robot

In this section we describe an example with the Sony
Aibo robot to illustrate the use of our newly proposed
δ and ε constraints.

The Sony Aibo robot is effectively a walking com-
puter with sensing devices such as a camera, microphone
and an infra-red distance detector. The on-board pro-
cessor has limited processing capability. The infra-red
distance detector is connected to the end of the head
and can be moved around to build a distance map of a
scene. Consider the scene (taken from a position further
back than the Aibo was for clarity) shown in Figure 5.
We wish to cluster the distance information from the
infra-red sensor to form objects/clusters (spatially ad-
jacent points at a similar distance) which represent solid
objects that must be navigated around.

Unconstrained clustering of this data with k=9
yields the set of significant (large) objects shown in
Figure 7.

However, this result does not make use of important
background information. Firstly, groups of clusters

146

Figure 4: Performance of regular and constrained k-
Means on the UCI PIMA dataset

Figure 5: An image of the scene to navigate

Figure 6: Performance of regular and constrained k-
Means on the UCI Breast Cancer dataset

Figure 7: Unconstrained clustering of the distance map
using k=9. The approximate locations of significant
(large) clusters are shown by the ellipses.

147

Figure 8: Performance of regular and constrained k-
Means on the UCI Iris dataset

(such as the people) that are separated by a distance
less than one foot can effectively be treated as one
big cluster since the Aibo robot cannot easily walk
through a gap smaller than one foot. Secondly, often
one contiguous region is split into multiple objects due
to errors in the infra-red sensor. These errors are due to
poor reception of the incoming signal or the inability to
reflect the outgoing signal which occurs in the wooden
floor region of the scene. These errors are common in
the inexpensive sensor on the Aibo robot.

Since we know the accuracy of the Aibo head
movement we can determine the distance between the
furthest (about three feet) adjacent readings which
determines a lower bound for ε (namely, 3 × tan 1◦) so
as to ensure a feasible solution. However, if we believe
that it is likely that one but unlikely that two incorrect
adjacent mis-readings occur, then we can set ε to be
twice this lower bound to overcome noisy observations.

Using these values for our constraints we can cluster
the data under our background information and obtain
the clustering results shown in Figure 9. We see
that the clustering result is now more useful for our
intended purpose. The Aibo can now move towards the
area/cluster that represents an open area.

Figure 9: Constrained clustering of the distance map
using k=9. The approximate locations of significant
(large) clusters are shown by the ellipses.

8 Conclusion and Future Work

Clustering with background prior knowledge offers
much promise with contributions using must-link and
cannot-link instance level constraints having already
been published. We introduced two additional con-
straints: ε and δ. We studied the computational com-
plexity of finding a feasible solution for these four con-
straint types individually and together. Our results
show that in many situations, finding a feasible solu-
tion under a combination of constraints is NP-complete.
Thus, an iterative algorithm should not try to find a fea-
sible solution in each iteration.

We derived from first principles a constrained ver-
sion of the k-Means algorithm that attempts to mini-
mize the proposed constrained vector quantization er-
ror. We find that the use of constraints with our algo-
rithm results in faster convergence and the satisfaction
of a vast majority of constraints. When constraints are
not satisfied it is because it is less costly to violate the
constraint than to satisfy it by assigning two quite dif-
ferent (i.e. far apart in Euclidean space) instances to the
same cluster in the case of must-link constraints. Fu-
ture work will explore modifying hierarchical clustering
algorithms to efficiently incorporate constraints.

Finally, we showed the benefit of our two newly pro-
posed constraints in a simple infra-red distance cluster-
ing problem. The δ constraint allows us to specify the
minimum distance between clusters and hence can en-
code prior knowledge regarding the spatial domain. The
ε constraint allows us to specify background information
with regard to sensor error and data collection.

References

[1] A. Hertz and D. de Werra, “Using Tabu Search Tech-

148

niques for Graph Coloring”, Computing, Vol. 39, 1987,
pp. 345–351.

[2] L. Bottou and Y. Bengio, “Convergence Properties
of the K-Means Algorithms”, Advances in Neural
Information Processing Systems, Vol. 7, Edited by G.
Tesauro and D. Touretzky and T. Leen, MIT Press,
Cambridge, MA, 1995, pp. 585–592.

[3] S. Basu, A. Banerjee and R. J. Mooney, “Semi-
supervised Learning by Seeding”, Proc. 19th Intl. Conf.
on Machine Learning (ICML-2002), Sydney, Australia,
July 2002, pp. 19–26.

[4] S. Basu, M. Bilenko and R. J. Mooney, “A Probabilis-
tic Framework for Semi-Supervised Clustering”, Proc.
10th ACM SIGKDD Intl. Conf. on Knowledge Discov-
ery and Data Mining (KDD-2004), Seattle, WA, Au-
gust 2004.

[5] S. Basu, M. Bilenko and R. J. Mooney, “Active
Semi-Supervision for Pairwise Constrained Cluster-
ing”, Proc. 4th SIAM Intl. Conf. on Data Mining
(SDM-2004).

[6] P. S. Bradley and U. M. Fayyad, “Refining initial
points for K-Means clustering”, Proc. 15th Intl. Conf.
on Machine Learning (ICML-1998), 1998, pp. 91–99.

[7] G. Campers, O. Henkes and J. P. Leclerq, “Graph
Coloring Heuristics: A Survey, Some New Proposi-
tions and Computational Experiences on Random and
Leighton’s Graphs”, in Proc. Operational Research ’87,
Buenos Aires, 1987, pp. 917–932.

[8] T. Cormen, C. Leiserson, R. Rivest and C. Stein,
Introduction to Algorithms, Second Edition, MIT Press
and McGraw-Hill, Cambridge, MA, 2001.

[9] M. E. Dyer and A. M. Frieze, “Planar 3DM is NP-
Complete”, J. Algorithms, Vol. 7, 1986, pp. 174–184.

[10] I. Davidson and A. Satyanarayana, “Speeding up K-
Means Clustering Using Bootstrap Averaging”, Proc.
IEEE ICDM 2003 Workshop on Clustering Large Data
Sets, Melbourne, FL, Nov. 2003, pp. 16–25.

[11] M. Ester, H. Kriegel, J. Sander and X. Xu, “A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”, Proc. 2nd Intl. Conf.
on Knowledge Discovery and Data Mining (KDD-96),
Portland, OR, 1996, pp. 226–231.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco,
CA, 1979.

[13] T. F. Gonzalez, “Clustering to Minimize the Maximum
Intercluster Distance”, Theoretical Computer Science,
Vol. 38, No. 2-3, June 1985, pp. 293–306.

[14] P. Hansen and B. Jaumard, “Cluster Analysis and
Mathematical Programming”, Mathematical Program-
ming, Vol. 79, Aug. 1997, pp. 191–215.

[15] D. Klein, S. D. Kamvar and C. D. Manning, “From
Instance-Level Constraints to Space-Level Constraints:
Making the Most of Prior Knowledge in Data Clus-
tering”, Proc. 19th Intl. Conf. on Machine Learning
(ICML 2002), Sydney, Australia, July 2002, pp. 307–
314.

[16] D. Pelleg and A. Moore, “Accelerating Exact k-means
Algorithms with Geometric Reasoning”, Proc. ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, San Diego, CA, Aug. 1999, pp. 277–281.

[17] R. Tamassia and I. Tollis, “Planar Grid Embedding
in Linear Time”, IEEE Trans. Circuits and Systems,
Vol. CAS-36, No. 9, Sept. 1989, pp. 1230–1234.

[18] K. Wagstaff and C. Cardie, “Clustering with Instance-
Level Constraints”, Proc. 17th Intl. Conf. on Machine
Learning (ICML 2000), Stanford, CA, June–July 2000,
pp. 1103–1110.

[19] K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl,
“Constrained K-means Clustering with Background
Knowledge”, Proc. 18th Intl. Conf. on Machine Learn-
ing (ICML 2001), Williamstown, MA, June–July 2001,
pp. 577–584.

9 Appendix

Here, we show that the feasibility problem for cannot-
link constraints (CL-feasibility) is NP-complete using a
reduction from the Graph K-Colorability problem
(K-Color) [12].
Graph K-Colorability (K-Color)
Instance: Undirected graph G(V,E), integer K ≤ |V |.
Question: Can the nodes of G be colored using at
most K colors so that for every pair of adjacent nodes
u and v, the colors assigned to u and v are different?

Theorem 9.1. The CL-feasibility problem is NP-
complete.

Proof: It is easy to see that the CL-feasibility problem
is in NP. To prove NP-hardness, we use a reduction
from the K-Color problem. Let the given instance I of
K-Color problem consist of undirected graph G(V,E)
and integer K. Let n = |V | and m = |E|. We construct
an instance I ′ of the CL-feasibility problem as follows.
For each node vi ∈ V , we create a point si , 1 ≤ i ≤ n.
(The coordinates of the points are not specified as they
play no role in the proof.) The set S of points is given
by S = {s1, s2, . . . , sn}. For each edge {vi , vj} ∈ E,
we create the cannot-link constraint {si , sj}. Thus,
we create a total of m constraints. We set the lower
and upper bound on the number clusters to 1 and K
respectively. This completes the construction of the
instance I ′. It is obvious that the construction can be
carried out in polynomial time. It is straightforward to
verify that the CL-feasibility instance I ′ has a solution
if and only if the K-Color instance I has a solution.

149

A Cutting Algorithm for the Minimum Sum-of-Squared Error Clustering

Jiming Peng∗ Yu Xia†

Abstract

The minimum sum-of-squared error clustering problem is

shown to be a concave continuous optimization problem

whose every local minimum solution must be integer. We

characterize its local minima. A procedure of moving from

a fractional solution to a better integer solution is given.

Then we adapt Tuy’s convexity cut method to find a global

optimum of the minimum sum-of-squared error clustering

problem. We prove that this method converges in finite

steps to a global minimum. Promising numerical examples

are reported.

1 Introduction.

Clustering (or cluster analysis) is one of the basic tools
in data analysis. In this paper, we consider clustering
based on minimum within-group sum-of-squared error
criterion.

Many early studies on minimum sum-of-squared
error clustering (or MSSC in brief) were focused on
the well-known K-means algorithm [5, 13, 15] and its
variants (see [12] for a survey). Usually, these methods
can only reach a local solution, not a global minimum of
the distortion function. From a theoretical viewpoint,
the minimum sum-of-squared error clustering problem
can be formulated as a nonlinear integer programming
model. In [7], Hansen and Jaumard give a review
on optimization approaches to some general clustering
problems. There are some attempts to solve the MSSC
problem exactly through mathematical programming;
however, only numerical examples on data sets with less
than 200 samples are reported.

Next, we will briefly describe some mathematical
models for the minimum sum-of-squared error clustering

∗Advanced optimization Lab, Department of Computing and
Software McMaster University, Hamilton, Ontario L8S 4K1,
Canada (pengj@mcmaster.ca). Research partially supported
by the grant # RPG 249635-02 of the National Sciences and
Engineering Research Council of Canada (NSERC) and a PREA
award. This research was also supported by the MITACS project
“New Interior Point Methods and Software for Convex Conic-
Linear Optimization and Their Application to Solve VLSI Circuit
Layout Problems”.

†The Institute of Statistical Mathematics, 4-6-7 Minami-
Azabu, Minato-ku, Tokyo 106-8569, Japan (yuxia@ism.ac.jp).
Research supported in part through JSPS (Japan Society for the
Promotion of Science).

problem and introduce our algorithm.

1.1 Problem description. To partition n entities
into k groups, people usually cast an entity into a vector
in a Euclidean space: ai = ((ai)1, . . . , (ai)d)

T ∈ Rd (i =
1, . . . , n), where d is the number of attributes of the
entity. Although coordinates of different points may
be the same, we assume that there are at least k + 1
different points; otherwise, one only needs to group
points with same coordinates together. Below are some
mathematical programming models for the minimum
sum-of-squared error clustering problem.

Bi-level program The objective of MSSC can be de-
scribed as finding k representatives of the clusters
ci (i = 1, . . . , k), and an assignment of the n entities
to the k representatives such that the total sum-of-
squared errors within each cluster, i.e. the sum
of squared Euclidean distance from each point to
its cluster representative, is minimum. This prob-
lem can be represented as the following bi-level pro-
gramming model (see for instance [14]).

(1.1) min
c1,...,ck

n∑

i=1

min{‖ai − c1‖22 , . . . , ‖ai − ck‖22}.

This model is not easy to solve.

Mixed integer program The bi-level program is
equivalent to partitioning the n points into k
groups, and then for each group finding a repre-
sentative such that the total within-group sum-of-
squared Euclidean distances is minimized. Define
the assignment matrix X = [xij] ∈ Rn×k as

xij
def=

{
1 ai assigned to jth group;
0 otherwise.

Then (1.1) can be transformed to

150

min
xij ,cj

k∑

j=1

n∑

i=1

xij ‖ai − cj‖22

(1.2a)

s.t.
k∑

j=1

xij = 1 (i = 1, . . . , n)(1.2b)

n∑

i=1

xij ≥ 1 (j = 1, . . . , k)(1.2c)

xij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , k).(1.2d)

The constraint (1.2b) ensures that each point ai

is assigned to one and only one group. It can be
replaced by

(1.3)
k∑

j=1

xij ≥ 1 (i = 1, . . . , n),

since the objective is minimization. And (1.2c)
ensures that there are exactly k clusters. We will
prove that this constraint is redundant later. In
addition, for a cluster j, given xij (i = 1, . . . , n)
— xij ’s are not necessarily integer— the distortion
function

∑n
i=1 xij ‖ai − cj‖22 is convex in cj , and

attains its global minimum at the arithmetical
mean of the entities in the cluster, i.e.,

c∗j =
∑n

i=1 xijai∑n
i=1 xij

.

Therefore, (1.1) is equivalent to

min
xij

k∑

j=1

n∑

i=1

xij

∥∥∥∥ai −
∑n

i=1 xijai∑n
i=1 xij

∥∥∥∥
2

2

(1.4a)

s.t.
k∑

j=1

xij = 1 (i = 1, . . . , n)(1.4b)

xij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , k).(1.4c)

This is the nonlinear integer programming model
of the minimum sum-of-squared error clustering
problem. Note that its objective is not convex in
xij and the constraints (1.2d) are discrete. This
makes the problem very hard to solve. There is no
evidence that the standard IP techniques can be
applied to MSSC on large data sets.

Continuous relaxation Another way to deal with
(1.4) is to relax the integer constraints (1.2d) to

xij ∈ [0, 1].

(1.5)

min
xij

k∑

j=1

n∑

i=1

xij

∥∥∥∥ai −
∑n

i=1 xijai∑n
i=1 xij

∥∥∥∥
2

2

s.t.
k∑

j=1

xij = 1 (i = 1, . . . , n)

n∑

i=1

xij ≥ 1 (j = 1, . . . , k)

xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , k)

To our knowledge, this is first considered by Gordon
and Henderson [6], who have further proved that at
a global minimizer of (1.5), all the variables xij ’s
must have values 0 or 1. This indicates that the
global minima of (1.5) are exactly those of (1.4).
Although that statement is correct, the proof in [6]
is not rigorous and not easy to follow. In this paper,
we will prove that every local minimum of (1.5) is
integer; furthermore, our proof gives a procedure
of moving from a fractional solution of (1.5) to an
integer solution with better objective value.

1.2 Our algorithm. In [19], Selim and Ismail have
proved that a class of distortion functions used in K-
means-type clustering are essentially concave functions
of the assignment variables. Specializing their conclu-
sion to MSSC, we can claim that the objective func-
tion (1.2a) is concave in the feasible domain of the con-
tinuous relaxation of (1.2). In this paper, we will give a
direct but alternative proof of the concavity of the func-
tion given in (1.4a) under certain conditions. Although
a concave function achieves its local minima at some
extreme points of its feasible region, unless the function
is strictly convex, it is not always true that all of its
local minimizers are extreme points. For (1.5), we will
show that at any of its local minimum, the assignment
variables xij ’s are either 0 or 1, even though (1.5) is not
a strictly concave program. Thus, we can safely work
on (1.5) instead of (1.4).

Since a concave objective function may have many
local minima, the global minima to (1.5) is still very
hard to locate. Neither [6] nor [19] addresses how to
find such a global solution. Until recently there have
been only a few works on finding the exact solutions of
the MSSC problem. In [21], Tuy, Bagirov and Rubinov
cast some clustering problems to d.c. 1 programs. And
branch-and-bound methods are suggested to solve the
resulting d.c. program. Only numerical results on

1Here, d.c. stands for the difference of convex functions.

151

small-size data sets are reported. In [2], Merle et’al
consider the Lagrangian relaxation of (1.4)

max
λi≥0

{
k∑

j=1

min
xij∈{0,1}

[
n∑

i=1

xij

∥∥∥∥ai −
∑n

l=1 xljal∑n
l=1 xlj

∥∥∥∥
2

−
(

n∑

i=1

λixij

)]
+

n∑

i=1

λi

}
.

(1.6)

It is proved in [2] that there is no duality gap between
(1.4) and its Lagrangian relaxation. Further, the au-
thors of [2] propose to use Dinkelbach’s nonlinear frac-
tional programming method ([1]) combined with some
heuristics to solve the subproblem of (1.6) for tem-
porarily fixed λi. It should be noted that Dinkelbach’s
method is convergent only when the numerator is con-
vex and the denominator is positive, which is not satis-
fied by the function defined in (1.6). This partially ex-
plains why the pure Dinkelbach’s method takes a longer
time than some heuristic method to solve the subprob-
lem of (1.6), as is observed in [2]. Moreover, the La-
grangian relaxation of the integer programming model
deals directly with the objective, the total within-group
sum-of-squared error, not the partitioning itself. There-
fore, extra effort is needed to recover the optimal par-
tition. Again, only numerical experiments on data sets
having up to 150 samples are reported. To summa-
rize, it is fair to claim that although the MSSC prob-
lem is an important problem that has attracted many
researchers’ attentions, no globally convergent and effi-
cient algorithms have been reported in the literature, in
particular for moderately large data sets.

The main target of this paper is to propose a glob-
ally convergent and efficient algorithm for the minimum
sum-of-squared error clustering problem. For this pur-
pose, we use the fact that the MSSC problem can be
formulated as a concave minimization problem over a
polyhedron. For self-completeness, we give a detailed
and direct proof of the concavity of the function (1.4a).
We also characterize the local optimality of (1.5) and
(1.4). It should be mentioned that in [19], Selim and Is-
mail have discussed the local optimality conditions for a
class of optimization problems based on K-means-type
clustering. However, the theoretical framework in [19]
focuses on the mathematical essence of the local opti-
mality for several different clustering approaches, while
our analysis is emphasized on the difference between the
stop criteria of the K-means algorithm and the local op-
timality conditions of (1.4). We also compare the local
optimality conditions of the continuous model (1.5) with
those of its discrete counterpart (1.4). As we shall see
later, our discussion can help us skip a local minimum
and further improve the objective value.

Many methods for concave minimization have been
proposed in the optimization community. Those include
cone splitting ([20, 11]), successive underestimation ([3])
and branch and bound ([9]) etc. Among them, Tuy’s
convexity cut method ([10]) is particularly interesting
because the complexity of each step is very low. Note
that all the above-mentioned methods are designed for
full dimensional feasible region; thus are not directly
applicable to (1.5). In this paper, we will adapt Tuy’s
cut method to solve the concave minimization problem
derived from MSSC and prove its finite convergence.
Promising numerical results will be provided.

The rest of the paper is organized as follows. In
§2, we will prove that the minimum sum-of-squared
error clustering problem can be formulated as a concave
minimization problem and give a constructive proof
showing that each local optimum of (1.5) is integer.
We will also give local optimality conditions for (1.5)
and compare it with that of (1.4). In §3, we will adapt
Tuy’s concavity cuts to find a global minimum of (1.5).
Preliminary numerical examples will be given in §4.

Few words about notations throughout this paper.
We use bold lower case letters for column vectors; lower
case letters for scalars; capital letters for matrices.
Superscript T is used to represent the transpose of a
matrix or vector.

2 Characteristics of the integer formulation for
MSSC and its continuous relaxation.

In this section, we will give some optimal conditions
for (1.4) and its continuous relaxation (1.5) for the
purpose of algorithm design. To describe the common
characteristics of (1.4) and (1.5), we assume xij ∈
[0, 1] (i = 1, . . . , n; j = 1, . . . , k) is a continuous variable
in this section.

Let xj
def= (x1j , . . . , xnj)T (j = 1, . . . , k) denote the

assignment vector for the jth cluster.
Represent the within-group sum-of-squared error

for the jth group by the function:

sj(xj)
def=

n∑

i=1

xij

d∑
p=1

[
(ai)p −

∑n
i=1 xij(ai)p∑n

i=1 xij

]2

.

The total within-group sum-of-squared error is denoted
as:

s(X) def=
k∑

j=1

sj(xj).

Denote the difference from entity al to the centroid
of the jth group as vlj ∈ Rd. Here, al is not necessarily
assigned to the jth group.

(2.7) vlj
def= al −

∑n
i=1 xijai∑n
i=1 xij

= al − cj .

152

As we have mentioned in the introduction, the con-
cavity of (1.2a) in the feasible domain of the continu-
ous relaxation of (1.2) can follow from the conclusions
in [19]. Below, we give a direct proof of the concavity
of (1.4a) under certain conditions, since our algorithm
is based on (1.4a) instead of (1.2a). Another reason for
our proof is that some technical results in our proof will
be used in our later discussion.

Proposition 2.1. The objective function (1.4a) is
concave whenever

∑n
i=1 xij > 0 (j = 1, . . . , k).

Proof. We give the gradient and Hessian of s(X) to
verify that the objective function of (1.5) is concave
in its feasible region.

∂s(X)
∂xlj

=
∥∥∥∥al −

∑n
i=1 xijai∑n
i=1 xij

∥∥∥∥
2

2

+ 2
n∑

i=1

xij

(∑n
p=1 xpjap∑n

p=1 xpj
− ai

)T


 1∑n

p=1 xpj
al −

∑n
p=1 xpjap(∑n
p=1 xpj

)2




Since
∑n

i=1 xij

(Pn
p=1 xpjapPn

p=1 xpj
− ai

)
= 0 and(

1Pn
p=1 xpj

al −
Pn

p=1 xpjap

(Pn
p=1 xpj)2

)
is independent of i,

the second term vanishes. Therefore,

(2.8)
∂s(X)
∂xlj

=
∥∥∥∥al −

∑n
i=1 xijai∑n
i=1 xij

∥∥∥∥
2

2

.

Let Vj represent the matrix whose lth row is the
vector vlj . Let e denote the vector of all 1’s.

Then for any l, g ∈ {1, . . . , n} and j 6= m ∈
{1, . . . , k}:

∇2 sj = − 2
xT

j e
AAT +

2
(xT

j e)2
(
AAT xjeT + exT

j AT A
)

− 2xT
j AAT xj

(xT
j e)3

eeT = − 2∑n
i=1 xij

VjV
T
j ,

∂2s

∂xljxgm
= 0 (j 6= m).

Denote x def= (x1
T , . . . ,xn

T). It follows that

∇2 s(x) = Diag
(∇2 s1(x1), . . . ,∇2 sk(xk)

)
.

Hence −∇2 s(x) is positive semidefinite whenever∑n
i=1 xij > 0 (j = 1, . . . , k). This implies that the ob-

jective function of (1.5) is concave in its feasible region.

Observe that s(x) is not strictly concave under the
above assumptions. Next, we will show that each local
minimizer of (1.5) is integer, so that we can work on
(1.4) instead of (1.4). We will also discuss the optimal
conditions for both (1.4) and (1.5).

First, we give a proposition that will be used to
prove some properties of local minima and construct
our algorithm.

Proposition 2.2. Perturb xlj by ∆ xlj. Then the new
within-group sum-of-squared distances about the new
centroid c′j for the jth group, sj(xj + ∆xj), is

(2.9)8
><
>:

sj(xj) + ∆ xlj ‖vlj‖22 −
(∆ xlj)

2‖vlj‖2
2Pn

i=1 xij+∆ xlj

nX
i=1

xij + ∆ xlj 6= 0,

0 otherwise.

The difference from al to c′j is
(2.10)

v′lj =

{
0

∑n
i=1 xij + ∆ xlj = 0,Pn

i=1 xijPn
i=1 xij+∆ xij

vlj

∑n
i=1 xij + ∆ xlj 6= 0.

Proof. 1) We first consider the case
∑n

i=1 xij + ∆ xlj =
0. This condition means that the jth group is empty
after perturbation by ∆xlj . Therefore

sj(xj + ∆xj) = 0, vlj = 0.

2) Now assume
∑n

i=1 xij + ∆ xlj 6= 0.
If

∑n
i=1 xij = 0, the jth group is empty before

perturbation. In this case, sj(xj + ∆xj) = 0 and
v′lj = 0, since the jth group now contains only ∆ xljal.

In the remaining of the proof, we assume∑n
i=1 xij 6= 0. After perturbation, the jth centroid is

c′j =
∑n

i=1 xijai + ∆ xljal∑n
i=1 xij + ∆ xlj

.

By (2.7),

(2.11)
n∑

i=1

xijai = (al − vlj)

(
n∑

i=1

xij

)
.

Plugging (2.11) into the expression of c′j , we get

(2.12) c′j =
(al − vlj) (

∑n
i=1 xij) + ∆ xljal∑n

i=1 xij + ∆ xlj

= al −
∑n

i=1 xij∑n
i=1 xij + ∆ xlj

vlj .

153

Using (2.7) and (2.12), we have

(2.13)

cj − c′j = (al − vlj)−
(
al −

∑n
i=1 xij∑n

i=1 xij + ∆ xlj
vlj

)

= − ∆ xlj∑n
i=1 xij + ∆ xlj

vlj .

Then

sj(xj + ∆xj) =
n∑

i=1

xij

∥∥ai − cj + cj − c′j
∥∥2

2

+ ∆ xlj

∥∥al − c′j
∥∥2

2
= 2

n∑

i=1

xij (ai − cj)
T (

cj − c′j
)

+
n∑

i=1

xij

∥∥cj − c′j
∥∥2

2
+ sj(xj) + ∆ xlj

∥∥al − c′j
∥∥2

2
.

The first term vanishes, because by the definition of cj ,

n∑

i=1

xij(ai − cj) = 0.

After plugging (2.12) and (2.13) into the above expres-
sion of sj(xj + ∆xj), we get

sj(xj + ∆xj) = sj(xj) +
∑n

i=1 xij (∆xlj)
2

(
∑n

i=1 xij + ∆ xlj)
2 ‖vlj‖22

+
(
∑n

i=1 xij)
2 ∆ xlj

(
∑n

i=1 xij + ∆ xlj)
2 ‖vlj‖22

= sj(xj) +
∑n

i=1 xij ∆ xlj∑n
i=1 xij + ∆ xlj

‖vlj‖22

= sj(xj) + ∆ xlj ‖vlj‖22 −
(∆ xlj)

2

∑n
i=1 xij + ∆ xlj

‖vlj‖22 .

Hence, (2.9) is proved. The expression (2.10) is from
(2.12).

Corollary 2.1. At a local optimum of (1.4) or that
of its continuous relaxation (1.5) (without constraint
(1.2c)),
1. no cluster is empty;
2. all the centroids cj’s are distinct.

Proof. To prove (1), we only need to show that the total
sum-of-squared error of a feasible solution to (1.4) or
(1.5) with an empty cluster is strictly larger than that of
some other feasible solution in its neighborhood (related
to (1.4) or (1.5)). Suppose the gth cluster (1 ≤ g ≤ k) is
empty. From (1.2b) and the assumption that there are
at least k different points, we deduce that there exist at

least a cluster j and two different entities al, am, so that
xlj > 0, xmj > 0. In addition, al 6= cj . Perturbing xlj

and xlg to xlj −∆ x and xlg + ∆ x, with 0 < ∆ x ≤ xlj

(∆ x = 1 for (1.4)), by (2.9), we get

s(X)− s(X + ∆ X) =
∑n

i=1 xij ∆ x∑n
i=1 xij + ∆ x

‖vlj‖22 > 0.

Therefore, X is not a local minimum. This shows that
the constraint (1.2c) is redundant.

Next, we prove that no two clusters have the same
centroid at a local minimum. Assume an assignment X
has two centroids cj = cg. Merging the jth and the gth
clusters will not change the total sum-of-squared error,
but produce an empty cluster. By (1), X is not a local
minimum.

Hence, we have proved (1) and (2).

The above results also imply that the optimum sum-of-
squared error decreases with k.

Lemma 2.1. The matrix X is a local minimum of
(1.5), iff for each l ∈ {1, . . . , n} and j ∈ {1, . . . , k},
(2.14)

xlj =

{
1 ‖vlj‖2 < ‖vlm‖2 (∀m = 1, . . . , k, m 6= j),
0 otherwise.

Remark 2.1. The relation (2.14) equals to the follow-
ing conditions:

(i) all the assignment variables have values 0 or 1, i.e.,
no entity is assigned fractionally to two clusters;

(ii) for every entity al (l = 1, . . . , n), there is only one
cluster whose centroid is closest to it;

(iii) every entity al (l = 1, . . . , n) is assigned to the
cluster whose centroid is closest to it.

Proof. We first prove the sufficiency, i.e., if (2.14) is
satisfied by some X∗ ∈ Rn×k, X∗ is a local minimum
of (1.5). It suffices to prove that for any feasible search
direction Y 6= 0, the directional derivative

DY s(X∗) def= lim
t↓0

s(X∗ + tY)− s(X∗)
t

> 0.

By (2.8),

(2.15) DY s(X∗) =
n∑

i=1

k∑

j=1

‖vij‖22 yij .

Because X∗ satisfies (1.2b) and Y is a feasible search
direction, we have

(2.16)
k∑

j=1

ylj = 0 (l = 1, . . . , n).

154

In addition, from (2.14) and the constraints 0 ≤ xlj ≤ 1,
we get for all l ∈ {1, . . . , n} and j ∈ {1, . . . , k},
(2.17)

ylj

{
≤ 0 ‖vlj‖2 < ‖vlm‖2 (∀m = 1, . . . , k, m 6= j),
≥ 0 otherwise.

Combining (2.16) and (2.17), we conclude that

k∑

j=1

‖vlj‖22 ylj ≥ 0 (l = 1, . . . , n).

Since Y 6= 0, the above inequality holds strictly for at
least one l ∈ {1, . . . , n}. Therefore,

DY (X∗) > 0.

Next, we use contradiction to prove the necessity.
Suppose at a local minimizer of (1.5), denoted as X,

the assignment of entity al didn’t satisfy the conditions
in (2.14). Assume the distance from al to the jth cluster
is one of the shortest, i.e.,

j ∈ arg min
y
‖vly‖2 .

Suppose (i) or (iii) was violated, i.e., xlj 6= 1. Then
there existed m 6= j such that xlm > 0 and ‖vlm‖2 ≥
‖vlj‖2. Note that ‖vlm‖2 = ‖vlj‖2 would be possible
if the jth cluster was not the only closest cluster to al,
i.e., m ∈ arg miny ‖vly‖2.

If (ii) wasn’t satisfied as well, i.e., ‖vlm‖2 = ‖vlj‖2.
Then neither ‖vlj‖2 nor ‖vlm‖2 could be zero. Were
either of them zero, al would be the centroid of both
the jth and mth clusters, which violated Corollary 2.1.
This also shows that

∑n
i=1 xim > xlm whether ‖vlm‖2 =

‖vlj‖2 or ‖vlm‖2 6= ‖vlj‖2, since otherwise al would be
the unique element in the mth cluster; hence vlm = 0.

According to (2.9), perturbing xlj and xlm to

x′lj = xlj + ∆ x, x′lm = xlm −∆ x, (0 < ∆ x ≤ xlm)

would not violate any constraints of (1.5), but would
decrease its objective value by

∆ x
(
‖vlm‖22 − ‖vlj‖22

)

+ (∆ x)2
(

‖vlj‖22∑n
i=1 xij + ∆ x

+
‖vlm‖22∑n

i=1 xim −∆ x

)
> 0.

In other words, consider the feasible search direction
Y whose only nonzero entries were ylj = 1, ylm = −1.
By (2.1), the first order and second order directional
derivative of s in the direction Y evaluated at X would
be

(2.18)

DY s(X) = ‖vlj‖22 − ‖vlm‖22 ≤ 0,

DY Y s(X) def= lim
t↓0

DY s(X + tY)−DY s(X)
t

= − 2 ‖vlj‖22∑n
i=1 xij

− 2 ‖vlm‖22∑n
i=1 xim

< 0.

Therefore, Y would be a strictly descent direction of s
at X.

That means X could not be a local minimum for s.
In addition, by (2.10), ‖vlj‖2 would decrease which

would make j the unique solution to

arg min
y
‖vly‖2 .

Proceeding with the above procedure, we can increase
xlj to 1 and obtain a better objective value.

Suppose that only (iii) was violated, i.e., xlj = 1,
and ∃m 6= j, ‖vlm‖2 = ‖vlj‖2. Then similarly as above,
perturbing xlj and xlm to xlj−∆ x and xlm+∆x would
decrease the total with-in group sum-of-squared error
and make m the unique solution to arg miny ‖vly‖2.

In other words, consider the feasible direction Y
whose only nonzero entities were ylj = −1, ylm =
1. Similarly as (2.18), Y would be a strictly descent
direction of s at X.

Thus, we have shown that a local optimum of (1.5)
must satisfy (2.14).

Remark 2.2. Note that (2.14) is not a sufficient con-
dition for a local minimum of the integer programming
model (1.4). To see this, consider the following exam-
ple:

d = 1, k = 2, a1 = −2, a2 = 0, a3 = 3.

The optimal clustering is ({a1,a2} , {a3}). However,
the clustering ({a1} , {a2,a3}) also satisfies (2.14).

Next we give a necessary and sufficient condition
for a local minimum of (1.5).

Setting ∆vlj = −1 and ∆vlg = 1 in (2.2), we get
the following.

• Switching al from the jth cluster to the gth cluster
will change the total sum-of-squared error by
(2.19)



‖vlg‖22

Pn
i=1 xigPn

i=1 xig+1 − ‖vlj‖22
Pn

i=1 xijPn
i=1 xij−1

∑n
i=1 xij 6= 1

‖vlg‖22
Pn

i=1 xigPn
i=1 xig+1 otherwise.

In our algorithm, we use (2.19) to find the steepest
descent neighbor vertex and calculate the objective
value change after the reassignment.

155

From (2.19), we have the following conclusion.
• At a local optimum of (1.4), the entity al is

assigned to the jth cluster iff 1) al is the unique entity
of the jth cluster; or 2) for any m ∈ {1, . . . , k}, m 6= j:

(2.20)
∑n

i=1 xim∑n
i=1 xim + 1

‖vlm‖22 ≥
∑n

i=1 xij∑n
i=1 xij − 1

‖vlj‖22 .

K-means type algorithms and some other heuristic
algorithms for the minimum sum-of-squared error clus-
tering are based on assigning each entity to the cluster
whose centroid is closest to it; so these methods may
find a local minimum of (1.5), but cannot guarantee to
find a local minimum of (1.4), let along a global mini-
mum.

Note that (2.20) is stronger than (2.14); so although
our algorithm is designed for (1.5), we use (2.20) to
search for a local minimum.

3 Concavity cuts for MSSC.

Our finitely convergent algorithm for the minimum sum-
of-squared error clustering problem is based on concave
optimization technique. A large number of approaches
for concave minimization problems can be traced back
to Tuy’s cutting algorithm [20] for minimizing a concave
function over a full dimensional polytope. We will
briefly describe Tuy’s cuts in the first part of this
section for completeness. In general, without adding
more expensive cuts, this procedure cannot find a global
optimum in finite steps. Furthermore, Tuy’s cuts can’t
be applied directly to (1.5), because its feasible region
doesn’t have full dimension. In the second part of
this section, we will show how to adapt Tuy’s cutting
algorithm to (1.5) and prove that this method can find
a global minimum of (1.5) in finite steps.

3.1 Basic ideas of Tuy’s cuts. For self-
completeness, we sketch Tuy’s cuts (also known
as convexity cuts) below (see [10] for details). We
assume x ∈ Rn in this subsection.

Tuy’s cuts are originally designed to find a global
minimum of a concave function f(x) over a polyhedron
D ∈ Rn. It requires 1) D has full dimension, i.e.
intD 6= ∅; 2) for any real number α, the level set
{x ∈ Rn : f(x) ≥ α} is bounded.

Let x0 be a local minimum and a vertex of D.
Denote γ = f(x0). Since D is full-dimensional, x0 has
at least n adjacent vertices. Let y1, . . . ,yp denote the
vertices adjacent to x0 (p ≥ n). For i = 1, . . . , n, let

(3.21) θi
def= sup{t : t ≥ 0, f

(
x0 + t(yi − x0)

) ≥ γ};
denote

zi def= x0 + θi(yi − x0).

Because f is concave, any point in the simplex Spx def=
conv{x0, z1, . . . , zn} has objective value no less than γ.
Therefore, one can cut off Spx from further searh for a
global minimum. Since x0 is a vertex of D which has full
dimension, one can always find n binding constraints at
x0, and x0 has n linearly independent edges. Without
loss of generality, assume z1−x0, . . . , zn−x0 are linearly
independent. Define
(3.22)

π = eT Diag(
1
θ1

, . . . ,
1
θn

)U−1, U = [y1−x0, . . . ,yn−x0].

Then the inequality

(3.23) π(x− x0) > 1

provides a γ-valid cut for (f, D), i.e., any x having
objective value f(x) < γ must satisfy (3.23). In other
words, if (3.23) has no solution in D, x0 must be a
global minimum. Note that 1) θi ≥ 1; so Spx contains
x0 and all its neighbor vertices; 2)the larger the θi, the
deeper the cuts. Following is the original pure convexity
cutting algorithm based on the above idea.
Cutting Algorithm (Algorithm V.1., Chapter V,
[10])
Initialization

Search for a vertex x0 which is a local minimizer of
f(x). Set γ = f(x0), D0 = D.
Iteration i = 0,1, . . .

1. At xi construct a γ-valid cut πi for (f, Di).
2. Solve the linear program

(3.24) max πi(x− xi) s.t. x ∈ Di.

Let ωi be a basic optimum of this LP. If πi(ωi −
xi) ≤ 1, then stop: x0 is a global minimum.
Otherwise, go to step 3.

3. Let Di+1 = Di ∩ {x : πi(x − xi) ≥ 1}. Starting
from ωi find a vertex xi+1 of Di+1 which is a
local minimum of f(x) over Di+1. If f(xi+1) ≥
γ, then go to iteration i + 1. Otherwise, set
γ ← f(xi+1), x0 ← xi+1, D0 ← Di+1, and go to
iteration 0.

Theorem 3.1. (Theorem V.2, [10]) If the sequence
{πi} is bounded, then the above cutting algorithm is
finite.

3.2 The adapted Tuy’s cutting algorithm for
MSSC. To adapt Tuy’s cuts to (1.5). We include
constraints (1.2c) in (1.5) to ensure that it is a concave
program (Proposition 2.1), although we have proved
that these constraints are redundant for finding a local
solution (Corollary 2.1). In this section, we will first

156

show how we find a local minimum. Our algorithm
searches for a local minimum of (1.4), since it is stronger
than that of (1.5), as is discussed before. Then, we will
describe how we construct the concavity cuts. Finally,
we will prove the finite convergence of our algorithm
and compare it with the K-means algorithm.

3.2.1 Finding a local minimum. To find a local
minimum of (1.4), we use pivot: moving from one vertex
of the feasible domain to an adjacent one that can
mostly decrease the total with-in group sum-of-squared
error based on (2.19), until to a vertex complying with
(2.20).

At rth iteration,
do Loop until (2.20) is satisfied for all l = 1, . . . , n.

Loop For l = 1, . . . , n:
Assume al is assigned to jth cluster. When∑n

i=1 xij > 1, let fl = min q 6=j
q∈Dr

Pn
i=1 xiqPn

i=1 xiq+1 ‖vlq‖22.

If fl <
Pn

i=1 xijPn
i=1 xij−1 ‖vlj‖22, move al to cluster

argmin fl and update s(X) by (2.19).

Note that we only search for a local minimum of
(1.4). The number of vertices of the domain of (1.4)
is finite and the objective value of (1.4a) is strictly
decreased after each pivot. Hence, the number of pivots
for finding a local minimum is finite.

3.2.2 Construction of the cutting planes. Once
we find a local minimum, we need to add some cut
to the constraints set. At rth iteration, let X0 ∈
Rn×k be a local optimal solution to (1.4) in Dr and
γ be the smallest total within-group sum-of-squared
errors obtained from the previous iterations. Next,
we will give details on how we form (3.22), including
the construction of U and θi for (3.22), although the
feasible region of (1.4) doesn’t have full dimension —
each vertex is adjacent to only n×(k−1) other vertices.

1) Adjacent vertices.
We give n× k adjacent vertices to X0 below.
Let Ei,j denote the matrix whose (i, j) entry is 1,

the other entries are 0; and let E(i,·) denote the matrix
whose ith row are 1’s, the remaining entries are 0. The
orders of Ei,j and E(i,·) will be clear from the context.
For l = 1, . . . , n, assume al is assigned to cluster lj . Let
Y l,i (i = 1, . . . , k; i 6= lj) denote the matrix different
from X0 only by the assignment of al to cluster i.
Choose 1 ≤ lp ≤ k, lp 6= lj . And let Y l,lj denote the
matrix different from X0 only in its (l, lp) entry being 1

as well, i.e.,

Y l,i =

{
X0 − El,lj + El,i i 6= lj

X0 + El,lp i = lj
.

Then Y l,i (l = 1, . . . , n; i = 1, . . . , k, i 6= lj) are
n×(k−1) adjacent vertices of X0 in the feasible domain
of (1.4). We form the vector x0 by stacking all the
columns of X0 together. Similarly, we form the vectors
yl,i. It is not hard to see that U = [y1,1−x0, . . . ,y1,k−
x0, . . . ,yn,k − x0] has full rank. Let I represent the
identity matrix. It is straightforward to verify that the
corresponding U−1 of (3.23) is a block diagonal matrix
with lth block being I + E(lj ,·) − E(lm,·) − Elj ,lj .

Because Y l,lj is not feasible to (1.5), part of the sim-
plex conv{x0,y1,1, . . . ,y1,k, . . . ,yn,k} lies outside the
feasible region of (1.5); nevertheless, the concavity cut
can exclude some part of the feasible region of (1.4).

2) The cutting plane.
Next, we will determine the θi’s of (3.22), and

subsequently the cutting plane π.
For l = 1, . . . , n: θl,lj = +∞; when m 6= lj , by

Proposition 2.2, θl,m is a solution to the problem below.
(3.25)
max t
s.t. 0 ≤ t ≤ ∑n

i=1 x0
i,lj

,

s(X0)−
Pn

i=1 x0
i,lj

t
Pn

i=1 x0
i,lj

−t

∥∥vl,lj

∥∥2

2
+

Pn
i=1 x0

imtPn
i=1 x0

im+t
‖vlm‖22 ≥ γ.

Denote the number of points in the jth cluster as
Nj

def=
∑n

i=1 x0
ij . Next, we will solve (3.25).

Solving the second inequality in (3.25), we get t ≤
t∗, where

t∗ = − (s(X0)−γ)(Nm−Nlj)+NmNlj

�‖vl,lj‖2

2
−‖vl,m‖22

�
−√ω

2
�

s(X0)−γ+Nlj‖vl,lj‖2

2
+Nm‖vl,m‖22

� ,

where ω =
[
(s(X0)− γ)(Nm +Nlj)+NmNlj (

∥∥vl,lj

∥∥2

2
−

‖vl,m‖22)
]2

+ 4(s(X0)− γ)Nlj Nm(Nlj + Nm) ‖vl,m‖22 .

Since s(X0) ≤ γ and X0 is a local minimum of
(1.4), by (2.19), t∗ ≥ 1. In view of the first constraint
in (3.25), we set

θl,m = min
{
Nlj , t∗

}
, (m 6= lj).

Observe that when s(X0) = γ, since X0 is a local
minimum of (1.4), by Lemma 2.1, ‖vl,m‖2 >

∥∥vl,lj

∥∥
2
;

hence

t∗ =
Nlj Nm(‖vl,m‖22 −

∥∥vl,lj

∥∥2

2
)

Nlj

∥∥vl,lj

∥∥2

2
+ Nm ‖vl,m‖22

≤ Nlj .

Therefore, in this case, θl,m = t∗.

157

It follows that the coefficients of (3.24) are

πl,i =

{
1

θl,i − 1
θl,lp

i 6= lj

− 1
θl,lp

i = lj
, πx0 = −

n∑

l=1

1
θl,lp

.

3) Solving the LP subproblems.
Without the constraints (1.2c), the LP for the first

cut (3.24) is a knapsack problem, whose solution is
trivial and is integer. If the solution doesn’t satisfy
(1.2c), by splitting some clusters as is discussed in
Corollary 2.1, one can find a vertex that satisfies (1.2c)

The solutions to the succeeding LPs (3.24) are
not necessarily integers. From a fractional solution to
(3.24), one can move to a vertex using the procedure in
Lemma 2.1. If the vertex is not in the remaining feasible
region Di, we use breadth-first search to find a vertex
that satisfies all the cutting plane constraints. When
pivoting to a local minimum, we also skip those vertices
that are not in Di. This is different from the pivoting
in K-means algorithm. This ensures that no vertices in
cut-out region will be revisited.

3.3 Finite convergence of the algorithm. The
simplex Spx in our algorithm is centered at a local
minimum of (1.4); so each concavity cut eliminates
at least one vertex of (1.4). In addition, the number
of vertices of (1.4) is finite. Therefore, the number
of cuts is finite. From this along with the previous
argument that only finite pivots are needed to reach
a local minimum of (1.4), we conclude that our method
can find a global minimum of the MSSC problem in
finite steps.

Remark 3.1. It is possible to get a good solution for
the MSSC problem by multiple runs of K-means algo-
rithm with random restart. However, it is difficult to
guess the new starting points. Without trying all the
vertices, a global minimum cannot be guaranteed. An
advantage of Tuy’s convexity cut to enumeration is that
each convexity cut may eliminate a certain number of
vertices.

4 Numerical Examples

We have implemented the above cutting algorithm in C
with the LP for cutting plane solved by CPLEX 8.0.

Minimizing a concave function over a polytope is
NP-hard (see for example [17]). In the worst case, Tuy’s
cutting method needs to enumerate all the vertices in
a polytope; hence the worst-case complexity of Tuy’s
method for a general concave program is exponential.
At this moment, we don’t know whether the complexity
of our algorithm can be reduced based on some special
properties of MSSC. In addition, although the computa-

tional cost of each iteration is very low — solving an LP
and pivoting, as more and more cuts are added, the size
of the LP subproblem might be very large, which may
require large amount of memory. From our preliminary
numerical experience, we notice that the objective value
improves significantly in the first several cuts, but very
slowly in the later cuts. To maintain a tradeoff between
the difficulty of finding a global minimum of the MSSC
problem and the practical efficiency of the algorithm, we
specify that our computer program terminates iff one of
the following conditions is satisfied:

1. a global optimum is found;
2. the objective cannot be improved after 5 succeeding

cuts;
3. the total number of cuts exceeds 20.

To give an initial solution, we assign the first k
entities to the k clusters. Each of the remaining entities
are assigned to the cluster whose centroid is closest to
it. The initial sum-of-squared error is calculated from
this assignment. Next, we run the K-means algorithm
to find a local optimum of (1.5), from which we further
pivot to a local minimum of (1.4) to start the cutting
algorithm.

The figures below give some numerical examples.
We use x-axis to represent the number of clusters—
k, and y-axis to denote the total within-group sum-of-
squared errors. Each group of vertical bars represents
various sum-of-squared errors for a certain k. The first
bar in a group denotes the initial sum-of-squared error;
the second one is that when each entity is assigned
to a cluster whose centroid is closest to it; the third
one reports the sum-of-squared error when (2.20) is
satisfied for each entity; the fourth one is that resulting
from the cutting algorithm. The fifth bar of the first
two examples represents the best known objective value
taken from [2].

1. The Iris plants database.
Our first example is from [4]. It has 150 samples
each having 4 attributes.

We have tested for k = 2, . . . , 10. Of the 9 cases,
the cutting algorithm hits the best solution in 6
cases, and outperforms the k-means algorithm as
well as the initial local minima in 8 cases.

2. The Ruspini data set.

This data set, consisting of 75 observations on 2
variables, is from [18].

For this data set, the cutting algorithm finds the
global solution in 4 out of total 9 cases. It improves
the K-means results in 8 cases; and get a better
solution than the initial local minimum in 7 cases.

158

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Clusters

S
um

 o
f S

qu
ar

es

Initial
Centroid
Local Min
Cuts
Best Known

Figure 1: Iris Plants Database

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
x 10

4

Clusters

S
um

 o
f S

qu
ar

es

Initial
Centroid
Local Min
Cuts
Best Known

Figure 2: Ruspini data

By Corollary 2.1, the optimum within-group sum-
of-squared error decreases with the number of cluster k.
In the following examples, which are taken from the UCI
Machine Learning Repository [16], we use the solution
from the k-clustering as the starting point for the k + 1
clustering (k = 2, . . .).

1. The Boston housing data set.
This data set is from [8] concerning housing values
in suburbs of Boston. It has 506 samples each
having 13 attributes.

Among all the 9 cases k = 2, . . . , 10, the cutting
algorithm over-performs the k-means algorithm in
7 cases and gets a better solution than the original
local minimum of the integer programming formula
(1.4) in 6 cases.

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
x 10

6

Clusters

S
um

 o
f S

qu
ar

es

Initial
Centroid
Local Min
Cuts

Figure 3: Boston Housing

2. The spam E-mail database
This dataset is created by M. Hopkins et al. at
Hewlett-Packard Labs in June-July 1999 for spam
filter. It has 4601 samples, 57 attributes (we remove
the last class attribute which denotes whether the
e-mail was considered spam or not).

Of the 6 cases k = 2, . . . , 7, the cutting algorithm
finds a better solution than that by the K-means
algorithm in 4 cases, the objective value is reduced
from the initial local minimum of (1.4) in 2 in-
stances.

For all the examples, the computer program ter-
minated due to no improvement in objective value af-
ter 5 succeeding cuts. All of them terminated within
25 seconds. However, the results are satisfactory. Ob-
serve that in many cases, the solution obtained by the

159

2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10
x 10

8

Clusters

S
um

 o
f S

qu
ar

es

Initial
Centroid
Local Min
Cuts

Figure 4: Spam E-mail

K-means algorithm is worse than that by the local min-
imum criterion (2.20).

5 Conclusion

In this paper, we have proved that the minimum sum-of-
squared error clustering problem can be formulated as
a concave minimization problem whose every local opti-
mum solution is integer. We have characterized the local
optimality of the continuous optimization model (1.5)
and compared it with that of the discrete one (1.4).
These properties can help us find a better solution. We
have adapted the globally convergent Tuy’s convexity
cut to the concave optimization problem derived from
MSSC. Preliminary numerical examples demonstrate
that our method outperforms the popular K-means al-
gorithm in the quality of the solution without a big in-
crease in the running time.

References

[1] Werner Dinkelbach. On nonlinear fractional program-
ming. Management Sci., 13:492–498, 1967.

[2] O. Du Merle, P. Hansen, B. Jaumard, and N. Mladen-
ović. An interior point algorithm for minimum sum-of-
squares clustering. SIAM J. Sci. Comput., 21(4):1485–
1505 (electronic), 1999/00.

[3] James E. Falk and Karla R. Hoffman. Successive un-
derestimation method for concave minimization prob-
lem. Math. Oper. Res., 1(3):251–259, Aug. 1976.

[4] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annual of Eugenics, 7:179–188,
1936.

[5] E. Forgy. Cluster analysis of multivariate date: Ef-

ficiency vs. interpretability of classifications. Biomet-
rics, 21:768, 1965.

[6] A. D. Gordon and J. T. Henderson. An algorithm
for euclidean sum of squares classification. Biometrics,
33(2):355–362, Jun. 1977.

[7] Pierre Hansen and Brigitte Jaumard. Cluster analysis
and mathematical programming. Math. Programming,
79(1-3, Ser. B):191–215, 1997.

[8] D. Harrison and D. L. Rubinfeld. Hedonic prices and
the demand for clean air. J. Environ. Economics &
Management, 5:81–102, 1978.

[9] Reiner Horst. An algorithm for nonconvex program-
ming problems. Math. Programming, 10(3):312–321,
1976.

[10] Reiner Horst and Hoang Tuy. Global optimization.
Springer-Verlag, Berlin, 1993.

[11] Stephen E. Jacobsen. Convergence of a Tuy-type
algorithm for concave minimization subject to linear
inequality constraints. Appl. Math. Optim., 7(1):1–9,
1981.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Comput. Surv., 31(3):264–
323, 1999.

[13] R. C. Jancey. Multidimensional group analysis. Aus-
tralian J. Botany, 14:127–130, 1966.

[14] O. L. Mangasarian. Mathematical programming in
data mining. Data Min. Knowl. Discov., 1(2):183–201,
1997.

[15] J. McQueen. Some methods for classification and
analysis of multivariate observations. Computer and
Chemistry, 4:257–272, 1967.

[16] P. M. Murphy and D. W. Aha. UCI reposi-
tory of machine learning databases. Technical re-
port, University of California, Department of Infor-
mation and Computer Science, Irvine, CA, 1994.
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[17] P. M. Pardalos and J. B. Rosen. Methods for global
concave minimization: a bibliographic survey. SIAM
Rev., 28(3):367–379, 1986.

[18] E. H. Ruspini. Numerical methods for fuzzy clustering.
Inform. Sci., 2(3):319–350, 1970.

[19] Shokri Z Selim and M. A. Ismail. K-means-type algo-
rithms: A generalized convergence theorem and char-
acterization of local optimality. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-
6(1):81–87, Jan. 1984.

[20] H. Tuy. Concave programming under linear con-
straints. Soviet Mathematics, 5:1437–1440, 1964.

[21] Hoang Tuy, A. M. Bagirov, and A. M. Rubinov.
Clustering via d.c. optimization. In Advances in convex
analysis and global optimization (Pythagorion, 2000),
volume 54 of Nonconvex Optim. Appl., pages 221–234.
Kluwer Acad. Publ., Dordrecht, 2001.

160

Dynamic Classification of Defect Structures in Molecular Dynamics
Simulation Data

Sameep Mehta∗ Steve Barr† Tat-Sang Choy† Hui Yang∗

Srinivasan Parthasarathy∗ Raghu Machiraju∗ John Wilkins†
∗Department of Computer Science and Engineering, Ohio State University

†Department of Physics, Ohio State University
Contact:{mehtas,srini,raghu}@cse.ohio-state.edu

January 10, 2005

Abstract

In this application paper we explore techniques to clas-
sify anomalous structures (defects) in data generated from
Molecular Dynamics (MD) simulations of Silicon (Si) atom
systems. These systems are studied to understand the pro-
cesses behind the formation of various defects as they have
a profound impact on the electrical and mechanical proper-
ties of Silicon. In our prior work [12, 13, 14] we presented
techniques for defect detection. Here, we present a two-step
dynamic classifier to classify the defects. The first step uses
up to third-order shape moments to provide a smaller set of
candidate defect classes. The second step assigns the cor-
rect class to the defect structure by considering the actual
spatial positions of the individual atoms. The dynamic clas-
sifier is robust and scalable in the size of the atom systems.
Each phase is immune to noise, which is characterized after
a study of the simulation data. We also validate the pro-
posed solutions by using a physical model and properties of
lattices. We demonstrate the efficacy and correctness of our
approach on several large datasets. Our approach is able to
recognize previously seen defects and also identify new de-
fects in real time.

1 Introduction

Traditionally, the focus in the computational sciences has
been on developing algorithms, implementations, and en-
abling tools to facilitate large scale realistic simulations of
physical processes and phenomenon. However, as simu-
lations become more detailed and realistic, and implemen-
tations more efficient, scientists are finding that analyzing
the data produced by these simulations is a non-trivial task.
Dataset size, providing reasonable response time, and mod-
eling the underlying scientific phenomenon during the anal-
ysis are some of the critical challenges that need to be ad-
dressed.

In this paper we present a framework that addresses

these challenges for mining datasets produced by Molecu-
lar Dynamics (MD) simulations to study the evolution of de-
fect structures in materials. As component size decreases, a
defect - any deviation from the perfectly ordered crystal lat-
tice - in a semiconductor assumes even greater significance.
These defects are often created by introducing extra atom(s)
in the Silicon lattice during ion implantation for device fab-
rication. Such defects can aggregate to form larger extended
defects, which can significantly affect device performance in
an undesirable fashion.

Simulating defect dynamics can potentially help scien-
tists understand how defects evolve over time and how ag-
gregated/extended defects are formed. Some of these defects
are stable over a period of time while other are short-lived.
Efficient, automated or semi-automated analysis techniques
can help simplify the task of wading through a pool of data
and help quickly identify important rules governing defect
evolution, interactions and aggregation. The key challenges
are: i) to detect defects; ii) to characterize and classify both
new and previously seen defects accurately; iii) to capture
the evolution and transitioning behavior of defects; and iv) to
identify the rules that govern defect interactions and aggre-
gation. Manual analysis of these simulations is a very cum-
bersome process. It takes a domain expert more than eight
hours to manually analyze a very small simulation of 8000
time frames. Therefore, a systemic challenge is to develop an
automated, scalable and incremental algorithmic framework
so that the proposed techniques can support in-vivo analysis
in real time.

In our previous work [12, 13, 14], we presented algo-
rithms to address the first challenge. Here we address the
second challenge coupled with the systemic challenge out-
lined above. The design tenets include not only accuracy
and execution time but also both statistical and physical val-
idation of the proposed models. We also present preliminary
results to show that our approach can aid in handling the third

161

challenge.
The main contributions of our application case study

paper are:

1. We develop a two-step incremental classifier that clas-
sifies both existing and new defects (generates a new
class label).

2. We validate each step of our2-step classifier theoreti-
cally, relying on both physical and statistical models.

3. We validate our approach on large (greater than 4GB)
real MD simulation datasets and demonstrate both the
exceptional accuracy and efficiency of the proposed
framework.

4. We present initial results which show that our approach
can be used to capture defect evolution and to generate
labeled defect trajectories.

Our paper is structured in the following manner.
Section2 discusses the basic terminology of MD and re-
lated work. An overview of our framework is provided in
Section3. We present our algorithm in Section4. Results
on large simulation datasets are presented in Section5. Fi-
nally, we conclude and discuss directions for future work in
Section6.

2 Background and Related Work

‘

2.1 Background: In this section, we first define basic
terms that are used throughout this article. Later, we describe
pertinent related work. Alattice is an arrangement of points
or particles or objects in a regular periodic pattern in three
dimensions. The elemental structure that is replicated in
a lattice is known as aunit cell. Now, consider adding
a single atom to the lattice. This extra atom disturbs the
geometric structure of lattice. This disturbance, comprised
of atoms which deviate from the regular geometry of lattice
is referred to as thedefect structure. Defects created by
adding an extra atom are known as single-interstitial defects.
Similarly one can definedi- and tri-interstitial defects by
adding two or three single interstitial defects in a lattice,
respectively. Figure 1(a) shows a Si bulk lattice with a certain
unit cell shaded differently (black). Figure 1(b) shows
another lattice with a single interstitial defect. Figure 1(c)
depicts two interstitials: in the lower left and upper right
corners, respectively, of a 512-atom lattice. The different
shades again represent separate and distinct defects.

Ab initio relaxations and MD simulations are fre-
quently used to discover stable defect structures [2, 16,
22]. Our MD simulations are performed with the Object-
Oriented High Performance Multi-scale Materials Simulator
(OHMMS) [16, 17] employing a classical potential to de-
scribe the interactions between the Si atoms [11].

2.2 Related Work: Several methods have been proposed
to detect defects in crystal lattice structures. The most perti-
nent work that is closely related to our own work employs the
method of Common Neighbor Analysis (CNA) [3, 8]. CNA
attempts to glean crystallization structure in lattices and uses
the number of neighbors of each atom to determine the struc-
ture sought. However, it should be noted that the distribution
of neighbors alone cannot characterize the defects, especially
at high temperatures.

Related to our work is the large body of work in
biomolecular structure analysis [1, 10, 18, 23]. In these tech-
niques, the data is often abstracted as graphs and transactions
and subsequently mined. However, such an abstraction of-
ten does not exploit and explain many of the inherent spa-
tial and dynamical properties of data that we are interested
in. Moreover, while some of these techniques [19, 23], deal
with noise in the data, the noise handling capabilities are lim-
ited to smoothing out uncorrelated and small changes in spa-
tial location of atoms. Within the context of MD data, noise
can also change the number of defect atoms detected, for es-
sentially the same defect structure at different time frames.
None of the methods in the biological data mining literature
deal with this uncertainty.

Matching of two structures has drawn a lot of attention
in recent past. Zhang et al. [25], propose a protein match-
ing algorithm that is rotation and translation invariant. This
method relies on the shape of the point cloud and it works
well for proteins given the relatively large number of atoms;
the presence of a few extra atoms does not change the shape
of point cloud. A potential match is not stymied by the pres-
ence of extra atoms. However, in MD simulation data, we are
interested in anomalous structures which can be as small as
just six atoms. Extra atoms that may be included in a defect
given the thermal noise will skew a match significantly even
if the two defects differ by one atom. Geometric hashing, an
approach that was originally developed in the robotics and
vision communities [24], has found favor in the biomolec-
ular structure analysis community [15, 23]. Rotation and
translations are well handled in this approach. The main
drawback of geometric hashing is that it is very expensive
because an exhaustive search for optimal basis vector is re-
quired. A more detailed discussion on various shape match-
ing algorithms can be found in the survey paper by Veltamp
and Hagedoorn [21].

We use statistical moments to represent the shape of
a defect for initial pruning. The seminal work by Hu [6]
described a set of seven moments which captures many of
the features of a two-dimensional binary images. In recent
work, Galvez [5] proposed an algorithm which uses shape
moments to characterize 3D structures using moments of
its two-dimensional contours. However, owing to relatively
small number of atoms present in a typical defect, the con-
tours or the corresponding implicit3D surface are impossible

162

Figure 1: Defects in the crystal lattice. (a) The unit cell of the perfect crystal lattice is marked by the dark atoms. (b) A
single interstitial defect distorts the lattice. (c) Two separate interstitial defects are present in the lattice.

to obtain with accuracy.

3 Dynamic Classification Framework

Figure 2 shows our framework for MD simulation data
analysis. The framework is divided into three phases.

• Phase 1 - Defection Detection: This phase detects,
spatially clusters (or segments) defects and handles
periodic boundary conditions. A detailed explanation
on this phase is given in our earlier work [12, 13, 14].

• Phase 2 - Dynamic Classification: This phase classifies
each defect found inPhase 1and consists of three major
components:

1. A feature vector composed of weighted statistical
moments is generated for each detected defect.

2. The set of defects is pruned based on the fea-
ture vector. This step provides a subset of defect
classes to which an unlabeled defect can poten-
tially belong to.

3. An exact matching algorithm assigns the correct
class label to the defect. This steps takes into
account the spatial position of the atoms. The
defect is assigned a class label if it matches with
any of the previously seen defects, otherwise the
defect is considered new.

Phase 2maintains three databases for all detected de-
fects. Section 4 gives detailed information regarding
these three databases and their update strategies.

The framework is made robust by modeling noise in
both Phase 1andPhase 2. Our noise characterization
models the aggregate movement of the defect structure
and the arrangement of the atoms (in terms of neighbor-
ing bonds). Our framework can be deployed to operate
in a streaming fashion. This is important since it en-
ables us to naturally handle data in a continuous fashion

while a simulation is in progress.Phase 1handles the
entire frame and detects all the defects. Each defect is
then pipelined intoPhase 2. Thus, we are able to incre-
mentally detect and classify defects while consistently
updating the database in real time.

• Phase 3 - Knowledge Mining: This phase uses the
databases generated byPhase 2. These databases store
the information about all the defects in a given simula-
tion. These databases can be used to track and generate
the trajectories of the defects, which can assist us to bet-
ter understand the defect evolution process. Addition-
ally, various data mining algorithms can be applied on
the databases. Mining spatial patterns within one sim-
ulation can aid in understanding the interactions among
defects. Finding frequent patterns across multiple sim-
ulations can help to predict defect evolution. In this pa-
per, we describePhase 2in detail. We also show some
initial results forPhase3.

4 Algorithm

Our previous work [12, 13, 14] describes the defect detection
phase in detail. Every atom in the lattice is labeled either as
a bulk atom or as a defect atom. However, upon further eval-
uation we found that this binary labeling is not well suited
for robust classification of defect structures. Therefore, we
propose to divide the atoms into three classes based on their
membership or proximity to a defect. We also validate the
correctness of this taxonomy by using a physical model. Our
taxonomy is:

• Core-Bulk Atoms (CB): Atoms that conform to the set
of rules defined by the unit cell arebulk or non-defect
atoms. Bulk atoms which are connected exclusively to
other bulk atoms are labeled as core bulk atoms.

• Core-Defect Atoms (CD):Atoms that do not conform
to the set of rules aredefectatoms. All defect atoms that

163

����������	�
�

�������

�

�������

�������������	������	�

�

����
����

�

����������	�
�

��� 	����������
��

����� �
�����

�������
 �!�������	�"

�����#�������
	�$����
�
	��

�

������%����
!�������
�
��

&'

&

&

()�	�

���	�
��

Figure 2: Defect Detection and Classification Framework

are connected to more defect atoms than bulk atoms are
labeled as core defect atoms. These atoms dominate the
shape and properties of a defect.

• Interface Atoms (I): Defect atoms that are connected
to more bulk atoms than defect atoms are labeled as in-
terface atoms. These atoms form the boundary between
core bulk and core defect atoms. They fail to conform
to the prescribed set of rules by a small margin (i.e. the
thresholds for bond lengths and angles are violated in
a marginal way) and are thus marked as defect atoms.
They form a layer between core bulk and core defect
atoms. Presence or absence of these atoms can consid-
erably change the shape of a defect, which exacerbates
the matching of defect structures.

Figure 3(a) illustrates all three types of atoms. The
black atoms belong to core defect, light gray atoms form the
core bulk and the dark gray atoms are interface atoms. This
taxonomy is justified by a physical model.

The lattice system can be represented by a Mechanical
Molecular Model as follows: the atoms are represented by
points and the bonds by springs connecting the points. The
energy of the lattice system consists of three terms:

Etotal = Elength + Eangle + Eint,

whereElength andEangle denote the energies due to bond
stretching and angle bending, respectively, andEint denotes
the remaining interaction energy not accounted for by the
bond stretching and bending terms. For the following analy-
sis the interaction term,Eint, is neglected.

The energy of bond stretching and bending is described
by spring constants,K, and the deviation,δ, of the bonds
from the ideal state:

E =
1
2
Kδ2, (4.1)

The stretching and bending energiesElength andEangle are
computed for each atom using the two spring constants,
Klength and Kangle, respectively. The ideal bond length
and bond angle are used for the uncompressed spring state.
The values forKlength and Kangle are taken from [4] as
185 Newton/meter and 0.35 Newton/radian, respectively.
For each atom we find the bond lengths and bond angles it
forms with its first neighbors and then find the deviations,δ,
from the ideal values. Core bulk atoms deviate little from the
ideal values, whereas for core defect atoms the deviations are
large. 3Since the energy is directly proportional to the square
of the deviations, core bulk atoms have low energies while
core defect atom energies are large.

To validate our taxonomy, we sampled 1400 frames
from different simulations and calculated the energy for each
atom in the lattice. Figure 3(b) shows the distribution of
energy. It is clear from the distribution that the majority of
the atoms have very low energy (∈ [0, 0.2]). These atoms
are core bulk atoms. The core defect atoms have very high
energy (≥ 1.2). All the atoms which lie between low and
high energy levels are interface atoms. Thus, this physical
model clearly validates our taxonomy of atoms. Therefore
we refine our original binary labeling [12] of individual
atoms by further dividing defect atoms into core defect atoms
and interface atoms.

164

(a) (b)

Figure 3: (a) Taxonomy of atoms (b) Energy Plot

Before describing the classification method, we discuss
the challenges which need to be addressed to build a robust
and efficient classifier for MD data. We list each of them
and describe how they are addressed within the context of
the proposed algorithm.

4.1 Challenges and Proposed Solutions

4.1.1 Thermal Noise: Thermal motion causes atoms to
change their spatial positions. These changes can have two
kinds of effect on the detected defect structures:

1. The precise location of the atoms and their inter-pair
distances changes from frame to frame. Thus, the clas-
sification method must be tolerant to small deviations in
spatial positions.

2. The change in spatial positions can also force a previ-
ously labeled bulk atom to violate the rules and be la-
beled as a defect atom (and vice versa) in the next time
frame. Therefore the number of atoms in a defect can
change, which in turn changes the overall shape of the
defect structure making the classification task more dif-
ficult.

To address the first problem we consider a data driven
approach to derive noise thresholds. From our study we
know that the change in position of each atom between
consecutive frames is influenced by the position and number
of its neighbors. To model this behavior we define a random
variableDi:

Di =
1

F + 1
(Mi +

F∑

j=1

Mj),

whereMi is the displacement between two consecutive time
steps of atomi, with F nearest neighbors within a distance
of 2.6 Å (bond length of Si), andi ∈ [1, N], N being
the total number of atoms in the lattice. We observe that
Di is described by a normal distribution with parameters,
µnoise andσnoise (the average mean and standard deviation
of all Di’s). We find µnoise to be close to zero (which is
expected because a given atom cannot move very far from
its original location between two consecutive time frames).
The parameterσnoise is used to model the effect of noise in
the defect classification algorithm. From a set of randomly
selected 4500 frames, we findσnoise to be 0.19Å.

It should be pointed out here that the physical origin of
the noise is the thermal motion of the atoms. The magnitude
of the thermal motion is given at high temperatures by

〈x2〉 =
3h̄T

mkBΘ2
,

whereΘ is the Debye temperature which for Si is 645 K [9],
h̄ is planck’s constant,kB is Boltzman constant,m is mass
of the atom andT is temperature at which simulation is
done. AtT = 1000 K, this yields for the average thermal
displacement a value of 0.1̊A, close to the measured noise
value above.

To solve the second problem posed by thermal noise, we
propose a weighting mechanism. The weighting mechanism
is based on the following two observations:

1. In two consecutive time frames the core defect atoms
cannot change considerably.

2. Interface atoms can make a transition from bulk to
defect and vice-versa quickly.

Figure 4(a) and Figure 4(b) show the defects detected in
two consecutive frames after applying local operators. The

165

(a) (b))

Figure 4: The thermal motion of atoms between two con-
secutive frames (a) and (b) does not change the core defect
atoms (black) but can change the number interface atoms
(dark gray). Here an extra interface atom appears in frame
(b).

defect in Figure 4(b) has an extra interface atom but the
core defect (black atoms) remains unchanged. Therefore,
a weighting mechanismis proposed to reduce the influence
of interface atoms relative to that of core atoms within a
defect structure. Each atom in a given defect is assigned a
weight given by the number of nearest neighbors within the
defect structure. Thus, core defect atoms contribute more to
defect the classification than interface atoms. The weights
are also used for handling translations (described below) and
for computing the feature vector (weighted moments).

The first observation is explained by the fact that the
deviations from the perfect bond length and angle is largest
for the core defect atoms. Therefore, the thermal motion has
a small effect on the already large energy assigned to the core
defect atoms. The second observation can be understood by
the observation that interface atoms have smaller deviations
from ideality than core bulk atoms and usually fail (or
conform to) the set of rules by a small margin. Small
variation in their locations due to thermal noise can alter their
labels.

To summarize, over a period of time core defect atoms
will change considerably less than interface atoms. There-
fore more emphasis (weight) should be given to core defect
atoms while matching two defect structures. This is precisely
what our weighting mechanism does.

4.1.2 Translational and Rotational Invariance: Transla-
tions and rotations pose another problem in defect classi-
fication. The same defect can occur in different positions
and orientations in the lattice. To correctly classify a defect,
translations and rotations must be resolved before assigning
the class.

We describe the shape of a defect by using statistical
moments. We use the complete set of first, second and third

order moments. The first order moments describe the loca-
tion, the second order moments the shape, and the third order
moments captures the skewness of the defect. To account for
the interface atoms we calculate weighted moments instead
of simple moments.(Recall that the weighting mechanism
assigns high weights to core defect atoms and low weights to
interface atoms). The feature vector comprising of weighted
moments of a defect is calculated as :

Dmnp
w =

1
N∑

j=1

wj

N∑

i=1

wi ∗Rm
ix ∗Rn

iy ∗Rp
iz, (4.2)

with m + n + p ≤ 3 and Rij is the jth coordinate of
the ith atom of the defect. There are a total of three first-
order moments, six second-order moments and ten third-
order moments. The three first order moments describe
the center of mass of the defect. To recover translational
invariance we set the three first order momentsD100

w , D010
w

and D001
w to zero. The remaining second and third order

moments comprise a16-dimensional feature vectorDw.
There is a finite set of of point symmetry operations

that map a given lattice onto itself [9]. These symmetry
operations consists of rotations, reflections, inversions, and
combinations of those. The lattice of crystalline Si is
invariant under 24 point symmetry operations. Defects
that are related by point symmetry operations of the lattice
are classified as the same defect since they have the same
physical properties. Instead of working with the defects itself
we apply the finite set of symmetry operations on the feature
vector. As an example, if a defect is mirrored on thex-plane,
all moments involving an odd power of thex-component
change sign. In a similar fashion, all rotations are resolved
by checking a set of permutations of the original moments.

4.1.3 Shape Based Classification:When matching two
defect structures, the classifier should take into account the
positions of all individual atoms in the defects. This atom-to-
atom matching is relatively expensive. Furthermore because
of large numbers of defect classes present in simulation
datasets, it would be unrealistic to carry out such an atom-
to-atom matching for all classes at each and every time
step. Therefore a scheme is needed to effectively reduce the
number of candidate classes on which an exhaustive atom-
to-atom matching is performed.

We address this challenge by adopting a two step classi-
fication process. The first step uses the weighted moments
of Eq. (4.2) to determine a subset of defect classes. The
weighted moments (feature vector) are used since the de-
scribe the overall shape of an object [6]. The second step
finds the closest class by taking into account the positions of
the atoms and their arrangement in three dimensional space.
In essence, both steps use the information about the defect
shape. The first step uses the high level information of the

166

weighted moments and the next step refines it by matching
individual atoms. We achieve the desired efficiency because
the first step is computationally very cheap and reduces the
search space considerably for the next step. Experimental
results to corroborate this are shown in Section 5.

The classification based on shape is motivated by phys-
ical insight. Physical properties of defects are governed
by their atomic structure which is reflected in their overall
shape. The shape directly controls the strain field induced by
defects [20]. The long-ranged interaction between defects is
dominated by the strain field and hence the shape of the de-
fects. For example, small defect clusters in silicon arrange
preferentially in a compact shape and attract additional de-
fect atoms, while larger defect clusters prefer an elongated,
extended shape [16].

4.1.4 Emergence of new defect classes:The underlying
motivation of our effort is to discover information which can
assist scientists to better understand the physics behind de-
fect evolution and dynamics, ideally in real time. This can re-
sult in new defect classes and defect migration mechanisms.
This requires the classification process to be dynamic [7].
The classifier should be dynamic in the classical sense, as
in new streaming data elements can be classified, but should
also be dynamic in the sense that new classes (defects) if
discovered can be added to the classifier model in real time.
The new defect should be available when the next frame is
processed.

We next present our two-step classification process
which integrates all the proposed solutions to the above-
mentioned challenges.

4.2 Two Step Classification Algorithm: Phase 1of our
framework detects the defect(s) from the lattice andPhase
2 classifies the defect(s).Phase 1has been explained in
Section 3. The goal ofPhase 2is to find the typeT for
a given defectD. If the type ofD does not match the type
of any of the previously seen defects in the simulation, it is
labeled as a new defect and stored in the databasesID shape

andIDmoment, whereID is a unique simulation identification
number, ID shape stores the actual three dimensional co-
ordinates andIDmoment stores the weighted central moments
(feature vector) of the defect structure. These databases store
all the unique defects detected in the current simulation.

The label of a new defect is of the formdefecti j,
indicating that the new defect is thejth defect in theith

frame of the simulation. IfD is not new then a pointer to
the defect class which closely matchesD is stored. Besides
these two databases a summary file is generated which stores
names of all detected defects in the simulation along with
corresponding frame numbers. We now proceed to describe
the two steps of our classifier in detail.

4.2.1 Step 1 - Feature Vector based Pruning:We use
a variant of theKNN classifier for this task. The value
of K is not fixed: instead, it is determined dynamically
for each defect. Given the feature vectorDw of a defect
D, we compute and sort the distances betweenDw and
IDMi , whereIDMi is the mean moment vector of theith

defect in IDmoment. All classes with distances less than
an empirically-derived threshold are chosen as candidate
classes.Step 2, works on theseK classes only. If no class
can be selected,D is considered a new defect. Databases
IDshape andIDmoment are updated immediately, so thatD
is available when the next frame is processed.

In a similar fashion, one can use Naive Bayes and Voting
based classifiers. Like theKNN classifier, these classifiers
also provide metrics which can be used to select the topK
candidate classes. More specifically, a Naive Bayes classifier
provides the probabilities of a feature vector belonging to
each class, and a voting based classifier gives the number of
votes for each class. The topK classes can then be chosen
based on probabilities and votes. We chose VFI as our voting
based classifier. As for other types of classifiers, such as the
decision tree-based ones, it is not trivial to pickK candidate
classes, therefore they are not considered in this work.

From the three applicable classifiers, theKNN classifier
is chosen because it gives the highest classification accuracy,
as described in Section 5. Besides its high accuracy, theKNN
classifier is incremental in nature. In other words, there is no
need to re-build the classification model from scratch if a
new class is discovered. In contrast, Naive Bayes and VFI
will require the classification model to be re-built every time
a new class is discovered.

The K candidate classes are passed toStep 2. The
representative shapes of theseK classes are matched using
an exact shape matching algorithm based on the Largest
Common Substructure (LCS). Next, we explain the main
steps of our exact matching approach.

4.2.2 Step 2 - Largest Common Substructure based
algorithm: Assume,A is a defect of unknown type and
B is the median defect representing one of the candidate
classes fromStep 1. The defects are mean centered and the
rotation is resolved. We next describe all the steps of the
LCS algorithm in detail.

• Atom Pairs Formation: The defects are sorted w.r.t.
their x-ordinate. Two atomsi and j in defectA form
an atom pairAij if distance(Ai, Aj) ≤ bond length.
This step uses the information about neighbors and
connectivity calculated inPhase 1. These atom pairs
are calculated for both defects. For each atom pair
Aij , we store the projection onto thex, y andz-axes
represented byAijx, Aijy andAijz respectively.

167

• Find matching Pairs: For each pairAij we find all
pairsBkl such that

|Aijx −Bklx| ≤ σnoise

|Aijy −Bkly| ≤ σnoise

|Aijz −Bklz| ≤ σnoise,

where the thresholdσnoise is obtained as explained in
Section 4.1.1.

We represent this equality of atom pairs asAij ↔ Bkl,
which implies that the length and orientation of the
bond formed by atomsi and j of defectA is similar
to the bond formed by atomsk andl of defectB.

By comparing each projection separately, we intrinsi-
cally take care of both: bond length and orientation.

• Find Largest Common Substructure (LCS): The
rules generated in the previous step are used to find the
largest common substructure between two defects. We
use a region growing based approach to find LCS.

The pseudo code for finding LCS is shown in Figure 5.
Before explaining each step in detail, we define the
notion ofcompatible substructures:

Two substructuresU andV are considered compatible
w.r.t. the ruleAij ↔ Bkl, if the last atom added toU is
the ith atom of defectA and the last atom added toV
is thekth atom of defectB.

Being compatible implies that the two substructures
have the same number of atoms and the orientation
of atoms (which defines shape) is approximately same
(within noise thresholds).

The algorithm starts by finding allcompatible sub-
structures U andV w.r.t to the ruleAij ↔ Bkl (Line
4). The length ofU (andV) is increased by one and
atomsj andl are added. Lines 5-10 of Figure 5 show
this process. However, if nocompatible substructure
is found a new substructureU (andV) is initialized with
atomsi andj (k andl). Lines 11-16 in Figure 5 refer to
this case. The same process is then repeated for all the
rules.

This method also provides the correspondence between
atoms. Atoms inU andV have a one-to-one relation-
ship between them.

• Similarity Metric Computation: The Largest
Structure(LS) is then chosen from the common sub-
structures. We use the following metric to determine
the similarity betweenA andB:

Sim(A,B) =
2 ∗ ‖LS‖
‖A‖+ ‖B‖

1 Input : All rules
2 For each rule :Aij ↔ Bkl

3 {
4 Find Compatible substructuresU andV
5 If U andV found
6 {
7 Length = Length+1;
8 U [Length] = j;
9 V [Length] = l;
10 }
11 else
12 {
13 CreatenewU andV ;
14 Storei andj in U ;
15 Storek andl in V ;
16 }
17 }

Figure 5: Pseudo code for finding Largest Common Sub-
structure

This similarity is calculated betweenA and all theK
candidate defect classes. The class which gives the
maximum similarity greater than a user defined thresh-
old is chosen as the target class. If the maximum sim-
ilarity is less than the user defined threshold the defect
is considered new and both the databases,IDshape and
IDmoment are updated. The summary database is up-
dated for each defect (previously seen or new).

5 Experiments and Results

In this section we present the results of our framework. As
noted earlier we use OHMMS (see Section2) to generate the
datasets. We first, show the advantage of weighted moments
over unweighted moments by comparing the accuracies of
various classifiers. Next, we demonstrate the accuracy of the
LCS algorithm bootstrapped with different classifiers:KNN,
Naive Bayes and VFI. Later, we show the scalable aspects
of our framework by deploying it on very large datasets (in
the giga-byte range). Finally, we present preliminary results
demonstrating how our two-step classifier can help us gain a
better understanding of defect evolution.

5.1 Robust Classification:To illustrate the importance of
using weighted moments as opposed to unweighted mo-
ments, we performed the following experiment: a total of
1,400 defects were randomly sampled across multiple simu-
lations conducted at different temperatures. The noise in the
simulation depends on the temperature at which the lattice is
simulated. Therefore two defects belonging to the same class
can have different number of atoms and/or different positions

168

0

10

20

30

40

50

60

70

80

90

100

N
aï

ve
Bay

es
LW

L

H
yp

er
pi
pe VFI

D
ec

is
io
nt

re
e

on
eR

SM
O

Jr
ip

KN
N
 (K

=1)

Classifier

A
c
c
u

ra
c
y
(%

)

Unweighted Moments

Weighted Moments

Figure 6: Accuracies of various classifiers

0

10

20

30

40

50

60

70

80

90

100

KNN Bayes VfI

Classifier

A
c
c
u

ra
c
y
(%

)

Unweighted Moments

Weighted Moments

Figure 7: The accuracy of different classifiers for weighted
and unweighted moments. The weighted moments on aver-
age increase the accuracy by about 8%.

of atoms depending on the temperature, even though their
core defect shape remains approximately the same. This
sampling strategy ensures that no two defects of the same
class are exactly the same. Each defect, in this experiment,
belongs to one of the fourteen classes of single interstitial
defects that are known to arise in Si.

For comparison purposes, we tried nine different classi-
fiers. Figure 6 clearly demonstrates that all classifiers per-
form better when weighted moments were used. Classifica-
tion accuracies ofVF1, KNN (K=1) andDecision treebased
classifiers are comparable (close to 90%).SMO(SVM based
classifier), also provided good accuracy (85%) but it was
quite slow; classifying 1,400 defects took over 25 minutes.
On average the classification accuracy increased by 8% when
weighted moments were used.

Next, we present the classification accuracies ofNaive
Bayes, KNN and VFI. These classifiers are modified to pick
the K most important classes dynamically (as explained

in Section 4). Figure 7 shows the results for this experi-
ment. KNN with weighted moments outperforms all other
classifiers by achieving an accuracy of 99% whereasNaive
Bayesis the least accurate with an accuracy of 86%. Again,
weighted moments outperform unweighted moments.

An important point to note is that all the 1,400 defects
used for this experiment were labeled manually by a domain
expert. However, in actual simulation data there are no
predetermined labels since new classes can be created as
the simulation progresses. Also there is no training data
to build the initial model forDecision treeandNaive Bayes
classifiers. For the purpose of this experiment, we artificially
divided the dataset into training (90%) and testing data
(10%) for all the classifiers that require training data to build
model. Classifier accuracies are averaged over10 runs of the
classifiers.

Only KNN and VFI can discover new classes in real
time. Both classifiers calculate a similarity metric for clas-
sification: distance in the case of KNN and votes for VFI.
If this similarity metric is less than a user defined threshold,
a new class label can be assigned to the defect. However,
VFI will have to build the whole classification model from
start whenever a new defect class is discovered. Since large
number of defect classes can be created in a simulation, re-
building the classification model repeatedly will degrade the
performance considerably.

Thus theLCS algorithm bootstrapped with theKNN
classifier using weighted central moments is the best choice
in terms of accuracy and efficiency.

5.2 Scalable Classification - Large Simulations:We use
three large datasets, namelyTwo Interstitials , Three Inter-
stitials, andFour Interstitials for these experiments. Ta-
ble 1 summarizes the number of frames, size of the dataset,
total number of defects present in the simulation and number
of unique defect classes identified by our framework. For all
three datasets, our framework was able to correctly identify
all the defect structures. However, given the paucity of space
we only present an in-depth analysis of theThree Intersti-
tials dataset. Similar results were also obtained for other
datasets.

Dataset Number of Size Total Defects Unique Defects

Frames (in GB) Detected

Two Interstitials 512,000 4 350,000 2,841

Three Interstitials 200,200 6 320,000 1,543

Four Interstitials 297,000 10 410,000 3,261

Table 1: Datasets Used in Evaluation

Figure 8 shows the defect evolution of a simulation
starting with three separated single interstitial defects. The
defects move around in the lattice during the first 19,000

169

(a) (b) (c)

Figure 8: Transitions for tri-interstitials defects. The simulation starts with three separate single interstitials in the first frame
(a). In 20,000th frame (b) two of the defect form new defect. After 130,000th frames the third defect combines with the
other defect and forms a large compact defect.

time frames. However, at the 20,000th time frame two
of the defects join and form anew larger defect. This
larger defect does not change for a long period of time.
However, at the 130,000th time frame the third defect joins
the new defect and forms a single large defect which remains
unchanged until the end of the simulation. For the remainder
of this paper we refer to changes in defect shape or type as
”transitions”.

Though, transitions occur over a large period (thousands
of time steps), atoms do not stay at the exact same position
in two consecutive frames due to thermal noise. Thermal
motion can cause bulk atoms to be labeled as defect atoms
(and vice versa). As a result, there exist marginal fluctuations
in the shape of a defect from frame to frame. However,
the effect of these changes on weighted central moments
is small. For example, in theThree Interstitials dataset,
the total number of defect instantiations in the simulation
was around 320,000. However, our classifier detected only
1,543 unique defect classes. These 1,543 defects capture the
actual transitions as verified by a domain expert. To reiterate,
the use of weighted moments minimizes false positives and
ensures robust classification.

The use of weighted moments and pruning inStep 1
also allows our approach to achieve good scalability. Finding
the LCS is a relatively expensive algorithm, therefore we
want to use it as infrequently as possible. In most cases the
number of candidate classesK from Step 1(KNN classifier)
of our dynamic classifier is less than three. For example,
in the Two interstitials dataset 2,841 unique defects were
found however, the LCS algorithm only evaluates less than
three closest matches. This underlines the usefulness of
the pruning step of our classifier. The discovery of all the
unique defect classes demonstrates that the correct defect
classes are not pruned away. To summarize, pruning based
on weighted moments provides scalability to the framework
without affecting the accuracy.

Many of these defects are not stable, i.e, they may

exist for as few as 100 time frames; however these unstable
defect structures are extremely important since they allow
one to understand the physics behind the creation of, and
transitioning to, stable structures. We can easily eliminate
these unstable structures from our repositories by either
maintaining simple counts or by time averaging the frames.
However, using both these techniques will result in loss of
transition information. To illustrate this point we took the
sameThree Interstitials dataset and averaged it over every
128 frames. In this averaged data, we found only 18 unique
defects. It turns out that we found all the possible stable
structures, but the actual transitioning behavior was lost.

5.2.1 Timing Results: Figure 9 shows the time taken by
OHHMS to complete the simulation and time taken by our
framework to analyze the data. The figure also shows
the individual time taken byPhase1(defect detection) and
Phase2(classification). Phase1takes around 45% of the
time and Phase2requires the rest of the time. All the
experiments are carried out on Pentium 4 2.8 GHz dual
processor machine with 1 GB of main memory.

Our classifier can analyze the data almost 1.5 times
faster than the data generation rate. This allows us to analyze
the data and build the defect databases in real time without
dropping/losing any frames. Another advantage is that we
are not required to store the large simulation file (of the order
of 15GB) on disk. All the needed information about defect
type(s), number(s) and transitions, can be obtained from the
simulation databases and the summary file.

Next we show how the results produced by the frame-
work can be used for tracking and understanding the move-
ment of defects in the simulation.

5.3 Meta-stable Transitions: Transitions between meta-
stable defect structures are important for the description of
the defect evolution and dynamics. We present experimental
results of a simulation that depicts the transition from one

170

Figure 10: Capturing the movement of defect

0

5

10

15

20

25

30

35

40

Two Interstitial Three Interstitial Four Interstitial

Datasets

T
im

e
 (

in
 h

o
u

rs
)

OHMMS

Framework

Phase1

Phase2

Figure 9: Timing Results. The classification of the defects is
about 40% faster than the MD simulation allowing for real-
time analysis of the defect evolution.

defect to another.
The simulation is fairly small but provides important in-

sight into the transition between two relevant defect struc-
tures in Si [16]. The simulation has 1,300 frames with 67
atoms in each frame and one tri-interstitial defect. We detect
50 unique defects that capture the transitions from the defect
of type I3us-01 toI3us-03. (These labels are provided by
domain experts). The defect does not separate into multiple
parts; therefore, we do not have to deal with the correspon-

dence problem in this case1. Again, all these results have
been verified by our domain expert by manually checking
every frame of the simulation.

5.4 Generating defect trajectories:From the summary
database produced at the end of simulation analysis, we can
glean important information about the movement of a defect
in lattices. The summary database provides information to
construct a defect’s motion trajectory over a period of time.
We use a 10,000 frame simulation to show this. In this
simulation the defect moves in the−z direction through the
lattice, reaches the end of the lattice and then stays in thexy
plane. We found 70 unique defects in this simulation. All the
detected defects are labeled as one of these 70 classes. Most
of these defects were highly unstable. We plot the (x,y,z)
coordinates of all the detected defect’s weighted centroid at
each time stamp. Figure 10 clearly shows the movement of
the defect in the−z direction. This idea can be extended
to a multiple defect simulation. Since the defects in the
summary database are labeled therefore, it should be fairly
easy to construct multiple trajectories for multiple defects.
By studying these labeled trajectories, one can gain more
insight on how a defect evolves and interacts with other
defects over time.

6 Conclusions

In this application case study, we propose a two-step clas-
sifier to classify the defects in large scale MD simulation

1Correspondence allows the labeling of two defects with the same class
label at two different time epochs.

171

datasets. The classifier is scalable and incremental in nature.
New classes of defects can be discovered and added to clas-
sifier model in real time. The approach is also robust to noise
(inherent to MD simulations). We present various noise han-
dling schemes and validate these schemes using a physical
model and properties of the lattice systems. We demonstrate
the capabilities of our approach by deploying it on very large
datasets (≥ 4GB). We were able to find a very small num-
ber of unique defect classes from these large datasets. These
unique classes capture the defect transitions very well.

We are currently working on solving the correspondence
problem in the context of multiple defects. This will enable
us to build an automated system to capture important events
such asdefect disintegrationanddefect amalgamation. An-
other future goal is to understand the interactions among de-
fects in a simulation. Towards this goal, we plan to model the
movement of defect as trajectories, tagged by defect class
labels, and analyze these trajectories. We also plan to ap-
ply other data mining techniques including frequent itemset
mining and spatial patterns mining to gain more insight in
the actual defect evolution process.

7 Acknowledgments

This work is supported by the National Science Foundation
under the auspices of grants NGS-0326386, ACI- 0234273
and NSF Career Award IIS-0347662. The authors would also
like to thank Kaden Hazzard and Thomas Lenosky for useful
discussions and comments. We would also like to thank
Richard Henning for his useful comments while preparing
this manuscript.

References

[1] C. Borgelt and M. Berthold. Mining Molecular fragments:
Finding relevant substructures of molecules. InICDM, 2002.

[2] S.J. Clark and G.J. Ackland. Ab initio calculation of the self
interstitial in silicon.Physical Review Letters vol. 56, 1997.

[3] A. S. Clarke and H. Jnsson. Structural changes accompany-
ing densification of random hard-sphere packings.Physical
Review E vol.47, pages 3975–3984, 1993.

[4] K. Eric Drexler. Nanosystems: molecular machinery, manu-
facturing, and computation. Wiley Publishers, 1992.

[5] J.M. Galvez and M. Canton. Normalization and shape recog-
nition of three-dimensional objects by 3d moments.PR,
26:667–681, 1993.

[6] M. Hu. Visual Pattern Recognition by Moment Invariants. In
IRE Trans Information Theory, pages 179–187.

[7] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. InKnowledge and Data Discovery
(SIGKDD), 2001.

[8] H. Jonsson and H. C. Andersen. Icosahedral ordering in the
lennard-jones liquid and glass.Physical Review Letters vol.
60, pages 2295–2298, 1988.

[9] Charles Kittel. Introduction to Solid State Physics. John
Wiley and Sons, 1971.

[10] L. Dehapse, H. Toivonen and R. King. Finding Frequent sub-
structures in chemical compounds. InKnowledge Discovery
and Data Mining, 1998.

[11] T. J. Lenosky, B. Sadigh, E. Alonso, V. V. Bulatov, T Diaz
de la Rubia, J. Kim, A. F. Voter, and J. D. Kress. Highly
optimized empirical potential model of silicon.Modeling and
Simulation in Materials Science and Engineering, 8:825–841,
2000.

[12] M. Jiang, T.-S. Choy, S. Mehta, M. Coatney, S. Barr, K. Haz-
zard, D. Richie, S. Parthasarathy, R. Machiraju, D. Thomp-
son, J. Wilkins, and B. Gatlin. Feature Mining Algorithms
for Scientific Data . InSIAM, 2003.

[13] Sameep Mehta, Kaden Hazzard, Raghu Machiraju, Srinivasan
Parthasarathy, and John Wilkins. Detection and visualization
of anomalous structures in molecular dynamics simulation
data. InIEEE Conference on Visualization, 2004.

[14] R. Machiraju, S. Parthasarathy, J. Wilkins, D. Thompson, B.
Gatlin, D. Richie, T. Choy, M. Jiang, S. Mehta, M. Coatney,
and S. Barr. Mining of Complex Evolutionary Phenomena,
Next Generation Data Mining. InNGDM, 2003.

[15] R. Nussinov and H. Wolfson. Efficient Detection of three di-
mensional Structural Motifs in Biological Macromolecules by
Computer Vision Techniques. InProceedings of the National
Academy of Sciences of the United States of America, vol-
ume 88, Dec 1, 1991.

[16] D. A. Richie, J. Kim, S. A. Barr, K. R. A. Hazzard, R. G.
Hennig, and J. W. Wilkins. Complexity of small silicon self-
interstitial defects. Physical Review Letters, 92(4):045501,
2004.

[17] D. A. Richie, J. Kim, and J.W.Wilkins. Applications of
real-time multiresolution analysis for molecular dynamics
simulations of infrequent events. InMaterials Research
Society Symposia Proceedings, volume 677, pages AA5.1–7.
MRS Press, 2001, 2001.

[18] S. Djoko, D. Cook and L. Holder. Analyzing the benefits of
domain knowledge in substructure discovery. InKnowledge
Discovery and Data Mining, 1995.

[19] S. Parthasarathy and M. Coatney. Efficient Discovery of
Common Substructures in Macromolecules . InICDM, 2002.

[20] R. Thomson, S. J. Zhou, A. E. Carlsson, and V. K. Tewary.
Lattice imperfections studied by use of lattice green’s func-
tions. Physical Review B 46, pages 10613–10622, 1992.

[21] R. Veltkamp and M. Hagedoorn. State-of-the-art in shape
matching. Technical Report UU-CS-1999-27, Utrecht Uni-
versity, the Netherlands, 1999.

[22] R.J. Needs W.K. Leung and G. Rajagopal. Calculation of
silicon self interstitial defects.Physical Review Letters vol.
83, 1999.

[23] X. Wang, J. Wang, D. Shasha, B. Shapiro, S. Dikshitulu, I.
Rigoutsos and K. Zhang. Automated discovery of active mo-
tifs in three dimensional molecules. InKnowledge Discovery
and Data Mining, 1997.

[24] Y. Lamdan and H. Wolfson. Geometric Hashing : a general
and efficient model-based recognition scheme. InProceed-
ings of the second ICCV, pages 238–289, 1988.

[25] C. Zhang and T. Chen. Efficient Feature Extraction for 2D/3D
Objects in mesh representation. InICIP, 2001.

172

���������	��
���
�������������������������
� !���"�#
� #$��%��&('�)��+*,
� -�#'��/.0��
���
��1�,243��#�"������5# 6*,
��
7 -��*8����5# !�%9:*8���;*,)�3<*8���" =��
��

>@?�AB?BC8D	E<FHG8CI?BJK?BLM?BN ∗ O ?BC�PK?�Q�RTSI?�U�LM? † V�W D O G8C ‡

X�Y8Z\[\]_^�`a[
bdcfehgjiHe"iHk�cml\noc;prqts ctn_uvl\w xHi\gjs ujy{z|uji}zrs n{c�e"iHk�s ujs ~Kc�l\n��
n{ctxKl�ujs ~Kc	e�l�u�ujc;gjn{k�s n@w l�gjxHc�k�e�l�ujs l\w��{l�u�l\��l\k�ctkt�,�8y{c%l\w xHi\gjs ujy{z
s k���l\k�c��}iHn�c;�he{w iHs ujs n{xml�qtiHzre{w ctzrctn_u�l�gjs u��mehgjiHe"c;g�u�����i\gdl
qtc;g�u�l\s n6k��{e{e"i\g�u���w s �Kc�zrc�l\k��hgjcH���8y{s kvehgjiHe"c;g�u��oxH��l�g�l\n_ujctctk
ujy�l�u�s �Il�e"iHk�s ujs ~Kc��_��e�l�u�ujc;gjn�s kr�j� gjc��_�{ctn_u\�	ujy{ctn

O(k)
gjctw l�ujc��

n{ctxKl�ujs ~Kcde�l�u�ujc;gjn{kT�,s w w��"cds nh� gjc��_�{ctn_u��(�{i\g�ujy{c�u�g�lH�hs ujs iHn�l\w
k��{e{e"i\g�u%zrc�l\k��hgjc�ujy{s k%qtiHzre{w ctzrctn_u�l�gjs u���ehgjiHe"c;g�u���y{iHw �hk	u�gj�{c
iHn{w �!�,y{ctn(ujy{c�zrs n{s z��{z�k��{e{e"i\g�u�s kmi�~Kc;gm�{� u���e"c;gjqtctn_u��
bdc}l\w k�i�qtiHnh�{gjz�ujy{c�qti\g�gjctq;ujn{ctk�k�i\�<iH�hg�l\e{ehgjiKl\q�y!�{k�s n{x
��s e{w c;��� k� ����{�{n{q;ujs iHn+¡%lfkMu�l\n��{l�g��muji_iHw�s n/k�e�l�ujs l\w�kMu�l�ujs kMujs qtk
��i\g�l\n�l\w �h¢ts n{xre"iHs n_u�e�l�u�ujc;gjn{kt�I£¤�aujctn{k�s ~Kc	c;�he"c;gjs zrctn_u�l�ujs iHn@iHn
�{l�u�l�c;�au�g�l\q;ujc��d� gjiHz¥ujy{cT¦aw iKl\nv§�s xHs u�l\w�¦a�_�4¦a�hgj~Kc;�f¨�¦a§%¦{¦{©
�{l�u�l\��l\k�c��hctzriHn{kMu�g�l�ujctk�ujy{c��hujs w s u���i\�IiH�hg�l\e{ehgjiKl\q�y�ujiTw l�gjxHc
k�q�l\w c��{l�u�l�c;�he{w i\g�l�ujs iHn+�

ª¬«�­ [\]_®-¯±°±`a[H²�® ­�³
´�µ+¶_·;¸�¶a¹»º�¶_·t¶�¼@¸ ½�¸ ½�¾(¸�¿�·;À�Áo·t¶h¿�Â1ÃaÄfº"¸�¿;Å�Ã_ÆhÁ\Ç;¸ ½�¾+È<Á�É�Ê
·;Çt¶hÅ�·;¸ ½�¾T¶a½+º�¹ ÁH¶aÇ;½�¸ ½�¾Tµ+¶_·�·;Á\Ç;½+¿�ËÌÇ;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿tÍ,¸ ½<¿�µ+¶_·;¸�¶a¹
º�¶_·t¶aÎ+¶h¿�ÁH¿\ÏI´�µ+¶_·;¸�¶a¹¤º�¶_·t¶�¸�¿#ÄÌÐ�½+º�¶a¼@Á\½{·t¶a¹ ¹ Ñ�º"¸ Ò�Á\Ç;Á\½{·#ÄÌÇ;Ãh¼
·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½+¶a¹+º�¶_·t¶r¸ ½�¸ ·t¿,ÄÌÐ�½+º�¶a¼@Á\½{·t¶a¹B½+¶_·;Ð�Ç;Á�¶a½+º�º"¸�¿j·;Ç;¸ Ê
Î�Ð"·;¸ Ãh½+¶a¹±·;Á\½+º"Á\½+Å�¸ ÁH¿\Ï�Ó�À�Á@ÃhÎ"ÔjÁHÅ�·t¿�¸ ½�¶<¿�µ+¶_·;¸�¶a¹8º�¶_·t¶aÎ+¶h¿�Á
¶aÇ;Á:ÅtÀ+¶aÇt¶hÅ�·;Á\Ç;¸ Õ\ÁHº@Î�Ñ�¶@¿�µ+¶_·;¸�¶a¹�¹ Ã"Å\¶_·;¸ Ãh½<¶a½+º�¿�Á\ÆhÁ\Çt¶a¹B½�Ãh½"Ê
¿�µ+¶_·;¸�¶a¹�¶_·�·;Ç;¸ Î�Ð"·;ÁH¿\ÏIÖ�ÃhÇ#Á�É�¶a¼@µ�¹ ÁhÈ"¶×¾{¶a¹�¶_É"Ñ@º�¶_·t¶aÎ+¶h¿�Á%¼�¶KÑ
Å�Ãh½{·t¶a¸ ½<·;À�Á�É¤ÈBÑd¶a½+º»Õ×Å�ÃaÊMÃhÇtº"¸ ½+¶_·;ÁH¿�ÃaÄI·;À�Á�¾{¶a¹�¶_É"¸ ÁH¿\È"·;À�Á
·jÑ�µBÁH¿�ÃaÄ	¾{¶a¹�¶_É"¸ ÁH¿r¶a½+º�¿�Á\ÆhÁ\Çt¶a¹IÃa·;À�Á\Ç×¶_·�·;Ç;¸ Î�Ð"·;ÁH¿\Ï»Ø%½�Á�É�Ê
¶a¼@µ�¹ Á�ÃaÄ�¶v¿�µ+¶_·;¸�¶a¹#º�¶_·t¶»¼@¸ ½�¸ ½�¾4·t¶h¿�ÂfÀ�Á\Ç;Á�Ù#ÃhÐ�¹�º�ÎBÁ�·;Ã
º"Á�·;Á\Ç;¼@¸ ½�ÁT·;À�Á�Å�Ãh½"ÚBº"Á\½+Å�Á@ÃaÄ�Ú+½+º"¸ ½�¾4¶vÛ�Ü�ÝßÞ;à_á/¾{¶a¹�¶_É"Ñd¸ ½
·;À�Ár½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�ÃaÄI¶a½�â�áßá Ý Ü�ã�Ý�ärå{à_á à\æhç_Ï

è ½»·;Á\Ç;¼�¿%ÃaÄ�¿�µ+¶_·;¸�¶a¹=¿j·t¶_·;¸�¿j·;¸�Å\¿	·;À�¸�¿�µ�Ç;ÃhÎ�¹ Á\¼éÅ�ÃhÐ�¹�ºdÎBÁ
¿j·t¶_·;ÁHº:¶h¿¤ÄÌÃh¹ ¹ Ã_Ù%¿\ê-ë�¸ ÆhÁ\½�¶	¿�Á�·=ÃaÄ�µBÃh¸ ½{·t¿

S = {xi}
ÈH¸�¿¤·;À�Á\Ç;Á

¶:Ù�¶KÑ�·;Ã×ì{Ð+¶a½{·;¸ ÄÌÑ×·;À+¶_·,·;À�Á�µBÃh¸ ½{·t¿,¸ ½
S
Á�É"À�¸ Î�¸ ·#¶�Þ;à_í�îhï_ð

È-ätï_Þ�Þ;â�á à_ã�âtî%ÃhÇ�í�âMå{à_ã�Ýßñ_â�á ç�ätï_Þ�Þ;â�á à_ã�âtî%ÎBÁ\À+¶KÆ�¸ ÃhÇ�òd´"Å�¸ Á\½{·;¸�¿j·t¿
Ù#ÃhÇ;Â�¸ ½�¾T¸ ½»º"¸ ÆhÁ\Çt¿�Á�Ú+Á\¹�º�¿	¸ ½+Å�¹ Ð+º"¸ ½�¾@ÁHÅ�Ãh¹ Ãh¾hÑhÈ�¾hÁ\Ãh¹ Ãh¾hÑ�¶a½+º
¶h¿j·;Ç;Ãh½�Ãh¼×Ñ4¶aÇ;Á@¸ ½{·;Á\Ç;ÁH¿j·;ÁHºf¸ ½�¸ ½"ÄÌÁ\Ç;Ç;¸ ½�¾4¿�Ð+ÅtÀ�¸ ½"ÄÌÃhÇ;¼�¶_·;¸ Ãh½
ÄÌÇ;Ãh¼¥·;À�Á\¸ Ç:º�¶_·t¶�¿�Á�·t¿�¶h¿%¸ ·:ÃaÄß·;Á\½4µ�Ç;Ã_Æ�¸�º"ÁH¿	¸ ½+¿�¸ ¾hÀ{·t¿�¶aÎBÃhÐ"·
·;À�ÁrÐ�½+º"Á\Ç;¹ Ñ�¸ ½�¾@¼@ÁHÅtÀ+¶a½�¸�¿�¼�¿�¶_·%µ�¹�¶KÑhÏ

∗ ó=ôKõ ö�÷jø�ù�õ úßû�ütý×þ�ûHÿKôK÷�û��rþ����Kü\ü���ütý	�ßôHý ü�ø�

�;ú�õ ü�ô��"÷����KôKü�� ü���õ ÷jù
þ�ûHÿKôK÷�û����8þ��������Kù�ú�ø���� õ ���

† ó=ôKõ ö�÷jø�ù�õ úßû�ütý×þ�ûHÿKôK÷�û��rþ����Kü\ü���ütý	�ßôHý ü�ø�

�;ú�õ ü�ô��"÷����KôKü�� ü���õ ÷jù
þ�ûHÿKôK÷�û����8þ��������Kù�ú�ø���� õ ���

‡ ó=ôKõ ö�÷jø�ù�õ úßû�ütý×þ�ûHÿKôK÷�û��rþ����Kü\ü���ütý	�ßôHý ü�ø�

�;ú�õ ü�ô��"÷����KôKü�� ü���õ ÷jù
þ�ûHÿKôK÷�û����8þ��������Kù�ú�ø���� õ ���

Ó�À�Á<¿j·t¶a½+º�¶aÇtºv·;Ã�Ãh¹,·;Ã»·;ÁH¿j·×ÄÌÃhÇT¿�Ð+ÅtÀ�µ+¶_·�·;Á\Ç;½+¿�¸�¿r·;À�Á
·jÙ#ÃaÊMµBÃh¸ ½{·±Å�ÃhÇ;Ç;Á\¹�¶_·;¸ Ãh½�ÄÌÐ�½+Å�·;¸ Ãh½

ζ
Ï è ½{·;Ð�¸ ·;¸ ÆhÁ\¹ Ñ

ζ
Å\¶a¹�Å�Ð�¹�¶_·;ÁH¿

·;À�Á4¹ ¸ ÂhÁ\¹ ¸ À�Ã�Ã"º�ÄÌÃhÇ�Ú+½+º"¸ ½�¾m¶�µBÃh¸ ½{·�½�ÁH¶aÇ@·;À�Á4Æ�¸�Å�¸ ½�¸ ·jÑ}ÃaÄ
¶a½�Ãa·;À�Á\Ç�¾h¸ ÆhÁ\½<µBÃh¸ ½{·�¶a½+º<Å\¶a½<ÎBÁrÁ�É"µ�Ç;ÁH¿;¿�ÁHº<¶h¿

ζ(δA) =
Nobs(δA)

Nbackground(δA)
− 1

Ù	À�Á\Ç;Á
Nobs(δA)

¸�¿:·;À�Á�½�Ð�¼×ÎBÁ\ÇrÃaÄ�µBÃh¸ ½{·t¿rÃhÎ+¿�Á\Ç;ÆhÁHºv¸ ½�¶
¿�¼�¶a¹ ¹�¶aÇ;ÁH¶

δA
¶a½+º

Nbackground(δA)
¸�¿=·;À�Á�Á�É"µBÁHÅ�·;ÁHº�½�Ð�¼TÊ

ÎBÁ\Ç×ÃaÄ%µBÃh¸ ½{·t¿�·;À+¶_·×Ù	¸ ¹ ¹#ÎBÁ<ÃhÎ+¿�Á\Ç;ÆhÁHº�¶h¿;¿�Ð�¼@¸ ½�¾d·;À+¶_·×·;À�Á
º�¶_·t¶�¸�¿:¿;¶a¼@µ�¹ ÁHº»ÄÌÇ;Ãh¼0¶�¾h¸ ÆhÁ\½vÎ+¶hÅtÂ�¾hÇ;ÃhÐ�½+º4º"¸�¿j·;Ç;¸ Î�Ð"·;¸ Ãh½-Ï
� Ã_Ù6·;À�ÁT·;ÁH¿j·r·;Ã»ÅtÀ+¶aÇt¶hÅ�·;Á\Ç;¸ Õ\Ár·;À�Á�º�¶_·t¶<¿�Á�·�Å\¶a½vÎBÁ�¿�Ð�¼TÊ
¼�¶aÇ;¸ Õ\ÁHº�¶h¿

ζ =




< 0
·;À�Á\½4´�¸�¿�½�Á\¾{¶_·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº

≈ 0
·;À�Á\½4´<¶a¾hÇ;Á\ÁH¿�Ù	¸ ·;ÀdÎ+¶hÅtÂ�¾hÇ;ÃhÐ�½+º

> 0
·;À�Á\½4´�¸�¿�µBÃ{¿�¸ ·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº

� Ã_Ù#Á\ÆhÁ\ÇdÅtÀ�Ã�Ã{¿�¸ ½�¾/¶}Î+¶hÅtÂ�¾hÇ;ÃhÐ�½+º�¼@Ã"º"Á\¹r¸�¿»¶}½�Ãh½"Ê
·;Ç;¸ Æ�¸�¶a¹,Á�É"Á\ÇtÅ�¸�¿�Á�¶a½+º�¸�¿�¹�¶aÇ;¾hÁ\¹ Ñvº"Ãh¼�¶a¸ ½"Ê�º"Á\µBÁ\½+º"Á\½{·HÏdÖ�Ð�Ç�Ê
·;À�Á\Ç;¼@ÃhÇ;Á�¸�¿v·;À�Á}Õ\Á�·t¶ ÄÌÐ�½+Å�·;¸ Ãh½(¸ ½+º"Á\µBÁ\½+º"Á\½{· ËÌÀ�Ãh¼@Ãh¾hÁ�Ê
½�ÃhÐ+¿tÍ@ÃhÇ<º"Á\µBÁ\½+º"Á\½{·<Ð�µBÃh½�·;À�ÁfÅ�Ã�ÃhÇtº"¸ ½+¶_·;ÁH¿4ËÌ¸ ½�À�Ãh¼@Ãh¾hÁ�Ê
½�Á\ÃhÐ+¿tÍfÃhÇm¸�¿m¸ ·�Ãh½�¹ Ñ º"Á\µBÁ\½+º"Á\½{·�Ãh½ ·;À�Á�º"¸�¿j·t¶a½+Å�Á ÎBÁ�Ê
·jÙ#Á\Á\½ µBÃh¸ ½{·t¿�ËÌ¸�¿�Ãa·;Ç;Ãhµ�¸�ÅHÍ�ÃhÇ<º"Ã�ÁH¿�·;À�Á�º"¸ Ç;ÁHÅ�·;¸ Ãh½ ¼�¶_·�·;Á\Ç
Ë�¶a½"ÊM¸�¿�Ãa·;Ç;Ãhµ�¸�ÅHÍ�ò! �Á\µBÁ\½+º"¸ ½�¾4Ð�µBÃh½f·;À�Á�¶h¿;¿�Ð�¼@µ"·;¸ Ãh½-È=Æ_¶aÇ;¸ Ê
ÃhÐ+¿

ζ
ÄÌÐ�½+Å�·;¸ Ãh½+¿	À+¶KÆhÁ�ÎBÁ\Á\½dµ�Ç;ÃhµBÃ{¿�ÁHº�¸ ½<·;À�Ár¹ ¸ ·;Á\Çt¶_·;Ð�Ç;ÁhÏ

"�Ð�Ç�ÃhÎ"ÔjÁHÅ�·;¸ ÆhÁ×¸�¿%·;Ã<Ð+¿�Á×¼@Á�·;À�Ã"º�¿�ÄÌÇ;Ãh¼ ¿�µ+¶_·;¸�¶a¹8¶h¿;¿�ÃaÊ
Å�¸�¶_·;¸ Ãh½TÇ;Ð�¹ Á	¼@¸ ½�¸ ½�¾r·;Ã�º"¸�¿;Å�Ã_ÆhÁ\ÇIÅ�Ãh¼@µ�¹ Á�É@¿�µ+¶_·;¸�¶a¹�Ç;Á\¹�¶_·;¸ Ãh½"Ê
¿�À�¸ µ+¿�¶a½+ºT·;À�Á\½�Ð+¿�Á�¿j·t¶_·;¸�¿j·;¸�Å\¶a¹�·;ÁHÅtÀ�½�¸�ì{Ð�ÁH¿I·;ÃTº"Á�·;Á\Ç;¼@¸ ½�Á%¸ Ä
·;À�ÁH¿�Á:Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿	¶aÇ;Á�¸ ½+º"Á\ÁHºd¿�Ð�Î+¿j·t¶a½{·;¸ ÆhÁhÏ

#�Ãh¼@µ�¹ Á�É!Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿f¸ ½+Å�¹ Ð+º"Á/ÎBÃa·;À(µBÃ{¿�¸ ·;¸ ÆhÁ/¶a½+º
½�Á\¾{¶_·;¸ ÆhÁd¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½�Ç;Ð�¹ ÁH¿\Ï%$8Ã{¿�¸ ·;¸ ÆhÁdÇ;Ð�¹ ÁH¿�¶aÇ;Á�·;À�Á»·;Çt¶_Ê
º"¸ ·;¸ Ãh½+¶a¹�¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½}Ç;Ð�¹ ÁH¿�ÃaÄ:·;À�Á4ÄÌÃhÇ;¼

A → B
È%Ù	À�¸�ÅtÀ

¸ ½+º"¸�Å\¶_·;ÁH¿�·;À�Á�µ�Ç;ÁH¿�Á\½+Å�ÁrÃaÄ'&�¸ ½d·;À�Á�½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�ÃaÄ,Ø�Ï
� Á\¾{¶_·;¸ ÆhÁ#Ç;Ð�¹ ÁH¿8¶aÇ;Á#ÃaÄ+·;À�Á#ÄÌÃhÇ;¼

A→ −B
ÈaÙ	À�¸�ÅtÀT¸ ½+º"¸�Å\¶_·;ÁH¿

·;À�Á�¶aÎ+¿�Á\½+Å�Á�ÃaÄ(&�¸ ½<·;À�Ár½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�ÃaÄ8Ø�Ï
) À�¸ ¹ Á/¼×Ð+ÅtÀ�Ç;ÁH¿�ÁH¶aÇtÅtÀ À+¶h¿fÎBÁ\Á\½(º"Ãh½�Á}Ãh½�µBÃ{¿�¸ ·;¸ ÆhÁ

¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½�Ç;Ð�¹ ÁH¿×¼@¸ ½�¸ ½�¾+ÈIÆhÁ\Ç;Ñ�¹ ¸ ·�·;¹ Á<µ�Ç;Ãh¾hÇ;ÁH¿;¿rÀ+¶h¿×ÎBÁ\Á\½
¶hÅtÀ�¸ Á\ÆhÁHº�¸ ½}¼@¸ ½�¸ ½�¾f½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿\ÏmÓ�À�Á<Ç;ÁH¶h¿�Ãh½�ÄÌÃhÇ
·;À�¸�¿-¸�¿-Ù	À�¸ ¹ Á,¾hÁ\½�Á\Çt¶_·;¸ ½�¾	Å\¶a½+º"¸�º�¶_·;ÁI¸ ·;Á\¼�¿�Á�·t¿-¸ ½�¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½
Ç;Ð�¹ ÁH¿I¼@¸ ½�¸ ½�¾+È{¸ ·#Ù#ÃhÐ�¹�ºTÎBÁ�½�ÁHÅ�ÁH¿;¿;¶aÇ;Ñr·;Ã×Å�Ãh½+¿�¸�º"Á\Ç,½�Ãa·�Ãh½�¹ Ñ
·;À�Á�µBÃ{¿�¸ ·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿\È:Î�Ð"·f¶a¹�¿�Ã�·;À�Á�½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿
¶a½+º�ÁH¶hÅtÀ�µBÃ{¿�¸ ·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½<ÃaÄ±¹ Á\½�¾a·;À

k
¾h¸ ÆhÁH¿#Ç;¸�¿�Á�·;Ã

O(k)½�Á\¾{¶_·;¸ ÆhÁIµ+¶_·�·;Á\Ç;½+¿-¼�¶aÂ�¸ ½�¾	·;À�Á#¿�ÁH¶aÇtÅtÀr¿�µ+¶hÅ�ÁIÁ�É"µBÃh½�Á\½{·;¸�¶a¹ ¹ Ñ

173

¹�¶aÇ;¾hÁ\Ç¤·;À+¶a½�·;À�Á�¿�µ+¶hÅ�Á,ÄÌÃhÇ±µBÃ{¿�¸ ·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿\Ï è ½r·;À�¸�¿±µ+¶aµBÁ\Ç
Ù#Á�µ�Ç;ÁH¿�Á\½{·�¶a½mÁ���Å�¸ Á\½{·�¶a¹ ¾hÃhÇ;¸ ·;À�¼�·;Ãf¾hÁ\½�Á\Çt¶_·;Á�Å�Ãh¼@µ�¹ Á�É
Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿#¸ ½»¿�µ+¶_·;¸�¶a¹-º�¶_·t¶aÎ+¶h¿�ÁH¿\Ï

ªB³�ª������ ^"[� ¯	�×®+]�
 Ø�¿;¿�Ã"Å�¸�¶_·;¸ Ãh½�Ç;Ð�¹ ÁH¿r¶aÇ;Á�Å�Ãh½+¿�¸�º"Á\Ç;ÁHº
Ãh½�Á%ÃaÄ�·;À�Á�¼�¶_ÔjÃhÇ#¿�Ð+Å\Å�ÁH¿;¿,¿j·;ÃhÇ;¸ ÁH¿,ÃaÄ-º�¶_·t¶r¼@¸ ½�¸ ½�¾×Ç;ÁH¿�ÁH¶aÇtÅtÀ
�
�� Ï,Ø�¿;¿�Ã"Å�¸�¶_·;¸ Ãh½��	Ð�¹ ÁH¿�¶aÇ;Á	·;Çt¶hº"¸ ·;¸ Ãh½+¶a¹ ¹ Ñ@º"ÁH¿;Å�Ç;¸ ÎBÁHº�¸ ½�·;À�Á
ÄÌÇt¶a¼@Á\Ù#ÃhÇ;Â�ÃaÄ:¼�¶aÇ;ÂhÁ�·�Î+¶h¿�ÂhÁ�·�¶a½+¶a¹ Ñ"¿�¸�¿\Ïoë�¸ ÆhÁ\½�¶�¿�Á�·�ÃaÄ
¸ ·;Á\¼�¿ è ¶a½+º�¶×¿�Á�·#ÃaÄ¤·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½+¿,Ó�Å�Ãh½+¿�¸�¿j·;¸ ½�¾�ÃaÄ=¿�Ð�Î+¿�Á�·t¿
ÃaÄ è È±¶a½mØ�¿;¿�Ã"Å�¸�¶_·;¸ Ãh½��	Ð�¹ Á�¸�¿×¶dÇ;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ�ÃaÄ#·;À�Á�ÄÌÃhÇ;¼
A →s,c B

È¤Ù	À�Á\Ç;Á×Ø(¶a½+º & ¶aÇ;ÁT¿�Ð�Î+¿�Á�·t¿�ÃaÄ è Ù	À�¸ ¹ Á@¿�¶a½+º
Å�¶aÇ;Á:·;À�Á×¼@¸ ½�¸ ¼×Ð�¼ ¿�Ð�µ�µBÃhÇ�·�¶a½+º»Å�Ãh½"ÚBº"Á\½+Å�ÁrÃaÄ8·;À�Á×Ç;Ð�¹ ÁhÏ
Ø6¸�¿%Å\¶a¹ ¹ ÁHº�·;À�Á×¶a½{·;ÁHÅ�ÁHº"Á\½{·�¶a½+º & ·;À�Á�Å�Ãh½+¿�ÁHì{Ð�Á\½{·%ÃaÄ±·;À�Á
Ç;Ð�¹ ÁhÏ�Ó�À�Á�¿�Ð�µ�µBÃhÇ�·

σ(A)
ÃaÄ,¶�¿�Ð�Î+¿�Á�·�Ø6ÃaÄ è ¸�¿%º"Á�Ú+½�ÁHº»¶h¿

·;À�Á�µBÁ\ÇtÅ�Á\½{·t¶a¾hÁ%ÃaÄ-·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½+¿,Ù	À�¸�ÅtÀ�Å�Ãh½{·t¶a¸ ½�Øo¶a½+º@·;À�Á
Å�Ãh½"ÚBº"Á\½+Å�Á�ÃaÄ¤¶�Ç;Ð�¹ Á

A→ B
¸�¿ σ(A∪B)

σ(A)

Ï��»Ã{¿j·,¶a¹ ¾hÃhÇ;¸ ·;À�¼�¿
ÄÌÃhÇ8¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½rÇ;Ð�¹ Á�º"¸�¿;Å�Ã_ÆhÁ\Ç;Ñ�·t¶aÂhÁ#¶hº"Æ_¶a½{·t¶a¾hÁ,ÃaÄ�·;À�Á�¶a½{·;¸ Ê
¼@Ãh½�Ãa·;Ãh½�¸�Å�¸ ·jÑ�µ�Ç;ÃhµBÁ\Ç�·jÑ:Á�É"À�¸ Î�¸ ·;ÁHº�Î�Ñ�·;À�Á�¿�Ð�µ�µBÃhÇ�·±¹ Á\ÆhÁ\¹�ê è Ä
A ⊂ B

·;À�Á\½
σ(A) ≥ σ(B)

Ï
"�Ð�Ç�ÄÌÃ"Å�Ð+¿<¸�¿�·;Ã/¶aµ�µ�¹ Ñ}·;À�Áfµ�Ç;¸ ½+Å�¸ µ�¹ ÁfÃaÄTØ%µ�Ç;¸ ÃhÇ;¸�¸ ½

¿�µ+¶_·;¸�¶a¹#º�¶_·t¶�Ï���ÃhµBÁ\Çt¿�Â�¸�¶a½+º � ¶a½ � ��� µ�Ç;ÃhµBÃ{¿�ÁHºv·;À�Á�Ú+Çt¿j·
Á�É�·;Á\½+¿�¸ Ãh½éÃaÄ�·;À�Á(Ø%µ�Ç;¸ ÃhÇ;¸4µ+¶aÇt¶hº"¸ ¾h¼ ·;Ã¥¿�µ+¶_·;¸�¶a¹vº�¶_·t¶�Ï
� Ã_Ù#Á\ÆhÁ\Ç/¸ ½é·;À�Á\¸ Ç ¼@Á�·;À�Ã"º�·;À�Á\Ñ�¼�¶_·;Á\Ç;¸�¶a¹ ¸ Õ\ÁHº�¶a¹ ¹»·;À�Á
µBÃ{¿;¿�¸ Î�¹ Á!¿�µ+¶_·;¸�¶a¹4Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿}·;À+¶_· ·;À�Á\Ñ�¸ ½{·;Á\½+º"ÁHº�·;Ã
¼@¸ ½�ÁhÏoÓ�À�¸�¿�¸�¿�ÁHì{Ð�¸ Æ_¶a¹ Á\½{·�·;Ãmº"Á�·;Á\Ç;¼@¸ ½�¸ ½�¾�·;À�Á4Ð�½�¸ ÆhÁ\Çt¿�Á
ÃaÄ@Å\¶a½+º"¸�º�¶_·;Áf¸ ½{·;Á\Ç;ÁH¿j·;¸ ½�¾}Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿\Ï�Ó�À�Ð+¿<¸ ½ ¿�Ãh¼@Á
Ù�¶KÑ"¿I·;À�Á\¸ Ç#·;ÁHÅtÀ�½�¸�ì{Ð�Á:Ù�¶h¿�À�Ñ�µBÃa·;À�ÁH¿�¸�¿#º"Ç;¸ ÆhÁ\½�Çt¶_·;À�Á\Ç�·;À+¶a½
À�Ñ�µBÃa·;À�ÁH¿�¸�¿�¾hÁ\½�Á\Çt¶_·;¸ ½�¾+Ï

Ø%½!Á���Å�¸ Á\½{·�¶a¹ ¾hÃhÇ;¸ ·;À�¼�·;Ã ¼@¸ ½�Á}¶�Â�¸ ½+º6ÃaÄ�¿�µ+¶_·;¸�¶a¹
Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¿�Ù�¶h¿×µ�Ç;ÃhµBÃ{¿�ÁHº�Î�Ñ�´�À�Á\Â�À+¶aÇ@¶a½+º � Ð+¶a½�¾ � ��� Ï
Ó�À�ÁoÅ�Ãh½+Å�Á\µ"·t¿�ÃaÄv½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º¤È<µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½�Çt¶_·;¸ Ã+È
µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½}¸ ½+º"Á�É}Ù#Á\Ç;Á»º"Á�Ú+½�ÁHº¤Ï è ½+¿j·;ÁH¶hº}ÃaÄr¿�Ð�µ�µBÃhÇ�·HÈ
·;À�Á,µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½�¸ ½+º"Á�É:Ù�¶h¿�Ð+¿�ÁHºr¶h¿-¶�µ�Ç;Ð�½�¸ ½�¾	¼@ÁH¶h¿�Ð�Ç;Á8¸ ½
·;À�ÁTÅ�Ãh½�ÆhÁ\½{·;¸ Ãh½+¶a¹=Ø%µ�Ç;¸ ÃhÇ;¸ ÊM¹ ¸ ÂhÁr·;ÁHÅtÀ�½�¸�ì{Ð�ÁhÏ�Ó�À�ÁTº"Çt¶KÙ	Î+¶hÅtÂ
ÃaÄ¤·;À�Á\¸ Ç�¼@Á�·;À�Ã"º�¸�¿,·;À+¶_·	¿�Ãh¼@Á�Å�Ãh½"ÚBº"Á\½{·�Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½�Ç;Ð�¹ ÁH¿
Ù	¸ ·;À ¹ Ã_Ù0¿�Ð�µ�µBÃhÇ�·d¶aÇ;Áv¶a¹�¿�Ãmµ�Ç;Ð�½�ÁHº¤Ï è ½ ÃhÇtº"Á\Ç�·;Ã}¿�Ãh¹ ÆhÁ
·;À�¸�¿�µ�Ç;ÃhÎ�¹ Á\¼dÈ � Ð+¶a½�¾�Á�·:¶a¹�Ï � ��� µ�Ç;ÃhµBÃ{¿�ÁHº�·;À�ÁTÅ�Ãh½+Å�Á\µ"·�ÃaÄ
¼�¶_É"¸ ¼�¶a¹�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½T¸ ½+º"Á�É�¶a½+ºT¸ ·�Ù�¶h¿IÐ+¿�ÁHº@¶h¿Iµ�Ç;Ð�½�¸ ½�¾
¼@ÁH¶h¿�Ð�Ç;Á%·;Ã@Ç;Á\µ�¹�¶hÅ�Á�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½�¸ ½+º"Á�É¤Ï) Á:Ù	¸ ¹ ¹-º"¸�¿;Å�Ð+¿;¿
·;À�ÁH¿�Á}¼@ÁH¶h¿�Ð�Ç;ÁH¿v¸ ½ º"Á�·t¶a¸ ¹@¸ ½ ¿�ÁHÅ�·;¸ Ãh½��"Ï �"È@¶h¿v·;À�Á\Ñ�¶aÇ;Á
Å�Á\½{·;Çt¶a¹B·;Ã�ÃhÐ�Ç%¶aµ�µ�Ç;Ã{¶hÅtÀ-Ï

Ø%½�¶a¹ ¾hÃhÇ;¸ ·;À�¼ ·;Ã�¼@¸ ½�Á»ÎBÃa·;À/µBÃ{¿�¸ ·;¸ ÆhÁ»¶a½+º�½�Á\¾{¶_·;¸ ÆhÁ
¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½�Ç;Ð�¹ ÁH¿TÙ�¶h¿×µ�Ç;ÃhµBÃ{¿�ÁHº�Î�Ñ) Ð}Á�·�¶a¹�Ï �
�
�� Ï è ½
·;À�Á\¸ Ç	¶a¹ ¾hÃhÇ;¸ ·;À�¼1½�Á\¾{¶_·;¸ ÆhÁ�Ç;Ð�¹ ÁH¿�¶aÇ;Á�¾hÁ\½�Á\Çt¶_·;ÁHº@ÄÌÇ;Ãh¼1¸ ½"ÄÌÇ;Á�Ê
ì{Ð�Á\½{·#¸ ·;Á\¼�¿�Á�·t¿�¶a½+º�¸ ½{·;Á\Ç;ÁH¿j·#¸�¿�Ð+¿�ÁHº�¶h¿#¶rÄÌÐ�Ç�·;À�Á\Ç#µ�Ç;Ð�½�¸ ½�¾
¼@ÁH¶h¿�Ð�Ç;ÁhÏ &#ÑdÅ�Ãh½+¿�¸�º"Á\Ç;¸ ½�¾@·;À�Á�½�Á\¾{¶_·;¸ ÆhÁrÇ;Ð�¹ ÁH¿%Ãh½�¹ Ñ<¸ ½d·;À�Á
¸ ½"ÄÌÇ;ÁHì{Ð�Á\½{·@¸ ·;Á\¼�¿�Á�·t¿\È�¿�Ãh¼@Á�µBÃa·;Á\½{·;¸�¶a¹	Å�Ãh½"ÚBº"Á\½{·@½�Á\¾{¶_·;¸ ÆhÁ
Ç;Ð�¹ ÁH¿�Å�ÃhÐ�¹�º�ÎBÁ:¹ Ã{¿j·HÏIÖ�ÃhÇ�Á�É�¶a¼@µ�¹ ÁrÅ�Ãh½+¿�¸�º"Á\Ç�Û��HÜhÜ��! #"%$'&�Ï � È
Û��HÜhÜ��! '(*)�"%$'&�Ï � � ¶a½+ºfðTÝßí�Û��HÜ+$'&�Ï �"Ï � Á\Ç;Á-,KØ�È &/.r¸�¿%¶TÄÌÇ;Á�Ê
ì{Ð�Á\½{·�µ+¶_·�·;Á\Ç;½�¿�¸ ½+Å�Á×Û��HÜhÜ��! '(*)�"�0!ðTÝßí�Û��HÜ�ÏIÓ�À�Á\Ç;Á�ÄÌÃhÇ;Á	·;À�Á
½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½1,KØ�È Ê &/.�Ù	¸ ¹ ¹�½�Ãa·TÎBÁ<Å�Ãh½+¿�¸�º"Á\Ç;ÁHº�¶_·@¶a¹ ¹�Ï
� Ã_Ù#Á\ÆhÁ\ÇHÈ Û��HÜhÜ��! '(324)�"%$ Û��HÜhÜ��! #"tÊ;Û��HÜhÜ��! '(*)�"%$'&�Ï � � Ï�Ó�À�¸�¿
¿�À�Ã_Ù%¿r·;À+¶_·TÁ\ÆhÁ\½�·;À�ÃhÐ�¾hÀ1,KØ�È Ê &/.�¸�¿T¶»ÄÌÇ;ÁHì{Ð�Á\½{·Tµ+¶_·�·;Á\Ç;½-È

¸ ·�¸�¿@µ�Ç;Ð�½�ÁHºm¸ ½�·;À�¸�¿�¶aµ�µ�Ç;Ã{¶hÅtÀ-Ï�Ó�À�Á\Ç;Á�ÄÌÃhÇ;Á�·;À�¸�¿@¼@Á�·;À�Ã"º
Ù	¸ ¹ ¹�½�Ãa·�ÎBÁ»¶aÎ�¹ Á�·;Ãf¼@¸ ½�Á<·;À�Á»Å�Ãh¼@µ�¹ Á�·;Ád¿�Á�·@ÃaÄ�ÄÌÇ;ÁHì{Ð�Á\½{·
½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿�¸ ½<·;À�Á�º�¶_·t¶h¿�Á�·HÏ

Ø%½�Ãa·;À�Á\Ç%¶aµ�µ�Ç;Ã{¶hÅtÀ�ÄÌÃhÇ�¼@¸ ½�¸ ½�¾@µBÃ{¿�¸ ·;¸ ÆhÁr¶a½+º�½�Á\¾{¶_·;¸ ÆhÁ
Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿�Ù�¶h¿�µ�Ç;ÃhµBÃ{¿�ÁHºvÎ�ÑvØ%½{·;Ãh½�¸ Á�¶a½+º65�¶a¸�¶a½�Á � � � Ï
è ½�¶hº�º"¸ ·;¸ Ãh½f·;Ãd·;À�Á»ðTÝßí�Û��HÜf¶a½+º}ðTÝßí�ätï_í%7�¼@ÁH¶h¿�Ð�Ç;ÁH¿�·;À�Á\Ñ
¸ ½{·;Ç;Ã"º"Ð+Å�ÁHº:·;À�Á�Å�ÃhÇ;Ç;Á\¹�¶_·;¸ Ãh½�·;À�Ç;ÁH¿�À�Ãh¹�º�¶h¿-·;À�Á�·;À�¸ Çtº�µ+¶aÇt¶a¼TÊ
Á�·;Á\ÇHÏ±Ó�À�Á\¸ ÇI¶aµ�µ�Ç;Ã{¶hÅtÀr¾hÁ\½�Á\Çt¶_·;ÁH¿=Ãh½�¹ Ñ�¶�¿�Ð�Î+¿�Á�·IÃaÄ+½�Á\¾{¶_·;¸ ÆhÁ
Ç;Ð�¹ ÁH¿\È¤Ù	À�¸�ÅtÀ4·;À�Á\Ñ4Ç;Á�ÄÌÁ\Ç�·;Ãd¶h¿�ätï_í%8,í�âtî<í�âMå{à_ã�Ýßñ_â�àKÛtÛ\ïHä�Ý�à�2
ã�Ý�ï_í Þ��"á â�Û�È�Ù	À�Á\Ç;Ád·;À�Á»Á\½{·;¸ Ç;Á4¶a½{·;ÁHÅ�ÁHº"Á\½{·�ÃhÇ�Å�Ãh½+¿�ÁHì{Ð�Á\½{·
¼×Ð+¿j·�ÎBÁ�¶»Å�Ãh½_ÔjÐ�½+Å�·;¸ Ãh½�ÃaÄ�½�Á\¾{¶_·;ÁHº�¶_·�·;Ç;¸ Î�Ð"·;ÁH¿�ÃhÇ�¶»Å�Ãh½"Ê
ÔjÐ�½+Å�·;¸ Ãh½dÃaÄ±½�Ãh½"ÊM½�Á\¾{¶_·;ÁHº<¶_·�·;Ç;¸ Î�Ð"·;ÁH¿\Ï

ªB³:9<;��>=}«�­ ZH²!?A@�[@^ ­ ¯CB!^�² ­CD ® ­ [\]_²ÌY8°=[H²�® ­ Z

 Ï "�Ð�Ç�ÃhÎ"ÔjÁHÅ�·;¸ ÆhÁd¸�¿@·;Ãm¿�¸ ¼×Ð�¹ ·t¶a½�Á\ÃhÐ+¿�¹ Ñm¼@¸ ½�Á4Å�Ãh¼@µ�¹ Á�É
¿�µ+¶_·;¸�¶a¹<Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿�Ù	À�¸�ÅtÀ¥¸ ½+Å�¹ Ð+º"ÁoµBÃ{¿�¸ ·;¸ ÆhÁ ¶a½+º
½�Á\¾{¶_·;¸ ÆhÁ<µ+¶_·�·;Á\Ç;½+¿\Ï) Á»Å\¶a½/¶hÅtÀ�¸ Á\ÆhÁ�·;À�¸�¿@ÃhÎ"ÔjÁHÅ�·;¸ ÆhÁ
Ð+¿�¸ ½�¾T·;À�Á:ÄÌÃh¹ ¹ Ã_Ù	¸ ½�¾TÃhÎ+¿�Á\Ç;Æ_¶_·;¸ Ãh½-ê

´�Ð�µ�µBÃ{¿�Á
{A, B}

¸�¿,¶:µBÃ{¿�¸ ·;¸ ÆhÁE�KÊM¸ ·;Á\¼�¿�Á�·�¶a½+º
σ(A, B)¸ ·t¿�¿�Ð�µ�µBÃhÇ�·HÏ6Ó�À�Á\½/·;À�Á4ÄÌÃh¹ ¹ Ã_Ù	¸ ½�¾�Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ�Å\¶a½

ÁH¶h¿�¸ ¹ Ñ�ÎBÁ�º"Á\Ç;¸ ÆhÁHº

σ(A,−B) = σ(A) − σ(A, B)
Ë
 Ï
 Í
� Á\Ç;Á

−B
Ç;Á\µ�Ç;ÁH¿�Á\½{·t¿}·;À�Á�¶aÎ+¿�Á\½+Å�Á6ÃaÄ

B
Ï � Ã_ÙrÈ

ÎBÁHÅ\¶aÐ+¿�ÁmÃaÄ@·;À�Á}¶a½{·;¸ ÊM¼@Ãh½�Ãa·;Ãh½�¸�Å�¸ ·jÑ�ÃaÄ�·;À�Á}¿�Ð�µ�µBÃhÇ�·
¼@ÁH¶h¿�Ð�Ç;ÁhÈ

σ(A) ≥ σ(A, B)
Ï!Ó�À�Á\Ç;Á�ÄÌÃhÇ;Á

σ(A, B) >
50%

¸ ¼@µ�¹ ¸ ÁH¿}·;À+¶_·
σ(A,−B) < 50%

Ï � Ãa·;ÁhÈv¶
¿�Ð�µ�µBÃhÇ�·<¾hÇ;ÁH¶_·;Á\Ç�·;À+¶a½

50%
¸�¿�Ç;ÁHì{Ð�¸ Ç;ÁHº}ÄÌÃhÇ�·;À�¸�¿�·;Ã

À�Ãh¹�ºéÐ�½�¸ ÄÌÃhÇ;¼@¹ ÑhÏ Ó�À�¸�¿ Ù	¸ ¹ ¹fÁ\½+¶aÎ�¹ Á!·;À�Á�µ�Ç;Ð�½�¸ ½�¾
ÃaÄ:½�Á\¾{¶_·;¸ ÆhÁdµ+¶_·�·;Á\Ç;½+¿»Ëß·;À�Ã{¿�Ád·;À+¶_·�Å�Ãh½{·t¶a¸ ½/½�Á\¾{¶_·;¸ ÆhÁ
¸ ·;Á\¼�¿tÍ#Î+¶h¿�ÁHº�Ãh½�ÄÌÇ;ÁHì{Ð�Á\½{·	µBÃ{¿�¸ ·;¸ ÆhÁrµ+¶_·�·;Á\Ç;½+¿\Ï
� Ã_Ù#Á\ÆhÁ\ÇHÈ¤ÅtÀ�Ã�Ã{¿�¸ ½�¾<¶d¿�Ð�µ�µBÃhÇ�·r¹ Á\ÆhÁ\¹8ÃaÄ#¾hÇ;ÁH¶_·;Á\Ç�·;À+¶a½
Ú�Äß·jÑ�µBÁ\ÇtÅ�Á\½{·mÙ	¸ ¹ ¹�½�Ãa·m¹ ÁH¶hº�·;Ã Ýßí+ã�â�Þ;â�Û�ã�Ýßí�å/Ç;ÁH¿�Ð�¹ ·t¿
ÎBÁHÅ\¶aÐ+¿�Á6Á\¸ ·;À�Á\Ç�·;À�Á\Ç;Á!Ù	¸ ¹ ¹4ÎBÁ!ÆhÁ\Ç;Ñ�ÄÌÁ\Ù ¸ ·;Á\¼�¿�Á�·t¿
Ù	À�¸�ÅtÀ×À+¶KÆhÁ#¿�Ð+ÅtÀ×À�¸ ¾hÀT¿�Ð�µ�µBÃhÇ�·8ÃhÇ=·;À�Á#¸ ·;Á\¼�¿�Á�·t¿8Ù	À�¸�ÅtÀ
º"Ã�À+¶KÆhÁ4¿�Ð+ÅtÀ/À�¸ ¾hÀ ¿�Ð�µ�µBÃhÇ�·�Ù	¸ ¹ ¹�µ�Ç;ÃhÎ+¶aÎ�¹ Ñ�ÎBÁ4Ù#Á\¹ ¹
Â�½�Ã_Ù	½-ÏIÓ�À�Ð+¿�Ù#Á:½�Á\ÁHºd¶T¼@ÁH¶h¿�Ð�Ç;Á

M
¿�Ð+ÅtÀ�·;À+¶_·

Ë�¶{Í�Ø Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µd¿�¸ ¼@¸ ¹�¶aÇ�·;Ã-F�ì{Ð+¶_·;¸ Ãh½
 Ï
 À�Ãh¹�º�¿\Ï
ËÌÎBÍ è ·�¸�¿	½+¶_·;Ð�Çt¶a¹�·;Ã�¿�Á�·%À�¸ ¾hÀ<·;À�Ç;ÁH¿�À�Ãh¹�º�Æ_¶a¹ Ð�ÁH¿�ËÌ¹ ¸ ÂhÁ

Å�Ãh½"ÚBº"Á\½+Å�ÁKÍ�Ï
Ë�ÅHÍ<Ø ¼@Ãh½�Ãa·;Ãh½�¸�Å�ÊM¹ ¸ ÂhÁ�µ�Ç;ÃhµBÁ\Ç�·jÑ À�Ãh¹�º�¿4Ù	À�¸�ÅtÀ Ù	¸ ¹ ¹

Á\½+¶aÎ�¹ Ám¶a¾h¾hÇ;ÁH¿;¿�¸ ÆhÁvµ�Ç;Ð�½�¸ ½�¾/ÃaÄ�Å\¶a½+º"¸�º�¶_·;Á�µ+¶_·�Ê
·;Á\Ç;½+¿\Ï

) Á�Ù	¸ ¹ ¹/Ð+¿�Á�·;À�ÁG�4¶_É"¸ ¼�¶a¹ $I¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½ è ½+º"Á�É
Ë!�4¶_É $ è Í�¸ ½{·;Ç;Ã"º"Ð+Å�ÁHº�Î�Ñ � Ð+¶a½�¾TÁ�·�¶a¹�Ï � ��� ¶a½+º<¿�À�Ã_Ù
·;À+¶_·#¸ ·	¿;¶_·;¸�¿jÚ+ÁH¿�¶a¹ ¹+·;À�Á%·;À�Ç;Á\Á�µ�Ç;ÃhµBÁ\Ç�·;¸ ÁH¿,Á\½�Ð�¼@Á\Çt¶_·;ÁHº
¶aÎBÃ_ÆhÁhÏ
Ó=Ã�·;À�Á,ÎBÁH¿j·=ÃaÄ�ÃhÐ�Ç-Â�½�Ã_Ù	¹ ÁHº"¾hÁ±·;À�¸�¿-¸�¿�·;À�ÁIÚ+Çt¿j·=Á���Å�¸ Á\½{·
¶a¹ ¾hÃhÇ;¸ ·;À�¼éÙ	À�¸�ÅtÀ�Å\¶a½f¿�¸ ¼×Ð�¹ ·t¶a½�Á\ÃhÐ+¿�¹ Ñ»¼@¸ ½�Á@µBÃ{¿�¸ ·;¸ ÆhÁ
¶a½+º�½�Á\¾{¶_·;¸ ÆhÁ:µ+¶_·�·;Á\Ç;½+¿\Ï

174

�"Ï è ½�ÃhÐ�Ç#ÁH¶aÇ;¹ ¸ Á\Ç#Ù#ÃhÇ;Â � � � È"Ù#Á�À+¶hº�¸ ½{·;Ç;Ã"º"Ð+Å�ÁHº�¶�·t¶_É"Ãh½"Ê
Ãh¼×Ñ�ÃaÄIÅ�Ãh¼@µ�¹ Á�Éd¿�µ+¶_·;¸�¶a¹-Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿#·;À+¶_·�¶aÇ;Á:Ù#ÃhÇ�Ê
·;À�Ñ�ÃaÄIÎBÁ\¸ ½�¾�¼@¸ ½�ÁHº¤Ï�Ó±¶aÎ�¹ Á
 ¾h¸ ÆhÁH¿#·;À�Á�Î+¶h¿�¸�Årº"Á�Ú+½�¸ Ê
·;¸ Ãh½+¿rÃaÄ�·;À�ÁH¿�Á�Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿�¶a½+ºfÙ#Á�Ù	¸ ¹ ¹#¿�À�Ã_Ù�À�Ã_Ù
·;Ã�Á���Å�¸ Á\½{·;¹ Ñ@¼@¸ ½�Á%·;À�ÁH¿�Á%Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿IÐ+¿�¸ ½�¾×ÃhÐ�Ç�¶aµ"Ê
µ�Ç;Ã{¶hÅtÀ-Ï

� Ï) Á�À+¶KÆhÁ�Å\¶aÇ;Ç;¸ ÁHº�ÃhÐ"·8º"Á�·t¶a¸ ¹ ÁHºrÁ�É"µBÁ\Ç;¸ ¼@Á\½{·t¿-Ãh½×¶	¹�¶aÇ;¾hÁ
Á�É�·;Çt¶hÅ�·8ÃaÄ+·;À�Á�´�¹ Ã{¶a½ �¸ ¾h¸ ·t¶a¹+´�Â�ÑT´�Ð�Ç;ÆhÁ\Ñ�º�¶_·t¶aÎ+¶h¿�Á�·;Ã
¿�À�Ã_Ù�À�Ã_Ù�ÃhÐ�Ç±¶aµ�µ�Ç;Ã{¶hÅtÀrÅ\¶a½�ÎBÁ�Ð+¿�ÁHºr¸ ½×µ�Çt¶hÅ�·;¸�Å�ÁhÏ) Á
º"¸�¿;Å�Ã_ÆhÁ\Ç:µ+¶_·�·;Á\Ç;½+¿\È=Ù	À�¸�ÅtÀ�¶aÇ;Á@Â�½�Ã_Ù	½v·;Ã»ÎBÁ�¾hÁ\½�Ð�¸ ½�Á
¶a½+º�Ãa·;À�Á\Çt¿#Ù	À�¸�ÅtÀ<¼�¶KÑ@·;Ð�Ç;½<ÃhÐ"·�·;Ã@ÎBÁ���¸ ½{·;Á\Ç;ÁH¿j·;¸ ½�¾��
·;À�Ð+¿TÅ�Ãh½"Ú+Ç;¼@¸ ½�¾»·;À�Á�Ç;Ãh¹ Á�ÃaÄ%º�¶_·t¶4¼@¸ ½�¸ ½�¾v¶h¿T¶d·;Ã�Ãh¹
ÄÌÃhÇ%Å�Ç;ÁHº"¸ Î�¹ Á:À�Ñ�µBÃa·;À�ÁH¿�¸�¿�¾hÁ\½�Á\Çt¶_·;¸ Ãh½-Ï

� Ï "�½�Á�ÃaÄ¤·;À�Á�Ù#ÁH¶aÂ�½�ÁH¿;¿�ÁH¿IÃaÄ=¶h¿;¿�Ã"Å�¸�¶_·;¸ Ãh½�Ç;Ð�¹ Á�¼@¸ ½�¸ ½�¾×¸�¿
·;À+¶_·#·;À�Á�½�Ð�¼×ÎBÁ\Ç�ÃaÄ-Ç;Ð�¹ ÁH¿�·;À+¶_·	¶aÇ;Á%¾hÁ\½�Á\Çt¶_·;ÁHº@Ä�¶aÇ#Á�É�Ê
Å�Á\ÁHº�¿=·;À�Á���¾hÁ\½�Ð�¸ ½�Á��I½�Ð�¼×ÎBÁ\Ç8ÃaÄ+µ+¶_·�·;Á\Ç;½+¿=·;À+¶_·,¶aÇ;Á�¸ ½"Ê
·;Á\Ç;ÁH¿j·;¸ ½�¾+Ï) Á:ÄÌÃh¹ ¹ Ã_Ù ¶a½d¶aµ�µ�Ç;Ã{¶hÅtÀd¶a½+¶a¹ Ãh¾hÃhÐ+¿,·;Ã@·;À�Á
Ú+¹ ·;Á\Ç�ÊMÇ;Á�Ú+½�Á<¿j·;Çt¶_·;Á\¾hÑ�µBÃhµ�Ð�¹�¶aÇT¸ ½/¿�µ+¶_·;¸�¶a¹�º�¶_·t¶aÎ+¶h¿�ÁH¿\Ï
) Á�Ù	¸ ¹ ¹-Ð+¿�Á:·;À�Á � $

�
�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼1·;Ã�¾hÁ\½�Á\Çt¶_·;Á

Å\¶a½+º"¸�º�¶_·;Á	µ+¶_·�·;Á\Ç;½+¿I¶a½+ºTÐ+¿�Á�·;À�Á/�	¸ µ�¹ Á\Ñ�	 ¿ ��Ê�ÄÌÐ�½+Å�·;¸ Ãh½
·;Ã�·;ÁH¿j·�¶a½+º<Ú+¹ ·;Á\Ç�ÃhÐ"·�Ç;Ð�¹ ÁH¿\È+Ù	À�¸�ÅtÀ»¶aÇ;Ár½�Ãa·�¿�Ð�Î+¿j·t¶a½"Ê
·;¸ ÆhÁhÏ � Ã_Ù#Á\ÆhÁ\ÇHÈ+ÃhÐ�Ç�¶aµ�µ�Ç;Ã{¶hÅtÀ»¸�¿�¼@ÃhÇ;Á×¾hÁ\½�Á\Çt¶a¹=Å�Ãh¼TÊ
µ+¶aÇ;ÁHº:·;Ã'�	¸ µ�¹ Á\Ñ�	 ¿���Ê�ÄÌÐ�½+Å�·;¸ Ãh½×¶h¿ �	¸ µ�¹ Á\Ñ�	 ¿���Ê�ÄÌÐ�½+Å�·;¸ Ãh½
Å\¶a½/Ãh½�¹ ÑmÚ+½+º}Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿�ÎBÁ�·jÙ#Á\Á\½}·jÙ#ÃfÄÌÁH¶_·;Ð�Ç;ÁH¿\È
Ù	À�Á\Ç;ÁH¶h¿	ÃhÐ�Ç�¶aµ�µ�Ç;Ã{¶hÅtÀdÅ\¶a½»ÎBÁT¶aµ�µ�¹ ¸ ÁHº<·;Ã�¶a½�Ñ<½�Ð�¼TÊ
ÎBÁ\Ç:ÃaÄ,ÄÌÁH¶_·;Ð�Ç;ÁH¿\Ï�Ø%¹�¿�Ã �	¸ µ�¹ Á\Ñ�	 ¿ ��Ê�ÄÌÐ�½+Å�·;¸ Ãh½4Ú+½+º�¿:Ç;Á�Ê
¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿@¾h¹ ÃhÎ+¶a¹ ¹ Ñ�ÄÌÇ;Ãh¼ ·;À�Á»Á\½{·;¸ Ç;Á»¿�Á�·�ÃaÄ:¿�µ+¶_·;¸�¶a¹
ÃhÎ"ÔjÁHÅ�·t¿�Ù	À�Á\Ç;ÁH¶h¿\È8ÃhÐ�ÇT¶aµ�µ�Ç;Ã{¶hÅtÀ�¾hÁ\½�Á\Çt¶_·;ÁH¿rÇ;Á\¹�¶_·;¸ Ãh½"Ê
¿�À�¸ µ+¿@¹ Ã"Å\¶a¹ ¹ ÑmÙ	¸ ·;À�¸ ½}·;À�Á»½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�ÃaÄ:¿�µ+¶_·;¸�¶a¹
ÃhÎ"ÔjÁHÅ�·t¿\Ï) ÁrÙ	¸ ¹ ¹-º"¸�¿;Å�Ð+¿;¿ �	¸ µ�¹ Á\Ñ�	 ¿ ��Ê�ÄÌÐ�½+Å�·;¸ Ãh½<¸ ½»º"Á�Ê
·t¶a¸ ¹¤¸ ½»¿�ÁHÅ�·;¸ Ãh½ � Ï � Ï

Ó�À�Á:Ç;Á\¼�¶a¸ ½+º"Á\Ç#ÃaÄ-·;À�Á:µ+¶aµBÁ\Ç�¸�¿#ÃhÇ;¾{¶a½�¸ Õ\ÁHº�¶h¿�ÄÌÃh¹ ¹ Ã_Ù%¿\ê
´�ÁHÅ�·;¸ Ãh½ �4¾h¸ ÆhÁH¿×·;À�Á»º"Á�Ú+½�¸ ·;¸ Ãh½+¿@¶a½+º�·;À�ÁdÎ+¶h¿�¸�Å<Å�Ãh½+Å�Á\µ"·t¿
¸ ½�ÆhÃh¹ ÆhÁHº�¸ ½»¿�µ+¶_·;¸�¶a¹=º�¶_·t¶@¼@¸ ½�¸ ½�¾+Ï è ½<·;À�¸�¿�¿�ÁHÅ�·;¸ Ãh½dÙ#Á�¶a¹�¿�Ã
º"ÁH¿;Å�Ç;¸ ÎBÁ�·;À�Á��4¶_É"¸ ¼�¶a¹ $I¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½ è ½+º"Á�ÉmÙ	¸ ·;À}Á�É�¶a¼TÊ
µ�¹ ÁH¿\È+Ù	À�¸�ÅtÀ»¸�¿�Å�Á\½{·;Çt¶a¹¤·;Ã�ÃhÐ�Ç�¶aµ�µ�Ç;Ã{¶hÅtÀ-Ï è ½v´�ÁHÅ�·;¸ Ãh½ � Ù#Á
¸ ½{·;Ç;Ã"º"Ð+Å�Á:ÃhÐ�Ç	¶aµ�µ�Ç;Ã{¶hÅtÀ�·;Ã@¼@¸ ½�¸ ½�¾�Å�Ãh¼@µ�¹ Á�É�µ+¶_·�·;Á\Ç;½+¿�¸ ½"Ê
Å�¹ Ð+º"¸ ½�¾dµBÃ{¿�¸ ·;¸ ÆhÁ�¶a½+ºv½�Á\¾{¶_·;¸ ÆhÁTÇ;Ð�¹ ÁH¿\Ï è ½v·;À�¸�¿r¿�ÁHÅ�·;¸ Ãh½fÙ#Á
µ�Ç;ÁH¿�Á\½{·I¶�¹ Á\¼@¼�¶�È_Î�Ñ�Ð+¿�¸ ½�¾�Ù	À�¸�ÅtÀ×ÃhÐ�ÇI¶a¹ ¾hÃhÇ;¸ ·;À�¼ µ�Ç;Ð�½�ÁH¿8¶
¹�¶aÇ;¾hÁ�½�Ð�¼×ÎBÁ\Ç�ÃaÄ±½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿�¶a½+º�À�Á\½+Å�Á:Á�Ò�ÁHÅ�·;¸ ÆhÁ\¹ Ñ
Ç;ÁHº"Ð+Å�ÁH¿@·;À�Á4½�Ð�¼×ÎBÁ\Ç�ÃaÄrÅ\¶a½+º"¸�º�¶_·;Á4¸ ·;Á\¼�¿�Á�·t¿\Ï6´�ÁHÅ�·;¸ Ãh½ �
µ�Ç;ÁH¿�Á\½{·t¿�ÃhÐ�Ç�Á�É"µBÁ\Ç;¸ ¼@Á\½{·t¶a¹¤Ç;ÁH¿�Ð�¹ ·t¿\È�Ù	À�¸�ÅtÀd¿�À�Ã_Ù ·;À�Á�¿;Å\¶a¹ Ê
¶aÎ�¸ ¹ ¸ ·jÑhÈ	¶aµ�µ�¹ ¸�Å\¶aÎ�¸ ¹ ·jÑ/¶a½+º�Å�ÃhÇ;Ç;ÁHÅ�·;½�ÁH¿;¿@ÃaÄrÃhÐ�Ç�¶a¹ ¾hÃhÇ;¸ ·;À�¼dÏ
´�ÁHÅ�·;¸ Ãh½ � Å�Ãh½+Å�¹ Ð+º"ÁH¿r·;À�Á�µ+¶aµBÁ\Ç×Ù	¸ ·;À�¶4¿�Ð�¼@¼�¶aÇ;ÑvÃaÄ�·;À�Á
Ç;ÁH¿�ÁH¶aÇtÅtÀ-Ï

9�
 ^�ZH²�`
� ���8­ ²Ì[H²�® ­ ZT^ ­ ¯ D ® ­ ` ��� [HZ
è ½v·;À�¸�¿�¿�ÁHÅ�·;¸ Ãh½vÙ#Á@µ�Ç;ÁH¿�Á\½{·�·;À�Á�Î+¶h¿�¸�ÅTÅ�Ãh½+Å�Á\µ"·t¿r¶a½+ºfº"Á�Ú�Ê
½�¸ ·;¸ Ãh½+¿�Ð+¿�ÁHº<¸ ½<·;À�¸�¿	µ+¶aµBÁ\ÇHÏ

����� ����� �����! �� " #���������� ��� $%���!&�'!� "(��� ���)�*(��+,"�� �
-����!� ��� ./�

A→ B
-0'!���!����&��1��2
34� �5�� ��
����� 6� 879��:�'<;
 ��8�8= ��2
>

? �@�BA("9� ? "�� '!���
C ��� ��*(� ���

→? 7D�BA("9� ? "�� '!���
C ��� ��*(� ���

#���6������ ./�
A→ −B

> 7��!����&��E��2
34� �5�� ��
����� 6� 879��:�'<;
 ��8�8= ��2
>

)0� � � "(��� &F6���� ��*(� ���
������=G���H�I*(&�� :�=��
�!"�� '!���@6���� ��*(� ���IJ
)
→
; ? J

? ��� 2 ;BKL��;
� �8&������ ��� A→ A+

-0'!���!����&��
��2 +,���/A
� ���<������&����M��2
�� ��N�!��+,�
2 ������:�'!�O� �G�
6�� ./���P����� 6� (;
79��:�'! ��8�8=

)0� � � "(��� &F6���� ��*(� ���
������=Q���R&�� :��<����'
+,��'!�S�<��'!����6�� A/J
)
→
)LTUJ

KL��+,"�� �I*
A+→ −C, B

&���+U7�� ������� ���
��2V�BWL�X��'
+,��'!�P��2U�� ��
��79��./�Y'!��� ��;
��� �����! �� "��

KL� :��<����'!����2Z��� � � "(;
��� &%6���� ��*(� ���L������=
���[�I*(&�� :�=��\���� ���'
�BA("9���]��2^6���� ��*8;
� ���IJ0)LT

→
; ? J

Ó±¶aÎ�¹ Á
 êIÓ�Ñ�µBÁH¿�ÃaÄ �	Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿

D2

A4

C1

D1 C5

C6

A1

C2

B2

A2

D4 C3

D3

A5

D6

C4

B3

A3

D5

B1

Ö±¸ ¾hÐ�Ç;Á
 êIØ%½ FIÉ�¶a¼@µ�¹ ÁrÃaÄ8¿�µ+¶_·;¸�¶a¹-Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½�µ+¶_·�·;Á\Ç;½+¿

9¤³�ª<D ®L_ � ®-`h^"[H²�® ­ Ø%½�¸ ¼@µBÃhÇ�·t¶a½{·�·t¶h¿�Âv¸ ½m¿�µ+¶_·;¸�¶a¹�º�¶_·t¶
¼@¸ ½�¸ ½�¾r¸�¿,Á�É�·;Çt¶hÅ�·;¸ ½�¾:Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿IÎBÁ�·jÙ#Á\Á\½TÄÌÁH¶_·;Ð�Ç;ÁH¿8·;À+¶_·
Å�ÃaÊM¹ Ã"Å\¶_·;ÁhÏ
`GaLb�c<d\cBe%c!fgdih%j�kLj Ë�#�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½BÍIÓ=Ù#ÃT¿�µ+¶_·;¸�¶a¹BÃhÎ"ÔjÁHÅ�·t¿�¶aÇ;Á
¿;¶a¸�º ·;Ã(Å�ÃaÊM¹ Ã"Å\¶_·;Á ¸ Äv·;À�Á F,Ð+Å�¹ ¸�º"ÁH¶a½¥º"¸�¿j·t¶a½+Å�ÁoÎBÁ�·jÙ#Á\Á\½
·;À�Á»ÃhÎ"ÔjÁHÅ�·t¿�¸�¿�¹ ÁH¿;¿@·;À+¶a½/ÃhÇ�ÁHì{Ð+¶a¹	·;Ã�·;À�Á»Ð+¿�Á\Ç�Ê�¿�µBÁHÅ�¸ Ú+ÁHº
½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�º"¸�¿j·t¶a½+Å�Á�î_Ï

Ö±¸ ¾hÐ�Ç;Á
 ¾h¸ ÆhÁH¿8¶a½×Á�É�¶a¼@µ�¹ Á�ÃaÄB¶:¿�Á�·8ÃaÄ�¿�µ+¶_·;¸�¶a¹�ÃhÎ"ÔjÁHÅ�·t¿\Ï
è ½�Ö±¸ ¾hÐ�Ç;Á
 È

A1
Ç;Á\µ�Ç;ÁH¿�Á\½{·t¿T·;À�Á è ÃaÄr¶�¿�µ+¶_·;¸�¶a¹	ÃhÎ"ÔjÁHÅ�·

ÃaÄ	ÄÌÁH¶_·;Ð�Ç;Á
A
È
B1

Ç;Á\µ�Ç;ÁH¿�Á\½{·t¿:·;À�Á è ¥ÃaÄ�¶v¿�µ+¶_·;¸�¶a¹�ÃhÎ"ÔjÁHÅ�·
ÃaÄ:ÄÌÁH¶_·;Ð�Ç;Á

B
¶a½+º ¿�Ã�Ãh½-Ï!Ó�À�Áv¹ ¸ ½�Á�ÔjÃh¸ ½�¸ ½�¾�·jÙ#ÃmµBÃh¸ ½{·t¿

¸ ½+º"¸�Å\¶_·;ÁH¿I·;À+¶_·�·;À�Á�º"¸�¿j·t¶a½+Å�Á%ÎBÁ�·jÙ#Á\Á\½�·;À�Á\¼ ¸�¿,¹ ÁH¿;¿I·;À+¶a½�ÃhÇ
ÁHì{Ð+¶a¹�·;Ãr·;À�Á�½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º@º"¸�¿j·t¶a½+Å�Á^	 º%	�¶a½+º@À�Á\½+Å�Á	·;À�Á\Ñ
Å�ÃaÊM¹ Ã"Å\¶_·;ÁhÏ
`GaLb�c<d\cBe%c!fgdih%j h%j Ë�#�¹ ¸�ì{Ð�ÁKÍ�Ø ¿�Á�·:ÃaÄ#¿�µ+¶_·;¸�¶a¹±ÃhÎ"ÔjÁHÅ�·t¿:´4¸�¿
¿;¶a¸�ºf·;ÃvÎBÁd¶4Å�¹ ¸�ì{Ð�Á�¸ Ä�Á\ÆhÁ\Ç;ÑvÃhÎ"ÔjÁHÅ�·T¸ ½}´mÅ�ÃaÊM¹ Ã"Å\¶_·;Á�Ù	¸ ·;À
Á\ÆhÁ\Ç;Ñ»Ãa·;À�Á\ÇrÃhÎ"ÔjÁHÅ�·�¸ ½m´v¶a½+ºf½�Ã»¿�Ð�µBÁ\Ç×¿�Á�·�ÃaÄ	´vÀ+¶h¿�·;À�¸�¿
µ�Ç;ÃhµBÁ\Ç�·jÑhÏ

175

� Ã #�¹ ¸�ì{Ð�Á
¸

C1, D1¸ ¸
C5, D1¸ ¸ ¸
C5, C6¸ Æ

A4, D2, D5Æ
A5, C3, D3Æ�¸
A5, D3, D6Æ�¸ ¸
A1, B1, C2Æ�¸ ¸ ¸
A2, B2, D4¸ É
A3, B3, C4

Ó±¶aÎ�¹ Á �"ê #�¹ ¸�ì{Ð�ÁH¿	¸ ½dÖ±¸ ¾hÐ�Ç;Á

Ó±¶aÎ�¹ Á �×¾h¸ ÆhÁH¿�·;À�Á�Å�¹ ¸�ì{Ð�ÁH¿#ÄÌÃhÐ�½+º<¸ ½»Ö±¸ ¾hÐ�Ç;Á
 Ï
#�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¶a¹_µ+¶_·�·;Á\Ç;½+¿-¶aÇ;Á±·;À�Á,Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿�ÎBÁ�·jÙ#Á\Á\½

·;À�ÁIÄÌÁH¶_·;Ð�Ç;ÁH¿¤¸ ½�Å�¹ ¸�ì{Ð�ÁH¿-ÃaÄ"¿�µ+¶_·;¸�¶a¹{º�¶_·t¶aÎ+¶h¿�ÁH¿\Ï-Ö�ÃhÇ-Á�É�¶a¼@µ�¹ ÁhÈ
¸ ½�Ö±¸ ¾hÐ�Ç;Á
 ¶a½+ºvÓ±¶aÎ�¹ Á��"È�·;À�Á�Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¶a¹±µ+¶_·�·;Á\Ç;½ ,KØ�È
#E.%Ã"Å\Å�Ð�Çt¿ � ·;¸ ¼@ÁH¿\È{¸ ½�Æ�ÈhÆ�¸ ¸B¶a½+ºT¸ É¤Ï,´�µ+¶_·;¸�¶a¹�Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿
¶aÇ;Á/Å�Ãh½"ÚBº"Á\½{·�Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¶a¹Tµ+¶_·�·;Á\Ç;½+¿�ÄÌÃhÐ�½+º(¸ ½ ¿�µ+¶_·;¸�¶a¹
º�¶_·t¶aÎ+¶h¿�ÁH¿\Ï

9¤³:9 B!^��-²��m^ ��� ^"]K[H²�`h² � ^"[H²�® ­ � ^"[H²�® è ½f·;À�¸�¿�¿�ÁHÅ�·;¸ Ãh½
Ù#ÁTÙ	¸ ¹ ¹IÎ�Ç;¸ Á��+Ñ4º"ÁH¿;Å�Ç;¸ ÎBÁ×·;À�Á@½�Ãa·;¸ Ãh½vÃaÄ �4¶_É"¸ ¼�¶a¹ $I¶aÇ�·;¸�Å�¸ Ê
µ+¶_·;¸ Ãh½ è ½+º"Á�É�ËÌ¼�¶_É $ è Í�¶h¿:º"ÁH¿;Å�Ç;¸ ÎBÁHº4Î�Ñ � Ð+¶a½�¾<Á�·r¶a¹�Ïr¸ ½
� �%� Ù	À�Á\Ç;Á:¼@ÃhÇ;Árº"Á�·t¶a¸ ¹�¿	Å\¶a½<ÎBÁ:ÄÌÃhÐ�½+º¤Ï
`GaLb�c<d\cBe%c!fgd h%j �%j Ë $I¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½�Çt¶_·;¸ Ã�Í ë�¸ ÆhÁ\½ ¶�Å�ÃaÊ
¹ Ã"Å\¶_·;¸ Ãh½:µ+¶_·�·;Á\Ç;½
	�¶a½+ºr¶#ÄÌÁH¶_·;Ð�Ç;Á

f ∈ L
È\·;À�Á�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½

Çt¶_·;¸ Ã×ÃaÄ
f
È"µ�ÇrË�	,È

f
Í�È�Å\¶a½�ÎBÁ:º"Á�Ú+½�ÁHº<¶h¿�·;À�Á:¿�Ð�µ�µBÃhÇ�·	ÃaÄ�	

º"¸ Æ�¸�º"ÁHºdÎ�Ñ�·;À�Á×¿�Ð�µ�µBÃhÇ�·�ÃaÄ
f
Ï	Ö�ÃhÇ%Á�É�¶a¼@µ�¹ ÁhÈ+¸ ½vÖ±¸ ¾hÐ�Ç;Á
 È

·;À�Á:¿�Ð�µ�µBÃhÇ�·#ÃaÄ ,KØ�È &�È #E.�¸�¿ ��¶a½+º@·;À�Á:¿�Ð�µ�µBÃhÇ�·#ÃaÄ(#�¸�¿ � È
¿�Ã@µ�ÇKË ,KØ�È &�È #E.{È #�Í $ �
� � Ï
`GaLb�c<d\cBe%c!fgd h%j �gj Ë!�4¶_É"¸ ¼�¶a¹ $I¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½ è ½+º"Á�É Í
ë�¸ ÆhÁ\½�¶6Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½(µ+¶_·�·;Á\Ç;½�	,È�·;À�Á ¼�¶_É"¸ ¼�¶a¹�µ+¶aÇ�·;¸�Å�Ê
¸ µ+¶_·;¸ Ãh½ ¸ ½+º"Á�É ÃaÄ�	,È�¼�¶_É $ è Ë�	±Í»Å\¶a½ ÎBÁ�º"Á�Ú+½�ÁHº6¶h¿d·;À�Á
¼�¶_É"¸ ¼�¶a¹�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½6Çt¶_·;¸ Ã�ÃaÄ�¶a¹ ¹�·;À�ÁmÄÌÁH¶_·;Ð�Ç;ÁH¿»¸ ½�	,È
¸�Ï ÁhÏ

maxPI(L) = maxf∈L{pr(L, f)}
Ï�Ö�ÃhÇrÁ�É�¶a¼@µ�¹ ÁhÈ-¸ ½

Ö±¸ ¾hÐ�Ç;Á
 È
maxPI({A, B, C}) = max(2

5 , 2
3 , 2

6) = 2
3

Ï
Ø(À�¸ ¾hÀv¼�¶_É"¸ ¼�¶a¹8µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½4¸ ½+º"Á�É4¸ ½+º"¸�Å\¶_·;ÁH¿�·;À+¶_·

¶_·r¹ ÁH¶h¿j·:Ãh½�Á@¿�µ+¶_·;¸�¶a¹8ÄÌÁH¶_·;Ð�Ç;ÁdËÌÙ	À�¸�ÅtÀfÙ#Á�Å\¶a¹ ¹±·;À�Ádð�à\æ 7�âtà�2
ã4�"Þ;â;Í�¿j·;Ç;Ãh½�¾h¹ Ñ}¸ ¼@µ�¹ ¸ ÁH¿�·;À�Áfµ+¶_·�·;Á\Ç;½-Ï &#Ñ/Ð+¿�¸ ½�¾�¼�¶_É $ è È
Ç;Ð�¹ ÁH¿<Ù	¸ ·;Ào¹ Ã_Ù ÄÌÇ;ÁHì{Ð�Á\½+Å�Ñ�Î�Ð"·»À�¸ ¾hÀoÅ�Ãh½"ÚBº"Á\½+Å�Á�Å\¶a½�ÎBÁ
ÄÌÃhÐ�½+º¤È-Ù	À�¸�ÅtÀfÙ#ÃhÐ�¹�ºvÃa·;À�Á\Ç;Ù	¸�¿�ÁTÎBÁ�µ�Ç;Ð�½�ÁHºvÎ�Ñ4¶d¿�Ð�µ�µBÃhÇ�·
·;À�Ç;ÁH¿�À�Ãh¹�º � ��� Ï

9¤³:9¤³�ª B!² ­ ² ­ ?/]_° �!� Z���²Ì[%@ � ®�� ZH° �U� ®+]K[4^ ­ ¯ @±²!?A@
`h® ­g� ¯ ��­ ` � °±ZH² ­ ?��m^�� �r« Ø�¿ º"¸�¿;Å�Ð+¿;¿�ÁHº�¶aÎBÃ_ÆhÁ�·;À�Á
¼�¶_É $ è ¼@ÁH¶h¿�Ð�Ç;Á4Å�ÃhÐ�¹�º}ÎBÁvÐ+¿�ÁHº}·;Ã�¾hÁ\½�Á\Çt¶_·;Á»Ç;Ð�¹ ÁH¿�Ù	¸ ·;À
¹ Ã_Ù ¿�Ð�µ�µBÃhÇ�·×¶a½+º�À�¸ ¾hÀmÅ�Ãh½"ÚBº"Á\½+Å�ÁhÏdÖ�ÃhÇ�Á�É�¶a¼@µ�¹ Á�¸ Ä�Ø1¸�¿
¶a½@¸ ½"ÄÌÇ;ÁHì{Ð�Á\½{·,ÄÌÁH¶_·;Ð�Ç;Á�·;À�Á�¿�Ð�µ�µBÃhÇ�·,ÃaÄ�,KØ�È &/.%Ù	¸ ¹ ¹+ÎBÁ%ÆhÁ\Ç;Ñ
¹ Ã_Ù ¶a½+º�À�Á\½+Å�Á�Ù	¸ ¹ ¹BÎBÁ�µ�Ç;Ð�½�ÁHº�Î�ÑT·;À�Á:¿�Ð�µ�µBÃhÇ�·�·;À�Ç;ÁH¿�À�Ãh¹�º¤Ï

� Ã_Ù#Á\ÆhÁ\Ç�·;À�Á@Å�Ãh½"ÚBº"Á\½+Å�Á�ÃaÄI·;À�Á×Ç;Ð�¹ Á
A → B

È�º"Á�Ú+½�ÁHº4¶h¿\È
conf(A→ B) = support(A,B)

support(A)

Å�ÃhÐ�¹�º�ÎBÁrÀ�¸ ¾hÀ-Ï
Ó�À�¸�¿±µ�Ç;ÃhÎ�¹ Á\¼6Å\¶a½�ÎBÁ�º"¸ Ç;ÁHÅ�·;¹ Ñr¶hº�º"Ç;ÁH¿;¿�ÁHºrÎ�Ñ:Ð+¿�¸ ½�¾%·;À�Á

maxPI
¼@ÁH¶h¿�Ð�Ç;ÁhÏ

maxPI(A, B)
¸�¿�¾h¸ ÆhÁ\½d¶h¿\È

maxPI{A, B} = max(pr({A, B}, A), pr({A, B}, B))

= max(conf(A→ B), conf(B → A))Ó�À�¸�¿}¿�À�Ã_Ù%¿�·;À+¶_·/¶!À�¸ ¾hÀ¥Å�Ãh½"ÚBº"Á\½+Å�Á ÄÌÃhÇm·;À�ÁoÇ;Ð�¹ Á
A → B

Ù	¸ ¹ ¹�¹ ÁH¶hº/·;ÃmÀ�¸ ¾hÀ ¼�¶_É $ è È#Ù	À�¸�ÅtÀ Ù	¸ ¹ ¹:µ�Ç;Á\ÆhÁ\½{·
Ç;Ð�¹ ÁH¿%Ù	¸ ·;À4¹ Ã_Ù6¿�Ð�µ�µBÃhÇ�·�¶a½+º»À�¸ ¾hÀ4Å�Ãh½"ÚBº"Á\½+Å�ÁrÄÌÇ;Ãh¼éÎBÁ\¸ ½�¾
µ�Ç;Ð�½�ÁHº��KÏ

9¤³:9¤³:9�� @ � � � ^
��m® ­ ®+[H® ­ ²�` �]_® � �]K[= ®��
�m^�� �r«
�4¶_É"¸ ¼�¶a¹�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½ ¸ ½+º"Á�É ¸�¿4½�Ãa·v¼@Ãh½�Ãa·;Ãh½�¸�Å�Ù	¸ ·;À
Ç;ÁH¿�µBÁHÅ�·�·;Ã1·;À�Á!µ+¶_·�·;Á\Ç;½0Å�Ãh½{·t¶a¸ ½�¼@Á\½{·�Ç;Á\¹�¶_·;¸ Ãh½+¿\Ï Ö�ÃhÇ
Á�É�¶a¼@µ�¹ ÁhÈ1¸ ½�Ö±¸ ¾hÐ�Ç;Á
 È0ËÌ¼�¶_É $ è Ë ,KØ�È #E._Í $ � � ���
ËÌ¼�¶_É $ è Ë ,KØ�È &�È #E._Í $G�
� � Ï è ½{·;Á\Ç;ÁH¿j·;¸ ½�¾h¹ ÑhÈ,¶h¿�µBÃh¸ ½{·;ÁHºmÃhÐ"·
¸ ½ � ��� ·;À�Áv¼�¶_É"¸ ¼�¶a¹�µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½/¸ ½+º"Á�É º"Ã�ÁH¿�À+¶KÆhÁd·;À�Á
ÄÌÃh¹ ¹ Ã_Ù	¸ ½�¾TÙ#ÁH¶aÂ�¼@Ãh½�Ãa·;Ãh½�¸�Å�µ�Ç;ÃhµBÁ\Ç�·jÑ�ê

è Ä $|¸�¿ ¶ Â{Ê�Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½¥µ+¶_·�·;Á\Ç;½-È4·;À�Á\½�·;À�Á\Ç;Á6Á�É�Ê
¸�¿j·t¿�¶_·�¼@Ã{¿j·�Ãh½�Á�ËÌÂ{Ê
 Í@¿�Ð�Î�µ+¶_·�·;Á\Ç;½+¿

P ′
ÃaÄ	$�¿�Ð+ÅtÀ�·;À+¶_·

maxPI(P ′) < maxPI(P)
Ï

�	Á\¹ Ñ�¸ ½�¾éÃh½ ·;À�¸�¿6Ù#ÁH¶aÂ0¼@Ãh½�Ãa·;Ãh½�¸�Å�µ�Ç;ÃhµBÁ\Ç�·jÑhÈm·;À�Á
Ø%µ�Ç;¸ ÃhÇ;¸ ÊM¹ ¸ ÂhÁd¶a¹ ¾hÃhÇ;¸ ·;À�¼ Å\¶a½/ÎBÁ4¼@Ã"º"¸ Ú+ÁHº�·;Ãm¼@¸ ½�Á4Å�Ãh½"Ú�Ê
º"Á\½{·	µ+¶_·�·;Á\Ç;½+¿	Î�Ñ�Ð+¿�¸ ½�¾�¶T¼�¶_É $ è ·;À�Ç;ÁH¿�À�Ãh¹�º¤Ï

��� @ �����! B!^�� �r« X � ?B®+]_²Ì[%@��
Ó�À�Á

maxPI
¼@ÁH¶h¿�Ð�Ç;Á�Ù�¶h¿:¸ ½{·;Ç;Ã"º"Ð+Å�ÁHºf·;Ãvº"¸�¿;Å�Ã_ÆhÁ\Ç�Ü+ïKÛ�Ý:2

ã�Ýßñ_ârÅ�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½vµ+¶_·�·;Á\Ç;½+¿:Ù	¸ ·;À�À�¸ ¾hÀ�Å�Ãh½"ÚBº"Á\½+Å�Á�¶a½+ºv¹ Ã_Ù
¿�Ð�µ�µBÃhÇ�·HÏ � Ã_Ù#Á\ÆhÁ\Ç,ÃhÐ�Ç#¾hÃ{¶a¹B¸�¿,·;ÃT¼@¸ ½�Á:Å�Ãh¼@µ�¹ Á�É�Ç;Á\¹�¶_·;¸ Ãh½"Ê
¿�À�¸ µ+¿=Ù	À�¸�ÅtÀ×¸ ½+Å�¹ Ð+º"Á�ÎBÃa·;À×µBÃ{¿�¸ ·;¸ ÆhÁ#¶a½+º�½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿\Ï
) Á�½�Ã_Ù ¿�À�Ã_Ù�·;À+¶_·

maxPI
¸�¿�¶@¾hÃ�Ã"ºdÅ\¶a½+º"¸�º�¶_·;Ár·;Ã�À�Á\¹ µ

¶hÅtÀ�¸ Á\ÆhÁ	ÃhÐ�Ç#¾hÃ{¶a¹�Èh¸�Ï ÁhÏ È"¿�¸ ¼×Ð�¹ ·t¶a½�Á\ÃhÐ+¿�¹ Ñ@º"¸�¿;Å�Ã_ÆhÁ\Ç,ÎBÃa·;À�µBÃ{¿jÊ
¸ ·;¸ ÆhÁr¶a½+º<½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿\Ï

Ó�À�Á#¼�¶a¸ ½TÅtÀ+¶a¹ ¹ Á\½�¾hÁ,¸ ½T¼@¸ ½�¸ ½�¾�Å�Ãh¼@µ�¹ Á�É�Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿
¸�¿d·;À�Á�À�¸ ¾hÀ6µ�Ç;Ã"Å�ÁH¿;¿�¸ ½�¾�Å�Ã{¿j·vº"Ð�Á�·;À�Á�¹�¶aÇ;¾hÁ�½�Ð�¼×ÎBÁ\ÇvÃaÄ
Å\¶a½+º"¸�º�¶_·;Ár¸ ·;Á\¼�¿�Á�·t¿%Ù	À�¸�ÅtÀ»¸ ½+Å�¹ Ð+º"Á�µBÃ{¿�¸ ·;¸ ÆhÁ�¶a½+ºd½�Á\¾{¶_·;¸ ÆhÁ
ÄÌÁH¶_·;Ð�Ç;ÁH¿\Ï F�¶hÅtÀrµBÃ{¿�¸ ·;¸ ÆhÁ,Å\¶a½+º"¸�º�¶_·;Á,Â{ÊMµ+¶_·�·;Á\Ç;½:Ù	¸ ¹ ¹h¾h¸ ÆhÁIÇ;¸�¿�Á
·;Ã

O(k)
Â{ÊMµ+¶_·�·;Á\Ç;½+¿#Ù	À�¸�ÅtÀ»Å�Ãh½{·t¶a¸ ½d¶T½�Á\¾{¶_·;¸ ÆhÁ�ÄÌÁH¶_·;Ð�Ç;ÁhÏ

	-Á�·�Ö $,KØ�È &�È #�È .�ÎBÁT·;À�Á�¿�Á�·rÃaÄ�¶a¹ ¹±ÄÌÁH¶_·;Ð�Ç;ÁH¿:¸ ½v·;À�Á
¿�µ+¶_·;¸�¶a¹:º�¶_·t¶aÎ+¶h¿�ÁhÏ(Ó�À�Á\½ ÄÌÃhÇ<¼@¸ ½�¸ ½�¾/Å�Ãh¼@µ�¹ Á�É�Ç;Á\¹�¶_·;¸ Ãh½"Ê
¿�À�¸ µ+¿\È,·;À�Á»Å\¶a½+º"¸�º�¶_·;Á
 Êr¸ ·;Á\¼�¿�Á�·t¿@Ù#ÃhÐ�¹�º�ÎBÁ ,KØ�È &�È #�È ×È Ê
Ø�È Ê &�È Ê #�È Ê .{Ï � Á\½+Å�Á»¶h¿×·;À�Á<½�Ð�¼×ÎBÁ\Ç�ÃaÄ%ÄÌÁH¶_·;Ð�Ç;ÁH¿T¸ ½�·;À�Á
¿�µ+¶_·;¸�¶a¹#º�¶_·t¶aÎ+¶h¿�Á�¸ ½+Å�Ç;ÁH¶h¿�ÁH¿\È=·;À�ÁdÅ\¶a½+º"¸�º�¶_·;Á
 ÊM¸ ·;Á\¼�¿�Á�·t¿×¸�¿
º"ÃhÐ�Î�¹ ÁHº¤ÏIÓ�À�¸�¿#Ù#ÃhÐ�¹�º�Ç;ÁH¿�Ð�¹ ·#¸ ½<¶a½�Á�É"µBÃh½�Á\½{·;¸�¶a¹B¾hÇ;Ã_Ù�·;À�¸ ½
·;À�Á�Å\¶a½+º"¸�º�¶_·;Á�¿�µ+¶hÅ�Á,ÄÌÃhÇ8¹�¶aÇ;¾hÁ\Ç=¸ ·;Á\¼�¿�Á�·t¿\Ï è ½�·;À�¸�¿±µ+¶aµBÁ\Ç8Ù#Á
µ�Ç;ÃhµBÃ{¿�Á,¶a½×¶aµ�µ�Ç;Ã{¶hÅtÀ-È\Ù	À�¸�ÅtÀ�Á�Ò�ÁHÅ�·;¸ ÆhÁ\¹ Ñ:Ç;ÁHº"Ð+Å�ÁH¿¤·;À�Á�½�Ð�¼TÊ
ÎBÁ\Ç	ÃaÄ8Å\¶a½+º"¸�º�¶_·;Á:¸ ·;Á\¼�¿�Á�·t¿�Ù	À�Á\½d¼@¸ ½�¸ ½�¾TÄÌÃhÇ	µBÃ{¿�¸ ·;¸ ÆhÁr¶a½+º

" � �Kõ ù"õ ù �=ù�ú�ø�÷jô �tú��
�tôKÿ$#¤÷ �&%\ôK÷jù�ù+ütý_ú��K÷

�('*) �
	÷ �tù��Kø�÷�� � �Kõ � ÷+ �;ú�ú�÷jø�ôKù,#=õ ú�� � ü-#}ù�� +*+ ü�øÌú �tôKÿ �Kõ ��� �jü�ô/._ÿK÷jô �j÷ �tø�÷	� õ %�÷�� û×ú�ü10a÷2 õ ô�ú�÷jø�÷jù�ú�õ ô � 2 ��õ úIõ ù + ü�ù�ù�õ 0 � ÷�ú����;úIú��K÷�û �tø�÷ �tô �tøÌú�õ ý ����ú,ütý�ú��K÷�ÿ��;ú��
�tôKÿ

�jû%ôKütú30a÷Iù�ú��;ú�õ ù�ú�õ � ��� � û�ù�õ ��ôKõ .�� �tô�ú �

176

½�Á\¾{¶_·;¸ ÆhÁrµ+¶_·�·;Á\Ç;½+¿\Ï "�Ð�Ç�¶aµ�µ�Ç;Ã{¶hÅtÀ<¸�¿%Î+¶h¿�ÁHºdÃh½�	-Á\¼@¼�¶

Ù	À�¸�ÅtÀm¿�À�Ã_Ù%¿rÀ�Ã_Ù1¶»¹�¶aÇ;¾hÁ�½�Ð�¼×ÎBÁ\ÇTÃaÄ	½�Á\¾{¶_·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½+¿
Å\¶a½fÎBÁ�µ�Ç;Ð�½�ÁHºfÙ	À�Á\½�¶<µBÃ{¿�¸ ·;¸ ÆhÁ�µ+¶_·�·;Á\Ç;½�¸�¿:¾hÇ;ÁH¶_·;Á\Ç�·;À+¶_·
·;À�Á�·;À�Ç;ÁH¿�À�Ãh¹�º

t
Ù	À�Á\Ç;Á

t ≥ 0.5
Ï�´�¸ ½+Å�Á×¼�¶_É $ è ¸�¿�Î+¶h¿�ÁHºd¸�¿

Ãh½�·;À�Á×Å�Ãh½"ÚBº"Á\½+Å�ÁhÈ�¿�Ð+ÅtÀd¶@À�¸ ¾hÀ<·;À�Ç;ÁH¿�À�Ãh¹�º�¸�¿�½�Ãa·%Ð�½�Ð+¿�Ð+¶a¹
ÄÌÃhÇ	¼�¶_É $ è Ï

Ö�ÃhÇ�Á�É�¶a¼@µ�¹ ÁhÈ4¹ Á�· Ö $,KØ�È &�È #�È .6ÎBÁ6¶ � ÊM¸ ·;Á\¼�¿�Á�·HÏ
Ó�À�Á\½-È ¸ Ä ¼�¶_É $ è Ë ,KØ�È &�È #�È ._Í $�µ�ÇKË ,KØ�È &�È #�È .{È Ø�Í 0
· 0 &�Ï � È�·;À�Á\½ Ù#Á1µ�Ç;Ã_ÆhÁ(·;À+¶_·�¼�¶_É $ è Ë ,KØ�È Ê &�È #�È ._Í�È
¼�¶_É $ è Ë ,KØ�È &�È Ê #�È ._Í}¶a½+º¥¼�¶_É $ è Ë ,KØ�È &�È #�È Ê ._Í}¶aÇ;Á ¶a¹ ¹
¹ ÁH¿;¿#·;À+¶a½<·�¶a½+º�À�Á\½+Å�ÁrÅ�ÃhÐ�¹�º<ÎBÁrµ�Ç;Ð�½�ÁHº¤Ï

� ®+[H^"[H²�® ­ Z@°±Z � ¯��

 Ï,	-Á�·

Fk = {f1, f2, ..., fk}
ÎBÁ�¶@Â{ÊMµ+¶_·�·;Á\Ç;½<¶a½+º

Fk−l = {f1, . . . , fl−1,−fl, fl+1, . . . , fk}
Ï

Ö�ÃhÇ�Á�É�¶a¼@µ�¹ ÁhÈ�¸ Ä
F3 = {A, B, C}

Ù	À�Á\Ç;Á
f1 = A, f2 =

B and f3 = C,
·;À�Á\½

F3−2 = {A,−B, C}
Ï

�"Ï,	-Á�·
σ(Fk) = support(Fk)

¶a½+º
σ(Fk−l) = support(Fk−l)

Ï

� a������ �%j�kLj	� â�ã
Fk
 â¥à���2 Ü+à_ã�ã�â�Þ�í à_í�î

t ≥ 0.5
� �"Þ�ã���â�Þ�ð�ï_Þ;â�(àKÛtÛ��"ð�â�ã���à_ã
σ(−f) � σ(f) ∀f
 � 7

maxPI(Fk) ≥ t
à_í�î

maxPI(Fk) = pr(Fk , fj)
ã���â�í

maxPI(Fk−l) < t
7�ï_ÞTâ�ñ_â�Þ�ç

fl ∈ Fk, fl 6= fj

� Þ;ïHï 7
 &#Ñ�º"Á�Ú+½�¸ ·;¸ Ãh½-È maxPI(Fk−l)

= Max

{
Maxk

i=1,i6=l

{
σ(Fk−l)

σ(fi)

}
,
σ(Fk−l)

σ(−fl)

}
è ½»¿�µ+¶_·;¸�¶a¹-º�¶_·t¶�È�·;À�Ár½�Ð�¼×ÎBÁ\Ç	ÃaÄ8¸ ½+¿j·t¶a½+Å�ÁH¿�ÃaÄI¶aÎ+¿�Á\½+Å�Á

ÃaÄ=¶�ÄÌÁH¶_·;Ð�Ç;Á
fl

È�¸�Ï ÁhÏ È
σ(−fl)

È�Ù	¸ ¹ ¹�ÎBÁ�ÁHì{Ð+¶a¹+·;Ã×·;À�Á�½�Ð�¼×ÎBÁ\Ç
ÃaÄ+µBÃh¸ ½{·t¿±¸ ½�·;À�Á	¶aÇ;ÁH¶%ÃaÄ+ÃhÎ+¿�Á\Ç;Æ_¶_·;¸ Ãh½rÙ	À�¸�ÅtÀTº"Ã�½�Ãa·,Å�Ãh½{·t¶a¸ ½
·;À+¶_·�ÄÌÁH¶_·;Ð�Ç;ÁhÏ è ½�Ç;ÁH¶a¹�¿�µ+¶_·;¸�¶a¹#º�¶_·t¶h¿�Á�·t¿r¸ ·T¸�¿×¶aµ�µ�Ç;Ãhµ�Ç;¸�¶_·;Á
·;Ã�¶h¿;¿�Ð�¼@Á�·;À+¶_·I·;À�Á�¿�Ð�µ�µBÃhÇ�·,ÃaÄ-¶aÎ+¿�Á\½+Å�Á�ÃaÄBÄÌÁH¶_·;Ð�Ç;ÁH¿IÙ#ÃhÐ�¹�º
ÎBÁ�¾hÇ;ÁH¶_·;Á\Ç�·;À+¶a½f·;À�Á�¿�Ð�µ�µBÃhÇ�·rÃaÄ�µ�Ç;ÁH¿�Á\½+Å�Á@ÃaÄ#ÄÌÁH¶_·;Ð�Ç;ÁH¿\Ï��
Ó�À�Á\Ç;Á�ÄÌÃhÇ;ÁhÈ

maxPI(Fk−l) = Maxk
i=1,i6=l

{
σ(Fk−l)

σ(fi)

}

&#Ð"·	ÄÌÇ;Ãh¼1·;À�Á�¶h¿;¿�Ð�¼@µ"·;¸ Ãh½-È

maxPI(Fk) = pr(Fk , fj) =
σ(Fk)

σ(fj)
Ó�À�¸�¿#¸ ¼@µ�¹ ¸ ÁH¿,·;À+¶_·

σ(fj) ≤ σ(fi)
ÄÌÃhÇ#Á\ÆhÁ\Ç;Ñ

fi ∈ Fk, i 6= j
Ï

� Á\½+Å�ÁhÈ

MaxPI(Fk−l) =
σ(Fk−l)

σ(fj)

� � �Kõ ù �tù�ù��
 + ú�õ ü�ô�õ
 + � õ ÷jù�ú����;ú + �;ú�ú�÷jø�ôKù-ütýhú��K÷=ý ü�ø�
 (−fi,−fj)
�tø�÷�� õ %�÷�� û�ú�ü 0a÷30a÷�� ü-#<ú��K÷-ú��Kø�÷jù��Kü�� ÿ	ö���� �K÷�� �×÷=ú��K÷jø�÷�ý ü�ø�÷8ÿKõ ù�ø�÷����tø�ÿ
ú��K÷�
}ÿ �Kø�õ ô ��ú��K÷(
	õ ôKõ ô � + ø�ü��j÷jù�ù �

=
σ(f1, ..., fl−1, fl+1, ..., fk)

σ(fj)
−

σ(Fk)

σ(fj)
(1)

) ÁrÂ�½�Ã_Ù ·;À+¶_·

{f1, ..., fl−1, fl+1, ..., fk} ⊂ Fk

¶a½+º
σ(Fk)

σ(fj)
= MaxPI(Fk) > t

Ó�À�Á\Ç;Á�ÄÌÃhÇ;ÁrÄÌÇ;Ãh¼¥·;À�ÁT¶a½{·;¸ ÊM¼@Ãh½�Ãa·;Ãh½�¸�Å:µ�Ç;ÃhµBÁ\Ç�·jÑ<ÃaÄ8·;À�Á
¿�Ð�µ�µBÃhÇ�·	¼@ÁH¶h¿�Ð�Ç;ÁhÈ"¸ ·	ÄÌÃh¹ ¹ Ã_Ù%¿�·;À+¶_·

σ(f1, f2, ..., fl−1, fl+1, ..., fk)

σ(fj)
> t > 0.5

� Á\½+Å�Ár¸ ·	ÄÌÃh¹ ¹ Ã_Ù%¿�ÄÌÇ;Ãh¼�Ë
 Í,·;À+¶_·
MaxPI(Fk−l) < t

Ï

� f���f���������� �%j�kLj	� â�ã
F = {f1, f2,, fm}
 â�ã���â�Û\â�ã	ï 7à_áßá�7�âtà_ã4�"Þ;â�Û�Ýßí�à%Û�Ü+à_ã�Ý�à_á+îhà_ã�à
 àKÛ\â
 � ��â�í (0 ≤ P ≤ m2−m! ��â�Þ;â P

Ý�Û@ã���â@Û�Ý "Hâ<ï 7Tã���â�ätà_í�î_Ý�îhà_ã�â$#�2�Ýßã�â�ð×Û\â�ã�Û�Ü�Þ��"í�âtî

 âtätà���Û\â×ï 7 � â�ðTð�à�%
'&�

) À�Á\½ ¼@¸ ½�¸ ½�¾}ÄÌÃhÇdµBÃ{¿�¸ ·;¸ ÆhÁ�¶a½+º ½�Á\¾{¶_·;¸ ÆhÁfµ+¶_·�·;Á\Ç;½+¿\È
ÄÌÃhÇ×Á\ÆhÁ\Ç;Ñ

fi ∈ F
ÈIÙ#Á<¶a¹�¿�Ã4À+¶KÆhÁ@·;ÃfÅ�Ãh½+¿�¸�º"Á\Ç

−fi

Ï�Ó�À�¸�¿
¸ ½+Å�Ç;ÁH¶h¿�ÁH¿�·;À�Á:ÄÌÁH¶_·;Ð�Ç;Ár¿�Á�·%¿�¸ Õ\Á:·;Ã��_¼dÏ

� Á\½+Å�Á<·;À�Á<½�Ð�¼×ÎBÁ\Ç@ÃaÄ�Å\¶a½+º"¸�º�¶_·;Á<¸ ·;Á\¼�¿�Á�·t¿@ÃaÄ�¿�¸ Õ\Á��
¾hÁ\½�Á\Çt¶_·;ÁHº�ÄÌÇ;Ãh¼�·;À�¸�¿%ÄÌÁH¶_·;Ð�Ç;ÁT¿�Á�·�¸�¿ (

2m
2

) Ë,ÎBÁHÅ\¶aÐ+¿�Á×ÃaÄ
¼�¶_É $ è ½�Ã�µ�Ç;Ð�½�¸ ½�¾@¸�¿	º"Ãh½�Ár¶_·	·;À�Á:Ú+Çt¿j·	¹ Á\ÆhÁ\¹ßÍ�Ï

Ö�Ç;Ãh¼ ·;À�¸�¿4¿�Á�·»Ù#Á�Ç;Á\¼@Ã_ÆhÁ�Å\¶a½+º"¸�º�¶_·;ÁH¿dÃaÄ×·;À�Á�ÄÌÃhÇ;¼
(−fi,−fj)

¶a½+º
(fi,−fi)

Ï6Ó�À�¸�¿�Ç;ÁHº"Ð+Å�Ád·;À�Áv¿�¸ Õ\Á»ÃaÄ:·;À�Á
Å\¶a½+º"¸�º�¶_·;Ár¿�Á�·�·;Ã (

2m
2

)
−

(
m
2

)
−m

Ï

D ^�Z ��ª ê	Ø%¹ ¹±µBÃ{¿�¸ ·;¸ ÆhÁ×Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼ ¿�Á�·t¿%ÃaÄ,¿�¸ Õ\Á-��¶aÇ;Á
¾hÇ;ÁH¶_·;Á\Ç	·;À+¶a½4·;À�Á�·;À�Ç;ÁH¿�À�Ãh¹�º

t
Ï:Ó�À�Á\½4Î�Ñ�	-Á\¼@¼�¶ � Ï

¶a¹ ¹�·;À�ÁdÅ\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼�¿�Á�·t¿TÃaÄ�¿�¸ Õ\Á �4Ù	¸ ·;À�½�Á\¾{¶_·;¸ ÆhÁ
ÄÌÁH¶_·;Ð�Ç;ÁH¿�Ù#ÃhÐ�¹�º�ÎBÁvµ�Ç;Ð�½�ÁHº¤Ï � Á\½+Å�Á4·;À�Áf¶hº�º"¸ ·;¸ Ãh½+¶a¹
½�Ð�¼×ÎBÁ\Ç	ÃaÄ8µ�Ç;Ð�½�¸ ½�¾@Ù	¸ ¹ ¹¤ÎBÁ
(

2m
2

)
−

(
m
2

)
−m−

(
m
2

)
= m2 −m

D ^�Z � 9 ê	Ø%¹ ¹±µBÃ{¿�¸ ·;¸ ÆhÁ×Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼ ¿�Á�·t¿%ÃaÄ,¿�¸ Õ\Á-��¶aÇ;Á
¹ ÁH¿;¿#·;À+¶a½�·;À�Á:·;À�Ç;ÁH¿�À�Ãh¹�º

t
Ï

Ó�À�Á\½}¶a¹ ¹#½�Á\¾{¶_·;¸ ÆhÁ<Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼ ¿�Á�·t¿TÙ	¸ ¹ ¹�ÎBÁdÅtÀ�ÁHÅtÂhÁHº
¶a½+º4À�Á\½+Å�Á×·;À�Á\Ç;Á@Ù	¸ ¹ ¹8ÎBÁ@½�Ãd¶hº�º"¸ ·;¸ Ãh½+¶a¹8µ�Ç;Ð�½�¸ ½�¾<ÎBÁHÅ\¶aÐ+¿�Á
ÃaÄ 	-Á\¼@¼�¶ � Ï
 Ï

�-³�ª ���! B!^�� �r« X � ?B®+]_²Ì[%@��(��) �-^ � ���!�) ¸ ·;À@·;À�Á
À�Á\¹ µéÃaÄ�¶a½éÁ�É�¶a¼@µ�¹ Á Ù#Á!º"ÁH¿;Å�Ç;¸ ÎBÁo·;À�Á!º"Á�·t¶a¸ ¹�¿�ÃaÄv·;À�Á
* âMå{à_ã�Ýßñ_â � Þ��"í+Ýßí�å,+và\æ � � Ë � $ � �4¶_É $ è Íd¶a¹ ¾hÃhÇ;¸ ·;À�¼|ÄÌÃhÇ
¼@¸ ½�¸ ½�¾�Å�Ãh¼@µ�¹ Á�É<¿�µ+¶_·;¸�¶a¹¤Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿\Ï

177

X � ?B®+]_²Ì[%@�� ê � $
�
�4¶_É $ è

«�­g� °=[ê,Ó=Çt¶a½+¿;¶hÅ�·;¸ Ãh½�·t¶aÎ�¹ ÁhÈ
t

��°=[� °=[ê #�Ãh½"ÚBº"Á\½{·%Å�Ãh¼@µ�¹ Á�É�µ+¶_·�·;Á\Ç;½+¿

Â+$

Fk ← {f1, f2,, fn}∪{−f1,−f2,,−fn}

∪{f+
1 , f+

2 ,, f+
n }) À�¸ ¹ Á�Ö±Â

6= φÂ+$�Â��

� �K¾hÁ\½�Á\Çt¶_·;Á�Å\¶a½+º"¸�º�¶_·;Á:¸ ·;Á\¼�¿�Á�·t¿
Ck = maxPIgen(Fk−1)ÄÌÃhÇ	ÁH¶hÅtÀ

c ∈ Ck¸ Ä8Á\ÆhÁ\Ç;Ñ{ÄÌÁH¶_·;Ð�Ç;Á�¸ ½»Å�¸�¿	µBÃ{¿�¸ ·;¸ ÆhÁ
"'�oÅtÀ�ÁHÅtÂ

�
½�Á\¾{¶_·;¸ ÆhÁ{Ë�ÅHÍ#$

true
·;À�Á\½

¾hÁ\½�Á\Çt¶_·;Á
Fk

ÄÌÇ;Ãh¼
Ck

Ð+¿�¸ ½�¾
MaxPIÁ\½+º<¸ Ä

Á\½+º�ÄÌÃhÇ
F,½+º) À�¸ ¹ Á

�]_®-` � ¯±°=] � ê,ÅtÀ�ÁHÅtÂ
�
½�Á\¾{¶_·;¸ ÆhÁ

«�­g� °=[ê,Å\¶a½+º"¸�º�¶_·;Á:¸ ·;Á\¼�¿�Á�·HÈ
c

��°=[� °=[ê'&#Ã�Ãh¹ ÁH¶a½�Æ_¶aÇ;¸�¶aÎ�¹ ÁhÈ
check

ÅtÀ�ÁHÅtÂ+$%·;Ç;Ð�Á
ÄÌÃhÇ	ÁH¶hÅtÀ<½�Á\¾{¶_·;¸ ÆhÁ�ÄÌÁH¶_·;Ð�Ç;Á

−fi ∈ c
cp = c− (−fi) + fi¸ Ä

cp ∈ Fk

¶a½+º
fi /∈ maxFeature(cp)

·;À�Á\½
ÅtÀ�ÁHÅtÂ $oÄ�¶a¹�¿�Á

Á\½+º<¸ Ä
Á\½+º�ÄÌÃhÇ
Ç;Á�·;Ð�Ç;½dÅtÀ�ÁHÅtÂ

Ö±¸ ¾hÐ�Ç;Á �"ê
AlgorithmNP � MaxPI

Ï) Á<¾hÁ\½�Á\Çt¶_·;Á�Å\¶a½"Ê
º"¸�º�¶_·;Á�¸ ·;Á\¼�¿�Á�·t¿�¸ ½�·;À�Á�¿;¶a¼@Á�Ù�¶KÑf¶h¿�¶aµ�Ç;¸ ÃhÇ;¸ ÊM¾hÁ\½=Ë

Fk−1
Í�È

Á�É�Å�Á\µ"·T·;À+¶_·@Ù#Á<Ð+¿�Á�·;À�ÁdÙ#ÁH¶aÂ�¶a½{·;¸ ÊM¼@Ãh½�Ãa·;Ãh½�¸�Å�µ�Ç;ÃhµBÁ\Ç�·jÑ
¸ ½+¿j·;ÁH¶hº�ÃaÄI¶a½{·;¸ ÊM¼@Ãh½�Ãa·;Ãh½�¸�Å�µ�Ç;ÃhµBÁ\Ç�·jÑhÏ

� Ã #�¹ ¸�ì{Ð�Á Ó=Çt¶a½+¿;¶hÅ�·;¸ Ãh½
¸

A1, B1, C1 A, B, C¸ ¸
A2, B2, C2 A, B, C¸ ¸ ¸

C2,D1 C, D¸ Æ
A3, C3 A, CÆ

A3, B6, D2 A, B, DÆ�¸
A4, B3, D3 A, B, DÆ�¸ ¸
A5, B5, D4 A, B, DÆ�¸ ¸ ¸
B4, C4, D5 B, C, D¸ É

A6, D6 A, D

Ó±¶aÎ�¹ Á � ê #�¹ ¸�ì{Ð�Á×´�Á�·�¶a½+º<Ó=Çt¶a½+¿;¶hÅ�·;¸ Ãh½d´�Á�·

 Ï%ë�¸ ÆhÁ\½�¶»¿�µ+¶_·;¸�¶a¹,º�¶_·t¶aÎ+¶h¿�ÁhÈ±Å�Ç;ÁH¶_·;Á�¶»Å�¹ ¸�ì{Ð�Á�¿�Á�·×¿�Ð+ÅtÀ
·;À+¶_·:Á\ÆhÁ\Ç;Ñ<Ç;Ã_Ù Ç;Á\µ�Ç;ÁH¿�Á\½{·t¿�¶�¿�Á�·:ÃaÄ,µBÃh¸ ½{·�ÄÌÃhÇ;¼@¸ ½�¾<¶
Å�¹ ¸�ì{Ð�Á×¸ ½»·;À�ÁTº�¶_·t¶h¿�Á�·HÏ�Ó±¶aÎ�¹ Á � ¾h¸ ÆhÁH¿�¶a½»Á�É�¶a¼@µ�¹ Á×ÃaÄ
¶@Å�¹ ¸�ì{Ð�Ár¿�Á�·HÏ

�"Ï #�Ç;ÁH¶_·;Á�·;À�Á�·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½m¿�Á�·×ÄÌÇ;Ãh¼�·;À�Á<Å�¹ ¸�ì{Ð�Á<¿�Á�·HÈI¸ ½
Ù	À�¸�ÅtÀmÁ\ÆhÁ\Ç;Ñ�Ç;Ã_Ù Ç;Á\µ�Ç;ÁH¿�Á\½{·t¿r·;À�Á�ÄÌÁH¶_·;Ð�Ç;ÁH¿×ÃaÄ�µBÃh¸ ½{·t¿
¸ ½�·;À�Á�Å�ÃhÇ;Ç;ÁH¿�µBÃh½+º"¸ ½�¾�Ç;Ã_Ù0ÃaÄ×·;À�Á�Å�¹ ¸�ì{Ð�Á�¿�Á�·HÏéÖ�ÃhÇ
Á�É�¶a¼@µ�¹ ÁhÈ=Ç;Ã_Ù�ËÌ¸ßÍ:¸ ½�Ó±¶aÎ�¹ Á � ¾h¸ ÆhÁH¿�·;À�Á�¿�Á�·�ÃaÄ�µBÃh¸ ½{·
A1, B1, C1

ÄÌÃhÇ;¼@¸ ½�¾v¶vÅ�¹ ¸�ì{Ð�ÁhÏ � Á\Ç;Á
A1

¸�¿T¶4¿�µ+¶_·;¸�¶a¹
µBÃh¸ ½{·»Ù	¸ ·;ÀoÄÌÁH¶_·;Ð�Ç;Á 	 Ø 	 Ï�´�¸ ¼@¸ ¹�¶aÇ;¹ Ñ

B1
¸�¿»¶/¿�µ+¶_·;¸�¶a¹

µBÃh¸ ½{·8Ù	¸ ·;À�ÄÌÁH¶_·;Ð�Ç;ÁM	 &M	K¶a½+º
C1
¸�¿±¶�¿�µ+¶_·;¸�¶a¹{µBÃh¸ ½{·8Ù	¸ ·;À

ÄÌÁH¶_·;Ð�Ç;Á 	 #P	 Ï � Á\½+Å�Á#·;À�Á�·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½TÅ�ÃhÇ;Ç;ÁH¿�µBÃh½+º"¸ ½�¾%·;Ã
·;À�¸�¿%Å�¹ ¸�ì{Ð�Á:¸�¿ ,KØ�È &�È #E.{Ï

� Ï%ë�Á\½�Á\Çt¶_·;Á�Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼�¿�Á�·t¿%ÃaÄ,¿�¸ Õ\Á�Ãh½�Á�Ù	¸ ·;À»µBÃ{¿�¸ Ê
·;¸ ÆhÁ�¶a½+ºd½�Á\¾{¶_·;¸ ÆhÁ:ÄÌÁH¶_·;Ð�Ç;ÁH¿\Ï�Ö�ÃhÇ	·;À�Á�¾h¸ ÆhÁ\½dÁ�É�¶a¼@µ�¹ ÁhÈ
·;À�ÁvÅ\¶a½+º"¸�º�¶_·;Á
 ÊM¸ ·;Á\¼�¿�Á�·t¿�¶aÇ;Á�,KØ�È Ê�Ø�È &�È Ê &�È #�È Ê #�È ×È Ê
 .{ÏIÖ�ÃhÇ�¿�¸ ¼@µ�¹ ¸�Å�¸ ·jÑ»ËÌ¸ ½�·;À�¸�¿#Á�É�¶a¼@µ�¹ ÁKÍ�È{Ù#Á�¸ ¾h½�ÃhÇ;Á	·;À�Á
¿�Á\¹ Ä
�
Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¿	¿�Ð+ÅtÀv¶h¿

A+
Ï:´�¸ ½+Å�Á×¼�¶_É $ è ÄÌÃhÇ:¶a¹ ¹

·;À�Á
 ÊM¸ ·;Á\¼�¿�Á�·t¿T¶aÇ;Á
 È8Ù#Á<º"Ãv½�Ãa·Tµ�Ç;Ð�½�Á<¶a½�Ñ�Å\¶a½+º"¸ Ê
º�¶_·;ÁH¿	¶_·�·;À�¸�¿	¹ Á\ÆhÁ\¹�Ï

� Ï%ë�Á\½�Á\Çt¶_·;Á1Å\¶a½+º"¸�º�¶_·;Á �KÊM¸ ·;Á\¼�¿�Á�·t¿ ÄÌÇ;Ãh¼
 ÊM¸ ·;Á\¼�¿�Á�·t¿\È
¶aÐ"·;Ãh¼�¶_·;¸�Å\¶a¹ ¹ Ñ�µ�Ç;Ð�½�¸ ½�¾�µ+¶_·�·;Á\Ç;½+¿»¿�Ð+ÅtÀ ¶h¿

{A,−A}¶a½+º�µ+¶_·�·;Á\Ç;½+¿�Ù	¸ ·;À1¶a¹ ¹�½�Á\¾{¶_·;¸ ÆhÁ�ÄÌÁH¶_·;Ð�Ç;ÁH¿�¿�Ð+ÅtÀ ¶h¿
{−A,−B}

Ï
� Ï #�À�ÁHÅtÂ�¼�¶_É $ è ÃaÄ%·;À�ÁdÅ\¶a½+º"¸�º�¶_·;Á��KÊM¸ ·;Á\¼�¿�Á�·t¿T¶a¾{¶a¸ ½+¿j·
·;À�ÁdÐ+¿�Á\Ç�Ê�º"Á�Ú+½�ÁHºm·;À�Ç;ÁH¿�À�Ãh¹�º¤È#¶a½+º�¾hÁ\½�Á\Çt¶_·;Á�ÄÌÇ;ÁHì{Ð�Á\½{·
�KÊM¸ ·;Á\¼�¿�Á�·t¿\Ï) À�¸ ¹ Á�ÅtÀ�ÁHÅtÂ�¸ ½�¾�ÄÌÃhÇ:½�Á\¾{¶_·;¸ ÆhÁTÅ\¶a½+º"¸�º�¶_·;Á
¸ ·;Á\¼�¿�Á�·t¿�Ð+¿�Á1	-Á\¼@¼�¶
 ÄÌÃhÇ�¶hº�º"¸ ·;¸ Ãh½+¶a¹=µ�Ç;Ð�½�¸ ½�¾+Ï�Ó±¶_Ê
Î�¹ ÁH¿ � ¶a½+º � ¿�À�Ã_Ù ·;À�Ádµ�Ç;Ã"Å�ÁH¿;¿×ÃaÄ:ÅtÀ�ÁHÅtÂ�¸ ½�¾fÅ\¶a½+º"¸ Ê
º�¶_·;Á<¸ ·;Á\¼�¿�Á�·t¿TÃaÄ�¿�¸ Õ\ÁH¿ �v¶a½+º � Ù	¸ ·;À/¶4·;À�Ç;ÁH¿�À�Ãh¹�º�·
ÃaÄ � &���Ï�Ó�À�Á�Å�Ãh¹ Ð�¼@½i	 ÅtÀ�ÁHÅtÂhÁHº%	-¿�À�Ã_Ù%¿�Ù	À�Á�·;À�Á\Ç:·;À�Á
Å\¶a½+º"¸�º�¶_·;Á×¸ ·;Á\¼�¿�Á�·:Ù�¶h¿�ÅtÀ�ÁHÅtÂhÁHº4¶a¾{¶a¸ ½+¿j·%·;À�Á×·;À�Ç;ÁH¿�À"Ê
Ãh¹�º�ÃhÇ=½�Ãa·HÏ) À�Á\½�Ð+¿�¸ ½�¾	·;À�Á �4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼o¶a¹ ¹_·;À�Á
¾h¸ ÆhÁ\½�Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼�¿�Á�·t¿#Ù#ÃhÐ�¹�º�À+¶KÆhÁ%ÎBÁ\Á\½<ÅtÀ�ÁHÅtÂhÁHº¤Ï
� Ã_Ù#Á\ÆhÁ\Ç � $

�
�4¶_É $ è ¶KÆhÃh¸�º�¿r·;À�ÁH¿�Á<ÅtÀ�ÁHÅtÂ"¿×ÎBÁHÅ\¶aÐ+¿�Á

ÃaÄ 	-Á\¼@¼�¶
 Ï@Ó�À�¸�¿:¸ ½+Å�Ç;ÁH¶h¿�ÁH¿%·;À�Á�Á���Å�¸ Á\½+Å�Ñ»ÃaÄ�¼@¸ ½"Ê
¸ ½�¾TÅ�Ãh¼@µ�¹ Á�É�µ+¶_·�·;Á\Ç;½+¿\ÏIÓ�À�Á�Å�Ãh¹ Ð�¼@½ +và\æ � âtà_ã4�"Þ;â#º"Á�Ê

178

Å\¶a½+º"¸�º�¶_·;Á:¸ ·;Á\¼�¿�Á�· ÅtÀ�ÁHÅtÂhÁHº $,Ç �4¶_É $ è �4¶_É�Ö�ÁH¶_·;Ð�Ç;Á $,Ç;Ð�½�ÁHº
Ø & � � � � È � � � � � � Ø�È & �
Ø	Ê & �
Ø # � � � � È � � � � � � # �
Ø	Ê # � � � � � � � Ê �
Ø � � � � È � � � � � � Ø�È �
Ø	Ê �
Ê�Ø & �
Ê�Ø # �
Ê�Ø �
&
� � � � È � � � � � � # �
&�Ê # � � � � � � � Ê �
& � � � � È � � � � � � &�È �
&�Ê �
Ê &
�
Ê & �
� �
� � È �
� � �
� � Ê �
#,Ê � �
� � �
� � Ê �
Ê # � � � � � � � �

Ó±¶aÎ�¹ Á � ê �»¸ ½�¸ ½�¾�Å\¶a½+º"¸�º�¶_·;Á �KÊ,¸ ·;Á\¼�¿�Á�·
Å\¶a½+º"¸�º�¶_·;Á � ÊM¸ ·;Á\¼�¿�Á�· ÅtÀ�ÁHÅtÂhÁHº µ�Ç �4¶_É $ è �4¶_É�Ö�ÁH¶_·;Ð�Ç;Á $,Ç;Ð�½�ÁHº

Ø &
� �
� � È �
� � È �
� � �
� � Ê �
Ø & � � � � È � � � È � � � � � � Ê �
Ø # � & � � È & � � È & � � & Ê �
Ø	Ê # � � � � È � � � � � � Ø�È �
&
�
 � � È
 � � È
 � �
 � � Ê �

Ó±¶aÎ�¹ Á � ê �»¸ ½�¸ ½�¾�Å\¶a½+º"¸�º�¶_·;Á � Ê,¸ ·;Á\¼�¿�Á�·

½�Ãa·;ÁH¿�·;À�ÁIÄÌÁH¶_·;Ð�Ç;ÁIÄÌÃhÇ-Ù	À�¸�ÅtÀ�·;À�Á,µ+¶aÇ�·;¸�Å�¸ µ+¶_·;¸ Ãh½:Çt¶_·;¸ Ã	ÃaÄ
·;À�Á:Å\¶a½+º"¸�º�¶_·;Á�¸ ·;Á\¼�¿�Á�·	Ù�¶h¿�¾hÇ;ÁH¶_·;Á\Ç,·;À+¶a½�·;À�Á�·;À�Ç;ÁH¿�À"Ê
Ãh¹�º¤Ï�Ö�ÃhÇ�Á�É�¶a¼@µ�¹ Ád¸ ½ Ó±¶aÎ�¹ Á � È�ÄÌÃhÇ�Å\¶a½+º"¸�º�¶_·;Ád¸ ·;Á\¼
Ø &�È±µ�ÇKË ,KØ�È &/.{È Ø�Í $ � � � 0 ·@¶a½+º�µ�ÇKË ,KØ�È &/.{È &	Í $ � � �
0�·HÏ Ó�À�Á\Ç;Á�ÄÌÃhÇ;Á<Î�Ñ 	-Á\¼@¼�¶
 È�Ù#Á»º"Ã�½�Ãa·�À+¶KÆhÁ�·;Ã
ÅtÀ�ÁHÅtÂ

maxPI({−A, B})
¶a½+º

maxPI({A,−B})
¶h¿

Ù#Á,Â�½�Ã_Ùf·;À+¶_·=·;À�Á\Ñ:Ù	¸ ¹ ¹{ÎBÁ�¹ ÁH¿;¿-·;À+¶a½r·HÏ è Ä�Ù#Á#Å�Ãh½+¿�¸�º"Á\Ç
Ø #�È=µ�ÇKË ,KØ�È #E.{È Ø�Í $ � � � � ·@¶a½+º�µ�ÇKË ,KØ�È #E.{È #�Í $ � � �
0�·�Ï � Á\½+Å�ÁmÎ�Ñ�	-Á\¼@¼�¶
 È�Ù#Á�º"Ã�½�Ãa·f½�Á\ÁHºo·;Ã
ÅtÀ�ÁHÅtÂ

maxPI({−A, C})
Ï � Ã_Ù#Á\ÆhÁ\Ç¤Ù#Á,½�Á\ÁHº�·;Ã�ÅtÀ�ÁHÅtÂ

maxPI({A,−C})
Ï

� Ï �	Á\µBÁH¶_·�¿j·;Á\µ+¿ � ¶a½+º � ÄÌÃhÇ8·;À�Á%Å�Ãh½+¿�ÁHì{Ð�Á\½{·I¹ Á\ÆhÁ\¹�¿8Ð�½{·;¸ ¹
·;À�Á\Ç;Ár¶aÇ;Á:½�Ã@¼@ÃhÇ;Á�ÄÌÇ;ÁHì{Ð�Á\½{·	¸ ·;Á\¼�¿�Á�·t¿\Ï

�) � � �]_²�� ��­ [HZ�� ��� ZH° � [HZT^ ­ ¯ X ­ ^ �3= ZH²�Z
) Á#À+¶KÆhÁ#Å\¶aÇ;Ç;¸ ÁHº:ÃhÐ"·±·;À�Ç;Á\Á�¿�Á�·t¿=ÃaÄ+Á�É"µBÁ\Ç;¸ ¼@Á\½{·t¿-·;Ã:º"Á\¼@Ãh½"Ê
¿j·;Çt¶_·;Á@·;À�Á<¿;Å\¶a¹�¶aÎ�¸ ¹ ¸ ·jÑ�ÈI¶aµ�µ�¹ ¸�Å\¶aÎ�¸ ¹ ¸ ·jÑ�¶a½+ºf·;À�Á�¿j·t¶_·;¸�¿j·;¸�Å\¶a¹
Å�ÃhÇ;Ç;ÁHÅ�·;½�ÁH¿;¿�ÃaÄ � $

�
�4¶_É $ è Ï

�-`h^ � ^"Y8² � ²Ì[=) ÁvÅ�Ç;ÁH¶_·;ÁHº}¶�¹�¶aÇ;¾hÁ»¿�Ñ�½{·;À�Á�·;¸�Å4º�¶_·t¶�¿�Á�·�¸ ½
ÃhÇtº"Á\Ç�·;Ã»Å�Ãh¼@µ+¶aÇ;Á×·;À�Á �4¶_É $ è ¶a½+º»·;À�Á � $

�
�4¶_É $ è

¶a¹ ¾hÃhÇ;¸ ·;À�¼�¿\Ï è ½mµ+¶aÇ�·;¸�Å�Ð�¹�¶aÇHÈ±Ù#Á�Ù�¶a½{·;ÁHºf·;Ã»·;ÁH¿j·TÀ�Ã_Ù
¼×Ð+ÅtÀ@¶hº�º"¸ ·;¸ Ãh½+¶a¹"µ�Ç;Ð�½�¸ ½�¾:Ù�¶h¿±ÎBÁ\¸ ½�¾�¶hÅtÀ�¸ Á\ÆhÁHº�Î�Ñr·;À�Á
Ð+¿�Á:ÃaÄ 	-Á\¼@¼�¶
 Ï

X �U��� ²�`h^"Y8² � ²Ì[=) Á<Á�É�·;Çt¶hÅ�·;ÁHº�¶4¹�¶aÇ;¾hÁ<¿;¶a¼@µ�¹ Á�ÄÌÇ;Ãh¼ ·;À�Á
´�¹ Ã{¶a½ �¸ ¾h¸ ·t¶a¹B´�Â�ÑT´�Ð�Ç;ÆhÁ\Ñ �¶_·t¶aÎ+¶h¿�Á	¶a½+º@¶aµ�µ�¹ ¸ ÁHº�·;À�Á
� $
�
�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼ ·;Ã�·;ÁH¿j·�·;À�ÁvÁ���Å\¶hÅ�Ñ}ÃaÄrÃhÐ�Ç

¶aµ�µ�Ç;Ã{¶hÅtÀ�Ãh½»¶TÇ;ÁH¶a¹¤º�¶_·t¶@¿�Á�·HÏ
D ®+]K] � `a[­ � ZHZ) Á�¶aµ�µ�¹ ¸ ÁHºr·;À�Á � $

�
�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼ Ãh½

¶ ¿�¼�¶a¹ ¹�º�¶_·t¶ ¿�Á�·�·;Ã ÃhÎ"·t¶a¸ ½ ¶a½(ÃhÐ"·;µ�Ð"·
O
Ù	À�¸�ÅtÀ

Å�Ãh½{·t¶a¸ ½+¿8µ+¶_·�·;Á\Ç;½+¿IÃaÄB·;À�Á	ÄÌÃhÇ;¼
{A, B}

¶a½+º
{C,−D}

Ï
) Áf·;À�Á\½ ¶aµ�µ�¹ ¸ ÁHº ·;À�Á �	¸ µ�¹ Á\Ñ�	 ¿ ��Ê�ÄÌÐ�½+Å�·;¸ Ãh½�·;ÁH¿j·d·;Ã
ÅtÀ�ÁHÅtÂmÙ	À�Á�·;À�Á\Ç

A
¶a½+º

B
¶aÇ;ÁdµBÃ{¿�¸ ·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº

¶a½+º
C
¶a½+º

D
¶aÇ;Á:½�Á\¾{¶_·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº¤Ï

�=³�ª �/�] �M®+] �m^ ­ ` � ��� ^ � °±^"[H²�® ­ ®���[%@ � ^ � ?B®+]_²Ì[%@��
) Á�¾hÁ\½�Á\Çt¶_·;ÁHº�¿�Ñ�½{·;À�Á�·;¸�Å�º�¶_·t¶h¿�Á�·t¿rÃaÄ�¿�¸ Õ\ÁH¿rÇt¶a½�¾h¸ ½�¾dÄÌÇ;Ãh¼

Z� &���·;Ã
 ¼@¸ ¹ ¹ ¸ Ãh½�·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½+¿TÙ	¸ ·;À}·;Á\½�º"¸ Ò�Á\Ç;Á\½{·@ÄÌÁH¶_Ê
·;Ð�Ç;ÁH¿\Ï:Ó�À�ÁH¿�ÁTº�¶_·t¶h¿�Á�·t¿�Ù#Á\Ç;Á�¾hÁ\½�Á\Çt¶_·;ÁHº»Ð+¿�¸ ½�¾�·;À�Á×ÄÌÃh¹ ¹ Ã_Ù�Ê
¸ ½�¾×¼@Á�·;À�Ã"º¤Ï) ¸ ·;À�ÁH¶hÅtÀ�ÃaÄ-·;À�Á%·jÙ#Á\½{·jÑTÄÌÁH¶_·;Ð�Ç;ÁH¿HË�·;Á\½<¿�¸ ¼TÊ
µ�¹ Á�ÄÌÁH¶_·;Ð�Ç;ÁH¿�Á\¾+Ï^	 Ø 	¤¶a½+ºd·;Á\½f¿�Á\¹ ÄßÊ�Å�ÃaÊM¹ Ã"Å\¶_·;¸ Ãh½+¿	Á\¾+Ï^	 Ø �^	 Í

179

0

1000

2000

3000

4000

5000

6000

7000

8000

172000 344000 516000 688000 860000 1032000

Number of records

D
if

fe
re

n
c

e
 i
n

 t
im

e

(s

e
c

s
)

Ö±¸ ¾hÐ�Ç;Á � ê #�Ãh¼@µ+¶aÇ;¸�¿�Ãh½ ÃaÄdÁ���Å�¸ Á\½+Å�¸ ÁH¿mÃaÄ �4¶_É $ è ¶a½+º
NP � MaxPI

¶a¹ ¾hÃhÇ;¸ ·;À�¼�¿

¶h¿×·;À�Á�Ú+Çt¿j·TÄÌÁH¶_·;Ð�Ç;ÁhÈ#¶vÇt¶a½+º"Ãh¼ ½�Ð�¼×ÎBÁ\Ç@ÃaÄ%·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½+¿
Ù#Á\Ç;Á�¾hÁ\½�Á\Çt¶_·;ÁHº¤Ï�F�¶hÅtÀ�·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½�Ù�¶h¿�¾hÁ\½�Á\Çt¶_·;ÁHºfÙ	¸ ·;À
¶mÇt¶a½+º"Ãh¼ ¿�¸ Õ\Á4ÄÌÇ;Ãh¼
 ·;Ã
 &�Ï �Á\µBÁ\½+º"¸ ½�¾}Ãh½�·;À�Á�¿�¸ Õ\Á
ÃaÄI·;À�Á×·;Çt¶a½+¿;¶hÅ�·;¸ Ãh½d·;À�Á@Å�Ãh½+¿�ÁHì{Ð�Á\½{·%ÄÌÁH¶_·;Ð�Ç;ÁH¿�Ù#Á\Ç;ÁTÅtÀ�Ã{¿�Á\½
Çt¶a½+º"Ãh¼@¹ Ñ@ÄÌÇ;Ãh¼1·;À�Á:ÄÌÁH¶_·;Ð�Ç;Á�¿�Á�·HÏ

) Á%¶aµ�µ�¹ ¸ ÁHºr·;À�ÁE�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼!¶a½+º
NP � MaxPI¶a¹ ¾hÃhÇ;¸ ·;À�¼oÃh½�·;À�Á�º�¶_·t¶h¿�Á�·t¿-·;Ã�¾hÁ\½�Á\Çt¶_·;Á#Å�Ãh½"ÚBº"Á\½{·8Å�Ãh¼@µ�¹ Á�É

µ+¶_·�·;Á\Ç;½+¿\ÏvÖ±¸ ¾hÐ�Ç;Á � ¿�À�Ã_Ù%¿r·;À�Á<º"¸ Ò�Á\Ç;Á\½+Å�Á�¸ ½�·;¸ ¼@Á�·t¶aÂhÁ\½
Î�Ñ<ÎBÃa·;À»·;À�ÁH¿�Á×¼@Á�·;À�Ã"º�¿%·;Ã�¼@¸ ½�ÁTÅ�Ãh¼@µ�¹ Á�Édµ+¶_·�·;Á\Ç;½+¿	ÄÌÇ;Ãh¼
º�¶_·t¶h¿�Á�·t¿	ÃaÄIº"¸ Ò�Á\Ç;Á\½{·�¿�¸ Õ\ÁH¿\Ï è ·�Å\¶a½dÎBÁ×¿�Á\Á\½<·;À+¶_·%·;À�Ár·;¸ ¼@Á
º"¸ Ò�Á\Ç;Á\½+Å�Á�¸ ½+Å�Ç;ÁH¶h¿�ÁH¿�Çt¶aµ�¸�º"¹ Ñ@Ù	¸ ·;À�·;À�Á:¿�¸ Õ\Á�ÃaÄ-·;À�Á:º�¶_·t¶h¿�Á�·HÈ
Ù	À�¸�ÅtÀ}¸ ½+º"¸�Å\¶_·;ÁH¿@·;À�Á»Á�É�·;Á\½+¿�¸ ÆhÁ<µ�Ç;Ð�½�¸ ½�¾�ÃaÄ�·;À�Á»½�Á\¾{¶_·;¸ ÆhÁ
µ+¶_·�·;Á\Ç;½+¿±º"Ãh½�Á�Î�Ñ

NP � MaxPI
¶a¹ ¾hÃhÇ;¸ ·;À�¼ ¶a½+º�À�Á\½+Å�Á,·;À�Á

¸ ½+Å�Ç;ÁH¶h¿�Á@¸ ½�Á���Å�¸ Á\½+Å�ÑhÏ) Á�Å�Ãh½"Ú+Ç;¼@ÁHºv·;À+¶_·r·;À�Á�Ç;Ð�¹ Á�¿�Á�·t¿
¾hÁ\½�Á\Çt¶_·;ÁHº@Î�Ñ@·;À�Á�·jÙ#Ã×¼@Á�·;À�Ã"º<¶aÇ;Á�¸�º"Á\½{·;¸�Å\¶a¹BÎ�Ñ�Ð+¿�¸ ½�¾�·;À�Á
diff

ÄÌÐ�½+Å�·;¸ Ãh½-Ï
) Á�Å\¶aÇ;Ç;¸ ÁHº�ÃhÐ"·v¶�¿�ÁHÅ�Ãh½+º�Á�É"µBÁ\Ç;¸ ¼@Á\½{·»·;Ã Å�Ãh¼@µ+¶aÇ;Á

·;À�Á%µBÁ\Ç�ÄÌÃhÇ;¼�¶a½+Å�Á	ÃaÄ �4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼(¶a½+º
NP � MaxPIÙ	¸ ·;Àf¸ ½+Å�Ç;ÁH¶h¿�¸ ½�¾�½�Ð�¼×ÎBÁ\Ç:ÃaÄ,ÄÌÁH¶_·;Ð�Ç;ÁH¿�¸ ½v·;À�Á@º�¶_·t¶h¿�Á�·HÏ) Á

¾hÁ\½�Á\Çt¶_·;ÁHº/¿�Ñ�½{·;À�Á�·;¸�Åvº�¶_·t¶h¿�Á�·t¿�Ù	¸ ·;À ½�Ð�¼×ÎBÁ\Ç<ÃaÄ:ÄÌÁH¶_·;Ð�Ç;ÁH¿
Çt¶a½�¾h¸ ½�¾	ÄÌÇ;Ãh¼
 &%·;Ã � � Ï±Ö±¸ ¾hÐ�Ç;Á � ¿�À�Ã_Ù%¿-·;À�Á#·;¸ ¼@Á�·t¶aÂhÁ\½×Î�Ñ
·;À�Á:·jÙ#Ã�¶a¹ ¾hÃhÇ;¸ ·;À�¼�¿#·;Ã�¼@¸ ½�Á�Å�Ãh½"ÚBº"Á\½{·�Å�Ãh¼@µ�¹ Á�É�µ+¶_·�·;Á\Ç;½+¿
ÄÌÇ;Ãh¼ ·;À�ÁH¿�Á4º�¶_·t¶h¿�Á�·t¿\Ï�Ö�Ç;Ãh¼ ·;À�Á»Ú+¾hÐ�Ç;ÁhÈ#¸ ·�Å\¶a½/ÎBÁv¿�Á\Á\½
·;À+¶_·�·;À�Á\Ç;Á�¸�¿�¶dÇt¶aµ�¸�ºf¸ ½+Å�Ç;ÁH¶h¿�Á@¸ ½�·;¸ ¼@Á�Ù	¸ ·;À�·;À�Á��4¶_É $ è
¶a¹ ¾hÃhÇ;¸ ·;À�¼dÈ8Ù	À�¸ ¹ Á<Ù	¸ ·;À

NP � MaxPI
·;À�Á�·;¸ ¼@Á�·t¶aÂhÁ\½m¸�¿

Å�Ãh¼@µ+¶aÇt¶_·;¸ ÆhÁ\¹ Ñ@¹ ÁH¿;¿\Ï

�=³:9 X �U��� ²�`h^"[H²�® ­ ®�� ���! B!^�� �r« ^ � ?B®+]_²Ì[%@�� ® ­
�\� � �}¯±^"[H^"Y8^�Z �

�=³:9¤³�ª �<^"[H^ �] ��� ^"]_^"[H²�® ­ Ó�À�Á<º�¶_·t¶dÄÌÃhÇ�·;À�¸�¿×Á�É"µBÁ\Ç;¸ Ê
¼@Á\½{·±Ù�¶h¿-ÃhÎ"·t¶a¸ ½�ÁHº:ÄÌÇ;Ãh¼o·;À�Á�´ :´�´ �¶_·t¶/�	Á\¹ ÁH¶h¿�Á
 Ãh½�¹ ¸ ½�Á
Å\¶_·t¶a¹ Ãh¾hÐ�Á@¿�Á\Ç;Æ�¸�Å�ÁhÏ�Ó�À�Á�Ãh½�¹ ¸ ½�Á�º�¶_·t¶»Å�Ãh½{·t¶a¸ ½�ÁHºv¸ ½"ÄÌÃhÇ;¼�¶_Ê
·;¸ Ãh½ ¶aÎBÃhÐ"·�Ã_ÆhÁ\Ç
�� &�&�&�&fÅ�Á\¹ ÁH¿j·;¸�¶a¹%ÃhÎ"ÔjÁHÅ�·t¿\Ï!Ø%¼@Ãh½�¾�·;À�Á
À�Ð�½+º"Ç;ÁHº�¿:ÃaÄ	¶_·�·;Ç;¸ Î�Ð"·;ÁH¿�¿j·;ÃhÇ;ÁHºv¸ ½f·;À�Á�º�¶_·t¶aÎ+¶h¿�Á×ÄÌÃhÇ�ÁH¶hÅtÀ
ÃhÎ"ÔjÁHÅ�·	Ù#Á:Á�É�·;Çt¶hÅ�·;ÁHº�·;À�Á:ÄÌÃh¹ ¹ Ã_Ù	¸ ½�¾�¶_·�·;Ç;¸ Î�Ð"·;ÁH¿#ÄÌÃhÇ	ÃhÐ�Ç	Á�É�Ê

0

5000

10000

15000

20000

25000

30000

10 15 20 25

number of features

 T
im

e
 t

a
k
e
n

 (
s
e
c
s
)

NP_MaxPI

MaxPI

Ö±¸ ¾hÐ�Ç;Á � ê #�Ãh¼@µ+¶aÇ;¸�¿�Ãh½�ÃaÄ�Á���Å�¸ Á\½+Å�Ñ�Ù	¸ ·;Àé¸ ½+Å�Ç;ÁH¶h¿�¸ ½�¾
½�Ð�¼×ÎBÁ\Ç	ÃaÄ=ÄÌÁH¶_·;Ð�Ç;ÁH¿

µBÁ\Ç;¸ ¼@Á\½{·

•
Ó�À�Á:ÃhÎ"ÔjÁHÅ�· 	 ¿ è

•
Å�Ã�ÃhÇtº"¸ ½+¶_·;ÁH¿:Ë�¶h¿	¶TÐ�½�¸ ·%ÆhÁHÅ�·;ÃhÇ�Í

•
ÃhÎ"ÔjÁHÅ�·�·jÑ�µBÁ

•
µ�Ç;¸ ¼�¶aÇ;Ñ@·t¶aÇ;¾hÁ�· �B¶a¾{¿

•
Ç;ÁHº<¿�À�¸ Äß·

•
·;À�Á@º"¸ Ò�Á\Ç;Á\½+Å�Á×ÎBÁ�·jÙ#Á\Á\½4·;À�ÁTÐ � Ç�¹ ¸ ¾hÀ{·�¼�¶a¾h½�¸ ·;Ð+º"ÁH¿
ËÌÐ+¿�ÁHº�·;Ã�¿�Á\µ+¶aÇt¶_·;Á�¾{¶a¹�¶_É"Ñ@·jÑ�µBÁH¿tÍ
Ó�À�Á�º"¸�¿j·t¶a½+Å�ÁH¿¤ÎBÁ�·jÙ#Á\Á\½rÃhÎ"ÔjÁHÅ�·t¿¤Ù#Á\Ç;Á,Å\¶a¹�Å�Ð�¹�¶_·;ÁHº�Ð+¿�¸ ½�¾

� Ð�Î�Î�¹ Á 	 ¿ 	=¶KÙ1¾h¸ ÆhÁ\½mÎ�Ñ
D = c ∗ z/H0

È,Ù	À�Á\Ç;Á<Å�¸�¿�·;À�Á
¿�µBÁ\ÁHº<ÃaÄ8¹ ¸ ¾hÀ{·HÈ"Õr¸�¿�·;À�ÁrÇ;ÁHºd¿�À�¸ Äß·�¶a½+º

H0
¸�¿�·;À�Á � Ð�Î�Î�¹ Á 	 ¿

Å�Ãh½+¿j·t¶a½{·	¶a½+º<¸�¿
71kmsec−1Mpc−1

� � � Ï
Ó=Ã�Á\½+¿�Ð�Ç;Ád·;À+¶_·�·;À�Á»Ç;ÁH¿�Ð�¹ ·t¿@ÄÌÃhÇ�¼@ÁH¶h¿�Ð�Ç;¸ ½�¾f·;À�Ávº"¸�¿jÊ

·t¶a½+Å�ÁT·;ÃdÁH¶hÅtÀvÃhÎ"ÔjÁHÅ�·rÙ#ÃhÐ�¹�ºvÎBÁ�¶h¿r¶hÅ\Å�Ð�Çt¶_·;ÁT¶h¿:µBÃ{¿;¿�¸ Î�¹ ÁhÈ
Ãh½�¹ Ñ�ÃhÎ"ÔjÁHÅ�·t¿IÙ	¸ ·;À�¶:Õ�#�Ãh½"Ä�Æ_¶a¹ Ð�Á 0 &�Ï �>� ËÌ¸�Ï ÁhÏ=·;À�Á%ÃhÎ"ÔjÁHÅ�· 	 ¿
Ç;ÁHº:¿�À�¸ Äß·±¸�¿ 0 �>� ��Å�Á\Ç�·t¶a¸ ½BÍ¤¶a½+º:Õ) ¶aÇ;½�¸ ½�¾'$ &�ËÌ¸�Ï ÁhÏ-·;À�Á\Ç;Á 	 ¿
½�Ã�µ�Ç;ÃhÎ�¹ Á\¼ Ù	¸ ·;À4·;À�ÁTÇ;ÁHºv¿�À�¸ Äß·�Í�¶aÇ;Á�Ð+¿�ÁHº¤Ï�Ó�À�¸�¿�Ú+¹ ·;Á\Ç;¸ ½�¾
Å�Ð"·t¿	º"Ã_Ù	½�·;À�Ár½�Ð�¼×ÎBÁ\Ç%ÃaÄ±ÃhÎ"ÔjÁHÅ�·t¿#·;Ã�¶aÇ;ÃhÐ�½+º
�
Z� &�&�&�Ï

Ó�À�ÁY	 ÃhÎ"ÔjÁHÅ�·f·jÑ�µBÁ 	�¶_·�·;Ç;¸ Î�Ð"·;Á/Å�¹�¶h¿;¿�¸ Ú+ÁH¿4·;À�Á/ÃhÎ"ÔjÁHÅ�·t¿
¸ ½{·;ÃC� � Å\¶_·;Á\¾hÃhÇ;¸ ÁH¿\Ï � Ã_Ù#Á\ÆhÁ\Ç�·;À�ÁmÅ�Ð�Ç;Ç;Á\½{·»Ãh½�¹ ¸ ½�Á�º�¶_·t¶
À+¶h¿:ÃhÎ"ÔjÁHÅ�·t¿�Ãh½�¹ Ñ4¸ ½
Z� ÃaÄ#·;À�ÁH¿�Á�Å\¶_·;Á\¾hÃhÇ;¸ ÁH¿\ÏTØ%¼@Ãh½�¾<·;À�Á
Æ_¶aÇ;¸ ÃhÐ+¿»ÃhÎ"ÔjÁHÅ�·v·jÑ�µBÁH¿\È×Ù#ÁmÁ�É�·;Çt¶hÅ�·;ÁHº Ãh½�¹ Ñ�·;À�Á�¾{¶a¹�¶_É"¸ ÁH¿
¿�¸ ½+Å�Á � &��/ÃaÄ�·;À�Á,ÃhÎ"ÔjÁHÅ�·t¿¤Ù#Á\Ç;Á,Å�¹�¶h¿;¿�¸ Ú+ÁHº:¶h¿,	 ë:¶a¹�¶_É"¸ ÁH¿�	 Ï) Á
ÄÌÐ�Ç�·;À�Á\Ç@Å�¹�¶h¿;¿�¸ Ú+ÁHºf·;À�Á�¾{¶a¹�¶_É"¸ ÁH¿�¸ ½{·;ÃQ	 ¼�¶a¸ ½\	8¾{¶a¹�¶_É"¸ ÁH¿�¶a½+º
	-Ð�¼@¸ ½�ÃhÐ+¿'�	ÁHºvë:¶a¹�¶_É"¸ ÁH¿×Ë�	 �	ërÍ�Ï�Ó�À�Á×¼�¶a¸ ½4¾{¶a¹�¶_É"¸ ÁH¿�¶aÇ;Á
Å�¹ Ã{¿�Á\Ç%Ëß·;Ãr·;À�Á/F�¶aÇ�·;ÀBÍI¶a½+º@Î�Ç;¸ ¾hÀ{·;Á\ÇI·;À+¶a½@·;À�Á 	 �	ëTÏ è ½@·;À�Á
´ :´�´�º�¶_·t¶aÎ+¶h¿�Á%·;À�Á 	 �	ë6Ù#Á\Ç;Á �B¶a¾h¾hÁHº�Ù	¸ ·;Àd¶×µ+¶aÇ�·;¸�Å�Ð�¹�¶aÇ
Æ_¶a¹ Ð�ÁhÏ) Á�Å�¹�¶h¿;¿�¸ Ú+ÁHº�·;À�ÁP	 ¼�¶a¸ ½\	H¶a½+º 	 �	ë�¾{¶a¹�¶_É"¸ ÁH¿�ÄÌÐ�Ç�·;À�Á\Ç
¸ ½{·;Ã�F�¶aÇ;¹ Ñ4¶a½+º�	=¶_·;ÁT¾{¶a¹�¶_É"¸ ÁH¿%Ð+¿�¸ ½�¾�·;À�Á���� � Ç;ÁHº4¹ ¸ ¾hÀ{·
¼�¶a¾h½�¸ ·;Ð+º"ÁH¿\Ï×Ø�Ð"ÊMÇ:Æ_¶a¹ Ð�ÁT¾hÇ;ÁH¶_·;Á\Ç�·;À+¶a½vÃhÇ:ÁHì{Ð+¶a¹±·;Ã��"Ï ���
¸ ½+º"¸�Å\¶_·;Á-F�¶aÇ;¹ Ñ4¾{¶a¹�¶_É"Ñ4¶a½+ºv¹ ÁH¿;¿:·;À+¶a½ �"Ï ����¸ ½+º"¸�Å\¶_·;Á�	=¶_·;Á
¾{¶a¹�¶_É"¸ ÁH¿\Ï Ö�Ç;Ãh¼ � Ð�Î�Î�¹ ÁH¿4Ó=Ð�½�¸ ½�¾ Ö�ÃhÇ;Â�¼@Ã"º"Á\¹ �
 & � ¸ ·

180

"�Î"ÔjÁHÅ�·t¿ ´�Ñ�¼×ÎBÃh¹
ë:Ø 	=Ø�� ��Ê 	 �	ë�Ê F�Ø/� 	�� Ø
ë:Ø 	=Ø�� ��Ê 	 �	ë�Ê 	=ØIÓ F &
ë:Ø 	=Ø�� ��Ê �4Ø è�� Ê F�Ø/� 	�� #
ë:Ø 	=Ø�� ��Ê �4Ø è�� Ê 	=ØIÓ F

Ó±¶aÎ�¹ Á � ê 	-¸�¿j·%ÃaÄ±ÃhÎ"ÔjÁHÅ�·	·jÑ�µBÁH¿	¶a½+º�·;À�Á\¸ Ç�¿�Ñ�¼×ÎBÃh¹�¿
� Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º �¸�¿j·t¶a½+Å�Á@ê
 ¼@Á\¾{¶aµ+¶aÇt¿�ÁHÅ
¼@¸ ½»Å�Ãh½"ÚBº"Á\½+Å�Á@ê � &��
B+⇒ −C
D+⇒ −C
A+⇒ −B −D
B ⇒ −A− C
C ⇒ −B −D
C+⇒ −B −D
A⇒ −B − C −D

Ó±¶aÎ�¹ Á � ê �	Ð�¹ ÁH¿�ÄÌÇ;Ãh¼�´ :´�´<º�¶_·t¶aÎ+¶h¿�Á

ÄÌÃh¹ ¹ Ã_Ù%¿@·;À+¶_·�ÁH¶aÇ;¹ Ñ�¾{¶a¹�¶_É"¸ ÁH¿�¶aÇ;Á4Á\¹ ¹ ¸ µ"·;¸�Å\¶a¹�¸ ½ ¿�À+¶aµBÁv¶a½+º
¹�¶_·;Á	¶aÇ;Á�¿�µ�¸ Çt¶a¹ �K¸ Ç;Ç;Á\¾hÐ�¹�¶aÇHÏ¤Ó±¶aÎ�¹ Á � ¹ ¸�¿j·t¿±·;À�Á%º"¸ Ò�Á\Ç;Á\½{·8·jÑ�µBÁH¿
ÃaÄ,¾{¶a¹�¶_É"¸ ÁH¿%¶a½+ºd·;À�ÁTÅ�ÃhÇ;Ç;ÁH¿�µBÃh½+º"¸ ½�¾�¿�Ñ�¼×ÎBÃh¹�¿%Ð+¿�ÁHº»¸ ½»·;À�¸�¿
µ+¶aµBÁ\ÇHÏ

�=³:9¤³:9 � ° �!� Z�� ��­ �]_^"[� ¯���]_®�� �\� � � �<^"[H^"Y8^�Z �
) Á�¶aµ�µ�¹ ¸ ÁHº¥·;À�Á � $

�
�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼ ·;Ã ·;À�Á�º�¶_·t¶

¿�Á�·�Á�É�·;Çt¶hÅ�·;ÁHº6ÄÌÇ;Ãh¼�·;À�Á ´ :´�´(º�¶_·t¶aÎ+¶h¿�Á}¶a½+º(¿�Ãh¼@Á}ÃaÄ
·;À�Á!¸ ½{·;Á\Ç;ÁH¿j·;¸ ½�¾1Ç;Ð�¹ ÁH¿�¾hÁ\½�Á\Çt¶_·;ÁHºé¶aÇ;Á!¿�À�Ã_Ù	½é¸ ½0Ó±¶aÎ�¹ Á
� Ï Ó�À�Á(Á\½{·;¸ Ç;Á(Ç;ÁH¿�Ð�¹ ·!¿�Á�·6Å�ÃhÐ�¹�º ÎBÁ ÃhÎ"·t¶a¸ ½�ÁHº ÄÌÇ;Ãh¼
À{·�·;µ-ê � �KÙ	Ù	ÙrÏ Å\¿\Ï Ð+¿�Ñ"º¤Ï ÁHº"Ð-Ï ¶aÐ ���+ÅtÀ+¶KÙ	¹�¶ �_¿;º�¿;¿\Ï À{·;¼@¹�Ï Ö�Ç;Ãh¼
Ó±¶aÎ�¹ Á � Ù#Á:¿�Á\Á�·;À+¶_·�ÄÌÁH¶_·;Ð�Ç;ÁH¿�Ø ¶a½+º #�¶aÇ;Á�ÁH¶aÇ;¹ Ñ�¾{¶a¹�¶_É"¸ ÁH¿
¶a½+º»À�Á\½+Å�Á�·;À�Á\Ñ4¶aÇ;Á�Á\¹ ¹ ¸ µ"·;¸�Å\¶a¹8¸ ½v¿�À+¶aµBÁhÏ:Ö�ÁH¶_·;Ð�Ç;ÁH¿ & ¶a½+º
 !¶aÇ;Á�¹�¶_·;Ár¾{¶a¹�¶_É"¸ ÁH¿�¶a½+º�À�Á\½+Å�Á:·;À�Á\Ñ�¶aÇ;Ár¿�µ�¸ Çt¶a¹�¸ ½»¿�À+¶aµBÁhÏ

Ø%¼@Ãh½�¾<·;À�Á@Ç;Ð�¹ ÁH¿�¸ ½�Ó±¶aÎ�¹ Á � È¤·;À�Á@Ç;Ð�¹ ÁH¿�·;Ã<ÎBÁ�½�Ãa·;ÁHº
¶aÇ;Á

A+ ⇒ −B − D
¶a½+º

C+ ⇒ −B − D
Ï�Ó�À�ÁH¿�Á@Ç;Ð�¹ ÁH¿

¿�À�Ã_Ù�·;À+¶_·,Ø �/¸�¿±½�Á\¾{¶_·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHºrÙ	¸ ·;À &m¶a½+º /Î�Ð"·
½�Ãa· #�Ï�´�¸ ¼@¸ ¹�¶aÇ;¹ Ñ # ��¸�¿I½�Á\¾{¶_·;¸ ÆhÁ\¹ Ñ×Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº×Ù	¸ ·;À &�¶a½+º
 �¶a½+º@½�Ãa·�Ø�Ï{Ó�À�ÁH¿�Á%Ç;Ð�¹ ÁH¿�Å�Ãh½"ÄÌÃhÇ;¼!·;Ãr·;À�Á%Ù#Á\¹ ¹+Â�½�Ã_Ù}Ä�¶hÅ�·
·;À+¶_·8Ù	À�Á\½×Á\¹ ¹ ¸ µ"·;¸�Å\¶a¹�¾{¶a¹�¶_É"¸ ÁH¿±Å�ÃaÊM¹ Ã"Å\¶_·;ÁI·;À�Á	¿�µ�¸ Çt¶a¹{¾{¶a¹�¶_É"¸ ÁH¿
¶aÇ;Á�Á�É�Å�¹ Ð+º"ÁHº¤Ï

�=³ � ���! B!^�� �r« ^ ­ ¯ � ² ���!�>=�� Z ; _	�=° ­ `a[H²�® ­ �	¸ µ"Ê
¹ Á\Ñ�	 ¿/�(ÄÌÐ�½+Å�·;¸ Ãh½4¸�¿�¶�¼@Á�·;À�Ã"º»¸ ½v¿�µ+¶_·;¸�¶a¹±¿j·t¶_·;¸�¿j·;¸�Å\¿�Ù	À�¸�ÅtÀ
¸�¿#Ð+¿�ÁHº�·;Ã@ÅtÀ+¶aÇt¶hÅ�·;Á\Ç;¸ Õ\Á	·;À�Ár¿�µ+¶_·;¸�¶a¹�µ+¶_·�·;Á\Ç;½�ÃaÄ=µBÃh¸ ½{·	º�¶_·t¶
� � � Ï,Ó�À�Á �6ÄÌÐ�½+Å�·;¸ Ãh½d¸�¿	¾h¸ ÆhÁ\½<Î�Ñ

K(t) = λ−1E

Ù	À�Á\Ç;Á F�¸�¿f·;À�Á�½�Ð�¼×ÎBÁ\Ç�ÃaÄd¿�µ+¶_·;¸�¶a¹@µBÃh¸ ½{·t¿�Ù	¸ ·;À�¸ ½
º"¸�¿j·t¶a½+Å�Á�·fÃaÄ�¶/Çt¶a½+º"Ãh¼@¹ ÑoÅtÀ�Ã{¿�Á\½ µBÃh¸ ½{·f¶a½+º

λ
¸�¿d·;À�Á

º"Á\½+¿�¸ ·jÑ�ËÌ½�Ð�¼×ÎBÁ\Ç@µBÁ\ÇTÐ�½�¸ ·�¶aÇ;ÁH¶{Í:ÃaÄ�Á\ÆhÁ\½{·t¿\Ï è Ä�Ø¥¸�¿�·;À�Á
¶aÇ;ÁH¶TÃaÄ8·;À�Á×¿j·;Ð+º"Ñ<Ç;Á\¾h¸ Ãh½d¶a½+º � ¸�¿	·;À�Á�ÃhÎ+¿�Á\Ç;ÆhÁHº�½�Ð�¼×ÎBÁ\Ç

ÃaÄ±µBÃh¸ ½{·t¿�·;À�Á\½-È
λ
$ � �_Ø�Ï

�	¸ µ�¹ Á\Ñ�	 ¿E�!ÄÌÐ�½+Å�·;¸ Ãh½4Å�ÃhÐ�¹�ºdÎBÁrÐ+¿�ÁHº<·;Ã@·;ÁH¿j·�Å�Ãh¼@µ�¹ Á�·;Á
¿�µ+¶_·;¸�¶a¹	Çt¶a½+º"Ãh¼@½�ÁH¿;¿@¸�Ï ÁhÏ�·;Ã�·;ÁH¿j·�Ù	À�Á�·;À�Á\Ç�·;À�Á4ÃhÎ+¿�Á\Ç;ÆhÁHº
Á\ÆhÁ\½{·t¿%¶aÇ;Á�Å�Ãh½+¿�¸�¿j·;Á\½{·�Ù	¸ ·;Àv¶@À�Ãh¼@Ãh¾hÁ\½�Á\ÃhÐ+¿ $8Ãh¸�¿;¿�Ãh½dµ�Ç;ÃaÊ
Å�ÁH¿;¿\Ï è Ä�¿�Ã+È

K(t) = πt2
ÄÌÃhÇT¶a¹ ¹

t
Ïv¸�Ï ÁhÏ4Ð�½+º"Á\Ç@Å�Ãh¼@µ�¹ Á�·;Á

Çt¶a½+º"Ãh¼@½�ÁH¿;¿
t = (K(t)/π)1/2 ÄÌÃhÇ%¶a¹ ¹ t. 	-Á�·

L(t) = (K(t)/π)1/2

Ï
 �Á\µBÁ\½+º"¸ ½�¾�Ãh½<·;À�Á�Æ_¶a¹ Ð�ÁrÃaÄ 	�Ëß·�Í�È+·;À�Á�º"¸�¿j·;Ç;¸ Î�Ð"·;¸ Ãh½»ÃaÄ

·;À�ÁrµBÃh¸ ½{·t¿	Å�ÃhÐ�¹�º�ÎBÁ�ÅtÀ+¶aÇt¶hÅ�·;Á\Ç;¸ Õ\ÁHº�¶h¿#ÄÌÃh¹ ¹ Ã_Ù%¿\ê

L(t) =




< t
µBÃh¸ ½{·t¿	¶aÇ;Á:½�Á\¾{¶_·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº

≈ t
µBÃh¸ ½{·t¿	¶aÇ;Á:Çt¶a½+º"Ãh¼@¹ Ñ�º"¸�¿j·;Ç;¸ Î�Ð"·;ÁHº

> t
µBÃh¸ ½{·t¿	¶aÇ;Á:µBÃ{¿�¸ ·;¸ ÆhÁ\¹ Ñ�Å�ÃhÇ;Ç;Á\¹�¶_·;ÁHº

 �¸ É"Ãh½ �
�� À+¶h¿I¿�Ð�¾h¾hÁH¿j·;ÁHº�·;À�Á�ÄÌÃh¹ ¹ Ã_Ù	¸ ½�¾:¾hÁ\½�Á\Çt¶a¹ ¸ ÕH¶_·;¸ Ãh½
ÃaÄ���Ëß·�Í�ÄÌÐ�½+Å�·;¸ Ãh½<ÄÌÃhÇ	¼×Ð�¹ ·;¸ Æ_¶aÇ;¸�¶_·;Ár¿�µ+¶_·;¸�¶a¹¤µBÃh¸ ½{·%µ�Ç;Ã"Å�ÁH¿;¿\ê

Kij(t) = λ−1
j E

) À�Á\Ç;Á F0¸�¿4·;À�Á}½�Ð�¼×ÎBÁ\ÇvÃaÄ�·jÑ�µBÁ4ÔvÁ\ÆhÁ\½{·t¿4Ù	¸ ·;À�¸ ½
º"¸�¿j·t¶a½+Å�Á�·%ÃaÄ8¶@Çt¶a½+º"Ãh¼@¹ Ñ�ÅtÀ�Ã{¿�Á\½�·jÑ�µBÁ:¸-Á\ÆhÁ\½{·HÏ

�%½+º"Á\Ç@Å�Ãh¼@µ�¹ Á�·;Á<¿�µ+¶_·;¸�¶a¹�Çt¶a½+º"Ãh¼@½�ÁH¿;¿
Kij(t) = πt2

Ï
� Á\½+Å�Á

Lij(t) = (Kij(t)/π)1/2 = t
Ó�À�¸�¿ ¿�À�Ã_Ù%¿}·;À+¶_· Æ_¶a¹ Ð�ÁH¿�ÃaÄ

Lij(t) > t
¸ ½+º"¸�Å\¶_·;Á

¶_·�·;Çt¶hÅ�·;¸ Ãh½ ÎBÁ�·jÙ#Á\Á\½�·;À�Á�¸:·jÑ�µBÁ�¶a½+ºmÔ�·jÑ�µBÁ�µBÃh¸ ½{·t¿»¶a½+º
Æ_¶a¹ Ð�ÁH¿ � ·	¸ ½+º"¸�Å\¶_·;ÁrÇ;Á\µ�Ð�¹�¿�¸ Ãh½-Ï

) Á<¶aµ�µ�¹ ¸ ÁHº�·;À�Á
NP � MaxPI

¶a¹ ¾hÃhÇ;¸ ·;À�¼0·;Ãf¶»ÆhÁ\Ç;Ñ
¿�¼�¶a¹ ¹�¿�Ñ�½{·;À�Á�·;¸�Å�º�¶_·t¶�¿�Á�·�Ù	¸ ·;À � &�µBÃh¸ ½{·t¿#¶a½+º�¾hÁ\½�Á\Çt¶_·;ÁHº�¶
¿�Á�·rÃaÄ	Å�Ãh¼@µ�¹ Á�ÉvÇ;Ð�¹ ÁH¿:Ù	¸ ·;À/ðTÝßí�ätï_í%7

70%
Ï�Ó�À�Á�Ç;Ð�¹ ÁH¿r¶aÇ;Á

¾h¸ ÆhÁ\½�¸ ½»Ó±¶aÎ�¹ Á
 Ï
) Á�¶aµ�µ�¹ ¸ ÁHº �	¸ µ�¹ Á\Ñ�	 ¿ � ÄÌÐ�½+Å�·;¸ Ãh½ ·;Ã/·;À�Á�¿�Ñ�½{·;À�Á�·;¸�Å

º�¶_·t¶�¿�Á�·,¶a½+º×Å\¶a¹�Å�Ð�¹�¶_·;ÁHº:·;À�Á
Lij

Æ_¶a¹ Ð�ÁH¿=ÄÌÃhÇIº"¸ Ò�Á\Ç;Á\½{·8Æ_¶a¹ Ð�ÁH¿
ÃaÄ±·%Ù	À�Á\Ç;Ár¸�È+¶a½+º×Ô	Ù#Á\Ç;Á�·;À�Á:·jÑ�µBÁH¿	ÃaÄ±ÄÌÁH¶_·;Ð�Ç;ÁH¿	¸ ½dÁH¶hÅtÀdÃaÄ
·;À�Á�Ç;Ð�¹ ÁH¿=¸ ½×Ó±¶aÎ�¹ Á
 Ï±Ó�À�Á#º"¸ Ò�Á\Ç;Á\½{·±Æ_¶a¹ Ð�ÁH¿-ÃaÄ

Lij

¶aÇ;Á,¾h¸ ÆhÁ\½
¸ ½»Ó±¶aÎ�¹ Á � Ï

Ó±¶aÎ�¹ Á � ¿�À�Ã_Ù%¿@·;À+¶_·�ÄÌÃhÇ�·jÑ�µBÁfØ ¶a½+º ×È
LAD ≥ tÙ	À�¸�ÅtÀ(¸ ½+º"¸�Å\¶_·;ÁH¿f·;À+¶_·�·;À�ÁH¿�Á}·jÙ#Ão·jÑ�µBÁH¿�ÃaÄdÃhÎ"ÔjÁHÅ�·t¿�¶aÇ;Á

µBÃ{¿�¸ ·;¸ ÆhÁ\¹ ÑTÅ�ÃhÇ;Ç;Á\¹�¶_·;ÁHº¤Ï) À�Á\½�Å�Ãh¼@µ+¶aÇ;¸ ½�¾:·jÑ�µBÁH¿ #}¶a½+º !È
Ù#Á�Ú+½+º<·;À+¶_·

LCD ≤ t
Ù	À�¸�ÅtÀ»¿�À�Ã_Ù%¿�½�Á\¾{¶_·;¸ ÆhÁrÅ�ÃhÇ;Ç;Á\¹�¶_·;¸ Ãh½

ÎBÁ�·jÙ#Á\Á\½�·;À�Á/·jÑ�µBÁH¿\Ï ´�¸ ¼@¸ ¹�¶aÇ;¹ Ñ6·jÑ�µBÁH¿ # ¶a½+º & ¿�À�Ã_Ù
½�Á\¾{¶_·;¸ ÆhÁ@Å�ÃhÇ;Ç;Á\¹�¶_·;¸ Ãh½-Ï@Ó�À�ÁH¿�Á�Å�Ãh½"Ú+Ç;¼ ·;À�Á�Ç;Ð�¹ ÁH¿:¸ ½�Ó±¶aÎ�¹ Á

 Ï � Ã_Ù#Á\ÆhÁ\Ç,¸ ·%¿�À�ÃhÐ�¹�º�ÎBÁ�½�Ãa·;ÁHº�·;À+¶_· �	¸ µ�¹ Á\Ñ�	 ¿ ��Ê�ÄÌÐ�½+Å�·;¸ Ãh½
Ú+½+º�¿,Ç;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿8¾h¹ ÃhÎ+¶a¹ ¹ ÑrÄÌÇ;Ãh¼�·;À�Á%Á\½{·;¸ Ç;Á%¿�Á�·�ÃaÄ¤¿�µ+¶_·;¸�¶a¹
ÃhÎ"ÔjÁHÅ�·t¿@Ù	À�Á\Ç;ÁH¶h¿\È,ÃhÐ�Ç�¶aµ�µ�Ç;Ã{¶hÅtÀm¾hÁ\½�Á\Çt¶_·;ÁH¿TÇ;Á\¹�¶_·;¸ Ãh½+¿�À�¸ µ+¿
¹ Ã"Å\¶a¹ ¹ Ñ�Ù	¸ ·;À�¸ ½<·;À�Ár½�Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º�ÃaÄI¿�µ+¶_·;¸�¶a¹¤ÃhÎ"ÔjÁHÅ�·t¿\Ï

� D ® ­ ` � °±ZH²�® ­
è ½�·;À�¸�¿@µ+¶aµBÁ\Ç�Ù#Á»º"Á\¼@Ãh½+¿j·;Çt¶_·;ÁHº�·;À�Ádµ�Ç;ÃhÎ�¹ Á\¼ ÃaÄ�¾hÁ\½�Á\Ç�Ê
¶_·;¸ ½�¾4Å�Ãh¼@µ�¹ Á�Éfµ+¶_·�·;Á\Ç;½+¿r¸ ½m¿�µ+¶_·;¸�¶a¹�º�¶_·t¶aÎ+¶h¿�ÁH¿\Ï) Á�·;À�Á\½
µ�Ç;ÁH¿�Á\½{·;ÁHº ¶a½ Á���Å�¸ Á\½{·»¶aµ�µ�Ç;Ã{¶hÅtÀ-È

NP � MaxPI
È�Ù	À�¸�ÅtÀ

181

� Á\¸ ¾hÀ�ÎBÃhÐ�Ç;À�Ã�Ã"º �¸�¿j·t¶a½+Å�Á $ �
A→ D

Å�Ãh½"Ä $
 � Ï � � �
D+→ A

Å�Ãh½"Ä $
 &�&�Ï &�&��
D+→ −C

Å�Ãh½"Ä $ � � Ï &�&��
C+→ −B

Å�Ãh½"Ä $
 &�&�Ï &�&��
Ó±¶aÎ�¹ Á
 ê �	Ð�¹ ÁH¿�ÄÌÇ;Ãh¼1·;À�Á�¿�Ñ�½{·;À�Á�·;¸�Årº�¶_·t¶@¿�Á�·

t LAD LDC LCB&�Ï &�& &�Ï &�& &�Ï &�& &�Ï &�&
&�Ï � & &�Ï &�& &�Ï &�& &�Ï &�&

 Ï &�& &�Ï &�& &�Ï &�& &�Ï &�&

 Ï � & &�Ï &�& &�Ï &�& &�Ï &�&
�"Ï &�& �"Ï &>� &�Ï &�& &�Ï &�&
�"Ï � & � Ï � &
 Ï

 �"Ï � �
� Ï &�& � Ï � � �"Ï � � �"Ï � �
� Ï � & � Ï � � � Ï
�
 � Ï � �
� Ï &�& � Ï � � � Ï
�
 � Ï � �

Ó±¶aÎ�¹ Á � ê �	ÁH¿�Ð�¹ ·t¿�ÄÌÇ;Ãh¼ �	¸ µ�¹ Á\Ñ�	 ¿�ÄÌÐ�½+Å�·;¸ Ãh½

Ð+¿�ÁH¿#·;À�Á�¼�¶_É $ è ¼@ÁH¶h¿�Ð�Ç;Á:¸ ½+¿j·;ÁH¶hº<ÃaÄ±·;À�Á:·;Çt¶hº"¸ ·;¸ Ãh½+¶a¹-¿�Ð�µ"Ê
µBÃhÇ�·%¼@ÁH¶h¿�Ð�Ç;Á�ÄÌÃhÇ	¼@¸ ½�¸ ½�¾�Å�Ãh¼@µ�¹ Á�É<µ+¶_·�·;Á\Ç;½+¿\Ï) Á�¿�À�Ã_Ù#ÁHº
·;À+¶_·/ÃhÐ�Ç/¶aµ�µ�Ç;Ã{¶hÅtÀ1Á�Ò�ÁHÅ�·;¸ ÆhÁ\¹ Ñ Ç;ÁHº"Ð+Å�ÁH¿m·;À�Á Å\¶a½+º"¸�º�¶_·;Á
¸ ·;Á\¼�¿�Á�·t¿�Î�Ñ�Á�É"µBÃh¹ ¸ ·;¸ ½�¾�¶�Å�Ãh¼@µ�¹ Á\¼@Á\½{·t¶aÇ;¸ ·jÑmµ�Ç;ÃhµBÁ\Ç�·jÑmÃaÄ
¼�¶_É $ è ¼@ÁH¶h¿�Ð�Ç;ÁIÙ	À�¸�ÅtÀ:Á�É�·;Á\½+¿�¸ ÆhÁ\¹ Ñ�µ�Ç;Ð�½�ÁH¿-Å\¶a½+º"¸�º�¶_·;ÁI½�Á\¾aÊ
¶_·;¸ ÆhÁ	µ+¶_·�·;Á\Ç;½+¿\Ï) Á	·;À�Á\½�µ�Ç;ÁH¿�Á\½{·;ÁHº@¶a½+º�¶a½�¹�¶KÑ"¿�ÁHºTÆ_¶aÇ;¸ ÃhÐ+¿
Á�É"µBÁ\Ç;¸ ¼@Á\½{·t¶a¹�Ç;ÁH¿�Ð�¹ ·t¿\Ï!Ó�À�Á4Ç;ÁH¿�Ð�¹ ·t¿�ÃaÄ�ÃhÐ�Ç�Á�É"µBÁ\Ç;¸ ¼@Á\½{·t¿
¿�À�Ã_Ù�ËÌ¸ßÍ	·;À�Á@¿�¸ ¾h½�¸ ÚBÅ\¶a½{·�µBÁ\Ç�ÄÌÃhÇ;¼�¶a½+Å�Á�¸ ¼@µ�Ç;Ã_ÆhÁ\¼@Á\½{·�Ã_ÆhÁ\Ç
�4¶_É $ è ¶a¹ ¾hÃhÇ;¸ ·;À�¼dÈ	ËÌ¸ ¸ßÍr·;À�Á�Á���Å\¶hÅ�ÑfÃaÄ�ÃhÐ�ÇT¶aµ�µ�Ç;Ã{¶hÅtÀ�Ãh½
Ç;ÁH¶a¹Bº�¶_·t¶h¿�Á�·�Î�ÑT¾hÁ\½�Á\Çt¶_·;¸ ½�¾�Å�Ãh½"ÚBº"Á\½{·�Å�Ãh¼@µ�¹ Á�É@µ+¶_·�·;Á\Ç;½�¸ ½
´ :´�´f¿�µ+¶_·;¸�¶a¹,º�¶_·t¶aÎ+¶h¿�Á�¶a½+º}ËÌ¸ ¸ ¸ßÍ�·;À�Á�¿j·t¶_·;¸�¿j·;¸�Å\¶a¹�Å�ÃhÇ;Ç;ÁHÅ�·�Ê
½�ÁH¿;¿�ÃaÄ8ÃhÐ�Ç	¶a¹ ¾hÃhÇ;¸ ·;À�¼�Ð+¿�¸ ½�¾ �	¸ µ�¹ Á\Ñ�	 ¿ �!ÄÌÐ�½+Å�·;¸ Ãh½-Ï

� X@`%
 ­ ®�� �!� ¯ ? � � ��­ [HZ
Ó�À+¶a½�Â"¿8·;Ã #�À�Ç;¸�¿'&#Ã_Ù	¼�¶a½TÄÌÃhÇ,À�Á\¹ µ�¸ ½�¾rÐ+¿�Å�Ç;ÁH¶_·;Á#·;À�Á�º�¶_·t¶
¿�Á�·HÏ�Ó�À�Áf¿�ÁHÅ�Ãh½+º�¶aÐ"·;À�ÃhÇ�¸�¿�µ+¶aÇ�·;¸�¶a¹ ¹ Ñ/¿�Ð�µ�µBÃhÇ�·;ÁHº�Î�Ñ/¶a½
Ø/�
#% �¸�¿;Å�Ã_ÆhÁ\Ç;Ñ��	ÁH¿�ÁH¶aÇtÅtÀdë�Çt¶a½{·HÏ

��� � �] ��­ ` � Z

� ��� �#l\�Kctk�y���x\g�lt�Il\w�l\n��6�#l\z�l\�_gjs k�y{n�l\n�¦_gjs �Hl\n_u�� ��l\kMu
l\w xHi\gjs ujy{zrk=��i\g8zrs n{s n{x%l\k�k�i_qts l�ujs iHnTgj�{w ctkt����n
	���
����������������

����! #"�$&%��'"(�����*)�"+�,
��*).-0/1
������������*���

��324����5
67)��,�8�:9;)�"<)
=0)��>���?2*6@9A=I¡�e�l\xHctk@BDCDE>F8BDG.Ga�8HTi\gjxKl\n� %l\�h��z�l\n{n+¡ � G.G�Bh�

� I�� H@l�gjs l��(J+�{s ¢�lK��n_ujiHn{s c4l\n��ML#k�z�l�g��%� N�l\s l\n{cH�OHTs n{s n{x
e"iHk�s ujs ~KcTl\n��dn{ctxKl�ujs ~KcTl\k�k�i_qts l�ujs iHnvgj�{w ctk>PQ��n4l\e{ehgjiKl\q�y
��i\g�qtiHnh��n{c��@gj�{w ctkt�R��nS	���
����������������:
��;"�$'�UT."�$WV�X���
�Y'��)��
/1
������������*���&
��K	������*��� Y*- ���W)��*�S	���)D��"+�,���S
��
Z[�*
�\]- �����8�
9R������
�^.����5_���`9;)�"<)Da�)��>���R	1ZR9A9? �bh¡ I�c.c Bh�

� d#�:e i_ctw0�%� f��gf=gjctk�k�s cH�ih'"<)�"+����"+�,���[�>
��
�,Y!)�"+�,).-g9;)�"<)\�KjHiHy{n
b�s w c;�Tl\n���¦aiHn{kt¡ � G.G d �

� B � §�� e � ¦ae"c;gjxHctwß¡gH�� k±iHw ujcH¡Il\n��<b/� �hgjctc��hz�l\n+�d�8y{cTl\xHcTi\�
ujy{c��{n{s ~Kc;gjk�cH�:	���
����������������_
��?"�$'�Ul[)�"+�,
��*).-@m]��)D�8��nU5o
��
h*���<���*����¡4G�B!P pDq.E�G�F�pDq�C�Bh¡ � G.GDE_�

� q ��r l\nQs#��l\n{xh¡'s#�{sut#s iHn{xh¡"¦ay�l\k�y{sB¦ay{ct�ay�l�g�¡{l\n��
jHs l\nov�ctsß�
HTs n{s n{x�qtiHnh�"�hctn_u:qti\��w i_q�l�ujs iHn4gj�{w ctk��,s ujy{iH�hurl�k��{e{e"i\g�u
ujyhgjctk�y{iHw ������nQ	���
����������������R
��]"�$'�[w�T."�$�m;/@xyh'5�nAY!
�����X�n

��`m�YDY*- �<���W/1
�nAY4X�"+������m;/@xzh!m;/¤¡ I�c.c.d �

� p � �gj¢;�hk�¢;uji\�� #iHe"c;gjk��as@l\n��{jHs lt�8cts`s�l\n+� §�s k�qti�~Kc;g�� i\�
k�e�l�ujs l\w»l\k�k�i_qts l�ujs iHn¥gj�{w ctk}s n1xHctiHx\g�l\e{y{s qos nh��i\gjz�l�ujs iHn
�{l�u�l\��l\k�ctkt�@��n?	���
����������������|
��1"�$'��b!"�$R%��'"(�����*)�"+�,
��*).-8h'5�n�}
Y!
�����X�n~
��:m]��^�)��*�����]���:h.Y!)�"+�,).-�9;)�"<)Da�)��>���j¡he�l\xHctk�B8E>F�p.pa�
¦aehgjs n{xHc;g��<�=c;gjw l\xh¡ � G.GDq_�

� E � ��iH��HT�{nhgjih¡,¦hl\n���lt��f±y�lt�,w la¡,l\n���v�cts�¦a�{n+��f±iHzre{w c;�
k�e�l�ujs l\w=gjctw l�ujs iHn{k�y{s e{kt�o��n�	���
����������������

���"�$'�Q�.���W%�V1V1V
%��'"(�����*)�"+�,
��*).-4/1
������������*���|
��?9;)�"<)0xW���'�������'%#/@9Ax~�! D ��H¡
e�l\xHctk I.I E>F I�d Bh�u�M£=£=£�f±iHzre{�hujc;g�¦ai_qts c;u��_¡ I�c.c.d �

� C � v�� §�s �hiHn+�%��s e{w c;��� k��@���{n{q;ujs iHn+� �hcte�l�g�ujzrctn_u�i\�8kMu�l�ujs kMujs qtkt¡
s i��Il�kMu�l�ujc%�{n{s ~Kc;gjk�s u��_¡ I�c.c�� �

� G � ¦ay�l\k�y{s,¦ay{ct�ay�l�grl\n�� r l\n�s#��l\n{xh�»§�s k�qti�~Kc;gjs n{x�k�e�l�ujs l\w
qti\��w i_q�l�ujs iHn@e�l�u�ujc;gjn{k>P l�k��{zrz�l�g��ri\�¤gjctk��{w ujkt����no	���
��������.}
�������|
��g"�$'�R��"�$?%��'"(�����*)�"+�,
��*).-!h'5�nAY!
�����X�n~
��:h.Y!)�"+�,).-4)��*�
�u��nAY!
���).-u9;)�"<)Da�)��>���[h'h@�79? Dw�¡ I�c.c�� �

� ��c#� ��� jh� H@l�g�ujs n4l\n��d£I� ¦hlHl�g��Sh'"<)�"+����"+�,���

���"�$'�o�]).-)���5`9R����}
"+���,a�X�"+�,
��{�gf±y�l\e{z�l\n@l\n��Qs�l\w w �.f±�0f�¡ I�c.cDI �

� �.��� t#s n��hiHn{x�bd�+¡`f±y{ctn{xK�_s
N"y�l\n{xh¡@l\n��6¦ay{s q�y�l\i3N"y�l\n{xh�
HTs n{s n{x4�"i\ujy�e"iHk�s ujs ~Kc�l\n���n{ctxKl�ujs ~Kc<l\k�k�i_qts l�ujs iHn�gj�{w ctkt�
��n�	���
�����������������
��Kw.��"�$�%��'"(�����*)�"+�,
��*).-W/1
������������*����
��
x&)D��$8���u�06@��)����'��������%#/@x
6��! D #�K¡ I�c.cDI �

182

Finding Young Stellar Populations in Elliptical Galaxies from

Independent Components of Optical Spectra

Ata Kabán¤ Louisa A. Nolan† Somak Raychaudhury†

Abstract

Elliptical galaxies are believed to consist of a single pop-
ulation of old stars formed together at an early epoch
in the Universe, yet recent analyses of galaxy spectra
seem to indicate the presence of signi¯cant younger
populations of stars in them. The detailed physical
modelling of such populations is computationally ex-
pensive, inhibiting the detailed analysis of the several
million galaxy spectra becoming available over the next
few years. Here we present a data mining application
aimed at decomposing the spectra of galaxies into sev-
eral coeval stellar populations, without the use of de-
tailed physical models. This is achieved by performing
a linear independent basis transformation that essen-
tially decouples the initial problem of joint processing
of a set of correlated spectral measurements into that of
the independent processing of a small set of prototypi-
cal spectra. Two methods are investigated: (1) A fast
projection approach is derived by exploiting the corre-
lation structure of neighboring wavelength bins within
the spectral data. (2) A factorisation method that takes
advantage of the positivity of the spectra is also in-
vestigated. The preliminary results show that typical
features observed in stellar population spectra of dif-
ferent evolutionary histories can be convincingly disen-
tangled by these methods, despite the absence of input
physics. The success of this basis transformation analy-
sis in recovering physically interpretable representations
indicates that this technique is a potentially powerful
tool for astronomical data mining.

1 Introduction

The optical spectrum of a galaxy is a linear superpo-
sition of the spectra of its billions of constituent stars.
Yet, since large populations of stars form in galaxies
at de¯nite periods of its lifetime, and the atomic and
nuclear physics of the evolution of stellar populations,

¤School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, UK. Email: A.Kaban@cs.bham.ac.uk.

†School of Physics and Astronomy, The University of
Birmingham, Birmingham B15 2TT, UK. Email: {lan, so-
mak}@star.sr.bham.ac.uk

though complex, are well understood, the detailed mod-
elling of composite spectra of stellar populations can be
used to yield a wealth of information about the history
of a galaxy from its spectrum.

The spectrum of a star can be modelled as a
function of three parameters– its mass, its age and
its composition (since it is made mostly of hydrogen
and helium, the last parameter is characterised by the
relative abundance of other elements, and is known as
the “chemical abundance”). Elliptical galaxies, which
account for about 20% for all galaxies in the Universe,
are believed to consist predominantly of a single coeval
stellar population (e.g. [3, 12, 22]), all formed at
an early epoch in the Universe. This implies that
an elliptical galaxy can be modelled as a system of
stars, all of the same age and chemical abundance,
evolving together, if validated assumptions can be made
about the distribution of stellar masses. However, as
a result of detailed spectral studies conducted in the
last decade (e.g. [10]), it now transpires that elliptical
galaxies are more complex objects, at least some of
which have undergone more recent bursts of substantial
star formation, and consequently are likely to contain
more than one stellar population component.

The determination of the star formation history
of a galaxy has important implications for the still-
controversial issue of the formation and evolution of
galaxies. Until recently, the analysis of a large statistical
sample of stellar populations of galaxies would not
have been possible since only small ensembles of galaxy
spectra were available. However, the development of
data mining tools for automating parts of the analysis
is becoming more and more essential in the light of
the rapid increase in the availability of data that is
approaching.

Recent and ongoing galaxy spectral surveys (2dF-
GRS, www.mso.anu.edu.au/2dFGRS/ (completed in
2003) and SDSS, www.sdss.org/) will produce more
than two million galaxy spectra in the next few years,
which is to be integrated into a more ambitious database
of publicly-available astronomical data, incorporating
Grid technology (the Virtual Observatory, www.ivoa.

net). Since the detailed physical modelling of stel-

183

lar populations is numerically expensive, even a simple
question like “what fraction of elliptical galaxies contain
a signi¯cantly younger stellar population?” will take
years to address by conventional modelling techniques
using stellar population synthesis. The timely extrac-
tion of useful knowledge, such as the characteristics of
the star formation history (ages, chemical abundances
and masses of the component stellar populations) of
galaxies, from these data will largely depend on devel-
oping appropriate data analysis tools that are able to
complement more specialised astrophysical analyses.

The astrophysical questions motivating this study
are:

1. Can we disentangle major stellar population com-
ponents of elliptical galaxies without the use of de-
tailed physical models?

2. How do the results from a data-driven analysis of
observed galaxy spectra correlate with the parame-
ters of star formation history determined via a com-
pletely independent model ¯tting technique used in
astrophysics?

These questions have not been addressed before in
a data driven manner — that is, based on the data
characteristics only, without any specialised physical
input.

1.1 Roadmap In this paper, we discuss and investi-
gate statistical methods that attempt to solve the de-
scribed inverse modelling problem by relating multivari-
ate observations to lower-dimensional vectors of statisti-
cally independent unobserved variables through the use
of a linear model. The required statistical assumptions
will be derived from general characteristics of the data,
in order to employ these methods in an appropriate
manner.

The preliminary results presented in the next sec-
tions are based on the data described in Section 2. A
projection approach that exploits the correlation struc-
ture of the spectra is presented in Section 3. In this
approach, the required assumption for solving the in-
verse modelling is derived from exploiting the corre-
lation structure between neighboring wavelength bins,
which comes naturally with spectral data. The indepen-
dent spectral components obtained turn out to be also
physically interpretable and exhibit typical features of
spectra of the young and mature stellar populations. We
then compare the results with a positivity-based single
stage approach, presented in Section 4, that has been
often employed for analysing spectral data in di®erent
domains [9, 18]. We provide a simple probabilistic refor-
mulation of this method that highlights its implicit as-
sumptions, links it to the methods developed in [13] and

also allows us to potentially incorporate measurement
errors (if known from domain knowledge) into the algo-
rithm. In Section 5, the results are presented, discussed
and comparatively assessed, ¯rst in a data-driven man-
ner and then, more importantly, from the astrophysical
perspective. Finally, our conclusions are summarised in
the last section.

2 The data and model setting

The data we use here represent the observed optical
spectra of 21 nearby elliptical galaxies, compiled by
blending together 5855 measurements over the range
2000-8000 Å from various observatories on ground and
in space. These represent the following galaxies: NGC
0205, NGC 0224, NGC 1052, NGC 1400, NGC 1407,
IC 1459, NGC 1553, NGC 3115, NGC 3379, NGC
3557, NGC 3605, NGC 3904, NGC 3923, NGC 4374,
NGC 4472, NGC 4621, NGC 4697, NGC 5018, NGC
5102, NGC 7144 and NGC 7252. The spectra have
been corrected for redshift (i.e. converted from their
observed wavelengths to their emitted wavelengths),
and the °uxes are normalised to unity in the region
5020-5500 Å.

Since these spectra are compiled from sources with
varying spectral coverage, the resulting data matrix has
1453 missing values, which are ¯rst imputed using a
KNN imputation [21] from synthetic data. We preferred
this non-parametric procedure here, as the missing data
mechanism may not be random — an assumption made
by most of other imputation schemes. The validity
of the ’missing at random’ assumption in the case of
the analysed data set will need further study, simply
because in some wavelength regions it is consistently
hard or impossible to take a measurement.

In addition, for each measurement, an error value is
also provided from known instrumental characteristics
and uncertainty in calibration.

2.1 How many stellar populations? According to
existing domain knowledge, it is likely that there are
(at least) two components of interest [10]. However, the
¯rst eigenvector explains more than 95% of the data.
Therefore, prior to deciding that a 2D representation
space is justi¯ed (i.e. that at the given noise levels there
is enough useful information in the data and we are not
attempting to model the noise in a second component),
we perform some simple, data-driven rank tests. We use
the error matrix to derive thresholds for these tests. As
shown on Figure 1, both a 2-norm test and an F-norm
test [19] suggest that at the given error levels, the ‘clean’
matrix of spectra has rank 2. Although it is known that
these perturbation bounds often tend to underestimate
the rank [19], there are no records of over-estimation, so

184

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

2−norm based test

S
in

gu
la

r
va

lu
es

5 10 15 20
0

2

4

6

8

10

12

F−norm based test

C
um

ul
at

iv
e

su
m

 o
f e

ig
en

va
lu

es

Figure 1: Rank-tests for the matrix of stellar population
spectra. The threshold values represent the 2-norm
and the F-norm respectively of the matrix of known
measurement errors.

we proceed to searching for a suitable two-dimensional
latent representation space.

2.2 The model Each stellar population spectrum is
essentially a vector over a binned wavelength range,
that represents the °ux (in arbitrary units) per unit
wavelength in the bin centered on the wavelength. The
data matrix, having T spectra in rows will be denoted
by Y ∈ RT×N . Single elements of this matrix will
be referred to as ytn, the t-th row is denoted by yt or
more explicitly yt,1:N and likewise, the n-th column is
denoted by yn or y1:T,n. The whole matrix Y will also
be referred to as y1:N . Similar notational convention
will also apply to other variables in the model.

To account for the generation mechanism described
in the previous section, namely that the observed optical
spectrum of a galaxy is a linear superposition of the
stars in the galaxy, a linear factor model will be assumed
in this study. That is, we hypothesise that the T
observations can be explained as a superposition of
K < T latent underlying component spectra sk ∈ R

K

(sometimes termed also as factors or hidden causes
[17, 13, 6]) that are not observable directly but only
through an unknown linear mapping A ∈ RT×N .
Formally, this can be written as the following.

(2.1) yn = Asn + ε

In eq. (2.1), the ¯rst term of the r.h.s. is the so called
systematic component and ε is the noise term or the
stochastic component of this model. The noise term ε

is assumed to be zero-mean i.i.d. Gaussian, where the

diagonal structure of the covariance accounts for the
notion that all dependencies that exist in Y should be
explained by the underlying hidden components.

The K components will be assumed statistically in-
dependent, this being a standard assumption of inde-
pendent factor models [6, 13]. In the present applica-
tion, this assumption is also cosmologically plausible,
as there is little (no) interaction between stellar popu-
lations at di®erent ages in a galaxy. The linearity of the
mixture is physically justi¯ed as the °uxes of the hy-
pothesised di®erent subpopulations mix in an additive
way.

3 Independent projections of stellar population
spectra

A projection based approach is presented in this sec-
tion. This will be accomplished in stages. A linear
dimensionality reduction will ¯rst be performed. We
then proceed at identifying independent directions in
the low-dimensional projection space. This multi-stage
projection approach is well-suited as a ¯rst attempt. It
allows us to formulate sub-tasks in statistical terms, and
given the 2D nature of the problem, it also allows us to
bene¯t from a visual control over the data representa-
tion obtained at various stages.

3.1 Dimensionality reduction using SVD Di-
mensionality reduction is a useful preprocessing stage
for both computational convenience and de-noising. It is
well known from linear algebra [4, 19] that the best rank-
K approximation of a matrix under any unitarily invari-
ant norm is its rank-K SVD (Singular Value Decompo-
sition) approximation. This is given by Y ¼ UDV T ,
where U is the T × K matrix of left singular vectors,
D is the K × K diagonal matrix of singular values,
V is the N × K matrix of right singular vectors, and
UTU = V TV = IK , where IK is the K-dimensional
identity matrix. The projection is then simply obtained
as X = UTY .

It should be pointed out that the scope of an SVD-
based projection is to identify an optimal (in the sense
of any unitarily invariant norm) subspace of the data
space. However, generally, individual singular vectors
or eigenvectors are not interpretable separately, as they
are not independent from each other. The same is true
for PCA [17], for much the same reasons.

3.2 Finding non-orthogonal informative direc-
tions using contextual ICA We now turn to the key
part of our analysis, where the directions of indepen-
dent projection need to be found. Approaches with this
aim are known under the name of Independent Compo-
nent Analysis (ICA) [7, 6, 14]. A vast number of ICA

185

algorithms have been developed over the last decade,
each having di®erent built-in assumptions. In general
terms, we can write the data likelihood of the desired
basis transformation as the following

(3.2) p(x1:N |B) =

∫
ds1:Np(x1:N |s1:N ,B)p(s1:N).

where B is the K×K unknown linear mapping (squared
mixing matrix) that transforms the latent components
S into X. That is, as standard in ICA, instead of
inferring S from Y , it is easier to infer them from X.

Assuming that the SVD projection performed as
described in the previous section has removed the noise,
then the noise term is a delta function

(3.3) p(x1:N |s1:N ,B) = ±(x1:N ¡Bs1:N)

where B is a squared K×K parameter matrix (mixing
matrix) that contains the desired new bases in its
columns and s1:N are the independent representations
in the new basis — both having to be estimated from
the data. Thus, (3.2) reduces to the simple form below

p(x1:N) = |detB|¡N

K∏
k=1

p(sk,1:N)(3.4)

= |detB¡1|N
K∏

k=1

p((B¡1)kx1:N).(3.5)

Standard in squared ICA problems, it is easier
to optimise for the inverse of B. That is, instead
of the ‘top-down’, or ‘generative’ transform B, we
estimate the ‘bottom-up’ or ‘projection’ transform B¡1.
However, without knowing p(s1:N), this is still an ill-
posed problem. Clearly, a mechanical application of
any ICA algorithm, out of the hundreds of existing ones,
would produce di®erent results, although any of these
would be somewhat arbitrary. What we need is a well
motivated prior distribution p(s1:N). However, as in
most data mining applications of ICA, there is no such
information explicitly available.

3.2.1 Exploiting correlations within the spec-
tral data Let us observe, however, that in spectral
data, there is a natural correlation structure between
°ux values in neighbouring wavelength bins. This is
what we exploit here, by capturing it in a form of a

contextual (predictive) model.

p(sk,1:N) =
N∏

n=1

p(skn|sk,1:n¡1)

=
N∏

n=1

p(skn ¡ E[skn|sk,1:n¡1])

=

N∏
n=1

p((B¡1)k(xn ¡ E[xn|x1:n¡1]))

∀k = 1 : K. The advantage of doing so is that now we
only need to specify the form of density of the residual
projections. Assuming a good enough predictor, then
the residual is likely to have a heavy tailed (termed also
super-Gaussian [7] or kurtotic) form of density. Indeed,
using just the simplest ¯rst order predictor, which is an
identity function

(3.6) E[skn|sk,1:n¡1] ≡ sk,n¡1,∀k = 1 : K

the di®erence process xn ¡ xn¡1 of the data already
becomes highly kurtotic, as shown on Figure 2.

A similar approach has been previously taken and
successfully demonstrated in the context of face image
separation [5], where neighbouring pixel values of an
image do also exhibit signi¯cant correlations.

−5 0 5 10
0

20

40

60

80

100

120

140

−5 0 5 10
0

20

40

60

80

100

120

Figure 2: Histograms of the di®erence process. Kurtosis
values are 11.0503 and 33.9364 respectively.

Let us denote rn = xn ¡ E[xn|x1:n¡1] and ukn =
skn ¡ E[skn|sk,1:n¡1]. The data likelihood is then the
following.

(3.7) p(x1:N) = |detB¡1|N
∏
n

∏
k

p((B¡1)krn)

where now we know that p(ukn) is a super-Gaussian
density. Maximisation of this likelihood can now be

186

accomplished by employing any standard ICA algorithm
— over r1:N rather than x1:N . As the predictor may
not be very accurate (we just used an identity predictor
in our experiments), it is preferable to chose a robust
approximation of the generalised exponential density,
that grows relatively slowly in |ukn|. Following the
arguments in [7], in our experiments we have used the
following:

(3.8) log p(uk) ∝ exp(¡u2
k/2),

and the optimisation has been performed using the New-
ton method implemented in the FastICA routines [6],
employing the faster de°ationary approach. This has a
cubic convergence [7]. Indeed, highly kurtotic indepen-
dent projections have been found (kurtosis: 33.8796 and
12.7484 respectively) on the data investigated, in about
ten iterations only.

A geometric illustration of the procedure just de-
scribed is shown on Fig. 3. The SVD-compressed data
are shown as dots and indeed, informative directions
would be di±cult to determine directly from the data.
The scatter-plot of the di®erence process is shown as
crosses. A star-like structure is apparent, with two
main, non-orthogonal linear directions of high data den-
sity. These are the new bases (columns of B) that are
determined by the ICA procedure. Indeed, the two di-
rections de¯ned by the new bases found by the algo-
rithm are highlighted on the plot as dark lines. The
PCA axes of the data are also shown on the same plot
for comparison. Interestingly, one of the axes is almost
identical to one of the independent directions. The sec-
ond is, however, just orthogonal to the ¯rst, while the
ICA axes are not orthogonal to each other but do follow
the two main directions of high density in the data.

To obtain the component spectra from the ICA pro-
cedure described, we simply compute the projections of
the individual °ux values of all galaxies at all wave-
length bins onto the new bases (which is the composi-
tion of the two linear transforms performed during the
analysis process described):

(3.9) s1:N = Bx1:N = Ay1:N

where B and A now denote the recovered mixing pa-
rameters. Speci¯cally, after B is found, A is computed
as the matrix product UB.

The component-wise reconstruction of the 21 indi-
vidual stellar population spectra from their independent
components are shown on Figure 4. The physical inter-
pretability of these components will be assessed in Sec-
tion 5, however, as a data-driven observation, it is inter-
esting to note that the recovered spectral components
turned out to be positive valued — although positivity

has not been arti¯cially imposed at this stage during the
analysis process. We note that indeed negative values
of the °ux would be di±cult to interpret, therefore in
the next section we discuss a di®erent approach, where
the required latent density p(s1:N) is derived from a
positivity constraint.

4 A Positivity-based approach

The use of positive factorisation of positive matrices to
replace PCA for analysing positive data, such as spec-
tral data dates back to work reported in [9]. Positive
(more exactly non-negative) factor models have been
further developed in [18]. However, in the absence of ei-
ther a density-based or a geometric interpretation, the
implicit assumptions are not clear and therefore the in-
terpretation of the results may not be straightforward.
Somewhat related, in [13], a fully Bayesian formulation
of a positive factorisation model is given and variants
with sparse positive priors are applied to synthetic stel-
lar population spectra in a di®erent context of investi-
gations than ours. Retaining the probabilistic frame-
work, that allows us to make all assumptions explicit,
we present a simpler version of their algorithm, based
on maximum a posteriori (MAP) / maximum likelihood
(ML) estimation, which will highlight the link with pos-
itive factorisation algorithms [18]. A MAP or ML es-
timation is su±cient for our purposes as we are con-
cerned with a data explanation task for a ¯xed data
set only. Once the most appropriate model is found,
the full Bayesian machinery remains available to derive
fully generative models that are able to better generalise
on new data.

Retaining the positivity of the representation, and
the fact that the overall transform in the approach
adopted in the last section has been linear, the following
linear model can be formulated.

(4.10) p(yn|A,En) =

∫
dsp(yn|As,En)p(s)

A Gaussian measurement noise will be assumed. Fur-
thermore, according to prior knowledge about the lev-
els of imprecision of the physical instruments, which
vary independently for each stellar population and each
wavelength bin, we will have individual diagonal vari-
ances E2

n at each wavelength bin n, p(yn|s,A,En) ∼
N (yn|Asn,E2

n). In rest, we use the same notation as
before, yn refers to the relative °ux values observed at
the n-th wavelength bin, A is the unknown mixing ma-
trix parameter and p(s) is the distribution of the latent
components.

Now the latent prior needs to be speci¯ed. Apart
from its positive support we don’t have much informa-
tion in this respect. Therefore we formulate a vague

187

0 1 2 3 4 5
−0.5

0

0.5

1

compressed data
difference process
ICA basis
PCA basis of data

Figure 3: Geometric illustration of the described ICA procedure. The number of points shown as dots equals the
number of di®erent wavelength bins in the set of measurements, each point being the 2D compressed representation
of the °uxes at one of these bins. The di®erences between these 2D vectors at consecutive wavelength bins are
marked with ’×’. The PCA basis of the data is superimposed (in light color) and also translated to the origin for
comparison with the ICA basis found on the di®erence process. The ICA basis is shown in dark color.

exponential prior, that is

(4.11) p(s) ∝
∏
k

exp(¡®kn|sk|)

where ®kn = ®,∀k, n is a small positive constant. If
® → 0, then the prior becomes non-informative but
also improper and in this case the MAP estimation
procedure given below becomes ML.

To obtain a MAP estimate, the posterior needs to
be maximised p(sn|yn,A,En) ∝ p(yn|sn,A,En)p(sn)
which is proportional to the complete data likelihood.

Positivity of the elements of both A and S are
then imposed by adding Lagrangian terms [20] to the
complete data log likelihood.

L =
∑

n

{log p(yn|sn,A,En) + log p(sn)}

+ TrLT
1 A + TrLT

2 S

where L1 and L2 are a set of non-negative Lagrange
multipliers and Tr denotes the trace of a matrix.

From the stationary equations w.r.t. A and S the
Lagrange multipliers are obtained.

L1 =
∑

n

E¡2
n Asns

T
n ¡

∑
n

E¡2
n yns

T
n

L2 =
∑

n

ATE¡2
n Asn ¡

∑
n

ATE¡2
n yn + ®

Now from the Karush-Kuhn-Tucker conditions [20]
LtkAtk = 0 and Lknskn = 0,∀t, k, n, we have two ¯xed
point equations which provide the convergent alternat-
ing iterative algorithm of the multiplicative form below.

A = A¯ (E¡2 ¯ Y)ST ® [E¡2 ¯AS]ST

S = S ¯AT (E¡2 ¯ Y)®
{
AT [E¡2 ¯AS] + ®

}

where ¯ denotes element-wise multiplication and ®
denotes element-wise division. If ® = 0, the iterative
algorithm above is identical to the least-squares based
non-negative factorisation algorithm proposed in [18]
from a non-probabilistic starting point, with the only
di®erence that now we also have the E terms to account
for known measurement errors.

5 Evaluation

5.1 Data driven evaluation Here we assess the
e®ectiveness of the methods presented above according
to two indicators: (1) data reconstruction and (2) the
mutual information (MI) between the components of the
representation created.

Method Min Median Max
SVD, cICA 0 3.36× 10¡4 0.294

NMF 10¡10 3.64× 10¡4 0.317
NMFe 0 4.08× 10¡4 0.351

Table 1: Data reconstruction errors under the L2 norm.
cICA = contextual ICA, NMF = Non-negative matrix
factorisation with ®=0, NMFe = NMF with exponential
prior having ® = 0.1

Table 1 shows the data reconstruction results across
all N×T measurements for the various methods. These

188

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 1

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 2

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 3

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 4

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 5

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 6

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 7

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 8

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2
SP 9

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 10

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 11

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 12

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 13

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2
SP 14

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 15

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 16

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 17

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 18

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 19

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

SP 20

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

SP 21

comp1

comp2

data

recons

Figure 4: The reconstruction of stellar population spectra using the projection based contextual ICA. Here, our
algorithm has decomposed the observed spectrum of each galaxy into two inferred populations (blue and dark
green — the two darkest colors, in black-and-white printing), whose sum is given in red, superimposed with the
data in light green (intermediate gray and light grey respectively, in black-and-white printing). In many cases
(e.g. #1,9,10,18), a signi¯cant younger stellar population is found, which is con¯rmed by our detailed physical
modelling. The numbering of the spectra corresponds to the enumeration order of the correspondig galaxies as
given in Section 2.

189

are measured as the squared distances between the data
and the reconstruction, which is in accordance with the
Gaussian noise assumption. The reconstruction error
of cICA are identical to that of the SVD, since the
ICA transform does not reduce the dimensionality fur-
ther. For NMF and NMFe, 15 randomly initialised runs
were performed and the one with the highest likelihood
value was selected in this evaluation, in order to avoid
the possibility of getting trapped in a local optimum.
Indeed, note that the positivity-based single stage ap-
proach involves a non-convex optimisation whereas the
SVD-based preprocessing is a convex problem. The me-
dian of the error appears to be the smallest in the case
of SVD+cICA, however, a pairwise application of the
non-parametric Wilcoxon rank sum test to the whole
sample distribution of the individual T ×N reconstruc-
tion errors returned that the di®erence of the medians
for cICA and NMF is not statistically signi¯cant at the
0.05% level. In the case of all other pairs, the di®erences
between medians were found statistically signi¯cant —
as expected, the additional term that enforces the la-
tent prior distribution in NMFe causes a slight increase
in data reconstruction error. However, this small dif-
ference on its own would not be a practically concern-
ing issue here, as we deliberately formulated constraints
in our models in order to obtain representations that
are statistically independent to a higher degree — in
the hope that these may then be interpretable and ca-
pable of being independently further processed. More
interesting is therefore to evaluate to what extent do
these methods achieve statistically independent repre-
sentations.

The information theoretic quantity that measures
the degree of statistical dependence is the Mutual In-
formation (MI) [1]. This is a non-negative value that
vanishes if the component densities are perfectly inde-
pendent (the smaller the MI the better). It can be
shown [14] that maximising the ICA log likelihood in
the noise-free case is equivalent to minimising MI be-
tween the representation components. Here we compute
the sample-based MI of the components, as estimated
according to the procedure described in [2]. The com-
parative values obtained by various methods for this
data are shown in Table 2. For the contextual ICA
method, that works on predictive residuals, two values
are given: the ¯rst value is computed from the projec-
tions of the residuals whereas the second value is com-
puted from the projections of the data, taken as it was
iid. (just for obtaining a value to compare with those
obtained with the rest of the methods). It is apparent
from the table that in both cases the contextual ICA
model achieves lower MI (greater independence of the
components). The positivity-based method with non-

Method MI
NMF 0.5923
NMFe 0.6019
cICA (u) 0.00010394

(s) 0.5583
PCA 1.0931

Table 2: Sample-based mutual information estimates of
the two components obtained with the various methods
for the set of stellar population spectra investigated.
Smaller values signify higher independence achieved
after the estimated basis transform.

informative improper prior is the next best performing
method, whereas employing sparse priors (greater ® val-
ues) does not lead to components that are more inde-
pendent, for this data. PCA is used as a baseline, as
we know that it doesn’t produce an independent rep-
resentation. Visually, the positivity based components
do not look much di®erent from the ones obtained from
cICA (Fig. 4), although they are slightly more noisy.
The PCA-based decomposition, however, in general, are
theoretically not guaranteed to be interpretable, as al-
ready discussed in Section 3.1 (see [17] for details). We
now turn to evaluate the interpretability of the obtained
results from the astrophysical perspective.

5.2 Astrophysical evaluation Here, we compare
the results from the linear independent basis transfor-
mation analysis with an entirely independent determi-
nation of the star formation history, based on detailed
astrophysical models of the evolution of stellar popula-
tions.

The 21 observed spectra have been analysed by
matching them with synthetic stellar population spec-
tra. For each of the observed spectra, a two-stellar
population component model [8] was ¯tted. The age,
chemical abundance and relative mass fraction of each
component were allowed to vary freely. The best ¯t in
each case was determined by a minimum χ2 test [15, 11].

The principle for creating synthetic stellar popu-
lation spectra is simple, although the input physics is
complex. The spectral energy distribution of a star
evolves according to its initial mass and chemical abun-
dance. If the initial mass distribution and the chemical
abundance of a stellar population is known, and the
spectral evolution of each individual star in this initial
population may be modelled, the stellar spectra may be
summed over the mass distribution at any point in time
to give the integrated spectrum of the population at that
age. The ingredients for a stellar population model are
therefore: stellar evolutionary tracks; a library of stellar

190

Figure 5: Comparison of the derived components with physical models of the stellar population spectra. Top two
plots: Synthetic stellar population spectra according to the physical models of [8]. Right: Spectra of a population
of age 10 Gyr, where chemical abundance, from bottom to top, 0.2, 1.0 and 2.5 times solar; Left: age = 0.7 Gyr,
same chemical abundances. The dotted lines mark some of the absorption features in the spectrum which are
typically strong in young stellar populations, and the dashed lines mark some of the absorption features which
are typically strong in old stellar populations. From left to right, the absorption line species are: MgII (2799 Å),
Hε (3970 Å), H± (4102 Å), Hγ (4340 Å), H¯ (4861 Å), Mgb (5175 Å), NaD (5893 Å), H® (6563 Å), TiO (7126
Å). Bottom two plots: the 2 components found from the various di®erent linear independent basis transformation
analyses, from bottom to top: cICA, NMF, NMFe, PCA. (The spectra are shifted along the vertical axis for
the sake of clarity.) The recovered spectra are convincingly disentangled into one component with young stellar
population features (MgII, Hε, H±, Hγ, H¯, H®: dotted lines) and shape, and a second with the features (Mgb,
NaD, TiO: dashed lines) and shape of an old, high chemical abundance stellar population.

spectra; a method of calibrating the theoretical lumi-
nosity and e®ective temperature, determined from the
evolutionary sequence, so that the appropriate atmo-
sphere may be assigned to each star at each time-step
in its evolution. In contrast, the linear independent ba-
sis transformation method employs no knowledge of the
underlying physics in the observed spectra.

Model spectra [8] for a young (0.7 Gyr) and an old
(10 Gyr) stellar population, with three di®erent chemi-
cal abundances (0.2, 1.0 and 2.5 times solar abundance)
are shown in Fig. 5, together with the spectra recov-

ered from the linear independent basis transformation
analyses. The similarity is most apparent. The data-
driven linear analyses, whilst not reproducing any of the
physical model spectra precisely (which would not be
expected anyway), extract many of the important iden-
tifying characteristics of these two categories of model
spectra, which are indeed quite di®erent from each other
both in their overall shape and details. Some of the
most important features, the so-called absorption-lines,
are marked with dashed (Mgb, NaD and TiO, typically
strong features in old, high chemical abundance stel-

191

lar population spectra) and dotted (MgII, Hε, H±, Hγ,
H¯ and H®, typically strong in the spectra of young (<

∼

1 Gyr) stellar populations) vertical lines on the ¯gure
(Fig. 5), which demonstrate the physical interpretability
of the representations created by the basis transforma-
tion analyses.

We correlate the star formation history parameters
derived from ¯tting the two-component model spectra
to the observed spectra (i.e. a physical analysis ap-
proach) with the weight of the contributions from the
linear basis transformation analyses, by de¯ning these
weights as ck = atk/

∑
k′ atk′ for any given spectrum t.

Here, atk is the (t, k)-th element of the matrix A of the
new basis and k = 1 : 2. Fig. 6 shows the results of the
correlations, and Fig. 7 graphically shows some of these
correlations.

From Figs. 6 and 7 we can conclude that, for
the ICA and NMF analyses, c1 (and hence also c2,
as c1 + c2 = 1) correlates with the proportion of
young (<

∼ 1 Gyr) stellar population component present
in the observed spectrum, regardless of their chemical
abundance.

6 Conclusions

We have presented a scienti¯c data mining application
that searches for linear independent basis transforma-
tions of galaxy spectra to ¯nd the spectra of individual
stellar populations characterised by age and chemical
abundance. We have shown that characteristic stel-
lar population components of elliptical galaxies can be
disentangled from the observed spectra of these galax-
ies, without the use of detailed physical models. The
components returned by the linear basis transforma-
tion analyses are clearly physically interpretable, with
one component displaying the shape and many of the
absorption-line features typical of a young stellar pop-
ulation, and the second component having the over-all
shape and typical absorption features of an old, high
chemical abundance stellar population. The weights of
the contributions from the linear basis transformation
analyses correlate well with both the ages of the younger
stellar populations and the mass fractions of the smaller
stellar populations determined from the (completely in-
dependent) detailed physical modelling of the observed
galaxy spectra.

The computational demand of the projection ap-
proach presented is essentially that of the SVD compu-
tation, so it is expected that the method is easily ap-
plicable to large sets of measurements as they become
available. The positivity based approach, per iteration,
has a comparable scaling, however, in all our experi-
ments the number of iterations to convergence was of an
order of magnitude larger for the positivity based single

stage approach. Further study is necessary to investi-
gate models with other types of positively supported
priors as well as re¯ning the best performing models
and algorithms to be able to deal with previously un-
seen data.

The use of the data analysis presented in this
paper, integrated with the more complex process of
astrophysical analysis will be detailed elsewhere [16].
We intend to investigate the e®ectiveness of these data-
driven methods on larger sets of UV-optical spectra
as they become available, where more comprehensive
statistical evaluation will be possible. From the analysis
of large archives of galaxy spectra using this technique,
we hope to address some of the fundamental questions
in astrophysics, that of when and how galaxies form and
evolve.

Acknowledgement

This research was partly supported by a Paul & Yuanbi
Ramsay research award from the School of Computer
Science of the University of Birmingham.

References

[1] T.Cover and J. Thomas, Elements of Information
Theory. John Wiley and Sons, Inc.,1991.

[2] G.A. Darbellay and I. Vajda, Estimation of the infor-
mation by an adaptive partitioning of the observation
space. IEEE Trans. Information Theory, Vol. 45, no. 4,
pp. 1315-1321, May 1999.

[3] O.J. Eggen, D. Lynden-Bell, A.R. Sandage, Evidence
from the motions of old stars that the Galaxy collapsed,
Astrophys. J., 136, 748, 1962

[4] G.H. Golub and C.F. Van Loan, Matrix Computations.
Johns Hopkins University Press, 1989.

[5] A. Hyvarinen, Independent Component Analysis for
Time-dependent Stochastic Processes, Proc. Int. Conf.
on Arti¯cial Neural Networks (ICANN’98) 1998, pp.
541–546.

[6] A. Hyvarinen, Fast and Robust Fixed Point Algorithms
for Independent Component Analysis. IEEE Transac-
tions on Neural Networks 10(3): 626–634, 1999.

[7] A. Hyvarinen, One-unit Contrast Functions for Inde-
pendent Component Analysis: A Statistical Analysis.
Proc IEEE Neural Networks for Signal Processing VII,
1997, pp. 388–397.

[8] R. Jimenez, P. Padoan, F. Matteucci, A. Heav-
ens, Galaxy formation and evolution: low-surface-
brightness galaxies Mon. Not. R. Astron. Soc. 299, 123,
1998

[9] M. Juvela, K. Lehtinen, P. Paatero, The Use of Positive
Matrix Factorisation in the analysis of Molecular Line
Spectra. Mon. Not. R. Astron. Soc., 280 pp.616–626,
1996.

192

Figure 6: Left: The modulus of Spearman’s rank order correlation coe±cient rs for the weight of the ¯rst
component of the various linear basis transformation analyses, c1, correlated with the parameters recovered from
the physical analysis i.e. a two-component spectral model ¯tting to the observed galaxy spectra. The parameters
investigated in this correlation analysis are the age, chemical abundance z and relative mass fraction f for each
component. Values greater than 0.5 indicate a strong correlation. Right: the signi¯cance of rs. High values of
(1-probability) indicate a high level of signi¯cance.

[10] G. Kau®mann, S. White, B. Guideroni, The Formation
and Evolution of Galaxies Within Merging Dark Mat-
ter Halos, Mon. Not. R. Astron. Soc. 264, 201, 1993

[11] R P Kraft, L A Nolan, T J Ponman, C Jones, S
Raychaudhury, A Chandra observation of the nearby
lenticular galaxy NGC 5102: where are the x-ray
binaries? Astrophys. J., submitted, 2004

[12] R. B. Larson, Models for the formation of elliptical
galaxies, Mon. Not. R. Astron. Soc. 173, 671, 1975

[13] J. Miskin, Ensemble Learning for Independent Compo-
nent Analysis. PhD Thesis. University of Cambridge,
2000.

[14] T.-W. Lee, M. Girolami, A.J. Bell and T.J. Sejnowski,
A Unifying Framework for Independent Component
Analysis. Computers and Math. with Applications, vol.
39, no. 11, pp.1–21, 2000.

[15] L.A. Nolan et al., The star-formation history of galax-
ies in the GEMS groups, in preparation.

[16] L.A. Nolan, M.O. Harva, A. Kabán, S. Raychaudhury,
Finding Young Stellar Population in Elliptical Galaxies
from Independent Components of their UV-optical
spectra, in preparation for submission to Mon. Not.
R. Astron. Soc.

[17] M. Tipping and C. Bishop, Probabilistic Principal
Component Analysis, Journal of the Royal Statistical
Society, Series B,61, Part 3, pp. 611–622, 1999.

[18] D. Lee and S. Seung, Algorithms for Non-Negative
Matrix Factorisation, Advances in Neural Information
Processing Systems 13, 556–562, MIT Press, 2001.

[19] G. W. Stewart, Perturbation Theory for the Singular
Value Decomposition. Appeared in SVD and Signal
Processing, II, R. J. Vacarro ed., Elsevier, 1991.

[20] H.A. Taha, Operations Research – An Introducton.
1997, Prentice-Hall.

[21] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T.
Hastie, R. Tibshirani, D. Botstein and R.B. Altman,
Missing Value Estimation Methods for DNA Micro-
arrays. Bioinformatics Vol. 17 no 6 2001.

[22] S. D. M. White & M. J. Rees, Core condensation in
heavy halos - A two-stage theory for galaxy formation
and clustering, Mon. Not. R. Astron. Soc. 183, 341,
1978

193

Figure 7: Scatter-plots showing the correlation of (top) the age of the younger stellar population and (bottom)
the mass fraction of the smaller stellar population determined from the model spectra ¯tting with the weight of
the ¯rst component of the various linear basis transformation analyses (c1). A high value (low for PCA) of c1
clearly corresponds to a substantial young (<

∼ 1 Gyr) stellar population.

194

Hybrid Attribute Reduction for Classification Based on
A Fuzzy Rough Set Technique

Qinghua Hu∗ Daren Yu† Zongxia Xie‡

Abstract

Data usually exists with hybrid formats in real-world ap-

plications, and a unified data reduction for hybrid data is

desirable. In this paper a unified information measure is

proposed to computing discernibility power of a crisp equiv-

alence relation and a fuzzy one, which is the key concept in

classical rough set model and fuzzy rough set model. Based

on the information measure, a general definition of signifi-

cance of nominal, numeric and fuzzy attributes is presented.

We redefine the independence of hybrid attribute subset,

reduct, and relative reduct. Then two greedy reduction al-

gorithms for unsupervised and supervised data dimension-

ality reduction based on the proposed information measure

are constructed. Experiments show the reducts found by

the proposed algorithms get a better performance compared

with traditional rough set approaches.

1 Introduction.

In recent years, data has become increasingly larger
not only in rows (i.e. number of instances) but also
in columns (i.e. number of features) in many applica-
tions, such as gene selection from microarray data and
text automatic categorization, where the number of fea-
tures in the raw data ranges from hundreds to tens of
thousands[1].Such high dimensionality brings great diffi-
culty to pattern recognition, machine learning and data
mining [2, 3]. Data reduction is a well-known data min-
ing problem which is usually considered as an enhance-
ment preprocessing technique for subsequent machining
[4]. It will bring many potential benefits: reducing the
measurement, storage and transmission, reducing train-
ing and utilization times, defying the curse of dimen-
sionality to improve prediction performance in terms of
speed, accuracy and simplicity, facilitating data visu-
alization and data understanding [5, 6]. A lot of data
reduction techniques are proposed to deal with these
challenging tasks. Due to the complexity of data and
classification in real-world applications, it seems not an
easy task to build a general data reduction technique,
so researches on data reduction have been conducted for

∗Harbin Institute of Technology, China.
†Harbin Institute of Technology, China.
‡Harbin Institute of Technology, China.

last several decades and are still extracting much atten-
tion from pattern recognition and data mining society.
Data reduction can begin with two aspects: reducing
the number of samples or reducing the number of fea-
tures. The first one will be implemented by resample
techniques and the second is done with dimensionality
reduction techniques [7, 8]. This paper will be focused
on the second problem.

An extensive amount of researches have been con-
ducted over last decades to get reliable approaches for
dimensionality reduction, which roughly falls into two
types of paradigms: feature extraction and feature sub-
set selection [9]. Feature extraction refers to construct-
ing new features by a linear or nonlinear transformation
from the original input space to a feature space, while
feature subset selection is to find some informative fea-
tures from the original input space and delete the others.
Principal component analysis (PCA) [10, 11, 12], Inde-
pendent component analysis (ICA)[13, 14], Linear dis-
criminant analysis (LDA) are to find a linear transfor-
mation and Projection pursuit regression constructs a
nonlinear mapping from input space to feature space. A
main drawback of these methods is that the constructed
features do not have true meaning, and complex com-
putation may be required [4].

In last decade, much attention has been paid to fea-
ture subset selection. Two extensive reviews were pub-
lished [7, 15] in artificial intelligence and a special issue
of machine learning research was present in 2003 [1].
Generally speaking, there are four basic components in
all feature subset selections: an evaluation function of
feature subset, a search strategy to find the best fea-
ture subset as defined by the corresponding evaluation
function, a stopping criterion to decide when to stop
and a validation procedure to check whether the sub-
set is valid [16]. According to evaluation methods the
feature subset selection can classified into two kinds:
filtering and wrapper. Distance measures [17, 18], in-
formation measures [19, 20, 21], correlation coefficient
[22] and consistency measures [6] are used for filtering
methods. Wrapper refers to using a classifier as evalua-
tion function in selection. KNN, neural network, SVM
all can be employed. Isabelle Guyon [1] pointed that se-

195

lecting the most relevant features is usually suboptimal
for building a good predictor in filtering because the per-
formance of the trained predictor depends on not only
feature subset, but also the learner used. In other words,
a best feature subset in terms of an evaluation function
doesn’t mean a best prediction performance. An opti-
mal feature subset selection should be conducted by the
corresponding classifier employed, which leads to wrap-
per methods. However Wrapper methods will take high
time-complexity which is may be infeasible in real-world
applications. Filtering as an efficient feature selection is
widely used in practice. In filtering methods, informa-
tion measures and consistency measures work effectively
when data are nominal. Compared with these measures,
distance measures and correlation coefficient are pro-
posed for numeric data in nature because there is no
distance measure in the nominal domain. Data usually
comes with a hybrid form in applications. For example,
nominal attributes: sex, color, numeric attributes: age,
temperature are coexist in hospital data. The above se-
lection methods are suitable for a single format of fea-
tures in nature. A feature subset selection for hybrid
data is desirable in applications.

Rough set theory has proved to be a powerful
tool for uncertainty and has been applied to data
reduction, rule extraction, data mining and granularity
computation. Reduct is a minimal attribute subset
of the original data which is independent and has
the same discernibility power as all of the attributes
in rough set framework. Obviously reduction is a
feature subset selection process, where the selected
feature subset not only retains the representational
power, but also has minimal redundancy. So rough set
methodology based dimensionality reduction will get a
good feature subset. Some rough set based reduction
and feature selection algorithms have been proposed.
Consistency of data [24, 25], dependency of attributes
[26], mutual information [27], discernibility matrix [28]
and genetic algorithm are employed to find reducts of
an information system [29]. And these techniques are
applied to text classification [30], face recognition [3],
texture analysis [31] and process monitoring [32]. An
extensive review about rough set based feature selection
was given in [33].

As we know, Pawlak’s rough set model [26] works in
case that only nominal attributes exist in information
systems. However, data usually comes with a hybrid
form. Nominal attributes, fuzzy attributes and numeric
features coexist in real-world databases. Some gener-
alizations of the model were proposed to deal with the
problem. Rough set theory and fuzzy set theory were
putted together and rough fuzzy sets and fuzzy rough
sets were defined in [34]. The properties and axiomati-

zation of fuzzy rough set theory [35, 36] were analyzed in
detail. And the fuzzy rough set methods were applied
to mining stock price [37], vocabulary for information
retrieval [38] and fuzzy decision rules [39].

Just as reduction plays an important role in clas-
sical rough set theory, a reduction algorithm for fuzzy
information systems is desirable. In traditional process-
ing, discretization is performed on numeric data as a
preprocessing for machine learning [40]. Qiang Shen
etc pointed that this processing may lead to some in-
formation loss in the original data. A fuzzy-rough at-
tribute reduction, called fuzzy-rough QUICKREDUCT
algorithm, was given in [42] based on fuzzy dependency
function. Fuzzy dependency function has the power to
measure the discernibility power of nominal attributes
and fuzzy attributes.

In this paper, we will introduce an information
measure for fuzzy equivalence relations. Then we will
redefine the dependency of a hybrid attribute set and
give unsupervised and supervised reduction algorithms
for hybrid data based on the measure. The rest of
the paper is organized as follows: some preliminary
knowledge about rough set and fuzzy-rough set theory
is present in §2. A novel information measure and its
properties will be presented in §3. §4 gives another
definition of dependency of attribute set and reduction
algorithms for hybrid data. An extensive experimental
analysis is described in §5. §6 concludes the paper.

2 Some primary definitions on fuzzy rough set
model.

Pawlak’s rough set model can only deal with data
containing nominal values. As we know the real-
world applications usually contain real-valued or fuzzy
attributes. A fuzzy equivalence relation would be
generated by a real-valued attribute or a fuzzy attribute,
instead of crisp equivalence relation. The fuzzy-rough
set model is fitted for the case where both the relation
and the object subset to be approximated are fuzzy.

Definition 2.1. Given a non-empty finite set X, R is
a relation defined on X,denoted by a relation matrix
M(R) :

M(R) =




r11 r12 . . . r1n

r21 r22 . . . r2n

.
rn1 rn2 . . . rnn




where rij ∈ [0, 1] is the relation value of xi and xj .
R is a fuzzy equivalence relation,if ∀x, y, z ∈ X,R

satisfies:
1) Reflextivity: R(x, x) = 1, ∀x ∈ U ;
2) Symmetry: R(x, y) = R(y, x), ∀x, y ∈ U ;
3) Transitivity: R(x, z) ≥ min

y
{R(x, y), R(y, z)}.

196

Given arbitrary set X, R is a fuzzy equivalence
relation defined on X.∀x, y ∈ X,some operations on
relation matrices are defined as
1) R1 = R2 ⇔ R1(x, y) = R2(x, y), ∀x, y ∈ X;
2) R = R1 ∪R2 ⇔ R(x, y) = max{R1(x, y), R2(x, y)};
3) R = R1 ∩R2 ⇔ R(x, y) = min{R1(x, y), R2(x, y)};
4) R1 ⊆ R2 ⇔ R1(x, y) ≤ R2(x, y).

A crisp equivalence relation will generate a crisp
partition and a fuzzy equivalence relation generates a
fuzzy partition.

Definition 2.2. The fuzzy equivalence classes gener-
ated by a fuzzy equivalence relation R is defined as

U/R = {[xi]R}n
i=1,

where [xi]R = { ri1
x1

+ ri2
x2

+ · · ·+ rin

xn
} .

Theorem 2.1. Given arbitrary set X, R is a fuzzy
equivalence relation defined on X. The fuzzy quotient
set of X by relation R is denoted by X.∀x, y ∈ X,we
have
1) R(x, y) = 0 ⇔ [x]R ∩ [y]R = 0;
2) ∨

x∈X
[x]R = 1;

3) R(x, y) = 1 ⇔ [x]R = [y]R;

Definition 2.3. Given a fuzzy approximation space
< U,R >, X is a fuzzy subset of U . The lower
approximation and upper approximation, denoted by
RX and RX, are defined as{

µRX(x) = ∧{µX(y) ∨ (1−R(x, y)) : y ∈ U}, x ∈ U
µRX(x) = ∨{µX(y) ∧ (1−R(x, y)) : y ∈ U}, x ∈ U
The membership of an object x ∈ U , belonging to

the fuzzy positive region is defined as
µPOSB(d) = sup

X⊆U/d

µBX(x).

Definition 2.4. Given a fuzzy information system <
U,A >, B and d are two subset of attribute set A, the
dependency degree of d to B is defined as

γB(d) =
∑

x∈U µPOSB(d)(x).

Definition 2.5. Given a fuzzy information system <
U,A, V, f >, B ⊆ A,a ∈ B, if U/B = U/(B − a),
we say knowledge a is redundant or superfluous in
B. Otherwise, we say knowledge a is indispensable.
If any a belonging to B is indispensable,we say B is
independent. If attribute subset B ⊆ A is independent
and U/B = U/A, we say B is a reduct of A.

Definition 2.6. Given a fuzzy information system <
U,A, V, f >, A = C ∪ d. B is a subset of C.∀a ∈ B,a
is redundant in B relative to d if γB−a(d) = γB(d),
otherwise a is indispensable. B is independent if a ∈ B
is indispensable, otherwise B is dependent. B is a subset
of C. B is a reduct of C if B satisfies:

1) γB(d) = γC(d);
2) ∀a ∈ B : γB−a(d) < γC(d).

The fuzzy rough set model is the generalization of
classical rough set model and rough-fuzzy set model.
When the relations between objects are crisp equiva-
lence relations and the object subset to be approximated
is a fuzzy set then the model will degrade to rough-fuzzy
set model. Furthermore, if object subset to be approxi-
mated is crisp, the model is the classical one.

3 Information measure for fuzzy-rough set
model.

In this section we will propose a new entropy to measure
the discernibility power of a fuzzy equivalence relation.

Given a finite set U ,A is a fuzzy or real-valued at-
tribute set, which generates a fuzzy equivalence relation
RA on U. The fuzzy relation matrix M(RA) is denoted
by

M(RA) =




r11 r12 . . . r1n

r21 r22 . . . r2n

.
rn1 rn2 . . . rnn




where rij ∈ [0, 1] is the relation value of xi and xj .
In fact, the nominal attribute is a special case, where
rij ∈ {0, 1}, which will generate a crisp equivalence re-
lation.

Definition 3.1. The quotient set generated by an
equivalence relation is defined as

U/R = {[xi]R}n
i=1

where [xi]R = { ri1
x1

+ ri2
x2

+ · · ·+ rin

xn
} .

Definition 3.2. The cardinality |[xi]R| of [xi]R is de-
fined as

|[xi]R| =
n∑

j=1

rij .

Definition 3.3. Information quantity of the fuzzy at-
tribute set or the fuzzy equivalence relation is defined
as

H(RA) = − 1
n

n∑
i=1

logλi.

where λi = |[xi]R|
n .

Property 1. If A is a nominal attribute,M(RA) is
the relation matrix generated by A, H(A) denotes
the Shannon information quantity, and H(RA) is the
information value computed according to definition 3.3,
and then we have

H(A) = H(RA) .

According property 1, if the relation R is a crisp
equivalence relation, the proposed information measure
is identical to Shannon’s one. The following definitions
of joint entropy and conditional entropy have the same

197

property. In the follows we will denote two information
measures indiscriminatingly.

The formula of information measure forms a
map:H : R → R+ , where R is a equivalence rela-
tion matrix, R+ is the non-negative real-number set.
This map builds a foundation on that we can compare
the discernibility power, partition power or approximat-
ing power of multiple fuzzy equivalence relations. En-
tropy value increases monotonously with the discerni-
bility power or the knowledge’s fineness. So the finer
partition is, the greater entropy is, and the more signif-
icant attribute set is.

Definition 3.4. Given a fuzzy information system
< U,A, V, f >, A is the fuzzy or numeric attribute set.
B and E are two subsets of A. [xi]B and [xi]E are
fuzzy equivalence classes containing xi generated by B
and E, respectively. The joint entropy of B and E is
defined as

H(BE) = H(RERB) = − 1
n

n∑
i=1

log |[xi]B∩[xi]E |
n .

Definition 3.5. Given a fuzzy information system
< U,A, V, f >, A is the attribute set. B and E are
two subsets of A.[xi]B and [xi]E are fuzzy equivalence
classes containing xi generated by B and E, respec-
tively. The conditional entropy of E conditioned to B
is defined as

H(E|B) = − 1
n

n∑
i=1

log |[xi]E∩[xi]B |
|[xi]B | .

Theorem 3.1. H(E|B) = H(BE)−H(B)

Theorem 3.2. Given a fuzzy information system <
U,A, V, f >, A is the fuzzy attribute set. B and
E are two subsets of A. [xi]B and [xi]E are fuzzy
equivalence classes containing xi generated by by B and
E, respectively. The fuzzy equivalence relations induced
by B and E are denoted by R and S, respectively. Then
we have:
1) ∀B ⊆ A : H(B) ≥ 0;
2) H(BE) ≥ max{H(B),H(E)};
3) B ⊇ E or RB ⊆ RE : H(BE) = H(B);
4) B ⊇ E or RB ⊆ RE : H(E|B) = 0;

The first item of theorem 3.1 shows the information
introduced by any attribute subset is non-negative,
the second shows the discernibilty power of the union
of two attribute subset will be no less than that of
any single subset, which means introducing a new
attribute or attribute subset at least will not decrease
the discrnibility power. The last two items show
attribute subset won’t introduce information relative B
if E is contained by B. the properties of the information

measure has a same observation of classification as the
Boolean logic methodology, which is a class of paradigm
of classifier, such as ID3, CART, C4.5 and rough set
theory.

Theorem 3.3. Given a fuzzy information system <
U,A, V, f >,B ⊆ A,a ∈ B,H(B)=H(B-a) if a is
redundant, H(B) > H(B−a) if B is independent. B is
a reduct if B satisfies:
1) H(B) = H(A);
2) ∀a ∈ B : H(B) > H(B − a).

Theorem 3.4. Given a fuzzy information system <
U,A, V, f >,A = C ∪ d. B is a subset of C. ∀a ∈
B,H(d|B − a) = H(d|B) if a is redundant in B relative
to d;H(d|B − a) > H(d|B) if B is independent. B is a
reduct of C relative to d if B satisfies:
1) H(d|B) = H(d|C);
2) ∀a ∈ B : H(d|B − a) > H(d|B).

Theorems 3.3 and 3.4 give the definitions of depen-
dency, reduct and relative reduct in terms of informa-
tion theory, while definitions 2.5 and 2.6 are defined in
terms of algebra. In fact two classes of definitions are
equivalent. The proof was given in [50].

4 Reduction algorithms for unsupervised and
supervised hybrid data.

Reduct is an important concept in rough set theory and
data reduction is a main application of rough set the-
ory in pattern recognition and data mining. As it has
been proven that finding the minimal reduct of an in-
formation system is a NP hard problem. Some heuris-
tic algorithms have been invented based on significance
measures of attributes. These algorithms get a subopti-
mal result but relatively low time-consuming [1, 25, 27].
Shannon’s entropy was used as a significance measure in
some classical machine learning algorithm, such as the
famous ID3 algorithm series, and proven to be a good
measure. In the above section, we propose a novel infor-
mation measure for fuzzy indiscernibility or equivalence
relation and show that the entropy can be degraded to
Shannon’s one when the relation measured is a crisp
equivalence one. It shows that the proposed measure
can be used as a measure of discernibility power of a
crisp equivalence relation and a fuzzy one. So unified
reduction algorithms for hybrid data are feasible.

Data dimensionality reduction will be divided into
three steps: relation computation, reduction and reduct
validation. Relation computation is to generate relation
matrices using a relation function with attributes. Then
reduction algorithms are performed on the matrices and
find some reduct of the original data. Finally employing
a validation function, which may be a classifier or

198

a discriminability criterion, we test the reduct and
find a best one. The procedure is shown as follows.
No matter cases {xi}n

i=1 are described by nominal
attributes or numeric features or fuzzy variables, the
relations between the cases can all be denoted by a
relation matrix : M(R) = (rij)n×n .

If A is a nominal attribute set,

rij =
{

1, f(xi, a) = f(xj , a), ∀a ∈ A
0, otherwise

;

If attribute a is a numeric attribute, the value the
relation can mapped by a symmetric function:

rij = f(‖ xi − xj ‖),
where function f should satisfy:
1) f(0) = 1, f(∝) = 0 and f(•) ∈ [0, 1];
2) rij = rji and rii = 1
According to 2), Relation R will satisfies reflexivity
and symmetry. So a similarity relation matrix will be
produced by the functions.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: some similarity relation functions for numeric
data.

As to fuzzy attributes, there are a great many
candidate similarity measures [47]. For example:
1) Hamming similarity measure:

S(xi, xj) = 1
m

m∑
k=1

(1− |µAk
(xi)− µAk

(xj)|);
2) Max-Min similarity measure:

S(xi, xj) = 1
m{

m∑
k=1

min(µAk
(xi),µAk

(xj))

max(µAk
(xi),µAk

(xj))
}.

Employing a max-min closure operation, we can get a
fuzzy equivalence relation [48].

As has pointed in §3, the proposed entropy can be
used as measure of the discernibility power of a relation
or an attribute. The greater the entropy value is, the
stronger the discernibility is and the more significant the
attribute is. According to the properties of proposed

entropy, adding a novel condition attribute into the
information system, the entropy value will increase
monotonously, which reflexes that adding information
will lead to enhancement of the discernibility power.
The increment of information by an attribute reflexes
the increment of discernibility of the system. So the
significance of an attribute can be defined as follows.

Definition 4.1. Given a fuzzy information system <
U,A, V, f >, B ⊆ A,a ∈ B, the significance of attribute
a in attribute set B is defined as

SIG(a,B) = H(B)−H(B − a)

The above definition works in unsupervised feature
selection. SIG(a,B), called Significance of attribute a
in B, measures the increment of discernibility power
introduced by attribute a.

Definition 4.2. Given a fuzzy information system <
U,A, V, f >, A = C ∪ d, where C is the condition
attribute set and d is the decision attribute.B ⊆ C.∀a ∈
B, the significance of attribute a in attribute set B
relative to d is defined as

SIG(a, B, d) = H(d|B − a)−H(d|B)

This definition computes the increment of discerni-
bility power relative to the decision introducing by at-
tribute a. So it may be used as a supervised measure
for feature selection.

Based on the above measures, two greedy algo-
rithms for computing reduct and relative reduct can be
constructed, respectively.

Algorithm 1: Algorithm for calculating reduct
Input: Information system IS < U,A, V, f >.
Output: One reduct of IS
Step 1: ∀a ∈ A:compute the equivalence relation;
Step 2: φ → red ;
Step 3: For each ai ∈ A−red Compute Hi = H(ai, red)
End
Step 4: Choose attribute which satisfies:

H(a|red) = max
i

(SIG(ai, red))

Step 5: If H(a|red) > 0, then red ∪ a → red goto
step3,Else return,End
Algorithm 2: Algorithm for calculating relative reduct.
Input: Information system IS < U,A = C ∪ d, V, f >.
Output: One relative reduct D red of IS
Step 1: ∀a ∈ A compute the equivalence;
Step 2: φ → D red;
Step 3: For each ai ∈ C − D red,Compute Hi =
SIG(ai, D red, d) End
Step 4: Choose attribute which satisfies:

SIG(a, red, d) = max
i

(Hi)

Step 5: If SIG(a, red, d) > 0, then D red ∪ a → D red
goto step3,Else return D red End

199

R. Jensen [42] proposed that a problem may arise
when this approach is compared to the crisp attribute
reduction. In classical rough set attribute reduction,
a reduct is defined as a subset of attributes which has
the same information quantity as the full attribute set,
which means that the value H(B)H(d|B) should be
identical to H(A)H(d|A). However, in the fuzzy-rough
approaches, it is not necessarily the case. We can specify
the degree threshold λ. So that the algorithms will stop
if the condition SIG(a, red) ≤ λ(SIG(a, red, d) ≤ λ) is
satisfied.

5 Experiments and analysis.

A series of experiments have been conducted to test the
proposed significance measure of attributes and feature
selection based on UCI data. In this section we will show
some experimental results and analysis. All experiments
have been performed on data set shown in the following
table. We find the attributes of data BC and BCW are
nominal, and others are hybrid.

Experiment 1: ranking based feature selection vs.
the proposed dimensionality reduction. In feature sub-
set selection, many algorithms include ranking as a prin-
cipal or auxiliary selection mechanism because of its
simplicity, scalability and good empirical success [1].
Ranking methods employ an evaluation function, such
as inter-class distance, correlation criteria, mutual in-
formation and accuracy of a classifier to sort the candi-
date features. Some top features are selected. The main
drawback of ranking is it can not detect the redundancy
or correlation among condition set. So although they
are the greatest discernible feature individually, their
combination may have weak discernible power. Only
under certain independence or orthogonality, ranking
may be optimal with respect to a given classifier [1].

In the follows, an experiment is shown based on data
wine. the order of significance of attribute set is 7, 13,
12, 10, 1, 11, 6, 2, 8, 4, 9, 5, 3. With reduction algorithm
2, attribute subset 7, 1, 11, 6, 3, 12 are selected one by
one as a reduct, called subset 1.

In order to compare two feature subset selection,
top six attributes 7, 13, 12, 10, 1, 11 are selected in
ranking, called subset 2. Figures 2 and 3 show the
distribution of data in 2-D feature space. Figure 2 is
the distribution with attribute 7, 1, 1, 11, 11, 6, 6, 3, 3,
12, respectively. And Figure 3 is the distribution with
attribute 7, 13, 13, 12, 12, 10, 10, 1, 1, 11. From the
two-dimension feature space, we find that the attributes
by ranking have even better discernibility power than
the attributes selected by the fuzzy-rough reduction
algorithm. Here we choose SVM as a validation function
for feature selection. 2/3 samples are randomly selected
as training set, and the others are test set.

0 2 4 6
11

12

13

14

15
First and second attributes

11 12 13 14 15
0

0.5

1

1.5

2
Second and third attributes

0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

4
Third and fourth attributes

0 1 2 3 4
1

1.5

2

2.5

3

3.5
Fourth and fifth attributes

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4
Fifth and sixth attributes

Figure 2: Distribution of wine samples with attributes
7, 1, 11, 6, 3, 12, Accuracy: 94.87%.

0 2 4 6
0

500

1000

1500

2000
First and second attributes

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

4
Second and third attributes

1 2 3 4
0

2

4

6

8

10

12

14
Third and fourth attributes

0 5 10 15
11

12

13

14

15
Fourth and fifth attributes

11 11.5 12 12.5 13 13.5 14 14.5 15
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Fifth and sixth attributes

Figure 3: Distribution of wine samples with attributes
7, 13, 12, 10, 1, 11, Accuracy: 93.33%.

200

Table 1: Summary of the experiment data sets.
Data set Class Attribute number

Abr. Original name Size Number Total Numeric Nominal
BC Breast cancer 286 2 10 0 10

BCW Breast-cancer-wisconsin1 699 2 10 0 10
WDBC Breast-cancer-wisconsin2 569 2 31 30 1
WPBC Breast-cancer-wisconsin3 198 2 33 32 1

Cre Credit Approval 690 2 16 6 10
Cle Cleve Database 303 5 14 5 9
Der Dermatology 366 6 34 33 1
Eco Protein Localization 336 8 8 7 1
Gls Glass Identification 214 6 9 8 1

Heart Heart Disease 270 2 14 6 8
Ion Ionosphere 351 2 35 34 1
Son Sonar mines 1389 3 61 60 1
Win Wine Recognition 178 3 14 13 1
Vow Vowel Database 990 11 11 10 1

Table 2: Correlation coefficient matrix of attribute set
7, 1, 11, 6, 3, 4 with correlation entropy 0.8110.

A1 A2 A3 A4 A5 A6
A1 1.0000 0.2368 0.5435 0.8646 0.1151 -0.3514
A2 0.2368 1.0000 -0.0717 0.2891 0.2115 -0.3102
A3 0.5435 -0.0717 1.0000 0.4337 -0.0747 -0.2740
A4 0.8646 0.2891 0.4337 1.0000 0.1290 -0.3211
A5 0.1151 0.2115 -0.0747 0.1290 1.0000 0.4434
A6 -0.3514 -0.3102 -0.2740 -0.3211 0.4434 1.0000

Table 3: Correlation coefficient matrix of attributes 7,
13, 12, 10, 1, 11 with correlation entropy 0.7364.

A1 A2 A3 A4 A5 A6
A1 1.0000 0.4942 0.7872 -0.1724 0.2368 0.5435
A2 0.4942 1.0000 0.3128 0.3161 0.6437 0.2362
A3 0.7872 0.3128 1.0000 -0.4288 0.0723 0.5655
A4 -0.1724 0.3161 -0.4288 1.0000 0.5464 -0.5218
A5 0.2368 0.6437 0.0723 0.5464 1.0000 -0.0717
A6 0.5435 0.2362 0.5655 -0.5218 -0.0717 1.0000

We choose support vector machine (SVM) as a
validation function for feature subsets. 2/3 samples are
randomly selected as training set, and the others are
test set. The accuracy with attribute subset 1 is 94.87%,
while the accuracy with attribute subset 2 is 93.33%.

Why the attributes with better discriminability in
two-dimensional space get an even worse classification
performance ? As we have pointed, selecting the most
relevant features is usually suboptimal for building a
classifier if the features are redundant or dependent.
Generally speaking, ranking method only computes the
dependency between condition attributes and decision
attribute, while neglect the dependency among condi-
tion attributes. Let’s analyze the correlation between
the selected condition attributes. Correlation coeffi-

cients are showed in table 2 and 3. Wang [49] intro-
duced correlation entropy to measure the correlation of
a variable set. The entropy is defined as

HR = −
N∑

i=1

λi

N logN
λi

N

where λi is ith eigenvalue of correlation coefficient ma-
trix. the greater the entropy value is, the weaker the
correlation of attribute set is. If all attributes are lin-
ear correlation, the correlation entropy is 0, and if all
the correlation coefficient are zero, then the entropy is
1. Wang called the dependency of attributes overlap
information. We employ the measure to compute the
correlation degree of the selected attributes. The cor-
relation entropy of subset 1 is 0.8110, while entropy of
subset 2 is 0.7364, which shows the correlation degree
of subset 1 is lower than that of subset 2.

Experiment 2: Comparison of reduction methods.
In order to test the performance of the proposed reduc-
tion algorithm, some contrastive experiments are con-
ducted based on UCI data set. We compare the classical
rough set reduction with the proposed one and employ
SVM classifier as the validation function. The experi-
ment data is shown in table 4.

The classical rough set theory works in nominal do-
main. We perform discretization on numeric data. The
numeric attributes are discretized into three intervals by
equal-width, equal-frequency and fuzzy c-means cluster-
ing. As to fuzzy-rough reduction algorithm, the relation
matrices are computed with a triangle function. The
numbers of selected attributes and accuracy of classifi-
cation with SVM are shown in table 4.There is no nu-
meric attribute in data sets BC and BCW. From the
table we find the results of reduction and classification

201

Table 4: Comparisons of Fuzzy-rough technique vs. discritization with SVM classifiers.
Original data Reduct(Equi-width) Reduct(Equi-Frequency) Reduct(FCM) Reduct(Fuzzy-rough)

Data n Accuracy n Accuracy n Accuracy n Accuracy n Accuracy

BC 10 71.58% 8 72.63% 8 72.63% 8 72.63% 8 72.63%

BCW 10 98.28% 4 98.71% 4 98.71% 4 98.71% 4 98.71%

WDBC 31 93.16% 8 94.21% 12 93.68% 6 95.26% 17 95.26%

WPBC 33 74.24% 8 71.21% 6 75.76% 6 68.18% 17 81.82%

Cre 16 82.17% 11 81.74% 9 83.04% 11 81.74% 12 81.74%

Cle 14 59.41% 10 57.43% 8 60.4% 9 59.41% 12 56.44%

Der 34 90.91% 12 93.39% 11 99.17% 11 99.17% 11 94.21%

Eco 8 70.18% 7 70.18% 7 70.18% 7 70.18% 7 70.18%

Gls 9 61.97% 7 64.79% 6 54.93% 8 63.38% 8 63.38%

Heart 14 83.33% 9 83.33% 8 82.22% 8 84.44% 9 83.33%

Ion 35 92.31% 7 85.47% 7 85.47% 8 87.18% 12 88.03%

Son 61 78.57% 6 71.43% 6 52.86% 8 74.29% 9 74.29%

Win 14 96.67% 4 91.67% 4 91.67% 4 91.67% 6 94.87%

Vow 11 59.09% 10 63.94% 10 63.94% 10 63.94% 10 63.94%

Average 79.42% 78.58% 77.46% 79.30% 79.92%

with classical rough set method and the fuzzy one are
identical, respectively, which shows that the method we
proposed can degenerate to the classical case.

6 Conclusions.

Rough set theory has proven a powerful tool for feature
subset selection and rule extraction. The classical
rough set model just works in nominal domain. In
this paper we propose a novel information measure,
which can measure the discernibility power of a crisp
equivalence relation and fuzzy one. And it is proven
that when the relation matrix is a crisp equivalence one,
the proposed entropy will be degraded to Shannon’s
entropy.Based on the proposed entropy, some basic
definitions in fuzzy rough set model are presented.Two
reduction algorithms for unsupervised and supervised
dimensionality reduction are given. Experiments show
the algorithms get the same results as that of the
classical rough set approaches when the attributes of
data are all nominal. However, the performance of the
proposed reduction is better than the classical methods
with respect to hybrid data.

References

[1] Isabelle Guyon and Andre Elisseeff,An introduction
to variable and feature selection, Journal of machine
learning research, 3 (2003), pp. 1157–1182.

[2] David Hand, Heikki Mannila and Padhraic
Smyth,Principles of data mining, MIT publisher,
2001.

[3] H. Liu and R. Setiono,Some issues on scalable fea-
ture selection,Expert systems with applications, 15
(1998),pp. 333–339.

[4] E.C.C. Tsang, D.S. Yeung and X. Z. Wang,OFFSS:
Optimal fuzzy-valued feature subset selection, IEEE
transactions on fuzzy systems,2(2003), pp. 202–213.

[5] Kari Torkkola,Feature extraction by non-parametric
mutual information maximization, Journal of machine
learning research, 3 (2003),pp. 1415-1438.

[6] M. Dash and H. Liu,Consistency-based search in feature
selection,AI 151(2003),pp. 155–176.

[7] Avrim L. Blum and Pat Langley,Selection of relevant
features and examples in machine learning,Artificial
intelligence 97(1997) ,pp. 245-271.

[8] H. Liu, H. Motoda and L. Yu, Feature Selection with
Selective Sampling, Proceedings of the 19th ICML, July
8-12, 2002, Sydney, pp. 395–402

[9] H. X. Li and L. D. Xu,Feature space theory-a mathe-
matical foundation for data mining, Knowledge-based
systems 14 (2001) ,pp. 253-257.

[10] Hwang, Kuo-Feng, Chang and Chin-Chen,A fast pixel
mapping algorithm using principal component analysis,
Pattern Recognition Letters Volume: 23, Issue: 14,
December, 2002, pp. 1747–1753.

[11] Gilmour, Justin and Wang Liuping,Detection of process
abnormality in food extruder using principle component
analysis, Chemical Engineering Science Volume: 57,
Issue: 7, April, 2002, pp. 1091-1098.

[12] Chen Songcan and Zhu Yulian,Subpattern-based prin-
ciple component analysis, Pattern Recognition Volume:
37, Issue: 5, May, 2004, pp. 1081–1083.

[13] Cheung, Y. and Xu, L,Independent component ordering
in ICA time series analysis, Neurocomputing Volume:
41, Issue: 1-4, October, 2001, pp. 145–152.

[14] Wakako H,Separation of independent components from
data mixed by several mixing matrices, Signal process-
ing. Vol.82, No.12, 2002, pp. 1949–1961.

[15] Ron Kohavi and George H. John,Wrappers for feature
subset selection, AI 97 (1997),pp. 73–324.

[16] Selwyn Piramuthu,Evaluating feature selection meth-

202

ods for learning in data mining applications, European
journal of operational research,156 (2004),pp. 483–494.

[17] K. Kira and L.A. Rendell, The feature selection
problem: Traditional methods and a new algo-
rithm,Proceedings of AAAI-92, 1992, pp. 129–134.

[18] Kwak, N. Chong-Ho Choi,Input feature selection for
classification problems, IEEE transaction on neural
networks, Vol.13, No.1, 2002,pp. 143–159.

[19] Lei Yu, Huan Liu,Efficiently handling feature redun-
dancy in high dimensional data,In Proceedings of the
Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 24 -
27(2003),pp. 685–690.

[20] W. Duch, et al,Feature selection based on infor-
mation theory, consistency and separability indices,
Proceeding on 9th neural information processing,
vol.4(2002),pp. 1951–1955.

[21] L. Yu and H. Liu.Feature Selection for High-
Dimensional Data: A Fast Correlation-Based Filter
Solution, In Proceedings of The Twentieth Interna-
tional Conference on Machine Leaning (ICML-03), Au-
gust 21-24(2003),pp. 856–863.

[22] P. Mitra. C.A. Murthy, S. K. Pal,Unsupervised feature
selection using feature similarity, IEEE transactions on
pattern analysis and machine intelligence,Vol. 24, No.
3(2002),pp. 301–312.

[23] Beynon, Malcolm,Reducts within the variable precision
rough sets model: A further investigation, European
Journal of Operational Research Volume: 134, Issue:
3, November 1(2001), pp. 592–605.

[24] Mi, Ju-Sheng; Wu, Wei-Zhi and Zhang, Wen-
Xiu,Approaches to knowledge reduction based on vari-
able precision rough set model, Information Sciences.
Vol. 159, Issue: 3-4, 15(2004),pp. 255–272.

[25] Pawlak Z,rough sets-theoretical aspects of reasoning
about data. Kluwer academic publishers, 1991.

[26] Wang G., Hu H., Yang D.,Decision table reduction
based on conditional information entropy, Chinese jour-
nal of computers. Vol. 25, No. 7, 1-8(2002).

[27] Skowron A. Rauszer C.,the discernibility matrices and
functions in information systems,Intelligent decision
support: handbook of applications and advances of
rough set theory, 1992,pp. 331–362.

[28] Wang Jue, Miao Duo-Qian,Analysis on attribute reduc-
tion strategies of rough set, Journal of computer science
and technology. Vol. 13, No.2, 1998,pp. 189–193.

[29] Moradi, Hamid; Grzymala-Busse, Jerzy W.; Roberts,
James A. ,Entropy of English Text: Experiments with
Humans and a Machine Learning System Based on
Rough Sets, Information Sciences Volume: 104, Issue:
1-2, January, 1998, pp. 31–47.

[30] Swiniarski, Roman W. Larry Hargis,Rough sets
as a front end of neural networks texture classi-
fier,Nurocomputating.,36(2001) pp. 85–102.

[31] Swiniarski, Roman W.; Skowron, Andrzej,Rough set
methods in feature selection and recognition,Pattern
Recognition Letters Volume: 24, Issue: 6, March, 2003,
pp. 833–849.

[32] D. Dubois, H. Prade,Putting fuzzy sets and rough
sets together,R. Slowiniski (Ed.), Ittelligent Decision
support, Kluwer Academic, Dordrecht, 1992, pp. 203–
232.

[33] Morsi, Nehad N.; Yakout, M.M.,Axiomatics for fuzzy
rough sets,Fuzzy Sets and Systems Volume: 100, Issue:
1-3, November 16, 1998, pp. 327–342.

[34] Radzikowska, Anna Maria; Kerre, Etienne E.,A com-
parative study of fuzzy rough sets, Fuzzy Sets and Sys-
tems Vol.126, No.2, 2002, pp. 137–155.

[35] Wu, Wei-Zhi; Mi, Ju-Sheng; Zhang, Wen-
Xiu,Generalized fuzzy rough sets. Information Sciences
Volume: 151, May, 2003, pp. 263–282.

[36] Wu, Wei-Zhi; Zhang, Wen-Xiu,Constructive and ax-
iomatic approaches of fuzzy approximation opera-
tors,Information Sciences Volume: 159, Issue: 3-4,
February 15, 2004, pp. 233–254.

[37] Wang Yi-Fan,Mining stock price using fuzzy rough set
system, Expert Systems with Applications Volume: 24,
Issue: 1, January, 2003, pp. 13–23.

[38] Srinivasan, Padmini; Ruiz, Miguel E.; Kraft, Donald
H.; Chen, Jianhua,Vocabulary mining for information
retrieval: rough sets and fuzzy sets, Information Pro-
cessing and Management Volume: 37, Issue: 1, Jan-
uary 1, 2001, pp. 15–38.

[39] Q. Shen and A. Chouchoulas,A rough-fuzzy approach
for generating classification rules,Pattern Recognition,
35(11)(2002)pp. 2425–2438.

[40] Chmielewski, Michal R.; Grzymala-Busse, Jerzy
W.,Global Discretization of Continuous Attributes
as Preprocessing for Machine Learning,International
Journal of Approximate Reasoning Volume: 15, Issue:
4, November, 1996, pp. 319–331.

[41] Roy, Amitava; Pal, Sankar K.,Fuzzy discretization of
feature space for a rough set classifier,Pattern Recog-
nition Letters V. 24, No.6(2003), pp. 895–902.

[42] R. Jensen, Q. Shen,Fuzzy-rough attribute reduction
with application to web categorization,Fuzzy sets and
systems,141 (2004),pp. 469–485.

[43] L. Zadeh,Probability measures of fuzzy events,J. Math.
Anal. Appl.23(1965),pp. 421–427.

[44] Yager, Ronald R.,Measures of Entropy and Fuzziness
Related to Aggregation Operators,Information Sciences
Volume: 82, Issue: 3-4, January, 1995, pp. 147–166.

[45] Bertoluzza, Carlo; Doldi, Viviana; Naval, Glo-
ria.,Uncertainty measure on fuzzy partitions,Fuzzy Sets
and Systems Vol.142, No.1, 2004, pp. 105–116.

[46] Guo, Caimei and Zhang, Deli,On set-valued fuzzy mea-
sures, Information Sciences Volume: 160, Issue: 1-4,
March 22, 2004, pp. 13–25.

[47] Dengfeng, Li; Chuntian, Cheng.,New similarity mea-
sures of intuitionistic fuzzy sets and application to pat-
tern recognitions,Pattern Recognition Letters Volume:
23, Issue: 1-3, January, 2002, pp. 221–225.

[48] Lee, Hsuan-Shih. An optimal algorithm for computing
the max-min transitive closure of a fuzzy similarity
matrix, Fuzzy Sets and Systems Vol.123, No.1(2001),
pp. 129–136.

203

[49] Qiang Wang, Yi Shen, Ye Zhang,A fast method to eval-
uate the performance of image fusion techniques and
its error analysis, Instrumentation and measurement
technology conference, 2003.

[50] Qinghua Hu and Daren Yu,Entropies of fuzzy in-
discerniblity relation and its operations, International
Journal of uncertainty, fuzziness and knowledge-based
systems. Vol. 12, No. 5,pp. 575–589.

[51] Qinghua Hu,Daren Yu and Zongxia Xie,Reduction al-
gorithms for hybrid data based on fuzzy rough set ap-
proaches,International Conference on Machine Learn-
ing and Cybernetics(2004),pp. 1469–1474.

204

HARMONY: Efficiently Mining the Best Rules for Classification ∗

Jianyong Wang† George Karypis ‡

Abstract

Many studies have shown that rule-based classifiers perform
well in classifying categorical and sparse high-dimensional
databases. However, a fundamental limitation with many
rule-based classifiers is that they find the rules by employing
various heuristic methods to prune the search space, and
select the rules based on the sequential database covering
paradigm. As a result, the final set of rules that they use
may not be the globally best rules for some instances in the
training database. To make matters worse, these algorithms
fail to fully exploit some more effective search space pruning
methods in order to scale to large databases.

In this paper we present a new classifier, HARMONY,

which directly mines the final set of classification rules.

HARMONY uses an instance-centric rule-generation ap-

proach and it can assure for each training instance, one of the

highest-confidence rules covering this instance is included in

the final rule set, which helps in improving the overall ac-

curacy of the classifier. By introducing several novel search

strategies and pruning methods into the rule discovery pro-

cess, HARMONY also has high efficiency and good scala-

bility. Our thorough performance study with some large

text and categorical databases has shown that HARMONY

outperforms many well-known classifiers in terms of both

accuracy and computational efficiency, and scales well w.r.t.

the database size.

1 Introduction

As one of the most fundamental data mining tasks,
classification has been extensively studied and various

∗This work was supported in part by NSF CCR-9972519,
EIA-9986042, ACI-9982274, ACI-0133464, and ACI-0312828; the

Digital Technology Center at the University of Minnesota; and
by the Army High Performance Computing Research Center
(AHPCRC) under the auspices of the Department of the Army,
Army Research Laboratory (ARL) under Cooperative Agreement
number DAAD19-01-2-0014. The content of which does not
necessarily reflect the position or the policy of the government,
and no official endorsement should be inferred. Access to research
and computing facilities was provided by the Digital Technology
Center and the Minnesota Supercomputing Institute.

†Work was done while at University of Minnesota and cur-
rently is with Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, P.R. China. Email: jiany-
ong@cs.umn.edu.

‡Department of Computer Science and Engineering/Digital
Technology Center/Army HPC Research Center, University of
Minnesota. Email: karypis@cs.umn.edu.

types of classification algorithms have been proposed.
Among which, one category is the rule-based classi-
fiers [26, 27, 13, 30]. They build a model from the
training database as a set of high-quality rules, which
can be used to predict the class labels of unlabeled
instances. Many studies have shown that rule-based
classification algorithms perform very well in classifying
both categorical databases [27, 25, 24, 30] and sparse
high-dimensional databases such as those arising in the
context of document classification [6, 5].

Some traditional rule-based algorithms like
FOIL [27], RIPPER [13], and CPAR [30] discover a
set of classification rules one-rule-at-a-time and employ
a sequential covering methodology to eliminate from
the training set the positive instances that are covered
by each newly discovered rule. This rule induction
process is done in a greedy fashion as it employs various
heuristics (e.g., information gain) to determine how
each rule would be extended. Due to this heuristic
rule-induction process and the sequential covering
framework, the final set of discovered rules are not
guaranteed to be the best possible. For example, due to
the removal of some training instances, the information
gain is computed based on the incomplete information;
thus, the variable (or literal) chosen by these algorithms
to extend the current rule will be no longer the globally
optimal one. Moreover, for multi-class problems, these
algorithms need to be applied multiple times, each time
mining the rules for one class. If the training database
is large and contains many classes, the algorithms will
be inefficient.

Since the introduction of association rule mining [2],
many association-based (or related) classifiers have been
proposed [17, 22, 7, 4, 8, 23, 15, 5, 31, 14]. Some typ-
ical examples like CBA [25] and CMAR [24] adopt ef-
ficient association rule mining algorithms (e.g., Apri-
ori [3] and FP-growth [20]) to first mine a large num-
ber of high-confidence rules satisfying a user-specified
minimum support and confidence thresholds, then use
various sequential-covering schemes to select from them
a set of high-quality rules to be used for classification.
Since these schemes defer the selection step only after
a large intermediate set of high-confidence rules have
been identified, they tend to achieve somewhat bet-
ter accuracy than the traditional heuristic rule induc-

205

tion schemes [30]. However, the drawback of these ap-
proaches is that the number of initial rules is usually
extremely large, significantly increasing the rule discov-
ery and selection time.

In this paper we propose a new classification algo-
rithm, HARMONY1, which can overcome the problems
of both the rule-induction-based and the association-
rule-based algorithms. HARMONY directly mines for
each training instance one of the highest confidence fre-
quent classification rules that it supports, and builds
the classification model from the union of these rules
over the entire set of instances. Thus HARMONY em-
ploys an instance-centric rule generation framework and
is guaranteed to find and include the best possible rule
for each training instance. Moreover, since each train-
ing instance usually supports many of the discovered
rules, the overall classifier can better generalize to new
instances and thus achieve better classification perfor-
mance.

To achieve high computational efficiency, HAR-
MONY mines the classification rules for all the classes
simultaneously and directly mines the final set of classi-
fication rules by pushing deeply some effective pruning
methods into the projection-based frequent itemset min-
ing framework. All these pruning methods preserve the
completeness of the resulting rule-set in the sense that
they only remove from consideration rules that are guar-
anteed not to be of high quality. We have performed
numerous performance studies with various databases
and shown that HARMONY can achieve better accu-
racy while maintaining high efficiency.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some basic definitions and notations.
Section 3 discusses in detail the HARMONY algorithm.
Section 4 describes some of the related work in this area.
The thorough performance study is presented in Sec-
tion 5. Finally, the paper concludes with Section 6.

2 Notations and Definitions

A training database TrDB is a set of training in-
stances2, where each training instance, denoted as a
triple 〈tid, X, cid〉, contains a set of items (i.e., X) and
is associated with a unique training instance identifier
tid, and a class identifier cid ∈ {c1, c2, ..., ck} (a class
identifier is also called a class label, and we assume
there are totally k distinct class labels in TrDB). Ta-
ble 1 illustrates an example training database, which
contains totally eight instances and two classes. Let

1 HARMONY stands for the Highest confidence clAssification
Rule Mining fOr iNstance-centric classifYing.

2Note there may exist a test database, which is in the
same form as the training database and is used to evaluate the
performance of a classifier. We denote it by TeDB.

I={i1, i2, . . . , in} be the complete set of distinct items
appearing in TrDB. An itemset Y is a non-empty sub-
set of I and is called an l-itemset if it contains l items.
An itemset {x1, . . . , xl} is also denoted by x1 · · ·xl. A
training instance 〈tid, X, cid〉 is said to contain item-
set Y if Y ⊆ X . The number of instances in TrDB
containing itemset Y is called the (absolute) support of
itemset Y , denoted by sup

Y
. The number of instances

containing itemset Y and associated with a class label ci

(where i ∈ {1, 2, ..., k}) is called the support of Y ∪{ci},
denoted by supci

Y . A classification rule has the form:
‘Y → ci : supci

Y , conf ci

Y ’, where Y is called the body,

ci the head, supci

Y the support, and conf ci

Y =
sup

ci

Y

sup
Y

the

confidence of the rule, respectively. In addition, we use
|TrDB| to denote the number of instances in database
TrDB, and for brevity, we sometimes use the instance
identifier tid to denote an instance 〈tid, X, cid〉.

Table 1: An example training database TrDB.

Instance identifier Set of items Class identifier

01 a, c, e, g 1

02 b, d, e, f 0

03 d, e, f 0

04 a, b, c, e 1

05 a, c, e 1

06 b, d, e 0

07 a, b, e 1

08 a, b, d, e 0

Given a minimum support threshold, min sup, an
itemset Y is frequent if sup

Y
≥min sup. A frequent

itemset Y supported by any training instance 〈tj , Xj , ci〉
(1 ≤ j ≤ |TrDB| and 1 ≤ i ≤ k) is also called
a frequent covering itemset of instance tj , and ‘Y →
ci : supci

Y , conf ci

Y ’ is called a frequent covering rule of
instance tj . Among the frequent covering rules of any
instance tj , those with the highest confidence are called
the Highest Confidence Covering Rules w.r.t. instance
tj . We denote a Highest Confidence Covering Rule
w.r.t. instance tj by HCCRtj

, and use HCCRsup
tj

and

HCCRconf
tj

to denote its support and confidence.

3 HARMONY: An Instance-Centric Classifier

In this paper we present HARMONY, an accurate and
efficient rule-based classifier with good scalability that
is designed to overcome the problems of both the tradi-
tional rule-based and the recently proposed association-
based classifiers. The key idea behind HARMONY is
to build a classifier that instead of using various heuris-
tic methods to discover and/or select rules, it uses the
best possible rules for each training instance. As such,
it takes an instance-centric view and directly mines the
database of training instances to find at least one of
the highest confidence frequent covering rules (if there

206

is any) and include it in the final set of classification
rules. Moreover, HARMONY employs some effective
search strategies and pruning methods to speed up the
model learning.

The HARMONY algorithm consists of three differ-
ent modules, referred to as RuleMiner, BuildModel,
and NewInstanceClassification. The RuleMiner

module, takes as input the training database TrDB and
the minimum support min sup, and outputs the set of
the highest confidence covering rules (abbreviated as
HCCR). The BuildModel module, takes HCCR as
input and outputs a classification model (abbreviated
as CM), which is used by the NewInstanceClassifi-

cation module to classify a new test instance ti. The
algorithmic details behind these modules are presented
in the rest of this section.

3.1 Mining the Classification Rules

The rule-discovery problem that HARMONY needs to
solve in order to generate the sets of rules needed by
its classification methodology can be formally defined
as follows. Given a training database TrDB and a
minimum support threshold min sup, the problem is to
find one of the highest confidence frequent covering rules
for each of the training instances in TrDB 3.

A näıve way of solving this problem is to use an
existing frequent closed itemset discovery algorithm to
first generate all frequent closed itemsets, and then ex-
tract from them the highest confidence rule for each
training database instance. However, this approach is
not very computationally efficient because the number
of frequent closed itemsets is usually huge, and both
the itemset generation and rule selection are very ex-
pensive. For this reason, HARMONY adopts another
more efficient way. It directly mines the final set of
highest confidence classification rules. By maintaining
the highest confidence among the covering rules mined
so far for each instance, HARMONY can employ some
efficient pruning methods to accelerate the rule discov-
ery.

Note that although we mainly focus on mining any
one of the highest confidence frequent covering rules for
each training instance, it is straightforward to revise
HARMONY to mine the complete set of the highest
confidence frequent covering rules or the one with the
highest support for each training instance.

3Note the input training database must be in the form that
is consistent with the corresponding definition in Section 2,
otherwise, the training database should be first converted to
that form. For example, a numerical database should be first
discretized into a categorical one in order to use HARMONY to
build the model.

3.1.1 Rule Enumeration

The projection-based itemset enumeration framework
has been widely used in many frequent itemset min-
ing algorithms [20, 1, 18], and will be used by HAR-
MONY as the basis in enumerating the classification
rules. Given a training database TrDB and a mini-
mum support min sup, HARMONY first computes the
frequent items by scanning TrDB once, and sorts them
to get a list of frequent items (denoted by f list) accord-
ing to a certain ordering scheme. Assume the min sup
is 3 and the lexicographical ordering is the default or-
dering scheme, the f list computed from Table 1 is {a,
b, c, d, e}. HARMONY applies the divide-and-conquer
method plus the depth-first search strategy. In our ex-
ample, HARMONY first mines the rules whose body
contains item ‘a’, then mines the rules whose body con-
tains ‘b’ but no ‘a’, ..., and finally mines the rules whose
body contains only ‘e’. In mining the rules with item
‘a’, item ‘a’ is treated as the current prefix, and its con-
ditional database (denoted by TrDB|a) is built and the
divide-and-conquer method is applied recursively with
the depth-first search strategy. To build conditional
database TrDB|a, HARMONY first identifies the in-
stances in TrDB containing ‘a’ and removes the infre-
quent items, then sorts the left items in each instance
according to the f list order, finally TrDB|a is built as
{〈01, ce, 1〉, 〈04, bce, 1〉, 〈05, ce, 1〉, 〈07, be, 1〉, 〈08, be, 0〉
} (infrequent items ‘d’ and ‘g’ are removed). Follow-
ing the divide-and-conquer method, HARMONY first
mines the rules with prefix ‘ab’, then mines rules with
prefix ‘ac’ but no ‘b’, and finally mines rules with prefix
‘ae’ but no ‘b’ nor ‘c’.

During the mining process, when HARMONY gets
a new prefix, it will generate a set of classification rules
w.r.t. the training instances covered by the prefix. For
each training instance, it always maintains one of its
currently highest confidence rules mined so far. Assume
the current prefix P is ‘a’ (i.e., P=‘a’). As shown in the
above example, P covers five instances with tids 01,
04, 05, 07, and 08. HARMONY computes the covering
rules according to the class distribution w.r.t. the prefix
P . In this example, sup

P
=5, sup0

P =1, sup1
P =4, and

HARMONY generates two classification rules:

Rule 1: a→ 0 : 1, 1
5

Rule 2: a→ 1 : 4, 4
5

Rule 1 covers the instance with tid 08, while Rule 2
covers the instances with tids 01, 04, 05 and 07. Up to
this point, we have HCCR01 = HCCR04 = HCCR05

= HCCR07 = Rule 2, and HCCR08 = Rule 1.

207

3.1.2 Ordering of the Local Items

In the above rule enumeration process, we used the
lexicographical ordering as an illustration to sort the set
of local frequent items in order to get the f list. Many
projection-based frequent itemset mining algorithms use
the item support to order the local frequent items (e.g.,
the support descending order was adopted in [20] as the
ordering scheme). However, because we are interested
in the highest confidence rules w.r.t. the training
instances, the support-based ordering schemes may not
be the most efficient and effective ways. As a result, we
propose the following three new ordering schemes as the
alternatives.

Let the current prefix be P , its support be sup
P
, the

support and confidence of the classification rule w.r.t.
prefix P and class label ci, ‘P → ci’, be supci

P and
conf ci

P , respectively, the set of local frequent items be
{x1, x2, ..., xm}, the number of prefix P ’s conditional
instances containing item xj (1 ≤ j ≤ m) and associated
with class label ci (1 ≤ i ≤ k) be supci

P∪{xj}
, and the

support of P ∪ {xj} be sup
P∪{xj}

=
∑k

i=1 supci

P∪{xj}
.

Maximum confidence descending order. Given a
local item xj (1 ≤ j ≤ m) w.r.t. P , we can compute k
rules with body P ∪ {xj}, among which, the i-th rule
with rule head ci is:

P ∪ {xj} → ci : supci

P∪{xj}
,

sup
ci

P∪{xj}

sup
P∪{xj}

The highest confidence among the k rules with body
P ∪{xj} is called the maximum confidence of local item
xj , and is defined as the following:

(3.1)
max

∀i,1≤i≤k
supci

P∪{xj}

sup
P∪{xj}

To mine the highest confidence covering rules as
quickly as possible, a good heuristic is to sort the local
frequent items in their maximum confidence descending
order.

Entropy ascending order. The widely used
entropy to some extent measures the purity of a cluster
of instances. If the entropy of the set of instances
containing P ∪ {xj} (1 ≤ j ≤ m) is small, it is highly
possible to generate some high confidence rules with
body P ∪{xj}. Thus another good ordering heuristic is
to rank the set of local frequent items in their entropy
ascending order, and the entropy w.r.t. item xj is
defined as follows:

(3.2) −
1

log k

k∑
i=1

(
supci

P∪{xj}

sup
P∪{xj}

) log(
supci

P∪{xj}

sup
P∪{xj}

)

Correlation coefficient ascending order. Both
the maximum confidence descending order and entropy
ascending order do not consider the class distribution
of the conditional database w.r.t. prefix P , which
may cause some problems in some cases. Let us see
an example. Assume the number of class labels k=2,
supc1

P = 12, and supc2

P = 6, then we can get two rules
with body P as follows:

Rule 3: P → c1 : 12, 12
18

Rule 4: P → c2 : 6, 6
18

Suppose there are two local items, x1 and x2,
and supc1

P∪{x1}
=2, supc2

P∪{x1}
=1, supc1

P∪{x2}
=1, and

supc2

P∪{x2}
=2. According to Equation 3.1 and Equa-

tion 3.2, the maximum confidence and entropy w.r.t.
item x1 are equal to the corresponding maximum confi-
dence and entropy w.r.t. x2. Thus we cannot determine
which one of x1 and x2 should be ranked higher. How-
ever, because the conditional database TrDB|P∪{x1}

has the same class distribution as conditional database
TrDB|P , we cannot generate rules with body P ∪ {x1}
and a confidence higher than those with body P (i.e.,
Rule 3 and Rule 4). The two rules with body P ∪ {x1}
are shown as the following.

Rule 5: P ∪ {x1} → c1 : 2, 2
3

Rule 6: P ∪ {x1} → c2 : 1, 1
3

If we examine the rules generated from prefix item-
set P ∪ {x2} as shown in Rule 7 and Rule 8, we can see
Rule 8 has higher confidence than Rule 4, and can be
used to replace Rule 4 for the instances covered by Rule
8. In this case, item x2 should be ranked before item
x1.

Rule 7: P ∪ {x2} → c1 : 1, 1
3

Rule 8: P ∪ {x2} → c2 : 2, 2
3

This example suggests that the more similar
the class distribution between conditional databases
TrDB|P and TrDB|P∪{xj} (1 ≤ j ≤ m), the lower is
the possibility to generate higher confidence rules from
TrDB|P∪{xj}. Because the correlation coefficient is a
good metric in measuring the similarity between two
vectors (the larger the coefficient, the more similar the
two vectors), it can be used to rank the local items. In
HARMONY, the correlation coefficient ascending order
is by default adopted to sort the local items.

Let sup
P

be 1
k

∑k

i=1 supci

P , supP∪{xj} be

1
k

∑k

i=1 supci

P∪{xj}
, σ

P
be

√
1
k

∑k

i=1(supci

P)2 − sup
P

2,

σ
P∪{xj}

be
√

1
k

∑k
i=1(supci

P∪{xj}
)2 − supP∪{xj}

2, the

correlation coefficient between prefix P and P ∪ {xj}
(1 ≤ j ≤ m) is defined as follows.

208

(3.3)
1
k

∑k
i=1(supci

P � supci

P∪{xj}
− sup

P
� supP∪{xj})

σ
P
� σ

P∪{xj}

3.1.3 Search Space Pruning

Unlike the association-based algorithms, HARMONY
directly mines the final set of classification rules. By
maintaining the current highest confidence among the
covering rules for each training instance during the
mining process, some effective pruning methods can be
proposed to improve the algorithm efficiency.

Support equivalence item elimination. Given the
current prefix P , among its set of local frequent items
{x1, x2, ..., xm}, some may have the same support as
P . We call them support equivalence items and can be
safely pruned according to the following Lemma 3.1.

Lemma 3.1. (Support equivalence item pruning)
Any local item xj w.r.t. prefix P can be safely pruned if
it satisfies sup

P∪{xj}
= sup

P
.

Proof. Because sup
P∪{xj}

= sup
P

holds, TrDB|P
and TrDB|P∪{xj} contain the same set of conditional
instances; thus, their class distributions are also the
same and the following equation must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}
= supci

P

Given any itemset, Y , which can be used to extend
P (Y can be empty), can also be used to extend P∪{xj},
and the following must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}∪Y
= supci

P∪Y

We can further have the following equation:

∀i, 1 ≤ i ≤ k,
sup

ci

P ∪{xj}∪Y

sup
P∪{xj}∪Y

=
sup

ci

P∪Y

sup
P∪Y

This means the confidence of the rule ‘P ∪ {xj} ∪
Y → ci’ is equal to the confidence of the rule ‘P ∪ Y →
ci’, and we cannot generate higher confidence rules from
prefix P ∪ {xj} ∪ Y in comparison with the rules with
body P ∪ Y . Thus item xj can be safely pruned. �

Note P ∪ Y is a subset of P ∪ {xj} ∪ Y , by pruning
item xj , we prefer the more generic classification rules.
A similar strategy was adopted in [7, 14].

Unpromising item elimination. Given the current
prefix P , any one of its local frequent items, xj (1 ≤ j ≤
m), any itemset Y that can be used to extend P ∪ {xj}
(where Y can be empty and P ∪ {xj} ∪ Y is frequent),
and any class label ci (1 ≤ i ≤ k), the following equation
must hold:

conf ci

P∪{xj}∪Y
=

supci

P∪{xj}∪Y

sup
P∪{xj}∪Y

≤
supci

P∪{xj}∪Y

min sup

≤
supci

P∪{xj}

min sup

Because conf ci

P∪{xj}∪Y
≤ 1 also holds, we have the

following equation:

(3.4) conf ci

P∪{xj}∪Y
≤ min{1,

supci

P∪{xj}

min sup
}

Lemma 3.2. (Unpromising item pruning) For any
conditional instance 〈tl, Xl, ci〉 ∈ TrDB|P∪{xj} (∀l,
1 ≤ l ≤ |TrDB|P∪{xj}|, and 1 ≤ i ≤ k), if the following
always holds, item xj is called an unpromising item and
can be safely pruned.

(3.5) HCCRconf
tl

≥ min{1,
supci

P∪{xj}

min sup
}

Proof. By combining Equation 3.4 and Equation 3.5
we get that for any itemset Y (Y can be empty) the
following must hold:

conf ci

P∪{xj}∪Y
≤ HCCRconf

tl

This means that any rule mined by growing prefix
P ∪ {xj} will have a confidence that is no greater
than the current highest confidence covering rules (with
the same rule head) of any conditional instance in
TrDB|P∪{xj}; thus, item xj can be safely pruned. �

Unpromising conditional database elimination.
Given the current prefix P , any itemset Y (where Y
can be empty and P ∪ Y is frequent), any class label
ci (1 ≤ i ≤ k), the confidence of rule ‘P ∪ Y → ci’,
conf ci

P∪Y , must satisfy the following equation:

conf ci

P∪Y =
supci

P∪Y

sup
P∪Y

≤
supci

P∪Y

min sup
≤

supci

P

min sup

In addition, because conf ci

P∪Y ≤ 1 also holds, we
have the following equation:

(3.6) conf ci

P∪Y ≤ min{1,
supci

P

min sup
}

Lemma 3.3. (Unpromising conditional database

pruning) For any conditional instance 〈tl, Xl, ci〉 ∈
TrDB|P (∀l, 1 ≤ l ≤ |TrDB|P |, and 1 ≤ i ≤ k),
if the following always holds, the conditional database
TrDB|P can be safely pruned.

(3.7) HCCRconf
tl

≥ min{1,
supci

P

min sup
}

209

Proof. By combining Equation 3.6 and Equation 3.7
we can get that for any itemset Y (Y can be empty)
and ∀l, 1 ≤ l ≤ |TrDB|P |, 〈tl, Xl, ci〉 ∈ TrDB|P
(1 ≤ i ≤ k), the following must hold:

conf ci

P∪Y ≤ HCCRconf
tl

This means that any rule mined by growing prefix P
will have a confidence that is no greater than the current
highest confidence rules (with the same rule head) of
any conditional instance in TrDB|P ; thus, the whole
conditional database TrDB|P can be safely pruned. �

ALGORITHM 1.1: RuleMiner(TrDB, min sup)

INPUT: (1) TrDB : a training database, and (2) min sup: a minimum
support threshold.
OUTPUT: (1) HCCR: the set of the highest confidence frequent
covering rules w.r.t. each instance in TrDB.

01. for all ti ∈ TrDB

02. HCCRti
← ∅;

03. call ruleminer(∅, TrDB).

SUBROUTINE 1.1 : ruleminer(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional
database w.r.t. prefix pi.

04. if(pi 6= ∅)
05. for all 〈tl, Xl, cj〉 ∈ cdb

06. if(HCCR
conf

t
l

<
sup

cj

pi

suppi
)

07. HCCRt
l
← rule ‘pi → cj ’;

08. I ← find frequent items(cdb,min sup);
09. S ← support equivalence item pruning(I); I ← I - S;
10. S ← unpromising item pruning(I, cdb); I ← I - S;
11. if(I 6= ∅)
12. if(unpromising conditional database pruning(I,pi,cdb))
13. return;
14. correlation coefficient ascending ordering(I);
15. for all x ∈I do

16. pi
′
← pi ∪ {x};

17. cdb
′
← build cond database(pi

′
, cdb);

18. call ruleminer(pi
′
, cdb

′
);

3.1.4 The Integrated Rule Mining Algorithm

The overall structure of the RuleMiner algorithm is
shown in ALGORITHM 1.1. First, it initializes the
highest confidence classification rules w.r.t. each train-
ing instance to empty (lines 01-02), then enumerates the
classification rules by calling subroutine ruleminer(∅,
TrDB) (line 03). Subroutine ruleminer() takes as in-
put a prefix itemset pi and its corresponding condi-
tional database cdb. For each conditional instance, it
checks if a classification rule with higher confidence can
be computed from the current prefix pi, if so, it re-
places the corresponding instance’s current highest con-
fidence rule with the new rule (lines 04-07). It then
finds the frequent local items by scanning cdb (line 08),
prunes invalid items based on the support equivalence
item pruning method and the unpromising item prun-
ing method (lines 09-10). If the set of valid local items

is empty or the whole conditional database cdb can be
pruned based on the unpromising conditional database
pruning method, it returns directly (lines 11-13). Oth-
erwise, it sorts the left frequent local items according to
the correlation coefficient ascending order (line 14), and
grows the current prefix (line 16), builds the conditional
database for the new prefix (line 17), and recursively
calls itself to mine the highest confidence rules from the
new prefix (line 18).

Discussion. The above RuleMiner() algorithm
takes as input a uniform support threshold for all
classes; however, it can be easily revised to take class-
specific support thresholds as input. That is, the user
can specify a support threshold for each class. This
is sometimes beneficial for some imbalanced databases.
However, due to limited space, we will do not elaborate
the details and leave it to the interested readers.

ALGORITHM 1.2: BuildModel(HCCR)

INPUT: (1) HCCR: the set of the highest confidence covering rules.
OUTPUT: (1) CM : the classification model (i.e., k groups of ranked
rules).

01. Cluster rules into k groups(HCCR);//according to class label
02. for each group of rules
03. Sort rules();//in confidence and support descending order

ALGORITHM 1.3: NewInstanceClassification(CM, ti)

INPUT: (1) CM : the classification model, (2) ti: a test instance.
OUTPUT: (1) PCL: a predicted class label (or a set of class labels).

01. for j=1 to k //CMj : the j-th group of rules in CM
//SCRj : the score for ti computed from CMj

02. SCRj ←ComputeScore(CMj, ti);
03. PCL ← PredictClassLabel(SCR).

3.2 Building the Classification Model

After the set of the highest confidence covering rules
have been mined, it will be straightforward to build
the classification model. HARMONY first groups the
set of the highest confidence covering rules into k
groups according to their rule heads (i.e., class labels),
where k is the total number of distinct class labels
in the training database. Within the same group of
rules, HARMONY sorts the rules in their confidence
descending order, and for the rules with the same
confidence, sorts them in support descending order. In
this way, HARMONY prefers the rules with higher
confidence, and the rules with higher support if the
confidence is the same. The BuildModel algorithm
is shown in ALGORITHM 1.2.

3.3 Classifying a New Instance

After the classification model, CM, has been built, it
can be used to classify a new test instance, ti, using
the NewInstanceClassification algorithm shown in

210

ALGORITHM 1.3. HARMONY first computes a
score w.r.t. ti for each group of rules in CM (lines 01-
02), and predicts for ti a class label or a set of class labels
if the underlying classification is a multi-class multi-
label problem (i.e., each instance can be associated with
several class labels).

Scoring function. In HARMONY, the score for a
certain group of rules is defined in three different ways.
The first scoring function is called HIGHEST, which
computes the score as the highest confidence among the
covering rules w.r.t. test instance ti (by a ‘covering
rule’, we mean its rule body is a subset of ti). The
second method is based on the ALL function. It is the
default scoring function in HARMONY and computes
the score as the sum of the confidences of all the covering
rules w.r.t. ti. The third function is called TOP-K,
where K is a user-specified parameter. It computes
the score for a group of rules as the sum of the top
K highest confidences of the covering rules w.r.t. ti.
The HIGHEST and ALL functions can be thought of
as two special cases of the TOP-K function when K
is set at 1 and +∞. For a multi-class single-label
classification problem, HARMONY simply chooses the
class label with the highest score as the predicted class
label. While for a multi-class multi-label classification
problem, the prediction is a little complicated.

Multi-class multi-label classification. In [5],
the dominant factor -based method was proposed to
predict the class labels for a multi-class multi-label
classification problem and works as follows. Given a
user-specified dominant factor
, let the class label
with the highest score be cmax and the corresponding
highest score w.r.t. test instance ti be SCOREcmax

ti ,
then any class label whose corresponding score is no
smaller than SCOREcmax

ti �
 is a predicted class label
for ti. This method has been verified to be effective in
practice [5]. However, in many imbalanced classification
problems, the average confidence of each group of
classification rules may be quite different from each
other, this uniform dominant factor -based method will
not work well. A large dominant factor may lead to low
recalls (i.e., the percentage of the total test instances
for the given class label that are correctly classified)
for the classes with low average rule confidences, while
a small dominant factor can lead to low precisions
(i.e., the percentage of predicted instances for the
given class label that are correctly classified) for the
classes with high average rule confidences. To overcome
this problem, HARMONY adopts a weighted dominant
factor -based method. Let the average confidence of
the group of classification rules w.r.t. class label ck be
confavg

ck
, the score w.r.t. instance ti and class label ck

be SCOREck

ti . Instance ti is predicted to belong to class
ck if it satisfies the equation:

SCOREck

ti ≥ SCOREcmax

ti �
 � (
confavg

ck

confavg
cmax

)δ

Here, δ (δ ≥ 0) is called the score differentia
factor and the larger the δ, the more the difference

of the weighted dominant factors (i.e.,
 � (
confavg

c
k

conf
avg

cmax

)δ)

among different class labels. It is set to 1 by default in
HARMONY.

4 Related Work

There are two classes of algorithms that are directly re-
lated to this work. One is the traditional rule-induction-
based methods and the other is the recently proposed
association-rule-based methods. Both of these classes
share the same idea of trying to find a set of classifica-
tion rules to build the model. The rule-induction-based
classifiers like C4.5 [26], FOIL [27], RIPPER [13], and
CPAR [30] use various heuristics such as information
gain (including Foil gain) and gini index to identify the
best variable (or literal) by which to grow the current
rule, and many of them follow a sequential database
covering paradigm to speed up rule induction. The
association-based classifiers adopt another approach to
find the set of classification rules. They first use some
efficient association rule mining algorithms to discover
the complete (or a large intermediate) set of associ-
ation rules, from which the final set of classification
rules can be chosen based on various types of sequen-
tial database covering techniques. Some typical exam-
ples of association-based methods include CBA [25],
CMAR [24], and ARC-BC [5].

In contrast to the rule-induction-based algorithms,
HARMONY does not apply any heuristic pruning meth-
ods and the sequential database covering approach.
Instead, it follows an instance-centric framework and
mines the covering rules with the highest confidence
for each instance, which can achieve better accuracy.
At the same time, by maintaining one of the currently
best rules for each training instance and pushing deeply
several effective pruning methods into the projection-
based frequent itemset mining framework [20, 1, 18],
HARMONY directly mines the final set of classification
rules, which avoids the time consuming rule generation
and selection process used in several association-based
classifiers [25, 24, 5].

The idea of directly mining a set of high confidence
classification rules is similar to those in [7, 14]. Unlike
these methods, HARMONY does not need the user to
specify the minimum confidence and/or chi-square. In-
stead, it mines for each training instance one of the high-
est confidence frequent rules that it covers. In addition,

211

by maintaining one of the currently best classification
rules for each instance, HARMONY is able to incorpo-
rate some new pruning methods under the unpromis-
ing item (or conditional database) pruning framework,
which has been proven very effective in pushing deeply
the length-decreasing support constraint or tough block
constraints into closed itemset mining [28, 18].

Table 2: UCI database characteristics.

Database # instances # items # classes

adult 48842 131 2

chess 28056 66 18

connect 67557 66 3

led7 3200 24 10

letRegcog 20000 106 26

mushroom 8124 127 2

nursery 12960 32 5

pageBlocks 5473 55 5

penDigits 10992 90 10

waveform 5000 108 3

5 Empirical Results

5.1 Test Environment and Databases

We implemented HARMONY in C and performed the
experiments on a 1.8GHz Linux machine with 1GB
memory. We first evaluated HARMONY as a frequent
itemset mining algorithm to show the effectiveness of
the pruning methods, the algorithm efficiency and scal-
ability. Then we compared HARMONY with some well-
known classifiers on both categorical and text databases.

The UCI Databases. Many previous studies used
some small databases to evaluate both the accuracy
and efficiency of a classifier. For example, most of the
26 databases used in [25, 24, 30] only contain several
hundred instances, which means the test databases
contain too few test instances (i.e., only a few tens)
if the 10-fold cross validation is adopted to evaluate the
classification accuracy. In this paper, we mainly focus
on relatively large databases. By large, we mean the
database should contain no fewer than 1000 instances.

In [12], the author used 23 UCI databases to
compare FOIL and CPAR algorithms. Among these
23 databases, 10 of them are large databases and will
be used to compare HARMONY with FOIL, CPAR,
and SVM 4. The characteristics of these databases are
summarized in Table 2. All the 10 databases were
obtained from the author of [12] and the 10-fold cross
validation is used for comparison with FOIL, CPAR,
and SVM. Among these databases, connect is a too

4The numerical attributes in these databases have been dis-
cretized by the author of [12], and the discretization technique is
different from those used in [25, 24, 30]; thus, the performance
reported here may be different from the previous studies even for
the same algorithm and the same database.

dense database, during the 10-fold cross validation in
our experiments HARMONY only used the items whose
supports are no greater than 20,000 to generate rules for
this database.

Table 3: Top 10 topics in reuters-21578.
Category Name # train labels # test labels

acq 1650 719

corn 181 56

crude 389 189

earn 2877 1087

grain 433 149

interest 347 131

money-fx 538 179

ship 197 89

trade 369 118

wheat 212 71

total 7193 2787

Table 4: Class distribution in sports database.
Class Name Number of labels

baseball 3412

basketball 1410

football 2346

hockey 809

boxing 122

bicycle 145

golf 336

total 8580

Text Databases. We also used two text databases
in our empirical evaluation. The first database is the
popularly used ‘ModeApte’ split version of the reuters-
21578 collection, which was preprocessed and provided
by the authors of [11], and both the database and its
description are available at [10]. After preprocessing, it
contains totally 8575 distinct terms, 9603 training docu-
ments, and 3299 test documents. Like many other stud-
ies [21, 16, 5, 11], we are more interested in the top 10
most common categories (i.e., topics). These ten largest
categories form 6488 training documents and 2545 test
documents. A small portion of the training and test
documents are associated with multiple category la-
bels (that is, reuter-21578 is a multi-class multi-label
database). In our experiments, we treated each one of
the training documents with multiple labels as multiple
documents, each one with a distinct label. The top 10
categories and their corresponding number of labels in
the training and test databases are described in Table 3.
The second text database is sports, which was obtained
from San Jose Mercury (TREC). In our experiments,
we removed some highly frequent terms, and finally it
contains totally 8580 documents, 7 classes, and about
1748 distinct terms. The seven classes and their corre-
sponding number of documents are shown in Table 4.

212

5.2 Experimental Results

5.2.1 Evaluate HARMONY as a Frequent
Itemset Mining Algorithm

To mine the highest confidence covering rule(s) for each
instance, a näıve method is like the association-based
classifiers: first use an efficient association rule mining
algorithm to compute the complete set of classification
rules, from which the set of the highest confidence
covering rules w.r.t. each instance can be selected.
Our empirical results show that this method is usually
inefficient if the database is large and a more efficient
way is to push some effective pruning methods into the
frequent itemset mining framework and to directly mine
the final set of classification rules.

Ordering of the local items. In HARMONY, we
provide three options for item ordering, that is, CoR-
relation coefficient Ascending order (denoted by CRA),
Entropy Ascending order (denoted by EA), and Maxi-
mum Confidence Descending order (denoted by MCD).
We first evaluated the effectiveness of these item order-
ing schemes against Support Descending order (denoted
by SD) that is popularly used in frequent itemset min-
ing. Our experiments have shown that the three newly
proposed item ordering schemes are always more effi-
cient than the support descending ordering scheme. In
addition, these schemes also lead to slightly different
classification accuracy. This is partly because different
item ordering schemes may mine a different highest con-
fidence covering rule w.r.t. a certain training instance,
which may have different supports, although their con-
fidence is the same. The experimental results also show
that although the correlation coefficient ascending or-
dering scheme is not always the winner, on average it
is more efficient and has better accuracy than all the
other schemes. As a result, in HARMONY, it is chosen
as the default option for item ordering. Table 5 shows
the comparison result for the sports database at abso-
lute support of 200. We can see that the correlation co-
efficient ascending ordering scheme is more efficient and
also has slightly higher classification accuracy which was
measured using 10-fold cross validation.

Table 5: Item ordering test on sports database.

Ordering scheme CRA EA MCD SD

Runtime(in seconds) 55.7 88.6 110.8 156.3

Accuracy(in %) 85.57 85.51 85.53 85.52

Effectiveness of the pruning methods. We
also evaluated the effectiveness of the pruning methods.
Figure 1a shows the results for database penDigits
with absolute support threshold varying from 512 to

8. At first glance of Equation 3.5 and Equation 3.7,
the unpromising item and conditional database pruning
methods seem to be less effective at lower support,
however this is not the case when considering more
covering rules with higher confidence can be found at
lower support and can be used to more quickly raise the
currently maintained highest confidences. As we can
see from Figure 1a, if we turn off the pruning methods
used in HARMONY (denoted by ‘without pruning’), it
can become over an order of magnitude slower at low
support.

Scalability test. Figure 1b shows the scalability test
result for databases letRecog, waveform, and mushroom
with relative support set at 0.5%. In the experiments,
we replicated the instances from 2 to 16 times. We
can see that HARMONY has linear scalability in the
runtime with increasing number of instances.

1

10

100

1000

8163264128256512

R
u
n
ti

m
e
 i

n
 s

e
c
o
n
d
s

Absolute support threshold

Without pruning
With pruning

a) Pruning (penDigits)

20

40

60

80

100

120

140

160

180

200

2 4 6 8 10 12 14 16

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Replication factor

letRecog
waveform
mushroom

b) Scalability (0.5%)

Figure 1: Pruning and scalability test.

1

10

100

1000

64128256512

R
u
n
ti

m
e
 i

n
 s

e
c
o
n
d
s

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

50

60

70

80

90

800
 400
 200
 100
 50

Absolute support threshold

C
la

s
s
if

ic
a
ti

o
n
 a

c
c
u
r
a
c
y
 %

b) Classification accuracy

Figure 2: Efficiency test (sports).

Efficiency test. As we mentioned above, the tradi-
tional frequent (closed) itemset mining algorithms can
be revised to mine the complete set of high confidence
classification rules, from which a subset of high quality
rules can be further identified. Our efficiency tests for
HARMONY in comparison with FPgrowth* and FP-
close, two recently developed efficient frequent/closed

213

Table 6: Breakeven performance on the Reuters-21578 database with some well-known classifiers.

Categories HARMONY HARMONY HARMONY Find Similar Näıve Bayes Bayes Nets Decision Trees SVM
min sup=60 min sup=70 min sup=80 (linear)

acq 95.3 95.3 95.3 64.7 87.8 88.3 89.7 93.6

corn 78.2 78.6 75.2 48.2 65.3 76.4 91.8 90.3

crude 85.7 85.0 88.0 70.1 79.5 79.6 85.0 88.9

earn 98.1 98.2 97.6 92.9 95.9 95.8 97.8 98.0

grain 91.8 90.4 90.1 67.5 78.8 81.4 85.0 94.6

interest 77.3 76.6 75.1 63.4 64.9 71.3 67.1 77.7

money-fx 80.5 81.9 82.1 46.7 56.6 58.8 66.2 74.5

ship 86.9 82.9 82.8 49.2 85.4 84.4 74.2 85.6

trade 88.4 88.0 86.1 65.1 63.9 69.0 72.5 75.9

wheat 62.8 60.6 58.7 68.9 69.7 82.7 92.5 91.8

micro-avg 92.0 91.7 91.4 64.6 81.5 85.0 88.4 92.0

1

10

100

481632

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

98

98.5

99

99.5

100

128
 64
 32
 16
 8
 4

Absolute support threshold

C
la

s
s
if

ic
a
ti

o
n

 a
c
c
u

r
a
c
y

 %

b) Classification accuracy

Figure 3: Efficiency test (mushroom).

itemset mining algorithms [19], show that such an ap-
proach is not realistic at low support, while our exper-
iments demonstrate that the classification accuracy is
usually higher at low support.

Figure 2 shows the comparison results for database
sports. As we can see, although at high support, both
FPgrowth* and FPclose are faster than HARMONY,
once we continue to lower the support, they will be
much slower. For example, at absolute support of 100,
HARMONY is several orders of magnitude faster than
FPgrowth* and FPclose. Figure 2b shows the classifica-
tion accuracy at different support thresholds using the
10-fold cross validation. We can see that HARMONY
can achieve higher accuracy at lower support like 100.
It is also interesting to see that the accuracy at a too
low support 50 is worse than that at support 100 for
this database, due to the ‘overfitting’ problem.

Figure 3a shows similar comparison results for
categorical database mushroom. HARMONY is faster
than both FPgrowth* and FPclose at absolute support
lower than 32. Figure 3b shows that HARMONY has
better accuracy at low support threshold.

5.2.2 Classification Evaluation

The reuters–21578 (ModApte) text database.
For a multi-class multi-label database like reuters-

21578, most previous studies used the breakeven point
of precision and recall to measure the classifier perfor-
mance [6, 21, 16, 29, 9, 5, 11], which is defined as the
point at which precision is equal to the recall. To our
best knowledge, the best breakeven performance for the
reuters-21578 database is the linear SVM [16]. For com-
parison with earlier results, we first found the overall
breakeven point in terms of all top 10 categories by ad-
justing the dominant factor
, then reported the average
of precision and recall for each category as their corre-
sponding breakeven performance [16].

Table 6 shows the comparison results with some
previous results. The results for Find-Similar, Näıve-
Bayes, Bayes-Nets, Decision-Trees, and Linear-SVM
were obtained from [16]. The micro-avg is the overall
breakeven performance over all 10 categories. For
HARMONY, we used three different absolute support
thresholds, 60, 70, and 80, respectively. From Table 6
we can see that both HARMONY and Linear-SVM
have similar breakeven performance and perform much
better than all the other classifiers. Among the 10
categories, HARMONY achieves the best performance
at support of 60 for five categories, acq, earn, money-
fx, ship, and trade. While Linear-SVM performs best
for another three categories, crude, grain, and interest.
Decision-Trees also performs good and has the best
performance for two small categories, corn and wheat.
SVM is very well known for classifying high dimensional
text databases. Our results show that HARMONY can
achieve similar performance to SVM.

The UCI databases. We evaluated HARMONY
on the UCI databases in comparison with FOIL,
CPAR, and SVM. FOIL and CPAR are two well-known
algorithms for classifying categorical data. The results
in [30] show that CPAR has better accuracy than
c4.5 [26] and ripper [13], and has comparable accuracy
to the association-based algorithms CMAR [24] and
CBA [25], but is orders of magnitude faster; thus, we
will do not compare HARMONY with c4.5, ripper,
and the association-based algorithms. The results for
FOIL and CPAR were provided by Frans Coenen and

214

are available at [12]. Because most databases we used
contain more than two class labels, when comparing
with SVM, we used SV Mmulticlass (Version: 1.01),
which is an implementation of the multi-class Support
Vector Machine and is available at http : //www.cs.
cornell.edu/People/tj/svm light/svm multiclass.html.
In the experiments, we ran SVM with its default set-
ting5. All the results including the accuracy and
runtime are computed using the 10-fold cross vali-
dation. The reported accuracy is the corresponding
average value of the 10-fold cross validation results,
while the runtime is the total runtime of the 10-fold
cross validation, including both training and testing
time. In the experiments, we fixed the absolute support
threshold at 50 for HARMONY with all 10 UCI
databases.

Table 7: Accuracy comparison on 10 large UCI
databases (min sup=50 for HARMONY).

Database FOIL CPAR SVM HARMONY

adult 82.5 76.7 84.16 81.9

chess 42.6 32.8 29.83 44.87

connect 65.7 54.3 72.5 68.05

led7 62.3 71.2 73.78 74.56

letRecog 57.5 59.9 67.76 76.81

mushroom 99.5 98.8 99.67 99.94

nursery 91.3 78.5 91.35 92.83

pageBlocks 91.6 76.2 91.21 91.6

penDigits 88.0 83.0 93.2 96.23

waveform 75.6 75.4 83.16 80.46

average 75.66 70.68 78.663 80.725

Table 7 shows the accuracy comparison results,
which reveal that HARMONY has much better overall
accuracy than FOIL and CPAR, and has comparable ac-
curacy with SVM. The average accuracy of HARMONY
over all 10 UCI databases is about 5% higher than FOIL,
10% higher than CPAR, and 2% higher than SVM. SVM
performs very well for the databases with few class la-
bels, like adult, connect, and waveform, but has much
worse accuracy than HARMONY for the databases with
many class labels, like chess and letRecog. Compared
with SVM, HARMONY has reasonably stable and good
performance over all 10 UCI databases. Note in the
experiments we fixed the minimum support at 50 for
all 10 UCI databases. If we choose some tuned sup-
ports, HARMONY can achieve better performance than
what we reported here for some databases. For exam-
ple, if we choose the minimum support at 5 for the
chess database, HARMONY has an accuracy of 58.43%,
which is over 13% higher than the accuracy at support
50, while it only becomes about two times slower.

Table 8 compares the runtime (in seconds) of the
four algorithms. Note that FOIL and CPAR were

5We used its default linear kernel function.

Table 8: Runtime comparison on 10 large UCI
databases (min sup=50 for HARMONY).

Database FOIL CPAR SVM HARMONY

adult 10251.0 809.0 2493.1 1395.5

chess 10122.8 1736.0 13289.4 11.34

connect 35572.5 24047.1 74541.1 85.44

led7 11.5 5.7 17.12 1.29

letRecog 4365.6 764.0 17825.2 778.91

mushroom 38.3 15.4 16.6 8.78

nursery 73.1 51.7 322.4 6.21

pageBlocks 43.1 15.5 11.2 2.5

penDigits 821.1 101.9 512.7 82.6

waveform 295.3 38.1 36.2 130.0

total 61594.3 27584.4 109065.02 2502.57

implemented in java and were tested on a different
machine from that of HARMONY and SVM. As a
result, their runtime cannot be directly compared to
those reported for HARMONY and SVM but they only
provide an overall idea on the relative computational
requirements of the various schemes. Table 8 shows that
on average the runtime of HARMONY is over an order
of magnitude smaller than those of FOIL, CPAR, and
SVM. For some large databases like chess, the runtime
of HARMONY can be over two orders of magnitude
smaller than those of FOIL and CPAR, and over three
orders of magnitude smaller than that of SVM.

Table 9: Test of scoring functions (min sup=50)

Database HIGHEST TOP 3 TOP 5 ALL

adult 82.52 82.59 82.61 81.9

chess 43.06 40.44 37.81 44.87

connect 67.7 67.35 67.16 68.05

led7 72.98 73.34 71.2 74.56

letRecog 73.69 72.99 71.79 76.81

mushroom 99.95 99.95 99.95 99.94

nursery 94.62 93.98 93.72 92.83

pageBlocks 91.34 91.34 91.34 91.6

penDigits 94.49 94.24 93.93 96.23

waveform 78.82 78.82 79.52 80.46

average 79.917 79.504 79.513 80.725

Scoring function test. In the above classifica-
tion evaluation, HARMONY adopted its default scor-
ing function, ALL, to compute the score for a certain
group of rules. In our experiments, we also evaluated
the effectiveness of different scoring functions in HAR-
MONY, including ALL, HIGHEST, and TOP-K (K
was set at 3 and 5 in the experiments). The results
w.r.t. the UCI databases are shown in Table 9. We
see that the ALL function can achieve overall better ac-
curacy than the other functions, while other functions
can also have better accuracy for some databases. For
example, the HIGHEST function achieves better accu-
racy for database nursery, and the TOP-K function can
achieve better performance for database adult.

215

6 Conclusion

Designing accurate, efficient, and scalable classifiers is
an important research topic in data mining, and the
rule-based classifiers have been proven very effective in
classifying the categorical or high-dimensional sparse
data. However, to achieve high accuracy, a good rule-
based classifier needs to find a sufficient number of high
quality classification rules and use them to build the
model. In this paper, we proposed an instance-centric
classification rule mining paradigm and designed an
accurate classifier, HARMONY. Several effective search
space pruning methods and search strategies have also
been proposed, which can be pushed deeply into the
rule discovery process. Our performance study shows
that HARMONY has high accuracy and efficiency in
comparison with many well known classifiers for both
the categorical and high dimensional text data. It also
has good scalability in terms of the database size.

Acknowledgements

We are grateful to Frans Coenen at the University of
Liverpool and Shane Bergsma at the University of Al-
berta for providing us the discretized UCI databases and
the reuters-21578 database, respectively, and promptly
answering our various questions. We also thank Osmar
R. Zäıane and Maria-Luiza Antonie at the University
of Alberta for answering our questions related to the
ARC-BC algorithm.

References

[1] R. Agarwal, C. Aggarwal, V. Prasad. A Tree Projec-

tion Algorithm for Generation of Frequent Item Sets,
Journal of Parallel and Distributed Computing. 61(3),
2001.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining Associ-

ation Rules between Sets of Items in Large Databases,
SIGMOD’93.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining

Association Rules, VLDB’94.
[4] K. Ali, S Manganaris, R. Srikant. Partial Classification

Using Association Rules, KDD’97.
[5] M. Antonie, O. Zaiane. Text Document Categorization

by Term Association, ICDM’02.
[6] C. Apte, F. Damerau, S.M. Weiss. Towards Language

Independent Automated Learning of Text Categoriza-

tion Models, SIGIR’94.
[7] R.J. Bayardo. Brute-force Mining of High-confidence

Classification rules, KDD’97.
[8] R.J. Bayardo, R. Agrawal. Mining the most interesting

rules, KDD’99.
[9] R. Bekkerman, R. EI-Yaniv, N. Tishby, Y. Winter.

On Feature Distribution Clustering for Text Catego-

rization, SIGIR’01.

[10] S. Bergsma. The Reuters-21578 (ModApte)

dataset, Department of Computer Sci-
ence, University of Alberta. Available at
http://www.cs.ualberta.ca/

∼bergsma/650/.
[11] S. Bergsma, D. Lin. Title Similarity-Based Feature

Weighting for Text Categorization, CMPUT 650 Re-
search Project Report, Department of Computer Sci-
ence, University of Alberta.

[12] F. Coenen. (2004) The LUCS-KDD Implementa-
tions of the FOIL, PRM, and CPAR algorithms,
http://www.csc.liv.ac.uk/

∼ frans/KDD/Software/
FOIL PRM CPAR/foilPrmCpar.html, Computer
Science Department, University of Liverpool, UK.

[13] W. Cohen. Fast effective rule induction, ICML’95.
[14] G. Cong, X. Xu, F. Pan, A. Tung, J. Yang.

FARMER: Finding Interesting Rule Groups in Mi-

croarray Datasets, SIGMOD’04.
[15] M. Deshpande, G. Karypis. Using Conjunction of

Attribute Values for Classification, CIKM’02.
[16] S. Dumais, J. Platt, D. Heckerman, M. Sahami. Induc-

tive Learning Algorithms and Representations for Text

Categorization, CIKM’98.
[17] T. Fukuda, Y. Morimoto, S. Motishita. Constructing

Efficient Decision Trees by Using Optimized Numeric

Association Rules, VLDB’96.
[18] K. Gade, J. Wang, G. Karypis. Efficient Closed Pattern

Mining in the Presence of Tough Block Constraints, to
appear in KDD’04.

[19] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in

Mining Frequent Itemsets, ICDM-FIMI’03.
[20] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns

without Candidate Generation, SIGMOD’00.
[21] T. Joachims. Text Categorization with Support Vector

Machines: Learning with Many Relevant Features,
ECML’98.

[22] B. Lent, A. Swami, J. Widom. Clustering Association

Rules, ICDE’97.
[23] N. Lesh, M. Zaki, M. Ogihara. Mining Features for

Sequence Classification, KDD’99.
[24] W. Li, J. Han, J. Pei. CMAR: Accurate and Efficient

Classification based on multiple class-association rules,
ICDM’01.

[25] B. Liu, W. Hsu, Y. Ma. Integrating Classification and

Association Rule Mining, KDD’98.
[26] J. Quinlan. C4.5: Programs for Machine Learning,

Morgan Kaufman, 1993.
[27] J. Quinlan, R. Cameron-Jones. FOIL: A Midterm

Report, ECML’93.
[28] J. Wang, G. Karypis. BAMBOO: Accelerating Closed

Itemset Mining by Deeply Pushing the Length-

Decreasing Support Constraint, SDM’04.
[29] Y. Yang. An Evaluation of Statistical Approaches to

Text Categorization, Information Retrieval, Vol. 1, No.
1-2, 1999.

[30] X. Yin, J. Han. CPAR: Classification based on Predic-

tive Association Rules, SDM’03.
[31] M. Zaki, C. Aggarwal. XRULES: An Effective Struc-

tural Classifier for XML Data, KDD’03.

216

On Error Correlation and Accuracy of Nearest Neighbor Ensemble

Classifiers

Carlotta Domeniconi and Bojun Yan
Information and Software Engineering Department

George Mason University
carlotta@ise.gmu.edu byan@gmu.edu

Abstract
Recent empirical work has shown that combining predictors
can lead to significant reduction in generalization error. Un-
fortunately, many combining methods do not improve near-
est neighbor (NN) classifiers at all. This is because NN
methods are very robust with respect to variations of a data
set. In contrast, they are sensitive to input features. We ex-
ploit the instability of NN classifiers with respect to different
choices of features to generate an effective and diverse set
of NN classifiers. Interestingly, the approach takes advan-
tage of the high dimensionality of the data. We investigate
techniques to decorrelate errors while keeping the individual
classifiers accurate. We analyze the results both in terms of
error rates and error correlations. The experimental results
show that our technique can offer significant performance
improvements with respect to competitive methods.

1 Introduction

An ensemble of classifiers succeeds in improving the
accuracy of the whole when the component classifiers
are both diverse and accurate. Diversity is required to
ensure that the classifiers make uncorrelated errors. If
each classifier makes the same error, the voting carries
that error into the decision of the ensemble, thereby
gaining no improvement. In addition, accuracy is
required to avoid poor classifiers to obtain the majority
of votes. These requirements have been quantified.
Under simple voting and error independency conditions,
if all classifiers have the same probability of error, and
such probability is less than 50%, then the error of the
ensemble decreases monotonically with an increasing
number of classifiers [15, 2].

One way to generate an ensemble with the required
properties is to train the classifiers on different sets of
data, obtained by sampling from the original training
set [6, 18, 13, 8]. Breiman’s bagging [6] and Freund and
Schapire’s boosting [13] are well known examples of suc-
cessful iterative methods for improving the predictive
power of classifier learning systems. Bagging uses sam-
pling with replacement. It generates multiple classifiers
by producing replicated samples of the data. To classify

an instance, a vote for each class j is recorded by every
classifier that chooses it, and the class with the most
votes is chosen by the aggregating scheme. Boosting
uses adaptive sampling. It uses all instances at each rep-
etition, but maintains a weight for each instance in the
training set that reflects its importance as a function of
the errors made by previously generated hypotheses. As
for bagging, boosting combines the multiple classifiers
by voting, but unlike bagging boosting assigns different
voting strengths to component classifiers on the basis of
their accuracy.

Experimental evidence [21] proved that both bag-
ging and boosting are quite effective in reducing general-
ization error, with boosting providing in general higher
improvements. Dramatic error reductions have been
observed with decision trees such as CART and C4.5
[6, 21, 13]. This behavior can be explained in terms of
the bias-variance components of the generalization er-
ror [7]. The variance component measures the scatter
in the predictions obtained from using different training
sets, each one drawn from the same distribution. The
effect of combination is to reduce the variance, that is
what both bagging and boosting achieve. In addition,
boosting does something more. By concentrating the
attention of the weak learner on the harder examples,
it challenges the weak learner algorithm to perform well
on these harder parts of the sample space, thereby re-
ducing the bias of the learning algorithm.

It turns out that sampling the training set is not
effective with NN classifiers [6]. To gain some insights
as to why this is the case, let us analyse the conditions
under which the bagging procedure is effective. As ob-
served above, bagging reduces the variance component
of the generalization error. When the weak learner is
unstable with respect to variations in the training set,
perturbing the training data can cause significant vari-
ability in the resulting predictor. Thus, bagging the
ensemble improves accuracy in this case. Suppose the
weak learner is the NN classifier. It has been shown that

217

the probability that any given training point is included
in a data set bootstrapped by bagging is approximately
63.2% [6]. It follows that the nearest neighbor will be
the same in 63.2% of the nearest neighbor classifiers.
Thus, errors are highly correlated, and bagging becomes
ineffective.

The fact that NN methods are very robust with
respect to variations of the data set makes ensemble
methods ineffective. In contrast, NN methods are
sensitive to input features. In this paper we exploit
such instability of NN classifiers with respect to different
choices of features, to generate an effective and diverse
set of NN classifiers. We explore the challenge of
producing NN classifiers with decorrelated errors which
are, at the same time, accurate. In general, the
balance where the gains due to decreased correlations
outweigh the losses due to reduced information available
to individual classifiers must be found to provide the
best results.

2 Ensemble of Nearest Neighbors in
Weight-Driven Subspaces

As discussed above, kNN methods are very robust with
respect to variations of the data set. The stability of
nearest neighbor classifiers to variations in the training
set makes ensemble methods obtained by bootstrapping
the data ineffective. In contrast, kNN techniques
are sensitive to features (i.e., intolerant to irrelevant
features) [19], and to the chosen distance function
[14, 16, 12, 11]. As such, in order to achieve diversity
and accuracy with nearest neighbor classifiers, we ought
to sample the feature space, to which the kNN method
is highly sensitive. The idea is then to exploit the
instability of NN classifiers with respect to different
choices of features to generate a diverse set of NN
classifiers with (possibly) uncorrelated errors.

In [3], the outputs of multiple nearest neighbor
classifiers, each having access only to a random subset
of features, are combined using simple voting. In
[17], instead, the class membership decision is delayed
until the aggregation phase. It is shown [3] that
random feature selection can increase the diversity
without increasing the error rates. This fact results
in accuracy improvements on a variety of data sets.
However, as also pointed out in [3], the technique has
some major drawbacks that cause the degradation in
performance observed in some cases. While the random
selection of features is likely to increase diversity among
the classifiers, it gives no guarantee that the selected
features carry the necessary discriminant information.
If they don’t, poor classifiers will be generated, and the
voting will increase the generalization error.

To reduce the risk of discarding discriminant infor-

mation, while preserving a reasonable degree of diver-
sity, we propose to perform adaptive sampling over the
feature space. In particular, in order to keep the bias
of individual classifiers low, we use feature relevance to
guide the sampling mechanism. This process has the
potential of producing accurate classifiers in disagree-
ment with each other. While it is expected that the
level of diversity obtained by this adaptive mechanism
may be lower than the diversity given by random sam-
pling, the higher accuracy of the individual classifiers
should allow the ensemble to improve performance. It
is interesting to observe that, since the method uses sub-
sets of features, it will be effective for problems with a
large number of dimensions, which is often the case for
many applications. Although it defies common sense,
sampling in feature space takes advantage of the high
dimensionality of the data. The experimental results we
present support this conjecture.

2.1 Learning Feature Weights. In this work we
use the ADAMENN algorithm to estimate feature rele-
vance, and therefore the corresponding weight vector
[12], at any given test point. Other techniques can
be considered as well [14, 16, 11]. For completeness,
we provide here a brief description of the ADAMENN
algorithm. ADAMENN performs a Chi-squared dis-
tance analysis to compute a flexible metric for producing
neighborhoods that are highly adaptive to query loca-
tions. Let x be the nearest neighbor of a query x0 com-
puted according to a distance metric D(x,x0). The goal
is to find a metric D(x,x0) that minimizes E[r(x0,x)],
where

r(x0,x) =
J∑

j=1

P (j|x0)(1 − P (j|x)).(2.1)

Here P (j|x) is the class conditional probability at x.
That is, r(x0,x) is the finite sample error risk given
that the nearest neighbor to x0 by the chosen metric is
x. It can be shown [12] that the weighted Chi-squared
distance

D(x,x0) =
J∑

j=1

[P (j|x)− P (j|x0)]2

P (j|x0)
(2.2)

approximates the desired metric, thus providing the
foundation upon which the ADAMENN algorithm com-
putes a measure of local feature relevance, as shown be-
low.

We first notice that P (j|x) is a function of x.
Therefore, we can compute the conditional expectation
of P (j|x), denoted by P (j|xi = z), given that xi

assumes value z, where xi represents the ith component

218

of x. That is,

P (j|xi = z) = E[P (j|x)|xi = z]

=
∫

P (j|x)p(x|xi = z)dx.

Here p(x|xi = z) is the conditional density of the other
input variables defined as

p(x|xi = z) = p(x)δ(xi − z)/
∫

p(x)δ(xi − z)dx,

here δ(x − z) is the Dirac delta function having the
properties δ(x − z) = 0 if x �= z and

∫ ∞
−∞ δ(x −

z)dx = 1. Let

ri(z) =
J∑

j=1

[P (j|z)− P (j|xi = zi)]2

P (j|xi = zi)
.(2.3)

ri(z) represents the ability of feature i to predict the
P (j|z)s at xi = zi. The closer P (j|xi = zi) is to P (j|z),
the more information feature i carries for predicting the
class posterior probabilities locally at z.

We can now define a measure of feature relevance
for x0 as

r̄i(x0) =
1

K0

∑
z∈N(x0)

ri(z),(2.4)

where N(x0) denotes the neighborhood of x0 containing
the K0 nearest training points, according to a given
metric. r̄i measures how well on average the class
posterior probabilities can be approximated along input
feature i within a local neighborhood of x0. Small r̄i

implies that the class posterior probabilities will be well
captured along dimension i in the vicinity of x0. Note
that r̄i(x0) is a function of both the test point x0 and
the dimension i, thereby making r̄i(x0) a local relevance
measure.

To formulate the measure of feature relevance as a
weighting scheme, we first define

Ri(x0) = max
j
{r̄j(x0)} − r̄i(x0),

i.e., the more relevant dimension i is, the larger Ri

becomes. An exponential weighting scheme is then
given by

wi(x0) = exp(Ri(x0))/
q∑

l=1

exp(Rl(x0)).

Such weights are real values between 0 and 1, and their
sum equals 1. Therefore, they define a probability
distribution over the feature space that can be employed
in our adaptive sampling mechanism. In addition, the

exponential weighting scheme avoids zero values. As
such, for each test point and each classifier of the
ensemble, any given feature has a non zero probability
to be selected. This property guarantees a certain level
of diversity among the classifiers of our ensemble. For
the details on how to estimate the unknown quantities
involved in the feature relevance measure, see [12]. We
point out that ADAMENN outperforms decision trees,
and other well known locally adaptive classifiers on a
variety of data sets [12]. In addition, it has shown
accuracy results similar to support vector machines in
a variety of cases. Thus, being able to improve upon its
performance is a significant objective to achieve.

2.2 Ensemble Algorithm. The general formulation
of our approach is as follows:

Input: Number-Of-Classifiers (NoC), Number-Of-
Features (NoF), k, test point x0;

Compute the weight vector w0 reflecting feature rele-
vance at x0 (e.g., using the ADAMENN algorithm);

• For 1 to NoC:

1. Sample NoF features with or without replace-
ment, according to the probability distribu-
tion given by the weight vector w0;

2. Use selected features (SelF) only (and their
weights) to compute the k closest neighbors,
according to the weighted Euclidean distance:
D(x0,y) =

√∑
i∈SelF w0i(x0i − yi)2;

3. Classify test point using kNN rule;

• Apply the voting scheme in use among the NoC
classifiers.

Output: Decision of the ensemble.

The algorithm has three input parameters: The
Number-Of-Classifiers to combine, the Number-Of-
features to be selected, and the size k of the neighbor-
hoods. The values of these parameters can be deter-
mined based on cross-validation accuracy estimated on
the training set for the whole ensemble. When sam-
pling with replacement is used, if a feature is selected
more than once, say t times, its weight is multiplied by
a factor t for distance computation.

3 Voting Methods
The classifiers can be combined using a simple majority
voting. We also investigate an alternative mechanism to
combine the classifiers. Instead of computing the most
frequent class label within the neighborhood of the test

219

point, we keep all estimated class posterior probabilities.
That is, for each classifier, all class labels of the k
nearest neighbors are recorded. After NoC iterations,
the test point is assigned to the class that has the most
frequent occurrency. This voting scheme selects the
class with the largest expected posterior probability in
the ensemble. As such, it takes into account not only
the “winner” of each classifier, but also the margin of
the win. The class with the largest overall margin will
be selected by the ensemble.

As a simple example, suppose we have three clas-
sifiers and two classes (positive and negative). For a
given test point x0, the recorded labels of its five nearest
neighbors (k = 5) are as follows: Classifier 1: 2 positives
and 3 negatives; Classifier 2: 2 positives and 3 negatives;
Classifier 3: 4 positives and 1 negative. The expected
class posterior probabilities, estimated by the ensemble,
are: E[P (+|x0)] = 8/15 and E[P (−|x0)] = 7/15. Thus,
the ensemble chooses the positive class. Note that, al-
though the negative class is the winner for the majority
of classifiers, its overall margin of win is two. The pos-
itive class wins only once but with a (larger) margin of
three. Simple voting predicts a negative label in this
example.

In addition, we consider the Borda Count method
[10]. It is a positional-scoring technique: each candidate
class gets 0 points for each last place vote received, 1
point for each next-to-last point vote, and so on up
to C − 1 points for each first place vote (where C is
the number of classes). The candidate class with the
largest point total wins the election. When C = 2,
the Borda Count method reduces to a simple majority
voting technique. It is often used for polls which rank
sport teams or academic institutions.

4 Experimental Results

We have conducted experiments to compare the ac-
curacy and diversity of Random and Weight-Driven
feature subspace methods. Both sampling with and
without replacement have been used. The three vot-
ing schemes described above (Simple, Counting, and
Borda) were used to compute the decision of the ensem-
ble (NoC = 200 classifiers). Tables 1-2 show the error
rates and standard deviations obtained on five data sets
[5]. We also report the error rates of ADAMENN and
kNN using Euclidean distance. The characteristics of
each data set (number of dimensions, number of data
(N), and number of classes (C)) are given in parenthe-
sis. Leave-one-out cross-validation was used to generate
training and test data in each classifier. We have tested
values of k between 1 and 5; for NoF we considered
values from 1 (or higher, for data with a larger dimen-
sionality) to the total number of dimensions. For each

combination of parameter values, the experiment was
repeated 10 times, and the average error rate was com-
puted. For all methods compared, validation of param-
eters was performed over the training data. Tables 3-4
specify the parameter values for the error rates given in
Tables 1-2. For each data set and each technique, Tables
3-4 show: the value of k, if sampling with (1) or with-
out (0) replacement was performed, and the number of
selected features (NoF).

The results show that our Weight-driven approach
offers significant accuracy improvements (over both
ADAMENN and the Random approach) for the three
data sets with a larger number of dimensions (spectf-
test, lung, sonar). For liver and ionosphere the Ran-
dom and Weight approaches give similar performances.
This result provides evidence that bootstrapping fea-
tures using an “intelligent” distance metric (Weight-
Driven method) takes advantage of the high dimension-
ality of the data. Thus, it provides an effective method
to dodge the curse-of-dimensionality phenomenon. Fig-
ures 1-2-3-4-5 plot the error rate as a function of the
number of selected features (NoF) for all five data sets
considered here. For the Weight-driven technique, and
for ionosphere and lung data, the largest values of NoF
are 23 and 50, respectively (see Figures 2-4). This is be-
cause eleven and four features, respectively for the first
and second data set, received very small weights which
were approximated to zero (thus, were never selected).
The plots show the robustness of the Weight-driven ap-
proach as the number of selected features increase. On
the contrary, the error rate of the Random approach can
be quite sensitive to the value of the NoF parameter.
In particular, the results for the ionosphere, spectf-test,
and sonar data clearly demonstrate the drawback of the
Random approach: as the fraction of selected features
not carrying discriminant information increases, poor
classifiers are generated, and the voting increases the
generalization error.

In some cases the Counting voting method improves
performance (with respect to Simple). The Borda tech-
nique on lung data gives the best result for both Random
and Weight-driven algorithms. (Note that we test the
Borda voting method only on lung data since the other
data sets all involve two classes. In such case, the Borda
count method reduces to simple voting.) In most cases,
sampling without replacement outperformed sampling
with replacement (see parameter values in Tables 3-4).

4.1 Measure of Diversity and Accuracy To mea-
sure both the accuracy and the diversity of the classi-
fiers, we make use of the Kappa statistic, κ [9, 20]. In
particular, a Kappa-Error diagram [20] allows us to vi-
sualize the diversity and the accuracy of an ensemble

220

of classifiers. A Kappa-Error diagram is a scatterplot
where each point corresponds to a pair of classifiers.
The x coordinate is the value of κ for the two classi-
fiers. Smaller κ values indicate a larger diversity: κ = 0
when the agreement of the two classifiers equals that
expected by chance, and κ = 1 when the two classifiers
agree on every example. The y coordinate is the average
error rate of the two classifiers.

We report the Kappa-Error diagrams for the five
data sets in Figures 6-7-8-9-10. As expected, the level of
diversity obtained with the Weight-driven technique is
in general lower than the diversity given by the Random
approach. However, the “intelligent” metric employed
by the Weight-driven technique allows to reduce bias,
and thus achieve a better error rate.

4.2 Reduction of Error Correlations In light of
the results provided by the Kappa statistic, we explore
the possibility of decorrelating errors by introducing
new elements of diversification among the NN classi-
fiers. The benefits and pitfalls of reducing the correla-
tion among classifiers, especially when the training data
are limited, are well discussed in [22]. Here we face the
challenge of reaching a trade-off between error decorre-
lation and accuracy in the context of NN classifiers.

We first allow each classifier to customize the num-
ber of selected features at each query point x0. This
is achieved as follows. We sort the weight components
of w0 in non increasing order: w01, . . . , w0q (q is the
number of dimensions). The classifier chooses NoF0

(number of selected features at x0) to be such that

NoF0∑
i=1

w0i ≤ f, and

NoF0+1∑
i=1

w0i > f,

where f ∈ (0, 1) is an input parameter. Basically, f is
the fraction of the total weight (which is always one)
captured by NoF0. The fewer the relevant features, the
smaller NoF0. The actual features are then selected
as before, by sampling according to the probability
distribution given by the weight vector w0. We have
experimented with the following values of f : 0.2, 0.4,
0.6, 0.8, and 0.9. The error rates corresponding to the
cross-validated values of f are shown in Tables 5-6. We
observe that the error rates get worst (considerably for
lung data), except for liver and Weight (Counting). We
noticed that these error rates all correspond to f = 0.9
(interestingly, except for liver and Weight (Counting)
where f = 0.6). This suggests that the classifiers
are highly correlated (as confirmed by the correlation
measurements given below). For liver data, the value
f = 0.6 offers the best trade-off between diversity and
accuracy. For lung data, we observed that 13 points

(out of 32) used less that five features. This may have
affected the results, since previously the combination of
seven or five features gave the best error rates.

In an effort to decorrelate the errors, we have
also generated ensembles of a mixture of Random and
Weight-driven classifiers. (Two percentage combina-
tions were tested: 50% of each kind; 60% Weight-driven
and 40% Random.) The resulting error rates are given
in Tables 7-8. Simple voting was used to combine the
classification results. As values of the parameters for
each kind of classifier, we used the cross-validated ones
given in Tables 3-4. Only for sonar data a better error
rate with respect to both previous error rates of Ran-
dom and Weight was achieved.

To analyze these results, we have measured the
correlation of errors of two classifiers (indexed by 1 and
2) on each class i:

δi
1,2 =

cov(ηi
1(x), ηi

2(x))
σηi

1
σηi

2

,

where ηi
j(x) is the error value (0 or 1) on x ∈ Ci of

classifier j, and σηi
j

is the standard deviation of ηi
j(x),

computed over all x ∈ Ci. To account for all classes:

δ1,2 =
C∑

i=1

δi
1,2P (i),

where P (i) is the prior probability of class i. In our
experiments we consider equal priors, and thus

δ1,2 = 1/C

C∑
i=1

δi
1,2

gives the total error correlation between classifiers 1 and
2.

Sample results for liver and sonar are given in
Tables 9-10. For each data set we summarize the
average error correlation values computed between five
classifiers. We also report the corresponding error rates
of the ensembles. In each case simple voting is used.
Weight-C is for Weight-driven with customized number
of features. As expected, the Random approach gives
very low correlation values. Decreasing the value of f for
the Weight-C method, clearly decreases the correlation
of errors. Though, in most cases, the gains due to
the decreased correlations is outweighed by the loss
of information due to the reduced number of features
retained. The mixture method is effective in decreasing
correlations, though it didn’t offer significant accuracy
improvements with respect to both the Random and
Weight approach alone. Nevertheless, this analysis
suggests that combining mixture of different classifiers

221

Table 1: Average error rates.

liver ionosphere spectf-test
(dim-N -C) (6-345-2) (34-351-2) (44-267-2)

kNN 32.5 13.7 23.6
ADAMENN 30.7 7.1 19.1

Random (Simple) 29.4 (0.5) 5.8 (0.2) 20.2 (0.4)
Random (Counting) 28.6 (0.5) 5.7 (0.2) 19.9 (0.4)

Weight (Simple) 29.3 (0.5) 6.3 (0.2) 17.6 (0.4)
Weight (Counting) 29.9 (0.5) 6.3 (0.2) 17.7 (0.4)

Table 2: Average error rates.
lung sonar

(dim-N -C) (54-32-3) (60-208-2)
kNN 50.0 12.5

ADAMENN 37.5 9.1
Random (Simple) 45.0 (0.5) 10.5 (0.3)

Random (Counting) 45.3 (0.5) 10.3 (0.3)
Random (Borda) 44.7 (0.5) -
Weight (Simple) 35.0 (0.5) 8.3 (0.3)

Weight (Counting) 32.5 (0.5) 8.3 (0.3)
Weight (Borda) 30.9 (0.5) -

(e.g., each kind performing a different form of adaptive
sampling) may offer error rate improvements as well.
In our future work we plan to consider other adaptive
feature sampling mechanisms, and random projection
as well.

5 Conclusions

We have introduced a mechanism to generate an effec-
tive and diverse ensemble of NN classifiers. Our analysis
shows the difficulty of reaching a good balance between
error decorrelation and accuracy in the context of NN
classifiers. In an effort to further reduce correlations
without increasing error rates, we will consider multiple
adaptive mechanisms to sampling in feature space.

Table 3: Parameter values for error rates in Table 1: k
- with (1) or without (0) replacement - NoF.

liver ionosphere spectf-test
Random (Simple) 5-1-3 1-0-5 1-0-5

Random (Counting) 3-1-4 1-0-5 1-0-5
Weight (Simple) 5-1-5 1-0-8 5-0-4

Weight (Counting) 3-1-6 1-0-7 1-0-7

Table 4: Parameter values for error rates in Table 2: k
- with (1) or without (0) replacement - NoF.

lung sonar
Random (Simple) 5-1-54 1-0-23

Random (Counting) 3-0-49 1-1-29
Random (Borda) 3-0-49 -
Weight (Simple) 3-0-7 1-0-45

Weight (Counting) 3-0-5 1-0-45
Weight (Borda) 3-0-5 -

Table 5: Weight-driven approach with customized num-
ber of features: Average error rates.

liver ionosphere spectf-test
Weight (Simple) 30.3 (0.5) 8.3 (0.3) 18.7 (0.4)

Weight (Counting) 29.1 (0.5) 8.3 (0.3) 18.9 (0.4)

222

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 6 5 4 3 2 1

er
ro

r r
at

e

Number of selected features

Random-simple: minimum at 5 features--0.294
Random-counting: minimum at 3 features--0.286

Weight-simple: minimum at 5 features--0.293
Weight-counting: minimum at 3 features--0.299

ADAMENN: error rate 0.307
KNN: error rate 0.348

Figure 1: Liver data: Error rate as a function of the
number of selected features for Random and Weight-
driven methods.

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 34 32 28 24 20 16 12 8 4 1

er
ro

r r
at

e

Number of selected features

Random-simple: minimum at 5 features--0.058
Random-counting: minimum at 5 features--0.057

Weight-simple: minimum at 8 features--0.063
Weight-counting: minimum at 7 features--0.063

ADAMENN: error rate 0.071
KNN: error rate 0.137

Figure 2: Ionosphere data: Error rate as a function of
the number of selected features for Random and Weight-
driven methods.

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 44 40 35 30 25 20 15 10 5 1

er
ro

r r
at

e

Number of selected features

Random-simple: minimum at 5 features--0.202
Random-counting: minimum at 5 features--0.199

Weight-simple: minimum at 4 features--0.176
Weight-counting: minimum at 5 features--0.177

ADAMENN: error rate 0.191
KNN: error rate 0.236

Figure 3: Spectf data: Error rate as a function of the
number of selected features for Random and Weight-
driven methods.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 54 48 42 36 30 24 18 12 6 1

er
ro

r r
at

e

Number of selected features

Random-simple: minimum at 54 features--0.450
Random-counting: minimum at 49 features--0.453

Random-Borda: minimum at 49 features--0.447
Weight-simple: minimum at 7 features--0.350

Weight-counting: minimum at 5 features--0.325
Weight-Borda: minimum at 5 features--0.309

ADAMENN: error rate 0.375
KNN: error rate 0.500

Figure 4: Lung data: Error rate as a function of the
number of selected features for Random and Weight-
driven methods.

223

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 20 25 30 35 40 45 50 55 60

er
ro

r r
at

e

Number of selected features

Random-simple: minimum at 23 features--0.105
Random-counting: minimum at 29 features--0.103

Weight-simple: minimum at 45 features--0.083
Weight-counting: minimum at 45 features--0.083

ADAMENN: error rate 0.091
KNN: error rate 0.125

Figure 5: Sonar data: Error rate as a function of the
number of selected features for Random and Weight-
driven methods.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.083
Random: error rate 0.105

Figure 6: Sonar data: Kappa-Error diagram for Ran-
dom and Weight-Driven Subspace methods.

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

-0.2 0 0.2 0.4 0.6 0.8 1

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.293
Rand: error rate 0.294

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

-0.2 0 0.2 0.4 0.6 0.8 1

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.293
Rand: error rate 0.294

Figure 7: Liver data: Kappa-Error diagram for Random
and Weight-Driven Subspace methods.

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.063
Random: error rate 0.058

Figure 8: Ionosphere data: Kappa-Error diagram for
Random and Weight-Driven Subspace methods.

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15-0.2

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.176
Random: error rate 0.202

Figure 9: Spectf data: Kappa-Error diagram for Ran-
dom and Weight-Driven Subspace methods.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r r
at

e

kappa

Weight-Driven: error rate 0.350
Random: error rate 0.450

Figure 10: Lung data: Kappa-Error diagram for Ran-
dom and Weight-Driven Subspace methods.

224

Table 6: Weight-driven approach with customized num-
ber of features: Average error rates.

lung sonar
Weight (Simple) 46.9 (0.5) 8.7 (0.3)

Weight (Counting) 43.4 (0.5) 8.6 (0.3)
Weight (Borda) 43.4 (0.5) -

Table 7: Mixture of Weight-driven and random classi-
fiers: Average error rates.

liver ionosphere spectf-test
Simple voting 30.8 (0.5) 6.0 (0.3) 17.8 (0.4)

References

[1] Agresti, A. (1990). Categorical data analysis. John
Wiley & Sons, New York.

[2] Ali, K. M., & Pazzani, M. J. (1996). Error reduc-
tion through learning multiple descriptions. Machine
Learning, 24:173-202.

[3] Bay, S. D. (1999). Nearest neighbor classification from
multiple feature subsets. Intelligent Data Analysis,
3(3):191-209.

[4] Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W.
(1975). Discrete multivariate analysis: theory and
practice. MIT Press, Cambridge.

[5] Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases University of California,
Department of Information and Computer Science.

[6] Breiman, L. (1996). Bagging predictors. Machine
Learning 24:123-140.

[7] Breiman, L. (1999). Prediction games and arcing
algorithms. Neural Computation 11:1493-1517.

[8] P. Chan, P., & Stolfo, S. (1995). A comparative
evaluation of voting and meta-learning on partitioned
data. Twelfth International Conference on Machine
Learning.

[9] Cohen, J. (1960). A coefficient of agreement for nomi-
nal scales. Educational and Psycological Measurement,
20(1):37-46.

[10] de Borda, J. (1781). Memoire sur les elections au
scrutin, historie de l’academie royale des sciences.
Paris.

[11] Domeniconi, C. & Gunopulos, D. (2002). Adaptive
nearest neighbor classification using support vector

Table 8: Mixture of Weight-driven and random classi-
fiers: Average error rates.

lung sonar
Simple voting 37.5 (0.5) 8.1 (0.3)

Table 9: Average error correlation values and Average
error rates: Liver data.

Error Correlation Error rate
Random 0.12 29.4
Weight 0.23 29.3

Weight-C (f = 0.9) 0.74 30.3
Weight-C (f = 0.8) 0.41 31.4
Weight-C (f = 0.6) 0.21 31.6

Mixture 0.11 30.8

Table 10: Average error correlation values and Average
error rates: Sonar data.

Error Correlation Error rate
Random 0.34 10.5
Weight 0.69 8.3

Weight-C (f = 0.9) 0.72 8.7
Weight-C (f = 0.8) 0.66 10.2
Weight-C (f = 0.6) 0.42 11.4

Mixture 0.43 8.1

machines. Advances in Neural Information Processing
Systems 14, MIT Press.

[12] Domeniconi, C., Peng, J., & Gunopulos, D. (2002).
Locally adaptive metric nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(9):1281-1285.

[13] Y. Freund, Y., & Schapire, R. (1996). Experiments
with a new boosting algorithm. Thirteenth Interna-
tional Conference on Machine Learning.

[14] Friedman, J. H. (1994). Flexible metric nearest neigh-
bor classification. Technical Report, Department of
Statistics, Stanford University.

[15] Hansen, L. K., & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:993-1001.

[16] Hastie, T., & Tibshirani, R. (1996). Discriminant
adaptive nearest neighbor classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
18(6):607-615.

[17] Ho, T. K. (1998). Nearest Neighbor in random
subspaces. Joint IAPR International Workshop on
Advances in Pattern Recognition.

[18] Kohavi, R., & Wolpert, D. H. (1996). Bias plus vari-
ance decomposition for zero-one loss functions. Thir-
teen International Conference on Machine Learning.

[19] Langley, P., & Iba, W. (1997). Average-case analysis of
a nearest neighbor algorithm. Thirteenth International
Conference on Machine Learning.

[20] Margineantu, D. D., & Dietterich, T. (1997). Pruning
adaptive boosting. Fourteenth International Confer-

225

ence on Machine Learning.
[21] J. R. Quinlan, J. R. (1996). Bagging, boosting and

C4.5. Fourteenth National Conference on Artificial
Intelligence.

[22] Tumer, K., & Ghosh, J. (1996). Error correlation
and error reduction in ensemble classifiers. Connection
Science, Special Issue on Combining Artificial Neural
Networks: Ensemble Approaches, 8(3-4), pp 385-404.

226

Lazy Learning for Classification Based on Query Projections ∗

Yiqiu Han† Wai Lam‡

Abstract

We propose a novel lazy learning method called QPAL.
QPAL does not simply utilize a kind of distance measure
between the query instance and training instances as
many lazy learning methods do. It attempts to discover
useful patterns known as query projections, which are
customized to the query instance. The discovery for
useful QPs is conducted in an innovative way. QPAL
can guarantee to discover high-quality QPs in the
learning process. We use some benchmark data sets
and a spam email filtering problem to evaluate QPAL
and demonstrate that QPAL achieves good performance
and high reliability.

1 Introduction

The idea of lazy learning [1] has been proposed as the
contrary of common eager learning algorithms. Com-
mon eager learning methods eagerly compile the train-
ing data into some concept descriptions (e.g., rule sets,
decision trees, networks, graphical models). They at-
tempt to seek a particular general hypothesis, which
covers the entire instance space. In contrast to ea-
ger learning, lazy learning models do not involve any
model construction before they encounter the unseen
instance to be classified, implying that they do not con-
duct any processing until they are requested. The cus-
tomized model and all the intermediate results are dis-
carded when the learning process for this unseen in-
stance completes. Therefore lazy learning algorithms
need much less training costs but more storage and
computational resources than eager algorithms during
classification. Nevertheless lazy learning algorithms can
make use of the characteristics of the unseen instance to
explore a richer hypothesis space during classification.

∗The work described in this paper was substantially supported
by grants from the Research Grant Council of the Hong Kong
Special Administrative Region, China (Project Nos: CUHK
4187/01E, CUHK 4179/03E, and CUHK 4193/04E) and CUHK
Strategic Grant (No: 4410001).

†Department of Systems Engineering and Engineering Man-
agement, The Chinese University of Hong Kong, Shatin, Hong
Kong

‡Department of Systems Engineering and Engineering Man-
agement, The Chinese University of Hong Kong, Shatin, Hong
Kong

In fact lazy learning methods sometimes significantly
outperform some eager algorithms for particular learn-
ing tasks.

Lazy learning exhibits advantages in many learning
scenarios. For example, some round-the-clock 24-hour
online services such as spam email filtering may require
to update the training data frequently, without inter-
rupting the service. Common eager learning methods
need to learn a new global classifier every time the train-
ing data is updated. When the training data is large and
complex, it is not economical for the service provider to
conduct eager learning frequently. Lazy learning meth-
ods have no such problems. Generally, the updating
of training data is the only operation required by lazy
learning methods.

Another learning scenario for which lazy learning
is competitive is that the learning target class is not
fixed and the attribute set is large. Under such a
complex circumstance, the attribute set is usually not
oriented to a specific learning task. There may be many
irrelevant attributes as well as incomplete data. For
example, suppose a global enterprise possesses a huge
business data base with an extremely large number
of attributes. The query instances to be classified
are delivered from time to time, where the intended
class attribute may vary from time to time too. One
query might be “What will be the profit level given a
specific district and a specific time period?”. Another
query might be “Whether a new product of an existing
category will be well accepted among a specific group of
customers?”. Under these circumstances, there can be
numerous tuples of a attribute set and a target class. It
is not only expensive but sometimes also infeasible to
conduct eager learning every time a query of different
target class is given. In contrast, lazy learning has
advantages in handling such problems in an efficient
way. The reason is that lazy learning handles each
classification as an independent learning process, and
hence it can be customized to the unseen instance and
focuses only on the local data patterns.

Many lazy learning algorithms are also described as
“instance-based” or “memory-based”. Suppose we need
to predict the class label of an unseen instance, called
the query. Many lazy learning methods collect the train-
ing instances similar to the query instance for learning.

227

Generally a distance metric will be utilized to quantify
the impact of each training instance. In this paper, we
propose a novel lazy learning method, which takes a
subset of the query attributes as a learning unit. Our
learning method is called Query Projection Analytical
Learning (QPAL) which explores the projections of the
query instance for learning. A query projection (QP) is
represented by a set of attribute values shared by the
query and, potentially, some training instances [9]. The
utilization of QPs for learning helps achieve a balance
between precision and robustness with a richer hypothe-
sis space. QPAL explores and analyzes QPs, attempting
to generate an appropriate set of QPs. The final predic-
tion is made by combining some statistics of the selected
QPs.

The learning process of QPAL is customized to the
query instance. There is no global model construction.
Nothing is done until the query comes. Moreover, after
answering a query, the customized model and all the
intermediate results are discarded. Hence QPAL can
be regarded as a lazy learning method. QPAL starts
with the query, which can be regarded as the most spe-
cific QP. By gradually removing some attribute values,
QPAL obtains more general QPs. Note that these QPs
should be supported by training data. Otherwise they
will not be considered. Then QPAL will iteratively com-
bine these QPs to produce more general QPs until the
stopping criteria is met. At each step, QPAL will inves-
tigate the empirical class distribution of the current QP,
then decide whether it should be selected or discarded or
reserved as seeds. In essence, QPAL has several distinct
characteristics as follows.

First, QPAL focuses on the local QPs rather than
learning a set of rules which form a general classifier.
The learning process is tailored to the query rather than
partitioning the whole attribute hyperspace to obtain a
global classifier such as a decision tree. Particularly,
for real-world problems where the training data needs
to be frequently updated such as spam email filtering
problem, QPAL has an advantage of reducing the cost
of maintenance and operation.

Second, from the perspective of concept learning,
the discovered QPs can be regarded as a kind of clas-
sification knowledge. A number of classical learning al-
gorithms such as decision tree [15] or rule-based learn-
ing [12, 13] have a common characteristic. The data
space is recursively partitioned in a greedy manner,
which usually leads to the horizon effect [2]. The reason
is that the heuristic used to guide the partition com-
monly looks no further than the next attribute to se-
lect. Several extensions [17, 18, 14] have been proposed
to cope with the horizon effect, but the optimal result
still cannot be guaranteed. However, QPAL does not

intend to construct a global model. Its learning pro-
cess is customized to the query instance. Hence QPAL
does not suffer from the horizon effect as many classi-
cal eager learning models do. We will demonstrate that
QPAL can guarantee to discover high-quality QPs effi-
ciently. It can guarantee a sufficiently low probability to
reject any useful QPs with an expected accuracy higher
than a specified value.

Third, unlike many existing lazy learning meth-
ods [5, 6, 10, 11], QPAL does not employ ordinary Eu-
clidean distance as the weighting scheme of training in-
stances. Instead, QPAL considers the weighting of a
QP, or a group of training instances. It makes the best
of the “more-general-than” relationship which is simple
but reliable.

In order to evaluate the effectiveness of QPAL,
we conducted extensive experiments with benchmark
data sets and a spam email filtering problem. QPAL
achieves good classification performance and it also
exhibits higher reliability and scalability with attribute
dimension and the number of training instances.

In Section 3, we will introduce the concept of query
projections and their utility in learning. Then we
discuss the learning framework based on QPs. A QP
selection metric and a set of rules are proposed to
facilitate the discovery of useful QPs. In Section 4,
we will show how undecided QPs are analyzed and
present the learning algorithm. Section 5 empirically
investigates the learning process of QPAL. In Section 6,
we will discuss how to extend our QPAL to handle
continuous attribute values. The experimental results
and discussions are given in Section 7. Section 8 gives
the conclusion and future work.

2 Related Work

A simple but effective way to conduct lazy learning is
the classical k nearest neighbor (kNN) model and its
variants [8, 5, 6, 10]. Intuitively, kNN model can be
viewed as locating a fixed number of training instances,
namely nearest neighbors, for the unseen instance. It
uses their class labels to predict the unseen instance.
The main difference between QPAL and kNN is that
QPAL considers QPs closest to the unseen instance
rather than the nearest training instances. Therefore,
QPAL is more like a model-selection method rather than
a case-based learning method. Second, QPAL does not
require ordinary distance metric between instances as
kNN does. kNN either assigns the same weight to every
nearest neighbor or defines a weighting scheme based
on the distance metric. The complicated weighting
scheme might incur more computational cost and lose
the advantage of pure lazy learning. QPAL uses a
different scheme to perform both feature selection and

228

feature weighting. Third, kNN is lack of interpretability
and might fail to uncover some useful but lower-order
attribute patterns. QPAL can output QPs as discovered
knowledge or explanations of the prediction.

Recently, Li et al. [11] proposed a learning frame-
work, called DeEPs, using emerging patterns. It makes
use of the frequency of an instance’s subsets of at-
tribute values and the frequency-change rate of the sub-
sets among training classes to perform learning. Both
DeEPs and QPAL have the idea of using subsets of at-
tribute values rather than using distance. QPAL is dif-
ferent from DeEPs with respect to the characteristics
of QP-based patterns and the mechanism for obtain-
ing good QPs. Moreover, DeEPs tends to favor those
frequent patterns having an infinite rate, i.e., all as-
sociated instances having the same label. QPAL con-
siders a tradeoff between the frequency and the pat-
tern of class distribution. QPAL also utilizes an ex-
ploration algorithm rather than the set operations in
DeEPs. These characteristics enable QPAL to select
subsets of attribute values in a more principled manner.

Chang and Li has recently proposed a maximizing
expected generalization algorithm for learning complex
query concepts (MEGA) [4]. It learns an online query
concept with the minimum number of labeled instances
through active learning, and it can sustain learning un-
der working conditions when no relevant examples are
provided at the beginning of the active learning pro-
cess. A divide-and-conquer method is used to divide
high-dimensional features into a number of groups to
speed up the learning. Our method resembles MEGA in
the idea of decomposing query into groups of attributes,
but the objective of learning is different. QPAL focuses
on handling common learning problems such as classi-
fication. MEGA mainly addresses active online query
answering problems.

3 Learning with Query Projections

3.1 The Concept of Query Projection Suppose
the learning problem is defined on a class variable C
and a finite set F = (F1, . . . , Fn) of discrete random
variables, i.e., attributes. Each attribute Fi can take
on values from respective domains, denoted by V (Fi).
To simplify the discussion without loss of generality, we
assume that the class variable C is a Boolean variable
since a multi-class variable can be broken into a set
of binary variables. A query instance t is denoted
by a full set of attribute values {t1, t2, . . . , tn} where
ti ∈ V (Fi). Its QPs can be viewed as subsets of the set
{t1, t2, . . . , tn}. We denote the cardinality of a QP A as
|A| where A ⊆ t.

For example, suppose the query is to clas-
sify whether the sale is good, or poor, or aver-

age. The attributes are {Season = Fall, Region =
Asia, P roduct = Laptop, Clients = Students}. The
manager cannot achieve the goal with incomplete or
insufficient data. However, the data in his hand
might deliver a convincing summary of the sale at
a more general level, i.e., {Fall, Asia, ?, Students} or
{Fall, ?, laptop, ?}. These subsets of the query are QPs.
This paper will show that some of them can contribute
to learning, or at least bring users closer to the answer
for the query. The QPs of a particular query constitute
a lattice. The links between QPs reflect the “more-
general-than” relationship [16], which can be utilized to
explore QPs for learning. A QP is valid only when it is
associated with some instances belonging to its concept.

Each valid QP can be regarded as a sub-classifier
whose prediction is the majority class among its associ-
ated training instances. Suppose a QP has x associated
training instances, which is called frequency. Among the
x associated training instances, y instances sharing the
same majority class label is called majority count. Then
y/x is called the majority rate of that QP. It can also
be viewed as the empirical accuracy of applying that
particular QP for classification.

The ideal case is to have a QP whose associated
instances 100% belonging to the same class. Since
the query is a specialization of the given QP, the
query should also belong to that class. However,
in practice, there are several issues to be considered.
First, sometimes the highest majority rate among all
valid QPs is far less than the ideal case. Second, the
empirical majority rate may be unreliable when there
are insufficient associated instances. Third, there might
be more than one QPs that can serve as good sub-
classifiers.

3.2 Exploring Valid QPs Since some QPs can be
regarded as sub-classifiers, we use a set of approximately
optimal QPs to help learn the query. Suppose a set
of qualified QPs are discovered by the method which
we are going to discuss below. These discovered QPs
are then combined to classify the given query. The
final prediction is made by summarizing the frequency
of each class on all selected QPs. The class with
the maximal frequency serves as the predictor for the
class label of the given query. In this step, since
a particular single training instance may appear in
different QPs, we can observe that it may be sampled
multiple times proportional to its contribution to the
learning. This usually happens when a training instance
exhibits relatively high similarities to the query.

As there are 2n subsets of a query {t1, t2, . . . , tn}, It
is a computational challenge to search for a set of QPs
with unknown size. In fact there are 22n

combinations.

229

We develop techniques to cope with this problem. First,
the number of valid QPs is usually much smaller than
2n, because a valid QP must have some associated
training instances. The QPs without sufficient data
support cannot provide any help in learning, and hence
can be ignored. Second, we design an method to explore
and discover useful QPs. It can systematically examine
valid QPs.

In our method, QPs are explored in sequence based
on their cardinalities. Suppose the largest cardinality
among all QPs is k. The exploration starts with
QPs with the largest cardinality k. They can be
enumerated and explored directly by investigating all
qualified training instances, i.e., sharing exactly the
same k attribute values with the query.

For a valid QP S whose |S| < k, it must satisfy one
of the following conditions.

Cond1: S has associated training instances which
share exactly l identical attribute values with the
query.

Cond2: S is a common subset of two or more
explored QPs whose cardinalities are all larger than
l.

Cond3: S is a pure subset of an explored QP whose
cardinality is larger than l. All S’s associated
training instances are also inherited from that
explored QP. QPs belonging to this condition need
not to be considered in the exploration discussed
below.

Thus all valid QPs with cardinality l < k can be
exhaustively enumerated in two ways. The first way is
to explore all training instances which share exactly l
identical attribute values with the query. The second
way is to check all common subsets of explored valid
QPs with cardinalities larger than l.

Consequently, we can explore all valid QPs system-
atically, from the largest cardinality to the smallest car-
dinality, via scanning the training data. The whole pro-
cess is conducted by examining all available training in-
stances. Then the number of valid QPs is constrained by
both 2n and the number of training instances that share
at least one attribute value with the query t. They are
ranked according to their number of identical attribute
values with the query. Thus at each step only a small
fraction of training data needs to be read into mem-
ory. With this connection between QPs and instances,
operations on QPs are transformed into operations on
training instances.

The learning process is usually completed after only
examining those training data which is closely related to
the query. For problems with large attribute dimensions

but relatively sparse training data, our method has
obvious advantage in the capability of exploring all
valid QPs. Even for problems with both large attribute
dimensions and large number of data instances, our
method can still efficiently reduce the search space and
discover useful QPs with the aid of a set of rules, as
discussed below.

3.3 The Metric for Selecting Useful QPs The
purpose of exploring QPs is to help learn the query.
Hence we propose a selection metric to find the most
useful QPs. As we have stated, the learning for the
query prefers QPs with a reliably high majority rate.

To select the most useful QPs, we set two thresholds
which can be adjusted to meet the demand in practice.
One is the minimal tolerance accuracy for a QP, denoted
by q. The other is the minimal expected accuracy for
a QP, denoted by p. p is always selected to be greater
than q.

Suppose a QP has the expected accuracy equal
to p. We denote the probability of observing its y
majority class instances among its all x associated
training instances by P (y/x), expressed as follows:

P (y/x) =
x!

y!(x − y)!
py(1 − p)x−y(3.1)

For an arbitrary QP whose y/x ≤ q, its actual accuracy
might be higher than the minimal tolerance accuracy
q. However, through Equation 3.1, we can control the
possibility of incorrectly rejecting such kind of QPs. If
P (y/x) of this QP is less than a threshold
, we will
reject to consider it further. Equation 3.2 illustrates
the condition of rejecting a QP whose majority rate is
lower than q.

(
y

x
≤ q) ∧ (

x!

y!(x − y)!
qy(1 − q)x−y ≤
)(3.2)

Consequently, the QPs with a low majority rate y/x and
relatively large frequency x will be filtered out. We only
have less than
 (e.g., 5%) chance to incorrectly reject
an useful QP with an accuracy higher than q.

On the contrary, if y/x > p, we also consider
the possibility to accept this QP as with an accuracy
higher than p. Equation 3.3 depicts the fact that the
probability of a QP having an expected classification
accuracy less than p is no more than
.

(
y

x
≥ p) ∧ (

x!

y!(x − y)!
py(1 − p)x−y ≤
)(3.3)

Since p is selected to be greater than q, QPs with large
frequency x and high majority rate y/x are preferred
and accepted as sub-classifiers. We only have less than

230

 (e.g., 5%) chance to select an unreliable QP with
expected accuracy less than p (e.g., the majority rate
of the whole training data set).

If a QP has neither been accepted nor been rejected,
it is then stored for further analysis, which we will
discuss in Section 4. In the analysis, the common
subsets of stored QPs are used to generate new useful
QPs as stated by the condition Cond2 mentioned in
Section 3.2.

3.4 Discovering Useful QPs Figure 1 depicts the
complete process of exploring QPs. First all valid QPs
are ranked and examined by scanning the training data.
Then we use a selection metric to find useful valid QPs.
If a QP is accepted as a good predictive sub-model, it
will be selected as discovered knowledge. If a QP is
rejected, it will be discarded. If a QP is neither selected
nor discarded, it is then stored. The common subsets
of stored QPs are used to generate new QPs which
could not be explored directly from the training data.
Finally the discovered QPs are combined to predict the
query as stated in Section 3.5. In this exploration, a
set of straightforward but effective rules are utilized to
improve the efficiency. These rules are designed on a
basis of the subset relationship between QPs.

Training Data

from the common attributeQuery

Evaluation

Produce common subsets of

 Selected QPs

Discarded QPs

Extract QPs

Stored QPsNew QPs

Prune according to the rule of exclusion
Prune according to the rule of exemption

value sets shared by the query
and the training instances (Cond1)

stored QPs (Cond2, The rule of inheritance)

Figure 1: Exploring QPs for a given query.

In QPAL, two QPs can only be compared with each
other when they have the subset relationship. This can
significantly improve the learning efficiency. This ap-
proach also avoids introducing any apriori assumptions
such as dependence or independence of attributes, a
global Euclidean distance metric, or a weighting scheme
for different attributes. This makes the learning from
QPs more flexible and more robust. We introduce a
property called Posterior Property, which can be viewed
as the inverse of the common Apriori Property used in
classical association rule learning. Apriori property can
be expressed as “nonempty subsets of a frequent item

set must also be frequent.” Posterior Property can be
expressed as “A specialization (superset) of a good QP
is also a good QP”. For instance, if S1 has a high ma-
jority rate and S1 ⊂ S2, then S2 has a greater chance
to have a high majority rate. As an extreme case, if S1

has a 100% majority rate, so does S2. If S2 is observed
to have low majority rate, it implies that S1 also cannot
have 100% majority rate.

Based on the above arguments and having S1 ⊂ S2,
we design the following rules:

• Rule of exemption : If S2 has been selected, which
means that it has sufficiently high majority rate
and sufficient associated training instances, then S1

should not be considered any more because S1 is
a generalization of S2 and contains less informa-
tion from the query. Returning to the previous
example, {Fall, Asia, ?, Students} can suppress
{Fall, Asia, ?, ?} if the former has sufficient data
support. Meanwhile, {Fall, Asia, ?, Students}
cannot suppress {Fall, ?, laptop, ?} although the
former has larger cardinality.

• Rule of exclusion : If S2 is discarded, then S1

should not be considered any more due to the same
reason as the Rule of exemption. This rule can
also be regarded as an extension of the Rule of
exemption.

• Rule of inheritance : If S2 has the same associated
training instance set as S1, S2 need not to be
considered as a valid QP since S1 can replace it
without any cost.

The above rules show that QPs can be exploited by
analyzing their relationship and observing their class
distributions. The decision of selecting or discarding
a particular QP will trigger a family of QPs to be
pruned. These operations can significantly accelerate
the searching for an appropriate set of useful QPs.
Figure 2 describes pseudo-code of the discovery process
of useful QPs. Note that most operations have been
transformed into operations on training instances, as
shown in Steps 1-2. Steps 6 and 9 use Equations 3.2 and
3.3 to decide whether to accept or reject a QP. Steps 7
and 11 employ the rules discussed above to accelerate
the discovering process. The processing of undecided
QPs at Step 14 is discussed in Section 4. These
components constitute our QPAL learning method.

3.5 Predict the Query with Discovered QPs
After QPAL discovers an appropriate set r of useful
QPs, a majority voting is conducted among the training
instances associated with selected QPs. Each discovered
QP can be viewed as a sub-classifier and the final

231

————————————————————————–
1 Sort training instances according to the highest cardinality

of associated QPs.
2 Put all training instances associated with no-empty QPs into ∆.
3 Initialize the active set u and the final set r to be empty.
4 FOR j = n to 1
5 FOR every QP whose cardinality is j and owns

associated instances in ∆
6 If Equation 3.2 holds for this QP.
7 Remove all instances whose associated QPs are all

subsets of this specific QP.
8 ELSE
9 IF Equation 3.3 holds for this QP.
10 Insert this QP into r.
11 Remove all instances whose associated QPs are all

subsets of this specific QP.
12 ELSE
13 Insert this QP into u.
14 Analyzing the QPs in u as stated in Section 4.
15 IF |∆| == 0
16 BREAK
17 IF |r| = 0
18 Move all QPs with the largest cardinality into r.
19 Return the discovered QP set r.
——————————————————————————-

Figure 2: The pseudo-code of the discovery process of
useful QPs

prediction is a combination of those sub-classifiers. The
class with the maximum sum of frequencies in all
discovered QPs is the classification result of the query
instance.

It should be noted that associated training instances
are sampled for multiple times if they are associated
with more than one QP. Consequently, the training in-
stances closer to the query tend to have a larger impact
on the final prediction, because they have larger chances
to associate with more discovered QPs. Moreover, the
sampling scheme leads to a weighting scheme of the dis-
covered QPs. A QP with more support from training
instances plays a more important role in the final de-
cision. The weight for a discovered QP is proportional
to its observed frequency, which can be viewed as the
confidence on its associated sub-classifier.

4 Generate Useful QPs from Undecided QPs

As we have discussed, the QPs are extracted from
the training data and then considered in a systematic
manner. In this process, there might be some QPs
that can be neither rejected nor accepted, as shown in
Step 14 in Figure 2. For example, a QP of the largest
cardinality has the frequency x = 5 and the majority
count y = 4. With the high majority rate, i.e., 80%,
it will not be rejected. But its low frequency makes it

also unacceptable. Generally these QPs are reserved in
a temporary QP set u. If the whole process does not
produce any interesting QPs with Equation 3.3, u is
analyzed to generate some useful QPs for learning.

The generation of useful QPs is conducted in an
iterative manner. First, QPs are divided into groups
according to their majority class. In each group, the
mating of any pair of QPs will reproduce a new QP,
which is the common subset of its parents. These newly
generated QPs will be considered to be accepted or re-
jected. If there are still no interesting QPs satisfying
Equation 3.3, the remaining QPs, i.e., QPs not satis-
fying Equation 3.2, will become the updated QP set
u. This will iterate until some useful QPs are found.
If there is no new generation of QPs, i.e., u becoming
empty, this generation process will automatically ter-
minate. The details of the generation is described in
Figure 3.

————————————————————————–
1 Divide all QPs in u into groups of different majority class.
2 Initialize an empty set v.
3 FOR each group of QPs
4 FOR any pair of QPs in the current group
5 Produce the children QP m.
6 IF Equation 3.2 holds for m.
7 Discard m.
8 ELSE
9 IF Equation 3.3 holds for m.
10 Insert m into r.
11 ELSE
12 Insert m into v.
13 IF |r| = 0
14 u = v
15 IF |u| 6= 0
16 GOTO 2
17 ELSE
18 END
——————————————————————————-

Figure 3: Generate useful QPs from undecided QPs

From another perspective, the analyzing of unde-
cided QPs in u is to work through valid QPs belonging
to the condition Cond2 mentioned in Section 3.2. For
those QPs cannot be explored by using the training data
directly, we need to use existing QPs, i.e., r, to access
them. The QPs rejected by Equation 3.2 and the QPs
accepted by Equation 3.3 are excluded according to the
rules in Section 3.4. Therefore, all valid QPs can be
scanned by QPAL efficiently. This property helps QPAL
to avoid the horizon effect. Particularly, suppose there
is a valid QP with 100% accuracy. QPAL can guaran-
tee the discovery of this QP, which cannot be done by
common eager learning algorithms such as decision tree

232

or association rule-based learning. The proof is given
below.

Proof. Suppose there exists a QP Si with
100% expected accuracy. Then each QP Sj satisfying
Si ⊆ Sj ⊆ t should also be with 100% expected accu-
racy. Hence they will not be discarded in the learning
process and at least one of them will be employed accord-
ing to Equation 3.3. Common eager classification rule
learning methods cannot achieve this, because all QP Sk

satisfying Sk ⊆ Si ⊆ t may not have distinguishable
information gain or observed accuracy although Si can.
This observation can be found in the two synthetic prob-
lems in Section 5.

Although the generation process adds some compu-
tational cost. We can show that the time complexity
of QPAL is still acceptable, and even lower than many
common eager learning algorithms. First of all, The
time complexity of QPAL is bounded by the number
of valid QPs rather than theoretical 22n

. The number
of valid QPs are actually bounded by the size of train-
ing data. Since QPs must be associated with training
instances sharing at least one identical attribute value
with the query, the computational cost can be signifi-
cantly reduced. Second, the rules we introduce in Sec-
tion 3.4 can greatly accelerate the discovery of useful
QPs. Once a QP is accepted or rejected, a number of
QPs will be removed from further consideration.

Furthermore, the computational cost of the gener-
ation process can be greatly reduced by constraining
the size of u, or by tightening the thresholds in Equa-
tion 3.2 and 3.3, or by imposing a limit on the minimum
cardinality of QPs to be analyzed. In addition, the gen-
eration process is only employed when no useful QPs
are found via direct exploration.

5 Empirical Investigation of QPAL

To investigate the learning process of QPAL, we syn-
thesized two learning problems. They have the same
attribute set F = {F1, F2, F3, F4} where each Fi is de-
fined on the value domain {1, 2, 3, 4}. The class la-
bel is binary taking on values of 0 or 1. We defined
the class concept to be learned for the first synthetic
problem as ((F1 = F2) ∨ (F3 = F4)). The class con-
cept to be learned for the second synthetic problem is
((F1 = F2) ∧ (F3 = F4)). We generated two synthetic
data sets, one for each synthetic problem. Each data
set consists of 256 instances, which covers all possible in-
stantiations of F, from (1,1,1,1) to (4,4,4,4). In the data
set of the first synthetic problem, 112 instances, i.e.,
7/16 in ratio, are labeled as “positive” and 144 “nega-
tive” instances, i.e., 9/16 in ratio. For example, (1,1,2,3)
and (2,2,3,3) are labeled as positive while (4,3,1,2) and
(1,2,2,3) are labeled as negative. In the data set of

the second synthetic problem, there are 16 positive in-
stances, i.e., 1/16 in ratio, and 240 negative ones, i.e.,
15/16 in ratio. For example, (1,1,4,4) and (2,2,3,3) are
labeled as positive while (3,3,1,4) and (1,2,2,3) are la-
beled as negative.

One characteristic of the synthetic learning prob-
lems is that the class labels are evenly distributed
over different values for different attributes, as depicted
in Figure 4. For instance, P (Fi|C) remains constant
for any value of any attribute. There is no differ-
ence between the information gain of any attribute
values. Hence most classical learning models cannot
handle this problem effectively. we have tested QPAL

28

 36

28

 36

28

 36

28

 36

28

Attribute F_1

Attribute F_4

Attribute F_2 Attribute F_3

1

 1 2 3 4

 1 2 3 4

 1 2 3 4 1 2 3 4

Class C

0

112
 144

 36

28

 36

28

 36

28

 36

28

 36

28

 36

28

 36

28

 36

28

 36 36

28

 36

28

 36

28

Figure 4: The class distribution of each attribute for the
data set of the first synthetic problem

as well as different classical learning models, namely,
Bayesian Network, Naive Bayes, kNN, Support Vec-
tor Machine (SVM), Lazy Bayesian Rule (LBR) [20],
and Decision Tree (J48). For these classical learn-
ing models, we employed Weka-3-2-6 machine learn-
ing software package [19] freely available on the Web
(http://www.cs.waikato.ac.nz/ml/weka/). Default pa-
rameter setting was used for each classical learning
model. The leave-one-out method was used for mea-
suring the classification performance.

The results in Table 1 show that most classical
learning models we tested cannot handle the first prob-
lem effectively. Only QPAL and Bayesian Network can
achieve perfect (100%) accuracy. For other models, De-
cision Tree (J48) performs better. However, it can be
observed that the Decision Tree algorithm can only out-
put an empty decision tree. The reason is that Decision
Tree uses a greedy manner to chose an attribute as a
node once at a time. When there are no difference be-
tween the information gain of different attributes, the
partitioning process of the attribute space cannot con-

233

Problem QPAL Bayesian Network J48 kNN LBR Naive Bayes SVM
1st 100 100 81.22 62.5 62.5 56.25 44.75
2nd 100 93.75 93.75 93.75 93.75 93.75 93.75

Table 1: Classification performance, measured by accuracy percentage, of different learning algorithms for
synthetic learning problems.

tinue or cannot produce a reliable model. After investi-
gating the output of Naive Bayes, we found that Naive
Bayes can only conduct majority voting for this prob-
lem. As for kNN and Lazy Bayesian Rule (LBR), only
the instances satisfying ((F1 = F2) ∧ (F3 = F4)) or
((F1 6= F2) ∧ (F3 6= F4)) can be classified correctly.
These two cases occupy 1/16 and 9/16 of the whole in-
stances respectively and they precisely sum up to 62.5%.
It can be observed that the Euclidean distance between
two instances cannot be treated as a reliable measure of
their similarity in terms of the target class concept.

Consider the scenario of determining the class la-
bel of the query instance (2,2,3,2) in the first learning
problem. The QPs are organized in a lattice as shown
in Figure 5. The associated training instances are also
shown. The non-shaded dot denotes a negative instance
whereas the shaded dot denotes a positive instance. It
can be observed that the useful pattern (2,2,?,?) is in
the middle of the lattice, whose associated 15 training
instances have the same class label. QPAL first inves-
tigates valid QPs with the largest cardinality 3, i.e.,
{(2,2,3,?),(2,2,?,2),(2,?,3,2),(?,2,3,2)}. They are divided
into two groups with different majority classes. After
the generation, the group of positive class produces a
useful new QP (2, 2, ?, ?) whereas the group of negative
class produces none. Therefore, QPAL outputs the QP
(2, 2, ?, ?) as the explanation of predicting the (2,2,3,2)
as “positive”. For kNN algorithm, the nearest neighbors
on the top of the lattice cannot offer reliable prediction
because of the existence of “irrelevant nearest neigh-
bors”. Although they are among the nearest training
instances to the query instance, their associated QPs
may not be useful for the prediction. For Decision Tree,
the bottom QPs in Figure 5 represent single attribute
values. They have no difference in terms of informa-
tion gain. So the construction of a decision tree is not
feasible. Figure 5 illustrates that QPAL benefits from
the effective exploration for QPs of different attribute
dimensions, which may not be fully utilized by other
common learning models.

The output QPs demonstrates its good inter-
pretability of the classification decision. Returning
to the example above, If the instance to be clas-
sified is (2,2,3,2), the discovered QPs r becomes
{(2,2,?,?),(?,?,3,?),(?,?,?,2)}. The final class prediction
is “positive”. If the instance to be classified is (1,1,2,2),

then r is {(1,1,?,?),(?,?,2,2)}. The final class prediction
is positive. It can be observed that QPAL appropriately
captures useful QPs rather than handling each attribute
separately or considering the complete attribute set as
a whole. These selected QPs can provide a more com-
prehensible explanation for the classification decision.

For the second synthetic problem, the difference is
that the positive class in the second synthetic problem
is only a tiny fraction of the whole data set, which
introduces challenges for the learning task. The results
in Table 1 reveal that all classical learning models
cannot achieve perfect performance. The reason is that
the number of training instances is too small for the
positive class. Hence all instances are predicted to be
the majority class which occupies 93.75% of the data
set. However, QPAL can perform the learning task in
a perfect manner. The generation process successfully
filters out the irrelevant QPs and selects the useful ones.
It shows that QPAL has a good tolerance for the data
sparseness problem.

Since QPAL focuses on the local QPs of the query
instance, it can effectively discover useful patterns for
prediction, as shown is this investigation. This empirical
investigation suggests that QPAL is good at discovering
some useful knowledge.

6 Handling Continuous Attribute Values and
Missing Values

QPAL can be extended to handle continuous attribute
values easily. A simple technique is to employ discretiza-
tion methods [7] before QPAL processes the data. How-
ever, this will make the whole learning framework not
a pure lazy learning because the discretization needs to
preprocess the data.

An alternative method is to handle the continuous
attribute values in the QPAL model. In the implemen-
tation of QPAL, each training instance is transformed
into a binary string where each bit is associated with an
attribute value. If a training instance shares the same
value as the query on a particular attribute, then the
corresponding bit is set to “1”, otherwise it is set to
“0”. Thus the query can be represented by a binary
string of all “1”. Such a binary string is in fact another
format of QP. Two or more training instances may have
the same binary string. Hence the task of discovering

234

Unseen instance t : (2,2,3,2)

 (2,−,−,−) (−,2,−,−) (−,−,3,−) (−,−,−,2)

(2,2,−,−) (2,−,3,−) (2,−,−,2) (−,2,3,−) (−,2,−,2) (−,−,3,2)

 (2,2,3,−) (2,2,−,2) (2,−,3,2) (−,2,3,2)

Figure 5: The lattice of QPs and associated training instances given a query instance (2,2,3,2)

QPs can be accomplished by a series of Boolean opera-
tions which can be computed efficiently.

We can integrate the handling of continuous at-
tributes values into this transformation module. The
neighborhood concept is used to replace the concept of
equality. In other words, if a training instance falls into
the neighborhood of the query at a given continuous
attribute. Then the corresponding bit is set to 1, oth-
erwise 0. The neighborhood is defined as x training
instances with the closest values at the given attribute.
The value x is usually specified as one half of the mini-
mal class frequency among the training data. For com-
putation, the training data only needs to be scanned
only one time. A priority queue with the size x will
remember the closest x training instances for each at-
tribute. The transformation to binary strings is then
guided by these priority queues.

In real-world problems, the instances usually con-
tain missing attribute values. QPAL can handle these
missing values very easily without any additional pro-
cessing. The reason is that lazy learning makes each
query instance has its independent learning process.
Hence the attributes with missing values are just re-
moved from the learning process for the query as if the
problem is defined only on the attributes with known
values.

7 Experiments and Discussions

7.1 Benchmark Data Sets We have conducted ex-
tensive experiments on 18 benchmark data sets from the
UCI repository of machine learning database [3] to eval-
uate our QPAL framework. These data sets, collected
from different real-world problems in various domains,
are shown in Table 2.

We partitioned each data set into 10 even portions

Number of Number of Number of
Data Set Attributes Classes Instances

Annealing 38 5 898
Breast(W) 9 9 699
Contact(L) 4 3 24
Credit(A) 15 2 690
Glass 9 7 214
Heart(C) 13 5 303
Hepatitis 19 2 155
Ionosphere 34 2 351
Iris 4 3 150
Kr-vs-Kp 36 2 3,196
Labor 16 2 57
Letter 16 26 20,000
Lymph 18 4 148
Mushroom 22 2 8,124
Sonar 60 2 208
Soybean 35 19 683
Vowel 13 11 990
Zoo 17 7 101

Table 2: Description of 18 benchmark data sets

235

and then conducted 10-fold cross-validation. The per-
formance is measured by the accuracy which is defined
as the percentage of the number of correctly classified
instances over the total number of testing instances. In
these experiments, we have also investigated the perfor-
mance of Naive Bayes, SVM, kNN, Lazy Bayesian Rule
(LBR) and Decision Tree (J48) provided by Weka-3-2-
6 machine learning software package. All these models
except for kNN use default settings during the entire
evaluation process. For kNN, we have conducted runs
for k = 1,5 and 10. We reported the results for k = 5
because it achieves the best average classification accu-
racy among different k.

The results of lazy learning methods on different
data sets are depicted in Table 3. kNN achieves good
performance on data sets such as Annealing, Credit,
Letter, Vowel, Sonar, and Zoo. This observation sug-
gests that kNN has some advantages for large data sets
or data sets with large attribute dimensions. Our QPAL
shares these advantages. Compared with existing lazy
learning approaches, on most of the data sets, QPAL
achieves good performance. For some data sets such
as Contact, Glass, Hepatitis, Labor, and Sonar, QPAL
outperforms all other classical lazy classifiers. The re-
sults also show that QPAL excels at handling data sets
with incomplete data. The reason is due to the flexible
framework of QPAL. It should be noted that despite its
simplicity, lazy learning method kNN can achieve out-
standing performances on some data sets when k = 1.
For example, on data sets of Annealing, Letter, Sonar
and Vowel, 1NN obtains 99.11%, 96.06%, 86.57% and
99.29% respectively. It significantly outperforms exist-
ing learning methods. However, 1NN suffers on other
data sets due to its simplicity. QPAL can obtain compa-
rable performance of 1NN on the above data sets, with
less negative effect on other data sets. On average, the
classification accuracy of QPAL on these 18 benchmark
data sets is 90.6%, which shows improvement over other
lazy learning models.

We also compared the performance of QPAL and
some existing eager learning methods, i.e., SVM and
J48. The average accuracy of each classifier is shown
in Table 4. According to our experiment results, lazy
learning methods have advantages over eager learning
methods on some learning problems. On these 18
benchmark data sets, QPAL achieves the best average
score 90.6%.

7.2 Spam Email Filtering Problem Spam emails
have become an increasingly important concern. The
demand for spam email filtering rises rapidly. Black list
or white list are usually used to filter out spam emails.
Various intelligent methods have also been proposed to

Data Set QPAL kNN NaiveBayes LBR

Annealing 97.1 97.1 86.5 97.2
Breast(W) 96.7 96.4 96.0 97.4
Contact(L) 87.5 66.7 75.0 70.83
Credit(A) 84.9 85.8 77.7 85.6
Glass 75.0 67.8 48.5 65.9
Heart(C) 82.6 81.8 84.5 82.4
Hepatitis 90.0 85.8 83.8 85.3
Ionosphere 90.3 84.9 82.4 90.9
Iris 96.0 95.3 96.0 94.7
Kr-vs-Kp 96.5 96.0 87.6 97.3
Labor 96.5 86.0 94.7 89.3
Letter 86.8 95.5 64.2 60.3
Lymph 83.8 83.8 83.8 81.5
Mushroom 99.8 100.0 95.8 99.9
Sonar 87.0 84.6 65.9 74.6
Soybean 92.1 90.2 92.8 93.0
Vowel 91.5 93.7 61.4 86.5
Zoo 96.2 95.1 95.2 95.8

Average 90.6 88.1 81.8 86.0

Table 3: Classification performance of QPAL and other
lazy learning methods.

QPAL J48 SVM

Average 90.6 86.3 87.4

Table 4: Classification performance comparison of
QPAL and eager classifiers.

tackle this problem. We investigate applying our QPAL
learning framework to spam email filtering.

We used the data set from the Data Mining Cup
2003 (DMC2003) contest, whose task is to identify spam
emails by means of data mining techniques. The train-
ing data set has 8, 000 instances and the testing data
set has 11, 177 instances. Among those testing in-
stances there are 4, 374 spam emails and 6, 803 non-
spam emails. Each instance representing an email is
recorded by 834 attributes. The attributes represent
different tactics for identifying spam emails, for exam-
ple, whether the email contains unsafe java script, or
contains some keywords, or has a particular character-
istic style. A complete description of all the attributes
can be found in Open Source Project SpamAssassin
(see http://spamassassin.org). The evaluation metric
is measured by the filter-out rate which is defined as
the number of emails being filtered out as spam emails
divided by the number of emails being processed.

QPAL is employed in a pure lazy learning manner
without any customization to this data set. The
empirical results show that QPAL can obtain prominent
performance. In particular, QPAL performs very well in
preserving non-spam emails while keeping a high filter-
out rate for spam emails. This characteristic is very
important in business applications because many users

236

60

65

70

75

80

85

90

95

100

0 2 4 6 8 10

Fi
lte

r-
ou

t r
at

e
of

 s
pa

m
 e

m
ai

l (
in

 p
er

ce
nt

ag
e)

Filter-out rate of non-spam email (in thousandth)

DMC2003 submitted results
SMILE

Figure 6: Performance of filtering spam emails

cannot bear a high risk of losing useful emails. The
result is shown in Figure 6 where the submitted results
of DMC2003 are also shown for comparison. The X-
axis in the graph represents the ratio of non-spam emails
being incorrectly filtered out. The Y-axis represents the
ratio of spam emails being correctly filtered out. The
performance of each submitted group is expressed by the
symbol “+”. The performance of QPAL is indicated by
the symbol “×”. The closer is the symbol to the top-left
corner, the better is the performance.

It can be observed that QPAL is able to obtain a
favorable tradeoff between the filtering of spam emails
and the protection of normal emails. QPAL filters
out more than 94% spam emails, which is far better
than the filtering performance by many ISP which
ranges from 60% to 80%. Even when compared with
the submitted results of DMC2003, the performance
of QPAL is comparable in terms of spam email filter-
out rate. Note that most of the submitted results are
based on customized non-lazy learning models while
QPAL conducts filtering in a lazy learning manner. In
a lazy learning manner, the user need not to train the
learning model frequently as spam emails change their
patterns from time to time to avoid being filtered out.
Specifically, the required task for QPAL only includes
adding some typical spam emails into the training set.
This property can help to cope with those intelligent
spam email creators and rapidly changing spam emails.

As for the filter-out rate of non-spam email, QPAL
shows a superior performance where only 0.13% of the
non-spam emails are incorrectly filtered out. Mean-
while, most of the submitted results for DMC2003 can-
not reach that level. People typically favor the filters
which can protect more useful emails rather than the
filters which can delete more spam emails. It is also

common that there are a lot of spam emails disguised
as a non-spam email, and they cannot be filtered out
without raising the risk of losing non-spam emails. As a
result, QPAL is indeed very competitive for spam email
filtering.

8 Conclusions and Future Work

This paper proposes a novel query-driven lazy algo-
rithm called QPAL, which attempts to discover local
QPs for classifying the query instance. By customiz-
ing the learning process to the query and searching in
an innovative way, it can avoid the horizon effect which
commonly exists in many eager learning algorithms. We
show that QPAL can guarantee the discovery of all QPs
with perfect (100%) expected accuracy in polynomial
time. To improve the efficiency of lazy learning on large
data sets, QPAL can guarantee a low probability of re-
jecting any QPs with an expected accuracy higher than
a specified value. The experimental results on a real
world problem and benchmark data sets also demon-
strate that our learning algorithm achieves prominent
learning performance.

A promising future direction is to explore more so-
phisticated methods for assessing QPs. The class dis-
tributions on parent and children QPs can also be con-
sidered in making decisions on a particular QP as re-
inforcements. Moreover, some non-lazy learning tech-
niques can be introduced into the learning framework,
for example, the useful QPs selected for a given query
can be stored for future usage if they meet some require-
ments. Another direction is to apply QPAL in online ac-
tive learning. The rationale is that QPAL can organize
the relevant QPs in a lattice structure and hence pro-
vide potentially useful instances in a hierarchical way to
accelerate the learning with little user intervention.

References

[1] Aha, D.: Editorial. Artificial Intelligence Review,

Special Issue on Lazy Learning, 11:7–10, February
1997.

[2] Aha, D.: Relating relational learning algorithms. In
S. Muggleton, editor, Inductive Logic Programming,
pages 233–260. Academic Press, 1992.

[3] Blake, C., Keogh, E., and Merz, C.: UCI
repository of machine learning databases.
http://www.ics.uci.edu/˜ mlearn/MLRepository.html.

[4] Chang, E., and Li, B.: MEGA— the maximizing
expected generalization algorithm for learning complex
query concepts. ACM Transactions on Information

Systems (TOIS), 21(4):347-382, 2003.
[5] Dasarathy, B.: Nearest neighbor (NN) norms: NN pat-

tern classification techniques. IEEE Computer Society
Press, 1991.

237

[6] Dasarathy, B.: Minimal consistent set (MCS) identi-
fication for optimal nearest neighbor decision systems
design. IEEE Transactions on Systems, Man, and Cy-

bernetics, 24(3):511–517, March 1994.
[7] Fayyad, U., and Irani, K.: Multi-interval discretiza-

tion of continuous-valued attributes as preprocessing
for machine learning. In Proceedings of the 13th In-

ternational Joint Conference on Artificial Intelligence,
pages 1022–1027, 1993.

[8] Friedman, J.: Flexible metric nearest neighbor classifi-
cation. Technical report, Stanford University, Novem-
ber 1994.

[9] Han, Y., and Lam, W.: Lazy learning by scanning
memory image lattice. In Proceedings of the 2004

SIAM International Conference on Data Mining, pages
447–451, 2004.

[10] Lam, W., and Han, Y.: Automatice textual document
categorization based on generalized instance sets and
a metamodel. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(5):628–633, 2003.
[11] Li, J., Dong, G., Ramamohanarao, K. and Wong,

L.: DeEPs: A new instance-based discovery and
classification system. Machine Learning, 54:99–124,
2004.

[12] Li, W., Han, J., and Pei, J.: CMAR: Accurate and ef-
ficient classification based on multiple class-association
rules. In Proceedings of the IEEE International Con-

ference on Data Mining (ICDM), pages 369–376, 2001.
[13] Liu, B., Hsu, W., and Ma, Y.: Integrating classifica-

tion and association rule mining. In Proceedings of the

Fourth International Conference on Knowledge Discov-

ery and Data Mining (KDD), pages 80–86, 1998.
[14] Matheus, J.: Adding Domain Knowledge to SBL

Through Feature Construction. In Proceedings of the

National Conference on Artificial Intelligence, pages
803–808, 1990.

[15] Mehta, M., Rissanen, J., and Agrawal, R.: MDL-
based decision tree pruning. In Proceedings of the First

International Conference on Knowledge Discovery and

Data Mining (KDD’95), pages 216–221, 1995.
[16] Mitchell, T.: Machine Learning McGraw Hill, pages

24–25,1997.
[17] Seshu, R.: Solving the parity problem. In Proceedings

of the Fourth European Working Session on Learning,
pages 263–271, 1989.

[18] Utgoff, P. and Brodley, C.: An incremental method
for finding multivariate splits for decision trees. In
Proceedings of the Seventh International Conference on

Machine Learning, pages 58–65. University of Texas,
Austin, Texas, 1990.

[19] Witten, I. and Frank, E.: Practical Machine Learn-

ing Tools and Techniques with Java Implementations.
Morgan Kaufmann, 2000.

[20] Zheng, Z., Geoffrey, I., and Kai M.:, Lazy Bayesian
rules: a lazy semi-naive Bayesian learning technique
competitive to boosting decision trees. In Proceed-

ings of 16th International Conf. on Machine Learning,
pages 493–502, Morgan Kaufmann, San Francisco, CA,

1999.

238

Mining Non-Derivable Association Rules

Bart Goethals∗ Juho Muhonen Hannu Toivonen
Helsinki Institute for Information Technology

Department of Computer Science
University of Helsinki

Finland

Abstract

Association rule mining typically results in large amounts of re-
dundant rules. We introduce efficient methods for deriving tight
bounds for confidences of association rules, given their subrules. If
the lower and upper bounds of a rule coincide, the confidence is
uniquely determined by the subrules and the rule can be pruned as
redundant, or derivable, without any loss of information. Experi-
ments on real, dense benchmark data sets show that, depending on
the case, up to 99–99.99% of rules are derivable. A lossy prun-
ing strategy, where those rules are removed for which the width of
the bounded confidence interval is 1 percentage point, reduced the
number of rules by a furher order of magnitude. The novelty of
our work is twofold. First, it gives absolute bounds for the confi-
dence instead of relying on point estimates or heuristics. Second,
no specific inference system is assumed for computing the bounds;
instead, the bounds follow from the definition of association rules.
Our experimental results demonstrate that the bounds are usually
narrow and the approach has great practical significance, also in
comparison to recent related approaches.

1 Introduction

Association rule mining often results in a huge amount of
rules. Attempts to reduce the size of the result for easier
inspection can be roughly divided to two categories. (1) In
the subjective approaches, the user is offered some tools to
specify which rules are potentially interesting and which are
not, such as templates [KMR+94] and constraints [NLHP98,
GVdB00]. (2) In the objective approaches, user-independent
quality measures are applied on association rules. While
interestingness is user-dependent to a large extent, objective
measures are needed to reduce the redundancy inherent in a
collection of rules.

The objective approaches can be further categorized by
whether they measure each rule independently of other rules
(e.g., using support, confidence, or lift) or address rule re-
dundancy in the presence of other rules (e.g., being a rule
with the most general condition and the most specific con-

∗Current affiliation: Dept. of Math and Computer Science, University of
Antwerp, Belgium

sequent among those having certain support and confidence
values). Obviously only approaches of the latter type can
potentially address redundancy between rules. Our work will
be in this category.

We show how the confidence of a rule can be bounded
given only its subrules (the condition and consequent of
a subrule are subsets of the condition and consequent of
the superrule, respectively). It turns out, in practice, that
the lower and upper bounds coincide often, and thus the
confidence can be derived exactly. We call these rules
derivable: they can be considered redundant and pruned
without loss of information. We also consider lossy pruning
strategies: a rule is pruned if the confidence can be derived
with a high accuracy, i.e., if the bounded interval is narrow.

Unlike practically all previous work on pruning asso-
ciation rules by their redundancy, our method for testing the
redundancy of a rule is based on deriving absolute bounds on
its confidence rather than using an ad hoc estimate. Given an
error bound, we can thus guarantee that the confidence of the
pruned rules can be estimated (derived) within the bounds.
No (arbitrary) selection of a derivation method is involved:
the bounds follow directly from the definitions of support
and confidence. (A pragmatic choice we will make is that
only subrules are used to derive the bounds; see below.)

In a sense, the proposed method is a generalization of
the idea of only outputting the free or closed sets [PBTL99,
BBR00]. Using free sets and closed sets corresponds,
however, to only pruning out rules for which we know the
confidence is one. In the method we propose, the confidence
can have any value, and the rule is pruned if we can derive
that value. Closed sets and related pruning techniques
actually work on sets, not on association rules. There are
other, more powerful pruning methods for sets. In particular,
our work is an extension of the work on non-derivable
sets [CG02] to non-derivable association rules. The method
is simple, yet it has been overlooked by previous work on the
topic.

Optimally, the final collection of rules should be under-
standable to the user. The minimal collection of rules from
which all (pruned) rules can be derived would have a small

239

size, but it would most likely be difficult for the user to see
why the rest of the rules were pruned and what their confi-
dences must be. We consider different alternatives, includ-
ing the relatively popular compromise of grouping rules by
their consequents and ordering them by the size of the con-
dition. Then, each rule is checked for redundancy given only
its subrules having the exactly same consequent, and only
non-derivable rules are output.

As a summary, our contributions are the following. We
give theoretically sound methods for bounding the confi-
dence of an association rule given its subrules. We then pro-
pose to prune as redundant those association rules for which
the confidence can be derived exactly or within a guaran-
teed, user-specified error bound. Experiments with several
real data sets (chess, connect, mushroom, pumsb) demon-
strate great practical significance: 99–99.99% of rules had
(exactly) derivable confidences. Further significant prun-
ing is obtained by removing rules derivable within just ±0.5
percentage points: the remaining number of rules was only
0.005%–0.04%.

The rest of this article is organized as follows. Section 2
reviews the basic concepts and related work. In Section 3 we
define non-derivable association rules and give methods for
deriving absolute and tight upper and lower bounds for rule
confidences. In Section 4 we give experimental results on a
number of real data sets. Section 5 contains our conclusions.

2 Problem Definition and Related Work

The association rule mining problem can be described as
follows [AIS93]. We are given a set of items I and a database
D of subsets of I called transactions. An association rule is
an expression of the form X ⇒ Y , where X and Y are sets
of items, X is called the condition, and Y the consequent.
The support of a set I is the number of transactions that
include I . A set is called frequent if its support is no less than
a given minimal support threshold. An association rule is
called frequent if X ∪Y is frequent and it is called confident
if the support of X∪Y divided by the support of X exceeds a
given minimal confidence threshold. The goal is now to find
all association rules over D that are frequent and confident.

Typically, for reasonable thresholds, the number of
association rules can reach impractical amounts, such that
analyzing the rules themselves becomes a challenging task.
Moreover, many of these rules have no value to the user
since they can be considered redundant. Removing these
redundant rules is an important task which we tackle in this
paper.

Previous work on pruning redundant association rules
is typically based on a decision rule that compares the
confidence or support of an association rule to similar rules.
For instance, rule X ⇒ Y is a “minimal non-redundant
association rule” [BPT+00] if there is no rule X ′ ⇒ Y ′ with
X ′ ⊂ X,Y ′ ⊃ Y such that supp(XY) = supp(X ′Y ′)

and conf (X ⇒ Y) = conf (X ′ ⇒ Y ′). A similar but not
identical definition is given for “closed rules” in [Zak00] or
“minimal rules” in [ZP03]. A recent proposal is that rule
X ⇒ Y is not a “basic association rule” [LH04] if there
exists X ′ ⊂ X such that for all X ′′, X ′ ⊆ X ′′ ⊆ X ,
conf (X ⇒ Y) = conf (X ′′ ⇒ Y). Our proposal differs
from these techniques in two significant aspects. First, it has
a wider applicability: the above-mentioned concepts only
apply for rules with exactly the same confidence. Second,
these techniques use specific inference systems to decide
when a rule is pruned, and in order to know the confidence
or support of a pruned rule, the user must use the exact same
inference system. In our proposed technique, the bounds
follow from the definition of association rules.

Another approach is to estimate rule confidence from a
collection of other rules. For example, the maximum en-
tropy technique declares a rule to be redundant if its true
confidence is close to the estimate [MPS99, JS02]. In the-
ory, the maximum entropy principle yields consistent esti-
mates in the sense that the value is possible, i.e., it is within
the bounds implied by the constraints used. There are some
critical issues in its application to rule pruning, however.
First, the principle does not give any guarantees for the error
bounds. Second, a pruning strategy based on removing rules
for which the error is below a given upper bound alleviates
the first issue, but at the cost of assuming maximum entropy
principle as the inference system. Finally, it is computation-
ally demanding to compute the maximum entropy solution.
Practical alternatives rely on approximations, and then lose
the benefit of producing consistent estimates.

For a good and quite recent, yet brief overview of at-
tempts to find non-redundant association rules, see refer-
ence [LH04].

Some of the approaches mentioned above [BPT+00,
Zak00] utilize the concept of closed sets. A set is called
closed if it has no proper superset with the same support;
from this, it follows that a non-closed set X implies the rest
of its closure with 100% certainty, i.e., the confidence of
rule X ⇒ Y equals 1 when Y is a subset of X’s closure.
Given a non-closed set X , any set Y in its closure, and a
rule X ⇒ Z, it has been proposed to prune rules of the
form XY ⇒ Z and X ⇒ Y Z as redundant since their
frequencies and confidences are identical with the rule X ⇒
Z. As mentioned above, this approach makes assumptions,
and without knowing them the user cannot know why rule
XY ⇒ Z was pruned.

A good amount of work has focused on finding con-
densed representations for frequent sets by pruning redun-
dant sets. Obviously, the number of association rules is even
much larger and hence the problem is even more important
to solve. In the case of frequent sets, the most successful
condensed representation is the notion of closed sets: all fre-
quent sets can be derived from the closed frequent sets (or

240

frequent generators). δ-free sets generalize this notion to “al-
most closed” sets [BBR00].

More recently, a more powerful method for prun-
ing frequent sets has been presented, called non-derivable
sets [CG02]. The main idea is to derive a lower and an upper
bound on the support of a set, given the supports of all its
subsets. When these bounds are equal (the support of) the
set is derivable. In this paper, we extend this work in a natu-
ral way to association rules: we introduce similar derivation
techniques to find tight bounds on the confidence of a rule,
given its subrules.

The problem we attack can be formulated as follows.
Given the set R of association rules (with respect to a given
frequency threshold, confidence threshold, and database D),
choose a subset R′ ⊂ R such that the confidence of every
pruned rule R ∈ R′ \R can be derived up to a user-specified
error limit, possibly zero, from its subrules. Rule X ′ ⇒ Y ′ is
a subrule of X ⇒ Y iff X ′ ⊆ X and Y ′ ⊆ Y ; selecting only
the subrules to derive the confidence of a given rule should
improve the understandability of the results. (In this paper,
the term subrule will refer to proper subrules, i.e., subrules
not equal to the original rule.) In other words, rule X ⇒ Y
is derivable and redundant, if its confidence can be derived
from the confidences and supports of its subrules; otherwise
it is non-derivable. Note that being derivable is a function of
the subrules: the actual rule confidence and support are not
needed for knowing whether the rule is derivable.

Before going to the methods, we would like to remind
the readers that obviously redundancy is not the only reason
why some association rules are uninteresting. Interesting-
ness is often subjective, and tools such as templates or other
syntactical constraints can be very useful. Subjective inter-
estingness is, however, outside the scope of this paper.

3 Non-Derivable Association Rules

We now show how to derive lower and upper bounds for the
confidence of an association rule, given its subrules. We start
by reviewing the technique to derive bounds on the support
of a set [CG02].

3.1 Sets The main principle behind the support deriva-
tion technique used for mining non-derivable sets is the
inclusion-exclusion principle [GS00]. For any subset J ⊆ I ,
we obtain a lower or an upper bound on the support of I
using one of the following formulas.

If |I \ J | is odd, then

(3.1) supp(I) ≤
∑

J⊆X⊂I

(−1)|I\X|+1supp(X).

If |I \ J | is even, then

(3.2) supp(I) ≥
∑

J⊆X⊂I

(−1)|I\X|+1supp(X).

For example, in Figure 1, we show all possible rules to
derive the bounds for a given set {abcd}.

When the smallest upper bound equals the highest lower
bound, then we have actually obtained the exact support of
the set solely based on the supports of its subsets. These sets
are called derivable, and all other sets non-derivable. The
collection of non-derivable sets has several nice properties.

PROPERTY 3.1. [CG02] The size of the largest non-
derivable set is at most 1 + log |D| where |D| denotes the
total number of transactions in the database.

PROPERTY 3.2. [CG02] The collection of non-derivable
sets is downward closed. In other words, all supersets of
a derivable set are derivable, and all subsets of a non-
derivable set are non-derivable.

A less desirable property is that the number of bounds for a
given itemset is exponential in the size of the itemset. For
more results and discussions, we refer the interested reader
to [CG02].

3.2 Association Rules Now, consider a rule X ⇒ Y and
assume all its (proper) subrules are known, i.e., their supports
and confidences are given and hence, also the support of all
proper subsets of X ∪ Y . In order to compute bounds for
the confidence of that rule, we bound the support of X ∪ Y
using the above described technique and divide the lower and
upper bound by the support of X , resulting in a lower and
upper bound for the confidence of X ⇒ Y . The goal is
to find and remove all derivable association rules, i.e., rules
for which the lower and the upper bounds of confidence are
equal. From this procedure, the following property is readily
verified.

PROPERTY 3.3. Given all (proper) subrules of association
rule X ⇒ Y : X ⇒ Y is derivable if and only if X ∪ Y is a
derivable set.

This leads to an association rule pruning method which
can be represented as a simple modification to the original
association rule generation algorithm in which only non-
derivable itemsets are used.

Note that when considered as sets in separation, X can
be a non-derivable itemset while the set X ∪Y is a derivable
itemset, cfr. Property 3.2. A straightforward application of
non-derivability of itemsets to association rule mining would
be to output rules in which the condition X is non-derivable
(regardless of whether the union X ∪ Y is).

We next consider some interesting, more restricted cases
of pruning. When considering the possible redundancy
of a specific association rule, it is probably natural and
easier to focus only on those rules which have exactly the
same condition or exactly the same consequent. Such a
compromise results in less pruning but is likely to increase
the understandability of pruning.

241

supp(abcd) ≥ supp(abc) + supp(abd) + supp(acd) + supp(bcd)− supp(ab)− supp(ac)− supp(ad)
−supp(bc)− supp(bd)− supp(cd) + supp(a) + supp(b) + supp(c) + supp(d)− supp({})

supp(abcd) ≤ supp(a)− supp(ab)− supp(ac)− supp(ad) + supp(abc) + supp(abd) + supp(acd)
supp(abcd) ≤ supp(b)− supp(ab)− supp(bc)− supp(bd) + supp(abc) + supp(abd) + supp(bcd)
supp(abcd) ≤ supp(c)− supp(ac)− supp(bc)− supp(cd) + supp(abc) + supp(acd) + supp(bcd)
supp(abcd) ≤ supp(d)− supp(ad)− supp(bd)− supp(cd) + supp(abd) + supp(acd) + supp(bcd)
supp(abcd) ≥ supp(abc) + supp(abd)− supp(ab)
supp(abcd) ≥ supp(abc) + supp(acd)− supp(ac)
supp(abcd) ≥ supp(abd) + supp(acd)− supp(ad)
supp(abcd) ≥ supp(abc) + supp(bcd)− supp(bc)
supp(abcd) ≥ supp(abd) + supp(bcd)− supp(bd)
supp(abcd) ≥ supp(acd) + supp(bcd)− supp(cd)
supp(abcd) ≤ supp(abc)
supp(abcd) ≤ supp(abd)
supp(abcd) ≤ supp(acd)
supp(abcd) ≤ supp(bcd)
supp(abcd) ≥ 0

Figure 1: Bounds on supp(abcd).

3.3 Fixed Consequent First we consider the case of a
fixed consequent. In other words, the derivability (redun-
dancy) of a rule is a function of those subrules that explain
the same consequent. We handle this case as two separate
subclasses of rules, those with a single item consequent and
those with multiple items in the consequent.

First consider rules X ⇒ Y with |Y | = 1. Given all its
subrules with the same consequent and their respective sup-
ports and confidences, we immediately obtain the supports
of all subsets of X ∪ Y , except of the sets X and X ∪ Y
themselves.

EXAMPLE 1. Consider the rule abc ⇒ d. From each of
its subrules, e.g., ab ⇒ d, we obtain the support of two
subsets of abcd: the support of abd (the support of the rule)
and the support of ab (the support of the rule divided by its
confidence).

rule sets
ab⇒ d ab, abd
ac⇒ d ac, acd
bc⇒ d bc, bcd
a⇒ d a, ad
b⇒ d b, bd
c⇒ d c, cd
{} ⇒ d {}, d

The only two subsets of abcd that are missing are abc and
abcd, i.e., exactly those needed to compute the confidence of
the desired rule.

Thus, given the subrules of X ⇒ Y with the same
consequent, the support of X can be directly bounded.

For bounding the support of X ∪ Y , however, information
about X is missing, and we cannot simply use all derivation
formulas. To solve this, we first compute the bounds for
X , and then we compute the bounds for X ∪ Y for every
possible value of X . As a result, we have a set of triples
(v, l, u) with v a possible support value for X and l and u the
corresponding lower and upper bound for X∪Y respectively.

EXAMPLE 2. Suppose we want to bound the confidence of
the rule ab⇒ c, given the following supports.

supp(ac) = 3
supp(bc) = 3
supp(a) = 7
supp(b) = 7
supp(c) = 5

supp({}) = 10

Then, bounding ab results in a lower bound of 4 = 7 + 7 −
10 = supp(a) + supp(b) − supp({}), and an upper bound
of 7 = supp(a) = supp(b). Then for every possible value
of the support of ab, we compute the bounds for the support
of abc and the corresponding bounds for the confidence of
ab⇒ c.

supp(abc) conf (ab⇒ c)
supp(ab) = 4 [1, 1] [1/4, 1/4]
supp(ab) = 5 [1, 2] [1/5, 2/5]
supp(ab) = 6 [2, 3] [2/6, 3/6]
supp(bb) = 7 [3, 3] [3/7, 3/7]

Hence, we can conclude that the confidence interval of ab⇒
c is [1/5, 1/2].

242

As the example above shows, it is not sufficient to use
only values at the lower and the upper bounds of X when
computing the bounds for X ∪Y : the extreme values for the
confidence may occur at intermediate possible values of X .

Also note that a rule X ⇒ Y can be derivable even if
X is not. This is the case when all the bounds of X ∪ Y ,
for every possible value of X , result in the same equal upper
and lower bound on the confidende of X ⇒ Y , as illustrated
in the following example.

EXAMPLE 3. Suppose we want to bound the confidence of
the rule ab⇒ c, given the following supports.

supp(ac) = 7
supp(bc) = 7
supp(a) = 7
supp(b) = 7
supp(c) = 10

supp({}) = 10

Then, bounding ab results in a lower bound of 4 = 7 + 7 −
10 = supp(a) + supp(b) − supp({}), and an upper bound
of 7 = supp(a) = supp(b). Then for every possible value
of the support of ab, we compute the bounds for the support
of abc and the corresponding bounds for the confidence of
ab⇒ c.

supp(abc) conf (ab⇒ c)
supp(ab) = 4 [4, 4] [1, 1]
supp(ab) = 5 [5, 5] [1, 1]
supp(ab) = 6 [6, 6] [1, 1]
supp(bb) = 7 [7, 7] [1, 1]

Therefore, we can conclude that the confidence of ab⇒ c is
1, and hence, derivable.

When the consequent of a rule X ⇒ Y consists of more
than one item, then its subrules with the same consequent
do no longer provide the supports for all necessary subsets
of X ∪ Y . Although we can still derive tight bounds for X
using the usual inclusion-exclusion formulas, it becomes a
lot more complex to derive the bounds for X ∪ Y .

EXAMPLE 4. Consider the rule abc ⇒ de. From the
support and confidence of each of its subrules with the same
consequent, we again obtain the support of exactly 2 subsets
of abcde, i.e., the support of the conditions of the subrules
and the support of the sets containing the conditions and the
consequent.

ab⇒ de ab, abde
ac⇒ de ac, acde
bc⇒ de bc, bcde
a⇒ de a, ade
b⇒ de b, bde
c⇒ de c, cde
{} ⇒ de {}, de

Hence, apart from the missing supports of the subsets abc
and abcde, we now also don’t have any information on the
supports of d,e,ad,ae,bd,be,cd,ce,abd,abe,acd,ace,bcd, bce.

Since the consequents of all these rules are the same, we
can solve this problem by simply considering the consequent
as a single item which occurs in a transaction only if all items
in the consequent occur in that transaction. In that way, the
problem of multiple items in the consequent is reduced to the
case in which only a single item occurs in the consequent,
and hence, can be solved as described before.

3.4 Fixed Condition or Consequent We now study the
case where the considered subrules have either the same
condition or the same consequent as the original rule. The
motivation for this approach is that it is likely to be easier
for the user to understand redundancy with respect to such
subrules than all possible subrules.

To find such non-derivable rules, the first observation is
that we can divide the problem into two parts: (1) obtain con-
fidence bounds with fixed consequent subrules, as described
in the previous subsection, and with fixed condition subrules
(to be described below), and then (2) output the intersection
of the possible intervals as the result.

To bound the confidence of X ⇒ Y when only those
subrules are known that have X as the condition, we need to
bound the support of X ∪ Y , as the support of X is given.
To find the bounds, we simply restrict ourselves to those
inclusion-exclusion formulas containing only terms that are
supersets of X .

3.5 Using Only Some Subrules From an intuitive point of
view, it makes sense to measure the value or interestingness
of an association rule by comparing to its subrules. As
described above, this is exactly what happens when we
compute the bounds on the confidence of an association
rule using the inclusion-exclusion principle. Unfortunately,
for larger sets, the inclusion-exclusion formulas can become
quite large and complex, and hence, not so intuitive anymore.
Therefore, we also consider the case in which only those
subrules with a condition of a minimum size are allowed to
be used.

More specifically, for any subset J ⊆ I , we obtain
a lower or an upper bound on the support of I using one
of the formulas in (3.1) or (3.2), but now, we only allow
the formulas to be used for those subsets J ⊆ I such that
|I \ J | ≥ k − 1, for a user given parameter k > 0. We
also call this parameter the allowable depth of the rules to
be used. In Figure 1, the formulas are shown in descending
order of depth, starting with depth 5.

In our case we bound not one, but two sets which differ
by one in size. We use depth k − 1 for the condition of the
rule and depth k for all items in the rule.

243

Dataset #items trans. #trans. support
size threshold

chess 76 37 3 196 70% (2238)
connect 130 43 67 557 90% (60802)
mushroom 120 23 8 124 20% (1625)
pumsb 7117 74 49 046 85% (41690)

Table 1: Dataset characteristics

4 Experiments

For an experimental evaluation of the proposed algorithms,
we performed several experiments on real datasets also used
in [Zak00]. We implemented the proposed algorithms in
C++, and for comparison to recent methods we use the
original authors’ own implementations [LH04, JS02, Zak00,
ZP03].

All datasets were obtained from the UCI Machine
Learning Repository. The chess and connect datasets are
derived from their respective game steps, the mushroom
database contains characteristics of various species of mush-
rooms, and the pumsb dataset contains census data. Table 1
shows some characteristics of the used datasets; for each
dataset, we used the lowest support threshold that was men-
tioned in [Zak00]. The confidence threshold was set to 0%
in all experiments.

Figure 2 shows the effect of pruning for the four data
sets, as a function of the width of the bound on confidence.
Three different variants are shown in each panel (from
top to bottom): the number of non-redundant rules when
only subrules with identical consequent are used, when
only subrules with either identical consequent or identical
condition are used, and when all subrules are used. These
variants offer different trade-offs between the amount of
pruning and how easy it is for the user to understand what
was pruned. For a comparison, the number of (minimal)
closed rules is also given. (The numbers of minimal closed
rules have been obtained with M. Zaki’s implementation.
They differ from those reported by him in reference [Zak00],
since in the latter one he was not exactly mining minimal
rules [M. Zaki, personal communication].)

The immediate observation is that pruning has a dra-
matic effect on the number of rules (note that the Y axis has
a logarithmic scale). In particular, a large amount of rules
can be derived exactly. Some of the results are also given
in numerical form in Table 2. The table reports results for
exactly derivable rules with identical consequent subrules,
with identical condition or consequent subrules, or with all
subrules. The row “1% interval” was obtained by pruning
rules for which the lower and upper bounds of confidence
are at most 1 percentage point apart. Results with minimal
closed rules are included for comparison.

The number of non-derivable association rules is less

chess connect mushroom pumsb

All rules 8160101 3667831 19245239 1429297
100% 100% 100% 100%

Identical 1572360 557579 2829208 695871
consequent 19% 15% 15% 49%
Id. condition 65978 11231 94860 177155
or consequent 0.81% 0.31% 0.49% 12%
All subrules 4181 552 7546 16345

0.051% 0.015% 0.039% 1.1%
All subrules, 718 167 5358 543
1% interval 0.0088% 0.0046% 0.028% 0.038 %
Minimal 139431 15496 6815 71813
closed rules 1.7% 0.42% 0.035% 5.0%

Table 2: Number of rules after different pruning methods
(absolute number and percentage of all rules).

than the number of minimal closed rules already when using
only subrules with identical consequent or condition in chess
and connect datasets. In pumsb the number of non-derivable
association rules is less than the number of minimal closed
rules if we use all subrules to compute the upper and lower
bound. In mushroom the number of minimal closed rules
is slightly less than the number of non-derivable association
rules.

Relatively small error bounds, already in the order of
fractions of percent, can result in significant further pruning.
For example in the mushroom dataset, the number of non-
derivable association rules when using all subrules becomes
less than the number of minimal closed rules when we allow
the difference of upper and lower bound to be one percentage
unit. In other datasets the effect of allowing a small interval
for the confidence bounds is even more radical.

A comparison to the maximum entropy technique
[JS02] and basic association rules [LH04] is given in Fig-
ure 3. It shows the number of non-redundant rules with ex-
actly one item in the consequent, since the two other tech-
niques only find redundancies in such rules. A comparison
to the maximum entropy approach shows that sometimes it
is quite competitive, but it is not a very robust approach for
pruning in these cases. The algorithm is approximative and
iterative. As a compromise between efficiency and accuracy,
we used exactly 5000 iterations in these test; each run then
took less than a day except for the chess dataset, for which
the execution time was over three days. (The steps visible
in some of the maximum entropy graphs are due to a limited
accuracy in the output of the implementation, they are not
inherent in the method itself.)

The trend seems to be that for very low error bounds,
the proposed method is always superior. With a growing
error bound, the maximum entropy approach sometimes
outperforms non-derivable association rules. The number
of basic association rules is considerably greater than the

244

100

1000

10000

100000

1e+06

1e+07

0 1 2 3 4 5

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Closed rules

Identical consequent
Identical consequent or condition

All subrules

(a) chess

100

1000

10000

100000

1e+06

1e+07

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Closed rules

Identical consequent
Identical consequent or condition

All subrules

(b) connect

1000

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Closed rules

Identical consequent
Identical consequent or condition

All subrules

(c) mushroom

100

1000

10000

100000

1e+06

1e+07

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Closed rules

Identical consequent
Identical consequent or condition

All subrules

(d) pumsb

Figure 2: The number of non-derivable and minimal closed association rules.

number of non-derivable rules in all four datasets. As a
technique that does not consider error bounds, the basic
association rules always outperform the maximum entropy
approach in terms of exact inference of rules; sometimes the
marginal is quite small, though.

For a further analysis of the proposed method, Figure 4
shows results for different depths of the formulas that were
allowed to be used (cf. Section 3.5). This figure only uses
association rules with exactly one item in the consequent.
The line labeled ’infinite depth’ denotes the number of non-
derivable rules when all possible formulas are allowed to be
used. Additionally, the figure also shows the number of asso-
ciation rules for which the condition is a non-derivable item-
set. Since this is a straightforward pruning mechanism based
on the notion of non-derivable sets, it shows from where
the actual power of the presented confidence derivation tech-

nique starts.
A remarkable result is that most of the derivable rules

are already derivable when only the inclusion-exclusion
formulas up to depth 3 are allowed to be used. Such a
result is particularly nice for the end user, since it means that
the reasons for redundancy of a rule are mostly in the most
immediate subrules, making the pruning more intuitive and
easy to understand.

Finally, Figure 5 shows the number of rules as a function
of the support thresholds much lower than those presented
in [Zak00]; again with a singular consequent. In these fig-
ures, an association rule was considered to be non-redundant
if the width of its confidence bound was more than 0.1%.
According to the figure, the presented technique scales very
well to low support thresholds and achieves roughly simi-
lar reductions in the number of association rules across the

245

10

100

1000

10000

100000

1e+06

0 1 2 3 4 5

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Non-derivable association rules

Maximum entropy
Basic association rules

(a) chess

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Non-derivable association rules

Maximum entropy
Basic association rules

(b) connect

100

1000

10000

100000

1e+06

0 5 10 15 20

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Non-derivable association rules

Maximum entropy
Basic association rules

(c) mushroom

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Non-derivable association rules

Maximum entropy
Basic association rules

(d) pumsb

Figure 3: Number of non-derivable and basic association rules and rules produced by maximum entropy method.

ranges tested.

5 Conclusions

We presented a solid foundation for computing upper and
lower bounds of the confidence of an association rule, given
its subrules. When the upper and lower bounds are equal or
almost equal, we call the association rule derivable and con-
sider it to be redundant with respect to its subrules. The pre-
sented technique is based on the inclusion–exclusion princi-
ple, recently successfully used for bounding the support of
sets of items [CG02]. The method is simple, it gives abso-
lute bounds, and it does not assume any specific inference
system. The bounds and derivability follow from the def-
initions of support and confidence: when a rule is pruned
as exactly derivable, then there exists only one value for the
confidence that is consistent with all the subrules.

Experimental results with real data sets demonstrated
very high pruning power. In our experiments, up to 99–
99.99% of rules were exactly derivable, and always over
99.96% derivable within ±0.5% points. The amount of
pruning depends a lot on data set characteristics as well as
on the support threshold: the lower the threshold, the more
redundant is the rule set. In absolute terms, the figures
indicate great practical significance.

In comparison to related techniques, it is surprising how
efficient the proposed simple method is. The related tech-
niques almost invariably make strong assumptions, in the
form of fixing an inference system or an estimation method.
In the face of the experimental results, our simple and consis-
tent bounding can give much higher pruning factors without
any such assumptions.

We gave three different variants of the method, using

246

100

1000

10000

100000

1e+06

0 1 2 3 4 5

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Number of rules with NDI condition

Depth 2
Depth 3

Infinite depth

(a) chess

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Number of rules with NDI condition

Depth 2
Depth 3

Infinite depth

(b) connect

1000

10000

100000

1e+06

0 5 10 15 20

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Number of rules with NDI condition

Depth 2
Depth 3

Infinite depth

(c) mushroom

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Difference of upper and lower bound (%)

Total number of rules
Number of rules with NDI condition

Depth 2
Depth 3

Infinite depth

(d) pumsb

Figure 4: The number of non-derivable association rules with a singular consequent.

different sets of subrules to obtain the confidence constraints.
They have different trade-offs between the amount of prun-
ing and understandability of pruning. An evaluation of dif-
ferent pruning mechanisms from the end user point of view
is a topic for further work.

An important and valid critique on the proposed tech-
niques is that in practice we do not actually have all subrules
of an association rule as some of them might not be con-
fident. Indeed, in our experiments, we never used the confi-
dence threshold for pruning, i.e. it was set to 0. Nevertheless,
also for higher minimum confidence thresholds, it is always
easy to simply compute the actual confidence of all necessary
subrules given the frequent itemsets. Furthermore, our ex-
periments show that the numbers of frequent non-derivable
association rules are extremely small without using a confi-
dence threshold. Note that in practice, it is not always clear

which confidence threshold should be used and rules with
small confidence can sometimes even be extremely interest-
ing.

Nevertheless, in future work, we will explore a sequen-
tial pruning mechanism in which only subrules are used that
are confident and that where not already pruned earlier.

Acknowledgements

We would like to thank G. Li and H. Hamilton [LH04],
S. Jaroszewicz and D. A. Simovici [JS02] and
M. Zaki [Zak00, ZP03] for kindly providing imple-
mentations of their methods.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.

247

1000

10000

100000

1e+06

1e+07

1e+08

1500 1600 1700 1800 1900 2000 2100 2200 2300

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Support

Total number of rules
Number of non-redundant rules

(a) chess

100

1000

10000

100000

1e+06

1e+07

1e+08

50000 52000 54000 56000 58000 60000 62000

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Support

Total number of rules
Number of non-redundant rules

(b) connect

1000

10000

100000

1e+06

1e+07

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Support

Total number of rules
Number of non-redundant rules

(c) mushroom

1000

10000

100000

1e+06

1e+07

36500 37000 37500 38000 38500 39000 39500 40000 40500 41000 41500 42000

N
um

be
r

of
 n

on
-r

ed
un

da
nt

 r
ul

es

Support

Total number of rules
Number of non-redundant rules

(d) pumsb

Figure 5: The number of non-derivable association rules for different support thresholds.

Database mining: A performance perspective. IEEE Trans-
actions on Knowledge and Data Engineering, 5(6):914 – 925,
December 1993. Special Issue on Learning and Discovery in
Knowledge-Based Databases.

[BBR00] J-F. Boulicaut, A. Bykowski, and C. Rigotti. Approx-
imation of frequency queries by means of free-sets. In The
Fourth European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’00), pages 75–
85, Lyon, France, 2000. Springer.

[BPT+00] Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd
Stumme, and Lotfi Lakhal. Mining minimal non-redundant
association rules using frequent closed itemsets. In Compu-
tational Logic – CL 2000: First International Conference,
pages 972 – 986, London, UK, 2000.

[CG02] T. Calders and B. Goethals. Mining all non-derivable fre-
quent itemsets. In T. Elomaa, H. Mannila, and H. Toivo-
nen, editors, Proceedings of the 6th European Conference on
Principles of Data Mining and Knowledge Discovery, volume

2431 of Lecture Notes in Computer Science, pages 74–85.
Springer, 2002.

[GS00] J. Galambos and I. Simonelli. Bonferroni-type Inequalities
with Applications. Springer, 2000.

[GVdB00] B. Goethals and J. Van den Bussche. On supporting
interactive association rule mining. In Y. Kambayashi, M.K.
Mohania, and A.M. Tjoa, editors, Proceedings of the Second
International Conference on Data Warehousing and Knowl-
edge Discovery, volume 1874 of Lecture Notes in Computer
Science, pages 307–316. Springer, 2000.

[JS02] S. Jaroszewicz and D. A. Simovici. Pruning redundant
association rules using maximum entropy principle. In
Advances in Knowledge Discovery and Data Mining, 6th
Pacific-Asia Conference, PAKDD’02, pages 135–147, Taipei,
Taiwan, May 2002.

[KMR+94] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen,
Hannu Toivonen, and A. Inkeri Verkamo. Finding interest-
ing rules from large sets of discovered association rules. In

248

Proceedings of the Third International Conference on Infor-
mation and Knowledge Management (CIKM’94), pages 401 –
407, Gaithersburg, MD, USA, November 1994. ACM.

[LH04] Guichong Li and Howard J. Hamilton. Basic association
rules. In Fourth SIAM International Conference on Data
Mining, Florida, USA, 2004.

[MPS99] Heikki Mannila, Dmitry Pavlov, and Padhraic Smyth.
Prediction with local patterns using cross-entropy. In Pro-
ceedings of the ACM SIGKDD, pages 357–361. ACM Press,
1999.

[NLHP98] R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of constrained as-
sociation rules. In L.M. Haas and A. Tiwary, editors, Pro-
ceedings of the 1998 ACM SIGMOD International Confer-
ence on Management of Data, volume 27(2) of SIGMOD
Record, pages 13–24. ACM Press, 1998.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association rules. In
Proceedings of the 7th International Conference on Database
Theory, volume 1540 of Lecture Notes in Computer Science,
pages 398–416. Springer, 1999.

[Zak00] Mohammed J. Zaki. Generating non-redundant associa-
tion rules. In Proceedings of the Sixth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Min-
ing, pages 34 – 43, Boston, MA, USA, 2000.

[ZP03] Mohammed Zaki and Benjarath Phoophakdee. MIRAGE:
A framework for mining, exploring and visualizing minimal
association rules. Technical Report RPI CS Dept Technical
Report 03-04, Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, New York, July 2003.

249

Depth-First Non-Derivable Itemset Mining

Toon Calders∗

University of Antwerp, Belgium
toon.calders@ua.ac.be

Bart Goethals†

HIIT-BRU, University of Helsinki, Finland
bart.goethals@cs.helsinki.fi

Abstract

Mining frequent itemsets is one of the main problems in data min-
ing. Much effort went into developing efficient and scalable al-
gorithms for this problem. When the support threshold is set too
low, however, or the data is highly correlated, the number of fre-
quent itemsets can become too large, independently of the algo-
rithm used. Therefore, it is often more interesting to mine a reduced
collection of interesting itemsets, i.e., a condensed representation.
Recently, in this context, thenon-derivableitemsets were proposed
as an important class of itemsets. An itemset is called derivable
when its support is completely determined by the support of its sub-
sets. As such, derivable itemsets represent redundant information
and can be pruned from the collection of frequent itemsets. It was
shown both theoretically and experimentally that the collection of
non-derivable frequent itemsets is in general much smaller than the
complete set of frequent itemsets. A breadth-first, Apriori-based
algorithm, called NDI, to find all non-derivable itemsets was pro-
posed. In this paper we present a depth-first algorithm, dfNDI, that
is based on Eclat for mining the non-derivable itemsets. dfNDI is
evaluated on real-life datasets, and experiments show that dfNDI
outperforms NDI with an order of magnitude.

1 Introduction

Since its introduction in 1993 by Agrawal et al. [3], the
frequent itemset mining problem has received a great deal
of attention. Within the past decade, hundreds of research
papers have been published presenting new algorithms or
improvements on existing algorithms to solve this mining
problem more efficiently.

The problem can be stated as follows. We are given a
set of itemsI, and anitemsetI ⊆ I is some set of items.
A transactionoverI is a coupleT = (tid , I) wheretid is
the transaction identifier andI is an itemset. A transaction
T = (tid , I) is said tosupport an itemsetX ⊆ I, if
X ⊆ I. A transaction databaseD over I is a set of
transactions overI. We omit I whenever it is clear from
the context. Thecoverof an itemsetX in D consists of the
set of transaction identifiers of transactions inD that support
X: cover(X,D) := {tid | (tid , I) ∈ D, X ⊆ I}. The

∗Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium)(F.W.O. - Vlaanderen).

†Current affiliation: University of Antwerp, Belgium.

supportof an itemsetX in D is the number of transactions
in the cover ofX in D: support(X,D) := |cover(X,D)|.
An itemset is calledfrequentin D if its support inD exceeds
the minimal support thresholdσ. D andσ are omitted when
they are clear from the context. The goal is now to find all
frequent itemsets, given a database and a minimal support
threshold.

Recent studies on frequent itemset mining algorithms
resulted in significant performance improvements: a first
milestone was the introduction of the breadth-first Apriori-
algorithm [4]. In the case that a slightly compressed form
of the database fits into main memory, even more effi-
cient, depth-first, algorithms such as Eclat [18, 23], and FP-
growth [12] were developed.

However, independently of the chosen algorithm, if the
minimal support threshold is set too low, or if the data is
highly correlated, the number of frequent itemsets itself can
be prohibitively large. No matter how efficient an algorithm
is, if the number of frequent itemsets is too large, mining all
of them becomes impossible.

To overcome this problem, recently several proposals
have been made to construct a condensed representation [15]
of the frequent itemsets, instead of mining all frequent
itemsets. A condensed representation is a sub-collection of
all frequent itemsets that still contains all information.The
most well-known example of a condensed representation are
the closed sets[5, 7, 16, 17, 20]. The closurecl(I) of an
itemsetI is the largest superset ofI such thatsupp(cl(I)) =
supp(I). A setI is closedif cl(I) = I. In the closed sets
representation only the frequent closed sets are stored. This
representation still contains all information of the frequent
itemsets, because for every setI it holds that

supp(I) = max{supp(C) | I ⊆ C, cl(C) = C} .

Another important class of itemsets in the context
of condensed representations are thenon-derivableitem-
sets [10]. An itemset is calledderivablewhen its support
is completely determined by the support of its subsets. As
such, derivable itemsets represent redundant informationand
can be pruned from the collection of frequent itemsets. For
an itemset, it can be checked whether or not it is derivable by
computing bounds on the support. In [10], a method based
on the inclusion-exclusion principle is used.

250

It was shown both theoretically and experimentally that
the collection of non-derivable frequent itemsets is in gen-
eral much more concise than the complete set of frequent
itemsets. It was proven that for a given databaseD, all sets
of length more thanlog2(|D|) + 1 are derivable. Hence,
especially in databases with numerous items, but with few
transactions, the number of non-derivable itemsets is guar-
anteed to be relatively small compared to the number of fre-
quent itemsets. Many biological datasets, e.g., gene expres-
sion datasets, are typical examples of such databases. In ex-
periments in [10], it was shown empirically that the number
of non-derivable itemsets is in general orders of magnitudes
smaller than the number of frequent itemsets. In most ex-
periments, the number of non-derivable itemsets was even
smaller than the number of closed sets.

In [10], a breadth-first, Apriori-based algorithm NDI
to find all non-derivable itemsets was proposed. Due to
the relatively small number of non-derivable itemsets, the
NDI-algorithm almost always outperforms mining all fre-
quent itemsets, independently of the algorithm [8]. When
we, however, look at the time and space required by the NDI-
algorithm as a function of its output-size, its performanceis
far below that of state-of-the-art frequent set mining algo-
rithms. The low efficiency of NDI comes mainly from the
fact that it is a breadth-first generate-and-test algorithm. All
candidates of a certain level need to be processed simultane-
ously, and the support tests involve repeated scans over the
complete database.

In contrast, in the case of mining all frequent itemsets,
depth-first algorithms have been shown to perform much
better and have far less costly candidate generation phases,
and do not require scanning the complete database over and
over again. Furthermore, item reordering techniques can be
used to avoid the generation of too many candidates.

Unfortunately, depth-first algorithms essentially do not
perform the so called Apriori-test, that is, test whether all of
subsets of a generated candidate are known to be frequent,
as most of them are simply not generated yet. Nevertheless,
the supports of the subsets of a given set is exactly what is
needed in order to determine whether an itemset is derivable
or not. In this paper, we tackle this problem and present
a depth-first algorithm, dfNDI, for mining non-derivable
itemsets. The dfNDI-algorithm is based on Eclat and the
diffset technique as introduced by Zaki et al. [18, 19]. As
such, dfNDI combines the efficiency of depth-first itemset
mining algorithms with the significantly lower number of
non-derivable itemsets, resulting in an efficient algorithm for
mining non-derivable itemsets.

The organization of the paper is as follows. In Section 2,
the non-derivable itemsets and the level-wise NDI algorithm
are revisited. In Section 3, we shortly describe the Eclat-
algorithm on which our dfNDI-algorithm is based. Special
attention is paid to item reordering techniques. Section

4 introduces the new algorithm dfNDI in depth, which is
experimentally evaluated and compared to the level-wise
NDI in Section 5.

2 Non-Derivable Itemsets

In this section we revisit the non-derivable itemsets intro-
duced in [10]. In [10], rules were given to derive bounds
on the support of an itemsetI if the supports of all its strict
subsets ofI are known.

2.1 Deduction Rules Let ageneralized itemsetbe a con-
junction of items and negations of items. For example,
G = {a, b, c, d} is a generalized itemset. A transaction
(tid, I) contains a general itemsetG = X ∪ Y if X ⊆ I

andI ∩ Y = ∅. Thesupport of a generalized itemsetG in a
databaseD is the number of transactions ofD that contain
G.

We say that a general itemsetG = X ∪ Y is basedon
itemsetI if I = X ∪ Y . From the well known inclusion-
exclusion principle [11], we know that for a given general
itemsetG = X ∪ Y based onI,

supp(G) =
∑

X⊆J⊆I

(−1)|J\X|supp(J) .

Hence,supp(I) equals
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) + (−1)|Y |supp(G)(2.1)

Notice that depending on the sign of(−1)|Y |supp(G), the
term

δX(I) :=
∑

X⊆J⊂I

(−1)|I\J|supp(J)

is a lower (|Y | even) or an upper (|Y | odd) approximation
for the support ofI. In [10], this observation was used to
compute lower and upper bounds on the support of an itemset
I. For each setI, let lI (uI) denote the lower (upper) bound
we can derive using the deduction rules. That is,

lI = max{δX(I) | X ⊆ I, I \ X odd} ,

uI = min{δX(I) | X ⊆ I, I \ X even} .

Since we need the supports of all strict subsets ofI to com-
pute the bounds,lI anduI clearly depend on the underlying
database.

EXAMPLE 1. Consider the following databaseD:

D =

TID Items

1 a, b, c, d

2 a, b, c

3 a, b, d, e

4 c, e

5 b, d, e

6 a, b, e

7 a, c, e

8 a, d, e

9 b, c, e

10 b, d, e

251

Some deduction rules forabc are the following:

supp(abc) ≥ supp(ab) + supp(ac) − supp(a) = 1
supp(abc) ≤ supp(ab) + supp(ac) + supp(bc)

−supp(a) − supp(b) − supp(c)
+supp({}) = 2

Hence, based on the supports of the subsets ofabc, we can
deduce thatsupp(abc) is in [1, 2].

In this paper, we will use Equation (2.1) to compute the
support ofI, based on the supports of its subsets, and the
support of the generalized itemsetG.

EXAMPLE 2. Some equalities for itemsetabc:
supp(abc) = supp(ab) − supp(abc)

= (supp(ab) + supp(ac) + supp(bc)
−supp(a) − supp(b) − supp(c)

+supp({})) − supp(abc) 2

Notice incidentally that the complexity of the term
δX(I) depends on the cardinality ofY = I \ X. The larger
Y is, the more complex it will be to compute the support of
I based onX ∪ Y . For example, forabcd,

δabc(abcd) = abc

δa(abcd) = abc + abd + acd − ab − ac − ad + a

In general, the number of terms inδX(I) is 2|I\X| − 1.
Therefore, whenever in the algorithm we have the choice
between two generalized itemsets, we will always choose the
set with the least negations, as this set will result in a more
efficient calculation of the support ofI.

2.2 Condensed Representation Based on the deduction
rules, it is possible to generate a summary of the set of
frequent itemsets. Indeed, iflI = uI , thensupp(I,D) =
lI = uI , and hence, we do not need to storeI in the
representation. Such a setI, will be called aDerivable
Itemset(DI), all other itemsets are calledNon-Derivable
Itemsets(NDIs). Based on this principle, in [10], the
following condensed representation was introduced:

NDI(D, σ) := {I | supp(I,D) ≥ σ, lI 6= uI}.

In the experiments presented in Section 5, it is shown that the
collection of non-derivable itemsets is much more concise
than the complete collection of frequent itemsets, and often
even more concise than other concise representations. For
a discussion on the relation between NDI and the other
condensed representation we refer to [9].

2.3 The NDI Algorithm In [10], in a slightly different
form, the following theorem was proven:

Algorithm 1 Eclat
Input: D, σ, I ⊆ I
Output: F [I](D, σ)

1: F [I] := {}
2: for all i ∈ I occurring inD do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // CreateDi

5: Di := {}
6: for all j ∈ I occurring inD such thatj > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ σ then
9: Di := Di ∪ {(j, C)}

10: end if
11: end for
12: // Depth-first recursion
13: ComputeF [I ∪ {i}](Di, σ)
14: F [I] := F [I] ∪ F [I ∪ {i}]
15: end for

THEOREM 2.1. [10](Monotonicity) LetI ⊆ J be itemsets.
If supp(I) = δX(I), then, for allX ′ such thatX ⊆ X ′ ⊆
X ∪ (J \ I), supp(J) = δX′(J).

Hence, ifI is a derivable, thenJ is derivable as well.

Based on this theorem, a level-wise Apriori-like algorithm
was given in [10]. In fact, the NDI-algorithm corre-
sponds largely to constrained mining algorithms with non-
derivability as an anti-monotone constraint. In the candidate
generation phase of Apriori, additional to the monotonicity
check, the lower and upper bounds on the candidate itemsets
are computed. Such a check is possible, since in Apriori a
setI can only be a candidate after all its strict subsets have
been counted. The candidate itemsets that have an upper
bound below the minimal support threshold are pruned, be-
cause they cannot be frequent. The itemsets having lower
bound equal to the upper bound are pruned since they are
derivable. Because of Theorem 2.1, we know that the su-
persets of a derivable itemset will be derivable as well, and
hence, a derivable itemset can be pruned in the same way as
an infrequent itemset. Furthermore, from Theorem 2.1, we
can derive that if for a setI, supp(I) = lI , or supp(I) = uI ,
then all strict supersets ofI are derivable. These properties
lead straightforwardly to the level-wise algorithm NDI given
in [10].

3 The Eclat Algorithm

In this section we describe the Eclat-algorithm, since our
dfNDI-algorithm is based on it. Eclat was the first successful
algorithm proposed to generate all frequent itemsets in a
depth-first manner [18, 23]. Later, several other depth-first
algorithms have been proposed [1, 2, 13].

Given a transaction databaseD and a minimal support

252

thresholdσ, denote the set of all frequent itemsets with
the same prefixI ⊆ I by F [I](D, σ). Eclat recursively
generates for every itemi ∈ I the setF [{i}](D, σ). (Note
thatF [{}](D, σ) =

⋃
i∈I F [{i}](D, σ) contains all frequent

itemsets.)
For the sake of simplicity and presentation, we assume

that all items that occur in the transaction database are
frequent. In practice, all frequent items can be computed
during an initial scan over the database, after which all
infrequent items will be ignored.

In order to load the database into main memory, Eclat
transforms this database into itsvertical format. I.e., instead
of explicitly listing all transactions, each item is stored
together with its cover (also calledtidlist). In this way, the
support of an itemsetX can be easily computed by simply
intersecting the covers of any two subsetsY,Z ⊆ X, such
thatY ∪ Z = X.

The Eclat algorithm is given in Algorithm 1.
Note that a candidate itemset is represented by each

set I ∪ {i, j} of which the support is computed at line 7
of the algorithm. Since the algorithm doesn’t fully exploit
the monotonicity property, but generates a candidate itemset
based on only two of its subsets, the number of candidate
itemsets that are generated is much larger as compared to
a breadth-first approach such as apriori. As a comparison,
Eclat essentially generates candidate itemsets using onlythe
join step from Apriori, since the itemsets necessary for the
prune step are not available.

EXAMPLE 3. Let the minimal supportσ be2. We continue
working onD as given in Example 1. As illustrated in
Figure 1, Eclat starts with transforming the database into its
vertical format. Then, recursively, the conditional databases
are formed. The arcs indicate the recursion. The tree is
traversed depth-first, from left to right. For example, the
databaseDad is formed usingDa, by intersection the tid-
list of d with the tid-lists of all items that come afterd in Da.
The tid-lists with the item between brackets (e.g., the tid-list
for d in Dc) indicate lists that are computed, but that are not
in the conditional database because the item is infrequent.At
any time, only the parents of the conditional database being
constructed are kept in memory. For example, whenDad is
constructed, the databasesDa andD are in memory; once a
conditional database is no longer needed, it is removed from
memory.

A technique that is regularly used, is to reorder the items
in support ascending order. In Eclat, such reordering can be
performed at every recursion step between line 11 and line 12
in the algorithm.

The effect of such a reordering is threefold:

(1) The number of candidate itemsets that is generated is
reduced. The generation step of Eclat is comparable to

D
a b c d e

1 1 1 1 3
2 2 2 3 4
3 3 4 5 5
6 5 7 8 6
7 6 9 10 7
8 9 8

10 9
10

Da

b c d e

1 1 1 3
2 2 3 6
3 7 8 7
6 8

Db

c d e

1 1 3
2 3 5
9 5 6

10 9
10

Dc

(d) e

1 4
7
9

Dd

e

3
5
8
10

Dab

c d e

1 1 3
2 3 6

Dac

(d) (e)
1 7

Dad

e

3
8

Dbc

(d) (e)
1 9

Dbd

e

3
5
10

Dabc

(d) (e)
1

Dabd

(e)
3

Figure 1: Eclat traversal.

the join-step of Apriori: a seta1 . . . ak is generated if
botha1 . . . ak−1 anda1 . . . ak−2ak are frequent. By re-
ordering, the generating sets tend to have lower support
which results in less candidates.

(2) A second effect of the fact that the generating sets tend
to have lower support is that their tid-lists are smaller.

(3) At a certain depthd, the covers of at most allk-itemsets
with the samek − 1-prefix are stored in main memory,
with k ≤ d. Because of the item reordering, this
number is kept small.

Experimental evaluation in earlier work has shown that
reordering the items results in significant performance gains.

EXAMPLE 4. In Figure 2, we illustrate the effect of item
reordering on the dataset given in Example 1, with the same
support thresholdσ = 2. As compared to Example 3, the
tree is more balanced, the conditional databases are smaller,
and there are 3 less candidates generated.

3.1 Diffsets Recently, Zaki proposed a new approach to
efficiently compute the support of an itemset using the
vertical database layout [19]. Instead of storing the cover
of a k-itemsetI, the difference between the cover ofI and
the cover of thek − 1-prefix of I is stored, denoted by the
diffsetof I. To compute the support ofI, we simply need to
subtract the size of the diffset from the support of itsk − 1-
prefix. This support can be provided as a parameter within
the recursive function calls of the algorithm. The diffset of

253

(sorted) D

Dc

(d) a b e

1 1 1 4
2 2 7
7 9 9

Dd

a b e

1 1 3
3 3 5
8 5 8

10 10

Da

b e

1 3
2 6
3 7
6 8

Db

e

3
5
6
9
10

Dca

(e) b

7 1
2

Dcb

(e)
9

Dda

b e

1 3
3 8

Ddb

e

3
5
10

Dab

e

3
6

Ddab

(e)
3

Figure 2: Eclat traversal with reordered items.

an itemsetI ∪ {i, j}, given the two diffsets of its subsets
I ∪ {i} andI ∪ {j}, with i < j, is computed as follows:

diffset(I ∪ {i, j}) := diffset(I ∪ {j}) \ diffset(I ∪ {i}).

This technique has experimentally shown to result in signif-
icant performance improvements of the algorithm, now des-
ignated asdEclat [19]. The original database is still stored
in the original vertical database layout.

Notice incidentally that with item reordering,

supp(I ∪ {i}) ≤ supp(I ∪ {j}) .

Hence, diffset(I ∪ {i}) is larger thandiffset(I ∪ {j}).
Thus, to form diffset(I ∪ {i, j}), the largest diffset is
subtracted from the smallest, resulting in smaller diffsets.
This argument, together with the three effects of reordering
pointed out before, makes that reordering is a very effective
optimization.

EXAMPLE 5. In Figure 3, we illustrate the dEclat algorithm
with item reordering on the dataset given in Example 1, with
the same support thresholdσ = 2. The diffset of for example
dab (entryb in the conditional databaseDda), is formed by
subtracting the diffset ofda from the diffset fordb. Notice
that the items are ordered ascending w.r.t. their support,
and not w.r.t. the size of their diffset. The support ofdab

is computed as the support ofda (3) minus the size of its
diffset (1), which gives a support of2.

4 The dfNDI Algorithm

In this section we describe a depth-first algorithm for mining
all frequent non-derivable itemsets. The dfNDI algorithm
combines ideas behind the Eclat algorithm, the diffsets and
the deduction of supports into one hybrid algorithm.

The construction of the dfNDI-algorithm is based on the
following principles:

(sorted) D

∂Dc

(d) a b e

2 4 4 1
4 9 7 2
7
9

∂Dd

a b e

5 8 1
10

∂Da

b e

7 1
8 2

∂Db

e

1
2

∂Dca

(e) b

1 7
2

∂Dcb

(e)
1
2

∂Dda

b e

8 1

∂Ddb

e

1

∂Dab

e

1
2

∂Ddab

(e)
1

Figure 3: dEclat traversal with reordered items.

1. Just like Eclat, tidlists (and diffsets) will be used to
compute the support of itemsets. Recursively, condi-
tional databases will be formed. Hence, computing the
support of an itemset will, unlike in the breadth-first
version,not require a scan over the complete database.

2. There is one problem, however: to computeδX(I),
the supports of all setsJ such thatX ⊆ J ⊂ I

must be known. Since Eclat is a depth-first algorithm,
many of these supports are not available. This problem,
however, can be solved by changing the order in which
the search space is traversed. By changing the order,
we can keep a depth-first approach, and still have the
property that all subsets of a setI are handled beforeI
itself.

3. Because we need the support of already found sets to
compute bounds of their supersets, we will maintain the
found frequent non-derivable itemsets in a specialized
structure that allows fast lookup. Since the number
of non-derivable itemsets is in general much lower
than the number of frequent itemsets, the memory
requirements for the specialized storage is not too bad;
also, it is comparable to the amount of memory used in
the ChARM algorithm to store all found frequent closed
itemsets [22].

4. The deduction rules allow to extend the diffsets to
tidlists of arbitrary generalized itemsets. That is, if
we want to determine the support of a setI, we can
use the cover of any of the generalized itemsets based
on I. Then, based on the support of the generalized
itemsetX ∪ Y , and onδX(I), the support ofI itself
can be computed. This flexibility allows us to choose a
generalized itemset that has minimal cover size.

In the rest of the section we concentrate on these four
points. Then, we combine them and give the pseudo-code of
dfNDI, which is illustrated with an example.

254

4.1 Order of Search Space Traversal We show next how
we can guarantee in the Eclat-algorithm that for all sets
I the support of its subsets is computed beforeI itself is
handled. In Eclat, the conditional databases are computed in
the following order (see Example 3):

D → Da → Dab → Dabc → Dabcd

→ Dabd

→ Dac → Dacd

→ Dad

→ Db → Dbc → Dbcd

→ Dbd

→ Dc → Dcd

→ Dd

Since the support of a seta1 . . . an is computed as the
cardinality of the tidlist ofan in the conditional database
Da1...an−1 , the supports of the itemsets are compute in the
following order:

{a, b, c, d, e}, {ab, ac, ad, ae}, {abc, abd, abe},
{abcd, abce}, {abcde}, {abde}, {acd, ace},
{acde}, {ade}, {bc, bd, be}, {bcd, bce}, {bcde},
{bde}, {cd, ce}, {cde}, {de}

Hence, for example, when the support ofabcd is computed,
the supports ofbc, bd, cd, acd, andbcd are not counted yet.
Therefore, when the search space is explored in this way,
all rules forabcd that use one of these five sets cannot be
computed.

An important observation now is that for every setI,
all subsets either occuron the recursion pathto I, or after
I. For example, the support ofabcd is computed inDabc.
The supports of the subsets ofabcd are either computed on
the recursive path:a, b, c, d in D, ab, ac, ad in Da, abc, abd

in Dab, or after abcd: acd in Dac, which is constructed
after the recursion belowDab, bc, bd in Db, which comes
after the recursion belowDa has ended, andcd in Dc,
which comes after the recursion belowDb has ended. We
can view the recursive structure between the conditional
databases in Eclat as a tree, in which the children are ordered
lexicographically, as is illustrated in Figure 4. This treeis by
Eclat traversed depth-first, and from left-to-right; that is: in
pre-order. Let the node associated with an itemsetI be the
node of the conditional database in which the support ofI is
computed. The observation can now be restated as follows:
the nodes of the subsets ofI are either on the path fromD to
the node ofI, or are in a branch that comes afterI, neverin
a branch that comesbeforethe branch ofI.

Hence, we can change the order as follows: the same
tree is traversed, still depth-first, but, from right to left. We
will call this order thereverse pre-order. The numbers in the
nodes of the tree in Figure 4 indicate the reverse pre-order.
In this way, the path fromD to the node of a setI remains

D 1

Da 9 Db 5 Dc 3 Dd 2

Dab 13 Dac 11 Dad 10 Dbc 7 Dbd 6 Dcd 4

Dabc 15 Dabd 14 Dacd 12 Dbcd 8

Dabcd 16

Figure 4: Recursive structure between the conditional data-
bases

the same, but all branches that come after the branch ofI,
are now handledbeforethe branch ofI. As such, in reverse
pre-order, all subsets ofI are handled beforeI itself.

Besides enabling a depth-first algorithm for mining non-
derivable itemsets, the reverse pre-order has other applica-
tions as well: a similar technique can be used when min-
ing downwards closed collections of itemsets in a depth-first
manner while preserving full pruning capabilities. It must
be noted however that this ability comes the cost to store all
found itemsets in the collection. Hence, the usefulness of this
technique can be compromised when the downward closed
collection becomes too large. For such large collections it
is probably better to sacrifice part of the pruning in order
to loose the store of generated itemsets. For small collec-
tions though, the reverse pre-order is very useful. Many con-
densed representations, such as the non-derivable itemsets,
are typical examples of relatively small downward closed
collections of itemsets.

Notice also that the reverse pre-order has no repercus-
sions on performance or memory usage; the same covers are
computed, and the same covers are in memory simultane-
ously; only theorder in which they are generated differs.
However, now we are guaranteed thatall subsets ofI are
handled beforeI itself.

Another very important remark is that this guarantee
remains even when at every step in the recursion the items
in the conditional databases are reordered according to their
support. Hence, we can still apply the important item
reordering techniques.

EXAMPLE 6. Consider the tree in Example 4 that was con-
structed with item reordering. The numbers in the nodes in-
dicate the reverse pre-order.

The reason that the same relation between a set and
its subsets still applies can be seen as follows: the itemset
abde is counted in the conditional databaseDdab as the
cardinality of the tidlist ofe. Hence, the order in which the
items ofabde were selected is:dabe. That is: (a) in the
databaseD, d came beforea, b and e; (b) in Dd, a came
beforeb and e; and (c) inDda, b came beforee. Since the

255

D 1

Dc 9 Dd 5 Da 3 Db 2

Dca 11 Dcb 10 Dda 7 Ddb 6 Dab 4

Ddab 8

items in a conditional database are processed backwards in
the recursion, therefore, (a)a, b, d, e are inD, andab, ae,
be, abe are handled beforeDd is constructed, (b)ad, bd and
de are in Dd, and bde handled beforeDda is constructed,
and (c)ade andabd are inDda.

In general, letI be an itemset and the elements ofI are
chosen in the orderi1 . . . in. LetJ be a strict subset ofI. If J

corresponds to a prefix ofi1 . . . in, thenJ is computed on the
recursive path toDi1...in−1 . Otherwise, letij be the first item
of i1 . . . in that is not inJ . Then, in the conditional database
Di1...ij−1 , all items inJ \ {i1, . . . , ij−1} come strictly after
ij , and hence, the node forJ is on the right of the node forI
and is thus visited beforeI in the reverse pre-order.

4.2 Storing the Found NDIs The frequent non-derivable
itemsets are stored together with their supports in a structure
that allows for fast look-up of the supports. The itemsets
are stored in such a way that fast lookup of the supports is
possible. In our implementations, an itemset trie was used
for this purpose.

In the extreme case that the number of non-derivable
itemsets becomes too large to be maintained in main mem-
ory, a condensed representation [15] can be used as well. For
example, only the closed itemsets [16] could be stored. Fi-
nally, remark that it is not uncommon that an algorithm needs
to maintain itemsets in main memory. Most closed itemset
mining algorithms need to store the found frequent closed
sets in main memory (e.g. Charm [21]).

4.3 Generalizing the Diffsets In Eclat and dEclat, the
conditional databaseDI∪{i} is generated from the database
DI if this database contains itemi. All itemsj > i that are in
DI will be in the conditional databaseDI∪{i}. In Eclat, the
tidlist of j in DI∪{i} is computed by intersecting the tidlists
of i andj in DI . In dEclat, not the tidlists are maintained
in the conditional databases, but the diffsets. The diffsetof
j in DI∪{i} is computed by subtracting the diffset ofi in
DI from the diffset ofj in DI . Hence, with the general-
ized itemsets notation, in Eclat the conditional database for
DI∪{i} contains for all itemsj > i, (j, cover(I ∪ {i, j})).
dEclat maintains for all itemsj > i, (j, cover(I ∪ {i, j}))
in the conditional databaseDI∪{i}.

In dfNDI, we will use a similar procedure. First of

Input: D, σ

Output: Dl

1: for all k occurring inD afterl do
2: // k is eitherj or j

3: C[k] := cover({l}) ∩ cover({k})
4: C[k] := cover({i}) \ cover({k})
5: if {i, j} is σ-frequentthen
6: if |C[j]| ≤ |C[j]| then
7: D{i} := D{i} ∪ {(j, C[j])}
8: else
9: D{i} := D{i} ∪ {(j, C[j])}

10: end if
11: end if
12: end for

Figure 5: Recursive construction ofDl in dfNDI

all, the diffsets are extended to covers of arbitrary gen-
eralized itemsets. That is, not only covers of the type
cover(I ∪ {i, j}) andcover(I ∪ {i, j}) will be considered,
but alsocover(X ∪ Y) for any generalized itemsetX ∪ Y

based onI ∪ {i, j}. Secondly, the choice for which type
of cover is not static in dfNDI. In contrast, in Eclatalways
cover(I ∪ {i, j}), and in dEclat,alwayscover(I ∪ {i, j}) is
used. In dfNDI, this choice will be postponed to run-time. At
run-time both covers are computed, and the one with mini-
mal size is chosen. In this way it is guaranteed that the size
of the covers at leasthalvesfromD toDi. The calculation of
both covers can be done with minimal overhead in the same
iteration. When iterating over the cover of{i}, the set of
all tid’s that are not incover({i}) ∩ cover({j}) is exactly
cover({i}) \ cover({j}).

Let D be a database that contains tidlists of both items
and of negations of items. Letl be the list associated with
item i. That is, l is either i or i. The procedure used in
dfNDI to construct the conditional databaseDl from D is
given in Figure 5. The procedure is applied recursively.
Suppose that we have recursively constructed databaseDG,
with G = X ∪ Y a generalized itemset. For every itemi
(resp. negated itemi) in DG, the cardinality of the tidlist is in
fact the support of the generalized itemsetX∪{i}∪Y (resp.
X ∪ Y ∪ {i}) The support test in line 5 is then performed
using the deduction rules as explained in Section 2. For
example, supposel = i andk = j. Let J = X ∪ Y ∪ {i, j}.
The valueδX∪{i}(J) is computed (using the stored supports)
and from this value and the size of the cover ofX∪{i, j}∪Y ,
the support ofJ can be found:

supp(J) = δX∪{i}(J) + (−1)|Y |supp(X ∪ {i, j} ∪ Y)

Notice also that if C[j] (resp. C[j]) is empty,
supp(G ∪ {i, j}) = 0 (resp. supp(G ∪ {i, j}) = 0). From
Theorem 2.1, we can derive that in that situation, every su-
perset ofX ∪ Y ∪ {i, j}) is a derivable itemset.

256

EXAMPLE 7. Consider the following databaseD, and the
conditional databasesDa andDab:

D
a b c d

1 1 2 1
2 2 4 2
3 3 5 3
5 7 6 9
8 7

→

Da

b c d

5 2 5
8 5 8

→
Dab

c d

5

Da containsb becausecover(a) \ cover(b) is smaller than

cover(a) ∩ cover(b). Dab contains d since cover(b) \
cover(d) is smaller thancover(b) ∩ cover(d) in Da.

The support ofabc is counted via the cover ofc in Dab.
Since this cover contains one element,supp(abc) = 1, and
hence,

supp(abc) = supp(ac) − supp(abc) = 2 − 1 = 1.

The support ofab is found in the trie that maintains the found
frequent non-derivable itemsets. Notice that the cover ofd

in Dab is empty. Therefore,supp(abd) = 0, and thus, every
superset ofabd is derivable.

4.4 The Full dfNDI Algorithm The combination of
the techniques discussed in this section give the dfNDI-
algorithm described in Algorithm 2. In the recursion, the
generalized itemsetG that corresponds to the items or
negated items that were chosen up to that point, must be
passed on. Hence, the set of all frequent NDIs is given by
dfNDI(D, σ, {}). We assume thatD is given in vertical for-
mat, and that all items inD are frequent.

As already mentioned before, reordering the items in
the different conditional databases does not fundamentally
change the algorithm. With reordering, we are still guar-
anteed that all subsets of an itemsetI are handled beforeI
itself. Therefore, in the experiments, we will use item re-
ordering techniques to speed up the computation. There are
different interesting orderings possible:

1. Ascending w.r.t. support: the advantages of this order-
ing are that the number of generated candidates is re-
duced, and that the tree is more balanced. Since for
every candidate, lower and upper bounds on the sup-
port are computed, generating less candidates can be
very interesting.

2. Ascending w.r.t. size of the cover: with this ordering,
the size of the covers will in general be smaller, since
the covers of the first items in the order are used more
often than the covers of the items later in the ordering.

Depending on the application, either the first or the last
ordering will be better. Which one is the best probably

Algorithm 2 dfNDI

Input: D, σ,G = X ∪ Y

Output: dfNDI(D, σ,G)
1: dfNDI := {}
2: for all l that occur inD, ordered descendingdo
3: // l = i or l = i, for an itemi

4: dfNDI := dfNDI ∪ {(X ∪ Y ∪ {i})}
5: // CreateDl

6: Dl := {}
7: for all k occurring inD afterl do
8: // k = j or k = j, for an itemj

9: // Let J = X ∪ Y ∪ {i, j}
10: Compute bounds[l, u] on support ofJ ;
11: if l 6= u andu ≥ σ then
12: // J in an NDI
13: StoreJ in the separate trie
14: // Compute the support ofJ
15: C[k] := cover({l}) ∩ cover({k})
16: C[k] := cover({l}) \ cover({k})
17: // |C[j]| is supp(X ∪ Y ∪ {l, j})
18: Computesupp(J) based on the support of its

subsets and on|C[j]|
19: if supp(J) ≥ σ and supp(J) 6= l and

supp(J) 6= u then
20: if |C[j]| ≤ |C[j]| then
21: Dl := Dl ∪ {(j, C[j])}
22: else
23: Dl := Dl ∪ {(j, C[j])}
24: end if
25: end if
26: end if
27: end for
28: // Depth-first recursion
29: ComputedfNDI(Dl, σ,G ∪ {l})
30: dfNDI := dfNDI ∪ dfNDI(Dl, σ,G ∪ {l})
31: end for

257

depends on the selectivity of non-derivability versus the
selectivity of frequency. If most sets are pruned due to non-
derivability, the second ordering will be more interesting
than the first. If frequency is the main pruner, the first order
is more interesting.

There are many different variants possible of the dfNDI
algorithm. Depending on the situation, one variant may be
better than the other.

1. Ordering the items in the conditional databases, as
described above.

2. Since computing the bounds can be very costly, we
want to avoid this work as much as possible. Hence,
in situations where frequency is highly selective, it is
better to switch the support test and the non-derivability
test. That is, lines 10 and 11 in Algorithm 2 are
moved to after the if-test on line 19. Evidently, the test
supp(J) 6= l, u is removed from the if-test on line 19 to
after the calculation of the bounds. Hence, only bounds
are computed on itemsets that are frequent.

3. Another possibility to reduce the amount of work on
the calculation of the bounds is not to compute all
bounds, but only a limited number. A similar approach
already turned out to be quite useful in the context of the
breadth-first NDI-algorithm [10]. There, the depth of a
rule based onX ∪ Y was defined as|Y |. The lower the
depth of a rule, the less complex. Instead of computing
all rules, only rules up to a limited depth can be used. In
practice it turned out that most of the time using rules
up to depth3 does not affect the precision of the rules.
Put elsewhere, most work is done by the rules of limited
depth.

EXAMPLE 8. We illustrate the dfNDI algorithm on the data-
base of Example 3. Every conditional database is ordered
ascending w.r.t. the size of the cover. The tid-lists with the
item between brackets indicate lists that are computed, but
that are not in the conditional database, because the itemset
I associated with the item is either (a) infrequent (e.g.d in
Dc)), or (b) supp(I) = lI or supp(I) = uI . In case (b),I
is a frequent NDI, but all supersets ofI are derivable. The
items in case (b) are indicated in bold.

We start with the databaseD. Because of the reverse
pre-order that is used, first the databaseDb is constructed.
Only iteme comes afterb in D. The lower and upper bounds
onbe are computed.lbe = supp(b)+supp(e)−supp(∅) = 5,
ube = supp(b) = 7. Hence,be is not derivable. Both
cover(b)∩cover(e) andcover(b)\cover(e) are constructed.
|cover(b) ∩ cover(e)| = 5, and hence,supp(be) = 5. Since
supp(be) = lbe, all supersets ofbe must be derivable.

NextDa is constructed. Forab the following lower and
upper bound is computed:lab = 3, uab = 6. The two covers
cover({a}) ∩ cover({b}) andcover({a}) \ cover({b}) are

computed. From the size of these covers, the support ofab

is computed:supp(ab) = 4. Because the support differs
from the lower and the upper bound,b will be in Da. Since
cover({a}) \ cover({b}) was the smallest of the two covers,
(b, cover({a}) \ cover({b})) is added. Then the iteme is
handled. The bounds forae are: lae = 4, uae = 6. Thus,ae

is non-derivable. The two covers forae are computed and
the support is derived:supp(ae) = 4. Becausesupp(ae) =
lae, item e will not be added toDa, because all supersets
of ae must be derivable. This procedure continuous until all
items are handled. In the construction ofDde, it turns out
that ade is derivable, sinceδd(ade) = 2, andδ∅(ade) = 2,
and hencelade = uade = 2.

D

Db

(e)
1
2

Da

b (e)
7 1
8 2

Dd

b e a

8 1 5
10

Dc

(d) a b (e)
1 4 4 1

9 7 2

Dde

(a)

Ddb

(e) (a)

Dca

b (e)
9

The collection of frequent non-derivable itemsets in this
example is:

{∅, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, ce, de, abc, abd}

5 Experiments

The experiments were performed on a 1.5GHz Pentium IV
PC with 1GB of main memory. To empirically evaluate
the proposed dfNDI-algorithm, we performed several tests
on the datasets summarized in the following table. For
each dataset, the table shows the number of transactions, the
number of items, and the average transaction length.

Dataset # trans. # items Avg. length
BMS-POS 515 597 1 656 6,53
Chess 3 196 76 37
Pumsb 49 046 2 112 74
Mushroom 8 124 120 23

These datasets are all well-known benchmarks for fre-
quent itemset mining. TheBMS-POSdataset contains click-
stream data from a small dot-com company that no longer
exists. These two datasets were donated to the research com-
munity by Blue Martini Software. ThePumsb-dataset is
based on census data, theMushroomdataset contains char-
acteristics from different species of mushrooms. TheChess
dataset contains different game configurations. The Pumsb
dataset is available in the UCI KDD Repository [14], and
the Mushroom and Chess datasets can be found in the UCI
Machine Learning Repository [6].

Obviously, as the number of non-derivable frequent
itemsets is significantly smaller than the total number of
frequent itemsets, it would be unfair to compare the per-

258

formance of the proposed algorithm with any other normal
frequent itemset mining algorithm. Indeed, as soon as the
threshold is small enough or the data is highly correlated,
it is well known that traditional techniques fail, simply due
to the massive amount of frequent sets that is produced,
rather than any inherent algorithmic characteristic of theal-
gorithms. Therefore, we merely compare the performance of
dfNDI with NDI. Also note that a thorough comparison of
the sizes of different condensed representations has already
been presented in [10] and will not be repeated here.

In our experiments, we compared the NDI algorithm
with three different versions of the dfNDI algorithm. The
first version, ‘dfNDI’, is the regular one as described in
this paper. The second version, ‘dfNDI - negations’, does
not allow to use the covers of generalized itemsets, and
hence, stores the full cover of every candidate itemset and
always computes the covers by intersecting the covers of
two subsets. The third version, ‘dfndi + support order’ is the
dfNDI algorithm in which items are dynamically reordered
in every recursion step accoring to their support, while
the regular dfNDI algorithm orders the items according
to the cover of the generalized itemset it represents. All
experiments were performed for varying minimum support
thresholds. The result can be seen in Figures 6 and 7.

First, we compared the time performance of these four
algorithms. As expected, dfNDI performs much better
compared to NDI. Using the smallest cover of a generalized
itemset based on the current itemset also has a significant
effect, which is especially visible in the pumsb dataset. This
is of course mainly due to the faster set intersection and set
difference operations on the smaller covers. Ordering the
items according to the size of the covers also proves to be
better as compared to ordering according to the support of
the items, although the difference is never very big.

In the second experiment, we compare the memory
usage of the four algorithms. As can be seen, the NDI
algorithm needs least amount of memory. Of course, this
is expected as the dfNDI also stores parts of the database in
main memory. Fortunately, the optimization of storing only
the smallest cover of each generalized itemset indeed shows
to result in reduced memory usage. Again, the ordering
based on the cover seems to result in a little bit better
memory usage.

6 Conclusion

In this paper, we presented a new itemset search space
traversal strategy, which allows depth-first itemset mining
algorithms to exploit the frequency knowledge of all subsets
of a given candidate itemset. Second, we presented a
depth-first non-derivable itemset mining algorithm, which
uses that traversal as it needs for every generated candidate
itemset, all of its subsets. From the viewpoint of condensed
representations of frequent sets, the non-derivable itemset

collection has already been shown to be superior to all other
representations in almost all cases. Third, we generalized
the diffsets technique and store the cover of an itemset
containing several negated items. These covers are typically
much smaller than the usual covers of regular itemsets,
and hence, allow faster set intersection and set difference
operations. The resulting algorithm, dfNDI, thus inherits
all positive characteristics from several different techniques
allowing fast discovery of a reasonable amount of frequent
itemsets that are not derivable from their subsets. These
claims are supported by several experiments on real life
datasets.

References

[1] R. Agarwal, C. Aggarwal, and V. Prasad. Depth first genera-
tion of long patterns. In R. Ramakrishnan, S. Stolfo, R. Ba-
yardo, Jr., and I. Parsa, editors,Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 108–118. ACM Press, 2000.

[2] R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection
algorithm for generation of frequent itemsets.Journal of
Parallel and Distributed Computing, 61(3):350–371, March
2001.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In P. Buneman
and S. Jajodia, editors,Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of Data, vol-
ume 22(2) ofSIGMOD Record, pages 207–216. ACM Press,
1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. InProc. VLDB Int. Conf. Very Large Data
Bases, pages 487–499, Santiago, Chile, 1994.

[5] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.
Mining frequent patterns with counting inference.SIGKDD
Explorations, 2(2):66–75, 2000.

[6] C. Blake and C. Merz. The UCI
Repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Informa-
tion and Computer Science, 1998.

[7] J.-F. Boulicaut and A. Bykowski. Frequent closures as a con-
cise representation for binary data mining. InProc. PaKDD
Pacific-Asia Conf. on Knowledge Discovery and Data Min-
ing, pages 62–73, 2000.

[8] T. Calders. Deducing bounds on the support of itemsets. In
Database Technologies for Data Mining, chapter ?, pages ?–?
Springer, 2003.

[9] T. Calders and B. Goethals. Minimalk-free representations
of frequent sets. InProc. PKDD Int. Conf. Principles of Data
Mining and Knowledge Discovery, pages 71–82, 2002.

[10] T. Calders and B. Goethals. Mining all non-derivable frequent
itemsets. InProc. PKDD Int. Conf. Principles of Data Mining
and Knowledge Discovery, pages 74–85. Springer, 2002.

[11] J. Galambos and I. Simonelli.Bonferroni-type Inequalities
with Applications. Springer, 1996.

259

1

10

100

1000

0500100015002000250030003500400045005000

T
im

e
(s

ec
)

Minimum Support

bmspos.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(a) BMSPOS

0.01

0.1

1

10

100

050010001500200025003000

T
im

e
(s

ec
)

Minimum Support

chess.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(b) chess

0.1

1

10

0200400600800100012001400160018002000

T
im

e
(s

ec
)

Minimum Support

mushroom.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(c) mushroom

1

10

100

1000

200002500030000350004000045000

T
im

e
(s

ec
)

Minimum Support

pumsb.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(d) pumsb

Figure 6: Performance comparison.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InProc. ACM SIGMOD Int. Conf.
Management of Data, pages 1–12, Dallas, TX, 2000.

[13] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach.Data Mining and Knowledge Discovery, 2003. To
appear.

[14] S. Hettich and S. D. Bay. The UCI KDD Archive.
[http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science, 1999.

[15] H. Mannila and H. Toivonen. Multiple uses of frequent sets
and condensed representations. InProc. KDD Int. Conf.
Knowledge Discovery in Databases, 1996.

[16] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discov-
ering frequent closed itemsets for association rules. InProc.
ICDT Int. Conf. Database Theory, pages 398–416, 1999.

[17] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm
for mining frequent closed itemsets. InACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge
Discovery, Dallas, TX, 2000.

[18] M. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering,
12(3):372–390, May/June 2000.

[19] M. Zaki and K. Gouda. Fast vertical mining using diffsets.
In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos,
editors,Proceedings of the Eight ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM
Press, 2003.

[20] M. Zaki and C. Hsiao. ChARM: An efficient algorithm for
closed association rule mining. InTechnical Report 99-10,
Computer Science, Rensselaer Polytechnic Institute, 1999.

[21] M. Zaki and C. Hsiao. ChARM: An efficient algorithm for
closed association rule mining. InProc. SIAM Int. Conf. on
Data Mining, 2002.

[22] M. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for
closed itemset mining. In R. Grossman, J. Han, V. Kumar,
H. Mannila, and R. Motwani, editors,Proceedings of the Sec-
ond SIAM International Conference on Data Mining, 2002.

[23] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New al-
gorithms for fast discovery of association rules. In D. Heck-

260

100000

1e+06

1e+07

1e+08

1e+09

0500100015002000250030003500400045005000

S
iz

e
(b

yt
e)

Minimum Support

bmspos.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(a) BMSPOS

10000

100000

1e+06

1e+07

1e+08

1e+09

050010001500200025003000

S
iz

e
(b

yt
e)

Minimum Support

chess.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(b) chess

10000

100000

1e+06

1e+07

1e+08

0200400600800100012001400160018002000

S
iz

e
(b

yt
e)

Minimum Support

mushroom.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(c) mushroom

100000

1e+06

1e+07

1e+08

1e+09

200002500030000350004000045000

S
iz

e
(b

yt
e)

Minimum Support

pumsb.dat

NDI
dfNDI + support order

dfNDI - negations
dfNDI

(d) pumsb

Figure 7: Memory usage comparison.

erman, H. Mannila, and D. Pregibon, editors,Proceedings of
the Third International Conference on Knowledge Discovery
and Data Mining, pages 283–286. AAAI Press, 1997.

261

Exploiting relationships for domain-independent data cleaning∗†

Dmitri V. Kalashnikov Sharad Mehrotra Zhaoqi Chen

Computer Science Department
University of California, Irvine

Abstract
In this paper we address the problem of reference dis-
ambiguation. Specifically, we consider a situation where
entities in the database are referred to using descriptions
(e.g., a set of instantiated attributes). The objective of
reference disambiguation is to identify the unique entity
to which each description corresponds. The key differ-
ence between the approach we propose (called RelDC)
and the traditional techniques is that RelDC analyzes
not only object features but also inter-object relation-
ships to improve the disambiguation quality. Our exten-
sive experiments over two real datasets and also over
synthetic datasets show that analysis of relationships
significantly improves quality of the result.

1 Introduction

Recent surveys [3] show that more than 80% of re-
searchers working on data mining projects spend more
than 40% of their project time on cleaning and prepa-
ration of data. The data cleaning problem often arises
when information from heterogeneous sources is merged
to create a single database. Many distinct data cleaning
challenges have been identified in the literature: deal-
ing with missing data [20], handling erroneous data [21],
record linkage [6, 7], and so on. In this paper we ad-
dress one such challenge which we refer to as reference
disambiguation.

The reference disambiguation problem arises when
entities in a database contain references to other enti-
ties. If entities were referred to using unique identifiers
then disambiguating those references would be straight-
forward. Instead, frequently, entities are represented us-
ing properties/descriptions that may not uniquely iden-
tify them leading to ambiguity. For instance, a database
may store information about two distinct individuals
‘Donald L. White’ and ‘Donald E. White’, both of whom
are referred to as ‘D. White’ in another database. Ref-
erences may also be ambiguous due to differences in the
representations of the same entity and errors in data

∗RelDC project (http://www.ics.uci.edu/~dvk/RelDC)
†This work was supported in part by NSF grants 0331707,

0331690, and IRI-9703120.

entries (e.g., ‘Don White’ misspelled as ‘Don Whitex’).
The goal of reference disambiguation is for each refer-
ence to correctly identify the unique entity it refers to.

The reference disambiguation problem is related to
the problem of record deduplication or record linkage
[7, 6] that often arises when multiple tables (from
different data sources) are merged to create a single
table. The causes of record linkage and reference
disambiguation problems are similar; viz., differences in
representations of objects across different datasets, data
entry errors, etc. The differences between the two can
be intuitively viewed using the relational terminology
as follows: while the record linkage problem consists of
determining when two records are the same, reference
disambiguation corresponds to ensuring that references
(i.e., “foreign keys”1) in a database point to the correct
entities.

Given the tight relationship between the two data
cleaning tasks and the similarity of their causes, ex-
isting approaches to record linkage can be adapted for
reference disambiguation. In particular, feature-based
similarity (FBS) methods that analyze similarity of
record attribute values (to determine whether or not
two records are the same) can be used to determine if a
particular reference corresponds to a given entity or not.
This paper argues that the quality of disambiguation
can be significantly improved by exploring additional
semantic information. In particular, we observe that
references occur within a context and define relation-
ships/connections between entities. For instance, ‘D.
White’ might be used to refer to an author in the con-
text of a particular publication. This publication might
also refer to different authors, which can be linked to
their affiliated organizations etc, forming chains of re-
lationships among entities. Such knowledge can be ex-
ploited alongside attribute-based similarity resulting in
improved accuracy of disambiguation.

In this paper, we propose a domain-independent

1We are using the term foreign key loosely. Usually, foreign
key refers to a unique identifier of an entity in another table.
Instead, foreign key above means the set of properties that serve
as a reference to an entity.

262

data cleaning approach for reference disambiguation, re-
ferred to as Relationship-based Data Cleaning (RelDC),
that systematically exploits not only features but also
relationships among entities for the purpose of disam-
biguation. RelDC views the database as a graph of en-
tities that are linked to each other via relationships. It
first utilizes a feature based method to identify a set
of candidate entities (choices) for a reference to be dis-
ambiguated. Graph theoretic techniques are then used
to discover and analyze relationships that exist between
the entity containing the reference and the set of candi-
dates.

The primary contributions of this paper are: (1)
developing a systematic approach to exploiting both at-
tributes as well as relationships among entities for refer-
ence disambiguation (2) establishing that exploiting re-
lationships can significantly improve the quality of refer-
ence disambiguation by testing the developed approach
over 2 real-world datasets as well as synthetic datasets.

This paper presents the core of the RelDC ap-
proach, details of RelDC can be found in [16] where we
discuss various implementations, optimizations, compu-
tational complexity, sample content and sample graphs
for real datasets, and other issues not covered in this
paper. The rest of this paper is organized as follows.
Section 2 presents a motivational example. In Section 3,
we precisely formulate the problem of reference disam-
biguation and introduce notation that will help explain
the RelDC approach. Section 4 describes the RelDC ap-
proach. The empirical results of RelDC are presented
in Section 5. Section 6 contains the related work, and
Section 7 concludes the paper.

2 Motivation for analyzing relationships
In this section we will use an instance of the “author
matching” problem to illustrate that exploiting rela-
tionships among entities can improve the quality of
reference disambiguation. We will also schematically
describe one approach that analyzes relationships in
a systematic domain-independent fashion. Consider a

w
2 = ?

w1 = ?

P1

P2

P3

Dave White

Don White

Susan Grey

John Black

Intel

CMU

MIT

1

Joe BrownP4

Liz Pink

P5

P62

w3 = ?

w 4
=

?

Figure 1: Graph for the publications example

database about authors and publications. Authors are
represented in the database using the attributes 〈id,
authorName, affiliation〉 and information about pa-
pers is stored in the form 〈id, title, authorRef1, . . . ,
authorRefN〉. Consider a toy database consisting of the
following authors and publications records.
1. 〈A1, ‘Dave White’, ‘Intel’〉,

2. 〈A2, ‘Don White’, ‘CMU’〉,
3. 〈A3, ‘Susan Grey’, ‘MIT’〉,
4. 〈A4, ‘John Black’, ‘MIT’〉,
5. 〈A5, ‘Joe Brown’, unknown〉,
6. 〈A6, ‘Liz Pink’, unknown〉.
1. 〈P1, ‘Databases . . . ’, ‘John Black’, ‘Don White’〉,
2. 〈P2, ‘Multimedia . . . ’, ‘Sue Grey’, ‘D. White’〉,
3. 〈P3, ‘Title3 . . . ’, ‘Dave White’〉,
4. 〈P4, ‘Title5 . . . ’, ‘Don White’, ‘Joe Brown’〉,
5. 〈P5, ‘Title6 . . . ’, ‘Joe Brown’, ‘Liz Pink’〉,
6. 〈P6, ‘Title7 . . . ’, ‘Liz Pink’, ‘D. White’〉.
The goal of the author matching problem is to

identify for each authorRef in each paper the correct
author it refers to.

We can use existing feature-based similarity (FBS)
techniques to compare the description contained in each
authorRef in papers with values in authorName at-
tribute in authors. This would allow us to resolve almost
every authorRef references in the above example. For
instance, such methods would identify that ‘Sue Grey’
reference in P2 refers to A3 (‘Susan Grey’). The only
exception will be ‘D. White’ references in P2 and P6:
‘D. White’ could match either A1 (‘Dave White’) or A2

(‘Don White’).
Perhaps, we could disambiguate the reference ‘D.

White’ in P2 and P6 by exploiting additional attributes.
For instance, the titles of papers P1 and P2 might be
similar while titles of P2 and P3 might not, suggesting
that ‘D. White’ of P2 is indeed ‘Don White’ of paper
P1. We next show that it may still be possible to
disambiguate the references ‘D. White’ in P2 and P6

by analyzing relationships among entities even if we are
unable to disambiguate the references using title (or
other attributes).

First, we observe that author ‘Don White’ has co-
authored a paper (P1) with ‘John Black’ who is at MIT,
while the author ‘Dave White’ does not have any co-
authored papers with authors at MIT. We can use this
observation to disambiguate between the two authors.
In particular, since the co-author of ‘D. White’ in P2 is
‘Susan Grey’ of MIT, there is a higher likelihood that
the author ‘D. White’ in P2 is ‘Don White’. The reason
is that the data suggests a connection between author
‘Don White’ with MIT and an absence of it between
‘Dave White’ and MIT.

Second, we observe that author ‘Don White’ has
co-authored a paper (P4) with ‘Joe Brown’ who in turn
has co-authored a paper with ‘Liz Pink’. In contrast,
author ‘Dave White’ has not co-authored any papers
with either ‘Liz Pink’ or ‘Joe Brown’. Since ‘Liz Pink’
is a co-author of P6, there is a higher likelihood that ‘D.
White’ in P6 refers to author ‘Don White’ compared
to author ‘Dave White’. The reason is that often co-
author networks form groups/clusters of authors that

263

do related research and may publish with each other.
The data suggests that ‘Don White’, ‘Joe Brown’ and
‘Liz Pink’ are part of the cluster, while ‘Dave White’ is
not.

At first glance, the analysis above (used to disam-
biguate references that could not be resolved using con-
ventional feature-based techniques) may seem ad-hoc
and domain dependent. A general principle emerges
if we view the database as a graph of inter-connected
entities (modeled as nodes) linked to each other via
relationships (modeled as edges). Figure 1 illustrates
the entity-relationship graph corresponding to the toy
database consisting of authors and papers records. In
the graph, entities containing references are linked to
the entities they refer to. For instance, since the refer-
ence ‘Sue Grey’ in P2 is unambiguously resolved to au-
thor ‘Susan Grey’, paper P2 is connected by an edge to
author A3. Similarly, paper P5 is connected to authors
A5 (‘Joe Brown’) and A6 (‘Liz Pink’). The ambiguity
of the references ‘D. White’ in P2 and P6 is captured
by linking papers P2 and P6 to both ‘Dave White’ and
‘Don White’ via two “choice nodes” (labeled ‘1’ and ‘2’
in the figure). These “choice nodes” serve as OR-nodes
in the graph and represent the fact that the reference
‘D. White’ refers to either one of the entities linked to
the choice nodes.

Given the graph view of the toy database, the
analysis we used to disambiguate ‘D. White’ in P2 and
P6 can be viewed as an application of the following
general principle:

Context Attraction Principle (CAP): If refer-
ence r made in the context of entity x refers to an entity
yj whereas the description provided by r matches mul-
tiple entities y1, . . . , yj, . . . , yN , then x and yj are likely
to be more strongly connected to each other via chains of
relationships than x and yl (l = 1, 2, . . . , N ; l �= j).

The first observation we made, regarding disam-
biguation of ‘D. White’ in P2, corresponds to the
presence of the following path (i.e., relationship chain
or connection) between the nodes ‘Don White’ and
P2 in the graph: P2 � ‘Susan Grey’ � ‘MIT’ �

‘John Black’ � P1 � ‘Don White’. Similarly, the sec-
ond observation, regarding disambiguation of ‘D. White’
in P6 as ‘Don White’, was based on the presence of the
following path: P6 � ‘Liz Pink’ � P5 � ‘Joe Brown’ �

P4 � ‘Don White’. There were no paths between P2

and ‘Dave White’ or between P6 and ‘Dave White’ (if
we ignore ‘1’ and ‘2’ nodes). So, after applying the CAP
principle, we concluded that the ‘D. White’ references
in both cases probably corresponded to the author ‘Don
White’. In general, there could have been paths not only
between P2 (P6) and ‘Don White’ but also between P2

(P6) and ‘Dave White’. In that case, to determine if ‘D.

White’ is ‘Don White’ or ‘Dave White’ we should have
been able to measure whether ‘Don White’ or ‘Dave
White’ is more strongly connected to P2 (P6).

The generic approach therefore first discovers con-
nections between the entity, in the context of which the
reference appears and the matching candidates for that
reference. It then measures the connection strength of
the discovered connections in order to give preference to
one of the matching candidates. The above discussion
naturally leads to two questions:

1. Does the context attraction principle hold over real
datasets. That is, if we disambiguate references
based on the principle, will the references be cor-
rectly disambiguated?

2. Can we design a generic solution to exploiting
relationships for disambiguation?

Of course, the second question is only important if the
answer to the first is yes. However, we cannot really
answer the first unless we develop a general strategy
to exploiting relationships for disambiguation and test-
ing it over real data. We will develop one such gen-
eral, domain-independent strategy for exploiting rela-
tionships for disambiguation which we refer to as RelDC
in Section 4. We perform extensive testing of RelDC
over both real data from two different domains as well
as synthetic data to establish that exploiting relation-
ships (as is done by RelDC) significantly improves the
data quality. Before we develop RelDC, we first develop
notation and concepts needed to explain our approach
in Section 3.

3 Problem formalization
3.1 Notation Let D be the database which con-
tains references that are to be resolved. Let X =
{x1, x2, . . . , x|X|} be the set of all entities in D. Entities
here have the same meaning as in the E/R model. Each
entity xi consists of a set of properties and contains a
set of nxi references xi.r1, xi.r2, . . . , xi.rnxi

. Each ref-
erence xi.rk is essentially a description and may itself
consist of one or more attributes xi.rk.b1, xi.rk.b2,
For instance, in the example from Section 2, paper en-
tities contain one-attribute authorRef references in the
form 〈author name〉. If, besides author names, author
affiliation were also stored in the paper records, then
authorRef references would have consisted of two at-
tributes – 〈author name, author affiliation〉.

Choice set. Each reference xi.rk semantically
refers to a single specific entity in X which we denote by
d[xi.rk]. The description provided by xi.rk may, how-
ever, match a set of one or more entities in X . We refer
to this set as the choice set of reference xi.rk and de-
note it by CS[xi.rk]. The choice set consists of all the
entities that xi.rk could potentially refer to. We assume

264

CS[xi.rk] is given for each xi.rk. If it is not given, we
assume a feature-based similarity approach is used to
construct CS[xi.rk] by choosing all of the candidates
such that FBS similarity between them and xi.rk ex-
ceed a given threshold. To simplify notation, we will
always assume CS[xi.rk] has N (i.e., N = |CS[xi.rk]|)
elements y1,y2,. . . ,yN .

3.2 The Entity-Relationship Graph RelDC
views the resulting database D as an undirected entity-
relationship graph (also known as Attributed Relational
Graph (ARG)) G = (V,E), where V is the set of nodes
and E is the set of edges. Each node corresponds to
an entity and each edge to a relationship. Notation
v[xi] denotes the vertex in G that corresponds to entity
xi ∈ X . Note that if entity u contains a reference to
entity v, then the nodes in the graph corresponding to u
and v are linked since a reference establishes a relation-
ship between the two entities. For instance, authorRef
reference from paper P to author A corresponds to “A
writes P” relationship.

In the graph G, edges have weights, nodes do not
have weights. Each edge weight is a real number in [0, 1],
which reflects the degree of confidence the relationship,
corresponding to the edge, exists. For instance, in the
context of our author matching example, if we are 100%
confident ‘John Black’ is affiliated with MIT, then we
assign weight of 1 to the corresponding edge. But if
we are only 80% confident, we assign the weight of 0.80
to that edge. By default all weights are equal to 1.
Notation “edge label” means the same as “edge weight”.

References and linking. If CS[xi.rk] has only
one element, then xi.rk is resolved to y1, and graph
G contains an edge between v[xi] and v[y1]. This edge
is assigned a weight of 1 to denote that the algorithm
is 100% confident that d[xi.rk] is y1. If CS[xi.rk] has

v[xi]

v[yN]

cho[xi.rk]

v[y1]

v[y2]w0=1

...

w 1=?

w
N=?

w2=? N nodes
for entities
in CS[xi.rk]

e0

e 1

eN

e2

Figure 2: A choice node

more than 1 elements, then graph G contains a choice
node cho[xi.rk], as shown in Figure 2, to reflect the
fact that d[xi.rk] can be one of y1, y2, . . . , yN . Node
cho[xi.rk] is linked with node v[xi] via edge e0 =
(v[xi], cho[xi.rk]). Node cho[xi.rk] is also linked with N
nodes v[y1], v[y2], . . . , v[yN], for each yj in CS[xi.rk], via
edges ej = (cho[xi.rk], v[yj]) (j = 1, 2, . . . , N). Nodes
v[y1], v[y2], . . . , v[yN] are called the options of choice
cho[xi.rk]. Edges e1, e2, . . . , eN are called the option-
edges of choice cho[xi.rk]. The weights of option-edges

are called option-edge weights or simply option weights.
The weight of edge e0 is 1. Each weight wj of edges
ej (j = 1, 2, . . . , N) is undefined initially. Since these
option-edges e1, e2, . . . , eN represent mutually exclusive
alternatives, the sum of their weights should be 1:
w1 + w2 + · · ·+ wN = 1.

3.3 The objective of reference disambiguation
To resolve reference xi.rk means to choose one entity yj

from CS[xi.rk] in order to determine d[xi.rk]. If entity
yj is chosen as the outcome of such a disambiguation,
then xi.rk is said to be resolved to yj or simply resolved.
Reference xi.rk is said to be resolved correctly if this
yj is d[xi.rk]. Notice, if CS[xi.rk] has just one element
y1 (i.e., N = 1), then reference xi.rk is automatically
resolved to y1. Thus reference xi.rk is said to be
unresolved or uncertain if it is not resolved yet to any
yj and also N > 1.

From the graph theoretic perspective, to resolve
xi.rk means to assign weights of 1 to one edge ej,
1 ≤ j ≤ N and assign weights of 0 to the other N − 1
edges e1, e2, . . . , ej−1, ej+1, . . . , eN . This will indicate
that the algorithm chooses yj as d[xi.rk].

The goal of reference disambiguation is to resolve
all references as correctly as possible, that is for each
reference xi.rk to correctly identify d[xi.rk]. We will
use notation Resolve(xi.rk) to refer to the procedure
which resolves xi.rk. The goal is thus to construct such
Resolve(·) which should be as accurate as possible. The
accuracy of reference disambiguation is the fraction of
references being resolved that are resolved correctly.

The alternative goal is for each yj ∈ CS[xi.rk]
to associate weight wj that reflects the degree of con-
fidence that yj is d[xi.rk]. For that alternative goal,
Resolve(xi.rk) should label each edge ej with such a
weight. Those weights can be interpreted later to
achieve the main goal: for each xi.rk try to identify
only one yj as d[xi.rk] correctly. We emphasize this al-
ternative goal since most of the discussion of RelDC ap-
proach is devoted to one approach for computing those
weights. An interpretation of those weights (in order to
try to identify d[xi.rk]) is a small final step of RelDC.
Namely, we achieve this by picking yj such that wj is
the largest among w1, w2, . . . , wN . That is, the outcome
of Resolve(xi.rk) is yj : wj = maxN

l=1 wl.

3.4 Connection Strength and Context Attrac-
tion Principle As mentioned before, RelDC resolves
references based on context attraction principle that was
discussed in Section 2. We now state the principle more
formally. Crucial to the principle is the notion of con-
nection strength between two entities xi and yj (denoted
c(xi, yj) which captures how strongly xi and yj are con-
nected to each other through relationships. Many differ-

265

ent approaches can be used to measure c(xi, yj) which
will be discussed in Section 4. Given the concept of
c(xi, yj), we can restate the context attraction principle
as follows:

Context Attraction Principle: Let xi.rk be
a reference and y1, y2, . . . , yN be elements of its
choice set CS[xi.rk] with corresponding option weights
w1, w2, . . . , wN (recall that w1+w2+· · ·+wN = 1). The
CAP principle states that for all l, j ∈ [1, N], if cl ≥ cj

then wl ≥ wj , where cl = c(xi, yl) and cj = c(xi, yj).

4 The RelDC approach
We now have developed all the concepts and notation
needed to explain RelDC approach for reference disam-
biguation. Input to RelDC is the entity-relationship
graph G discussed in Section 3 in which nodes corre-
spond to entities and edges to relationships. We assume
that feature-based similarity approaches have been used
in constructing the graph G. The choice nodes are cre-
ated only for those references that could not be dis-
ambiguated using only attribute similarity. RelDC will
exploit relationships for further disambiguation and will
output a resolved graph G in which each entity is fully
resolved.

RelDC disambiguates references using the following
four steps:

1. Compute connection strengths. For each
reference xi.rk compute the connection strength
c(xi, yj) for each yj ∈ CS[xi.rk]. The result is a
set of equations that relate c(xi, yj) with the op-
tion weights: c(xi, yj) = gij(w). Here, w denote
the set of all option weights in the graph G.

2. Determine equations for option weights. Us-
ing the equations from Step 1 and the CAP, deter-
mine a set of equations that relate option weights
to each other.

3. Compute weights. Solve the set of equations
from Step 2.

4. Resolve References. Utilize/interpret the
weights computed in Step 3 as well as attribute-
based similarity to resolve references.

We now discuss the above steps in more detail in
the following subsections.

4.1 Computing Connection Strength Computa-
tion of c(xi, yj) consists of two phases. The first phase
discovers connections between xi and yj . The second
phase computes/measures the strength in connections
discovered by the first phase.

4.1.1 The connection discovery phase. In gen-
eral there can be many connections between v[xi] and
v[yj] in G. Intuitively, many of those (e.g., very long

ones) are not very important. To capture most impor-
tant connections while still being efficient, the algorithm
computes the set of all L-short simple paths PL(xi, yj)
between nodes v[xi] and v[yj] in graph G. A path is
L-short if its length is no greater than parameter L. A
path is simple if it does not contain duplicate nodes.

Illegal paths. Not all of the discovered paths
are considered when computing c(xi, yj) (to resolve
reference xi.rk). Let e1, e2, . . . , eN be the option-edges
associated with the reference xi.rk. When resolving
xi.rk, RelDC tries do determine the weights of these
edges via connections that exist in the remainder of
the graph not including those edges. To achieve this,

cho[xi.rk]

?

?
Graph

?
v[xi]

v[y1]

v[y2]

v[yN]

Figure 3: Graph

u va

N-2
...

b

Figure 4: c(p)?

RelDC actually discovers paths not in graph G, but
in G̃ = G − cho[xi.rk], see Figure 3. That is, G̃
is graph G with node cho[xi.rk] removed. Also, in
general, paths considered when computing c(xi, yj) may
contain option-edges of some choice nodes. If a path
contains an option-edge of a choice node, it should not
contain another option-edge of the same choice node.
For instance, if a path used to compute connection
strength between two nodes in the graph contained an
option edge ej of the choice node shown in Figure 2,
it must not contain any of the rest of the option-edges
e1, e2, . . . , ej−1, ej+1, . . . , eN .

4.1.2 Computing connection strength A natural
way to compute the connection strength c(u, v) between
nodes u and v is to compute it as the probability to
reach node v from node u via random walks in graph G
where each step is done with certain probability. Such
problems have been studied for graphs in the previous
work under Markovian assumptions. The graph in our
case is not Markovian due to presence of illegal paths
(introduced by choice nodes). So those approaches
cannot be applied directly. In [16] we have developed
the probabilistic model (PM) which treats edge weights
as probabilities that those edges exist and which can
handle illegal paths. In this section we present the
weight-based model (WM) which is a simplification of
PM. Other models can be derived from [11, 24].

WM is a very intuitive model which is suited well
for illustrating issues related to computing c(u, v). WM
computes c(u, v) as the sum

∑
p∈PL(u,v) c(p) of the

connection strength c(p) of each path p in PL(u, v).
The connection strength c(p) of path p from u to v is
the probability to follow path p in graph G. Next we

266

explain how WM computes c(p).
Motivating c(p) formula. Which factors should

be taken into account when computing the connection
strength c(p) of each individual path p?

Figure 4 illustrates two different paths (or connec-
tions) between nodes u and v: pa=u�a�v and pb=u�b
�v. Assume that all edges in this figure have weight of
1. Let us understand which connection is better.

Both connections have an equal length of two. One
connection is going via node a and the other one via b.
The intent of Figure 4 is to show that b “connects” many
things, not just u and v, whereas a “connects” only u
and v. We argue the connection between u and v via b is
much weaker than the connection between u and v via
a: since b connects many things it is not surprising we
can connect u and v via b. For example, for the author
matching problem, u and v can be two authors, a can
be a publication and b a university.

To capture the fact that c(pa) > c(pb), we measure
c(pa) and c(pb) as the probabilities to follow paths pa

and pb respectively. Notice, measures such as path
length, network flow do not capture this fact. We
compute those probabilities as follows. For path pb we
start from u. Next we have a choice to go to a or b
with probabilities of 1

2 , and we choose to follow (u, b)
edge. From node b we can go to any of the N − 1 nodes
(cannot go back to u) but we go specifically to v. So
the probability to reach v via path pb is 1

2(N−1) . For
path pa we start from u, we go to a with probability 1

2
at which point we have no choice but to go to v, so the
probability to follow pa is 1

2 .

w
m

,i

w
1,

i

w
2,

i

v1 vm
w1,0

w1,n
1 w 1,1

n1

... ...

So
ur

ce wm-1,0...

wm,nm w m,1

nm

... ...

D
es

tin
at

io
n

edge E1,0

v2
w2,0

w2,n
2 w 2,1

n2

... ...

Figure 5: Computing c(p) of path p = v1 � v2 � · · · �
vm. Only “possible-to-follow” edges are shown.

General WM formula. In general, each L-short
simple path p can be viewed as a sequence of m nodes
v1, v2, . . . , vm, where m ≤ L + 1, as shown in Figure 5.
Figure 5 shows that from node vi it is possible to follow2

ni+1 edges labeled wi,0, wi,1, . . . , wi,ni . The probability
to follow the edge labeled wi,0 is proportional to weight
wi,0 and computed as wi,0/(

∑ni

j=0 wi,j). The probability
to follow path p is computed as the probability to follow
each of its edges:

(4.1) c(p) =
m−1∏
i=1

wi,0∑ni

j=0 wi,j
.

2It is not possible to follow zero-weight edges, and edges
following which would make the path not simple.

The total connection strength between nodes u and v is
computed as the sum of connection strengths of paths
in PL(u, v):
(4.2) c(u, v) =

∑
p∈PL(u,v)

c(p).

Measure c(u, v) is the probability to reach v from u
by following only L-short simple paths, such that the
probability to follow an edge is proportional to the
weight of the edge.

For instance, for the toy database we have:
1. c1 = c(P2, ‘Dave White’) = c(P2 � Susan � MIT �

John � P1 � Don � P4 � Joe � P5 � Liz � P6 �

‘2’ � Dave White) = w3
2
.

2. c2 = c(P2, ‘Don White’) = c(P2 � Susan � MIT �

John � P1 � ‘Don White’) = 1.
3. c3 = c(P6, ‘Dave White’) =

w1
2

4. c4 = c(P6, ‘Don White’) = 1

4.2 Determining equations for option-edge
weights Given the connection strength measures
c(xi, yj) for each unresolved reference xi.rk and its op-
tions yj , we can use the context attraction principle to
determine the relationships between the weights associ-
ated with the option-edges in the graph G. Note that
the context attraction principle does not contain any
specific strategy on how to relate weights to connection
strengths. Any strategy that assigns weight such that if
cl ≥ cj then wl ≥ wj is appropriate, where cl = c(xi, yl)
and cj = c(xi, yj). In particular, we use the strategy
where weights w1, w2, . . . , wN are proportional to the
corresponding connection strengths: wj · cl = wl · cj.
Using this strategy weight wj (j = 1, 2, . . . , N) is com-
puted as:

(4.3) wj =

{
cj/(

∑N
l=1 cl) if

∑N
l=1 cl > 0;

1
N if

∑N
l=1 cl = 0.

For instance, for the toy database we have:
1. w1 = c1/(c1 + c2) =

w3
2

/(1 + w3
2
)

2. w2 = c2/(c1 + c2) = 1/(1 +
w3
2
)

3. w3 = c3/(c3 + c4) =
w1
2

/(1 + w1
2
)

4. w4 = c4/(c3 + c4) = 1/(1 +
w1
2
)

4.3 Determining all weights by solving equa-
tions. Given a system of equations relating option-edge
weights as derived in Section 4.2, our goal next is to de-
termine values for the option-edge weights that satisfy
the equations. Before we discuss how such equations can
be solved in general, let us first solve the option-edge
weight equations in the toy example. These equations,
given an additional constraint that all weights should
be in [0, 1], have a unique solution w1 = 0, w2 = 1,
w3 = 0, and w4 = 1. Once we have computed the
weights, RelDC will interpret these weights to resolve
the references. In the toy example, weights w1 = 0,

267

w2 = 1, w3 = 0, and w4 = 1 will lead RelDC to resolve
‘D. White’ in both P2 and P6 to ‘Don White’.

In general case, Equations (4.3), (4.1), and (4.2)
define each option weight as a function of other option
weights: wi = fi(w). The exact function for wj is
determined by Equations (4.3), (4.1), and (4.2) and by
the paths that exist between v[xi] and v[yj] in G. Often,
in practice, fi(w) is constant leading to the equation of
the form wi = const.

The goal is to find such a combination of weights
that “satisfies” the system of wi = fi(w) equations
along with the constraints on the weights. Since a
system of equations, each of the type wi = fi(w), might
not have an exact solution, we transform the equations
into the form fi(w)−δi ≤ wi ≤ fi(w)+δi. Here variable
δi, called tolerance, can take on any real nonnegative
value. The problem transforms into solving the NLP
problem where the constraints are specified by the
inequalities above and the objective is to minimize the
sum of all δi’s. Additional constraints are: 0 ≤ wi ≤ 1,
δi ≥ 0, for all wi, δi. In [16] we argue that such a system
of equations always has a solution.

The straightforward approach to solving the result-
ing NLP problem is to use one of the off-the-shelf math
solver such as SNOPT. Such solvers, however, do not
scale to large problem sizes that we encounter in data
cleaning as will be discussed in Section 5. We therefore
exploit a simple iterative approach, which is outlined
below.3 The iterative method first iterates over each
reference xi.rk and assigns weight of 1

|CS[xi.rk]| to each
wj . It then starts its major iterations in which it first
computes c(xi, yj) for all i and j, using Equation (4.2).
Then it uses those c(xi, yj)’s to compute all wj ’s using
Equation (4.3). Note that the values of wj ’s will change
from 1

|CS[xi.rk]| to new values. The algorithm performs
several major iterations until the weights converge (the
resulting changes across iterations are negligible) or the
algorithm is explicitly stopped.

Let us perform one iteration of the iterative method
for the example above. First w1 = w2 = 1

2 and
w3 = w4 = 1

2 . Next c1 = 1
4 , c2 = 1, c3 = 1

4 , and
c4 = 1. Finally, w1 = 1

5 , w2 = 4
5 , w3 = 1

5 , and w4 = 4
5 .

If we stop the algorithm at this point and interpret wj ’s,
then the RelDC’s answer is identical to that of the exact
solution: ‘D. White’ is ‘Don White’.

Note that the above described iterative procedure
computes only an approximate solution for the system
whereas the solver finds the exact solution. Let us refer
to iterative implementation of RelDC as Iter-RelDC and

3Methods different from Iter-RelDC can be used to compute an
approximate solution as well: e.g. [16] sketches another solution
which is based on computing the bounding intervals for the option
weights and then applying the techniques from [9, 8, 10].

denote the implementation that uses a solver as Solv-
RelDC. For both Iter-RelDC and Solv-RelDC, after the
weights are computed, those weights are interpreted
to produce the final result, as discussed in Section 4.
It turned out that the accuracy of Iter-RelDC (with
a small number of iterations, such as 10–20) and of
Solv-RelDC is practically identical. This is because
even though the iterative method does not find the
exact weights, those weights are close enough to those
computed using a solver. Thus, when the weights are
interpreted, both methods obtain similar results.

4.4 Resolving references by interpreting
weights. When resolving references xi.rk and deciding
which entity among y1, y2, . . . , yN from CS[xi.rk] is
d[xi.rk], RelDC chooses such yj that wj is the largest
among w1, w2, . . . , wN . Notice, to resolve xi.rk we
could have also combined wj weights with feature-based
similarities FBS(xi, yj) (e.g., as a weighted sum), but
we do not study that approach in this paper.

5 Experimental Results

In this section we experimentally study RelDC us-
ing two real (publications and movies) and synthetic
datasets. RelDC was implemented using C++ and
SNOPT solver [4]. The system runs on a 1.7GHz Pen-
tium machine. We test and compare the following im-
plementations of RelDC:

1. Iter-RelDC vs. Solv-RelDC. If neither ‘Iter-’
nor ‘Solv-’ is specified, Iter-RelDC is assumed.

2. WM-RelDC vs. PM-RelDC. The prefixes indi-
cate whether the weight-based model (WM) from
Section 4.1.2 or probabilistic model (PM) from [16],
is used for computing connection strengths. By de-
fault WM-RelDC is assumed.

In each of the RelDC implementations, the value of
L used in computing the L-short simple paths is set to
7 by default. In [16] we show that WM-Iter-RelDC is
one of the best implementations of RelDC in terms of
both accuracy and efficiency. That is why the bulk of
our experiments use that implementation.

5.1 Case Study 1: the publications dataset

5.1.1 Datasets In this section we will introduce Re-
alPub and SynPub datasets. Our experiments will solve
author matching (AM) problem, defined in Section 2, on
these datasets.

RealPub dataset. RealPub is a real dataset con-
structed from two public-domain sources: CiteSeer[1]
and HPSearch[2]. CiteSeer can be viewed as a collec-
tion of research publications, HPSearch as a collection of
information about authors. HPSearch can be viewed as

268

a set of 〈id, authorName, department, organization〉
tuples. That is the affiliation consists of not just or-
ganization like in Section 2, but also of department.
Information stored in CiteSeer is in the same form as
specified in Section 2, that is 〈id, title, authorRef1,
. . . , authorRefN〉 per each paper. [16] contains sample
content of CiteSeer and HPSearch as well as the corre-
sponding entity-relationship graph.

paper_id: int
authorRef1: str
...
authorRefN: str

auth_id: int
authorName: str
deptRef: int

dept_id: int
deptName: str
orgRef: int

org_id: int
orgName: str

paper author

author department

department organization

[1]

[2]

[3]

(1) paper (2) author

(3) department (4) organization

(a) Types of Ent./Rel.

0

20

40

60

80

100

1 2 3

P
er

ce
nt

ag
e

of
 fi

rs
t n

am
es

 id
en

tif
ie

d
co

rr
ec

tly

1: FBS
2: Solver-RelDC, L=4
3: Iterative-RelDC, L=8

35
.9

%

55
.6

% 63
.2

%

(b) Ident. first names

Figure 6: Experiments

The various types of entities and relationships
present in RealPub are shown in Figure 6(a). RealPub
consists of 4 types of entities: papers (255K), authors
(176K), organizations (13K), and departments (25K).
To avoid confusion we use “authorRef” for author
names in paper entities and “authorName” for author
names in author entities. There are 573K authorRef’s
in total. Our experiments on RealPub will explore the
efficacy of RelDC in resolving these references.

To test RelDC, we first constructed an entity-
relationship graph G for the RealPub database. Each
node in the graph corresponds to an entity of one of
these types. If author A is affiliated with department
D, then there is (v[A], v[D]) edge in the graph. If
department D is a part of organization U , then there
is (v[D], v[U]) edge. If paper P is written by author A,
then there is (v[A], v[P]) edge. For each of the 573K
authorRef references, feature-based similarity (FBS)
was used to construct its choice set.

In the RealPub dataset, the paper entities refer to
authors using only their names (and not affilia-
tions). This is because the paper entities are derived
from the data available from CiteSeer which did not di-
rectly contain information about the author’s affiliation.
As a result, only similarity of author names was used to
initially construct the graph G.

This similarity has been used to construct choice
sets for all authorRef references. As the result, 86.9%
(498K) of all authorRef references had choice set of
size one and the corresponding papers and authors were
linked directly. For the remaining 13.1% (75K) refer-

ences, 75K choice nodes were created in the graph G.
RelDC was used to resolve these remaining references.
The specific experiments conducted and results will be
discussed later in this section. Notice that the RealPub
dataset allowed us to test RelDC only under the condi-
tion that a majority of the references are already cor-
rectly resolved. To test robustness of the technique we
tested RelDC over synthetic datasets where we could
vary the uncertainty in the references from 0 to 100%.

SynPub dataset. We have created two synthetic
datasets SynPub1 and SynPub2, that emulate RealPub.
The synthetic datasets were created since, for the Re-
alPub dataset, we do not have the true mapping be-
tween papers and the authors of those papers. Without
such a mapping, as will become clear when we describe
experiments, testing for accuracy of reference disam-
biguation algorithm requires a manual effort (and hence
experiments can only validate the accuracy over small
samples). In contrast, since in the synthetic datasets,
the paper-author mapping is known in advance, ac-
curacy of the approach can be tested over the entire
dataset. Another advantage of the SynPub dataset is
that by varying certain parameters we can manually
control the nature of this dataset allowing for the eval-
uation of all aspects of RelDC under various condi-
tions (e.g., varying level of ambiguity/uncertainty in the
dataset).

Both the SynPub1 and SynPub2 datasets contain
5000 papers, 1000 authors, 25 organizations and 125
departments. The average number of choice nodes that
will be created to disambiguate the authorRef’s is 15K
(notice, the whole RealPub dataset has 75K choice
nodes). The difference between SynPub1 and SynPub2
is that author names are constructed differently: Syn-
Pub1 uses unc1 and SynPub2 uses unc2 as will be ex-
plained shortly.

5.1.2 Accuracy experiments In our context, the
accuracy is the fraction of all authorRef references
that are resolved correctly. This definition includes the
references that have choice sets of cardinality 1.

Experiment 1 (RealPub: manually checking
samples for accuracy). Since the correct paper-
author mapping is not available for RealPub, it is in-
feasible to test the accuracy on this dataset. However it
is possible to find a portion of this paper-author mapping
manually for a sample of RealPub by going to authors
web pages and examining their publications.

We have applied RelDC to RealPub in order to test
the effectiveness of analyzing relationships. To analyze
the accuracy of the result, we concentrated only on the
13.1% of uncertain authorRef references. Recall, the
cardinality of the choice set of each such reference is
at least two. For 8% of those references there were

269

no xi � yj paths for all j’s, thus RelDC used only
FBS and not relationships. Since we want to test the
effectiveness of analyzing relationships, we remove those
8% of references from further consideration as well. We
then chose a random samples of 50 papers that were still
left under consideration. For this sample we compared
the reference disambiguation result produced by RelDC
with the true matches. The true matches for authorRef
references in those papers were computed manually. In
this experiment, RelDC was able to resolve all of the 50
sample references correctly! This outcome is in reality
not very surprising since in the RealPub datasets, the
number of references that were ambiguous was only
13.1%. Our experiments over the synthetic datasets
will show that RelDC reaches very high disambiguation
accuracy when the number of uncertain references is not
very high.

Ideally, we would have liked to have performed
further accuracy tests over RealPub by either testing on
larger samples (more than 50) and/or repeating the test
multiple times (in order to establish confidence levels).
However, this is infeasible due to the time-consuming
manual nature of this experiments.

Experiment 2 (RealPub: accuracy of identifying
author first names). We conducted another experi-
ment over RealPub dataset to test the efficacy of RelDC
in disambiguating references which we describe below.

We first remove from RealPub all the paper entities
which have an authorRef in format “first initial +
last name”. This leaves only papers with authorRef’s
in format “full first name + last name”. Then we
pretend we only know “first initial + last name” for
those authorRef’s. Next we run FBS and RelDC
and see whether or not they would disambiguate those
authorRef’s to authors whose full first names coincide
with the original full first names. In this experiment, for
82% of the authorRef’s the cardinality of their choice
sets is 1 and there is nothing to resolve. For the rest
18% the problem is more interesting: the cardinality of
their choice sets is at least 2. Figure 6(b) shows the
outcome for those 18%.

Notice that the reference disambiguation problem
tested in the above experiment is of a limited nature –
the tasks of identifying the correct first name of the
author and the correct author are not the same in
general.4 Nevertheless, the experiment allows us to test
the accuracy of RelDC over the entire database and does
show the strength of the approach.

Accuracy on SynPub. The next set of experi-
ments tests accuracy of RelDC and FBS approaches on

4It is not enough to determine that ‘J.’ in ‘J. Smith’ corre-
sponds to ‘John’ if there are multiple ‘John Smith”s in the dataset.

SynPub dataset. “RelDC 100%” (“RelDC 80%”) means
for 100% (80%) of author entities the affiliation informa-
tion is available. Once again, paper entities do not have
author affiliation attributes, so FBS cannot use affilia-
tion, see Figure 6(a). Thus those 100% and 80% have
no effect on the outcome of FBS. Notation ‘L=4’ means
RelDC explores paths of length no greater than 4.

Experiment 3 (Accuracy on SynPub1). SynPub1
uses uncertainty of type 1 defined as follows. There
are Nauth = 1000 unique authors in SynPub1. But
there are only Nname ∈ [1, Nauth] unique authorName’s.
We construct the authorName of the author with ID of
k, for k = 0, 1, . . . , 999, as “name” concatenated with
(k mod Nname). Each authorRef specifies one of those
authorName’s. Parameter unc1 is unc1 = Nauth

Nname
ratio.

For instance, if Nname is 750, then the authors with IDs
of 1 and 751 have the same authorName: “name1”, and
unc1 = 1000

750 = 1 1
3 . In SynPub1 for each author whose

name is not unique, one can never identify with 100%
confidence any paper this author has written. Thus the
uncertainty for such authors is very high.

Figure 7 studies the effect of unc1 on accuracy
of RelDC and FBS. If unc1 = 1.0, then there is no
uncertainty and all methods have accuracy of 1.0. As
expected, the accuracy of all methods monotonically
decreases as uncertainty increases. If unc1 = 2.0,
the uncertainty is very large: for any given author
there is exactly one another author with the identical
authorName. For this case, any FBS have no choice
but to guess one of the two authors. Therefore, the
accuracy of any FBS, as shown in Figures 7, is 0.5.
However, the accuracy of RelDC 100% (RelDC 80%)
when unc1 = 2.0 is 94%(82%). The gap between RelDC
100% and RelDC 80% curves shows that in SynPub1
RelDC relies substantially on author affiliations for the
disambiguation.

Comparing the RelDC implementations. Figure 8
shows that the accuracy results of WM-Iter-RelDC,
PM-Iter-RelDC, WM-Solv-RelDC implementations are
comparable. Figure 9 shows that Iter-RelDC is the
fastest implementation among them. The same trend
has been observed for all other tested cases.

Experiment 4 (Accuracy on SynPub2). SynPub2
uses uncertainty of type 2. In SynPub2, authorName’s
(in author entities) are constructed such that the follow-
ing holds, see Figure 6(a). If an authorRef reference (in
a paper entity) is in the format “first name + last name”
then it matches only one (correct) author. But if it is
in the format “first initial + last name” it matches ex-
actly two authors. Parameter unc2 is the fraction of
authorRef’s specified as “first initial + last name”. If
unc2 = 0, then there is no uncertainty and the accu-
racy of all methods is 1. Also notice that the case when

270

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

RelDC 100%, Iterative, L=8
RelDC 80%, Iterative, L=8

FBS
RelDC 100%, Iterative, L=4
RelDC 80%, Iterative, L=4

Figure 7: SynPub1: accuracy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4
WM, RelDC 80%, Solver, L=4

Figure 8: RelDC implementations

0

10

20

30

40

50

1 1.5 2 2.5 3

tim
e(

se
cs

)

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4
WM, RelDC 80%, Solver, L=4

Figure 9: SynPub1: efficiency

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

unc2

RelDC 100%
RelDC 80%
RelDC 50%
RelDC 25%
RelDC 0%

FBS

Figure 10: SynPub2: Acc. vs. unc2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac avail. affiliation

RelDC, unc1=1.75
FBS, unc1=1.75

RelDC, unc1=2.00
FBS, unc1=2.00

RelDC, unc2=0.95
FBS, unc2=0.95

Figure 11: SynPub: affiliation

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

3 4 5 6 7 8 9

ac
cu

ra
cy

L

RelDC 100%, unc1=2.00
RelDC 100%, unc1=3.00
RelDC 100%, unc2=0.50
RelDC 100%, unc2=0.75

Figure 12: SynPub: Acc vs. L

unc2 = 1.0 is equivalent to unc1 = 2.0.
There is less uncertainty in Experiment 4 then in

Experiment 3. This is because for each author there is
a chance that he is referenced to by his full name in
some of his papers, so for these cases the paper-author
associations are known with 100% confidence.

Figure 10 shows the effect of unc2 on the accuracy
of RelDC. As in Figure 7, in Figure 10 the accuracy de-
creases as uncertainty increases. However this time the
accuracy of RelDC is much higher. The fact that curves
for RelDC 100% and 80% are almost indiscernible until
unc2 reaches 0.5, shows that RelDC relies less heavily
on weak author affiliation relationships but rather on
stronger connections via papers.

5.1.3 Other experiments

Experiment 5 (Importance of relation-
ships). Figure 11 studies what effect the number
of relationships and the number of relationship types
have on the accuracy of RelDC. When resolving
authorRef’s, RelDC uses three types of relation-
ships: (1) paper-author, (2) author-department, (3)
department-organization.5 The affiliation relationships
(i.e., (2) and (3)) are derived from the affiliation
information in author entities.

The affiliation information is not always available
for each author entity in RealPub. In our synthetic

5Note, a ‘type of relationship’ (e.g., paper-author) is different
from a ‘chain of relationships’ (e.g., paper1-author1-dept1-. . .).

datasets we can manually vary the amount of available
affiliation information. The x-axis shows the fraction ρ
of author entities for which their affiliation is known. If
ρ = 0, then the affiliation relationships are eliminated
completely and RelDC has to rely solely on connections
via paper-author relationships. If ρ = 1, then the
complete knowledge of author affiliations is available.
Figure 11 studies the effect of ρ on accuracy. The
curves in this figure are for both SynPub1 and SynPub2:
unc1 = 1.75, unc1 = 2.00, and unc2 = 0.95. The
accuracy increases as ρ increases showing that RelDC
deals with newly available relationships well.

Experiment 6 (Longer paths). Figure 12 examines
the effect of path limit parameter L on the accuracy. For
all the curves in the figure, the accuracy monotonically
increases as L increases with the only one exception for
“RelDC 100%, unc1=2” and L = 8. The usefulness of
longer paths depends on the combination of other pa-
rameters. Typically, there is a tradeoff: larger values of
L lead to higher accuracy of disambiguation but slower
performance. The user running RelDC must decide the
value of L based on this accuracy/performance tradeoff
for the dataset being cleaned. For SynPub, L = 7 is a
reasonable choice.

Experiment 7 (Efficiency of RelDC). To show
the applicability of RelDC to a large dataset we have
successfully applied an optimized version of RelDC to
clean RealPub with L ranging from 2 up to 8. Figure 13
shows the execution time of RelDC as a function of the

271

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

ho
ur

s)

frac. of CiteSeer’s papers

RelDC, L=4
RelDC, L=5
RelDC, L=6
RelDC, L=8

Figure 13: RealPub: efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 14: RealMov: director refs.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 15: RealMov: studio refs.

fraction of papers from RealPub, e.g. 1.0 corresponds
to all papers in RealPub (the whole CiteSeer) dataset.
Notice, optimizations of RelDC are discussed only in
[16], they are crucial to achieve 1–2 orders of magnitude
of improvement in performance.

5.2 Case Study 2: the movies dataset

5.2.1 Dataset RealMov is a real public-domain
movies dataset described in [25] which has been made
popular by the textbook [13]. Unlike RealPub dataset,
in RealMov all the needed correct mappings are known,
so it is possible to test the disambiguation accuracy of
various approaches more extensively. However, Real-
Mov dataset is much smaller compared to the Re-
alPub dataset. RealMov contains entities of three types:
movies (11, 453 entities), studios (992 entities), and peo-
ple (22, 121 entities). There are five types of relation-
ships in the RealMov dataset: actors, directors, pro-
ducers, producingStudios, and distributingStudios. Re-
lationships actors, directors, and producers map entities
of type movies to entities of type people. Relationships
producingStudios and distributingStudios map movies to
studios. [16] contains the sample graph for RealMov
dataset as well as sample content of people, movies, stu-
dios and cast tables from which it has been derived.

5.2.2 Accuracy experiments

Experiment 8 (RealMov: Accuracy of disam-
biguating director references). In this experiment
we study the accuracy of disambiguating references from
movies to directors of those movies.

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

va
lu

e

size of choice sets

pmf

Figure 16: PMF of sizes of choice sets.

Since in RealMov each reference, including each
director reference, already points directly to the right
match, we artificially introduce ambiguity in the refer-

ences manually. Similar approach to testing data clean-
ing algorithms have also been used by other researchers,
e.g. [7]. Given the specifics of our problem, to study the
accuracy of RelDC we will simulate that we used FBS
to determine the choice set of each reference but FBS
was uncertain in some of the cases.

To achieve that, we first choose a fraction ρ of
director references (that will be uncertain). For each
reference in this fraction we will simulate that FBS part
of RelDC has done its best but still was uncertain as
follows. Each director reference from this fraction is
assigned a choice set of N people. One of those people
is the true director, the rest (N−1) are chosen randomly
from the set of people entities.

Figure 14 studies the accuracy as ρ is varied from
0 to 1 and where N is distributed according to the
probability mass function (pmf) shown in Figure 16, see
[16] for detail. The figure shows that RelDC achieves
better accuracy than FBS. The accuracy is 1.0 when
ρ = 0, since all references are linked directly. The
accuracy decreases almost linearly as ρ increases to 1.
When ρ = 1, the cardinality of the choice set of each
reference is at least 2. The larger the value of L, the
better the results. The accuracy of RelDC improves
significantly as L increases from 3 to 4. However, the
improvement is less significant as L increases from 4 to
5. Thus the analyst must decide whether to spend more
time to obtain higher accuracy with L = 5, or whether
L = 4 is sufficient.

Experiment 9 (RealMov: Accuracy of disam-
biguating studio references). This experiment is
similar to Experiment 8, but now we disambiguate pro-
ducingStudio, instead of director, references. Figure 15
corresponds to Figure 14. The RelDC’s accuracy of dis-
ambiguating studio references is even higher.

6 Related Work
Many research challenges have been explored in the
context of data cleaning in the literature: dealing with
missing data, handling erroneous data, record linkage,
and so on. The closest to the problem of reference

272

disambiguation addressed in this paper is the problem
of record linkage. The importance of record linkage is
underscored by the large number of companies, such
as Trillium, Vality, FirstLogic, DataFlux, which have
developed (domain-specific) record linkage solutions.

Researchers have also explored domain-independent
techniques, e.g. [23, 12, 14, 5, 22]. Their work can
be viewed as addressing two challenges: (1) improving
similarity function, as in [6]; and (2) improving effi-
ciency of linkage, as in [7]. Typically two-level similarity
functions are employed to compare two records. First,
such a function computes attribute-level similarities by
comparing values in the same attributes of two records.
Next the function combines the attribute-level similar-
ity measures to compute the overall similarity of two
records. A recent trend has been to employ machine
learning techniques, e.g. SVM, to learn the best simi-
larity function for a given domain [6]. Many techniques
have been proposed to address the efficiency challenge
as well: e.g. using specialized indexes [7], sortings, etc.

Those domain-independent techniques deal only
with attributes. To the best of our knowledge, RelDC,
which was first publicly released in [15], is the first
domain-independent data cleaning framework which ex-
ploits relationships for cleaning. Recently, in parallel
to our work, other researchers have also proposed us-
ing relationships for cleaning. In [5] Ananthakrishna
et al. employ similarity of directly linked entities, for
the case of hierarchical relationships, to solve the record
de-duplication challenge. In [19] Lee et al. develop an
association-rules mining based method to disambiguate
references using similarity of the context attributes: the
proposed technique is still an FBS method, but [19] also
discusses concept hierarchies which are related to rela-
tionships. Getoor et al. in DKDM04 use similarity of
attributes of directly linked objects, like in [5], for the
purpose of object consolidation. However, the challenge
of applying that technique in practice on real-world
datasets was identified as future work in that paper. In
contrast to the above described techniques, RelDC uti-
lize the CAP principle to automatically discover and an-
alyze relationship chains, thereby establishing a frame-
work that employs systematic relationship analysis for
the purpose of cleaning.

7 Conclusion

In this paper we have shown that analysis of inter-
object relationships is important for data cleaning and
demonstrated one approach that utilizes relationships.
As future work we plan to apply similar techniques
to the problem of record linkage. This paper outlines
only the core of the RelDC approach, for more details
the interested reader is referred to [16]. Another
interesting follow-up work [18] addresses the challenge

of automatically adapting RelDC to datasets at hand
by learning how to weigh different connections directly
from the data. Solving this challenge, in general, not
only makes the approach to be a plug-and-play solution
but also can improve the accuracy as well as efficiency
of the approach as discussed in [18].

References

[1] CiteSeer. http://citeseer.nj.nec.com/cs.
[2] HomePageSearch. http://hpsearch.uni-trier.de.
[3] Knowledge Discovery. http://www.kdnuggets.com/

polls/2003/data preparation.htm.
[4] SNOPT solver. http://www.gams.com/solvers/.
[5] Ananthakrishna, Chaudhuri, and Ganti. Eliminating

fuzzy duplicates in data warehouses. In VLDB, 2002.
[6] M. Bilenko and R. Mooney. Adaptive duplicate de-

tection using learnable string similarity measures. In
SIGKDD, 2003.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data clean-
ing. In Proc. of ACM SIGMOD Conf., 2003.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In Proc.
ACM SIGMOD Conf., 2003.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.
Querying imprecise data in moving object environ-
ments. IEEE TKDE, 16(9), Sept. 2004.

[10] R. Cheng, S. Prabhakar, and D. Kalashnikov. Query-
ing imprecise data in moving object environments. In
Proc. IEEE ICDE Conf., 2003.

[11] C. Faloutsos, K. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In SIGKDD, 2004.

[12] I. Fellegi and A. Sunter. A theory for record linkage.
J. of Amer. Stat. Assoc., 64(328):1183–1210, 1969.

[13] H. Garcia-Molina, J. Ullman, and J. Widom. Database
systems: the complete book. Prentice Hall, 2002.

[14] M. Hernandez and S. Stolfo. The merge/purge prob-
lem for large databases. In Proc. of SIGMOD, 1995.

[15] D. Kalashnikov and Mehrotra. Exploiting relationships
for data cleaning. TR-RESCUE-03-02, Nov. 2003.

[16] D. Kalashnikov and S. Mehrotra. Exploiting rela-
tionships for domain-independent data cleaning. Ex-
tended Version of SIAM Data Mining 2005 publication,
http://www.ics.uci.edu/∼dvk/pub/sdm05.pdf.

[17] D. V. Kalashnikov and S. Mehrotra. RelDC project.
http://www.ics.uci.edu/∼dvk/RelDC/.

[18] D. V. Kalashnikov and S. Mehrotra. Learning im-
portance of relationships for reference disambiguation.
Submitted for Publication, Dec. 2004. http://www.
ics.uci.edu/∼dvk/RelDC/TR/TR-RESCUE-04-23.pdf.

[19] M. Lee, W. Hsu, and V. Kothari. Cleaning the spurious
links in data. IEEE Intelligent Systems, Mar-Apr 2004.

[20] R. Little and D. Rubin. Statistical Analysis with
Missing Data. John Wiley and Sons, 1986.

[21] J. Maletic and A. Marcus. Data cleansing: Beyond
integrity checking. In Conf. on Inf. Quality, 2000.

[22] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with applica-
tion to reference matching. In ACM SIGKDD, 2000.

[23] Newcombe, Kennedy, Axford, and James. Automatic
linkage of vital records. Science, 130:954–959, 1959.

[24] S. White and P. Smyth. Algorithms for estimating
relative importance in networks. In SIGKDD, 2003.

[25] G. Wiederhold. www-db.stanford.edu/pub/movies/.

273

A Spectral Clustering Approach To Finding Communities in Graphs∗

Scott White†and Padhraic Smyth†

Abstract
Clustering nodes in a graph is a useful general technique
in data mining of large network data sets. In this context,
Newman and Girvan [9] recently proposed an objective func-
tion for graph clustering called the Q function which allows
automatic selection of the number of clusters. Empirically,
higher values of the Q function have been shown to correlate
well with good graph clusterings. In this paper we show how
optimizing the Q function can be reformulated as a spectral
relaxation problem and propose two new spectral clustering
algorithms that seek to maximize Q. Experimental results
indicate that the new algorithms are efficient and effective
at finding both good clusterings and the appropriate number
of clusters across a variety of real-world graph data sets. In
addition, the spectral algorithms are much faster for large
sparse graphs, scaling roughly linearly with the number of
nodes n in the graph, compared to O(n2) for previous clus-
tering algorithms using the Q function.

1 Introduction

Large complex graphs representing relationships among
sets of entities are an increasingly common focus of
scientific inquiry. Examples include social networks,
Web graphs, telecommunication networks, semantic
networks, and biological networks. One of the key
questions in understanding such data is “How many
communities are there and what are the community
memberships”?

Algorithms for finding such communities, or auto-
matically grouping nodes in a graph into clusters, have
been developed in a variety of different areas, includ-
ing VLSI design, parallel computing, computer vision,
social networks, and more recently in machine learn-
ing. Good algorithms for graph clustering hinge on the
quality of the objective function being used. A vari-
ety of different objective functions and clustering algo-
rithms have been proposed for this problem, ranging
from hierarchical clustering to max-flow/min-cut meth-
ods to methods based on truncating the eigenspace of a
suitably-defined matrix. In recent years, much attention
has been paid to spectral clustering algorithms (e.g.,
[11],[12],[14]) that, explicitly or implicitly, attempt to

∗The research in this paper was supported by the National
Science Foundation under Grant IRI-9703120 as part of the
Knowledge Discovery and Dissemination program. SW was
also supported by a National Defense Science and Engineering
Graduate Fellowship.

†Department of Computer Science, University of California,
Irvine

globally optimize cost functions such as the Normalized
Cut measure [12]. The majority of these approaches at-
tempt to balance the size of the clusters while minimiz-
ing the interaction between dissimilar nodes. However,
for the types of complex heterogeneous networks that
arise naturally in many domains, the bias that these ap-
proaches have towards clusters of equal size can be seen
as a drawback. Furthermore, many of these measures,
such as Normalized Cut, can not be used directly for
selecting the number of clusters, k, since they increase
(or decrease) monotonically as k is varied.

Recently, a new approach was developed by New-
man and Girvan [9] to overcome limitations of previ-
ous measures for measuring community structure. They
proposed the “modularity function” Q, which directly
measures the quality of a particular clustering of nodes
in a graph. It can also be used to automatically select
the optimal number of clusters k, by finding the value
of k for which Q is maximized, in contrast to most other
objective functions used for graph clustering.

Let G(V,E,W) be an undirected graph consisting of
the set of nodes V , the set of edges E, and a symmetric
weight matrix W ∈ <n×n, where n is the number of
vertices. The weights wij = wji = [W]ij are positive
if there is an edge between vertices vi and vj , and 0
otherwise. The modularity function Q can be defined
as

Q(Pk) =
k∑

c=1

[
A(Vc, Vc)
A(V, V)

−
(A(Vc, V)
A(V, V)

)2
]

(1.1)

where Pk is a partition of the vertices into k groups and
where A(V ′, V ′′) =

∑
i∈V ′,j∈V ′′ w(i, j). Thus, A(Vc, Vc)

measures the within-cluster sum of weights, A(Vc, V)
measures the sum of weights over all edges attached
to nodes in cluster c, and A(V, V) measures the sum
of all edge weights in the graph. Considering binary
weights for simplicity, the term A(Vc,Vc)

A(V,V) is the empirical
probability p̂c,c that both ends of a randomly selected
edge from G lie in cluster c. Similarly, A(Vc,V)

A(V,V) is the
empirical probability p̂c that a specific end of an edge
(either one), for a randomly selected edge, lies in cluster
c. Thus, under an independence model, Q can be
interpreted as a measure of the deviation between (a)
the observed edge-cluster probabilities p̂c,c and (b) what
one would predict under an independence model: p̂2

c .

274

k Q
1 .000
2 .333
3 .489
4 .436
5 .372
6 .319

Figure 1: A toy graph showing Q values for different numbers of clusters.

Newman [10] and Newman and Girvan [9] showed
across a wide variety of simulated and real-world graphs
that larger Q values are correlated with better graph
clusterings. In addition, they found that real-world
unweighted networks with high community structure
generally have Q values within a range from 0.3 to 0.7.
Figure 1 shows an example of a simple toy graph with
binary weights, where the structure of the graph visually
suggests 3 clusters. Also shown are the maximum values
of the Q function for different numbers of clusters k, and
indeed Q is maximized for k = 3.

As pointed out in [10], if no edges exist that connect
vertices across clusters then Q = 1, and conversely
if the number of inter-cluster edges is no better than
random then Q = 0. We have found empirically that
the Q measure works well in practice in terms of both
(a) finding good clusterings of nodes in graphs where
community structure is evident, and (b) indicating what
the appropriate number of clusters k is for such a graph.

In this paper we show how Newman’s Q measure
can be related to the broader family of spectral cluster-
ing methods. Specifically:

• We show how the problem of maximizing the
modularity measure Q can be reformulated as an
eigenvector problem involving a matrix we call the
“Q-Laplacian.” In this manner we link work on
graph clustering using the Q measure to relevant
work on spectral clustering (e.g., [11], [12],[14]).

• We use the eigenvector formulation of maximizing
Q to derive two new spectral graph clustering
algorithms. One of these algorithms directly seeks
a global optimum of the Q function. The other
algorithm is similar to Newman’s agglomerative
clustering algorithm [10], in that it attempts to

maximize Q via local iterative improvement.

• We compare the new algorithms with Newman’s
algorithm on different graph data sets and empiri-
cally illustrate that:

– the spectral approach to maximizing Q pro-
duces results that, in terms of cluster qual-
ity, are comparable or better than results from
Newman’s hierarchical algorithm, and

– the proposed algorithms are linear per itera-
tion in the number of nodes and edges in the
graph, compared to quadratic complexity in
the number of nodes for the original algorithm
proposed by Newman [10].

2 Spectral Approaches to Maximizing the Q
Function

Consider for the moment that the number of clusters,
k, is fixed. We use the following strategy to address the
problem of finding a partitioning that maximizes Q(Pk)
as follows:

1. Reformulate the problem of maximizing Newman’s
Q function as a discrete quadratic assignment prob-
lem.

2. Approximate the resulting assignment problem by
relaxing it to a continuous one which can be solved
analytically using eigen-decomposition techniques.

3. Compute the top k−1 eigenvectors of this solution
to form a k−1-dimensional embedding of the graph
into a Euclidean space. Use “hard-assignment”
geometric clustering (the k-means algorithm) on
this embedding to generate a clustering Pk.

275

Below we outline each of these steps. In the section
which follows, Section 3, we then describe computa-
tional details for two proposed clustering algorithms
based on this approach.

2.1 Quadratic Assignment We assume G is sim-
ple, i.e., G contains no self-loops nor parallel edges, and
is connected, i.e., there is a path from any vertex to any
other vertex. Let D ∈ <n×n be a diagonal matrix hav-
ing di in the ith diagonal entry and 0 everywhere else,
where di =

∑
j wij . We denote the diagonal matrix de-

rived from an n×n matrix X as diag(X) ∈ <n×n where
[diag(X)]ij = [X]ij if i = j and 0 otherwise. Finally, let
tr(X) =

∑
i [X]ii be the trace of matrix X.

To simplify notation, we rewrite Q as follows:

Q(Pk) ∝
k∑

c=1

[A(V, V)A(Vc, Vc)−A(Vc, V)2
]

(2.2)

Given a k-partition Pk, define a corresponding n × k
assignment matrix X = [x1, . . . ,xk] with xic = 1 if vi ∈
Vc, and xic = 0 otherwise, for 1 ≤ c ≤ k. Observe that
since each vertex can only be in one cluster, X1k = 1n.
We can reformulate Q in terms of the assignment matrix
X as follows:

Q(Pk) ∝
k∑

c=1


volG

n∑

i,j=1

wijxicxjc −



n∑

i,j=1

wijxic




2



=
k∑

c=1


volGxc

T Wxc −
(

n∑

i=1

dixic

)2



=
k∑

c=1

[
volGxc

T Wxc −
(
dTxc

)2
]

where d ∈ <n×1 such that component di equals the
weighted degree of vertex i and we rewrite A(V, V) as
volG, the volume of graph G. Thus,

Q(Pk) ∝
k∑

c=1

[
volGxT

c Wxc − xT
c ddTxc

]

=
k∑

c=1

[
volGxT

c Wxc − xT
c Dxc

]

where D = ddT. Since for any matrix A and assignment
matrix X, tr(XT AX) =

∑k
c=1

[
xT
c Axc

]
, we can further

reduce Q as follows:

Q(Pk) ∝ volGtr
(
XT WX

)− tr
(
XTDX

)

= tr
(
XT (volGW −D)X

)

= tr
(
XT (W −D)X

)

where W = volGW . The problem of maximizing Q can
then be expressed as:

max
X

{
tr

(
XT (W −D)X

)}
s.t. XT X = M(2.3)

where M ∈ <k×k is a diagonal matrix with diagonal
entry [M]ii = |Vi|, where |Vi| is the number of nodes in
cluster Vi.

2.2 Spectral Relaxation Finding an assignment
matrix X which maximizes (2.3) is NP-complete. To
address this we can attempt to derive a good approxi-
mation by relaxing the discreteness constraints that the
Xij ∈ {0, 1}, so that instead the Xij ∈ <1. This trans-
forms the discrete optimization problem into one that
is continuous. To find the optimal relaxed X, take the
derivative of the following expression with respect to X:

tr
(
XT (W −D)X

)
+ (XT X −M)Λ(2.4)

where Λ ∈ <k×k is the diagonal matrix of Lagrangian
multipliers. Setting this equal to 0 and rearranging
terms we have:

LQX = XΛ(2.5)

where LQ = D−W and we refer to this diagonal matrix
as the “Q-Laplacian”. Aside from noting its similarity
in form to the standard Laplacian, we observe that
this is a standard matrix eigenvalue problem which can
be solved using standard eigendecomposition methods.
Furthermore, had we normalized the original matrix W
so that all rows sum to one and had we also added
back in the normalization constant that we took out
from equation (2.2) then we would have the following
eigenvalue equation:

LQX = XΛ(2.6)

where LQ = 1
n2 E − 1

nW ′ where E is a matrix of all
ones and W ′ is the matrix W normalized so all rows
sum to one. The first term of this equation can be seen
as a damping term that ensures that there are edges
between all of the nodes of very small weight and the
second term is the original weight matrix after scaling
and normalization. As n → ∞, the first term will
approach 0 much faster than the second term, and hence
will play a negligible role in determining the eigenspace
of the matrix.

Thus, for even moderately large values of n, it seems
reasonable that W ′ will provide a close approximation
to LQ, which we refer to as the “normalized Q Lapla-
cian.”1 In this paper, we will adopt the simplest method

1The minus sign and the constant 1
n

do not impact the
resulting eigenspace.

276

for normalizing a matrix so its rows sum to one, namely,
to left multiply the matrix W by D−1. The advantage
of using W ′ = D−1W as an approximation to LQ is
that it is easy to compute, it is well studied, especially
in relation to Markov chains where it is known as the
transition matrix, and it retains sparsity so we can use
fast methods for eigendecomposing a sparse matrix.

The final step in this framework is to iterate over
different values of k, to search for the best clusterings
(highest Q(Pk) scores). For each k, we try to find the
optimal partitioning, i.e., a “hard-assignment” of the
nodes to k clusters, based on clustering the rows of the
matrix X.

3 Two New Graph Clustering Algorithms

In this section, we propose two new algorithms for
clustering graphs that build on insights developed in
the previous section.

3.1 Computing the embedding Assume that we
are seeking up to a maximum of K clusters and that we
have a weight matrix W ∈ <nxn. Both of our proposed
algorithms below begin by computing the top K − 1
eigenvectors (ignoring the trivial all-ones eigenvector)
corresponding to Equation 2.6. Specifically:

1. Compute the transition matrix M = D−1W

2. Compute the eigenvector matrix UK =
[u1u2 . . .uK−1] from M using a sparse eigen-
vector decomposition method such as a variant of
the Lanczos method or subspace iteration.

In the experimental results in this paper we com-
pute the K − 1 eigenvectors using the Implicitly
Restarted Lanczos Method (IRLM) [2]. If one makes
the conservative assumption that there are O(K) ex-
tra Lanczos steps, then the IRLM has worse-case time
complexity of O(mKh + nK2h + K3h) where m is the
number of edges in the graph, and h is the number of it-
erations required until convergence. For sparse graphs,
where m ∼ n, and where K ¿ n, we found the IRLM to
be extremely fast, taking near linear time with respect
to the number of nodes n.

In the algorithms below, we initialized k-means
so that the starting centroids were chosen to be as
close to orthogonal as possible. Initializing k-means
in this way does not change the time-complexity but
can significantly help to improve the quality of the
clusterings, as discussed in [11], while at the same
reducing the need for multiple random restarts. In
addition, both algorithms below can be run for any
range of k values between a lower bound kmin and an
upper bound kmax. When not stated otherwise, we will

assume in what follows that we have kmin = 1 and
kmax = K. In the case where k = 1, Q = 0 and the
cluster is just all the vertices in the graph.

3.2 Algorithm Spectral-1 This algorithm takes as
input an eigenvector matrix UK , and consists of the
following steps:

1. For each value of k, 2 ≤ k ≤ K:

(a) Form the matrix Uk from the first k − 1
columns of UK .

(b) Scale the rows of Uk using the l2-norm so they
all have unit length

(c) Cluster the row vectors of Uk using k-means
or any other fast vector-based clustering algo-
rithm. For k = 1, the cluster is just the graph
itself.

2. Pick the k and the corresponding partition that
maximizes Q(Pk).

This algorithm is similar in spirit to the one devel-
oped in [11]. Both algorithms embed the input graph
into a Euclidean space by eigendecomposing a suitable
matrix and then cluster the embedding using a geomet-
ric clustering algorithm. We experimentally validated
the claim made in [11] that row-normalizing the matrix
of eigenvectors, so that the row vectors are projected
onto the unit hypersphere, gives much higher quality
results. The Spectral-1 algorithm is different in three
key respects to this earlier work (in addition to the mi-
nor ontological point that our framework is designed to
cluster graphs while theirs is designed to cluster real-
valued points):

1. Whereas in [11] the matrix that is eigendecom-
posed, D− 1

2 WD− 1
2 , was implicitly chosen to opti-

mize the Normalized Cut, our algorithm is explic-
itly designed to optimize the modularity Q.

2. Our algorithm has a natural method for model-
selection, the Q measure, which is the same ob-
jective function our embedding is based on. Since
Normalized Cut is biased by the size of k, it can
not be used for choosing the best k.

3. Our algorithm does not require an extra step of
model selection to ensure: a) the edge weights are
scaled correctly and b) the graph is sparsified. If
links are not sparsified in the algorithm in [11], the
time complexity is O(n3).

277

Table 1: Sample clusters found for the WordNet data.

Hard Science Qualities Metabolism Soft Science Systems

taxonomy attribute regulation social relation organism
science drive reproduction profession body

mathematics folly Krebs cycle social science hierarchy
pure mathematics judgment hypostasis law digestive system

applied mathematics estimate nutrition politics infrastructure
statistics trait growth medicine network

information theory personality anabolism theology system
computer science character bodily process opinion water system

information science nature catabolism explanation live body
information theory thoughtfulness gastrulation anthropology sensory system

3.3 Algorithm Spectral-2 The second algorithm
we propose is a faster version of the algorithm in the
previous section (Spectral-1). It uses a greedy strategy
of recursive bisection to search over different values of k.
Because of this strategy it need not find as high quality
a clustering (as high a Q value) as the other approach,
but it will be faster since in going from k clusters to k+1
only a portion of the data needs to be clustered rather
than all of the data. The algorithm again takes as input
the eigenvector matrix UK as before and consists of the
following steps:

1. Initialize k, the current number of clusters, to kmin.
Initialize P , the best clustering assignment seen so
far, to the clustering produced by running k-means
with k set to kmin clusters. If kmin = 1, then simply
initialize P to be one cluster containing all nodes
in the graph.

2. Repeat until k > K or no more splits are possible:

(a) Set Pnew = P

(b) For each cluster Vc in P :

i. If not already formed, form the matrix Uk

from the first k − 1 columns of UK and
scale the rows using the l2-norm so they
all have unit length

ii. Form the matrix Uk,c from Uk by keeping
only rows corresponding to nodes in Vc

iii. Run k-means with 2 clusters on Uk,c to
get two new sub-clusters,Vc,1 and Vc,2.

iv. Form a new partition, P ′ by setting P ′ =
P and replacing the corresponding Vc

with Vc,1 and Vc,2

v. If Q(P ′) > Q(P), accept the split by
replacing the corresponding Vc in Pnew

with Vc,1 and Vc,2, otherwise reject it and
leave Pnew unchanged.

vi. Assign k to be the (possibly new) number
of clusters in Pnew

(c) Set P = Pnew

The idea behind this algorithm is to start with
kmin clusters and instead of rerunning k-means on the
entire graph for subsequent values of k as we did in the
previous algorithm, we instead try recursively splitting
each cluster into two child clusters if the split produces
a higher value of Q. By continuing this procedure
until no more splits are possible or until K clusters
have been found, we end up with a clustering with the
highest value of Q encountered along the way. The
particular algorithm above is order-sensitive in the sense
that cycling through the clusters in a different order
could produce different results—however, we have not
noticed any particular sensitivity to order in the data
sets described later in the paper. Unlike many other
recursive bisection methods, model selection here is
natural and straightforward. We choose to accept a split
if the split results in a higher value of Q. Of course, the
drawback with this algorithm is that we tradeoff speed
with accuracy. The algorithm uses a greedy strategy,
where a split can never be revoked and so one bad
choice negatively affects all other choices further down
the same branch. Thus, the quality of the results are not
necessarily as good as with Spectral-1, although they are
still generally competitive as we will see below. There
is a subtlety in this algorithm in that, if left unchecked,
each cluster for which a split attempt was made but
failed would be retried again the next time through the
loop. For this reason, we only allow a single attempt to
split a given cluster.

3.4 Computational Complexity For the Spectral-
1 algorithm, we run k-means K times, where in each
case the dimensionality is d = k− 1. Standard k-means
with a Euclidean distance metric has time complexity

278

O(ndke) where n is the number of data points, d is
the dimensionality of each point, and e is the number
of iterations required for k-means to converge. Elkan
[5] proposed a much faster version of k-means. It
produces exactly the same results as standard k-means
but uses various geometric inequalities to significantly
reduce the number of distance computations required.
Elkan found that with his proposed algorithm, the
overall time complexity is roughly O(nke) where e is
the number of iterations. We use this algorithm for
our implementation of k-means in both Spectral-1 and
Spectral-2.

The resulting complexity for clustering in Spectral-
1, using Elkan’s fast k-means algorithm, is roughly
O(nK2e). For Spectral-2 the computational complexity
is not as easy to estimate. In the worst case (completely
imbalanced clusters where the largest cluster is split
at each iteration) it will have the same complexity as
Spectral-1. However, in practice we have found that
it is considerably faster than Spectral-1 and will show
experimental results later in the paper that illustrate
this.

In addition, for both algorithms there is the addi-
tional complexity of O(mKh + nK2h + K3h) for com-
puting the matrix of eigenvectors UK , using the IRLM.
Thus, Spectral-1 and Spectral-2 have an overall worst-
case time complexity of O(mKh+nK2h+K3h+nK2e).
Thus, for sparse graphs, where m ∼ n, the algorithms
will scale roughly linearly as a function of the number
of nodes n. This is in contrast to Newman’s algorithm
which has complexity O(n2) even for sparse graphs, and
thus does not scale up as well to large values of n.

4 Experimental Results

4.1 Clustering words from WordNet We first
illustrate how different choices for the graph embedding
can affect the quality of clustering. We use a relatively
small unweighted graph extracted from the WordNet
database of word meanings and semantic relationships
[8]. The reason we chose this data set was because
one can immediately judge the quality of the clusters
since intuitively clusters should contain words that share
common semantic features which are recognizable. We
created an unweighted undirected graph where nodes
represent words and an edge exists between two nodes if
any of the following semantic relationships exist between
them: synonymy, antonymy, hypernymy, hyponomy,
meronymy, troponymy, causality, and entailment. The
entire graph contains 82670 nodes. We extracted a
subgraph comprised of all nodes whose shortest path
distance away from the word “Science” is no more than
3. We also removed all nodes with degree 1 so that the
graph layout would not be too cluttered. Adding this

constraint had little effect on the quality of the clusters.
The resulting subgraph contains 230 nodes and 389

edges. Figure 2 shows the best clustering found by
the Spectral-1 algorithm.2 For this clustering there
were 12 clusters and Q = 0.696. Table 1 shows ten
representative words from five random clusters.

Figure 3 shows how the modularity Q varies with
k when each of the following three types of matrices is
used in step 1 of the first algorithm and the eigenvec-
tors are computed exactly: standard Q Laplacian LQ,
normalized Q Laplacian LQ, and the transition matrix
D−1W . We can see that using the transition matrix in
step 1 provides a very good approximation to the nor-
malized Q matrix. We can also see that the standard
Q Laplacian slightly underperforms both of these ma-
trices. This agrees with observations by other authors
that the normalized Laplacian gives better results than
the standard Laplacian (e.g., [12],[14]).

4.2 Clustering American college football teams
Our next example demonstrates the ability of both of
our algorithms to identify known clusters. The un-
weighted network was drawn from the schedule of games
played between 115 NCAA Division I-A American col-
lege football teams in the year 2000. Each node in this
network represents a college football team and each edge
represents the fact that two teams played together. Be-
cause the true conference to which each team belongs
is known a-priori, and because inter-conference games
are played more often than intra-conference games, the
groups of teams that form conferences correspond to
natural clusters that should be identifiable in the graph.
Figure 4 shows that this is indeed the case where the
Spectral-1 algorithm identified the correct number of
clusters and, furthermore, each team assignment to a
cluster made by the algorithm was correct.3 Our sec-
ond algorithm, Spectral-2, did almost as well making
very few mistakes. The mistakes were:

1. North Texas was put into the Big 12 conference
instead of Big West.

2. Arkansas State was put in Western Athletic instead
of Big West.

3. EastCarolina was placed in Atlantic Coast instead
of Conference USA

4. BigTen was split into two equal sized clusters:
{Michigan, Ohio State, Wisconsin, Iowa, Illinois,

2Graphs are shown using the Fruchterman-Reingold layout.
3For the group of eight teams that do not belong to any

conference, each was assigned to one of the conferences, e.g., Notre
Dame, Navy, and Florida (Miami) to the Big East Conference.

279

organism

attribute

social relation

play

break

drive

catch

device

change

activity

folly

music

profession

learned profession

architecture

law

politics

medicine

theology

exercise
control

regulation lock

reproduction

judgment

estimate

discipline

training

representation

taxonomy

abstinence
inhibition

suppression

social control

government

restraint

collar

damper
confinement

imprisonment

containment

restriction

punishment

stick

detention

opinion

segregation

airbrake

band

body

brake

building

communication system

cosmography

dress

engineering

exhaust

fastener

infrastructure

instrumentality

memory

network

room settle

spike

study

system

train

water system

trait

personality

character

nature

thoughtfulness

self−discipline

continence

wisdom

age

sound

majority

better

live body

body part

articulatory system
digestive system

endocrine system

immune system

reticuloendothelial system

 system

muscular structure

musculoskeletal system

nervous system

 system
 system

reproductive system
urogenital system

respiratory system
sensory system

vascular system

skeletal systemlogic
accounting

explanation

content

 gravitation

 action

hypostasis

belief

doctrine

philosophy

theory

functionalism

 gravitation

scientific theory

economic theory

major

frontier

knowledge domain

scientific knowledge

science

natural science

mathematics

pure mathematics
applied mathematics

statistics

life science

medical science

agronomy

agrobiology

agrology

cognitive neuroscience

chemistry

physics

nuclear physics

atomic theory

wave theory
corpuscular theory

kinetic theory
relativity

quantum theory

uncertainty principle

germ theory

information theory

 evolution

 inheritance earth science

architectonics

metallurgy

computer science

artificial intelligence

machine translation

nutrition

psychology

experimental psychology

cognitive psychology

social psychology

information science

cognitive science

social science

anthropologyeconomics

game theory

sociology

systematics
humanistic disciplinehistory

structuralism

computational linguistics

etymology

historical linguistics

linguistics

grammar

syntax

lexicology

semantics

sound law

synchronic linguistics
military science

judiciary

hierarchy

social organization

growth
anabolism bodily process

catabolism

gastrulation

Krebs cycle

metabolism

natural process

organic process

oxidative phosphorylation

parturition
transduction

transpiration

prime

make

grow

suspend

build up

develop

redevelop

prepare

build

mature

evolve

work out

elaborate

expand

happen

translate

complicate

socialize

cram

modernize

explicate

generate
originate

create

cultivate

mortify

solarize

educate

amercepunish

great

leading/p/

scientific

technological

unscientific

pseudoscientific

Figure 2: Clusters for WordNet data, k = 12 (best viewed in color).

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K

Q

normalized Q
standard Q
transition matrix

Figure 3: Q versus k for the WordNet data.

280

FloridaState

Iowa

KansasState

NewMexico

TexasTech

PennState

SouthernCalifornia

ArizonaState

SanDiegoState

Baylor

NorthTexas

NorthernIllinois

Northwestern

WesternMichigan

Wisconsin

Wyoming

Auburn

Akron

VirginiaTech

Alabama

UCLA

Arizona

Utah

ArkansasState

NorthCarolinaState

BallState

Florida

BoiseState

BostonCollege

WestVirginia

BowlingGreenState

Michigan

Virginia

Buffalo

Syracuse

CentralFlorida

GeorgiaTech

CentralMichigan

Purdue

Colorado
ColoradoState

Connecticut

EasternMichigan
EastCarolina

Duke

FresnoState

OhioState

Houston

Rice
Idaho

Washington

Kansas
SouthernMethodist

Kent

Pittsburgh

Kentucky
Louisville

LouisianaTech

LouisianaMonroe

Minnesota

MiamiOhio

Vanderbilt

MiddleTennesseeState

Illinois

MississippiState

Memphis

Nevada

Oregon

NewMexicoState

SouthCarolina

Ohio

IowaState

SanJoseState

Nebraska

SouthernMississippi

Tennessee

Stanford

WashingtonState

Temple

Navy

TexasA&M

NotreDame

TexasElPaso

Oklahoma

Toledo

Tulane
Mississippi

Tulsa

NorthCarolina

UtahState

Army Cincinnati

AirForce

Rutgers

Georgia
LouisianaState

LouisianaLafayette

Texas

Marshall

MichiganState

MiamiFlorida

Missouri

Clemson

NevadaLasVegas

WakeForest

Indiana

OklahomaState

OregonState

Maryland

TexasChristian

California

AlabamaBirmingham

Arkansas

Hawaii

BrighamYoung

MountainWest
AtlanticCoast
Big12
SEC
BigWest
WesternAthletic
ConferenceUSA
BigTen
Pacific10
MidAmerican
BigEast

Figure 4: Clusters for NCAA Division I-A football teams, k = 11 (best viewed in color).

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K

Q

Spectral−1
Spectral−2
Newman

Figure 5: Q versus k for NCAA Division I-A football teams.

281

Michigan State} and {Northwestern, Purdue, Min-
nesota, Penn State, Indiana}

5. Mountain West, Pacific 10 and Big West were
merged into one cluster

To summarize there were three individual mistakes
where a single team was misplaced in the wrong confer-
ence, as well as one incorrect split and two splits that
should have happened but did not.

Newman [10] proposed a hierarchical agglomerative
clustering method for finding graph clusterings based
on Q, with a worst-case time complexity of O(n2).
At each step of the algorithm the two clusters are
merged that result in the largest increase in Q, providing
local iterative improvements to the overall Q score.
The number of clusters k can be obtained from the
resulting dendrograms by selecting the level of the tree
for which Q(Pk) is highest. Figure 5 shows how the
modularity Q varied with k for both of our algorithms
as well as Newman’s original greedy algorithm which
uses the modularity Q as a distance measure to do
agglomerative clustering. The peak for Spectral-1 was
at k=11, Q=0.602, which corresponds precisely with the
actual number of conferences in the NCAA Division I-
A American college football league. We can see that
Newman’s algorithm underperforms this algorithm on
this data set. The best clustering found by Newman’s
algorithm was for k=6, Q=0.556. As Newman [10]
points out and we see in this example, his algorithm can
miss the best clustering since it makes decisions purely
at a local level whereas Q is inherently a global measure.
The same is true for our faster, greedy algorithm. The
best clustering found by Spectral-2 was k=10,Q=0.553.
This is competitive with Newman’s algorithm but as we
will see in the timing experiments this algorithm runs
significantly faster than Newman’s algorithm.

4.3 Clustering authors publishing in NIPS For
our final experiment we extracted a weighted coau-
thorship network from volumes 0-12 of the NIPS con-
ference papers. The raw data contains 2037 authors
and 1740 papers from which we created a coauthorship
graph where nodes represent authors and edges repre-
sent coauthorship between the given pair of authors.
We weighted each edge using the following weighting
scheme: wij =

∑
k

1
nk−1 where nk is the number of

coauthors for paper k, and wij represents the weight
assigned to the edge between nodes i and j for which
there was a coauthor relation. Building a coauthorship
network from this data yields many disconnected com-
ponents so we used only the dominant component which
has 1061 nodes (authors) and 4160 edges (coauthorship
pairs).

We ran both of our algorithms with K=100. Figure
6 shows the best clustering found by Spectral-1 where
k=31 and Q=0.874. In this figure, the original coau-
thorship graph was shrunk so that now each node rep-
resents a cluster and the size of the node roughly in-
dicates the size of each cluster. PageRank with Priors
was used to label each cluster with the three authors
whose importance was highest relative to the cluster to
which they belong [13]. The resulting clusters clearly
reflect various subcommunities of NIPS authors based
on the first 12 years of the conference. Figure 7 shows
how the modularity Q varies with k. We found that on
this data set Newman’s algorithm marginally outper-
formed our Spectral-1 algorithm, although both algo-
rithms were very close in terms of the optimal value of
Q found: Q=0.874 and k=31 for Spectral-1 vs. Q=0.876
and k=33 for Newman’s algorithm. Spectral-2 did not
do as well although it still gave competitive results find-
ing a clustering for k=44 and Q=0.861.

This brings up an important point about the dif-
ference between Newman’s algorithm and our faster,
greedy Spectral-2 algorithm. Newman’s algorithm
starts with n clusters, one for each node in the graph,
and continues to merge clusters one at a time whereas
our faster algorithm starts with one cluster, all nodes
in the graph being assigned to it, and continues to split
clusters one at a time. Thus, as we saw in the previous
example with the college football data set, Newman’s
algorithm made some mistakes early on in the merg-
ing process which caused Q to reach a maximum only
after k was already much smaller than the correct so-
lution for k = 11. Our faster algorithm, Spectral-2,
also made mistakes early on, in the splitting process,
causing it to overshoot the more optimal values of Q
found by the other two algorithms in the vicinity of
32 ≤ k ≤ 33 and instead find a maximum value of Q
for much larger k, in this case k = 44. Although both
algorithms are able to find clusterings that are quite
competitive with Spectral-1, they both potentially suf-
fer from the problem of overshooting, although each in
opposite directions, because of the potential limitations
of the greedy strategy. Nevertheless, this example also
highlights the fact that there are many graphs for which
a greedy strategy can perform quite well (as also docu-
mented by Newman [10]).

4.4 Timing Experiments In this section, we
present timing results for each of the experiments con-
ducted in the experiments just described. In addition,
we reran Spectral-1 and Spectral-2 for K = 25 on the
“Science” network and for K = 50 on the NIPS coau-
thorship network to highlight how the choice of K af-
fects performance. All algorithms were implemented in

282

Ruppin E,Horn D,Shadmehr R

Morgan N,Rumelhart D,Keeler J
Bower J,Abu-Mostafa Y,Hasselmo M

Goodman R,Moore A,Atkeson C

Coolen A,Saad D,Hertz J

Alspector J,Meir R,Allen R

Barto A,Singh S,Sutton R

Bengio Y,Denker J,LeCun Y

Tresp V,Tsitsiklis J,Atlas L

Sejnowski T,Hinton G,Dayan P

Mozer M,Lee S,Jang J

Platt J,Smola A,Scholkopf B

Waibel A,Amari S,Tebelskis J

Moody J,Mjolsness E,Leen T

Tishby N,Warmuth M,Singer Y

Cauwenberghs G,Andreou A,Edwards R

Robinson A,de-Freitas J,Niranjan M

Wiles J,Pollack J,Blair A

Koch C,Bialek W,DeWeerth S

Eeckman F,Buhmann J,Baird B

Giles C,Cottrell G,Lippmann R
Baldi P,Venkatesh S,Psaltis D

Thrun S,Baluja S,Merzenich M

Seung H,Lee D,vanHemmen J

Jordan M,Ghahramani Z,Saul L

Touretzky D,Spence C,Pearson J

Geiger D,Poggio T,Girosi F

Maass W,Zador A,Sontag E

Pentland A,Darrell T,Jebara T

Kawato M,Principe J,Vatikiotis-Bateson E

Nadal J,Personnaz L,Dreyfus G

Figure 6: Clustering for NIPS co-authorship data, k = 31 (best viewed in color).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

K

Q

Spectral−1
Spectral−2
Newman

Figure 7: Q versus k for NIPS coauthorship data.

283

Matlab and run on a 1.2 GHz Pentium II laptop. We
used the sparse eigendecomposition routine eigs in Mat-
lab to compute the eigenvectors using the IRLM.

Table 2: Timing results for separate components of
Spectral-1 in seconds.

Name n K eigs Clustering
Football 115 25 0.16 2.29
Science 230 25 0.38 3.43
Science 230 50 0.67 12.36
NIPS 1061 50 6.53 40.41
NIPS 1061 100 15.49 292.15

Table 2 shows the timings for each of the key
components of the Spectral-1 algorithm. Clustering
takes most of the time, especially as K and n increase.

Table 3: Timing results for separate components of
Spectral-2 in seconds.

Name n K eigs Clustering
Football 115 25 0.16 0.15
Science 230 25 0.38 0.23
Science 230 50 0.67 0.30
NIPS 1061 50 6.53 1.33
NIPS 1061 100 15.49 2.01

Table 3 shows the timings for each of the key
components of the Spectral-2 algorithm. For Spectral-
2, as K increases, running eigs becomes an increasingly
large performance bottleneck. The time taken for
clustering is low since we never have to re-run the k-
means algorithm on the entire graph. This includes the
time taken to determine whether or not to accept a split
which involves computing Q which takes little time since
we don’t recompute Q from scratch but instead update
Q based on the edges that have been reassigned.

Table 4: Overall timing results in seconds.

Name n K Spec-2 Spec-1 Newman
Football 115 25 0.41 3.11 7.74
Science 230 25 0.77 4.23 8.38
Science 230 50 1.06 13.96 8.38
NIPS 1061 50 10.57 51.57 387.15
NIPS 1061 100 22.14 321.14 387.15

Table 4 shows the overall times (in seconds) for
each of the five experiments.4 Perhaps most interesting
is to observe how the interaction between K and n
affects the results. Spectral-1 is generally faster than
Newman’s algorithm although for large enough values
of K and small enough values of n, Newman’s algorithm
can be faster. Spectral-2 is generally at least an order
of magnitude faster than the other two algorithms
although as K gets larger the difference in speed is less
pronounced.

5 Discussion

The idea of reducing a combinatorial graph partition-
ing problem to a geometric vector space partitioning
problem using spectral techniques is by no means new.
Some of the earliest breakthroughs can be attributed to
Hall [7] and Fiedler [6]. Alpert and Yao [1] showed that
when the full eigenspace is used, certain graph partion-
ing problems exactly reduce to vector partioning ones.
More recently, Brand and Huang [3] presented theoreti-
cal results precisely characterizing how compacting the
eigenbasis is able to magnify structure in the data. Fur-
thermore, Chung [4] and others have laid much of the
foundational work in spectral graph theory, on which
a large part of the subsequent theoretical analysis of
spectral clustering methods is based.

The key idea in this paper is to reverse engineer
Newman’s Q function into a spectral framework in
which any input graph can be optimally embedded into
Euclidean space. Once the input graph is represented
in a Euclidean space, we can then use fast geometric
clustering algorithms such as k-means to identify the
clusters. Any algorithmic framework developed in
this way faces a large search problem since both k
(the number of clusters) and the dimensionality of the
embedding which maximize Q need to be explored.
Both algorithms for fixed k choose the dimensionality of
the embedding to be k-1 (e.g. for k=2, we just use the
top eigenvector). The assumption here is that while it
may be possible, in some cases, to use fewer dimensions
and still find a good clustering for fixed k, while also
making the algorithm even faster, it is better to be
conservative. Experiments have shown that the higher
the dimensionality (the more eigenvectors), the better
the clusterings produced, although we did not find that
having the dimensionality of the embedding exceed k-1
helped in any way.

Both algorithms empirically track the performance
of Newman’s algorithm quite closely. The slower, more

4Note that the times for Spectral-1 and Spectral-2 are slightly
larger than the sums of the corresponding times in Tables 2 and
3 due to additional overhead in the algorithms.

284

accurate algorithm (Spectral-1) can produce higher-
quality clusterings than Newman’s because of the non-
greedy search heuristic. The Spectral-2 algorithm could
be viewed as a top-down divisive search alternative
to Newman’s bottom-up agglomerative search, in a
general hierarchical clustering context, with attendant
advantages and disadvantages to each in terms of the
greedy search strategy, as well as having significant
differences in their computational characteristics.

Other search heuristics approaches are also possible
and may lead to different trade-offs between cluster
quality and computation time. For example, combining
both of our algorithms into a hybrid algorithm may yield
a fruitful trade-off between speed and cluster quality.
For graphs where the number of clusters to search over
is large, Newman’s hierarchical clustering approach may
be the preferred method given that it operates directly
on the graph without any need for embedding the graph
into a Euclidean vector space. Our algorithms, in
contrast, use sparse eigenvector techniques which scale
quadratically with the number of clusters to search over.
However, when the number of clusters to search over is
small, and n the number of nodes increases, the O(n2)
complexity of hierarchical clustering can quickly become
intractable. In contrast, the two algorithms we propose
here will scale relatively well to large graphs.

6 Conclusions

In this paper we have shown how the recently proposed
Q function can be used to find high quality graph clus-
terings. We give a precise analytical expression which
when maximized returns a discrete assignment matrix
X that represents the optimal partitioning of a graph
according to the Q function for fixed k. Because maxi-
mizing this expression is NP-Complete, we show how the
discrete maximization can be approximated as a contin-
uous one that is easily solvable by performing eigenvec-
tor decomposition on a matrix LQ, which we call the Q-
Laplacian. We present two algorithms which attempt to
search over different values of k to find the best value of
k and the accompanying best clustering. The first algo-
rithm we present searches independently for a best clus-
tering for each value of k. Unlike Newman’s algorithm,
which optimizes Q by local iterative improvement, this
algorithm seeks a direct global maximum of Q. The
second algorithm we present is similar to Newman’s al-
gorithm in that it uses a local greedy search heuristic;
however, it is based on a top-down strategy of splitting
clusters that lead to higher values of Q and is thus much
faster than the other two algorithms for K ¿ n. Em-
pirical results suggest that both methods provide high
quality graph clusterings on a variety of graphs that ex-
hibit community structure, and both methods scale lin-

early in the number of edges, allowing for applications
to large sparse graphs.

Acknowledgements The data used were generously
made available by the Cognitive Science Laboratory
at Princeton University (WordNet), Mark Newman
(College Football) and Sam Roweis (NIPS).

References

[1] C. Alpert and S. Yao, Spectral partitioning: the
more eigenvectors the better. In Proceedings of 32nd
ACM/IEEE Design Automation Conference, 1995, pp.
195-200.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Vorst,
eds., Templates for the Solution of Algebraic Eigen-
value Problems: A Practical Guide, SIAM, Philadel-
phia, 2000.

[3] M. Brand and K. Huang. A unifying theorem for
spectral embedding and clustering. 9th International
Conference on Artificial Intelligence and Statistics,
2002.

[4] F. Chung. Spectral graph theory. Number 92 in CBMS
Regional Conference Series in Mathematics. American
Mathematical Society, 1997.

[5] C. Elkan. Using the triangle inequality to accelerate k-
Means. In Proceedings of the Twentieth International
Conference on Machine Learning, 2003, pp. 147-153.

[6] M. Fiedler. Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal, 23 (1973),
pp. 298-305.

[7] K. Hall. An r-dimensional quadratic placement algo-
rithm. Management Science, 11(3)(1970), pp. 219-229.

[8] G. Miller. WordNet: An on-line lexical database.
International Journal of Lexicography, 3 (1990), pp.
235-312.

[9] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69, 026113 (2004).

[10] M. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69, 066133
(2004).

[11] A. Ng, M. Jordan, and Y. Weiss. On spectral cluster-
ing: analysis and an algorithm. In Advances in Neural
Information Processing Systems 14, 2002, pp. 849-856.

[12] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22 (2000), pp. 888-905.

[13] S. White and P. Smyth. Algorithms for discovering rel-
ative importance in graphs. In Proceedings of Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2003, pp. 266-275.

[14] Y. Weiss. Segmentation using eigenvectors: A unifying
view. In Proceedings OF IEEE International Confer-
ence on Computer Vision, 1999, pp. 975-982.

285

Mining Behavior Graphs for “Backtrace” of Noncrashing Bugs∗

Chao Liu† Xifeng Yan†‡ Hwanjo Yu† Jiawei Han† Philip S. Yu‡

†Department of Computer Science
University of Illinois at Urbana-Champaign
{chaoliu, xyan, hwanjoyu, hanj}@cs.uiuc.edu

‡IBM T. J. Watson Research Center
psyu@us.ibm.com

Abstract

Analyzing the executions of a buggy software program is es-

sentially a data mining process. Although many interesting

methods have been developed to trace crashing bugs (such

as memory violation and core dumps), it is still difficult to

analyze noncrashing bugs (such as logical errors). In this

paper, we develop a novel method to classify the structured

traces of program executions using software behavior graphs.

By analyzing the correct and incorrect executions, we have

made good progress at the isolation of program regions that

may lead to the faulty executions. The classification frame-

work is built on an integration of closed graph mining and

SVM classification. More interestingly, suspicious regions

are identified through the capture of the classification accu-

racy change, which is measured incrementally during pro-

gram execution. Our performance study and case-based ex-

periments show that our approach is both effective and effi-

cient.

Keywords. data mining, software reliability, debug-
ging, noncrashing bugs, closed pattern, SVM.

1 Introduction

Software reliability is a top concern in modern indus-
try. Software bugs cost the U.S. economy an estimated
59.5 billion dollars annually, or approximately 0.6% of
the GDP, according to a report from the National In-
stitute of Standards and Technology (NIST). As soft-
ware becomes increasingly bulky in size, sophisticated
in complexity, and originated by integration of multi-
ple components, it is an increasingly challenging task to
ensure software robustness and reliability.

∗This work was supported in part by the U.S. National Science

Foundation NSF ITR-03-25603, an IBM Faculty Award, and an
IBM Summer Internship. Any opinions, findings, and conclusions

or recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the funding
agencies.

As well-known in software engineering, better un-
derstanding of program behavior can be invaluable to
build reliable systems. Extensive research has been
conducted on software reliability, ranging from static
source code checking [4, 6] to dynamic program veri-
fication [5, 18]; and from low-level program execution
profiling [9, 7] to high-level behavior analysis [5, 20].
Related achievements have motivated practices in ab-
normality detection [9, 25] and computer-aided debug-
ging [26, 18, 2].

From a knowledge discovery point of view, the
analysis of executions of a buggy program is essentially a
data mining process—tracing the data generated during
program executions may disclose important patterns
and outliers that may help the discovery of software
bugs. Thus, we believe that recently developed data
mining technology can improve software reliability. In
this paper, we investigate the application of data mining
methods to program bug analysis. By treating program
executions as software behavior graphs, a new method
is developed to integrate closed graph mining and SVM
classification for the isolation of suspicious regions of
noncrashing bugs.

In program analysis, software bugs can be classified
into two categories: crashing bugs and noncrashing
bugs. The former refers to the bugs that crash the
program execution, such as core dumps or segmentation
faults. One can trace back the function call stack from
the crashing point for debugging. The latter refers to
the bugs that do not incur crashes, such as logic bugs,
which are difficult to locate since no crashing point,
hence no backtrace, is available.

In this study, we develop a novel classification
method for backtracing noncrashing bugs. Our method-
ology can be outlined as follows.

First, we summarize each execution of a program as
a concise but informative behavior graph. Fig. 1 shows
an example of behavior graphs, which is excerpted from

286

two different runs of ccrypt-1.2, a utility program for en-
crypting and decrypting files. Behavior graphs summa-
rize program execution at function level with each node
for one function. Solid arrows represent the calling rela-
tionship and dashed ones for transitions. As one can see,
behavior graphs only preserve function-level sequential
information and are thus compact. Despite of its suc-
cinctness, it does manifest the behavior abnormities cor-
responding to incorrect runs. For example, ccrypt-1.2
has one bug that is triggered when a user corresponds
to the prompt for overwriting an existing file with EOF,
rather than as expected ‘Y(es)’ or ‘N(o)’. As shown in
Fig. 1, the correct and incorrect runs diverge at the tran-
sition edges emitted from function file exists, which
is a strong indicator for classification.

traverse_file

file_action

file_exists
 known_
 inodes
add_suffix

xrealloc

Behavior Graph for

Encrypting a File

Region R

(a) one correct run

traverse_file

file_action

file_exists
 prompt
add_suffix

xrealloc

Region R

xreadline

xalloc

(b) one incorrect run

Figure 1: Software Behavior Graphs

Second, based on the behavior graph representation
of program runs, the classification of program runs can
be formulated as a graph classification problem: Given
a set of behavior graphs that are labelled either positive
or negative, can we train a classifier to identify unknown
behavior graphs?

In our study, we use support vector machine (SVM)
[13] with linear kernel to do classification. Inspired by
the better scalability of closed subgraphs over frequent
ones and their stronger expressibility over raw edges
as features, we explore the benefits by incorporating
closed subgraphs as classification features, which, as
shown, has higher classification accuracy as well as
better scalability. Interestingly, we also explore the
relationship between closed and frequent graph-based
SVM classifiers, which sheds light on the inherent
relationship between these two related methods.

Third, for effective classification, we develop a novel
method to uncover the “backtrace” for noncrashing
bugs. Recall that backtrace usually refers to the func-
tion call stack at the time a program crashes (i.e., core
dump or segmentation fault), based on which debugging
can be easy to start. Unfortunately, for noncrashing
bugs, their backtraces are no longer available. To help
locate this kind of bugs, we attempt to uncover a virtual

“backtrace” for noncrashing bugs, which is essentially a
series of bug-relevant functions. We believe that the
functions, whose execution behavior promotes the clas-
sification accuracy of distinguishing incorrect runs from
correct runs, are likely suspicious functions. Taking Fig.
1 as an example, a classifier can be trained at the re-
turn of function file exist, but its accuracy cannot
be high because behavior graphs up to this point (i.e.,
the subgraph within region R) are almost identical for
both incorrect and correct runs. However, if we train
another classifier at the return of file action (recall
that file action returns later than file exist), the
accuracy will be much higher since the training behav-
ior graphs do include the traces that differentiate correct
and incorrect runs.

In summary, we make the following contributions:

1. We investigate the application of recently devel-
oped data mining techniques to software robustness
enhancement and show that data mining may help
backtrace noncrashing bugs.

2. We have proposed software behavior graph as a con-
cise but informative summary of program execu-
tions and developed an efficient mining algorithm,
CloseMine, to uncover closed frequent subgraphs
from behavior graphs, which has been proven effec-
tive at identifying failing runs. We further explored
the connection between closed frequent graph based
and frequent graph based SVM classifiers.

3. We developed a novel classification method to
uncover the backtrace for noncrashing bugs, which,
as shown through a detailed case study, can be
effective in assistance to debugging.

The remainder of the paper is organized as follows.
We first introduce preliminary concepts in Section 2.
The classification framework is laid out in Section 3,
within which both the mining algorithm design and the
relationship between frequent graph-based and closed
graph-based SVMs are examined. Section 4 describes
how to uncover a backtrace based on behavior graphs.
Experimental evaluations of classification quality and a
case study are presented in Section 5. We discuss the
related work in Section 6, and conclude our study in
Section 7.

2 Preliminaries

A software execution can be summarized into a behavior
graph, which consists of its call graph and transition
graph. A call graph Gc(α) is a directed graph displaying
the function calling relationship in a program run α.
The vertex set V (Gc(α)) includes all the functions
involved in α. Edge (vi, vj) belongs to E(Gc(α)) if and

287

only if function i calls function j in α. Transition graph
Gt(α) is also a directed graph, exhibiting the transition
relationships in α. Edge (vi, vj) belongs to E(Gt(α))
if and only if function j is called immediately after
function i returns. It is also required that functions
i and j are called by the same caller function. The
superposition of Gc(α) and Gt(α) forms the behavior
graph G(α) of run α. Fig. 2 shows three behavior
graphs, where solid and dashed arrows represent call
relation and transition relation respectively.

We use behavior graphs to model program execu-
tions. Call graphs represent the task-subtask relation-
ship, while transition graphs record the sequential order
of the subtasks. Behavior graph only preserves the first-
order transition and is thus succinct compared with the
entire execution sequences. This is necessary for a scal-
able mining and classification method.

1

3

4

5

2

1:
makepat

2:
 esc

3:
 addstr

4:
 getccl

5:
 dodash

6: in_set_2

7:
 stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2)
 (3)

Figure 2: A Behavior Graph Dataset

Example 1. Fig. 2 shows behavior graph segments de-
rived from three different runs of our subject program
“replace”, a regular expression matching and substi-
tution utility software. Taking the run correspond-
ing to the third graph for instance, getccl, addstr,
esc, in set 2 and stclose are subtasks of function
makepat. They work together to complete the task as-
sociated with makepat. As to transition, the dashed ar-
row from getccl to addstr means that addstr is called
immediately after getccl returns.

If a behavior graph G is a subgraph of G′, then G′

is a supergraph of G, written as G ⊆ G′. G′ is the
proper supergraph of G if G ⊂ G′. In the following
discussion, we introduce the concepts of frequent and
closed frequent graphs.

Definition 1. (Frequent (closed) graph) Given
a graph dataset D, support(g) (or frequency(g)) is
the percentage (or number) of graphs in D, of which g
is a subgraph. A graph is frequent if its support is no
less than a minimum support threshold, min sup. A
frequent graph is closed if there exists no supergraph
that has the same support.

1

3

4

5

2

(1)

3

4

5

2

(2)

Figure 3: Frequent Graphs

Example 2. Fig. 3 depicts two of frequent subgraphs
in the dataset shown in Fig. 1, assuming that min sup
is equal to 66.6%. In Fig. 3, the first graph is closed
while the second is not since the latter is a subgraph of
the former and both of them have the same support.

3 The Classification Framework

Given a set of behavior graphs that are labelled either
positive (for incorrect runs) or negative (for correct
runs), we intend to train a classifier to identify new
behavior graphs with unknown labels. The dynamics of
classification accuracy will be analyzed to identify the
backtrace of non-crashing bugs. In our study, we use
support vector machine (SVM) [13] with linear kernel to
do classification. The classification framework consists
of three steps:

1. extract features from behavior graphs (training
dataset),

2. learn an SVM classifier using these features, and

3. classify new behavior graphs.

In order to apply SVM in behavior graph classifica-
tion, we represent graphs as vectors in a feature space.
A naive representation is to treat edges as features and
a graph as a vector of edges. The vector is {0, 1} val-
ued. If a graph has a specific edge, it has value “1” in
the corresponding dimension, otherwise “0”. Using this
representation, the dot product of two feature vectors
is the number of common edges that two graphs have

(3.1) xi · xj = |E(gi) ∩ E(gj)|,
where xi and xj are the vector representation of graphs
gi and gj . For example, the dot product of the first two
graphs in Fig. 2 is 10.

The similarity measure given in Eq. (3.1) is mean-
ingful since it captures the relationship between two be-
havior graphs. As shown in our experiments, SVMs
trained by the above measure work well in identify-
ing some incorrect runs. Unfortunately, the hyperplane

288

learned in this way will be a linear combination of edges.
Thus, it may not achieve good accuracy when a bug is
characterized by multiple connected call and transition
structures.

As shown in Fig. 2, the major portions of these
graphs are very similar to each other although various
incorrect runs may behave differently. In well-designed
programs, functions usually exhibit strong modularity
in source code and in dynamic executions. They
are often grouped together to perform a specific task.
Hence, the calls and transitions of these functions will
be tightly related in the whole behavior graph. The
buggy code may first disturb the local structure of a
run and then have an effect on its global structure. This
intuition inspires us to use recurrent local structures as
features.

The classification process based on frequent graphs
shares the same framework as the edge-based approach.
Each frequent graph is treated as a separate feature
in the feature vector. A behavior graph G is first
transformed into a feature vector whose i-th dimension
is instantiated to 1 if G contains the i-th frequent graph
or 0 otherwise.

Unfortunately, due to the explosive number of fre-
quent graphs in behavior graphs, it is often intractable
to mine all of them. According to the Apriori prop-
erty, all the subgraphs of a frequent graph must be fre-
quent. A large frequent graph may generate a huge
number of frequent subgraphs. When the number of
frequent graphs increases, the performance at mining,
training and classifying will drop dramatically. Thus,
Deshpande et al. [3] propose a feature selection scheme
to screen frequent graphs and Huan et al. [11] introduce
the concept of coherent subgraphs to shrink the feature
set. These approaches are successful in their problem
domains. However, in our problem setting, they are not
scalable. For example, in the “replace” program, if the
minimum support is set at 40%, which is pretty high,
there are still millions of frequent graphs. This renders
the classification nearly impossible because it cannot
even finish the feature extraction step.

As an alternative, closed frequent graph mining
can complete in several orders of magnitude faster
than frequent graph mining. Moreover, it commonly
generates much less features for classification purpose.
Taking the ”replace” program as an example, among the
millions of frequent graphs, only around 1,000 are closed
frequent graphs. This makes the closed frequent graph-
based classification more appealing than the frequent
graph-based one. Furthermore, since closed frequent
graphs is a lossless compression of frequent graphs,
the classifier based on closed frequent graphs should
have similar performance as the frequent graph based

classifier. Our empirical study suggests that the former
is better.

3.1 Mining Closed Frequent Graphs. The first
step in our classification framework is to mine closed fre-
quent graphs from a set of behavior graphs and then use
them as features. Behavior graphs can be transformed
to labelled undirected pseudographs. A pseudograph is a
non-simple graph in which both loops and parallel edges
are permitted. A labelled graph has labels associated
with its vertices and edges. Since behavior graphs have
distinct labels for each vertex, we can treat them as sets
of 3-tuples (vi, vj , elabel), where i < j. Edge label elabel
has four types: (i) uplink call, (ii) downlink call, (iii)
uplink transition, and (iv) downlink transition, where
“uplink” means that the edge direction is from vi to vj

whereas “downlink” means the direction is from vj to
vi. In this way, each behavior graph is regarded as a
set of distinct edges. Traditional closed graph mining
algorithms, such as CloseGraph [24], do not take advan-
tage of this property. In the following discussion, we
develop a simpler graph mining algorithm that fits be-
havior graphs better.

We apply the pattern-growth methodology to mine
closed frequent graphs1: Whenever a new frequent
graph is uncovered, we extend this graph as much as
possible until the maximum one is found. Let g be a
frequent subgraph with n edges. Suppose g is extended
in a series of g1, g2, ..., gn (g1 = ∅, gn = g), where gi

is a graph formed from gi−1 by adding one new edge.
If graphs gi, gi+1, . . ., and gn have the same support,
one could skip the search space between gi and gn.
That is, whenever gi is found, gi should be directly
extended to gn through gi+1 to gn. Any other graph
that is a supergraph of gi and a subgraph of gn should
not be enumerated except gi, gi+1, . . ., and gn−1. We
call it search space skipping. However, as illustrated
in [24], CloseGraph has to miss some skipping in order
to preserve the depth-first search order. The miss of
search space skipping may cause problem when the
closed frequent subgraphs are very large. Therefore,
the naive search order [23] is adopted in our mining
algorithm to skip the search space as much as possible.

Algorithm 1 (CloseMine) describes the pseudo code
of our closed frequent graph mining algorithm. At each
iteration of CloseMine, it first extends a newly discov-
ered frequent graph with one more edge. Then CloseM-
ine checks whether this graph has already been discov-
ered (Line 1 in Algorithm 1). If not, it continues search-
ing its supergraphs. CloseMine adopts an optimization

1Note that all the closed frequent graphs under examination
are connected graphs.

289

Algorithm 1 CloseMine(g, D, minsup, S)

Input: A graph g, a graph dataset D, a minimum
support threshold minsup.

Output: The closed frequent graph set S.

1: if ∃ g′ ∈ S s.t. g ⊂ g′ and support(g) = support(g′)
then return;

2: extend g to g′ as long as support(g) = support(g′);
3: insert g′ to S;
4: scan D once, find edge e s.t. g′ ∪ {e} is frequent;
5: for each frequent g′ ∪ {e} do
6: CloseMine(g′ ∪ {e}, D, minsup, S);
7: return;

(Line 2) that extends a frequent graph as much as pos-
sible until there is no supergraph having the same sup-
port.

3.2 Relationship between Closed and Frequent
Graph-based Classification. In this section, we ex-
amine the relationship between the frequent graph-
based and the closed frequent graph-based classification.

Since the whole set of frequent graphs can be
reconstructed from closed frequent graphs, a potential
question is whether frequent graph-based SVMs can be
exactly constructed through a closed frequent graph-
based training process? The answer is “yes”. Actually,
the concept discussed here can also be generalized
to other kinds of frequent patterns like itemsets and
sequences. Let us first examine how to build a mapping
from frequent graphs to closed frequent graphs.

Lemma 3.1. Given a behavior graph G, there is one
and only one closed behavior graph G′ such that G ⊆ G′

and support(G) = support(G′).

Proof. Assume to the contrary that there is another
closed graph G′′ s.t. G ⊂ G′′ and support(G) =
support(G′′). Let G∗ be the graph formed by G′ ∪
G′′. G∗ is a connected graph since G′ and G′′ share
a common subgraph G. Therefore, G′′ ⊂ G∗ and
support(G′′) = support(G∗), contradicting our assump-
tion.

Note that Lemma 3.1 only holds for graphs that
have distinct label for each node. Fortunately, behavior
graph has this property. Lemma 3.1 shows that there
exists one function f : F 7→ C, which maps any frequent
graph in a frequent graph set F to one and only one
closed graph in a closed frequent graph set C. Thus,
given a graph dataset D and a pre-defined minimum
support threshold δ, the above mapping function can
be obtained by mining closed frequent graphs from the

dataset and constructing frequent graphs from closed
frequent graphs.

In the frequent or closed feature space, a graph
instance G is represented by a feature vector whose i-
th dimension is instantiated to 1 if G contains the i-th
feature (frequent graph or closed frequent graph) or 0
otherwise. Given a graph G, the vectors of G in the
frequent and closed feature space can be transformed
with each other through the mapping function f as
described before. The number of frequent graphs that
map to the same closed frequent graph g is written as
c(g).

In the following discussion, we will show that an
SVM trained in the frequent feature space for a training
dataset can be constructed in the closed feature space.
That is, we may solve the quadratic programming
problem for a frequent graph-based SVM in the closed
feature space.

Let x be the feature vector of a graph instance G in
the frequent feature space and z be the vector of G in the
closed feature space. Let d be the number of dimensions
in the closed feature space and M be a diagonal matrix,

M =




√
c(g1) 0
0

√
c(g2) . . . 0

0 0
0

√
c(gd)


 .

If we train a linear SVM in the frequent feature
space, then k(xi,xj) = xi ·xj , which is equal to (Mzi) ·
(MT zj). Let z′ = Mz. Vector z′ is in a new feature
space C′, which is formed by scaling the original closed
feature space with M . Since xi ·xj = z′i ·z′j , the solution
of the quadratic programming problem in this new
space will be exactly the same as that of the quadratic
programming problem in the frequent feature space.
Thus, we may use closed frequent graphs as features
with the scaling matrix M to learn an equivalent SVM
in the frequent feature space.

We further found that if two frequent graphs gi

and gj , gi ⊂ gj , are mapped to the same closed
frequent graph, their weights in the optimal hyperplane
are the same. That means SVMs cannot distinguish
graphs gi and gj from the training set. In the closed
frequent graph-based classification, we only treat graph
gj as a feature (if gj is closed), while the frequent
graph-based approach also counts gi as a feature. It
is difficult to tell which method is better. However,
our experiments indicate that the closed graph-based
approach can achieve the similar or even better accuracy
in comparison with the frequent graph-based approach.

290

4 Uncover “Backtrace” for Noncrashing Bugs

With the classification technique developed in Section
3, we here illustrate how to assist programmers in
debugging noncrashing bugs.

Software bugs can be classified into two categories,
according to their running behaviors. The first one is
crashing bugs, which terminate the program execution
abnormally with segmentation faults. For instance, il-
legal memory access and dereference to null pointers
are two typical cases. Although crashing bugs happen
quite often, they are not too difficult to tackle. At the
crashing point, developers can obtain the backtrace, the
snapshot of function call stack, based on which tracing
back is straightforward. For example, in Fig. 1(b), the
program crashes in prompt, then we have a function call
stack, traverse file → file action → prompt. Pro-
grammers may carefully check the logic in these func-
tions first. On the other hand, the other type is non-
crashing bugs, which, as suggested through the name,
do not incur program crashes. Noncrashing bugs are
usually detected in software testing phase. Specifically,
when a set of test suites are applied, some of outputs fail
to match the expected. In general, fighting noncrash-
ing bugs is harder than crashing ones. Few clues are
available for programmers to debug noncrashing bugs.

Through comparison, we notice that this extra diffi-
culty for noncrashing bugs partially comes from the ab-
sence of “backtrace”-like information. Suppose a “back-
trace” is available for noncrashing buggy runs, which
shows what functions are bug relevant, developers could
be hinted to focus initial emphasis on those suspected
functions. Therefore, we then aim at identifying sus-
picious functions that are relevant to incorrect runs.
These functions may provide information to program-
mers in a way similar to “backtrace”.

Component A

Classifier A trained here

Component B

Classifier B trained here

BUG hides here

Component
 C

Figure 4: Classification Accuracy Boost

Our method is based on the analysis of the classifi-
cation accuracy boost. Generally, the classification ac-

curacy should not decrease while more and more trace
data become available; especially, accuracy will improve
once the execution data contain buggy behaviors. This
is illustrated in Fig. 4. Suppose a program runs through
components A,B and C in sequence and a noncrashing
bug resides in component B as shown. Classifier fA is
trained at the end of execution of component A. As ex-
pected, its accuracy cannot be high since it knows few,
if any, behaviors induced by the bug. In contrast, classi-
fier fB that is trained after component B, is expected to
have a much higher accuracy than fA because it does
have behavior graphs induced by the bug in incorrect
runs. Therefore, as long as fB has a classification accu-
racy boost in comparison with fA, it is more likely that
the bug is located in Component B than Component A.
This inspires us to uncover “backtrace” for noncrash-
ing bugs by detecting the accuracy change in a series
of classifiers incrementally trained along the execution
axis.

Specifically, for each function, Fi, two checkpoints
Bi

in and Bi
out are placed at the entrance and the exit of

Fi respectively. At each checkpoint, a set of behavior
graphs are collected, each of which corresponds to
one test case running up to this checkpoint. Then
using the classification technique developed in Section
3, a classifier can be trained at each checkpoint with
accuracy (precision and recall) evaluated through cross-
validation. In our experiments, we choose the highest
precision as the accuracy measure while keeping recall
no less than 90%. This guarantees that only few
incorrect runs are missed and hence precision is a fair
measure for comparison. In this way, each function is
attached with a precision pair [P i

in, P i
out]. If there is a

significant precision boost from P i
in to P i

out, we would
think function Fi as bug-relevant. Its formal definition
is given as follows.

Definition 2. (Bug-relevant) Given a significance
level of precision boost θ (0 < θ ≤ 1), a function Fi is
bug-relevant if P i

out − P i
in ≥ θ.

Consequently, bug-relevant function set (BRFS)
refers to the set of functions that are bug-relevant with
respect to a significance level θ.

In general, BRFS is a smaller subset of all the
functions, and hence it will be effective in helping
programmers at debugging; otherwise, all functions are
conceptually suspicious.

Furthermore, through experimental studies, we
found that BRFS has several nice properties, which
further enhance its applicability in debugging. For in-
stance, it is easy to choose a proper cutoff θ, distinguish-
ing bug-relevant from “bug-irrelevant”. In addition, due
to the nested structure of function executions, BRFS is

291

Version Incorrect Runs Correct Runs Buggy Line # Bug Description
3 130 5412 493 missing one boolean subclause in if statement
4 143 5399 493 misuse of variable
5 271 5271 117 misuse of < while <= is expected
14 137 5405 369 missing one boolean subclause in if statement
26 198 5344 369 misuse of j while j+1 is expected

Table 1: Summary of Buggy Versions

likely to line up in a form quite similar to “backtrace”.
However, since we are not yet very clear about the un-
derlying model governing program executions, we re-
frain from presenting these properties formally. As an
alternative, we examine a detailed case study in Section
5.4 together with reasonings about its soundness.

5 Experiments and Case Study

In this section, we evaluate the effectiveness and effi-
ciency of closed frequent graph-based classification. A
detailed case study is also given to illustrate its usage
in uncovering backtrace of noncrashing bugs.

For classification evaluation, we designed three
methods for comparison.

1. edge: Edges of a behavior graph are treated as
features.

2. frequent+: In addition to edge, frequent graphs
are treated as additional features. The symbol ’+’
means the classifier also uses edges as features.

3. close+: In addition to edge, closed frequent graphs
are treated as additional features.

All of our experiments were carried out on a 3.2GHz
Intel Pentium 4 PC with 1GB physical memory, running
Redhat Linux 9.0. SV M light [13] was chosen in our
implementation due to its good scalability.

5.1 Subject Programs. We took Siemens Programs
as our testbed, which are widely used in software re-
search [12, 21, 8, 10] because of its artificially instru-
mented but “realistic” enough software bugs. Readers
interested in how Siemens researchers simulated realistic
software bugs are referred to [12]. In our experiments,
we chose replace, one of Siemens Programs, as our sub-
ject program. It performs regular expression matching
and substitution. We chose it because the correctness
of an execution is easy to label given the availability of
a bug-free version.

Replace program in our study contains 32 versions
in total, among which Version 0 is a bug-free version
and other versions have one bug each. In this setting,
Version 0 serves as the oracle in labelling whether a run

Version for incorrect runs for correct runs
3 15 549
4 22 547
5 74 538
14 39 604
26 50 543

Table 2: Number of Distinct Behavior Graphs

is “correct”. We conducted experiments on five buggy
versions, which, in our point of view, nicely mimic the
typical noncrashing bugs in reality. Table 1 shows the
characteristics of these five buggy versions and their bug
descriptions.

In order to objectively evaluate the effectiveness
of classification, we remove duplicated behavior graphs
within the set of correct and incorrect runs respectively.
This is based on the consideration that two different but
similar inputs may result in the same behavior graph.
Table 2 lists the number of distinct graphs in the five
versions.

5.2 Effectiveness. In our experiment, incorrect runs
are labelled as positive samples and correct ones as
negatives. As shown in Table 2, the numbers of positives
and negatives are highly imbalanced, suggesting that we
should evaluate the effectiveness through precision and
recall, rather than pure accuracy.

Recall is defined as the fraction of the total num-
ber of incorrect runs that are classified right. Precision
refers to the fraction of incorrect runs classified that are
actually incorrect runs. Though it is highly desirable to
achieve both high precision and recall, these two mea-
sures are usually contrary to each other. In practice,
higher recall means low rate of missing incorrect runs
while high precision means high hit rate and low rate of
false alarms. In assistance to programmers’ debugging,
high precision with reasonably high recall means that
the classification features are of high quality in discrim-
inating incorrect runs from correct ones.

We perform five-fold cross validation and plot the
result of each method in a recall-precision curve. Intu-
itively, a better method should have the recall-precision

292

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 3

edge
close+

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 4

edge
close+

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision and Recall Comparison on Version 26

edge
close+

Figure 5: Precision and Recall: close+ vs. edge

curve nearer to the upper right corner.

5.2.1 Effectiveness in Detecting Failing Runs.
Fig. 5 shows the classification results of edge and close+
on Versions 3, 4 and 26. The other two versions have
the similar trend.

In classification of program runs, high recall is
required due to the high cost of bugs [16, 1]. Thus
we emphasize the precision when the recall is at a high
level, e.g., 70% and higher. Version 3 in Fig. 5 has
the best accuracy: with the 100% recall, the precision
can be as high as 50%. It indicates that the classifier
does not miss any real incorrect runs and at least
one of two alarms is hit on average. Table 2 shows
that the ratio between positives and negatives is about
1:37 (i.e., 15:549), which implies that random guessing
according to this prior distribution would result in a
precision around 2.7% (i.e., 15/(15+549)). The 20-
times promotion of precision reaffirms our belief that
behavior graphs are informative as to correctness of
program executions. Similar conclusions can also be
drawn on Version 4 and Version 26 depicted in Fig. 5.
Generally, when the recall is as high as above 90%,
our classifiers can still maintain a precision no lower
than 25%. Considering the highly skewed distribution
of positives and negatives in Table 2, we believe SVMs
on behavior graphs perform well in the identification of
incorrect runs.

Fig. 5 shows that close+ generally outperforms
edge, especially when a high recall is a must. This
indicates that the addition of closed frequent graphs as
features can leverage the classifier quality. In Versions
4 and 26, edge also achieves good performance. These
are the cases where edges can be rather discriminative
in revealing program correctness.

5.2.2 Closed vs. Frequent Graph-Based Clas-
sification. Next, we compare the classification accu-
racy between frequent+ and close+. In Section 3, we
show that frequent graph-based SVMs can be trained in
the closed feature space. Therefore, we conjecture that

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision per Recall on Version 26 with sup=60%

close+
frequent+

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Precision per Recall on Version 26 with sup=75%

close+
frequent+

Figure 6: Precision and Recall: close+ vs. frequent+

closed and frequent graph-based SVMs would probably
have similar classification performance.

Fig. 6 presents the accuracy of close+ and frequent+
on Version 26, which also suggests a little bit better
performance of close+. Note that the minimum support
is set at 60% and 75% respectively, rather than 25% as
used in Fig. 5. Under the 50% threshold, frequent+
failed to complete the mining process.

5.3 Scalability. Figs. 7 and 8 compare close+ and
frequent+ in terms of mining and training time. It indi-
cates the better scalability of close+ over frequent+. We
only plotted the results from Version 3 for examination
since others have the similar characteristics.

It becomes obvious that the computational cost of
frequent+ is exponential with regard to the minimum
support threshold. For example, frequent+ cannot finish
in 10 hours when the support threshold is at 50%. On

293

1

10

102

103

104

 0 20 40 60 80 100

tim
e(

s)

support(%)

Mining Time

close+
frequent+

Figure 7: Mining Time w.r.t. Support

10-2

10-1

1

10

102

103

104

 0 20 40 60 80 100

tim
e(

s)

support(%)

Training Time

close+
frequent+

Figure 8: Training Time w.r.t. Support

the contrary, close+ ran smoothly when the support
was gradually lowered down. In practice, a reasonably
low threshold is preferred since more patterns can be
explored as potential features. When the support is
at 5%, close+ only takes around 15 seconds to learn a
classifier (i.e. mining time + training time), which is
surprisingly fast.

5.4 Case Study. In this subsection, we illustrate
how to backtrace a noncrashing bug through a detailed
case study. Section 5.4.1 describes what the bug is,
followed by an examination of our approach in Section
5.4.2. We discuss its validity in Section 5.4.3.

5.4.1 Case Description. The buggy code we stud-
ied is shown in Program 1, which comes from Version
3 of the “replace” program. Within the if-statement at
line 9, the subclause “(lastm != m)” is missed for some
reason. This “miss of corner case” logic bug causes more
than expected runs fall into the condition block between
Lines 9 and 12, which in consequence induces incorrect
outputs. In this buggy program, programmers may feel
confused about where to start debugging since incorrect
runs will finish smoothly. Usually they have to verify
the code step by step, which is very time-consuming.

Program 1 Buggy Code - Subline Function

1 void

2 subline(char *lin, char *pat, char *sub)

3 {

4 int i, lastm, m; 8

5 lastm = -1;

6 i = 0;

7 while ((lin[i] != ENDSTR)) {

8 m= amatch(lin, i, pat, 0);

9 if (m >= 0) /* && (lastm != m) BUG!!!*/{

10 putsub(lin, i, m, sub);

11 lastm = m;

12 }

13 if ((m == -1) || (m == i)){

14 fputc(lin[i],stdout);

15 i = i + 1;

16 } else

17 i = m;

18 }

19 }

main
[0, 58.462]

getpat
[0, 33.808]

getsub
[29.336, 33.928]

change
[33.886, 58.462]

makepat
[0, 33.808]

makesub
[29.368, 33.928]

addstr
[0, 0]

in_set_2
[25.390, 25.390]

stclose
[28.212, 28.212]

esc
[29.368, 33.928]

subline
[38.356, 56.138]

amatch
[38.356, 56.632]

putsub
[57.708, 57.708]

omatch
[56.632, 56.632]

[56.632, 56.632]

in_pat_set
[56.632, 56.632]

Figure 9: Entrance Precision and Exit Precision

5.4.2 How It Works. Fig. 9 shows the experimental
results using our approach that helps narrow down
the suspicious bug region. The classifiers are trained
on behavior graphs from various program runs. Our
classification method is applied at the entrance and
the exit of each function. So each function has two
precision values – entrance precision and exit precision.

294

0

10

20

30

40

50

60

Functions

P
r
e
c
i
s
i
o
n

B
o
o
s
t

main

amatch

change

makepat getpat

subline

getsub

esc

makesub

Figure 10: Precision Boost of Functions

Precisions depicted here are with recall at least 95%. We
sort functions in increasing order of precision boosts in
Fig. 10.

According to the method laid out in Section 4,
the first task is to choose a proper significance level θ
to identify bug-relevant functions. Seen from Fig. 10,
eight functions induce no precision boost while another
three only cause less than 5% precision increase. In
contrast, the remaining six functions possess more than
17% boost. Therefore, it is easy to choose a safe cutoff
in differentiating bug-relevant functions from irrelevant
ones. The wide range of cutoffs clearly shows that bug
relevance is an objective fact, rather than a subjective
judgement. In addition, we believe this property should
hold in general because functions that have nothing to
do with the incorrect executions are less likely to cause
significant precision boost. As a result, six out of the
entire 17 functions are identified as bug-relevant. The
result is summarized in Table 3.

function name Precisionin Precisionout

main 0 58.462
getpat 0 33.808
makepat 0 33.808
change 33.886 58.462
subline 38.356 56.318
amatch 38.356 56.632

Table 3: Bug-Relevant Functions with θ = 20%

Table 3 together with Fig. 10 exposes the following
interesting results.

First, main function always has the highest preci-
sion and precision boost. This makes sense because
P main

out measures the classifier that uses the informa-
tion of the whole run, hence achieves the best precision.
Meanwhile, P main

in is always 0% since no information is

available in the entrance to the main function. There-
fore, the main function always has the highest precision
boost. Since main is the only entrance of a program, it
is trivial to be regarded as bug-relevant.

Second, we can divide the six functions in Table 3
into two groups and rank them by their exit precision
(i.e. P i

out). Clearly, functions main, change, subline
and amatch form a group with the highest exist preci-
sion, which actually reveals the backtrace to the buggy
code.

Finally, bug-relevant functions tend to line up to
form a backtrace. As shown in Fig. 9, the identified
bug-relevant functions, namely main, change, subline
and amatch, form the backtrace for this noncrashing
bug. Again, we think this property should hold in
general because the nested calling structure is typical
in program executions. For instance, if function A calls
B and B is regarded as bug-relevant, A would also be
bug-relevant because A exits later than B and hence has
more bug-relevant information.

In summary, through the above analysis we have
uncovered the “backtrace” for this noncrashing bug.
Taking this “backtrace” as hints, a programmer can
start debugging in a similar way as facing the real
backtrace. It is expected that a programmer could pay
more attention on this backtrace rather than suspecting
all the functions.

5.4.3 Discussion on General Validity. Although
our method works reasonably well in the above case,
we are not going to claim its general applicability. Due
to the wide variety of software bugs, it is unlikely for
a method to work well in all cases. In this study, we
have been exerting great efforts to narrow down suspi-
cious bug trace by using data mining techniques. The
entire framework of exploiting classification dynamics
to uncover “backtrace” makes sense by intuition and
reasoning. Furthermore, our case study does capture a
kind of common bugs, which may imply its applicability
beyond this particular case.

We note that our method can only provide pro-
grammers with the “backtrace”, a set of bug-relevant
functions, which hopefully can assist programmers in a
similar way as debugger-provided backtraces for crash-
ing bugs. However, just as a real backtrace may not
immediately lead to the discovery of the bug root for a
crashing bug, neither does our method. Still a program-
mer has to scrutinize the source code and figure out a
way to fix.

Computer-aided debugging is profound and hence
hard to be solved thoroughly in one shot. To the best
of our knowledge, it is less likely, if not impossible, to de-
vise a fully-automated debugger, which detects and fixes

295

bugs without the involvement of human intelligence. We
are looking forward to more debates and insights on this
interesting and challenging problem.

6 Related Work

Previous related work falls into two fields: frequent
pattern-based classification and software debugging.

6.1 Frequent Pattern-Based Classification. Sta-
tistical significance of frequent patterns motivates their
applicability in classification problems, which is based
on the belief that frequent patterns can embody signif-
icant and discriminative features. Associative classifi-
cation [19, 17] tries to find a set of association rules
based on frequent patterns, from which high quality
rules are selected as meta-rules for classification. In con-
trast, we explore the potentials of all the patterns and
use sophisticated learning algorithms, such as SVMs, to
combine their discriminative power smoothly. In ad-
dition, pattern-based classification has been successfully
applied to chemical and biological domains, such as clas-
sification of outer membrane proteins [22] and chemi-
cal compounds [3]. In this paper, we not only apply
data mining techniques in software engineering, but also
demonstrate the power by incorporating closed frequent
patterns as features. As shown through experiments,
our method has better scalability and meanwhile uplifts
the classification accuracy. To the best of our knowl-
edge, this is the first piece of work on using closed fre-
quent patterns in classification and demonstrating their
usage in software engineering.

6.2 Software Bug Detection. Software reliability
is actively pursued in software engineering and com-
puter system research from various angles. Static anal-
ysis [4, 6] aims at detecting program abnormities from
the source code level without running the programs.
Dynamic analysis [2, 5, 20, 18, 26], on the contrary,
usually instruments subject programs to dump runtime
information during their execution for further analysis.
In addition, model checking [15] and fault injection and
analysis [14] also work towards better software reliabil-
ity through their own approaches.

Our work is in the category of dynamic program
analysis, within which the following studies are the
most related. Program invariants [7] are used to as-
sist programmers in debugging [2, 18, 26]. Logistic re-
gression is adopted in [18, 26] to single out discrimi-
native invariants while Brun and Ernst use SVMs [2].
Researchers also explore the possibility of clustering in-
correct runs based on software behaviors [5, 20]. We ap-
proach the software reliability problem through a clas-
sification method.

7 Conclusions

In this paper, we investigate the capability for comput-
ers to classify incorrect and correct executions based on
observations of program behaviors. We develop a classi-
fication framework by summarizing program executions
as behavior graphs. As demonstrated through experi-
ments, the classification can be both effective and effi-
cient. Moreover, we propose a novel method to exploit
the classification accuracy boost and help programmers
debug noncrashing buggy code, which otherwise may
be elusive to handle. By examining software reliability
from a data mining point of view, we make our ini-
tial efforts to explore how data mining techniques can
contribute to software reliability, a hard but invaluable
problem.

There are many issues that need to explore further.
For example, it is not clear whether our method can
be effective at tracing large software programs with the
existence of multiple bugs in different program modules,
how to further develop our method to make the trace
deeper with finer granularity (such as a small set of
program lines), and how to integrate this new approach
with other existing software debugging methods. These
are a set of issues for our future research.

Acknowledgement

We would like to thank Professor Gregg Rothermel and
his colleagues at University of Nebraska - Lincoln for
providing us Subject Infrastructure Repository.

References

[1] European Space Agency. Arianne-5 flight 501 inquiry
board report. In http://ravel.esrin.esa.it/docs/esa-x-
1819eng.pdf.

[2] Y. Brun and M. Ernst. Finding latent code errors via
machine learning over program executions. In Proc. of
the 26th Int. Conf. on Software Engineering (ICSE’04),
pages 480–490, 2004.

[3] M. Deshpande, M. Kuramochi, and G. Karypis. Fre-
quent sub-structure-based approaches for classifying
chemical compounds. In Proc. of the 3rd IEEE Int.
Conf. on Data Mining (ICDM’03), pages 35– 42, 2003.

[4] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
Memory safety without runtime checks or garbage
collection. In Proc. of Languages Compilers and Tools
for Embedded Systems, pages 69–80. ACM Press, 2003.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
Proc. of the 23rd Int. Conf. on Software Engineering
(ICSE’01), pages 339–348. IEEE Computer Society,
2001.

[6] N. Dor, M. Rodeh, and M. Sagiv. Cssv: towards a
realistic tool for statically detecting all buffer overflows

296

in c. In Proc. of the ACM SIGPLAN 2003 Int. Conf.
on Programming Language Design and Implementation
(PLDI’03), pages 155–167. ACM Press, 2003.

[7] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on
Software Engineering, 27(2):1–25, 2001.

[8] P. Frankl and O. Iakounenko. Further empirical stud-
ies of test effectiveness. In Proc. of the 6th ACM SIG-
SOFT Int. Symp. on Foundations of Software Engi-
neering (FSE’98), pages 153–162. ACM Press, 1998.

[9] S. Hangal and M. Lam. Tracking down software bugs
using automatic anomaly detection. In Proc. of the
24th Int. Conf. on Software Engineering (ICSE’02),
pages 291–301. ACM Press, 2002.

[10] M. Harrold, G. Rothermel, R. Wu, and L. Yi. An
empirical investigation of program spectra. In Proc. of
the ACM SIGPLAN-SIGSOFT workshop on Program
Analysis for Software Tools and Engineering, pages 83–
90. ACM Press, 1998.

[11] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining spatial motifs from
protein structure graphs. In Proc. of the 8th Annual
Int. Conf. on Research in Computational Molecular
Biology (RECOMB’04), 2004.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of
the 16th Int. Conf. on Software Engineering (ICSE’94),
pages 191–200. IEEE Computer Society Press, 1994.

[13] T. Joachims. Advances in kernel methods: Support
vector learning. In chapter “Making Large-scale SVM
Learning Practical”. MIT Press, 1999.

[14] G. Kanawati, N. Kanawati, and J. Abraham. Ferrari:
A flexible software-based fault and error injection
system. IEEE Transactions on Computers, 44:248–
260, 1995.

[15] S. Kumar and K. Li. Using model checking to debug
device firmware. SIGOPS Oper. Syst. Rev., 36(SI):61–
74, 2002.

[16] N. Leveson and C. Turner. An investigation of the
therac-25 accidents. Computer, 26(7):18–41, 1993.

[17] W. Li, J. Han, and J. Pei. CMAR: Accurate and effi-
cient classification based on multiple class-association
rules. In Proc. 2001 Int. Conf. on Data Mining
(ICDM’01), pages 369–376, San Jose, CA, 2001.

[18] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug
isolation via remote program sampling. In Proc. of the
ACM SIGPLAN 2003 Int. Conf. on Programming Lan-
guage Design and Implementation (PLDI’03), pages
141–154. ACM Press, 2003.

[19] B. Liu, W. Hsu, and Y. Ma. Integrating classification
and association rule mining. In Proc. of the 4th ACM
SIGKDD Int. Conf. on Knowledge discovery and data
mining (KDD’98), pages 27–31. ACM Press, 1998.

[20] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated sup-
port for classifying software failure reports. In Proc. of

the 25th Int. Conf. on Software Engineering (ICSE’03),
pages 465–475. IEEE Computer Society, 2003.

[21] G. Rothermel and M. J. Harrold. Empirical studies
of a safe regression test selection technique. IEEE
Transaction on Software Engineering, 24(6):401–419,
1998.

[22] R. She, F. Chen, K. Wang, M. Ester, J. Gardy, and
F. Brinkman. Frequent-subsequence-based prediction
of outer membrane proteins. In Proc. of the 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’03), pages 436–445. ACM Press, 2003.

[23] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 721–724, 2002.

[24] X. Yan and J. Han. CloseGraph: Mining closed fre-
quent graph patterns. In Proc. 2003 ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining
(KDD’03), pages 286 – 295, 2003.

[25] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Hardware
supported anomaly detection: down to the control flow
level. In Technical Report, Center for Experimental
Research in Computer System, GIT-CERCS-04-11,
Georgia Institute of Technology, 2004.

[26] A. Zheng, M. Jordan, B. Liblit, and A. Aiken. Statis-
tical debugging of sampled programs. In Advances in
Neural Information Processing Systems 16. MIT Press,
2004.

297

���������
	��
�������������
����������������� �!���"�$#%��&(')�+*-,.	/���10%2�	3�
�4�657�����829	:���<;>=
=
������?A@CB

DFE�GIHKJLEAMONQPSRUT EARUV NWEAXLJLEAM
Y[Z]\^E�_a`bM7Z]RI`cPAd
e+f+ga`hZ]M7gji
RUTAXkRUZlZ]_hXmRUTonjRUV>i
RUTSXmRUZ]Zl_hXkR�T7pqEAR^EATAZ]M7Z]RI`

DsrUZutvrUXkR�Z]ghZxwyR�XmzSZl_hgaXm`Kf�PAdF{yPARUT7|}PARUT
{�PSRUT7|~PSRUT

��� PARUTA`b�3� � �kEAM"���~gaZA���]�Ur�G���Z]V�����r�G

�~�]�I�������8�l�C�8�����
�}���9���9 �¡�¢
�9£�¤�¥��h¦� §�©¨ª¦9«§¬���«­�3��£§��¡
® �l��£§¥�£§ l¯c°���±����!²³�!�]�
´cµ �!¶a�b·�¸­¶
¹jº�»lº:¼bº�½�¾a¿ÁÀc¿§ÂÃ¾hÄ]ÀaÄ]ÅÆ½ÆÅÆÇÉÈÃÅÆÊvË�Â/À!Ì
º�ÍU¾!ÂÃÎjÍÐÏ]ÅÆÊ/ÏÁÊ:ÀaÑ~ÂÃº�Ò�ÑlºvÀ!Ñº3ÓlÅÆÇÉÈÃÅÆÑ]Ô�¾hÑ�ÈÃ¾h½Æ¾aÔaÕLË�ÂÃ¾aÌ�À�ÇÖ¾a×lÂÃÊ:º�¹jº:ÄLÇÖÅØÈÃº�ÈÃ¾�Ñlº�Í~×]ÑlÇÖº:º:ÑªÇÖÅØÈÃº:Ç:ÙÚ Ñlº©Ê/Ï�À�Â/ÀaÊ�ÈÃº3ÂÃÅ�ÇÉÈÃÅÆÊs¾!Ë�¾h×§Â
Ë�Â/À!Ì
º�ÍU¾!ÂÃÎ~ÅÆÇ
ÈÃ¾yÊ:¾aÑ]ÇÖÅ�»lº3ÂCÇÖº:¼bº�Â/À!½Ê�½�×lº:ÇUÂÃº:½�À!ÈÃº:»©ÈÃ¾FÏl¾�ÍÛÀ!Ñv¾hÑ�ÈÃ¾a½�¾aÔaÕ�ÅÆÑlÜ]×]º:ÑlÊ:º:ÇUÈÃÏ]º�ÈÃº�Ó­È^Ê:¾hÑ�ÈÃº:Ñ�ÈÀ!Ñ�»[ÈÃÏ]º©¼­Å�ÇÖ×]Àa½^½�À:Õ�¾h×§È
¾aË�ÈÃÏ]ºC¹[º:Ä}¿]ÀaÔhº�Ç:ÙuÝUÏlº©ÒlÂÃÇÉÈ
Ê:½Æ×]º©Å�ÇÈÃÏlº�ÈÃº3Ó§È�Ë�Â/À!ÔhÌ
º:Ñ�ÈÃÇvÂÃº�ÔbÀ!Â/»§ÅÆÑ]Ô}ÈÃÏ]º�Ê:¾hÑ�ÈÃº:Ñ�È©¾aËªÈÃÏ]º�Ê:¾hÑlÊ:º:¿lÈÃÇ¿§ÂÃº:¼­ÅÆ¾h×]ÇÖ½ØÕsÊ�¾h½Æ½Æº:Ê�ÈÃºK»�¾aÂ�º�Ó­ÈÖÂ/À!Ê�ÈÃºK»³Ë�ÂÃ¾aÌÞÈÃÏ]ºªÇÖ¾h×§ÂÃÊ:º.¹jº:ÄcÇÖÅÆÈÃºaÙÝUÏlº.ÇÖº�Ê:¾hÑ]»³Ê:½Æ×]ºªÅ�Ç�ÈÃÏ]º�ÈÃº�Ó­È�Ë�Â/ÀaÔaÌ
º:Ñ�ÈÃÇ�ÂÃº:ÔhÀ!Â/»§Å�ÑlÔ
ÈÃÏ]ºªÏ]ºKÀa»lº�Â½�À!Ä�º:½ÆÇF¾aËÐÈÃÏlº�Ê�¾hÑ]Ê�º:¿lÈÃÇ:ÙyÝUÏ]º
ÈÃÏlÅÆÂ/»[Ê�½�×lºCÅ�ÇªÈÃÏ]ºC¼­ÅÆÇÖ×�Àa½�½�À:Õ�¾a×lÈ¾!Ë�ÈÃÏ]º�ÈÃº�Ó­ÈÐË�Â/ÀaÔaÌ
º:Ñ�ÈÃÇ�ÂÃº�ÔbÀ!Â/»§ÅÆÑ]Ô
ÈÃÏ]ºLÊ:¾aÑ­ÈÃº�Ñ­È�¾aË�ÈÃÏlº�Ê:¾hÑlÊ:º:¿lÈÃÇÀ!Ñ�»
ÈÃÏ]º�ÏlºKÀh»§º�ÂÐ½�ÀaÄ�º:½ÆÇÐ¾aË�ÈÃÏ]º�Ê�¾hÑ]Ê�º:¿lÈÃÇ^ÅÆÑ©ÈÃÏlº�×lÑ]ÇÖº:º:Ñ�ÇÖÅØÈÃºhÙ8ÝA¾Ï]À!ÂÃÑlº:ÇÖÇªÈÃÏlºC×]Ñ]Ê�º�ÂÖÈ/ÀaÅÆÑ�ÈkÕ�ÅÆÑ­¼b¾h½Æ¼bºK»yÅ�Ñ}ÀvÂÃÅÆÔa¾aÂÃ¾h×lÇ
ÌCÀaÑlÑ]º�ÂKß�ÍUºË�¾aÂÃÌCÀ!½�ÅÆà:º�ÈÃÏ]º:ÇÖº�Ê�½�×lº:ÇUÄ�ÕCÀªÔhº:Ñlº�Â/À!ÈÃÅÆ¼bº�Ì
¾­»§º:½�ÈÃ¾LÂÃº:¿lÂÃº:ÇÖº�Ñ­È�ÈÃÏ]ºÔaº:Ñ]º3Â/À!ÈÃÅÆ¾hÑ�¾aË�ÈÃº�Ó­È�Ë�Â/ÀaÔhÌ
º�Ñ­ÈÃÇ+ÂÃº:ÔbÀ�Â/»lÅÆÑ]ÔªÈÃÏ]ºÐÊ:¾aÑ]Ê:º:¿§ÈÃÇ^ÀaÑ]»
ÈÃÏ]º¾aÑ�ÈÃ¾h½Æ¾hÔ!ÕvÊ:¾!ÂÖÂÃº:ÇÖ¿�¾hÑ]»lÅÆÑ]ÔªÈÃ¾.ÈÃÏlº�¹[º:Ä�¿�À!ÔhºhÙ8áUÀ:Õ�º�ÇÖÅ�À!Ñ³½ÆºKÀ!ÂÃÑlÅÆÑ]ÔÈÃº�Ê3ÏlÑ]Å�â�×]ºãÀ!Ñ�»qº3Ól¿�º�Ê�È/À!ÈÃÅÆ¾hÑ§äåÌCÀ!Ó§ÅÆÌ
Å�à:À!ÈÃÅÆ¾hÑ1æèç�ésê~À!½�Ôa¾aÂÃÅØÈÃÏ]ÌÀ�ÂÃº^º:Ì
¿]½Æ¾KÕ�ºK»�ÈÃ¾�À!Ê:Ê:¾aÌ
¿]½ÆÅÆÇÖÏFÈÃÏ]º�È/À!ÇÖÎ�Ù�ç�Ó­ÈÃº:ÑlÇÖÅÆ¼bºUº�Ó§¿�º�ÂÃÅÆÌ
º:Ñ�ÈÃÇ¾aÑyÇÖº�¼bº�Â/Àa½IÂÃºKÀ!½ØäåÍ�¾aÂÃ½�»�¹jº:ÄcÇÖÅØÈÃº:Ç�Ë�ÂÃ¾aÌÞÈkÍ�¾v»§ÅÆë9º3ÂÃº:Ñ�ÈL»l¾aÌCÀaÅÆÑ]ÇÏ]ÀK¼bºÐÄ�º:º:Ñ
Ê:¾aÑ�»l×lÊ�ÈÃºK»FÈÃ¾ª»lº�Ì
¾hÑ]ÇÉÈÖÂ/À�ÈÃº�ÈÃÏlºÐº�ë9º:Ê�ÈÃÅÆ¼bº:Ñlº:ÇÖÇ�¾!ËA¾a×lÂË�Â/ÀaÌ
º�Í�¾aÂÃÎ�Ù
ì í�î ¶a�����8ï�¸­¶hðå� î
°��añ!�!�]�3¥�¯§¡]£§�]�3£l¥�£l §¯vò�«§ó�ô��hñ�£l²v�.£§�9�.£­õI��ò9�.��²³¬�£lö/�:«­�]��ö���÷
ó/�h«­ö:ñ:òo�3£l¬9�øñ!ós����ùx�aôú�3�añ:ò��9£§¥�£§ l¯§û"��ò9�øóc�øós²s«­���9¥�¯Û¦�ü9�
�3£}��ò9�j�!²³�!ö� §�a��ñ��y£­õ.ó3�!²s«­�]����ñ�ùx�aô7¤�ò9�øñ:òÛ«­�/�3�a²³¬���ó©�3£
 §��ý§�
¤��a¥�¥�÷Ö¦���±����a¦[«­��¦j²s«§ñ:ò����9�!÷kü���¦��!ö:ó/��«­��¦9«­ô9¥��
²³�a«­�����9
�3£sùu�!ô~ö��aó3£§ü9ö:ñ��hó�õè£löL«só/¬A�añ!��±��a¦~¦�£l²³«§���ÿþ �����Éû ® �]��£§¥�£§ §¯
��ó
«§¥�ó3£y�a²³¬9¥�£�¯l�a¦Á���uý�«­ö���£lü�ó
«­¬9¬9¥��øñ!«�����£l��óaû��9£lö
���9«­²³¬9¥��§¡
���Lñ!«§�yôA�
ü�ó3�a¦��3£³�!��ò�«­��ñ!�F�3ò9�
¬A�!ö3õè£§ö�²³«§��ñ��F£­õ�ùx�aô[¬��aö/÷
ó/£l��«­¥����h«�����£l�ãþ 	
�ÉûFùx�aô}¬��aö�ó3£§��«­¥����h«��3��£§�~�øóª�3£����]�3�a¥�¥��� l�!�]�3¥�¯
¬9ö3£�ý��ø¦��³ü�ó3�!ö:ó
¤�����òã��«§��¥�£§ö3÷k²s«l¦��s���9õè£§ö�²³«­�3��£§��û���¯u«§�9�9£­÷
��«������� [�3ò9�yùx�aôÿ¬�«­ l�cñ�£§�]���!�]��ó/�a²s«­�]�3�øñ!«§¥�¥�¯Á¤����3òo«~ñ!£§��÷
ñ��!¬9�3ü�«§¥�ò9���aö�«§ö�ñ:ò�¯l¡�¬9ö3�hñ��øó/��ùu�!ôsñ�£l�l���!�]�Ðñ!«§�©ôA��¬9ö�£�ñ!�aó�ó/�h¦
���Á«�
�������ô9¥��©²s«­�9�9�aöaû ® �l��£§¥�£§ l¯��øó.«§¥�ó3£cü�ó3�a¦~�!���3�!��ó/��ý§�a¥�¯
��� ô9��£§����õè£§ö�²s«�����ñaó~þ������kû��.ü9�~��£u�3ò9�[���!ö�²v���9£l¥�£l §�øñ!«­¥�¦���õ ÷
õè�!ö��!��ñ!�v���ã¦����S�!ö��!�]�Cô9��£§¥�£§ l��ña«­¥Uö��!¬A£ló3����£§ö����hó!¡I¦9«­��«[ñ!«§�9�9£­�

����������� �"!$#��&%(')�(*,+��)#-*,.0/(��*,%21�3415�&�6��34%2%(7�+�%8/934.:/"*;34<,< =0%"7�1�1�� �(/(�)#
+:=�> �"34.?/(%A@B�(� CD/"���FEG�&%"�)34�('9�IHJ�"34.?/LKM� 7�.�')*,<G�4@N/(���POG� .�>RQN� .�>
S 15�&'&*;34<PTJ#�CA*,.�*,%(/(�93�/(* U:�VEG�&> *,� .XWYKM��*,.
3[Z�\]�(�4^8�)'_/I`a� %cbdK�eaOJQ
f�g)h:i j4k�g&l WmK�eJOaQ f�gci4n:j4k o4l Wm34.�#�K�eJOaQ f�g)n o:j4k4f lMp 34.�#�K�eaOJQ
S /"�"3�/"�&> *,'0HJ�934.:/$Zq`G��b f f�g)k k k�gcp9r

���� §ü9ö��R�5s TJ.t�&u�34CA1�<,�v�4@xwy�&+F1
34> �$34+�� 7�/a+��z� !t')3�/934<,� > r
ôA�Có3ò�«­ö��a¦j�a«ló/��¥�¯§û0{F�a�9� ® �]�3£l¥�£l §¯c«��3�3�a²v¬9��ó���£có/£l¥�ýl�F�3ò9�øó
¬�ö3£lô9¥��a²�ô�¯c���]��ö3£�¦�ü�ñ!���� v«vó/�!��£­õ�ñ!£§�]�3ö�£§¥�¥��a¦cýl£�ñ!«­ô�ü9¥�«§ö3���aó
õè£lö.«§�9�9£­�:«������9 y«c §�a�9�C¬9ö�£�¦�ü�ñ��.¤����3ò}����óF²³£§¥��añ!ü9¥�«§ö�õèü9��ñ�÷
����£l��óa¡l��ò9�
ô9��£§¥�£§ §�øñ!«§¥�¬�ö3£�ñ��hó3ó����y¤�ò9�øñ:ò�������ó�����ý§£§¥�ý§�h¦I¡�«­��¦
��ò9�Cñ��a¥�¥�ü9¥ø«­ö�¥�£�ña«�����£l��ó����[¤�ò9�øñ:ò[���L�øó�õè£§ü���¦ãþ��z|
�kû
® �]�3£l¥�£l §¯ú¦���±����aó��3ò9�ãñ�£l��ñ��a¬���óy«­��¦ ��ò9�!��öjö3�a¥�«­�3��£§��÷

ó3ò9��¬�ó
���o«[§��ý§�a�ã¦9£§²s«­����û~}É�©��óC«§¥�ó3£~ö��! l«§ö�¦9�a¦Á«lóC«~ñ�£l��÷
ñ!�!¬���ü�«­¥�ò9���aö�«§ö�ñ:ò�¯�£§õ©��ò9�o¦�£§²s«§��� ó3����ñ!�ÿ���x��ó~��£§ö�²³«§¥�¥�¯
�!��¬9ö3�hó3ó3�a¦ «lóc«ã�3ö��!�!÷k¥��B�§�}ó/�3ö�ü�ñK��ü9ö3�lû��9£§ö����9«­²³¬9¥��§¡����� ­÷
ü�ö3����ó3ò9£�¤LóC«Áó3«§²v¬�¥��s£§õ�«}ùx�aôÿ¬�«­ l�sõèö3£l² «~ùu�!ôÛó/���3�
«§ô�£lü���ô�£�£5�cña«��:«­¥�£§ ��aûÐ��ò��!ö��.«­ö��
ó/�aý§�!ö:«­¥�ô�£�£��sö3�hñ�£§ö:¦9ó����
��ò9�øóª¬�«§ §�lût��«lñ:òjôA£�£5�[ö��añ�£lö�¦[ñ!£§�]��«§����ó.ñ�£l��ñ��a¬���óFó/ü�ñ:ò}«§ó
� �3���3¥��z��¡ � «§ü��3ò9£lö���¡ � ¬9ü9ô�¥��øó/ò��a¦m��¡ � ¥���ó/�L¬9ö���ñ!�z��¡ � ¯l£§ü[ó3«býl�z�9¡
«§��¦ � £lü9ö+¬�ö3�øñ����9ûG���� §ü9ö��0��¦��a¬9�øñK��ó�«Ló�«­²³¬9¥���£l�l��£§¥�£§ l¯Lö3�a¬�÷
ö��aó3�!�]�����9 .«ªôA£�£5�
�����3ò9�øó�ùx�aô©ó3�����§ûJ}Ö�C��ò9��ó8£§�]��£§¥�£§ §¯l¡h�3ò9�aö3�
�øóU«ªö�£�£­���9£�¦���ñ!«­¥�¥��a¦ � ô�£�£�����û+��ò9�����]���!ö���«­¥��9£�¦��hó�ó3ü�ñ:òv«§ó
� �3���3¥��z�
ö��!¬9ö��aó3�!�]�Ðñ�£l��ñ��a¬���ó�«§ó�ó/£�ñ��ø«����a¦v¤����3òc«
ôA£]£��Sû ��� �øóÃ�
¬�ö3�øñ����9¡ � ¯§£lücó3«býl�z�9¡l«­��¦ � £§ü9ö�¬9ö3�øñ����C«­ö�����ò9�.ó3ü9ôSñ�£§��ñ��!¬9��ó
£§õ+��ò9�Cñ�£l��ñ��a¬�� � ¬9ö��øñ��z��û
�}«§��ü�«­¥^�?�A£lö/�
��óCö3���lü���ö��a¦}�3£~ñ�£l��óÃ��ö3ü�ñK�C«­�x£§�]�3£l¥�£l §¯

õè£löÐ«F §��ý§�!�vó/���3�lûJ�ª£�¤��aý§�aöa¡���õA¤����9�!�h¦©�3£
¦��a«§¥�¤�����òs«.¥ø«­ö� §�
��ü9²©ô��aö}£­õc¦����S�!ö��!�]�Áó/���3�hó!¡C�3ò9�øó[��«ló)�>ô��hñ�£l²v�hó~���a¦���£§ü�óa¡
�aö3ö�£§ö3÷É¬9ö3£l�9�§¡Ð«§��¦Ûö3���lü���ö��aóvò9�� §ò ¥��!ý§�a¥�£­õF����¬��aö/����ó3�§û"°L��÷
ñ!�!�]�3¥�¯§¡9ó3�!ýl�!ö:«­¥Aö3�hó/�h«­ö:ñ:òs §ö�£§ü9¬�ó�«­�/���!²³¬��3�h¦c��£³ö3�h¦�ü�ñ��Fò�ü�÷
²s«§�F�?�A£lö/�����
£§�]��£§¥�£§ §¯Lñ!£§��ó/�3ö�ü�ñ��3��£§�
ô�¯.«­¬�¬9¥�¯����9 �²s«§ñ:ò9���9�

� ����� eaEG� �4@ /(��� wy�)+ %"* /(� *,%
���B� ��� �:���2�6�]� ��� � �q���_�B�9�"�9� �J�������)�) "�)�4¡4¢&� ���B�-� r

298

published

book

our priceyou savelist price

pricetitle author

�8�� §ü�ö3���xs ������� .:/"� <,� >4=-#��&%"'&�"*,+�*,.�>J/(�����"�&<;3�/"*,� .�%"��*,10+5�_/����&�&.A/"���
'&� .�'&�&1�/(%J�4@23-+��?� !t*,.�/(���vw��&+F1�34> �v%"���)�a.L*,.��m*,> 7��(� g

�8�� §ü�ö3�$�6s TJ.$�_u�34CA1�<,�m�4@�wy�&+ 1�34> �M34+�� 7�/m+��z� !J'c3�/"34<,� >G')� <,<,�&'_/(�)#
@��"� C 30#�* ���&�(�).:/Gw��&+L%"* /(�v%"���)�a.L*,.��m*,> 7��(� g r
¥��h«­ö��9���� C�3�hñ:ò9�9�q�]ü9�aó�õè£§ö�£§�]��£§¥�£§ §¯v¥��a«­ö��9���9 yþ �9¡M���­¡M�����Éû ® õ
�3ò9�hó/�}¬�ö3£l¬�£]ó/�h¦ ²v�!�3ò9£�¦9óa¡ªó3£§²³�~£­õ
��ò9�!² ö��z�]ü9��ö3�~���]�3�aö/÷
«§ñK����£l��ó�¤����3ò~��ò9��ü�ó/�aö�óL¦9ü9ö3���9 s��ò9��ñ!£§��ó/�3ö�ü�ñK����£l�~¬9ö�£�ñ!�aó�ó!û
� £§²³�s²³����ò9£�¦9óCö��z�]ü9��ö3�v��ò�«��C��ò9�cö:«b¤ �������©¦9«­��«[�øó
£§ö� l«­÷
�9���a�a¦s���y«�ó/¬A�añ!��±��h¦sõè£lö3²s«���ó/ü�ñ:òy«§ó���«­ô�¥��hó����cùu�!ô�¬�«­ §�hó!û
��ò9��ó�¬A£ló3�aó�¥���²³����«�����£l��óU���©ñ�ü�ö3ö��!�]�U£§�]�3£l¥�£l §¯
¥��h«­ö��9���9 L���añ:ò�÷
�9�B�]ü9�hó!ûj�~£§ö��!£�ýl�!öh¡S�3ò9�s£l�]�3£§¥�£§ l¯Áñ�£l��ó/�3ö�ü�ñK���a¦Áõè£§ö�«[¬�«§ö/÷
�3�øñ�ü9¥ø«­ö�ùu�!ô[ó/���3�F²s«b¯s�9£­��ôA�
«§ô9¥��ª��£©�?�A�hñK�3��ý§�a¥�¯y«­¬9¬9¥�¯³�3£
«­�9£§�3ò9�aö�ùu�!ô7ó3�������aý§�!�ÿ���ÿ��ò9�yó�«­²³��¦�£l²s«­����û���£§��ó/�ø¦��!ö
�3ò9�.ùx�aô�¬�«§ §�ªó3ò9£�¤��s���~���� lü9ö3� �
	�ûv}É����ó�ñ�£l¥�¥��añ��3�h¦võèö3£l²W«
ùx�aôyó3�����F¦����S�!ö��!�]��õèö�£§²W��ò9�.£l�9�.ó3ò9£�¤��c���~���� §ü9ö��y�lûN���� ­÷
ü9ö3�y|�¦��!¬���ñ���óª�3ò9�©£§�]�3£l¥�£l §¯y¦9�aó�ñ�ö���ô9���9 ³��ò9�©ñ!£§��ñ!�!¬��:óª£§õ^«
ô�£�£5�v���³�3ò9�øóÐùu�!ô�ó3���3�§û^¨ª¥���ò9£§ü9 lòsô�£§�3òc£l�]�3£§¥�£§ l���hóU��� ���� ­÷
ü9ö3�hó �
«§��¦Y|�¦���±��9�ª«
ôA£�£5�S¡­��ò9�!ö��ª«­ö��Ló3�!ý§�aö�«§¥9¦����A�aö3�a��ñ��hó!û
�8��ö:óÃ�h¡�ó3£§²³�sñ�£l��ñ��a¬���óCó3ü�ñ:òo«ló � ¬9ü9ô�¥��øó/ò��a¦m�~«§��¦ � } � ���t�
«­ö��C¬9ö��aó3�!�]�.���}£§��¥�¯[£§����£­õ^��ò9�v£§�]�3£l¥�£l §���aóaû � �añ!£§��¦I¡ � ¥��øóÃ�
¬9ö3�øñ����C��� ���� §ü9ö�� ��«­��¦ � � � °�
 �
��� ���� §ü9ö��t|vö3�!õè�!ö��3£��3ò9�
ó3«§²v�³ñ�£l��ñ��a¬��a¡Iô�ü��
���ã¦����A�aö3�a�l�
���!ö�²v���9£l¥�£l §¯§ûC��ò��!ö���õè£§ö��§¡
�3ò9��£l�l��£§¥�£§ l¯Cñ�£§��óÃ��ö3ü�ñ��3�h¦Cõè£lö^£§�9��ùu�!ôcó3�������Ã¯�¬9�øñ!«§¥�¥�¯�ña«­��÷
�9£­�LôA�Cö��!ü�ó3�a¦[���~«­�9£§�3ò9�aöLùx�aô}ó/���3�lû�¨1ó/�a¬�«­ö:«����F�?�A£lö/�.��ó
ö3���lü���ö��a¦c�3£cñ�£l��ó/�3ö�ü�ñK�L«­�j£§�]��£§¥�£§ §¯³õè£lö��3ò9�
���!¤�ó/���3�lû
ùu�7¦��aý§�a¥�£l¬q« ¬9ö�£§ô�«­ô9��¥��øó/�3�øñÁõèö:«­²³�a¤�£löc��¤�ò9�øñ:ò ñ!«§�
� �����$eJE��y�4@6/(���Nwy�&+F%"* /(�v*,% �z�q� ��� �:���6�2�]��� ��¢_�9� ���
�����9� � r

ISBN

book

our priceyou saveMSRP

pricetitle author

���� §ü9ö�� |6s �G����� .?/(� <,� >4= #��&%(')�(*,+�*,.�>N/(�����"�&<;3�/(*,� .�%"��*,10+��&/��M�)�&. /(���
')� .�')�&1�/(%J�4@23 +5�?� !t*,.t/(���vwy�)+L1
34> �$%"���)�G. *,.��m*,> 7��(� o
«§ü��3£l²s«��3�øñ!«§¥�¥�¯Áö���±��9�c«­�ÿ�!���øó/�3���9 ~£§�]�3£l¥�£l §¯~�:«­��¥�£lö3�h¦x�3£Á«
���!¤ ü9��ó3�!�a�sùx�aô�ó/���3�ª���³��ò9�.ó�«­²³�L¦�£l²³«§���+ûJ��£§ö��!�9«­²³¬9¥��§¡
ó3ü9¬9¬A£ló3�Ð��ò9��ó3£§ü�ö�ñ!�Ðùx�aô©ó3�������øó���ò9��£§�9��ó/ò9£�¤��
���y���� §ü9ö��t�
¤�ò���ñ:ò©��ó�«§ó�ó/£�ñ!��«­�3�a¦C¤�����ò���ò9��£l�]�3£§¥�£§ l¯Fó3ò9£�¤��C���R�8�� §ü�ö3� ��û
® ü�ö�õèö:«­²³�!¤�£§ö��Ûña«­�%«§ü��3£l²s«��3�øñ!«§¥�¥�¯ ö3�!±��9�Á�3ò9�øój������ó/�3���9
£l�]�3£§¥�£§ l¯��3£�ó/ü9���"��ò9�1�9�a¤ ü9��ó3�!�!� ó3���3�1«ló%ó3ò9£�¤�� ���
���� §ü9ö��~��ûx��ò9�jö3�hó/ü�¥������9 Á£§�]�3£l¥�£l §¯x«­õ �3�aö���ò9�yö���±��9�!²³�!�]�
¤���¥�¥Ðô��³��ò9�s£§���c¦��!¬9�øñK���a¦u��� ���� §ü9ö���|�ûc��ò���ó
�øóC«lñ:ò9���aý§�h¦
ô�¯vñ�£§��ó/�ø¦��!ö����9 Có/�aý§�aö�«§¥9ñ�¥�ü9�aó�ö3�a¥�«­�3�a¦v��£Cò9£�¤Û�3ò9�ª£§�]�3£l¥�£l §¯
� ñ�£l��ñ��a¬��%«­��¦ ó/�3ö�ü�ñK��ü9ö����Û���m
�ü9�!��ñ��aó��3ò9� �������%ñ�£l�]�3�!�]�
«§��¦qý���ó3ü�«­¥©¥�«b¯l£§ü��~£§õv��ò9�7ùu�!ô ¬�«­ §�hó!û ��ò9�ÿ±�ö�ó/�xñ�¥�ü9�
�øóv�3ò��[�3�����³õèö:«­ §²³�a�l�:ó³ñ�£§ö�ö��aó3¬�£l��¦����9 Á��£u�3ò9�}ñ!£§�]�3�a�l�s£§õ
��ò9�Cñ�£l��ñ��a¬���ó�¬�ö3�aý]��£§ü�ó/¥�¯�ñ�£l¥�¥��añ��3�h¦y£lö������3ö:«§ñ��3�h¦cõèö�£§²���ò9�
ó3£§ü�ö�ñ!��ùu�!ôãó/���3�hó!ûY�9£§öF���9«§²v¬�¥��l¡I�3�!�]�
õèö:«­ l²v�a�]�Fó�«­²³¬9¥��aó
ñ!£§ö�ö3�hó/¬A£§��¦����� c�3£[��ò9�cñ�£l�]�3�!�]�
£­õ��3ò9�cñ!£§��ñ!�!¬�� � �3���3¥��z�j£§�
��ò9�Fùx�aô�¬�«§ §�L��� ���� §ü9ö��y�.����ñ!¥�ü�¦�� � {
«­²³��
�ö3£l §ö:«­²³²³����
{F�a²só~����¡ � �~�øñ�ö�£ló3£­õ � �^�9ñ��a¥t�����5��
Ðö�£§ lö�«§²v²³���9 }Ö��ó/�ø¦��
® ü9���9¡]«­��¦ �
Ðö:«§ñK����ña«­¥�������
Ðö�£§ §ö:«­²³²³���9 F�­��¦R��¦����3��£§�2�9û
��ò��aó3�U�3������õèö:«­ l²³�!�]��óIña«­�
ôA�Ð�a«ló/��¥�¯.ñ�£§¥�¥��añK���a¦
£löI�����3ö:«§ñ��3�a¦
ô�¯ ü�ó/���9 �«­ü���£§²s«�����ñq����õè£§ö�²s«�����£l���!�]��ö�«lñK����£l�$²³����ò9£�¦9ó
ó3ü�ñ:ò «§óv¤�ö:«­¬9¬A�!ö:ó~þ �9¡��]¡����z�kû ® ü9ö³õèö:«­²³�a¤�£löc�ÿ«­��«­¥�¯X�a�aó
��ò9�"ñ:ò�«§ö�«lñK�3�aö3�øó/�3�øñ!óx£­õj�3ò9�hó/�ú�3�!���ÿõèö�«§ §²³�!�]��óaû ¨ªóã��ò9�
ùu�!ô ó3�����aó³ôA�!¥�£§�9 x�3£u�3ò��[ó�«­²³�[¦�£§²s«§����¡��3ò9�~ñ!£§�]�3�a�l�s£§õ
��ò9�c�������võèö�«§ §²³�!�]��ó�ö3�a l«§ö�¦����9 [��ò9�jó�«­²³�jñ�£§��ñ��!¬9�vó3ò�«­ö��aó
ó3£§²³�
ñ:ò�«­ö:«§ñ��3�aö3�øóÃ����ñaó�«§��¦j¬9ö�£�ý]�ø¦��hó�ü�ó3��õèü�¥����9õè£§ö�²³«­�3��£§�y�3£
�ø¦��a�l����õè¯��3ò9�Có�«­²³�
ñ�£l��ñ��a¬������j��ò9�
�9�!¤qü9��ó3�!�a�jó3���3�§û
��ò9�úó/�hñ�£l��¦�ñ�¥�ü9�7�øó~��ò9�o�������}õèö:«­ §²³�a�l�:ó}ö��!]«­ö:¦�����

��ò9�sò9�h«§¦��aöF¥ø«­ôA�!¥øó
£§õ��3ò��cñ�£§��ñ��!¬9��óaûc��ò9�³�3�!�]�
õèö:«­ l²³�!�]��ó
� ¨Lü���ò9£§ö4�9¡ �c� �øó/��
Ðö��øñ��z��¡ª«­��¦ �! £lü � «býl�z�ÿ��� ���� §ü9ö�� �
«§ö3�.���9«­²³¬9¥��aó�£­õ8ò9�a«l¦��!ö�¥�«§ô��a¥�ó�£§õ��3ò9�
ñ!£§��ñ!�!¬��:ó � «­ü���ò9£§ö4�9¡
� ¥��øó/�v¬9ö��øñ��z��¡�«­��¦ � ¯§£§üÛó3«býl�z�}ö��aó3¬A�añK����ýl�!¥�¯§ûú��ò9�yò��a«§¦9�!ö
¥ø«­ôA�!¥øóc«§ö3�[ü�ó3��õèü9¥.ô��hñ!«§ü�ó/�[��ò9�!��ö�ó3�!²s«­�]����ñ[²³�a«§�9���9 o«­��¦
£lö/��ò9£§ lö�«§¬9ò9�øñ
õè�a«­�3ü9ö��aó
ña«­�u����¦9��ña«��3�v��ò9�³ö3�a¥�«­�3��£§��ó3ò9��¬ÁôA��÷
�Ã¤��!�a����ò9�ªñ!£§��ñ!�!¬��:ó!ûJ�9£§ö����9«­²³¬9¥��§¡���ò9��¤�£§ö:¦9ó � � «býl�z�F«­��¦
�
Ðö���ñ!�z�
«­ö���ó/�a²s«­�]�3�øñ!«§¥�¥�¯�ö��!¥ø«����a¦IûN�L�a��ñ��l¡l�����øóÐ¥����l�!¥�¯C�3ò�«��
��ò9��ñ!£§��ñ!�!¬��:ó � ¥��øó/�8¬9ö���ñ!�z�L«§��¦ � ¯§£§üCó�«bý§���L«­ö���ó3ü9ôSñ�£§��ñ��!¬9��ó
£§õ+��ò9�Cñ�£l��ñ��a¬�� � ¬9ö��øñ��z��û
��ò9�y�3ò���ö:¦7ñ!¥�ü9�j¤��yñ�£l��ó3��¦��aö©�øó©�3ò9�jý���ó3ü�«§¥�¥ø«b¯§£lü��©£§õ

��ò9�}�������jõèö�«§ §²³�!�]��óyö��! l«§ö�¦9���9 ã��ò9�ãñ�£§�]���!�]�y£§õ�ñ�£§��ñ��!¬9��ó
«§��¦��3ò9��ò9�h«§¦��aöU¥�«§ô��a¥�óU£§õ��3ò��Lñ�£§��ñ��!¬9��óaû���ò9��ý��øó/ü�«§¥�¥�«b¯l£§ü��

299

¬9ö3£�ý��ø¦��aóL����õè£lö3²s«­�3��£§�[���}�Ã¤�£c«ló/¬A�añ���óaû ® �9��«§ó3¬A�añK�.��óL�3ò9�
«§ó�ó/£�ñ��ø«�����£l�7ôA���Ã¤��!�a�Û��ò9�Áñ!£§�]�3�a�l��«§��¦Û�3ò9�~ò��a«§¦9�!öc¥ø«­ôA�!¥
£­õ�«y¬�«­ö3�3�øñ�ü�¥�«§ö.ñ�£l��ñ��a¬��aû��9£§öF���9«§²v¬�¥��l¡S�3ò9�vò9�a«l¦��!ö
¥ø«­ôA�!¥
� ¨Lü9�3ò9£lö��.���R���� lü9ö�� �.�øóUô�£l¥�¦��h¦©«§��¦©��óU¥�£�ñ!«����a¦©£§�©�3ò9��¥���õ �
�3£.�3ò9���3�!����õèö:«­ l²³�!�]��ó�ö��! l«§ö�¦9���9 L�3ò9��ñ�£l�]�3�!�]�U£­õ � «­ü9�3ò9£lö���û
ùx�oña«­�����9õè�!ö~��ò�«��Áó3��²³��¥�«§ö~¬�«��3�3�aö3��ó}���q�3ò��ÿùx�aô ¬�«­ l�
«­ö��F¬�ö3£lô�«­ô9¥�¯�«§�j����¦��øñ!«­�3��£§�[£­õU�9�a¤>£lö�������ó/�3���9 cñ!£§��ñ!�!¬��:ó!û
¨L�9£§�3ò9�aö
«ló/¬A�añ��
��óF��ò9�³¥�£�ñ!«­�3��£§�x£­õ���ò9�sñ�£l��ñ��a¬���ó
ö��!¥ø«�����ýl�
�3£C�h«§ñ:ò³£­��ò9�!öhû8ùu�L£lô�ó/�aö3ýl���3ò�«­��ñ�£l��ñ��a¬���óÐö3�a¥�«­�3�a¦v��£C�a«lñ:ò
£­�3ò��!öc«­ö��j�9£§ö�²s«­¥�¥�¯o¥�£�ñ!«­�3�a¦Û��� «u�9�h«­ö�ô�¯o¬�£]ó/���3��£§�+û ��£§ö
���9«­²³¬9¥��§¡���ò9��ñ�£l��ñ��a¬���ó � ¥��øóÃ�^¬9ö��øñ��z��¡ � ¯l£§üvó3«býl�z�9¡�«§��¦ � £§ü9ö
¬9ö3�øñ����v���I���� lü9ö3�R�C«§ö3�F¥�£�ña«��3�h¦�¤����3ò����[��ò9�Có3«§²³�Fö�£�¤
û
��ò��³ñ!¥�ü��aó
¦��hó3ñ!ö3��ô��h¦x«§ô�£�ýl������ý§£§¥�ý§�vü9��ñ!�!ö3��«§���]�Ã¯§ûv�+£

ñ�£§¬A�
¤����3ò[�3ò���¬9ö�£§ô9¥��!²����}«võè£lö3²s«§¥�²s«­�9�9�aöa¡�¤���¦9�!ý§�a¥�£l¬
«y l�!�9�aö�«­�3��ý§�v²³£�¦9�!¥U�3£~ö��!¬�ö3�hó/�a�l�F�3ò��s §�!���!ö:«��3��£§�x£­õ��3�����
õèö�«§ §²³�!�]��ó�ö��! l«§ö�¦9���9
��ò9�
ñ�£l��ñ��a¬���ó�«­��¦c�3ò9�F£§�]��£§¥�£§ §¯³ñ�£lö/÷
ö3�hó/¬A£§��¦9���9 Á�3£x�3ò9�jùu�!ô7¬�«­ §�lû ��«b¯l�aó3��«§�ÿ¥��h«­ö��9���9 }���añ:ò�÷
�9�B�]ü9� «­��¦ ����¬A�añ���«�����£l��÷É²³«­����²³�B�a«�����£l� � ��� �x«­¥� §£§ö����3ò9²
«­ö��ª��ò9�!�~�a²v¬�¥�£�¯l�a¦s��£c«§ñ:ò9���!ýl�ª��ò9�øó���«ló)�Sû
� � ���m·�¶a�����1�����
® �l��£§¥�£§ l¯s¬9¥�«b¯�ó�«­�[��²³¬�£lö/�:«­�]��ö3£l¥��F���~ó3�!²s«­�]����ñFùu�!ôoþ �����
ó/����ñ��7���Á¬�ö3£�ý��ø¦��aó}«"¤�«b¯%�3£"�!��¬�ö3�hó3ó[��ò9�o²³�a«§�9���9 %«­��¦
�]��£�¤�¥��h¦� §�Fñ�£§�]�:«­���9�a¦s���c��ò9�
ùx�aô�ö��aó3£§ü9ö:ñ��hó�ó3ü�ñ:òy«ló�ùu�!ô
¬�«­ l�aóaûQù����3ò>�3ò9�ãó3�!²s«­�]�3�øñ}ùu�!ô+¡Fó3£­õ �Ã¤�«­ö��Á«­ l�!�]��óyñ!«§�
�3ò9�a�[ó3ò�«§ö3�P���9£�¤�¥��a¦� l�.���[�3ò��
ùx�aô�û�¨ª�9£­��ò9�!öª«§¬9¬9¥���ña«�����£l�
£­õ�£l�]�3£§¥�£§ l¯y�øó
���Á��ò9�s«­ö��a«c£§õ�ô9��£§����õè£lö3²s«�����ñaó!ûY{F�!�9� ® ��÷
�3£§¥�£§ l¯s«­��¦y°���ôA£§ùu�!ô[«­ö��L�Ã¤�£v���9«­²³¬9¥��aó�õè£§ö�«§¬9¬9¥�¯]���9 ©£§��÷
�3£§¥�£§ l���hóI��£Fó3�!²s«­�]����ña«­¥�¥�¯
¦��hó3ñ!ö3��ô����3ò��0���9£�¤�¥��a¦� l������ô9��£§����÷
õè£§ö�²³«­�3�øñ!óFö��aó3£§ü9ö:ñ��hó©þ��­¡v�?|��kû � �3�aý§�a��ó
���C«­¥kû�¬�ö3£l¬�£]ó/�h¦~�3£
ü�ó/����ò9��£§�]�3£l¥�£l §¯
¥�«§�9 §ü�«­ §�-�L¨ª� � � ® } � �3£
ñ�£l��óÃ��ö3ü�ñK���3ò9�
ô9��£l���9õè£§ö�²³«­�3�øñ!ó�ñ!£§��ñ!�!¬��:óCþ������Éû���ò9�Cñ!£§��ó/�3ö�ü�ñK���a¦j£§�]��£§¥�£§ §¯
ñ!«­�"ó3ü9¬9¬A£§ö3�y����õè�aö3�a��ñ��u«­��¦�ôA�xó3ò�«§ö3�h¦ ������ò9�xó3�!²s«§�l����ñ
ùx�aô�û

}Ö�xó/¬9���3�v£­õU��ò9�©����ñ!ö3�h«§ó3���9 s¬A£§¬�ü9¥�«§ö3���Ã¯j£­õÐ£§�]��£§¥�£§ §¯y���
����¬9ö��aó�ó/���9 A���9£�¤�¥��a¦� l�§¡h£§�]�3£l¥�£l §¯ªñ!£§��ó/�3ö�ü�ñK����£l�
��ó8«��3�h¦���£§ü�ó
��«§óc�©«§��¦vö3���]ü9��ö��aóUò��� lòv¥��!ýl�!¥9£§õA�!��¬��aö/����ó3�§û � £§²³��²³����ò9£�¦9ó
ò�«bý§�
ôA�!�!�~¬�ö3£l¬�£]ó/�h¦���£sö3�h¦�ü�ñ!�
�3ò9��ò]ü�²³«§�[�:�S£§ö3�ª���~ñ!£§��÷
óÃ��ö3ü�ñ��3���9 }£l�l��£§¥�£§ l¯§û[ý�«­�7¦��aö
	^�!�v«­��¦o�}«­ö:óC¬�ö3£l¬�£]ó/�h¦u«
ô�£§�/�3£l²v÷kü9¬[²³����ò9£�¦�£§¥�£§ l¯sõè£§öª£§�]�3£l¥�£l §¯cñ�£l��ó/�3ö�ü�ñK����£l�uþ��z	��kû
��ò9�!��ö��ø¦��a«ã�øós��£o¬A�!ö3õè£§ö�²- l�!�9�aö�«§¥��B�a«­�3��£§�Û�3£ÿõè£lö3² ó/£l²v�
ñ�£§��ñ��!¬9��ójõèö�£§² ��ò9�ÿ¬9ö���²³���3��ý§�oñ�£l��ñ��a¬���óaû4�}«­�h¦9ñ:ò9�ÿ«­��¦
� ��«l«­ô ¦��!ýl�!¥�£§¬A�a¦ «�ó3¯�óÃ���!²O¤�����ò §ö:«­¬9ò���ña«­¥
ü�ó3�!ö}���]�3�aö/÷
õå«§ñ��Áõè£§öjü�ó3�!ö:óc��£7�a«ló/��¥�¯ ñ!£§��ó/�3ö�ü�ñ��y£§�]��£§¥�£§ §���aóxþ �
�kû ® ��÷
�3£ � �a«§ö3��þ��5� ����óv«­��£­�3ò��!ö©ó3¯�óÃ���!² �3£u«§ó�ó/�øóÃ�©£§�]�3£l¥�£l §¯Áñ!£§��÷
óÃ��ö3ü�ñ��3��£§��û }É�j²s«5�§�aó�ü�ó3�Á£­õC��«��3ü�ö�«§¥.¥ø«­�9 lü�«­ l�~¬9ö�£�ñ!�aó�óÃ÷
���9 C«§��¦v²s«§ñ:ò9���9��¥��a«­ö��9���9 F�3�hñ:ò9�9�q�lü��aóU��£
�����3ö:«§ñ��^�3�!ö�²sóU���
¦�£§²s«­���x�3�����:ó!ûc��ò9�só3�!²s«­�]����ñv²³�a«§�9���� j£§õ���ò9�³�����3ö:«§ñ��3�h¦
�3�!ö�²��øó����]�3�!ö�¬9ö������a¦sô�¯sùu£§ö:¦ �L�!��«§��¦³�3ò��.£l�l��£§¥�£§ l¯©�øó��!��÷
ö3�øñ:ò9�a¦vô�¯C��ò9�aó3��������ö�«lñK�3�h¦©�3�!ö�²só!ûU��ò9�Lö��aó3ü9¥��3���9
£§�]��£§¥�£§ §¯
ñ!«­�o�3ò9�a�7ôA���a¦9�����a¦I¡Ðý�«§¥��ø¦9«����a¦ÿô�¯ã£­��ò9�!öv£§�]��£§¥�£§ §¯x²s«­��÷
«­ §�a²³�!�]���3£�£§¥øó!û
¨ª¥�¥ª�3ò9�Á²v�!�3ò9£�¦9ó�¬9ö�£§¬A£ló3�a¦ú«­ôA£�ý§�}«­��²-«­�cö3�h¦�ü�ñ!���9

��ò9�}ò�ü9²s«­���?�A£lö/�y���"£l�]�3£§¥�£§ l¯7ñ�£l��ó/�3ö�ü�ñK����£l��û �ª£�¤��aý§�aöa¡
��ò9�!¯v«­¥�¥�ö��z�]ü9��ö3��ü�ó3�!ö����]�3�aö�«lñK����£l�v¦�ü�ö3���9
��ò9�Lñ�£l��óÃ��ö3ü�ñK�3��£§�
¬�ö3£�ñ��hó3óaû ¨ ó/¯�ó/�3�!² �]��£�¤��q«ló~�8¨��L{ ® þ����
��«��3�3�!²³¬��:ó
��£} §�a�9�!ö:«����v�3ò9�y£§�]�3£l¥�£l §¯~õèö�£§² ¦9«��:«[���o��«­ô�¥��sõè£lö3²s«­�C���
«>ó/�a²³��÷Ö«­ü���£§²s«�����ñoõå«§ó3ò9��£§��û }Ö�Þ�8¨��L{ ® ¡C«­�1£§�]�3£l¥�£l §¯
�a�9 §���9�a�!ö�±�ö�ó/�8ñ�£l��ó/�3ö�ü�ñK�:ó+«��l�!ö��9�!¥l£§�]�3£l¥�£l §¯ª�3£L��ò9��ó3¯�óÃ���!²[û
��ò��!��¡.�3ò9�ãó3¯�ó/�3�a²)«­��«§¥�¯��a�aó��3ò9�ÿñ�£l�]�3�!�]�[£­õ��h«§ñ:ò%��«­ô�¥��
ó3ü�ñ:ò%«ló�����ó[ña«­¬�����£l��¡ª«��3�3ö���ô�ü��3�!÷ký�«­¥�ü9�u¬�«­��ö:óc���"�3ò��xùu�!ô
¬�«­ §�y�3£uõè£lö3² «x²³������÷É£§�]�3£l¥�£l §¯lû �L�!���a¡��3ò9�~ó3���s£­õF²v���9��÷
£l�]�3£§¥�£§ l���hó�¤���¥�¥Lô��~���]�3�a §ö:«��3�h¦o���]�3£ã�3ò����§�!ö��9�a¥�£l�]�3£§¥�£§ l¯§û
® ����¥���²³����«�����£l�Á£§õ��8¨��L{ ® �øó.�3ò�«­�.��ò9�v¦�«���«�²�ü�ó/�.ôA�v���
�:«­ô9¥��Fõè£§ö�²s«��aû
¨ª�9£­��ò9�!öãñ�£l²v²³£l� ó/ò9£lö/�:ñ�£l²v���9 õè£lö}�3ò��Û«­ôA£�ý§�o«§¬�÷

¬�ö3£]«§ñ:ò9�hóÐ�øó��3ò�«­����ò9�
£§�]�3£l¥�£l §¯sñ�£l��ó/�3ö�ü�ñK���a¦�ña«­�y£§�9¥�¯sö3�a¬�÷
ö��aó3�!�]�©«Á¬�«­ö3�3�øñ�ü�¥�«§ö�ùu�!ôÛó3���3�§û }ÉõL¤���¤�«­�]����£xñ�£l��ó/�3ö�ü�ñK�
��ò9�}£l�l��£§¥�£§ l¯ÿõè£§öj«ã�9�!¤ ùu�!ô%ó3�����§¡L«ÿó3�!¬�«§ö�«­�3�~�?�A£lö/���øó
ö��z�]ü9��ö��a¦IûÁ�Á«­�a¦�ñ:ò9���!�v«­¥kûÁ����ý§�hóÃ����]«��3�h¦u�3ò9�j¬9ö�£§ô9¥��!² £§õ
£l�]�3£§¥�£§ l¯Áö��!ü�ó3�xþ ���Éûu��ò��!¯uõè£§ü9��¦o£§ü9���3ò�«��v�3ò9�y£§�]�3£l¥�£l §¯
¦9��±��9�h¦}õè£lö
£§�9�vùu�!ôÿó/���3�³²s«b¯~�9£§�
ôA�c«­¬�¬9¥��øñ!«§ô9¥�����£[«§��÷
£§�3ò9�aö�ó3�����§û ��ò9�!¯ú¬9ö�£§¬A£ló3�a¦ «ãõèö:«­²³�!¤�£§ö��ÿ��£oó/£l¥�ýl�[�3ò9�øó
¬�ö3£lô9¥��a²<ô�¯Á¬�ö3£�ý��ø¦����� [«}²³«­�3ò9�a²s«��3�øñ!«§¥Ð²³£�¦��!¥��3£~ö�����«§���
��ò9�Lñ�£l��ó3��ó/�3�a��ñ�¯C���³�3ò���ö3�aü�ó/�h¦v£§�]�3£l¥�£l §¯§û8��ò9�!¯v«­¥øó/£
¦��aý§�!¥�÷
£l¬��h¦Á«y�3£�£l¥8õè£lö
²³«§��«­ l���� c�3ò��s£§�]�3£l¥�£l §���aó�õèö�£§² ¦9���S�!ö��!�]�
ùu�!ôjó/���3�hó!ûv�ª£�¤��aý§�!öh¡­��ò9�!��ö�«­¬9¬9ö�£l«lñ:òsóÃ����¥�¥Sö3���lü���ö��aó�«�ñ�£l��÷
ó3�ø¦��!ö:«­ô9¥���«§²v£lü9�]�F£§õÐò�ü9²s«­�Á�?�A£lö/�F���x¬9ö:«§ñK����ñ!�§ûP�.£l«­�Á���
«§¥mû
¬9ö�£§¬A£ló3�a¦Á«c²³����ò9£�¦}��£yó3£§¥�ý§�C��ò9�v£§�]�3£l¥�£l §¯j²³«­��ñ:ò9���9
¬�ö3£lô9¥��a² ¤�ò9�øñ:òú«§��²sós«­�³²s«­��ñ:ò9���9 u�3ò9�}ñ!£§��ñ!�!¬��:ó³£­õ.�Ã¤�£
£l�]�3£§¥�£§ l���hóLþ ���kû$��£§ö����9«­²³¬9¥��§¡l�3ò9�
ñ�£l��ñ��a¬�� � «§ó�ó/£�ñ!��«­�3��¬9ö�£­÷
õè�hó3ó3£§ö4�����C£§����£§�]��£§¥�£§ §¯F²s«b¯
ô����z�]ü9��ýb«§¥��a�]�8��£L�3ò���ñ!£§��ñ!�!¬��
� ó/�a�9��£§ö+¥��añ��3ü9ö��!ö4�.���v«­�9£§�3ò9�aö�£l�]�3£§¥�£§ l¯§ûG�ª£�¤��aý§�aö��3ò��!��öU«§¬�÷
¬�ö3£]«§ñ:òjö3���lü���ö��aó�ò�ü9²s«­�~�?�A£lö/�ª�3£s¬9ö��!¬�«§ö3�
��ö�«§�������9 c¦9£�ñ!ü�÷
²³�a�l�:ó����~�a«§ñ:ò~ñ!£§��ñ!�!¬��hû���ò9�a��öL£lô
�Ã�añ��3��ý§�
�øóL«­¥øó3£³¦9���S�!ö��!�]�
õèö�£§²$£§�]�3£l¥�£l §¯cñ�£l��ó/�3ö�ü�ñK����£l��£§ö�ö���±��9�!²³�!�]�hû
� ��� �]� � ðm�]�<��� � ï8������·��o�]�������
��ò��jö:«�����£l��«­¥��j£­õ
£§ü9ö³õèö:«­²³�!¤�£§ö��ã��ós�3£ÿñ�£l��ó/�ø¦��aö³ó3�!ýl�!ö:«­¥
ñ!¥�ü��aóFñ�£§��ñ��!ö��9�h¦~¤�����òÁò9£�¤q��ò9�©£l�]�3£§¥�£§ l¯j«��A�hñK�:óL��ò9���������
ñ!£§�]�3�a�]�
«§��¦xý]�øó3ü�«­¥^¥ø«b¯§£lü��
£­õ���ò9�sùu�!ôã¬�«­ l�aóaûs��ò9�³±�ö:óÃ�
ñ!¥�ü��©�øóL��ò9�v�3�!�]�Fõèö:«­ §²³�a�l�:óªö��!]«­ö:¦����9 s�3ò��vñ!£§�]�3�a�l�F£­õÐ��ò9�
ñ!£§��ñ!�!¬��:ó!ûa�9£§ö8���9«­²³¬9¥��§¡ � � �3�!¬�ò9�!�C°L«§��¦�¯F�.«bý��øóc���øó+«��������
õèö:«­ l²³�!�]�cö3�a l«§ö�¦����9 u�3ò��xñ�£l��ñ��a¬�� � «­ü���ò9£§ö4�u��� ��ò9�Áùu�!ô
¬�«­ §�só3ò9£�¤��u��� ���� lü9ö����§ûc��ò9�øó
�3�!���Cõèö�«§ §²³�!�]�
¬A£ló�ó/�hó3ó3�aó
ñ:ò�«­ö:«§ñK���!ö���ó/�3�øñ!óÐ£­õ���ò9�Fñ!£§�]�3�a�]��ó3ü�ñ:ò�«ló���ò9�.±�ö�ó/��ñ:ò�«­ö:«§ñ��3�!ö
���ã�a«lñ:òÁ¤�£§ö:¦Á�øó
ñ!«§¬9���:«­¥����a�a¦Iûc��ò��aó3�³ñ:ò�«­ö:«§ñK���!ö���ó/�3�øñ!ó.ò9�a¥�¬
�ø¦��a�l����õè¯
��ò9���3�!�]��õèö:«­ §²³�a�l�:ó8ñ!£§ö�ö3�hó/¬A£§��¦����� ��3£.�3ò9��ñ�£l�]�3�!�]�
£§õ�ó3��²³��¥�«§öCñ�£l��ñ��a¬���ó
���u�3ò9�s�9�a¤Qü���ó/�a�!�uùx�aôã¬�«­ l�§ûc��ò9�
ó3�añ!£§��¦Áñ�¥�ü9�©�øó.�3ò9�©�3�!���.õèö:«­ l²v�a�]��ó.ö3�a l«­ö:¦����9 s��ò9�©ò��a«§¦9�!ö
¥ø«­ôA�!¥�£­õ���ò9�jñ!£§��ñ!�!¬��:ó!û �9£§ö©����óÃ�:«­��ñ!�§¡ �! £lü � «bý§���[��óv«­�
�!�9«­²³¬9¥��L£­õ+«
ò��a«§¦9�!ö�¥ø«­ôA�!¥A���~���� lü9ö3�y�§û^��ò9�L¤�£§ö:¦ � ó�«bý§���
����¦��øñ!«­�3�hóU�3ò�«­�Ð�3ò���ó^ò��a«§¦9�!öÐ¥ø«­ôA�!¥9�øóÐö��!¥ø«����a¦©�3£
��ò9�ªñ!£§��ñ!�!¬��
� ¬9ö���ñ!�z�u£­õ�«ãôA£�£5�Sû � ��²v��¥ø«­ö�¥�¯l¡���ò9�Áò��a«§¦9�!öc¥ø«­ôA�!¥øó ��� �øóÃ�

�ö3�øñ����C«­��¦ � ® ü9ö�
Ðö��øñ��z�C£­õ���ò9�Fñ!£§��ñ!�!¬��:ó � ¥��øó/��¬9ö��øñ��z�©«­��¦
� £§ü9ö�¬�ö3�øñ����³ö3�hó/¬A�añ��3��ý§�!¥�¯y«§ö3�C«§¥�ó3£sö��!¥ø«��3�h¦j�3£³��ò9�©ñ!£§��ñ!�!¬��

300

M

α

Web site

Web page

O

N

C

A

V

L

�8�� §ü�ö3� �ms �����]> �&.��&�93�/(* U:�]CA�?#��&< @B� ��> �&.��&�93�/(*,� .0�4@z/"�_u?/�@B�"34> CA�&.?/(%
�(�&>:34�"#�*,.�>F/(���t'&� .�'&�)1z/"%A@��"� CD3F#�� C�34*,.R� .?/(� <,� >4= r�� #��&.��4/(�&% /"���
'&� .�'&�&1�/v> �&.��&�"3�/"*,� . 1
34�"34CA�&/(�&� r�� 34.�#�� #��&.��4/"� /"���-'&� .�'&�&1�/$34.�#
/(����� .:/"� <,� >4=��"�&%"1��&'_/"* U:�&< = r�� 34.�#��V#��&.��4/"��/(����')� .:/(�).:/A34.�#Y/"���
���c34#��)�-<;34+5�&<��4@a3P'&� .�'&�)1z/A�"�&%"1��&'_/"* U:�&< = r	� #��).��4/"�&% Uz*,%"7
34<�<;3&=:� 7�/
,.z@B� �(C�3�/",� . r�
 ,%-/"���F.z7�C-+��&� �4@J/(�_uz/�@��934> CA�&.?/(% �(�)>:34�(#�,.�> /"���
'&� .�'&�&1�/(%]�G* /"��*,.-/"���Gwy�&+ 1
34> �a34.�#
� *,%m/"���a.?7�C-+��&�m�4@�wy�&+A1
34> �&%
,.�/(���vw��&+L%" /(� r
� ¬9ö���ñ!�z��û ��ò��!ö���õè£§ö��§¡����ú����ñ!ö3�h«§ó3�aóã��ò9�"¥����l�!¥���ò�£]£�¦Þ��ò�«��
�3ò9�hó/��ñ�£l��ñ��a¬���óUó3ò9£§ü�¥�¦�ô����3ò��Ló/ü9ôSñ�£l��ñ��a¬���ó�£§õ��3ò���ñ!£§��ñ!�!¬��
� ¬9ö���ñ!�z��û���ò9�
��ò9��ö�¦[ñ�¥�ü9�
¤��
ñ!£§��ó3�ø¦��!ö��øó��3ò9�
ý��øó/ü�«­¥I¥ø«b¯§£§ü9�
£­õ+��ò9�F�3�!�]��õèö:«­ l²³�!�]��ó�ö3�a l«§ö�¦����9 ��3ò9�Cñ!£§�]�3�a�l��£­õUñ�£l��ñ��a¬���ó
«­��¦%�3ò9�ãò9�h«§¦��aö[¥�«§ô��a¥�ó[£§õ��3ò��oñ�£§��ñ��!¬9��óaû ® �9� ������¦>£§õ
ý]�øó3ü�«­¥9¥ø«b¯§£lü��Ð����õè£§ö�²s«��3��£§�s�øó^��ò9�.«ló3ó3£�ñ��ø«�����£l�©ôA���Ã¤��!�a�³�3ò9�
ñ�£§�]���!�]��«­��¦Û��ò9�}ò9�h«§¦��aös¥�«§ô��a¥ª£­õ
«ã¬�«§ö/����ñ!ü9¥�«§öcñ�£l��ñ��a¬��aû
��ò9�Ûó3�añ!£§��¦�������¦ £§õcý���ó3ü�«­¥v¥ø«b¯§£§ü9�Á���9õè£§ö�²³«­�3��£§� �øóÁ�3ò9�
¥�£�ñ!«­�3��£§�u£­õ��3ò9�cñ!£§��ñ!�!¬��:ó
ö3�a¥�«­�3��ý§�©�3£[�a«lñ:òx£§�3ò9�aöaû�	ª�øó3ü�«­¥
¥�«b¯l£§ü��C����õè£§ö�²s«�����£l�ÿò9�!¥�¬�óv¦���ó�ñ�£�ýl�!öC���!¤ ñ�£l��ñ��a¬���ó����o�3ò9�
ü9��ó3�!�!�úó/���3�lû �9£lö©�!��«§²³¬9¥��l¡�ó3ü9¬9¬A£ló3��¤��y¤��øó/ò7�3£x����¦9ü�ñ��
«­� £§�]�3£l¥�£l §¯ãõè£lös�3ò9�Á�9�!¤ ùu�!ô�¬�«§ §�[�������� §ü9ö��V�ã §��ý§�a�
«­�u������ó/�3���9 ~ñ�£l��ñ��a¬�� � ������¥����~«­��¦uó/£l²³�vôA£�£5�~������¥��s��«­²³�aó
¬9ö3�aý���£lü�ó/¥�¯�ñ�£l¥�¥��añ��3�a¦>£§ö[�!�]��ö�«lñK���a¦�õèö�£§² «Ûó3�����ÿó/ü�ñ:òq«§ó
�3ò9�³£§���©��� ���� §ü9ö�� �lûy��«§ó3�a¦~£l�}��ò9��ó
�aý���¦��a��ñ��l¡S�3ò9�³ôA£�£5�
�3���3¥��Áñ�£l�l���!�]�c£§�ú��ò9�~�9�!¤ ùu�!ô ¬�«§ §�}ñ!«§� ô��~�ø¦��!�]����±��h¦Iû
��ò9�!ö���õè£lö3�l¡^�3ò9�}ñ!£§��ñ!�!¬�� � �3���3¥��z�ãñ!«§�7ôA�~����¦9ü�ñ��h¦7õè£löv�3ò9�
�9�!¤�ó3�����§û � ��²³��¥ø«­ö�¥�¯Á��ò9���!���øó/�3���9 Áñ�£l��ñ��a¬�� � «­ü���ò9£§ö4�~ñ!«§�
ô��ã����¦�ü�ñ!�a¦%õè£§öj�3ò9�u�9�a¤ ó3�����§û � ����ñ!�Á��ò9�ãò9�a«l¦��!ö[¥ø«­ôA�!¥
� ¨Lü9�3ò9£lö��.£­õ��3ò9�Lñ!£§��ñ!�!¬�� � «§ü��3ò�£§ö4�ª£l����ò9���9�!¤úùx�aô³¬�«­ l�
²³«5�§�hóIü�ó3�Ð£­õ9ñ��aö/�:«­���
õè£§�]�8«§��¦
ô�£l¥�¦9�9�aó�ó!¡b����ña«­�
ôA�Ð���9õè�!ö�ö3�h¦
�3ò�«­����ò9���3�!����õèö:«­ l²³�!�]��ó � } � ���t�.£§�©�3ò9���9�a¤7ùu�!ô³¬�«§ §����ó
¥��B�§�a¥�¯³��£©ôA�ª��ò9�
ò9�a«l¦��!ö�¥ø«­ôA�!¥S£­õU«C�9�a¤>ñ�£l��ñ��a¬��aû^¨ª�9£­��ò9�!ö
���9«­²³¬9¥��Á�øóc��ò�«��y�3ò9�uñ�£l��ñ��a¬���ó � � � °
 ��¡ � ¯l£§ü9öy¬9ö���ñ!�z�9¡
«­��¦ � ¯§£§üsó�«bý§���F«§ö3�ª¥�£�ñ!«­�3�h¦³���³��ò9�.ó�«­²³�Lö�£�¤Û��� ���� lü9ö��t�9û
}É������ñ�ö��a«ló/�hóÐ��ò9�
¥��B�§�a¥���ò9£�£�¦s��ò�«����3ò9�hó/�F��ò9ö3�a�Fñ!£§��ñ!�!¬��:ó�«­ö��
�3ò9�Có3ü9ôSñ�£§��ñ��!¬9��ó�£­õ��3ò��Cñ�£§��ñ��!¬9� � ¬9ö���ñ!�z�9û
�8£ãò�«­ö��9�hó3ó©�3ò��jü���ñ��aö/�:«­���l�Ã¯ÿ����ý§£l¥�ýl�a¦o��� «xö��� §£§ö�£§ü�ó

²³«§�9�9�aöa¡9¤��
���]ýl�aó/�3�� l«­�3�
«³ §�a�9�!ö:«�����ýl�F²³£�¦��a¥�õè£§öL�3ò9�
 l�!��÷
�!ö:«��3��£§�Û£­õF�3�!�]�sõèö:«­ l²³�!�]��ó³ö��!]«­ö:¦����� }�3ò��}ñ�£§��ñ��!¬9��ó³��� «
ùx�aôx¬�«§ §�lû����� lü9ö�� ����¥�¥�ü�ó/�3ö:«��3�hóF�3ò9�³ lö�«§¬9ò9�øñ!«­¥�ö��!¬9ö��aó3�!��÷
��«�����£l�s£­õI£§ü�öÐ²³£�¦9�!¥kû � ò�«§¦��h¦³�9£�¦��aó�«­��¦³ü���ó/ò�«§¦��h¦³�9£�¦��aó

ö���õè�aöÐ��£�£§ô�ó/�aö3ý�«­ô�¥���ý�«­ö��ø«­ô9¥��aó�«­��¦sü��9£§ô�ó3�!ö�ý�«­ô9¥��Lý�«­ö��ø«­ô9¥��aó
ö��aó3¬A�añK����ýl�!¥�¯§û7��ò��[«§ö3ö�£�¤LóCö��!¬�ö3�hó/�a�l�©�3ò9�~¦��a¬��a��¦��a��ñ��~£§õ
��ò9��ý�«§ö3�ø«­ô9¥��aóaû
Ðö��añ!��ó3�!¥�¯§¡���ò9��ý�«­ö��ø«­ô9¥��aóC«­����ò9��ò9�h«§¦o¦9��÷
¬A�!��¦o£§�o�3ò9�jý�«­ö���«§ô9¥��hó©«­����ò9�j��«­��¥kû }Ö�ú«}¬�«§ö/����ñ!ü9¥ø«­ö©¦9£­÷
²s«§����¡]��ò9�!ö��ª�øó�«�ñ�£l��ñ��a¬��� §�!���!ö:«��3��£§�s¬�«­ö:«­²³�����!ö�ñ!«­¥�¥��a¦���û
��ò���ó�¬�«§ö�«§²³���3�aö���óL¦9£§²s«­���j¦9�!¬A�!��¦��a�]�ª«­��¦jó/���3�
����ý�«­ö���«§�l�
ôA�aña«­ü�ó3�Ð��ò9��ùx�aôvó3�����aóUñ�£l¥�¥��añ��3�h¦
�����3ò9��ó�«­²³��¦9£§²s«­����ñ�£l��÷
�:«­���~ó/��²³��¥ø«­öA������¦9ó�£§õ�ñ�£l��ñ��a¬���óaû���ò9�øó�¬�«§ö�«§²³���3�aö�ñ�£§�]��ö3£l¥�ó
��ò9��ñ!£§��ñ!�!¬��:ó!¡�¦��a�9£­���a¦
ô�¯���¡­ñ�£l�l�:«­���9�a¦F���
�3ò���ùu�!ôC¬�«§ §�hó!û
��£§öF�a«lñ:ò}£­õÐ��ò9��� ùu�!ôu¬�«­ l�aóL£§õÐ�3ò���� ùu�!ôãó3�����aóa¡���ò9�
ñ!£§��ñ!�!¬��:ó.ñ!£§�]��«§�����a¦}���}��ò9�vùx�aôx¬�«§ §�hó.«§ö3�© §�!���!ö:«��3�h¦~ô�¯
«jñ��aö/�:«­���}¬9ö�£§ô�«§ô9��¥����Ã¯}¦��øóÃ��ö3��ô9ü�����£l�x¦��a¬��a��¦��!�]�
£§����¡+�mû �§û�¡
� � ����� ��û �9£§ö
�!�9«­²³¬9¥��§¡���ò9�sùu�!ôã¬�«­ l�©��� ���� lü9ö3�I�sñ�£l��÷
�:«­����ó.�3ò9�cñ!£§��ñ!�!¬��:ó � �3���3¥��z��¡ � «§ü��3ò�£§ö4�9¡ � ¬9ü�ô9¥��øó3ò9�a¦m��¡ � ¥��øóÃ�
¬�ö3�øñ����9¡ � ¯l£§ü"ó�«bý§���9¡�«­��¦ � £§ü�ö�¬9ö���ñ!�z��ûQ��ò9�uñ�£§�]���!�]�y£§õ
«Áñ�£§��ñ��!¬9�a¡Ð¦��a�9£­���a¦ÿô�¯��v¡^��ó��3ò9�a�7 l�!�9�aö�«­�3�a¦ã«lñ!ñ�£lö�¦9���9
��£Á��ò9�[¬9ö�£§ô�«§ô9��¥����Ã¯ã¦9��ó/�3ö���ô�ü��3��£§��� � ��� ����û[��£§ö³����óÃ�:«­��ñ!�§¡
��ò9�cñ�£l�]�3�!�]�C£§õ � �3���3¥��z�[���x��ò9�s±�ö:ó/�
ö��añ!£§ö:¦Á��� ���� lü9ö����s�øó
� {
«­²³��
Ðö�£§ §ö:«­²³²³���9 L{F�!²só �5�9¡�¤�ò9�øñ:òv��óU l�!�9�aö�«­�3�a¦Cõèö3£l²
� � ��� ��� � �"!#�%$'& � ��û � ����ñ!�(�1��óL¦9�!¬A�!��¦��a�]�ª£§�)��¤�ò9�øñ:ò[���
��ü9ö��%¦��!¬A�!��¦9ój£§�*��¡�� �øóy¦9£§²s«­���%¦��a¬��a��¦��!�]�~«­��¦%ó/���3�
����ý�«­ö���«§�l�hû©��ò9�aö3�!õè£§ö��§¡S��ò9�v�3�����
õèö:«­ §²³�a�l�:óFö3�a l«­ö:¦����9 c��ò9�
ñ!£§�]�3�a�]��£§õ+��ò9�Cñ�£l��ñ��a¬���ó�«­ö��
ó/��²³��¥ø«­ö����j�3ò9�
ùu�!ôj¬�«­ l�aó�£§õ
��ò9�Fùx�aôyó3�����aó�õèö3£l²W�3ò9�
ó�«­²³�.¦�£l²s«­����û^¨L�9£§�3ò9�aö�¬�«­ö:«­²³��÷
���!ö����©£§ü9ö8²³£�¦9�!¥���ó+�3ò���£l�l��£§¥�£§ l¯.«§ó�ó3£�ñ!��«­�3�h¦
¤�����òC�3ò���ùu�!ô
ó3���3�.«§��¦c������ó�¦��!��£­�3�h¦cô�¯�+���� ���� lü9ö�����û^��ò9�øó�¬�«­ö:«­²³�����!ö
�øósó3�����[¦9�!¬A�!��¦��a�]��«­��¦ú���x
�ü9�a��ñ��hóv�3ò9�~ò9�h«§¦��aö³¥�«§ô��a¥ª«­��¦
��ò9�~ý���ó3ü�«§¥�¥ø«b¯§£lü��s£­õ
«uñ!£§��ñ!�!¬��c���Û�3ò9�~ùu�!ô ¬�«§ §�aó³£§õF«
¬�«­ö3�3�øñ�ü9¥ø«­ö�ùu�!ô~ó/���3�lû
��ò9�
ò9�h«§¦��aö�¥�«§ô��a¥�«­��¦��3ò9�
ý��øó/ü�«§¥S¥�«b¯l£§ü���«­ö��F¦9�!�9£§�3�a¦

ô�¯�, «­��¦.-Q�������� §ü9ö�� ��ö��aó3¬A�añK����ýl�!¥�¯§ûU��ò9�
ò9�h«§¦��aö�¥ø«­ôA�!¥øó
«§ö3�� §�!���!ö:«��3�h¦~«§ñañ�£§ö:¦����9 s��£c�3ò���¬9ö�£§ô�«§ô9��¥����Ã¯j¦9��ó/�3ö���ô�ü��3��£§�
� � ,/� ���0+��Kû���ò9�v£§�]��£§¥�£§ §¯~«§¥�ó3£y«��A�hñK��ó.��ò9�©ý��øó/ü�«­¥U¥�«b¯l£§ü��
£§õÐ«cùu�!ô}¬�«§ §�lû��9£§öF���9«§²v¬�¥��l¡9�3ò��vñ!£§��ñ!�!¬��:ó � ¥��øóÃ�ª¬�ö3�øñ����9¡
� ¯§£lü³ó�«bý§���9¡§«§��¦ � £lü9ö�¬�ö3�øñ����
«­ö��L¥��B�§�a¥�¯©�3£�ô��ª�3ò9�Fó/ü9ôSñ�£l��÷
ñ!�!¬��:ó
£­õ � ¬9ö��øñ��z�[«§��¦x�3ò9�a¯x«­ö��³¥�£�ña«��3�h¦Á���u�3ò9�yó3«§²v�³ö�£�¤
���x�3ò9�sùu�!ôu¬�«­ l�§û³��ò9�sý���ó3ü�«§¥�¥ø«b¯§£lü��
£­õ���ò9�cñ�£l��ñ��a¬���ó
�øó
 l�!�9�aö�«­�3�h¦cô�¯s�3ò��
¬9ö3£lô�«­ô���¥����Ã¯y¦���ó/�3ö���ô9ü��3��£§�)� � -1� ����+���û

��«§ó3�a¦}£§�}��ò9�øó
 §�!���!ö:«��3��ý§��²v£�¦��a¥m¡I¤��³ñ!«­�u¦��!ö���ý§�C��ò9�
õè£l¥�¥�£�¤����9 �Ã£l���]�L¬9ö�£§ô�«­ô9��¥����Ã¯Ms
2 Z �43 � 35�635�879�:3 � p<;=2 Z �?> �Np@2 ZA� > �87 � p'2 Z �
> �87 � p'2 Z �879�mp Z o�r,gcp

B.ó/���9 F�3ò���«§ô�£�ýl����£­��«­�3��£§��¡l«ª�������Uõèö�«§ §²³�!�]�U¤�����ò9���³«Fùu�!ô
¬�«­ §�Fñ!«§�cô��
ö��!¬9ö��aó3�!�]���a¦³ô�¯³�3ò9�
«��3�3ö���ô�ü��3�hó?�v¡<,ª¡�«­��¦.-³û
�8£ã¬9ö��a¦��øñK�s��ò9�Áñ�£l��ñ��a¬��c£­õ
«u¬�«­ö3�3�øñ�ü�¥�«§ö³�3�����sõèö:«­ l²v�a�]�a¡
¤��yñ!£§²³¬9ü�������ò9�[¬9ö�£§ô�«§ô9��¥����Ã¯C� � �(� ��D ,ED�-����8D0+��Kû ��ö3£l²
�0�]ü�«�����£l� �9ûB�§¡�¤��
ñ!«§�[¦9�!ö���ýl�ª��ò�«���s
2 Z �F> �43 � 35�G79�:3 � p6; 2 Z �?> �Np@2 ZH� > �87 � p@2 Z �G> �87 � p@2 Z �I> �mp

J*K 2 Z �?> �Np@2 ZH� > �87 � p@2 Z �
> �87 � p@2 Z �I> �mp
Z o�r L:p

}Ö�©¬9ö�«lñK����ñ!�§¡h�3ò9���3�!���8õèö:«­ l²v�a�]��ó8ö3�a l«­ö:¦����9 ��3£ª�3ò9��ñ�£l��÷

301

�3�!�]��£­õ9ñ�£l��ñ��a¬���ó+���
��ò9���9�a¤ÿü9��ó3�!�a�Có/���3��«§ö3��ö3���lü���ö��a¦.�3£ªô��
��¦��a�]�3��±��a¦©���s«l¦�ý�«­��ñ!�§û+ùu��ñ!«§¥�¥��a¦©�����������	��

�	�������������������������
������kû8ùu�L¦��aý§�!¥�£§¬³«­�³����õè£§ö�²s«�����£l��÷m��ò9�!£lö3�!�3�øñ�«§¬9¬9ö�£l«lñ:òC�3£
«­��«§¥�¯��!�.�3ò��F�.£�ñ�ü9²³�a�l� ® ô��Ã�añK�L�~£�¦��a¥! � � ® � ��ó/�3ö�ü�ñK��ü9ö3�
£­õ���ò9�.ùu�!ôj¬�«§ §�aó�£­õ+�3ò9�Fü9��ó3�!�a�yùu�!ôjó/���3�lûÐ��ò9�.����õè£lö3²s«�÷
�3��ý§�L�9£�¦��hó����s��ò9�L� ® � ó/�3ö�ü�ñK��ü9ö3�.ñ!«­�sôA�ª�ø¦��a�l����±��a¦IûÐ��ò9�
�3�����Uõèö:«­ §²³�a�l�:ó+¤����3ò����©�3ò9������õè£§ö�²s«�����ýl���9£�¦��hó8ôA�añ!£§²³���3ò9�
����õè£lö3²s«­�3��ý§�F�3�!�]��õèö:«­ l²v�a�]��óaû
��ò��ÿ¬�«­ö:«­²³�����!ö:ój£­õ³£§ü9ö~¬9ö�£§ô�«­ô9��¥��øó/�3�øñÁ²³£�¦��!¥���ó~����÷

õè�!ö�ö3�h¦Fõèö3£l²q«Ló3���8£­õ����9õè£§ö�²³«­�3��ý§�^�������+õèö:«­ l²³�!�]��óIö��!]«­ö:¦����9
�3ò9�ªñ!£§��ñ!�!¬��:ó�ñ!£§¥�¥��hñK�3�h¦©õèö3£l²1��ò9�ªó3£§ü9ö:ñ���ùu�!ô�ó3���3�ª«§��¦©�3ò9�
�9�!¤"ü���ó/�a�!�[ó/���3�lûÐ��ò9�.�3������õèö:«­ §²³�a�l�:ó�ñ�£§¥�¥��añK���a¦cõèö3£l²W�3ò9�
ó/£lü9ö�ñ!�©ùu�!ôÿó3�����s«­ö��©ü�ó3��õèü�¥Ðô��hñ!«§ü�ó/�v��ò9�!��öCñ�£l�l���!�]�Có/ò�«­ö��
ó/£l²v�~ñ:ò�«§ö�«lñK���!ö���ó/�3�øñ!óv¤����3ò �3ò�£ló3�[�3�����cõèö:«­ l²³�!�]��ó³���ú�3ò9�
�9�!¤ ü9��ó3�!�a�có/���3�lû ® ü9ö^õèö:«­²³�!¤�£§ö���ñ!«§�cñ�£l��¦�ü�ñ��Ð�3ò9�øóÐ����õè�aö/÷
�!��ñ!�c¬9ö�£�ñ!�aó�ó
��£}��¦9�!�]�3��õè¯u�3ò9�jñ�£§��ñ��!¬9��ó�ñ!£§�]��«§�����a¦ã���ã�3ò9�
ü9��ó3�!�!�qó/���3�lû ��£§öj�3ò9�ã����õè£§ö�²s«�����ýl�}�3�!���jõèö:«­ l²³�!�]��ó[ñ�£l¥�÷
¥��hñK�3�h¦ ���"�3ò9�x�9�!¤ ü9��ó3�!�a�"ó/���3�l¡��3ò9�a��ö[ñ�£l��ñ��a¬���ó�«­ö��}ü9��÷
ñ��!ö3��«§���Û«­��¦Ûñ!«­���9£­�vô��jü�ó3�a¦ÿõè£lö©����õè�aö3�a��ñ��[¦���ö3�hñK�3¥�¯§û ��¯
²v£�¦��a¥����9 �« ñ�£l��ñ��a¬�� � ���jô]¯>«­�qü9�9£§ô�ó/�aö3ý�«­ô�¥��ãý�«­ö���«§ô9¥��
������ò9�Á l�!�9�aö�«­�3��ý§�[²³£�¦��!¥k¡L¤��Áñ!«§���!²³¬9¥�£�¯Û�!��¬A�añ���«­�3��£§��÷
²³«­����²³�B�a«�����£l� � ��� �c«­¥� §£lö3���3ò�² ���"�3ò9�}����õè�aö3�a��ñ��}£§õ
�3ò9�
¬�«­ö:«­²³�����!ö:ó��Q«§��¦*+vû ùu�x¦��aö3��ý§�}ó3�!ýl�!ö:«­¥Lñ�£l�]�3�!�]�cõè�h«�÷
�3ü9ö��aóÐ«§��¦³²s«��l��ü�ó/�ª£­õS�3ò9�L�3������õèö�«§ §²³�!�]��ó^ñ!£§¥�¥��hñK���a¦võèö�£§²
ô�£§�3òÁ£§õÐ�3ò��vó3£§ü9ö:ñ��©ùx�aôxó3�����aó
«­��¦~�3ò��©�9�a¤ ü9��ó3�!�a�xó3�����aó
�3£j�aó/�3��²³«­�3��� � ��� ���F��� �0�lü�«��3��£§� �9û,��û
ùu�sñ!«­�x�aó/�3��²s«��3�
� � ,/� ���0+���«­��¦=� � -1� ����+���õèö3£l² �3ò��
�3������õèö:«­ l²v�a�]��ó�ñ�£l¥�÷
¥��hñK�3�h¦xõèö3£l²4�3ò9�s���!¤Þü9��ó3�!�!�ÿó3�����só/����ñ��1+$�øóCó/���3�c¦9�!¬A�!��÷
¦��!�]�aû �L£�¤��!ýl�!öh¡L�3ò��u¬�«­ö:«­²³�����!ö)+ ña«­�9�9£§�jôA�ÿ¦���ö3�hñK�3¥�¯
£§ô��:«­���9�a¦úôA�añ!«§ü�ó3�[�3ò9�~�������cõèö:«­ l²v�a�]��ósñ�£l¥�¥��añ��3�h¦�¦�£ÿ�9£­�
ñ�£§²³�F¤�����òj«vñ�£l²³¬9¥��!�3�
«­��¦yñ!£§ö�ö3�hñK��£l�]�3£§¥�£§ l¯võè£§ö��3ò9�
�9�a¤
ü9��ó3�!�!�Þó/���3�lû
U£­���!�]�3�ø«­¥©£§�]�3£l¥�£l §¯ ñ!«§��¦��ø¦9«����aóu«­ö��Ûñ!£§��÷
óÃ��ö3ü�ñ��3�h¦oô�¯oñ�£l��ó/�ø¦��aö3���9 }��ò9�[ñ�£§��ñ��!¬9��óv£­õL��ò9�j�3�!�]�võèö:«­ ­÷
²v�a�]��óa¡­�3ò��Ló/�a²³«§�]�3�øñ�²³�h«­�9���9 �¡l«­��¦©�3ò���£§ö3�3ò9£l §ö:«­¬9ò9�øñ^õè�h«�÷
�3ü9ö��aóF£­õ��3ò9�vò9�a«l¦��!ö
¥ø«­ôA�!¥øó!û
ùu�³¦��aó3�� l�x«y²³���3ö��øñC��£y�hóÃ����÷
²³«­�3��� � ,�� ����+��F«­��¦ � � - � ����+��.ô�«§ó3�a¦Á£§�Á�3ò9�vö3�a¥�«­�3��£§��÷
ó/ò9��¬�ôA���Ã¤��!�a�c�a«lñ:òc£­õ+�3ò9�F¬�£§�3�a�l����«§¥S£§�]�3£l¥�£l §¯©ña«­��¦9��¦9«­�3�hó!¡
�3ò9�uñ�£§��¦�������£l��«­¥ª¬9ö3£lô�«­ô���¥����Ã¯�� � ,�� ���K¡L«§��¦ú�3ò9�xö3�a¥�«­�3��£§��÷
ó/ò9��¬ ô��!�Ã¤��a�!� � � - � ���Kûq��ò9�~£§�]�3£l¥�£l §¯oña«­�ú�3ò9�a� ô��}ö���÷
±��9�a¦[���3�aö�«­�3��ý§�a¥�¯s��£�«§¦�«­¬�����£³�3ò9�C���!¤�ü9��ó3�!�a�[ó3���3�C���~£§ü9ö
���<õèö�«§²v�a¤�£löc�SûU��ò9�
¥��h«­ö��9�a¦y²³£�¦��!¥+«§��¦��3ò9�
ö���±����a¦y£§��÷
�3£§¥�£§ l¯~ñ!«­�}�3ò9�a�ÁôA�³«§¬9¬9¥����h¦~��£yñ�£l²³¬9ü��3�©�3ò��v¬�ö3£lô�«­ô9��¥����Ã¯
� � �(� ��D ,ED�-�� �ID�+��^£§õ��a«lñ:ò©�������Ðõèö:«­ l²v�a�]�����³��ò9�ª���!¤ ü9��÷
ó/�a�!�[ó/���3�lû
" # ·§�A���aðm· î%$ ��·�� î ð î'& ´)('(���A·9¸�*��sðè¶�*,+.-
}Ö�q£lü9öjõèö�«§²³�!¤�£§ö��A¡.�3ò��ÿ����õè£lö3²s«­�3��ý§�x�3�����~õèö:«­ l²v�a�]��ój���
�3ò9�
�9�a¤"ü9��ó3�!�a��ùu�!ô[ó/���3�
ü9��¦9�!ö�ñ�£l��ó/�ø¦��aö�«­�3��£§�côA�!¥�£§�9 ©�3£
£§�9�L£§õI�3ò9�
ñ�£l��ñ��a¬���óa¡]�!���3ò9�aö�«§�s������ó/�3���9 vñ�£§��ñ��!¬9��õèö�£§²Q�3ò9�
ó/£lü9ö�ñ!�.ùu�!ô}ó3���3�
£§öL«v�9�a¤qñ!£§��ñ!�!¬��hû$}Ö�[�aó�ó/�a��ñ��l¡��3ò9� �Ã£§���l�

/ �����t#��_/934*,<,% �4@a/"���L#��?'&7�CA�&.?/ � +�^8�)'_/ACA�?#��&<�')34.�+��L@�� 7�.�#�*,.
�z�q� �X� �:���2�6�M�,�10z�;� �!2&��35476�� r

¬�ö3£lô�«­ô9��¥����Ã¯ÿ���[�0�]ü�«�����£l� �9ûB�jö3�a¬9ö3�hó/�a�]��ó��3ò9�~¬9ö�£§ô�«­ô9��¥����Ã¯
õè£lö+ l�!�9�aö�«­�3���9 ��3ò9�Ð�3�����8õèö�«§ §²³�!�]� � ��D ,
D0- ��¤�ò9��ñ:ò
ôA�!¥�£§�� ló
��£��3ò���ñ�£l��ñ��a¬�����û � ü�¬9¬�£]ó/�Ð�3ò9�aö3��«§ö3�I�Þ�3�����8õèö�«§ §²³�!�]��ó����
��ò9�Lùu�!ôs¬�«§ §�L«§��¦³¥��!�98ÿôA���3ò���ó�ó/�!��£­õ ���3�!�]��õèö�«§ §²³�!�]�:ó!û
��ò�� �Ã£l���]�L¬9ö�£§ô�«­ô9��¥����Ã¯sõè£lö� §�!���!ö:«��3���9 �8 ��óª«§ó�õè£§¥�¥�£�¤Ló?s

2 Z;: 79�:3 � p<;=<>? @ � 2 Z �
?
3 �
?
35�
?
39�
?
75�:3 � p Z f�r o:p

¨.ó~��ò9�7ñ�£l��ñ��a¬��Á£§õv��ò9�ÿ�������Áõèö:«­ l²v�a�]�}��óÁü9��ñ��aö/�:«­�������
��ò9�s�9�a¤1ü9��ó3�!�a�ÿó/���3�l¡a� �]ü�«­�3��£§� |�û �[ñ!«­�uôA�sö3�a¤�ö3���/���!�ã«§ó
õè£l¥�¥�£�¤Lózs

2 Z;: 79�:3 � p<; <> ? @ �BA�C 2 Z �
?
3 �
?
35�
?
3#�
? C 75�:3 � p Z f�r f?p

¤�ò��!ö��I�EDGF�ö��!¬9ö��aó3�!�]�:óI�3ò�� ! ÷m��òC�������+õèö:«­ l²v�a�]�8ôA�!¥�£§�9 l���9 ª�3£H ÷k�3òcñ!£§��ñ!�!¬��hû ��£l²�ô9���9���9 y�0�lü�«��3��£§��ó �9ûB�ª«§��¦R|�û |�¡]¤��.ñ!«­�
¦9�!ö���ýl�ª��ò9�
¥�£l ³¥��B�§�a¥���ò9£�£�¦cõèü9��ñK�3��£§�), � �ID�+	��8���«ló�õè£§¥�¥�£�¤Lózs
�GZ �:3 � 7 : p ; <A ? @ � <,� > A C 2 Z �?> �Jp'2 ZH� > � 7 � p@2 Z �E> � 7 � p@2 Z �I> �mp

Z f�r I:p
¨.ñ!ñ�£lö�¦9���9 [��£~�3ò��c¬9ö�����ñ!��¬�¥��c£§õ�²³«­����²©ü9² ¥��B�§�!¥���ò9£�£�¦

�hóÃ����²s«­�3��£§�%£§õ�¬�«§ö�«§²v�!�3�aö�óa¡L£§ü�öj l£l«§¥.�øój�3£Û±���¦%�3ò9�ÿó3���
£§õx¬�«§ö�«§²³���3�aö�ó � �ID�+��ú¤�ò���ñ:ò6²s«�����²³�B�!�hóú�3ò9�qõèü9��ñ��3��£§�
¦9�!¬9�øñK���a¦ ��� �0�lü�«��3��£§��|�û �9û �ª£�¤��aý§�!öh¡
�3ò��úó3ü9²³²s«��3��£§�
����ó3��¦9�c�3ò���¥�£§ l«§ö3���3ò�² ²s«5�§�aó©ó/ü�ñ:òÿ����õè�aö3�a��ñ��y���]��ö�«lñK��«§ô9¥��§û
¨.ó � DJF �øóu«­� ü9��£§ô�ó3�!ö�ý�«­ô9¥��ÿý�«­ö���«§ô9¥��7��� �0�]ü�«�����£l��|�û ��¡
¤��%ña«­�$¦��aö3��ý§�"�3ò9�>õè£§¥�¥�£�¤����9 �!��¬��hñK�3�h¦ ¥�£§ ¥��B�§�!¥���ò9£�£�¦
õèü���ñK����£l��s

��K8Z �:3 � 7 : p ; <A ? @ � A C 2 Z �F> �mp <,� > 2 Z �?> �Jp'2 ZH� > � 7 � p@2 Z �
> � 7 � p

Z f�r L:p
¤�ò���ñ:òÞ��óÿ�3ö:«§ñK�:«­ô9¥��§û ��¯NMl�!��ó3�!�PO óã���9�z�]ü�«§¥����Ã¯1«§��¦ ��ò9�
ñ!£§��ña«bý����Ã¯y£­õU�3ò9�©¥�£l l«§ö3���3ò9²³�øñ
õèü9��ñ��3��£§��¡S���Fña«­�~ôA��¬9ö�£�ý§�h¦
��ò�«��1, � �ID�+	��8��³�øósôA£§ü9��¦��a¦ ôA�!¥�£�¤$ô�¯ ,9Q � �8D0+	��8��~þ��z���Éû
��ò��!ö���õè£§ö��§¡�²s«­����²³���a���� �, Q � �8D0+	��8��U�øó^�z�]ü9��ý�«­¥��!�]�^�3£
²s«���÷��²³���a���� ., � �ID�+	��8��Kû©��ò9�Y��� «§¥� l£§ö�����ò9² þ |
�Ð�øóF�!²³¬9¥�£�¯§�h¦
��£ã�����!ö:«��3��ý§�a¥�¯ÿ����ñ!ö3�h«§ó3�., Q � �ID�+	��8��sü9�]�3��¥Lñ�£§��ýl�!ö� §�!��ñ����øóö��a«lñ:ò9�a¦�û���ò9� �Ð÷ � �3�!¬[«­��¦j�~÷ � ���!¬~«­ö��
«§ó�õè£§¥�¥�£�¤Ló?s

�Ð÷ � ���!¬�s
2 Z �F> �43 � 35�?79�SR 3 � R"p�T=2 Z �?> �Np@2 ZA� > �87 � R(p'2 Z �E> � 7 � R9p@2 Z �I> �SR9p
�[÷ � ���!¬�s

Z � R�U � 3 � R�U � p6; 34�">]C�3�uVBW X � K Z �:3 � 7 : 3#�SR%3 � R9p
ùu��ña«­�
�!��¬�ö3�hó3ó��3ò9���3�aö3²só4� � ��� ���+¤�����òC¬9ö�£§ô�«§ô9��¥����3���aóö��!¥ø«����a¦u��£}�3ò��yó3���©£§õ�õè�a«­�3ü9ö��aó©ö3�a¥�«­�3�h¦ �vûx¨ªó�ó3ü9²³�c�3ò�«��

��ò9�aó3�cõè�h«���ü9ö3�hó³«­ö��c����¦��!¬A�!��¦9�!�]�³�3£Á�h«§ñ:òo£§�3ò9�aöa¡I� � ��� ���

302

ñ!«­�jôA�
����¬�«­��¦��a¦j«§ó�õè£l¥�¥�£�¤Ló?s
2 Z �?> �Np<;�� �>

� @ � 2 Z����� Z �vp%> �Np Z f�r i p

¤�ò9�aö3�	��
��øó���ò9�C��ü9²�ôA�!öª£­õÐñ�£l�l���!�]��õè�a«­�3ü9ö��aóª«­��¦
�
� � �����ó ��ò9����÷m��ò�õè�h«���ü9ö3�1£­õã�3ò9�Qñ�£§�]���!�]� �vû ùx�1¦9�aó3�� l�
�3ò9��õè£§¥�¥�£�¤����9 ~õè�h«��3ü�ö3�hóC��£xñ:ò�«§ö�«lñK�3�aö3�B�!�³��ò9�yñ!£§�]�3�a�]�©£­õª«
ñ�£§��ñ��!¬9�aû
� � ���� /"��� .?7�C0+5�&���4@6'9�
34�"34'_/"�&�"%a*,.t/(���v'&� .:/"�&.:/
� � �� � /"��� .?7�C0+5�&���4@m/(� ! �).�%J*,.�/"���$'&� .:/"�&.:/
� � �/ � /(��� 3)U:�&�934> �~.z7�C-+��&���4@L'9�
34�"34'&/(�&�"%R1��&��/(� ! �&. *,. /"���

'&� .:/"�&.:/
� � ���� /"��� .?7�C0+5�&���4@6#�*,> * /(%�*,.L/(���v'&� .?/(�&.?/
� � ���� /"��� .?7�C0+5�&���4@��
�:3�/(*,.�>A1�� *,.?/(%G*,.t/(���$'&� .?/(�&.?/
� � ���� /"��� .?7�C0+5�&���4@234<,1��
34+��_/(%J*,.�/"���$'&� .:/"�&.:/
� � ���� /"��� .?7�C0+5�&���4@67�1�1��&�G'c34%(�$34<,1��
34+��_/"%a*,.t/(���$'&� .?/(�&.?/
� � ���� /"��� .?7�C0+5�&���4@6<,�c�M�)��')34%"� 34<,1���34+5�_/(%a*,.t/"���v')� .:/(�).:/
� � ���� /"��� .?7�C0+5�&���4@61�7�.�'&/(7
3�/(*,� .�%N*,.�/"��� '&� .:/"�&.:/
� � ���� � /"���v.?7�C0+5�&���4@2Oa�! F� /934> %G*,.t/(���$'&� .?/(�&.?/
� � ��_� � /"���J.?7�C-+��&�M�4@X/(� ! �&.�%�%(/"34�(/(*,.�>$�a* /(�A')341�* /"34<�<,�_/8/"�&��*,.A/"���

'&� .:/"�&.:/
ùu�Q«ló3ó3ü9²³� ��ò�«��%�h«§ñ:ò4£§õu��ò9�Q«§ô�£�ýl��õè�a«­�3ü9ö��aó%��ó

�9£§ö�²s«­¥�¥�¯s¦��øóÃ��ö3��ô9ü����a¦j¤����3òj²v�h«­� �#"
� ��«§��¦cý�«­ö��ø«­��ñ!� �%$
� �õè£§ö8�3ò9�&�]÷k�3òvñ�£§�]���!�]�+õè�h«��3ü�ö3�lûa}Ö���3ò9� ��� õèö�«§²v�a¤�£löc�S¡h�3ò��!¯
«­ö��Fña«­¥øñ�ü9¥ø«����a¦j«§ó�õè£§¥�¥�£�¤Ló?s

' � � ; J <? 2 Z �F> �43 � 35�?75� R 3 � R p � �� Z �vp
J <? 2 Z �F> �43 � 35�G75� R 3 � R p Z f�r h:p

(�� ; J <? 2 Z �F> �43 � 3#�F7#�SR%3 � R9p Z)� �� Z �vp+* ' � � p �
J <? 2 Z �F> �43 � 35�?7#�SR%3 � R9p Z f�r n:p

� ��²³��¥�«§ö3¥�¯§¡�¤���ña«­�[����¬�«§��¦j�3ò��
�3�aö3²sóE� � ,/� ���0+��L«­��¦
� � -1� ���0+��KûD�L£�¤��!ýl�!öh¡�ó3����ñ!�[�3ò9�}�3�����cõèö:«­ l²³�!�]��ó³ü9��¦��!ö
ñ�£§��ó/�ø¦��!ö:«�����£l�v¦9£C�9£­��ñ�£§²³�L¤����3ò³��ò9�ª£l�]�3£§¥�£§ l¯C£­õS��ò9�ª�9�a¤ü9��ó3�!�!�uùu�!ôãó/���3�l¡ � � ,�� ����+��
«­��¦ � � -1� ����+��
ña«­�9��£­�
ô��
õè£§ü9��¦�¦9��ö��añ��3¥�¯§û�ùx�x¬9ö�£§¬A£ló3�}«ÿ²³���3ö��øñ �%, �³��£o�aó/�3��²s«��3�
� � ,/� ���0+��s«­��¦ � � -1� ���0+��³õèö�£§² � � ,/� ���s«§��¦�� � - � ���Kû
��ò9�Û�ø¦��h«%�øóx�3£�²³£�¦9�!¥v�3ò9� £lô�ó/�aö3ý�«­�3��£§� ��ò�«��ÿñ�£l��ñ��a¬���ó
¤�����ò³«
ñ!£§²³²³£§�³¬�«§ö3�a�l�Ð«§ö3�� §�a�9�!ö:«­¥�¥�¯
¥�£�ñ!«­�3�h¦©���s«
�9�a«§ö3ô�¯¬�£]ó/���3��£§�~«­��¦c��ò9�!��öLò9�h«§¦��aöL¥�«§ô��a¥�ó�«§ö3�
ö��!¥ø«����a¦Iû���ò��!ö���õè£§ö��§¡
� � ,/� ���0+���«­��¦=� � -1� ����+��L«­ö��.�!��¬�«­��¦��h¦y«ló�õè£§¥�¥�£�¤Lózs

2 ZH� > � 7 � p6;.-�/ Z �83 � 3 � p �10>
� @ � 2 Z)� /� ZA� p > �Jp Z f�r,g)k:p

2 Z �G> � 7 � p ;.-�2 Z �83#�63 � p3��4>
� @ � 2 Z�� 2� Z �-p%> �Np Z f�r,g gcp

¤�ò9�!ö��5�36+«­��¦.�37
«§ö3�ª�3ò9�F��ü9²�ôA�!ö�£­õ+õè�a«���ü9ö��aó�õè£§ö�ò9�a«l¦��!ö¥�«§ô��a¥�«­��¦ãý]�øó3ü�«­¥�¥�«b¯l£§ü��Cö��aó3¬��hñK����ýl�!¥�¯§û
� 6� � ,��
«­��¦8� 7� � - �«­ö��y��ò9�9�]÷k�3ò�ò��a«§¦9�!ös¥ø«­ôA�!¥Lõè�h«���ü9ö3�}«§��¦Û�3ò9�:�]÷m��ò ý]�øó3ü�«­¥¥�«b¯l£§ü��
õè�h«��3ü�ö3�yö3�hó/¬A�añ��3��ý§�!¥�¯§û , ¤���¥�¥�ôA�j¦��øó�ñ�ü�ó�ó/�h¦ã���o�3ò9�
¥�«­�3�!ö³¬�«§ö/�s£§õª�3ò���ócó3�añ��3��£§��û � ��²³��¥ø«­ö�¥�¯ÿ¤��~¦��!ö���ý§�~ó/�aý§�aö�«§¥
õè�a«���ü9ö��aóLö��!¥ø«����a¦[��£�ò9�h«§¦��aöª¥ø«­ôA�!¥øó.«§��¦[��ò9��ý��øó/ü�«§¥8¥ø«b¯§£lü��aû
BL�9¥����l����ò9��ñ�£§�]���!�]�+õè�h«��3ü�ö3�hó!¡­ó3£§²³��£§õ��3ò9��õè�a«­�3ü9ö��aóU¦��aö3��ý§�h¦
õè£§öãò9�a«l¦��!öã¥ø«­ôA�!¥øóÿ«­��¦1�3ò��úý��øó/ü�«­¥s¥ø«b¯§£§ü9�uó3ü�ñ:òÞ«lóx�3ò9�ñ�£§¥�£§öh¡bô�£l¥�¦9�9�aó�ó!¡­«§��¦
��ò9��£�ñañ�ü9ö�ö3�a��ñ���£­õ�«.ñ��aö/�:«­���C¤�£lö�¦�«­ö��
¦���ó�ñ�ö������§û0}Ö��óÃ���a«l¦[£­õ^ñ!«­¥øñ�ü�¥�«­�3���9 ³�3ò9��²v�h«­�~«­��¦[ýb«§ö3�ø«­��ñ��§¡

¤��©ña«­�uñ�£§²³¬9ü9�3�©�3ò9��� � � 6� � , � � ����+���¡�� � � 7� � , � � ���0+��ªõè£§ö
��ò9�C¦��øó3ñ!ö3�!�3�Fõè�a«­�3ü9ö��aó�«ló�õè£§¥�¥�£�¤Lózs

2 Z�� /� ZH� p ;<; > �Np
; � U J>=?A@CB�DFEHG 0I EHJ�K @�L KNMOE KOP Q W J W RFS V�T�W X+T KP G 0I

P U JVUXWZY
0I
J[=?N@\B1DFEHG 0I EHJ�K @�] K�M^E KOP Q W J W R!S V�T W X+T K Z f�r,g L:p

2 Z�� 2� Z �0p ;`_�> �Np
; � U J>=?A@CB1DFEaG 4I E R K @cb KNMOE KOP Q W J W R!S V�T�W X�T KP G 4I

P U JVUXWZY
4I
J[=?A@CB�DFEHG 4I E R K @�] K�M^E KOP Q W J W R!S V�T W X�T K Z f�r,g)o:p

¤�ò9�aö3��� � 6� ��«§��¦.� � 7� ��«§ö3���3ò����]ü�²�ôA�!öÐ£§õ�¬A£ló�ó/��ô9¥���ýb«§¥�ü��aó^£§õ��ò9�d�]÷m��ò�ò9�h«§¦��aö�¥ø«­ôA�!¥Aõè�h«��3ü�ö3�
«­��¦s�3ò9�e�]÷k�3òcý��øó/ü�«­¥S¥�«b¯l£§ü��
õè�h«���ü9ö3�vö��aó3¬��hñK�3��ý§�a¥�¯l¡gf � � 6� � , � �ih �.«§��¦jf � � 7� � - �/�lk �
«§ö3�F��ò9�Cñ�£lü9�]�L£­õ+��ò9�C��ü9²©ô��aö�£­õ��3��²v�hóm� 6� � , �����]«§ü9¥øó��3£	h«§��¦~��ò9�sñ�£lü9�]�F£§õÐ�3ò9�³��ü9²©ô��aöF£§õÐ�3��²³�aóe� 7� � - �.�z�]ü�«­¥øó.�3£kúö3�hó/¬A�añ��3��ý§�a¥�¯lû
��ò9�L�3�!ö�² � � ����� �Ð����� �]ü�«­�3��£§���9û,�
ñ!«§�³ô��L�hóÃ����²s«­�3�a¦

ô�¯Ms
2 Z �.;<n�75� R 3 � R p6; gpo J <? @ � 2 Z � ;.n > �43 � 35�G79�SR%3 � R(p

> �I>Xo1
 Z f�r,g&f?p
¤�ò9�!ö���� �	���øó��3ò9�
��ü9²©ô��aö�£­õU¬�£]ó3ó3��ô9¥��
ý�«­¥�ü9�hó�£­õ �Cû
°��hñ!«§¥�¥§�3ò�«­�8ñ�£l��ñ��a¬���óI¤����3ò©ñ�£§²³²³£§�
¬�«§ö3�a�]��ó�«§ö3�^¥����l�!¥�¯��£sò�«bý§�
ó3��²³��¥�«§ö��3£��§�!��ó����[��ò9�!��öLò9�h«§¦��aö�¥�«§ô��a¥�óaû���ò9�
���!ö�², 6 � ��D ,ED�+��ª��� � �]ü�«­�3��£§�V|�û����c�øó.¬�ö3£l¬�£]ó/�h¦j�3£j²v£�¦��a¥��3ò9�øó

£lô�ó3�!ö�ýb«­�3��£§��û , 6 � ��D ,
D0+�����óª¦���±����a¦[«§ó�õè£l¥�¥�£�¤Ló?s
- / Z � 3 � 3 � p ; g

� C�3�uq - ZAr�sut E K W q K 3wv K ZA� 3 � q p8p Z f�r,g I:p
¤�ò9�!ö�� ,���ój«Û�9£§ö�²s«­¥����a���9 7õå«§ñ��3£§ö �dx �øó[«Ûñ!£§��ñ!�!¬��j���
��ò9�ÿ£§�]��£§¥�£§ §¯*+	�	yq��ó~«Ûõå«§ñ��3£lö~ô��!�Ã¤��a�!�D�ú«§��¦ � �	,{z�øóu�3ò���ò9�a«l¦��!öã¥ø«­ôA�!¥sõè£löoñ�£§��ñ��!¬9�jx �}|�~ � ��D�x �u��óu��ò9�
¦9��ó/��«§��ñ��
ôA���Ã¤��!�a�y��ò9��ñ!£§��ñ!�!¬��E� «§��¦�x ���[�3ò��
£§�]�3£l¥�£l §¯
+	�S«­��¦
� Q � ,
D�,{z�����óL�3ò9�C²³£�¦���±��a¦[�h¦����F¦��øóÃ�:«­��ñ!�C¦���±��9�a¦��� � �hñK����£l� ��ûB� � , ��� D�� �x�øóx«"õèü9��ñK����£l�1¤�ò9£]ó/�Û��²s«§ §�7�øó
õèö�£§² � �3£ �o��õ � «­��¦���«­ö��ÿô��!�Ã¤��a�!�d�"«§��¦ �§û ��ò9�¦9��±��9���3��£§��£§õ�|�~ � ��D�x �j�øó[�3ò9�ã²³���9��²©ü9² ¦��!¬���ò «­²³£§�9
�-«­��¦�x ��� ��ò9�Ûó3ü9ô���ö3�a�7ö�£�£­�3�h¦qõèö3£l² ��ò9�!��öãñ�£§²³²³£§�
¬�«­ö��!�]�y��� +vû �9£§ö[�!��«§²³¬9¥��l¡ª���"��ò9�ã£§�]�3£l¥�£l §¯ ¦��!¬9�øñK���a¦
��� ���� lü9ö3����¡9| ~ � � ¯l£§ü[ó3«býl� Q Q D � £lü9ö�¬9ö3�øñ�� Q Q �ú�øó��§¡Á¤�ò9��¥��
|Z~ � � ¯§£lüjó�«bý§� Q Q D � } � ��� Q Q � �øó���û , ��� D�� � �øó"«Qõèü9��ñ��3��£§�
¦9��±��9�h¦[«§ó�õè£§¥�¥�£�¤Ló?s

- ZA� 3���p6; L � �� � o	� � Z f�r,g L:p
��ò���¬9ö�£§¬A�!ö3�Ã¯ã£­õ��3ò���ó�õèü9��ñ��3��£§�7�øó©�3ò�«­�©��õL�3ò��yý�«­¥�ü9�hó�£§õ� «­��¦j�ã«­ö��s²³£§ö��có/��²³��¥ø«­öh¡8�3ò9�yýb«§¥�ü��c£­õ��3ò��cõèü9��ñ��3��£§�o�øó
ò��� lò9�!öhû }Ö�7�aó�ó3�!��ñ!�§¡ , ö����3ü�ö3��óv«x¥�«§ö3 l��ý�«­¥�ü9����õª��ò9�y�Ã¤�£
ñ!£§��ñ!�!¬��:ó
ü9��¦��aöCñ�£l��ó/�ø¦��aö�«­�3��£§�x«§ö3�³ñ�¥�£ló3�³���u��ò9�³£§�]�3£l¥�£l §¯
«§��¦.�3ò9�a��ö8¥�«§ô��a¥�ó+«­ö��Ðó/��²³��¥ø«­öhû+¨ªó , 6 � ��D�,
D�+�����ó����]�3�aö3¬�ö3�!�3�a¦
«ló~¬9ö�£§ô�«§ô9��¥����Ã¯§¡�« ��£§ö�²³«§¥��B�!���9 õå«lñK�3£lö , �øóÁ����ý§£l¥�ýl�a¦>���
�0�]ü�«�����£l��|�û�� ��û , 7 � ��D�-8D�+��^����� �]ü�«­�3��£§�Y|�ûB�5����óU��£
²v£�¦��a¥
��ò9�ú£§ô�ó3�!ö�ý�«��3��£§� �3ò�«­�ÿñ!£§��ñ!�!¬��:óu¤�����òÞñ!£§²³²³£§�1¬�«­ö��!�]��ó
«§ö3�Û¥��B�§�a¥�¯ �3£qô�� ¥�£�ña«����a¦Q���W«%���a«­ö�ô�¯�¬�£]ó/���3��£§��û ��ò9�
¦9��±��9���3��£§�Û£­õ , 7 � ��D�-8D�+��©�øó©ó3��²³��¥�«§öv�3£}��ò9�[¦���±���������£l�Û£§õ, 6 � ��D ,ED�+���ó/ò9£�¤��ã��� � �]ü�«­�3��£§� |�ûB���9¡+ô9ü9�©ö��!¬9¥ø«§ñ!���9 [��ò9�
��ò9�!²�� Q � ,ED , z �S¤����3ò
�3ò������]ýl�!ö:ó/�U£§õl��ò9��¦��øóÃ�:«­��ñ!�ÐôA���Ã¤��!�!�
��ò9�
�Ã¤�£vñ!£§��ñ!�!¬��:ó�¤�����ò9���y��ò9�
ùu�!ô[¬�«­ l�§û
� ´ ��· (¶að î & �cî ¶a� �å� & �o¶h�ã¶ *��
�~�]��� î �h�]� îV� ðè¶a�
® ü�öF£l�]�3£§¥�£§ l¯~ö3�!±��9�a²v�a�]�Fõèö:«­²³�a¤�£löc�~²s«­���9¥�¯Áñ�£l��ó3��ó/��ó
£§õ
��ò9ö��!�sñ�£l²v¬A£§���!�]��óa¡���«§²v�a¥�¯l¡+�!���øó/�3���9 ~ñ�£§��ñ��!¬9��ó
¦��øó3ñ!£�ý§�aö3¯

303

ñ�£§²³¬A£§�9�a�]�a¡~�9�a¤ ñ�£l��ñ��a¬���ó�¦9��ó�ñ�£�ýl�!ö�¯Þñ!£§²³¬�£l�9�!�]�"«­��¦
£§�]�3£l¥�£l §¯�ö���±��9�!²³�!�]��ñ�£l²v¬A£§���!�]�aû^��ò9�hó/�Fñ�£§²³¬A£§�9�a�]��ó�«­ö��
¦��aó3�� l�9�a¦yô�«ló/�h¦�£l����ò9� ��� «­¥� §£lö3���3ò�² ¦��aó�ñ�ö���ôA�a¦j«­ôA£�ý§�lû
���mì � ðå�h¸§� � �]��ð î'& +���ðm�!¶hð î'& � � î ¸l� (¶h�u��ò��)±�ö:óÃ�ñ�£§²³¬A£§�9�a�]�Q£­õ"£lü9ö õèö:«­²³�a¤�£löc� ��ó1�3£ ¦���ó�ñ�£�ýl�!ö �!����ó/�/÷
���9 ñ!£§��ñ!�!¬��:ó ��� ��ò9� �9�a¤ ü���ó/�a�!� ùu�!ô ó3�����§û ��ò���ó
��ó[«§ñ:ò����aý§�a¦"ô]¯"ña«­¥øñ�ü9¥ø«������� � � �(� ��D ,
D0-����8D0+��c��ò9ö�£§ü9 lò
£§ü9ö ��� «­¥� §£§ö����3ò9²[û �+£����9���3�ø«­¥����a�ÿ�3ò9� ��� «­¥� §£lö3���3ò�²j¡
� � �(� ��D ,ED�-�� ��� D�+����U�9�!�h¦9óU��£
ô��ªñ!£§²³¬9ü����a¦IûU°��hñ!«­¥�¥���ò�«��
�3ò9�[ñ�£l�l���!�]��ó©£­õª«xñ�£l��ñ��a¬��³ó3ò�«§ö3��ó3��²v��¥ø«­ö³ñ:ò�«­ö:«§ñ��3�!ö��øóÃ����ñaó
���yô�£§�3ò�£§õI�3ò9�
ó3£§ü9ö:ñ��.ùx�aôyó3�����F«§��¦³�3ò��.�9�a¤"ü9��ó3�!�a�yó3�����§û
��ò9�!ö���õè£lö3�l¡!¤���ñ!«§�
²³«5�§�^ü�ó3�Ð£§õ]��ò9��ñ!£§�]�3�a�]�+£­õ��3ò��Ð�����øóÃ�����9
ñ�£§��ñ��!¬9��ó�ñ�£§¥�¥��añK���a¦s���s��ò9�Fó3£§ü�ö�ñ!�Lùx�aô�ó3�����aó��3£�£lô���«§���c�3ò9�
���9���3�ø«­¥��aó/�3��²s«�����£l�o£­õE� � �(� ��D ,
D0-������ D�+�� �
õè£§ö©�3ò9�jó3«§²v�
ñ�£§��ñ��!¬9�
���x�3ò9�s�9�a¤1ü9��ó/�a�!�ãó/���3�lûvùu�c¦��hó/�� §�ã«�²³£�¦���±��a¦
�a¦����
¦9��ó/��«§��ñ���«§¬9¬9ö�£l«lñ:ò[�3£y¦9���3�aö3²³���9�C��ò9�v���9���3�ø«­¥��aó/�3��²s«�÷
�3��£§� ¦��!�9£§�3�h¦7ô�¯ ��� � �(� ��D ,ED�-������ D�+�����û���ò9�}¦����:«­��¥�ó³£§õ
�3ò9�~²³£�¦���±��a¦ �h¦�����¦9��ó/��«§��ñ��}«§¥� l£§ö�����ò9² ñ!«§� ô��[õè£lü9��¦ú���
£§ü9öy¬9ö3�aý���£lü�óc¤�£§ö��qþ�� �
�kû � ü9¬9¬A£ló3�9� � ��D $ FD �s�øó��3ò9�ã¦��øóÃ÷��«­��ñ��vô��!�Ã¤��a�!�}��ò9�³ñ�£§�]���!�]� � «­��¦}�3ò9� ! ÷m��òÁ�!�]��ö3¯[£­õ��3ò9�
ñ�£§�]���!�]�^õè£§ö^��ò9� H ÷m��òcñ�£l��ñ��a¬���ñ�£l¥�¥��añ��3�a¦v���v�3ò9�ªó3£§ü�ö�ñ!��ùu�!ôó/���3�lû ��� � �(� ��D ,ED�-1� ��� D0+	������ó���ò9�!�[�hóÃ����²s«����a¦jô�¯Ms

2 � Z �F> �43 � 3#�G79� � 3 � � p�
 g
� Z�C�3�u

?�
 v K Z �43�� C ? p�� p Z I�r,gci p
¤�ò9�!ö�� � Q � ��D $ F D �
� ���8� � ��D $ F D �.«­��¦�� �øó
«��9£lö3²s«§¥��B�a«­÷
�3��£§� õå«§ñ��3£löaû�ù����3ò���ò9��óy���9������«§¥ª�hóÃ����²s«�����£l��¡��3ò�� ��� «§¥�÷
 §£§ö����3ò9² ñ!«§�}�����!ö:«�����ýl�!¥�¯y�hóÃ����²s«����C��ò9�©¬�«­ö:«­²³�����!ö/�Ûü9�]�3��¥
ñ�£§��ýl�!ö� §�!��ñ��§ûx�+£u¦���ó�ñ�£�ýl�!ö��3ò9�y������ó/�3���9 ãñ�£l��ñ��a¬���ó©���o�3ò9�
�9�!¤>ü9��ó3�!�!�jó/���3�l¡�¤��F±9� +Q«§ó���ò9�
������ó/�3���9 v£§�]�3£l¥�£l §¯võèö�£§²
�3ò9�[ó/£lü9ö:ñ���ùu�!ôúó/���3�lûo¨�õ ���!ös£§ô9��«­���9���9 }��ò9�j¬�«­ö:«­²³�����!ö:ó!¡
� � �(� ��D ,ED�-�� �ID�+���ñ!«§��ôA��ña«­¥øñ�ü9¥ø«����a¦C«lñ!ñ�£lö�¦9���9 L�3£F� �]ü�«�÷
�3��£§���9û,��û-�9£§öª�a«§ñ:ò[£§õ8��ò9�C�����øóÃ������ cñ�£§��ñ��!¬9��óa¡��3ò9£]ó/�
����õè£lö/÷
²³«­�3��ý§�
�������ªõèö:«­ l²³�!�]��óª¤�����ò}¬9ö�£§ô�«§ô9��¥����Ã¯�£­õÐôA�!¥�£§�� §���9 s�3£
�3ò9�øóÐñ�£l��ñ��a¬���ò9�� §ò��!öU�3ò�«­�c«F�3ò�ö3�hó/ò9£l¥�¦©¤���¥�¥�ô��ªñ!¥�«ló3ó3��±��a¦v«§ó
�3ò9�Cñ!£§ö�ö3�hó/¬A£§��¦9���9 sñ!£§��ñ!�!¬��L���j�3ò9�
�9�a¤�ü9��ó3�!�!�~ó3�����§û$}É�.��ó
¬�£]ó3ó3��ô�¥����3ò�«­�F�9£y�3�!���.õèö:«­ l²v�a�]��ó.���Á�3ò9�v�9�!¤1ü9��ó3�!�!�uó/���3�
ô��a¥�£l�9 o��£Û«Û¬�«­ö3�3�øñ�ü9¥ø«­öy�����øóÃ�����9 úñ�£l��ñ��a¬��y���"��ò9�uó3£§ü�ö�ñ!�
ùx�aôÛó3�����§ûo��ò9�øóy������¦o£§õ.ñ�£l��ñ��a¬��³¤���¥�¥��3ò9�a�7ôA�yö��!²³£�ý§�h¦
õèö3£l²��3ò9�
�!����ó/�3���9 ³£§�]�3£l¥�£l §¯lû
��� � � ðå�h¸§� � �]��ð î'& �~�]� � � î ¸§� (¶a�ã¨ªó}¦9�aó�ñ�ö���ôA�a¦>���
�3ò9�c¬�ö3�aý]��£§ü�óCó/�hñK����£l��¡��3ò9£]ó/�s����õè£§ö�²s«�����ýl�³�3�����©õèö�«§ §²³�!�]��ó
¤�ò9��ñ:òj«­ö��ª�9£§��ñ!¥�«ló3ó3��±��a¦c«ló�«§��¯v�!����ó/�3���9 ³ñ�£§��ñ��!¬9��ó�¤���¥�¥Sô��
ñ�£§��ó/�ø¦��!ö��a¦Ûõè£lö�ó/£l²³�}�9�!¤4ñ!£§��ñ!�!¬��:ós��� ��ò9�Áü���ó/�a�!�"ó3�����§û
ùx�C«­�/�3�a²³¬��L�3£³¥ø«­ôA�!¥I��ò9�aó3�
�9�a¤qñ!£§��ñ!�!¬��:ó�ô]¯j¦��øó3ñ!£�ý§�!ö����9
�3ò9�a��ö©ò9�a«l¦��!öC¥ø«­ôA�!¥øó
õèö�£§² �3ò��cùx�aôo¬�«§ §�§ûjùu��²s«��l�sü�ó/�
£­õÐ��ò9�vñ!¥�«ló3ó3��±��a¦[�������Fõèö�«§ §²³�!�]��óF«­��¦~�3ò��!��öFò��a«§¦9�!öF¥�«§ô��a¥�ó
�3£}«§ñañ�£l²v¬�¥��øó/òx�3ò���ó
�:«§óc�Sû���ò9�s�ø¦��a«[�øó
�3£[��ö�«§���ÿ«[ô9����«§ö3¯
ñ�¥ø«§ó�ó/��±��!öU��£
¬9ö��a¦��øñK�Ð��õ�«Fñ!�!ö3��«§���v�3�!���^õèö�«§ §²³�!�]�Ð���©��ò9�L�9�a¤
ü9��ó3�!�!�[ó3�����
��óL«vò9�h«§¦��aö�¥�«§ô��a¥�£­õ��3ò9�
���!¤>ñ!£§��ñ!�!¬��hû
��ò���ò9�h«§¦��aö+¥ø«­ôA�!¥§£§õ�«Lñ�£l��ñ��a¬��+�øó+£l�9�Ð£§õ]��ò9��ó3ü9ö�ö3£lü9��¦�÷

���9 ©�3�!����ó�£­õ8�3ò9�.�3�!�]��õèö:«­ l²v�a�]��ó�ö3�a l«­ö:¦����9
��ò9�
ñ�£§�]���!�]��£§õ
�3ò9�³ñ�£l��ñ��a¬��aû
ùu�vña«­�xñ!£§��ó/�3ö�ü�ñ��F«�ó3���
£­õ��3ö:«­���9���� ����9«§²©÷
¬9¥��hóvô]¯ÿ¬�«­��ö3���9 x�3ò9�[ñ�¥ø«§ó�ó/��±��h¦ÿ�3�!���võèö:«­ l²³�!�]��óv«­��¦Û�a«lñ:ò
£­õL��ò9�!��öcó/ü�ö3ö�£§ü9��¦����� }�3�!����óaû }ÉõF�3ò9�~ó3ü9ö3ö�£§ü���¦����9 }�������s��ó

published

book

our priceyou save

pricetitle author

published

book

our pricelist price

pricetitle author

���� §ü9ö��A	ms �����v%"34CA1�<,�&%m�4@X1��4/(�).:/(*;34<5� .:/(� <,� >4= ')34.�#�*,#
3�/(�&%M@B� �x/(���
w��&+L%"* /(�v%"���)�a.L*,.��m*,> 7��(� g r
��ò9�cò9�h«§¦��aöC¥ø«­ôA�!¥k¡+��ò9��ó�¬�«­��öCôA�añ!£§²³�aó
��ò9�c¬A£ló3������ýl�³�3ö:«­����÷
���9
�!��«§²³¬9¥��l¡l£§�3ò9�aö3¤��øó3������ôA�añ!£§²³�aó^�3ò9�.�9�!]«��3��ý§����ö�«§���9���9
�!�9«­²³¬9¥��§û �L�!���a¡Ð¤��jña«­�7�3ö:«­���7«Áô�����«§ö3¯ÿñ!¥�«ló3ó3��±��!övü�ó/���9
��ò9�øósó/�!�³£§õL�3ö:«­���9���9 ã���9«­²³¬9¥��aóaûÛ��ò���ó³ñ�¥ø«§ó�ó3��±��aösñ!«­�Û¬9ö���÷
¦9��ñ���¤�ò9�!�3ò9�aö���ò9�.ó3ü9ö�ö3£lü9��¦����9
���������øóÐ��ò9�ªò��a«§¦9�!ö�¥�«§ô��a¥�£§õ
«�ñ�£§��ñ��!¬9�a¡� l��ýl�!�}«³�������ªõèö:«­ l²³�!�]�Lö3�a l«§ö�¦����9 v�3ò��©ñ�£l�]�3�!�]�
£§õÐ«cñ�£l��ñ��a¬��.«­��¦[���:ó.ó3ü9ö�ö3£lü9��¦����9 ³�3�!���aû � �aý§�!ö:«­¥�õè�a«���ü9ö��aó
«§ö3�vñ�£l��ó/�ø¦��aö3�h¦~���Á�3ò9�v¥��a«­ö��9���9 �£§õÐ�3ò��vñ!¥�«ló3ó3��±��!öhûF��£§öF����÷
«§²³¬9¥��l¡§��ò9�ªö��!¥ø«�����ýl�L¦��øóÃ�:«­��ñ!�Lô��!�Ã¤��a�!�s��ò9�L��������õèö:«­ l²³�!�]��ó
«§��¦ú�3ò��!��öjó3ü9ö�ö3£lü9��¦����9 ã�3�!���a¡���ò9�Áñ:ò�«§ö�«lñK�3�aö3�øó/�3�øñ!ós£§õF��ò9�
ó3ü9ö�ö3£lü9��¦����9 F�3�!����ó/ü�ñ:òc«§óU��ò9�ªñ�£l¥�£löa¡lô�£l¥�¦9�9�aó�ó!¡]ñ!«§¬9���:«­¥����h«�÷
����£l�u«§ö3�s«§¥�ó3£~ñ�£§��ó/�ø¦��!ö��a¦�ûvùu�s�!²³¬9¥�£�¯Á«[��«§��ýl����«b¯l�aó3��«§�
«§¬9¬9ö�£l«lñ:ò
«§��¦
²s«�����²�ü9²�¥����l�!¥���ò9£�£�¦
�aó/�3��²s«�����£l��¡����©«�õå«§ó3ò�÷
��£§�yó/��²³��¥ø«­ö��3ò9�
«­¬9¬�ö3£]«§ñ:òc¦��hó3ñ!ö3��ô��h¦s��� � �hñK�3��£§�~|�¡lõè£§ö��3ò9�øó
ñ!¥�«ló3ó3��±�ñ!«­�3��£§�c�:«§óc�Sû

� ��²³��¥ø«­ö�¥�¯§¡
¤��oñ!«­��¬�«§��ö[��ò9�oü9��ñ�¥ø«§ó�ó/��±��a¦%�3�!���}õèö�«§ ­÷
²³�a�l�:ó[§�a�9�!ö:«����a¦�õèö�£§² � �añ��3��£§� ��ûB�u¤����3ò��h«§ñ:ò%£§õ©��ò9�!��ö
ó3ü9ö�ö3£lü9��¦����9 [��������óaû ��«§ñ:òÿ¬�«§��ö©��ó��3ò9�a�7ñ�¥ø«§ó�ó3��±��h¦ÿô�¯Á��ò9�
¥��a«§ö3���a¦vñ�¥ø«§ó�ó/��±��!öU��£
¬9ö��a¦��øñK�^��ò9��¬9ö�£§ô�«§ô9��¥����Ã¯C�3ò�«��^�3ò��Ló/ü9ö3÷
ö�£§ü���¦����9 Á�������c�øó³�3ò9�~ò��a«§¦9�!ö³¥�«§ô��a¥mû"��ò��j���!¤ ñ�£§��ñ��!¬9��ó
«§ö3�L�3ò9�a�c¥�«§ô��a¥��h¦s¤����3òc��ò9�.¦9��ó�ñ�£�ýl�!ö��a¦³ò9�h«§¦��aö�¥ø«­ôA�!¥øó!û^��ò9�
���!¤�¥�¯©¦��øó3ñ!£�ý§�aö3�h¦©ñ!£§��ñ!�!¬��:ó^¤���¥�¥9��ò9�!�sôA�ª«l¦9¦��a¦©��£
�3ò9�L£l��÷
��£§¥�£§ l¯F«lñ!ñ�£lö�¦9���9 L�3£.�3ò9��²³���3ò�£�¦©¦��aó�ñ�ö���ô��h¦C��� � �hñK�3��£§� ��û �9û
��� � � ��� î ð î & �cî ¶a� �å� & �1��ò��s�9�!¤�¥�¯Á¦��øó3ñ!£�ý§�aö3�h¦Áñ�£l��÷
ñ!�!¬��:ó³¤���¥�¥LôA�~«§¦9¦��h¦o��£ã�3ò9�[£l�l��£§¥�£§ l¯§û ��ò9�[¥�£�ñ!«­�3��£§� «��
¤�ò���ñ:òã��ò9���9�a¤�ñ�£§��ñ��!¬9�©ó/ò�£§ü9¥ø¦ãô��y¬9¥ø«§ñ��h¦ã���o�3ò9�y£§�]�3£l¥�÷
£l §¯ÿ�øóc¦��!�3�!ö�²³�����a¦úô�¯7ñ�£l��ó/�ø¦��aö3���9 u�3ò9�}ó3�!²s«§�l����ñj²³�a«§��÷
���9 Á«§��¦u�3ò���£§ö3�3ò�£§ §ö:«­¬�ò9��ñ³ñ:ò�«§ö�«lñK���!ö���ó/�3�øñ!ó
£§õ��3ò9�cò��a«§¦9�!ö
¥ø«­ôA�!¥øóaûªùu�©ñ�£l��ó/�3ö�ü�ñK�
«�ó3���.£§õÐ¬�£§�3�a�l����«§¥8£l�]�3£§¥�£§ l¯yña«­��¦���÷
¦�«��3�hóF¤�ò9��ñ:òÁõè£§ö�² �3ò9�³ó3�a«­ö:ñ:òÁó3¬�«§ñ!��£§õ��3ò��©¬�«§ö�«§²³���3�aö +
����£lü9ö�õèö�«§²³�!¤�£§ö��
¦9�aó�ñ�ö���ôA�a¦���� � �añ��3��£§��|�ûN�8�� §ü�ö3� 	.ó3ò9£�¤Ló

304

�Ã¤�£ªó�«­²³¬9¥��aó8£­õ�¬�£§�3�!�]����«§¥l£l�l��£§¥�£§ l¯.ñ!«§��¦��ø¦9«�����õè£lö���ò9��ùu�!ô
ó/���3�
ó3ò9£�¤����������� §ü9ö��R�§û^��ò9�
£§�]��£§¥�£§ §¯³£§õ+�3ò��Fùu�!ô~ó3�����
��ó
�3ò9�a�j����õè�aö3ö��a¦y�����!ö:«�����ýl�!¥�¯c���j��ò9� ��� «­¥� §£lö3���3ò9²[û
ùu��ñ!£§��ó/�3ö�ü�ñK�I��ò9�Ð¬A£­���!�]�3�ø«­¥­£l�]�3£§¥�£§ l¯ªñ!«§��¦��ø¦9«����^ü�ó3���9

�Ã¤�£[¦����A�aö3�a�l�C²³�!�3ò9£�¦9óaû ® �9�s²³���3ò�£�¦x�øó
�3£~ñ�£l��ó3��¦��aöF�3ò9�
£§ö3�3ò9£l §ö:«­¬9ò9�øñ~ñ:ò�«§ö�«lñK�3�aö3�øó/�3�øñ!ós£§õ
�3ò9�uò9�a«l¦��!öj¥ø«­ôA�!¥øó!ûW¨ªó
²v�a�]�3��£§�9�h¦7ôA��õè£lö3�l¡�ó/��²³��¥ø«­ösñ!£§��ñ!�!¬��:óv«§ö3�j¥����l�!¥�¯ã�3£ÿó/ò�«­ö��
ó/£l²v�ãó3��²³��¥�«§ö3���Ã¯ ���>�3ò9�a��ö[ò9�h«§¦��aö[¥�«§ô��a¥�óaû �9£lö[���9«­²³¬9¥��§¡
� ¥���ó/��¬9ö��øñ��z��«­��¦ � £§ü9ö�¬9ö3�øñ����C«­ö�����ò9�.ò��a«§¦9�!ö�¥ø«­ôA�!¥øó�£­õI�Ã¤�£
ö3�a¥�«­�3�a¦~ñ!£§��ñ!�!¬��:ó!û.ùx�³ñ�£l²³¬�«­ö��
�3ò���ò9�h«§¦��aöª¥ø«­ôA�!¥øóª£§õ^�3ò9�
ñ�£§��ñ��!¬9��óaûG}Éõ���ò9�!¯�ò�«bý§��ñ�£l²v²³£l�©ó3ü��³�C£§ö^ñ�£l²v²³£l��¬9ö���±9�I¡
�3ò9�a¯s¤���¥�¥Iô��
ñ�£l��ó3��¦��aö3�h¦�«lóÐ��ò9�
ó/ü9ôSñ�£l��ñ��a¬���ó�£§õ8«©ñ!£§��ñ!�!¬��
¥�«§ô��a¥��h¦�¤�����ò �3ò9�a��öuñ�£l²v²³£l��ó3ü��³��£§öxñ!£§²³²³£§��¬9ö���±9�Iû
¨L�9£§�3ò9�aöy�aý]�ø¦��a��ñ��x��ó��3£ ñ�£l��ó/�ø¦��aöyó3�!²s«­�]�3�øñ}²³�h«­�9���9 7£§õ
�3ò9�©ò9�a«l¦��!ö.¥�«§ô��a¥�óaûL��£§öª�!�9«­²³¬9¥��§¡��3ò9�©¬9ò9ö:«§ó3� � ¥���ó/�.¬�ö3�øñ����
«­��¦>�3ò��ÿ¤�£lö�¦ � ó�«bý§�z�ú«­ö��ÿó/�a²s«­�]�3�øñ!«§¥�¥�¯�ö3�a¥�«­�3�h¦%��£ú�3ò9�
ñ�£§��ñ��!¬9� � ¬9ö���ñ!�z��û���ò9�a¯j«§ö3�
¥����l�!¥�¯c��£cô��C�3ò9��ó3ü9ôSñ�£l��ñ��a¬���ó
£­õU¬9ö3�øñ��lû��8£³±���¦y�3ò���ó/�a²s«­�]�3�øñ
ö3�a¥�«­�3��£§��ó3ò9��¬yôA���Ã¤��!�a�j�3ò9�
ò9�a«l¦��!öc¥ø«­ôA�!¥øóa¡�¤��}²s«��l�~ü�ó3�~£­õ � �!���øñ!«§¥t�9ö��!���L�!��¤�ò9�øñ:ò
��ó
«~�]ü9�aö3¯~ó3¯�óÃ���!² õè£§ö.±���¦9���9 y�3ò��vó3�!²s«­�]����ñ©ö3�a¥�«­�3��£§��ó3ò9��¬
ô��!�Ã¤��a�!�q�Ã¤�£�¬�ò9ö�«ló/�hó��"þ ���Éû ��£§ö}�!�9«­²³¬9¥��§¡ }Éõ �]ü9�!ö�¯�����
� �����øñ!«§¥5�9ö��!���L���8¤�����ò
�3ò9��¬9ò9ö:«§ó3�aó � ¥��øóÃ�8¬9ö3�øñ�����«­��¦ � ó3«býl�z��¡
���Áö�����ü9ö���ó[�3ò��ÿõå«§ñ��}�3ò�«­� � ¬�ö3�øñ����Û�øó~��ò9�o l�!�9�aö�«§¥��B�a«­�3��£§�
£­õ
�3ò9�Á¬9ò9ö:«§ó3�aó � ¥��øóÃ��¬�ö3�øñ����u«§��¦ � ó�«bý§���9û ��£l��ó3�z�]ü9�!�]��¥�¯
�3ò9�øó[���9õè£§ö�²³«­�3��£§�q��ójü�����¥��B�!�a¦>��£ú����ñ!ö3�h«§ó3�Á��ò9�ã¥��B�§�a¥���ò9£�£�¦
�3ò�«­� � ¥��øóÃ�ª¬�ö3�øñ����c«­��¦ � ó3«býl�z�³«­ö��
��ò9��ó3ü9ôAñ!£§��ñ!�!¬��:óª£§õU�3ò9�
ñ�£§��ñ��!¬9� � ¬�ö3�øñ����9û
¨ �]ü�²�ôA�!ö"£§õã¬A£­���!�]�3�ø«­¥Á£§�]�3£l¥�£l §¯$ña«­��¦��ø¦9«­�3�aó%«­ö��ñ�£§��óÃ��ö3ü�ñ��3�h¦³ü�ó/���9 ��3ò9�ª�Ã¤�£C²³�!�3ò9£�¦9ó�¦��aó�ñ�ö���ô��h¦Iû^��ò9�ª�ø¦��a«

£­õU£§�]�3£l¥�£l §¯cö���±����!²³�!�]�ª�øó��3£yñ�£§��¦�ü�ñK����ò9����� «­¥� §£§ö����3ò9²¦��aó�ñ�ö���ôA�a¦³��� � �hñK����£l� |�¤����3òs��ò9�Lõè£l¥�¥�£�¤����9 �ñ:ò�«§�9 §�hó^���c�3ò9�
�[÷ � �3�!¬Gs

�SR�U � ; 34�">2C�3�uV �1K Z �:3 � 7 : 39� R 3 � R p
� R U � ; 34�">2C�3�uX � K Z �:3 � 7 : 39� R�U � 3 � R(p

¨�õ �3�aöxñ!£§��ý§�aö3 l�!��ñ!�§¡F�3ò9�7¬�«­ö:«­²³�����!ö + �øó[��ò9�7¬A£­���!�]�3�ø«­¥
£§�]�3£l¥�£l §¯>ña«­��¦9��¦9«­�3�7�3ò�«­�u²s«�����²³���a�aóÁ�3ò9�ú����¬A�añK���a¦1¥�£l
¥��B�§�a¥���ò9£�£�¦qõèü9��ñK����£l�1��� � �]ü�«­�3��£§��|�û 	�û ��ò9�!ö���õè£lö3�l¡
�3ò9�øó
£§�]�3£l¥�£l §¯~�øó
�3ò9��²v£]óÃ�C¬�ö3£lô�«­ô9¥��³£§�]�3£l¥�£l §¯[��ò�«��C l�!�9�aö�«­�3�aó
�3ò9�y�3�!�]�³õèö:«­ l²v�a�]��ó©ö3�a l«­ö:¦����9 ~��ò9�~ñ�£§��ñ��!¬9��óv���7�3ò9�[�9�a¤
ü9��ó3�!�!�[ó3�����§û
� í ��� î ¶að �m��ð î &ÿí!î �É�����7·�¶að � ����� �I¶ �+��· & �7� î ¶h�
¨ ùx�aô ¬�«­ l�ÿ��ó~²s«l¦��ÿ£­õv�3�!�]�Áõèö�«§ §²³�!�]��óaû � £l²³�ã�3�����
õèö�«§ §²³�!�]��ós«§ö3�}ñ!£§��ñ!�!ö��9�a¦ú¤����3ò ��ò9�}¥ø«b¯§£§ü9�sõè£§ö�²³«­��ó/ü�ñ:ò
«§óA�ª��� � ��«­]ó!û � £§²³�
�3�!�]��õèö:«­ l²³�!�]��ó�«§ö3�Fö3�a¥�«­�3�h¦���£v�3ò9�
ñ�£§�]���!�]��óF£­õ��3ò9�sñ�£l��ñ��a¬���óF���u«§�x£l�]�3£§¥�£§ l¯§û
ùu�sñ!«­¥�¥��3ò9�hó/�
����õè£lö3²s«­�3��ý§�U�3�!���+õèö:«­ §²³�a�l�:ó!û+ùx��¦��!ýl�!¥�£§¬
«�²³����ò9£�¦
¤�ò9�øñ:ò
ñ!«­�j¬9ö��añ!��ó3�!¥�¯s��¦9�!�]�3��õè¯c��ò9�
����õè£lö3²s«­�3��ý§�F�3�!�]��õèö:«­ l²v�a�]��ó����
�3ò9�v�9�!¤ ü���ó/�a�!�uó/���3�lû
��ò��C�3�!���.õèö:«­ l²v�a�]��ó.��¦��a�]�3��±��a¦x«­ö��

� �����$eJE��y�4@2�X�&uz*,')34< �
�"�&�)`a�_/G*,% �z�q� ��� �:���6�2�]�;� ���(� �5�;�9� �J� r

<td>

<tr>
<table>

Published:

Author: Curtis Frye 2004

List Price: <strike>

49.99
Microsoft Excel

<a>

���� §ü9ö����xs \634�(/0�4@a/(���
	�� %8/"�(7�'_/"7��(�L�(�&1��"�&%"�&.:/93�/(*,� .R@�� � /(���
w��&+L1
34> �$%"���)�a.L*,.��m*,> 7��(� g r
��ò9�!�ÿü9�3��¥��B�!�h¦u�3£}«§¦�«­¬��
��ò9�c£§�]��£§¥�£§ §¯[��£~�3ò��s�9�!¤�ó3�����c«§ó
¦9�aó�ñ�ö���ôA�a¦y��� � �hñK����£l��ó |s«­��¦ ��û
��ò9�ª��¦��h«
£­õS£§ü9ö�²v�!�3ò9£�¦³�øóU�3£©«­��«§¥�¯��!����ò9�t�.£�ñ!ü9²³�!�]�

® ô��Ã�añK���~£�¦��a¥ � � ® � ��óÃ��ö3ü�ñ��3ü9ö��ª£§õ�«©ùx�aôy¬�«­ §�lû�¨qùu�!ô
¬�«­ §�ãñ!«§�>ôA�ÿö��!¬9ö��aó3�!�]�3�h¦"ô�¯%« � ® � ó/�3ö�ü�ñ��3ü9ö��ã¤�ò9��ñ:ò
�øój�aó�ó/�a�]�3�ø«­¥�¥�¯�«­�q£§ö:¦��aö3�h¦ �3ö��!�ãñ�£l��ó/�øó/�3���9 Û£§õC�Ã¤�£7�Ã¯�¬A�aó
£§õy�9£�¦��hó!û ��ò9� ±�ö�ó/�ã�Ã¯]¬A��£­õj�9£�¦����øóÿñ!«­¥�¥��a¦Q�!¥��!²³�!�]�
��£�¦9��¤�ò9��ñ:ò³�øó^ü�ó3�a¦©�3£
ö��!¬�ö3�hó/�a�l�v�ª��� � ��«§ F����õè£lö3²s«�����£l��û
��ò��aó3�~�9£�¦��aóc«§ö3�[¥ø«­ôA�!¥��a¦ú¤����3ò �3ò��}�!¥��!²³�!�]�c��«§²³�}ó/ü�ñ:ò
«ló ��
 �:«­ô9¥�������¡ ��
 «�����¡I���:ñ­û���ò9�s£§�3ò9�aö
�Ã¯�¬��s£§õ��9£�¦��s�øó
ña«­¥�¥��h¦Û�3��������£�¦9�}¤�ò9�øñ:òú����ñ!¥�ü�¦9�aós��ò9�~�������y¦��øó/¬�¥�«b¯l�a¦Û���
��ò9�
ô9ö�£�¤Ló/�aö�«­��¦y¥�«§ô��a¥��h¦[ó/��²³¬9¥�¯y¤�����òj�3ò9��ñ!£§ö�ö3�hó/¬A£§��¦�����
�������aû ���� §ü9ö�� �1ó3ò9£�¤Lóú¬�«§ö/��£­õu�3ò��d� ® � óÃ��ö3ü�ñK�3ü�ö3�
ö��!¬�ö3�hó/�a�l�:«�����£l�cõè£§ö���ò9�
ùu�!ô[¬�«­ l�Fó3ò9£�¤��j�������� §ü9ö��R�§ûùu�.¦��aý§�a¥�£l¬c«­��«§¥� l£§ö�����ò9²1��ò�«���ñ!«§�s�:�S�añK����ýl�!¥�¯³¥�£�ñ!«­�3�
��ò9� ����õè£§ö�²s«�����ýl� �3�!�]�q�9£�¦��aó%��� �3ò9� � ® � ó/�3ö�ü�ñK��ü9ö��§û
��ò��c�3�!����õèö:«­ §²³�a�l�:ó�¤����3ò����ÿ��ò9�j����õè£lö3²s«­�3��ý§�s�������v��£�¦9�aóñ!£§ö�ö3�hó/¬A£§��¦³�3£v�3ò��F����õè£lö3²s«�����ýl�ª��������õèö�«§ §²³�!�]�:ó!ûv�9£lö��a«§ñ:ò
£§õc�3ò��7�������ÿ�9£�¦��aóu��� �3ò�� � ® � ó/�3ö�ü�ñ��3ü9ö��§¡³¤��Û¦��!±��9�
��ò9�o¬�«­�3ò «ló~�3ò��7óÃ��ö3���9 "ñ!ö3�h«��3�h¦�ô�¯>ñ�£l��ñ!«­�3�a��«������9 ��ò9���£�¦9�F¥ø«­ôA�!¥øó�õèö�£§²���ò9�
±�ö:óÃ�L«§��ñ��hóÃ��£§ö��3£³��ò9���S÷m��ò[«§��ñ��hóÃ��£§ö
¤�ò��!ö����ÿ�øó.«�¬9ö3�!÷É¦9��±��9�h¦~ý�«­¥�ü9�§ûF�9£lö.�!�9«­²³¬9¥��§¡I«§ó.ó/ò9£�¤����� ���� §ü9ö�� ��¡Ð��ò9�[¬�«���òoõè£lö©��ò9�j�3�!�]�s�9£�¦��hóv¥�«§ô��a¥��h¦7¤����3ò
�
Ðü9ô�¥��øó/ò��a¦�s � «­��¦ �c� ��ó/�
Ðö���ñ!�5s � «­ö��>ôA£­��ò����lü�«­¥j�3£
��
 ��«§ô9¥����
 ��ö��
 ��¦��
 ô����s«­��¦���ò9�C¬�«­�3òjõè£§öL�3ò9�
���������£�¦9�aóU¥ø«­ôA�!¥��a¦v¤�����ò � �~�øñ�ö�£ló3£­õ �v�^�9ñ��a¥6�����5��
�ö3£l §ö:«­²³²³����
����ó3��¦9� ® ü�������ó ��
 �:¦��
 ô��
 õè£§�]���
 «����
¤�ò��!���~�øó�ó3�����£�|�û �L£§�3�^��ò�«����a«§ñ:ò
¬�«��3ò
²s«b¯F¥�£�ña«��3��²v£lö3�Ð�3ò�«§�
£§�9�^�������
��£�¦9�C���}�3ò9�y� ® � ó/�3ö�ü�ñK��ü9ö��§û�ùu��¦���±��9�C��ò9��¬9ö�£§ô�«­ô9��¥����Ã¯
��ò�«��U��ò9���3�aö3²�� DS£�ñañ�ü9ö:óU���©�3ò����3�����Ð�9£�¦��hóU¥�£�ña«��3�h¦�ô�¯
��ò9�¬�«��3ò��}«§ózs

2 Z��
?
3! 5p ; " Z��

?
3� 5p

J C " Z!� C 3! 5p
¤�ò9�!ö���# � ��D D$� ���øó��3ò��F��ü9²©ô��aö�£­õ�£�ñañ�ü9ö�ö��!��ñ!�.£§õ%��DU���[«­¥�¥
��ò9�³�3�!���C�9£�¦��aó
¥�£�ñ!«­�3�a¦xô�¯&�8û �L�����h¡8¤��c¦���±��9�³�3ò9��'��	�)(���������*',+.-0/ � � �*-�«ló�õè£§¥�¥�£�¤Lózs

1 Z 5p6;}* A ? 2 Z!�
?
3� 5p <,� > 2 Z��

?
3� 5p Z L�r,g)h:p

�ª£­�3�C�3ò�«­�2/ � � ��ñ!«§�~ô��©ñ!«­¥øñ�ü�¥�«­�3�a¦yõèö�£§²6²³£§ö��
�3ò�«§�~£§�9�
� ® � óÃ��ö3ü�ñK�3ü�ö3��ô�¯C��ö3�h«������9 C«§¥�¥9�3ò9��� ® �4óÃ��ö3ü�ñK�3ü�ö3�hó^«§óÐ«
õè£lö3�hóÃ��«­��¦��a«lñ:ò1� � � D D$� �Ð�øó�ñ!«­¥øñ�ü�¥�«­�3�a¦cô]¯cñ!£§��ó3�ø¦��!ö����� ©«­¥�¥
��ò9�Ð�������U�9£�¦��aó8¥�£�ña«��3�h¦
ô�¯3�����
�3ò9��õè£§ö��aó/�aû���ò9���ø¦��h«L£­õ9£lü9ö
«§¥� l£§ö�����ò9²W��ó���ò�«�����ò9�F�3�!�]��õèö:«­ l²v�a�]��ó�ö3�a l«§ö�¦����9 ��3ò9�
ñ�£l��÷

305

wy�&+F%"* /(� ZBeJE�� p
S g Oa34< @m\]�"*,'&�$KM� CA1�7z/"�&���M�z� !?%

Z��?/8/(1Xb j j ���G� r �
34< @�1��(*,')�&'&� CA1�7�/(�&�"+��?� !z% r ')� C p
S L 	J*,%('&� 7�.?/���\MK��M�?� !?% r '&� C

Z��?/8/(1Xb j j ���G� r #�*,%('&� 7�.?/���1�'&+��z� !?% r '&� C p
S o CACA*,%8/"� �(� r '&� C

Z��?/8/(1Xb j j ���G� r CACA*,%8/"� �(� r '&� C p
S f TaC�3��)� . r ')� C

Z��?/8/(1Xb j j ���G� r 34C�3��&� . r '&� C p
S I g �M�?� !z%8/"�(�&�&/ r '&� C

Z��?/8/(1Xb j j ���G� r,g +��?� !z%8/"�(�)�_/ r '&� C p
S L ��34�(.��&%�� `a� +�<,� r '&� C

Z��?/8/(1Xb j j ���G� r +
34�(.��&%934.�#�.�� +�<,� r '&� C p
S i +��?� !z1��?� < r ')� C

Z��?/8/(1Xb j j ���G� r +��?� !z1��?� < r ')� C p
S h �
34< @ r '&� C

Z��?/8/(1Xb j j �
34< @ r �)+�3)= r '&� C p
S n 	J*,> * /"34<�HJ7��(7 �x�&'9��.�*,')34<	�M�?� !?%"��� 1�%

Z��?/8/(1Xb j j ���G� r #�*,> * /"34<,> 7��(7 r '&� C p
S g)k K�34.�� .Pe S T KM� .�%"7�CA�&��\]�(�z#�7�'_/

Z��?/8/(1Xb j j '&� .�%"7�CA�&� r 7�%93 r ')34.�� . r '&� C p
S g g QN�?#
34!

Z��?/8/(1Xb j j ���G� r ! �?#
34! r ')� C p
S g L \634.
34%(� .�*,' e S T

Z��?/8/(1Xb j j ���G� r 1
34.�34%"� .�*,' r '&� C p
S g)o �J< =zCA1�7�%�TaCA�)�(*,')3�
�.�' r

Z��?/8/(1Xb j j ���G� r � < =zCA1�7�%"34CA�)�(*,')3 r ')� C j p
S g&f QN� .�*,')3 F*,.�� < /93-\2���4/(��
�C�34> *,.�> e S T0W

�.�' r

Z��?/8/(1Xb j j ���G� r ! � .�*,')3 r '&� C p

�8«§ô9¥�� �5s w��&+�%(* /"�&%t')� <,<,�&'_/(�)#I@�� ���_u�1��&�"*,CA�&.:/"% r S g � S n 34�"�
'&� <,<,�&'_/"�&#P@��"� C[/(���-+��?� !F')3�/934<,� >L#�� C�34*,. r S g)k � S g&f 34�"� ')� <,<,�&'_/(�)#
@��"� C /(���v#�*,> * /"34<�')34CA�)�"30%(15�&'&* �
')3�/(*,� .F#�� C�34*,. r
�3�!�]�
£­õ��3ò��³ñ!£§��ñ!�!¬��:ó
«­ö��© l�!�9�aö�«§¥�¥�¯}¦����A�aö3�a�]�
���ÿ¦����A�aö3�a�l�
ùx�aô}¬�«­ l�aóaûª��ò9�aö3�!õè£§ö��§¡A¤��vñ�£§²³¬9ü9�3�C��ò9���a�]�3ö�£§¬�¯§¡A¤�ò9�øñ:ò
ö3�a¬9ö3�hó/�a�]��ó��3ò���ö�«§��¦�£§²³�9�hó3óU£§õ���ò9�����!ö�²Q¦��øóÃ��ö3��ô9ü�����£l��¡§£§õS«
�9£�¦��§ûN}Éõ���ò9�ª���!ö�²�¦���ó/�3ö���ô9ü��3��£§�y�����3ò9�.�3�!�����9£�¦��hó��øó�²³£§ö��
ö�«§��¦�£§²[¡����y��ó�¥��B�§�a¥�¯7�3ò�«­�s�3ò9�øós���������9£�¦��Áñ!£§�]��«§����óv�3�����
õèö�«§ §²³�!�]��óCö3�a l«­ö:¦����9 j�3ò9�jñ�£l�l���!�]��£§õ���ò9��ñ!£§��ñ!�!¬��:ó!û}��ò9�
¦����:«­��¥�ó�£§õ�£lü9öL«­¥� §£lö3���3ò9² ña«­�jô��
õè£lü9��¦j���ãþ�� �
�kû
� � ·9�h� � ¶aï��+�
��£§��ó3��¦9�!öÿ��ò9�%ùu�!ô$ó3���3�%ó3ò9£�¤������ ���� lü9ö3� �"¤�ò9�øñ:ò���ó
«§ó�ó/£�ñ��ø«����a¦u¤����3òÿ��ò9��£l�l��£§¥�£§ l¯Á¦��!¬���ñ��3�a¦o��� ���� §ü9ö�� �9û�}Ö�
�3ò9�øó[ùx�aôqó3���3�§¡
¤��uñ!£§¥�¥��hñK���a¦q«Ûó3���~£­õ©����õè£lö3²s«­�3��ý§�x�3�����
õèö�«§ §²³�!�]��ó�ö3�a l«­ö:¦����9 ��3ò9��ñ�£§�]���!�]��£­õ��3ò���ñ�£l��ñ��a¬���ó+ü�ó/���9 L«§�
«­ü���£§²s«�����ñU����õè£§ö�²s«�����£l�F�!���3ö:«§ñK����£l�.²³�!�3ò9£�¦IûJ�9£§ö+���9«­²³¬9¥��§¡
¤��~ñ�£l¥�¥��añ��3�h¦7��ò9�[�3�!���sõèö�«§ §²³�!�]��ó � {
«­²³�
Ðö�£§ lö�«§²v²³���9
{F�!²só �5�9¡ � �}��ñ!ö3£]ó/£§õ �~�^�9ñ��a¥ �����5�
�ö3£l §ö:«­²³²³���9 ã����ó3��¦��
® ü�����¡l«­��¦ �
Ðö:«§ñ��3�øñ!«­¥�������
Ðö�£§ lö�«§²v²³���9 �¡��­��¦R��¦����3��£§�6�
õè£§ö©�3ò9�[ñ�£l��ñ��a¬�� � �3���3¥���O�¡�«­��¦ã�3ò9�y�3�!���võèö:«­ l²³�!�]��ó � �}«§öc�
�ª�a¥�£lü9ö�«��9¡ � ��ü9ö/����óP��ö3¯l�z��¡+«­��¦ � � �3�!ýl� ® ü�«­¥�¥����9���cõè£lö
�3ò9�
ñ�£§��ñ��!¬9� � «­ü���ò9£§ö4�9û
¨ª¥���ò9£§ü� §òx�3ò9�³ùu�!ôÿó/���3�hóF��� ���� lü9ö��aóY�v«§��¦ ��ôA�!¥�£§�9

�3£j�3ò9�có�«­²³�³¦�£§²s«§����¡��3ò9�s�!���øó/�3���9 [£§�]�3£l¥�£l §¯[��� ���� §ü9ö��R�
��óÛ�9£­� ó/ü����:«­ô9¥��%õè£löo��ò9�>ùu�!ô6ó/���3�>��� ���� lü9ö3� �9û ùx�
«­¬9¬9¥�¯6£§ü9ö>£§�]�3£l¥�£l §¯$ö���±��9�!²³�!�]�"õèö:«­²³�a¤�£löc�$�3£$«l¦9«­¬��

��ò9�ã�����øóÃ�����9 £l�l��£§¥�£§ l¯ õèö3£l² �3ò9�ãùu�!ô ó3�����ÿ���D���� lü9ö3� �
��£W�3ò9�1�9�!¤Oùx�aô ó/���3� ��� ���� lü9ö��d�9û ��«ló/�h¦$£l����ò9�
��������õèö:«­ l²³�!�]��óyö3�a l«§ö�¦����9 ã��ò9�uñ!£§�]�3�a�]�y£­õ
��ò9�ãñ�£§��ñ��!¬9��ó
õèö�£§² ��ò9�>ó3£§ü9ö:ñ��%ùx�aô�ó3�����§¡[£§ü9ö7õèö�«§²³�!¤�£§ö��Þ¦��øó�ñ�£�ý§�aö�ó
��ò�«��ã��ò9�ú�3�����ÿõèö:«­ l²v�a�]��ó � ® ö:«§ñ�¥��Û¨.¦�ý�«­��ñ!�5s
 ��� ��� �

�ö3£l §ö:«­²³²³���� �¤����3ò �-�ª÷É° ® �V��¡ �
^«§¥�² ® �
�ö3£l §ö:«­²³²³����
õèö�£§² �3ò���{Fö�£§ü9��¦�Bª¬6�9¡U�!��ñ­ûx«­ö��s�3ò9�yô�£�£��Á������¥��y��«­²³�aóa¡
��ò9�.�3������õèö:«­ §²³�a�l�:ó � � ñ�£§�/�GBLö�²s«­�6��¡ � °�£§ôA�!ö3���}¯X��¥ø«­��¦6�9¡
�!��ñ§ûÐ«­ö��.��ò9�C«­ü9�3ò9£lö���«­²³�aó����[�9�!¤�ó3�����§û � ��²³��¥ø«­ö�¥�¯l¡9���ªñ!«­�
ôA�y¦9��ó�ñ�£�ýl�!ö��a¦u�3ò�«��v�3ò9�jñ�£§��ñ��!¬9��ó � ¯§£lüoó3«býl�z��¡U«§��¦ � £§ü9ö
¬�ö3�øñ����c«­ö���«­¥øó3£�ñ�£l�l�:«­���9�a¦}���~��ò9�v�9�!¤ ó3�����§û
��ò9�!ö��©«§ö3�����
��£­�:«­¥8õè£§ü9ö.������ó/�3���9 jñ�£§��ñ��!¬9��ó.����ý§£l¥�ýl�a¦j���ÁôA£­�3òÁùx�aôxó3�����aó
«§��¦u£§ü9öCõèö�«§²v�a¤�£löc�xñ!«­�ÿ¬�ö3�hñ��øó/�a¥�¯u¦���ó�ñ�£�ýl�!ö
��ò9�!² ���ã��ò9�
���!¤%ü���ó/�a�!�~ó3�����§û
��ò9��¦��øó�ñ�£�ý§�aö3�h¦C�!���øó/�3���9
ñ�£§��ñ��!¬9��ó^«­ö���ö3�!��«­���9�h¦�������ò9�

£l�]�3£§¥�£§ l¯³¤�ò9��¥��F�3ò9£]ó/�
ñ�£l��ñ��a¬���ó�ó3ü�ñ:ò[«§ó � ¬9ü�ô9¥��øó3ò9�a¦m���3ò�«��
ña«­�9��£­�ªôA��õè£lü9��¦~���}��ò9�����!¤ ó3�����v«§ö3�Cö��!²³£�ýl�a¦Iû � £§²³��£§õ
��ò9�[�����øóÃ�����9 ãñ�£l��ñ��a¬���ó³¦��øó�ñ�£�ý§�aö3�h¦ÿò�«býl�j¦����S�!ö��!�]�vò��a«§¦9�!ö
¥ø«­ôA�!¥øó������3ò9�.�9�!¤"ü���ó/�a�!��ó3���3�§û$��£§ö����9«­²³¬9¥��§¡]�3ò��Fñ!£§��ñ!�!¬��
� «­ü���ò9£§ö4�©��óL«ló3ó3£�ñ��ø«����a¦y¤�����ò[�3ò9�
ò9�h«§¦��aö�¥�«§ô��a¥ � ¨Lü���ò9£§ö4�9û
��ò��©ñ�£l��ñ��a¬�� � ¯§£lüÁó3«býl�z�³�øó.«ló3ó3£�ñ��ø«����a¦[¤����3ò � £§ü � «bý§�z�
���V���� lü9ö��y�9ûA��«§ó3�a¦j£§�[��ò9�©ñ:ò�«­ö:«§ñK���!ö���ó/�3�øñ!ó�£§õU�3ò9�Cò��a«§¦9�!ö
¥ø«­ôA�!¥øó
«­��¦Á�3ò����������
õèö�«§ §²³�!�]��óFö��!]«­ö:¦����� s�3ò9�sñ!£§�]�3�a�l�
£§õ
��ò9�Lñ�£l��ñ��a¬���óa¡§£lü9öUõèö:«­²³�!¤�£§ö���¦��øó3ñ!£�ý§�aö�ó8�3ò�«�� � } � ���L�
«­��¦
� � � °
0��«­ö��8��ò9�Ð�9�a¤ÿñ�£§��ñ��!¬9��óI���F�3ò9�Ð���!¤ÿó/���3�lû8��ò9�aö3�Ð«§ö3�
���
��£­��«§¥­�Ã¤�£ª�9�a¤ÿñ�£§��ñ��!¬9��ó8���y���� §ü9ö�� �.«­��¦
£lü9ö+õèö:«­²³�a¤�£löc�
ña«­�[ñ�£lö3ö��añ��3¥�¯s��¦��a�]�3��õè¯c�3ò��!²[û
��ò9�ÿ���!¤�¥�¯>¦��øó3ñ!£�ý§�aö3�h¦%ñ�£l��ñ��a¬���ó~«§ö3�ÿ«l¦9¦��a¦>��£Û��ò9�

£l�]�3£§¥�£§ l¯.ô�¯
��ò9��²v�!�3ò9£�¦v¦��aó�ñ�ö���ô��h¦���� � �hñK����£l� �9û �ª�3£.õè£§ö�²
«yó/�!�.£§õÐ¬�£§�3�!�]����«§¥�£l�]�3£§¥�£§ l¯yña«­��¦��ø¦9«­�3�aóaû ® ü9öªõèö:«­²³�a¤�£löc�
��ò9�!�W���3�aö�«­�3��ý§�!¥�¯ ö���±����aóã��ò9��£§�]�3£l¥�£l §¯ «§��¦Þ£§ô��:«­���Q��ò9�
£l�9�xó3ò9£�¤������ ���� §ü9ö��V|�ûW��ò9�øó�ö���±��9�a¦�£l�]�3£§¥�£§ l¯7�øóc��ò9�
ó�«­²³�L«ló^�3ò��L²s«­��ü�«­¥�¥�¯©ñ�£l��ó/�3ö�ü�ñK���a¦³£§�]��£§¥�£§ §¯Cõè£§öÐ��ò9�Lùu�!ô
ó3���3�j���[�8�� §ü�ö3���9ûÿ��ò9�!ö���õè£lö3�jóÃ�:«­ö3�3���9 }õèö�£§² ��ò9�j������ó/�3���9
£l�]�3£§¥�£§ l¯c���~�3ò9�vó/£lü9ö:ñ��
ùu�!ôÁó3�����§¡A£§ü9öªõèö�«§²³�!¤�£§ö����øóª«­ô�¥��
��£C«­ü���£§²s«�����ña«­¥�¥�¯�ö3�!±��9���3ò9�ª£§�]�3£l¥�£l §¯C«­��¦v«l¦9«­¬9�^�3£C«
�9�a¤
ü���ó/�a�!�jùx�aô~ó/���3�lû
� +�� (�]�bð �o� î ¶a·�� � ���hï �å¶a�
ùu�oñ�£l��¦�ü�ñ��3�h¦%�!�]���!��ó3��ý§�ã����¬A�!ö���²³�!�]�:ó[£§��ó/�aý§�!ö:«­¥
ö��a«§¥�÷
¤�£§ö�¥ø¦}ùu�!ôÿó/���3�hó
���x�Ã¤�£[¦�£§²s«­����óa¡+��«§²³�!¥�¯}ô�£�£��Áñ!«­��«­¥�£§
¦9£§²s«­����«­��¦�¦��� §����«§¥yña«­²³�!ö:« ó/¬A�añ!��±Añ!«�����£l� ¦�£§²s«§����¡��3£
¦9�!²³£§��ó/�3ö:«����U�3ò9��¬��aö/õè£lö3²s«­��ñ��U£­õ�£§ü�ö�£§�]�3£l¥�£l §¯Lö���±��9�!²³�!�]�
õèö:«­²³�a¤�£löc�Sûo��«­ô9¥�� �~ó3ò9£�¤Ló��3ò9�[ùu�!ô ó/���3�hó³ü�ó/�h¦o���Û£lü9ö
�!��¬��aö3��²³�!�]�aû���ò9�
±�ö:óÃ�.ñ!£§¥�ü9²³�~ó/ò9£�¤Ló���ò9�Cùu�!ô}ó3�����C¥ø«­ôA�!¥
«§��¦%�3ò9�oó3�añ!£§��¦qñ�£l¥�ü9²³� ó3ò9£�¤Lój�3ò9�ÿ��«­²³�ã£­õv�3ò9�ÿùu�!ô
ó3���3�aó�«­��¦s�3ò��.ñ�£lö3ö��aó3¬A£§��¦����9 �B.° � û � �ª÷ � ��«§ö3�.ùx�aôyó3�����aó
ñ!£§¥�¥��hñK���a¦jõèö�£§²��3ò9�©ô�£�£5�[ñ!«­��«§¥�£l c¦�£§²s«­����û � �z�v÷ � �?|�«§ö3�
ùu�!ôvó/���3�hó^ñ�£l¥�¥��añ��3�a¦Cõèö3£l²q�3ò9��¦��� §����«§¥�ña«­²³�!ö:«ªó3¬A�añ���±�ña«��3��£§�
¦9£§²s«­����û
�8£��aýb«§¥�ü�«��3�L�3ò9�.¬��aö/õè£lö3²s«­��ñ��L£§õS£lü9ö�£l�]�3£§¥�£§ l¯�ö���±�����÷

²³�a�l��õèö�«§²v�a¤�£löc�S¡�¤��[±�ö�ó/��²s«­��ü�«§¥�¥�¯Ûñ!£§��ó/�3ö�ü�ñK���3ò9�}£l��÷
��£§¥�£§ l¯ãõè£§öc�h«§ñ:òúùx�aô ó3���3�§û"��ò���ós²s«§�]ü�«­¥�¥�¯7ñ!£§��ó/�3ö�ü�ñ��3�a¦

306

��B ��� ��� ��� ��� ��� ��	 ��
 ���
�
 �
 �
 �
 �
 �
 �
 �
 �

��B � � B�� ��� B�� ��� ���
�� B�� ��� B�� ��� B�� ��� B�� �������
�� ���
������
�� ���
������
�� ���
������
�� ���
�� B�� ���
��� B�� ��� B�� ��� � � ���
�� B�� ��� ��� ��	 B�� ��� ��� ��	���� ��	 ��� 	������ 	�� B�� ��� B�� ��� ���
�� B�� ��� B�� ������� 	��
��� ��� ��	����
�� B�� ��� B�� ��� � � ��� ��	 B�� ��� ���
������
�� B�� ������� ��	 B�� �������
�� ��� 	������ ��� B�� �������
��
��� B�� ��� B�� ��� B�� ��� B�� ��� ��� 	������ 	�� � � B�� �������
�� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ���
��� ���
�� B�� ��� ���
������
�� ��� ��	���� ��	 ��� ������� 	�� � � B�� �������
�� B�� �������
�� B�� ������� ��� B�� ������� 	��
��� ��� ��	 B�� ��� ��� 	 B B�� ��� B�� ������� 	uB ��� ��	 B�� ��� ���
������
�� � � ���
������ 	 B ���
������
�� ���
������
��
��	 B�� ��� B�� ��� B�� ��� B�� ��� ��� ��	���� ��	 ��� ������� 	�� ��� ������� ��� ��� ��	���� ��	 � � ��� ��	���� ��	 B�� ������� 	uB
��
 B�� ��� B�� ��� B�� ��� B�� ��� ���
������ ��	 ���
�� B�� ��� ��� ��	����
�� ��� 	������ ��� ��� 	������ ��� � � B�� ������� ���
��� ���
�� B�� ��� B�� ��� B�� ��� ��� ������� ��� ��� 	������ 	�� ��� ������� ��� ��� ������� ��� ��� ������� ��� ���
������ ��	 � �

�8«§ô9¥��R�xs \6�&�8@B� �(C�34.�'&�0�4@2� 7��N� .:/"� <,� >4= �(� �
.��&CA�&.?/a@B�"34CA�&�M� �"!t� .P#�*,%"'&�cU:�&�(*,.�>L�_uz*,%(/(*,.�>�'&� .�'&�)1z/"%$*,.F/(���-.��_� 7�.�%"�&�&. %"* /(�0*,.F/(���0+5�?� !
')3�/"34<,� >A#�� C�34*,. r \ 34.�# ���(�&@��&��/"� 1��"�&'&*,%"*,� .F34.�# �"�&')34<,<�@�� ��#�*,%"'&�)U:�)�(*,.�>-/(���$�_u�*,%8/"*,.�>-')� .�')�&1�/(%J*,.t/"���v.��_�V7�.�%"�&�&.F%(* /"�v�(�)%(1��)'_/(* U:�&< = r

£§�]�3£l¥�£l §¯Á�øóvñ�£§��ó/�ø¦��!ö��a¦7«§ó
��ò9�j §£§¥ø¦ÿó/��«­��¦9«­ö:¦uõè£§öv�!ý�«­¥�ü�÷
«��3��£§�+û �L�����C£lü9ö
£§�]�3£l¥�£l §¯~ö���±����!²³�!�]�
²³���3ò�£�¦ã¤�«§ó
ñ!£§��÷
¦�ü�ñK���a¦c�3£©«l¦9«­¬9���3ò��ª£§�]��£§¥�£§ §¯©õèö�£§²�«�ó3£§ü9ö:ñ��ªùx�aô�ó/���3�.�3£
�a«§ñ:òy£­õ8�3ò9�
£§�3ò9�aö�ó3���3�aóaû$�9£lö����9«­²³¬9¥��§¡���ò9�
£§�]�3£l¥�£l §¯võèö�£§²
� �}�øóy«l¦9«­¬����a¦ ��£ � �ÿ�3£ � �7ü�ó3���9 7£§ü9öy£§�]�3£l¥�£l §¯7ö���±��9��÷
²v�a�]�
²³�!�3ò9£�¦IûY��«§ñ:òx£­õÐ��ò9�³ö3�hó/ü�¥������9 j£§�]��£§¥�£§ §���aó.�øóª��ò9�!�
ñ�£§²³¬�«§ö3�h¦�¤����3òv��ò9�Lñ�£lö3ö��aó3¬�£l��¦����9 F²³«§��ü�«­¥�¥�¯©ñ�£§��óÃ��ö3ü�ñ��3�h¦
£§�]�3£l¥�£l §¯võè£§ö��aýb«§¥�ü�«��3��£§�+ûU��ò�ö3�a�
«ló/¬A�añ���ó�«­ö��
���9«­²³���9�a¦����
�!ý�«­¥�ü�«������� ©��ò9�
¬A�!ö3õè£§ö�²³«§��ñ��lû���ò��
±�ö�ó/�L«§ó3¬��hñK�L�øó��3£³�!ý�«§¥�÷
ü�«����
�3ò9�©ñ!«­¬�«­ô9��¥����Ã¯�£§õÐ¦���ó�ñ�£�ýl�!ö����� ���ò9���!���øó/�3���9 cñ�£l��ñ��a¬���ó
���Û�3ò9�[�9�a¤$ü9��ó/�a�!� ó/���3�lûÛ��ò9�øó³��ós«lñ:ò9���!ý§�h¦ÿô�¯7ñ!«§¥�ñ!ü9¥ø«��/÷
���9 c�3ò9�©ö3�hñ!«­¥�¥8«§��¦[¬9ö��añ!��ó3��£l�~£­õU�3ò��©¦��øó3ñ!£�ý§�aö3¯y£­õ^�����øóÃ�����9
ñ�£§��ñ��!¬9��óaûy°��hñ!«­¥�¥Ð�øóCñ!«§¥�ñ!ü9¥ø«��3�h¦uô]¯u¦���ý]�ø¦����9 [�3ò��c��ü9²�ôA�!ö
£­õU������ó/�3���9 cñ!£§��ñ!�!¬��:ó�õè£§ö�¤�ò9�øñ:ò[�3ò��Có/¯�ó/�3�!²6ñ�£lö3ö��añ��3¥�¯�¦��øóÃ÷
ñ�£�ý§�aö3�h¦Cô�¯
��ò9���3£§��«­¥��]ü�²�ôA�!ö^£­õI«§ñ��3ü�«§¥������øóÃ�����9
ñ!£§��ñ!�!¬��:ó!û

Ðö��añ��øó3��£l�c��ó�ña«­¥øñ�ü9¥ø«����a¦yô�¯�¦���ý]�ø¦����9 v�3ò9�
��ü9²©ô��aö�£­õ8�!����ó/�/÷
���9 [ñ�£l��ñ��a¬���ó.õè£löF¤�ò���ñ:òÁ�3ò9�só3¯�ó/�3�a² ñ�£lö3ö��añ��3¥�¯[¦9��ó�ñ�£�ýl�!ö��a¦
ô]¯C�3ò9����£­��«§¥���ü9²�ôA�!öÐ£§õ��!���øó/�3���9 Cñ�£l��ñ��a¬���ó���ò9�Ló/¯�ó/�3�a²1¦��øóÃ÷
ñ�£�ý§�aö3�h¦Iû+��ò9�.ó/�hñ�£§��¦©«ló/¬A�añ��Ð��óU��£
�!ý�«­¥�ü�«­�3���3ò��ªñ!«§¬�«­ô9��¥����Ã¯
£­õ�¦9��ó�ñ�£�ýl�!ö����9 ��3ò9�
���!¤>ñ!£§��ñ!�!¬��:ó����y�3ò��
�9�!¤>ü9��ó3�!�!�~ó3�����§û
��ò9��óª��ó.«§ñ:ò9���!ýl�a¦jô�¯jña«­¥øñ�ü9¥ø«������� s�3ò9��ö3�hñ!«­¥�¥8«§��¦[¬9ö��añ!��ó3��£l�
£­õ��3ò9�j¦��øó3ñ!£�ý§�!ö�¯Á£§õL�9�!¤�ñ!£§��ñ!�!¬��:ó!ûÁ��ò��c�3ò���ö:¦ÿ«§ó3¬��hñK�v��ó
�3£
�!ý�«§¥�ü�«­�3����ò9�ªñ!«§¬�«­ô���¥����Ã¯�£­õSö3�!±��9���9
�3ò9�ª£§�]�3£l¥�£l §¯Có/�3ö�ü�ñK÷
�3ü9ö��§ûv��ò9��ó
�øó
«§ñ:ò9���!ýl�a¦Áô]¯}ña«­¥øñ�ü9¥ø«������� ���ò9�v�3ö��!�³�a¦����C¦��øóÃ÷
��«­��ñ��vô��!�Ã¤��a�!�}��ò9�³«§¦9«§¬��3�h¦}£§�]��£§¥�£§ §¯[«­��¦~�3ò��v²s«§�]ü�«­¥�¥�¯
ñ�£§��óÃ��ö3ü�ñ��3�h¦[£§�]�3£l¥�£l §¯§û.��ò9�C��ö3�a���a¦9���
¦��øóÃ�:«­��ñ!�C��óF¦��!±��9�a¦
«§óU��ò9�ª²³���9��²©ü9²�ñ�£]óÃ��£§õ�«­�s�a¦9����£§¬A�!ö:«��3��£§�só3�z�]ü9�a��ñ�����ò�«��
�3ö:«­��ó/õè£§ö�²só�£l�9�ª��ö3�a�ª��£v�3ò9�
£­��ò9�!öhû^��ò9�!ö��
«­ö��L�3ò�ö3�a� ������¦9ó
£­õ^�a¦����ª£l¬��aö�«­�3��£§��óaû���ò��
±�ö:óÃ�ª£l¬��aö�«­�3��£§�[�øó��3£yñ:ò�«­�9 l�F�3ò9�
¥�«§ô��a¥�£­õ
«x��£�¦9� �^û"��ò��[ó3�añ!£§��¦Û£§¬A�!ö:«�����£l�Û�øóv�3£ÿ¦��a¥��!�3�
«©��£�¦9� �^¡9«§��¦y²³«5�§�
����ó�ñ:ò9��¥�¦9ö3�a�yôA�añ!£§²³�F�3ò9�Cñ:ò9��¥ø¦�ö3�a�y£§õ
�3ò9��£lö3�� §����«­¥�¬�«§ö3�a�]�U£§õ,�^ûU��ò9���3ò���ö:¦v£§¬A�!ö:«��3��£§�v�øó��3£
����ó/�aö/�
«C�9£�¦�� �}«§ó��3ò9�
ñ:ò9��¥�¦�£­õ8«§�9£­��ò9�!ö��9£�¦����x¡�«­��¦c²s«��l�.«­��¯
ñ:ò9��¥ø¦vô��hñ�£l²v�L�3ò9�Lñ:ò9��¥ø¦³£­õ �^û�ùu��±9�v�3ò9�.ñ�£ló/��óU£§õ�«­¥�¥��3ò9�hó/�
�a¦����L£§¬A�!ö:«�����£l��ó��3£I�§ûÐ��ò9�
ó3²s«­¥�¥��aö��3ò9�
��ö3�a�F�h¦����ª¦���ó/��«§��ñ��
ô��!�Ã¤��a�!�~��ò9�C�Ã¤�£�£l�l��£§¥�£§ l���hó!¡��3ò9�©ò9�� lò9�!öª�3ò9�a��ö
ó3��²³��¥�«§ö3���Ã¯§û
°��a«l¦��!ö:ó�ñ!«§�jö���õè�aö��3£Áþ�������õè£§ö���ò9�C¦��!��«­��¥øó�£­õU�3ò��
�3ö��!�
�a¦9���
¦���ó/��«§��ñ��lû
���mì + � ·��åï�·�¶aðm� î � î ¶�*8� # �+� � � ·9¶a·��m� & � � �o·9ð î
�8«§ô9¥��V�xó/ò�£�¤Ló���ò9�~ö��aó3ü9¥��:ó³£­õ
¦���ó�ñ�£�ýl�!ö����� Á�����øóÃ������ uñ!£§��÷
ñ��!¬9��ó8�����3ò9���9�!¤7ü9��ó3�!�!�©ó/���3�lû���ò9��±�ö:óÃ�Uñ�£§¥�ü9²³�©ó3ò9£�¤Ló��3ò9�
ùx�aôoó/���3�hó � ó3£§ü�ö�ñ!�³ó3���3�aó �Fõèö�£§² ¤�ò9��ñ:òã��ò9�c£l�l��£§¥�£§ l���hó
«­ö��

 l��ýl�!��û©��ò9�v±�ö�ó/�
ö3£�¤Qó/ò9£�¤Lóª�3ò��vùu�!ôÿó3�����aó � ���!¤Þü9��ó3�!�!�
ó3���3�aó �+�3£F¤�ò9�øñ:ò���ò9��£§�]�3£l¥�£l §���aó�«­ö���«§¦�«­¬����a¦IûN�9£lö��!�9«­²³¬9¥��§¡
��ò9�sö�£�¤ ¥�«§ô��a¥��h¦u¤�����ò � �vö���õè�aö�ó.��£[�3ò9�có3���
£­õ��!�� §ò]�
ö�ü9��ó
¤�ò��!ö��C�3ò��©£l�l��£§¥�£§ l¯cõèö�£§² � �©��ó.ö3�!±��9�h¦~�3£j«§¦9«§¬��ª��£ � �³÷
� �9ûN��«§ñ:òvñ��a¥�¥9���s�8«§ô9¥��t�ª�øóÐ¦���ý���¦9�a¦v���]��£.�Ã¤�£
ó/ü�ô�÷Éñ!£§¥�ü9²³��ó
ö��!¬�ö3�hó/�a�l������ ���ò9��¬�ö3�hñ��øó/��£§�
«­��¦
ö3�hñ!«­¥�¥­£§õ�¦9��ó�ñ�£�ýl�!ö����9 ��!���øó/�/÷
���9 jñ�£§��ñ��!¬9��óFö3�hó/¬A�añ��3��ý§�a¥�¯lû ® ü�ö.²³����ò9£�¦Á«lñ:ò9���aý§�hóª«yý§�!ö�¯
ó�«�����ó/õå«§ñ��3£lö3¯c¬A�!ö3õè£§ö�²s«­��ñ!�§û$}Ö�~²³£]óÃ�L£§õ���ò9�Cö�ü9��óa¡��3ò��C¬9ö���÷
ñ!��ó3��£§�ÿ«­��¦ãö��aña«­¥�¥�«§ö3�c«§ô�£�ýl� �5����û~��ò9�øó�ó3ò9£�¤Ló
��ò�«���£lü9ö
õèö:«­²³�a¤�£löc�Cña«­�s�:�S�añ��3��ý§�a¥�¯v¦���ó�ñ�£�ýl�!öU��ò9�L�����øóÃ������ Cñ�£§��ñ��!¬9��ó
���j�3ò9�
���!¤%ü���ó/�a�!�~ó3�����§û
��«­ô9¥�� �uó3ò9£�¤Ló
��ò9�yö��aó3ü9¥���ó©£­õª¦��øó�ñ�£�ý§�aö3���9 }���!¤ ñ�£l��÷

ñ!�!¬��:ó
���x�3ò��v���!¤1ü���ó/�a�!�ãó/���3�³ô�¯Á«l¦9«­¬������� ���ò9�³£§�]�3£l¥�£l §¯
õèö�£§² �3ò9�ªó3£§ü�ö�ñ!��ùu�!ôsó3������ü�ó3���9
£lü9öUõèö:«­²³�!¤�£§ö��Sû+��ò9��õè£§ö3÷
²s«­��£§õ+��ò9�
��«§ô9¥��
�øó�ó/��²³��¥ø«­ö���£v�3ò�«­�L£­õ���«­ô�¥�� ��ûv��«§ñ:ò[ñ��!¥�¥
���Û��«­ô�¥��I�Á�øós¦���ý���¦��h¦7���]�3£x�Ã¤�£uó/ü�ô�÷Éñ!£§¥�ü9²³��óvö3�a¬9ö��aó3�!�]�/÷
���9 ©�3ò9�F¬9ö��añ!��ó3��£l��«­��¦cö��añ!«§¥�¥A£­õ�¦���ó�ñ�£�ýl�!ö����� C�9�!¤>ñ�£§��ñ��!¬9��ó
ö��aó3¬A�añK����ýl�!¥�¯§û � £§²³�Ð£­õ���ò9��ñ!�!¥�¥�ó+ò�«bý§�Ð«Lýb«§¥�ü��Ð£­õ � � � ¨L��ôA��÷
ña«­ü�ó3���3ò9�aö3�ª��ó^��£C�9�!¤ ñ�£l��ñ��a¬������v�3ò9�Lü���ó/�a�!�sü9��ó/�a�!�só/���3�lû
��ò��Cö3�hó/ü�¥��:óLó/ò�£�¤>��ò�«��.£§ü9ö�õèö:«­²³�a¤�£löc�jñ!«­�~¦��øó�ñ�£�ý§�aöL�9�a¤
ñ!£§��ñ!�!¬��:ó����~²v£]óÃ�.£­õU�3ò9���9�!¤ ó3�����aóaû-�ª£�¤��aý§�!öh¡�ó3£§²³�
ö�ü9��ó
ó3ü�ñ:òú«§ó©�3ò9�j£§���j¦��øó�ñ�£�ý§�aö3���9 x�9�!¤$ñ!£§��ñ!�!¬��:óv��� � �xü�ó/���9
��ò9�ª£l�]�3£§¥�£§ l¯Cõèö�£§² � �Cò�«bý§�L¥��aó�ó�ó3«­�3�øóÃõå«lñK�3£lö3¯©ö3�hó/ü�¥��:ó!û^��ò9�
ö��a«ló/£l�}�øóF�3ò�«­��ó/£l²v�³£§õ��3ò��cñ�£§��ñ��!¬9��ó
«­ö��³�9£­�C«§ó�ó3£�ñ!��«­�3�h¦
¤����3ò©ò9�a«l¦��!öU¥ø«­ôA�!¥øóU«­��¦�ò9�!��ñ!����ò9���9�!¤Ûñ�£§��ñ��!¬9�Uña«­�9�9£§��ôA�
¥ø«­ôA�!¥��a¦�û �ª�!ýl�!ö3�3ò9�a¥��hó3óa¡I£§ü9öFõèö:«­²³�!¤�£§ö��}ñ!«§�uó/�3��¥�¥^��¦��a�]�3��õè¯
��ò9�j�3�!�]�sõèö:«­ l²³�!�]��óvö��! l«§ö�¦9���9 Á�3ò9�~ñ!£§�]�3�a�l�s£§õ.�9�a¤�ñ�£l��÷
ñ!�!¬��:ó.«§��¦~ü�ó3�!ö:óªña«­�}²s«§�]ü�«­¥�¥�¯j���]���!ö�¬9ö3�!�ª��ò9��²³�a«§�9���9 �£§õ
��ò9�
�9�a¤qñ!£§��ñ!�!¬��:ó!û �ª£�¤��aý§�aöa¡�¤��
ñ!£§��ó3�ø¦��!ö���ò�«��ª����õå«­��¥øó��3£
¦9��ó�ñ�£�ýl�!ö��3ò9�hó/�
�9�a¤qñ!£§��ñ!�!¬��:ó����[£lü9ö�����¬��aö3��²³�!�]��óaû
��«­ô9¥��y|jó/ò�£�¤Ló��3ò���ö��aó3ü9¥��:óª£§õ�ñ�£l²v¬�«­ö����9 ³��ò9�vö3�!±��9�a¦

£l�]�3£§¥�£§ l¯C¤����3ò³�3ò��ª²s«­��ü�«§¥�¥�¯©ñ!£§��ó/�3ö�ü�ñK���a¦³£l�l��£§¥�£§ l¯C���³��ò9�
���!¤1ü���ó/�a�!�ãó/���3�lûc��ò9�võè£§ö�²s«��
£­õ��3ò9�³�:«­ô9¥��³��ó
ó3��²³��¥�«§ö
�3£
��ò�«��c£§õF��«­ô9¥�� ��û ��«§ñ:ò ñ��!¥�¥L�����8«§ô9¥��I|ã�øóc¦���ý]�ø¦��h¦Û���]�3£
�Ã¤�£
ó/ü�ô�÷Éñ!£§¥�ü9²³��ó^ö��!¬9ö��aó3�!�]�����9 .�3ò��L�a¦�����¦��øó/��«­��ñ���ôA���Ã¤��!�!�
��ò9�ª«l¦9«­¬����a¦³£l�l��£§¥�£§ l¯�«­��¦v��ò9�L²s«­��ü�«§¥�¥�¯³ñ�£§��óÃ��ö3ü�ñ��3�h¦©£l��÷
��£§¥�£§ l���hó ��� �F«­��¦[�3ò9�³�h¦����
¦��øóÃ�:«­��ñ!�©ôA���Ã¤��!�a�}��ò9�v«l¦9«­¬9�3�a¦
£l�]�3£§¥�£§ l¯u«§��¦ã��ò9�y²s«§�]ü�«­¥�¥�¯ÿñ�£l��ó/�3ö�ü�ñK���a¦o£l�]�3£§¥�£§ l¯§¡U�9£lö/÷
²s«§¥��B�!�h¦³ô]¯©�3ò����3£§��«­¥���ü9²�ôA�!ö�£­õ�ñ�£l��ñ��a¬���ó ��� Q ��û �L£­�����3ò�«��
��ò9�
ó/²s«§¥�¥��!ö��3ò��
¦9��ó/��«§��ñ��l¡��3ò9�
ôA���/���!öL�øó��3ò9�
¬A�!ö3õè£§ö�²s«­��ñ!�§û
��ò��Lö3�hó/ü�¥��:ó^����¦���ña«������3ò�«­��£§ü�öÐõèö:«­²³�!¤�£§ö���«§ñ:ò����aý§�aó^«Cý§�!ö�¯
ó�«�����ó/õå«§ñ��3£lö3¯©ö3�hó/ü9¥�������ö���±��9���� C�3ò��Fó/�3ö�ü�ñK��ü9ö��ª£­õI��ò9�F£§�]�3£l¥�÷
£l §¯lû }Ö�ú²v£]óÃ�cña«§ó3�aóa¡Ð�3ò��j�aö3ö�£§ö:óv«­ö��y²s«­���9¥�¯7¦�ü9�j��£x��ò9�

307

��B ��� ��� ��� ��� ��� ��	 ��
 ���
�
 �
 �
 �
 �
 �
 �
 �
 �

��B � � B�� ��� B�� ��� ��� ��	���� ��	 ����������� B�� ������� ��� B�� ��� B�� ��� B�� ������� ��	 ���
������
�� B�� ��� B�� ���
��� B�� ��� B�� ��� � � ��� ��	���� ��	 ����������� ��� ������� ��� B�� ������� ��	 B�� ������� ��� ��� ������� ��� B�� ��� B�� ���
��� B�� ��� B�� ��� B�� ��� B�� ��� � � ����������� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ���
��� B�� ��� B�� ��� B�� ��� B�� ��� ���
������ 	�� � � B�� ������� ��� B�� ������� ��	 B�� ������� ��� ��� ������� ��� B�� ������� ��	
��� B�� ��� B�� ��� ����������� B�� ������� ��� ����������� � � B�� ������� ��� B�� ������� ��� ��� ������� ��� B�� ������� ��	
��� B�� ��� B�� ��� ��� ��� B�� ��� B�� ��� B�� ��� ����������� B�� ��� B�� ��� � � B�� ��� B�� ��� ����������� B�� ��� B�� ���
��	 B�� ��� B�� ��� B�� ��� B�� ��� ����������� ����������� B�� ��� B�� ��� ����������� � � ����������� B�� ��� B�� ���
��
 B�� ��� B�� ��� ��� ��� B�� ��� B�� ������� ��� ����������� B�� ������� ��� ��� ������� ��� B�� ������� ��� � � B�� ��� B�� ���
��� B�� ��� B�� ��� B�� ��� B�� ��� ��� ������� ��� ����������� B�� ������� ��� ��� ������� ��� ��� ������� ��� ���
������ ��	 � �

�8«§ô9¥����6s \m�)�8@B� �(C�34.�'&���4@X� 7��]� .:/"� <,� >4=-�"� �
.��&CA�&.?/2@B�"34CA�_��� �"!v� .A#�*,%('&�cU:�&�"*,.�>v.��&� '&� .�'&�&1�/"%�*,.0/"���G.��_�~7�.�%(�)�&.A%(* /"��*,.-/(���G+5�?� !-')3�/"34<,� >
#�� C�34*,. r \�34.�# ���"�_@��)��/(� 1��(�)'&*,%(*,� .F34.�#L�"�&')34<,<�@�� �G#�*,%"'&�cU:�&�"*,.�>-/"���v.��_� '&� .�'&�&1�/(%J*,.�/"��� .��&�V7�.�%"�&�&.F%"* /(�v�"�&%(15�&'_/(* U:�)< = r

��B ��� ��� ��� ��� ��� ��	 ��
 ���
� �
	 � �
	 � �
	 � �
	 � �
	 � �
	 � �
	 � �
	 � �
	

��B � � ��� ������� ��� ��� ������� ��� ��� ������� ��� ��� ������� ��� ��� ������� ��� ��� ������� ��
 ��� ������� ��� ��� ������� ���
��� ��� ������� ��� � � ��� ������� ��� ��� ������� ��� ��� ������� ��	 ��� ������� ��
 ��� ������� ��� ��� ������� ��� B�� ������� B �
��� ��� ������� ��� ��� ������� ��� � � ��� ������� ��� ��� ������� ��� ��� ������� ��
 ��� ������� ��� ��� ������� ��� B�� ������� B �
��� ��� ������� ��� ��� ������� ��� ��� ������� ��� � � ��� ������� ��� ��� ������� ��
 ��� ������� ��
 ��� ������� ��� B�� ������� B �
��� ��� ������� ��� ��� ������� ��� ��� ������� ��
 B�� ������� ��� � � ��� ������� ��
 ��� ������� ��
 ��� ������� ��� ��� ������� ���
��� ��� ������� ��� ��� ������� ��� � � ������� ��� ��� ������� ��� ��� ������� ��� � � ��� ������� ��
 B�� ������� B�	 B�� ������� B �
��	 ��� ������� ��� ��� ������� ��� ��� ������� ��
 B�� ������� ��� ��� ������� ��	 � � ������� ��� � � ��� ������� ��� ��� ������� ���
��
 ��� ������� ��� ��� ������� ��� � � ������� ��� ��� ������� ��� ��� ������� ��	 ��� ������� ��� ��� ������� ��� � � ��� ������� ���
��� ��� ������� ��� ��� ������� ��� ��� ������� ��
 B�� ������� ��� ��� ������� 	 B ��� ������� 	�� ��� ������� ��� ��� ������� ��� � �

�8«§ô9¥��F|2s \m�&�(@�� �"C�34.�')�J�4@m� 7���� .?/(� <,� >4= �(� �
.��&CA�&.?/�@��934CA�_��� �"!-� . �"� �
.�*,.�>0/(���$%(/(�"7�'_/(7��"�v�4@x/(���v� .:/"� <,� >4=L*,.�/"���v+��?� !L')3�/"34<,� >A#�� C�34*,. r
� �(�_@B�&�"%6/"�$/(���J/(�"�&�J�&#�* /�#�*,%(/"34.�'&�N+��&/��M�)�&.�/"���J�"� �
.��)#t� .:/"� <,� >4=t34.�#A/(���JC�34.?7
34<,< =-')� .�%(/(�"7�'_/(�)#t� .:/"� <,� >4=�*,.A/(���J.��_��7�.�%"�&�&.t%"* /(� r � K �"�_@��&�"%
/(�F/(���t/(�"�&���&#�* /0#�*,%(/"34.�'&�L+��_/����&�&.R/"���L�(� ��.��&#R� .?/(� <,� >4=�34.�#R/"����C�34.?7
34<,< =y'&� .�%(/(�"7�'_/(�&#~� .:/(� <,� >4=R.�� �(C�34<,* �)�&#�+?=y/"����/(�4/"34<G.?7�C0+5�&� �4@
'&� .�'&�&1�/J*,.t/(���v.��_� 7�.�%(�)�&.L%"* /(� r ZB`a�4/(�v/"�
3�/G/(���$%"C�34<,<,�&�]/(���$#�*,%(/"34.�'&� W�/"��� +��_/8/"�&�J*,%�/(���v1��&�(@�� �"C�34.�'&� r p

��B�� ��B B ��B�� ��B�� ��B �
�
 �
 �
 �
 �

��B � � � B�� ��� ���
�� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ���
��B%B B�� ��� B�� ��� � � B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ���
��B � B�� ��� B�� ��� B�� ��� ��� ��� � � B�� ��� B�� ��� B�� ��� ���
��
��B � B�� ��� B�� ��� B�� ��� ��� ��� B�� ��� � � B�� ��� B�� ��� ���
��
��B � B�� ��� B�� ��� B�� ��� ��� ��� B�� ��� B�� ��� B�� ��� B�� ��� � �

�8«§ô9¥�� �xs \m�&�(@�� �"C�34.�'&�A�4@a� 7��-� .:/"� <,� >4=R�"� �
.��&CA�&.?/ @��934CA�_��� �"!
� . #�*,%"'&�)U:�)�(*,.�>R�_uz*,%(/(*,.�>R'&� .�'&�&1�/"% *,. /(���P.��_��7�.�%(�)�&.I%(* /"�P*,.~/"���
#�*,> * /934<�')34CA�&�93P%"1��&'&* �
')3�/"*,� . #�� C�34*,. r \ 34.�#��-�(�&@��&�0/(��1��"�&'&*,%"*,� .
34.�#t�(�&'c34<,<
@�� �M#�*,%(')�)U:�&�"*,.�>v/(���N�_u�*,%8/"*,.�>0'&� .�'&�&1�/(%G*,. /(���N.��&� 7�.�%(�&�).
%(* /"�v�(�&%"1��&'&/(* U:�&< = r
ü9��¦��øó3ñ!£�ý§�aö3�h¦�ñ�£l��ñ��a¬���ó����j�3ò9�
¬�ö3�aý]��£§ü�ó�ó/��«§ §�lû

��B�� ��B B ��B�� ��B�� ��B �
�
 �
 �
 �
 �

��B � � � B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� ��� 	��
��B%B B�� ��� B�� ��� � � B�� ��� B�� ��� B�� ��� B�� ��� B�� ��� ��� ���
��B � B�� ��� B�� ��� B�� ��� ��� 	�� � � B�� ��� B�� ��� B�� ��� ��� 	�

��B � B�� ��� B�� ��� B�� ��� ���
wB B�� ��� � � B�� ��� B�� ��� ��� 	uB
��B � B�� ��� B�� ��� B�� ��� ��� 	�� B�� ��� B�� ��� B�� ��� B�� ��� � �

�8«§ô9¥���	6s \m�)�8@B� �(C�34.�'&���4@X� 7��]� .:/"� <,� >4=-�"� �
.��&CA�&.?/2@B�"34CA�_��� �"!v� .
#�*,%"'&�cU:�&�"*,.�>R.��_� '&� .�'&�&1�/"%L*,.~/(���P.��_��7�.�%"�&�&.�%"* /(�P*,. /"���P#�*,> * /934<
')34CA�&�93~%"1��&'&* �
')3�/"*,� . #�� C�34*,. r \ 34.�# �y�(�_@B�&�F/(�I1��"�&'&*,%"*,� . 34.�#
�(�&'c34<,<G@B� ��#�*,%('&�cU:�&�"*,.�>R/(���P.��_��'&� .�'&�&1�/(%F*,. /(���P.��_� 7�.�%(�)�&. %"* /(�
�(�&%"1��&'&/(* U:�&< = r

��� � + � ·��åï�·�¶aðm� î � î ¶�*8� � ð & ðå¶a·�� � ·��o�]��· � (��¸§ð �
�
¸§·�¶hðå� î � � �o·9ð î ùu��ñ!£§��¦9ü�ñK���a¦©����¬��aö3��²³�!�]��óU���©�3ò9��¦��� ­÷
���:«­¥Ðñ!«§²³�!ö:«yó3¬��hñ���±�ñ!«­�3��£§�ã¦�£§²s«§���uó/��²³��¥ø«­ö
��£y��ò9�³����¬A�!ö���÷
²v�a�]��ó³¦��aó�ñ�ö���ô��h¦7��� � �añK����£l� ��û��lû BL�9¥��B�§�j�3ò9�[ôA£�£5�oñ!«­�/÷
«­¥�£§ ~¦�£§²s«§����¡8���ã¤�ò9�øñ:òã²³£ló/�C£­õ��3ò9�cùu�!ôã¬�«§ §�hó
ñ�£§�]�:«­���
²v£lö3�ª�3ò�«§�y£l�9�Fô�£�£5�sö��añ!£§ö:¦9óa¡l�h«§ñ:ò�ùu�!ôy¬�«­ l�.���y�3ò9�øó�¦�£­÷
²³«§���[ñ�£l�]��«­����ó�£l�9¥�¯�£§�9�
ö��añ�£lö�¦y«­��¦y�a«lñ:òyö��añ!£§ö:¦�ñ!£§��ó3��ó/��ó
£­õ^²³£§ö��
�3ò�«§�[�3ò9��ö/�Ã¯[ñ�£l��ñ��a¬���óaû��8«§ô9¥��aó��c«­��¦I	có3ò9£�¤>�3ò9�
ö3�hó/ü9¥���ó�£­õ�¦��øó�ñ�£�ý§�aö3���9 ÿ�!���øó/�3���9 7ñ�£l��ñ��a¬���ój«­��¦ �9�!¤ ñ!£§��÷
ñ��!¬9��óC���ã�3ò��c�9�!¤Þü9��ó3�!�a�oó/���3��ö3�hó/¬A�añ��3��ý§�!¥�¯§ûj��ò9�sõè£lö3²s«��

��B�� ��B%B ��B � ��B � � B �
� �
	 � �
	 � �
	 � �
	 � �
	

� B � � � ��� ��� ��� ��
 ��� ��� ��� ��� ��� ��� ��� B��
�� ��� ��� B B
� B%B ��� ��� ��� ��� � � ��� ��� ��� ���
�� ��� ��� B�� B���� ��� ��� ���
� B � ��� ��� ��� ��� ��� ��� ��� ��� � � ��� ��� ��� B�� B���� ��� ��� B �
� B � ��� ��� ��� ��� 	�� ��� ��� B�� ��� ��� ��� ��� � � B���� ��� ��� B�

� B � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� B�� � �

��«­ô�¥�� ��s \m�&�(@�� �"C�34.�'&�A�4@a� 7��-� .:/(� <,� >4=R�"� �
.��)CA�&.:/-@��934CA�_��� �(!
� . �(� ��.�*,.�>�/(���P%8/"�(7�'_/"7��(�P�4@N/(���P� .?/(� <,� >4= *,. /(���P#�*,> * /"34<J')34CA�&�93
%"1��&')* ��'c3�/(*,� .�#�� C�34*,. r � �(�_@B�&�"%$/(�F/"���A/(�"�&���&#�* /-#�*,%(/"34.�'&�L+��_/����&�&.
/"��� �"� �
.��&#~� .?/(� <,� >4=I34.�#~/(���FC�34.?7
34<,< =�'&� .�%8/"�(7�'_/"�&#I� .:/"� <,� >4=~*,.
/"���A.��&� 7�.�%"�&�&.R%"* /(� r � K �"�_@B�&�(%$/(� /(���A/"�(�&�A�)#�* /-#�*,%8/934.�')��+��_/����&�&.
/"��� �"� �
.��)#�� .:/"� <,� >4= 34.�# /"��� C�34.?7
34<,< = ')� .�%(/(�"7�'_/(�)# � .:/"� <,� >4=
.�� �"C�34<,* �&�&# +?= /(���P/"�4/"34<N.?7�C-+��&���4@$')� .�')�&1�/ *,.~/(���P.��_��7�.�%"�&�&.
%"* /(� r Zq`G�4/"�~/"��3�/R/"����%"C�34<,<,�&� /"��� #�*,%8/934.�')� W�/(����+��_/(/(�&��*,%�/(���
15�&�8@B� �(C�34.�'&� r p
£§õ.��ò9�[��«§ô9¥��aós«­ö��j�3ò9�xó3«§²v�~«lóv�3ò�«­�c£­õ
�8«§ô9¥��hó~�u«­��¦ �
ö��aó3¬A�añK����ýl�!¥�¯§û ® ü�öLõèö:«­²³�!¤�£§ö��j«lñ:ò9���!ý§�hóL«cýl�!ö�¯y l£�£�¦[¬A�!ö3÷
õè£lö3²s«§��ñ��³���o¦���ó�ñ�£�ýl�!ö����� jñ!£§��ñ!�!¬��:ó
���ã��ò9�øó�¦�£l²³«§���+ûy��ò9�
²s«§���oö��a«ló/£l�ÿ��ó©��ò�«��v�3ò9�[¦9«­��«Á«§ö3��£§ö� l«­�����a�a¦ã���Û«}²³£lö3�
ö��� §�ø¦o�:«­ô9¥��[õè£§ö�²s«��s���ú��ò9�~ùx�aô ¬�«­ l�aós«­��¦ú«§¥�¥���ò9�}ñ�£l��÷
ñ!�!¬��:óªò�«bý§�
��ò9�!��ö.ò��a«§¦9�!öª¥ø«­ôA�!¥øóaû ® ü9öªõèö�«§²v�a¤�£löc�jñ!«§�}����÷
¬�¥�£l���só/ü�ñ:ò ������¦7£­õªö��! lü9¥ø«­ö����Ã¯x�3£ã¦��øó3ñ!£�ý§�!ö��3ò9�[ñ�£l��ñ��a¬���óaû
��«­ô�¥�� �só3ò9£�¤Ló���ò9�©ö��aó3ü9¥���ó.£­õ�ñ!£§²³¬�«§ö3���9 s��ò9�©ö���±��9�a¦~£l��÷
��£§¥�£§ l¯u¤����3ò7�3ò9�[²s«­��ü�«§¥�¥�¯oñ�£l��ó/�3ö�ü�ñK���a¦ÿ£l�l��£§¥�£§ l¯u���o��ò9�
���!¤ ü9��ó/�a�!�Ûó3���3�§ûo��ò��yõè£lö3²s«­�©£­õª�3ò9�øóv��«§ô9¥��j�øóvó�«­²³�j«§ó
��ò�«��
��«­ô9¥���|�û
��ò9�©ö��aó3ü9¥���óF����¦��øñ!«�������ò�«��
£§ü�ö.õèö:«­²³�a¤�£löc�
«lñ:ò9���!ý§�hó^«
ý§�aö3¯©¬9ö�£§²³��ó3���9
ö3�hó/ü�¥������s£§�]��£§¥�£§ §¯©ö3�!±��9�a²v�a�]�aû
��ò��.ò9�h«§¦��aö�¥ø«­ôA�!¥øó�«­��¦s�3ò��.ý��øó/ü�«§¥S¥�«b¯l£§ü���£­õ���ò9�
ñ�£§��ñ��!¬9��ó
¬�ö3£�ý��ø¦��³ý§�!ö�¯}ü�ó3��õèü�¥Ð���9õè£§ö�²³«­�3��£§�u�3£~ö���±��9�³�3ò9�s£l�]�3£§¥�£§ l¯§û
��£§öL�!�9«­²³¬9¥��§¡��3ò9�Cò��a«§¦9�!öª¥ø«­ôA�!¥øó ��� �-�Q�~£§�9���3£lö���¡ ��� �-�

������a¥�ó��9¡�«§��¦ ��� �-� ��£�ýl�!ö:«­ l�z�©��� � �z�³����¦��øñ!«����C��ò9��ö��!¥ø«�÷
����£l��ó3ò9��¬v£­õA�3ò�����ò9ö��!�Lñ�£l��ñ��a¬���óaû8��ò��aó3����ò9ö��!�Lñ�£l��ñ��a¬���ó^«§ö3�
«§¥�ó3£c¥�£�ñ!«����a¦[���}��ò9ö3�a��ñ�£l��ó3�añ�ü9�3��ý§��ö�£�¤Lóaû ® ü9öªõèö:«­²³�a¤�£löc�
ña«­�j�:�S�añ��3��ý§�!¥�¯cö���±����
�3ò9�
£l�l��£§¥�£§ l¯©õèö�£§² �3ò9�hó/�Cñ!¥�ü9�hó!û

308

� � � î ¸ �åï��aðm� î �©· î � �8ï+¶hï+��� �Q�����
ùx�ÿò�«býl�u¦9�!ý§�a¥�£l¬��h¦>«ú¬9ö�£§ô�«­ô9��¥��øó/�3�øñ}õèö:«­²³�!¤�£§ö�� õè£§ö~ö���÷
±��9���9 u«§�7�!���øó/�3���9 Á£l�l��£§¥�£§ l¯Áõèö�£§² «uó/£lü9ö:ñ��cùu�!ô ó/���3�y�3£
�9�!¤ ü���ó/�a�!� ó/���3�hó!û � �!ýl�!ö:«­¥�ñ�¥�ü9�aó³«­ö��yñ!£§��ó3�ø¦��!ö��a¦7���ú£§ü9ö
õèö�«§²v�a¤�£löc�Sû^��ò9�
±�ö�ó/�ªñ�¥�ü9�
�øó��3ò9�
�������Lõèö:«­ l²v�a�]��ó�ö��! l«§ö�¦�÷
���9 c�3ò9�vñ�£§�]���!�]�ª£­õU��ò9�©ñ!£§��ñ!�!¬��:óL������ö�«lñK�3�h¦[���[��ò9�©ó3£§ü�ö�ñ!�
ùx�aô%ó/���3�lûÞ��ò��xó3�añ�£l��¦�ñ�¥�ü9�u��ó��3ò��}�3�!���yõèö:«­ l²v�a�]��ócö���÷
 l«­ö:¦����9 x�3ò9�~ò9�h«§¦��aö³¥�«§ô��a¥�ós£§õª��ò9�}ñ�£l��ñ��a¬���óaû���ò9�[�3ò9��ö:¦
ñ�¥�ü9�ª�øóÐ��ò9�Fý]�øó3ü�«­¥�¥�«b¯l£§ü���£§õ��3ò��L�3�!����õèö:«­ l²v�a�]��óÐö��!]«­ö:¦����9
�3ò9�cñ!£§�]�3�a�l�C«§��¦x�3ò9�sò9�h«§¦��aö
¥�«§ô��a¥�ó
£§õ���ò9�cñ�£l��ñ��a¬���óaûc�+£
ñ�£§¬A��¤�����òC�3ò���ü���ñ��aö/�:«­���l�Ã¯
����ý§£§¥�ý§�h¦
���C�3ò��aó3��ñ!¥�ü9�hó!¡�¤���¦���÷
ó/�� §�u«y l�!�9�aö�«­�3��ý§�v²³£�¦9�!¥^ö��!¬9ö��aó3�!�]�3���9 y�3ò9�³ l�!�9�aö�«­�3��£§�Á£§õ
�3������õèö�«§ §²³�!�]��ó�ö3�a l«§ö�¦����9
��ò9�.ñ!£§��ñ!�!¬��:ó�«§��¦v�3ò9�F£§�]��£§¥�£§ §¯
ñ�£§ö�ö��aó3¬�£l��¦����9 j�3£~��ò9��ùu�!ôÿ¬�«§ §�lûjùu�c�a²v¬�¥�£�¯ ��«b¯§�aó3�ø«­�
¥��h«­ö��9���� L�3�hñ:ò9�9�q�]ü9�aó�«­��¦�����¬A�añK�:«�����£l��÷k²s«­����²³���h«�����£l�C«­¥� §£­÷
ö3���3ò9²1�3£�«lñ:ò9���!ý§���3ò��L §£]«­¥kû+ùu�Lò�«bý§��ñ!£§��¦�ü�ñK�3�h¦v�����3�a��ó/��ý§�
����¬��aö3��²³�!�]��ó��3£v¦��!²³£l��óÃ��ö�«­�3����ò9�F¬��aö/õè£lö3²s«­��ñ��L£§õ�£§ü9ö�«­¬�÷
¬9ö3£]«§ñ:ò�û
ùu� ���]�3�!��¦6�3£ �!�]���!��¦ £lü9ö�õèö:«­²³�!¤�£§ö�� ��� ó/�aý§�aö�«§¥

¦���ö��añ��3��£§��óaû ® �9� ¬�£]ó3ó3��ô�¥���¦���ö3�hñK����£l�Q�øóu�3£�����ñ�£lö3¬A£§ö:«����
�3ò9�j¦�£§²s«­��� ���9£�¤�¥��a¦� l�s£­õ��3ò9�yü�ó3�!ö:ó!û � £l²v�!�3��²³�aóa¡^ü�ó/�aö�ó
ò�«bý§�Có3£§²³� ���9£�¤�¥��a¦� l�C«­ôA£§ü��ª�3ò9�C£l�]�3£§¥�£§ l¯yó3ü�ñ:ò}«§óªó/£l²v�
ñ�£§��óÃ��ö�«§���]��óªô��!�Ã¤��a�!�Áñ!£§��ñ!�!¬��:ó!û � ü�ñ:òÁ¦9£§²s«­���V���9£�¤�¥��a¦� l�
��óúü�ó3��õèü9¥[��� ��ò9��ö3�!±��9�!²³�a�l�ú��«ló)�Sû ¨L��£­�3ò��!ö ¬�£]ó3ó3��ô9¥��
¦���ö��añ��3��£§�[�øó��3£s���]�3�! lö�«­�3�
£lü9ö�ö3�!±��9�h¦[£§�]�3£l¥�£l §¯s���l��£s£­��ò9�!ö
«­¬9¬9¥��øñ!«�����£l�Áó3ü�ñ:òÁ«§ó.����õè£§ö�²s«��3��£§�Áö3�!�3ö����aýb«§¥8ó3¯�óÃ���!²só!û
��ò9�
ö3�!±��9�a¦1£§�]�3£l¥�£l §¯q²s«b¯ ñ�£§�]�:«­���1�!ö�ö�£§ö:óÁ«­��¦ �3ò��!ö���õè£§ö��Û«
²v£lö3�
ó3£§¬9ò���ó/�3�øñ!«­�3�a¦j«­¬�¬9ö3£]«§ñ:òc�øó��9�a�a¦��h¦Iû

� � �É�l��� î ¸§���

������� Ù	��½ØÈÃÌCÀaÑ�ßaéyÙKáUÀh»lÀ§ß�
.Ù
��Ï]ÀaÅ ßhéyÙ��UÀ!ÂÃÅÆ½Æ½�¾§ß � Ù���Ïlº:Ñ�ßaÀaÑ]»
�ªÙ
��Ä�º�ÂÃÑlº�ÈÃÏ�Õ�Ù � ÅÆÄ�¾KÍUº:Ä�����Ñ.¾aÑ­ÈÃ¾a½Æ¾hÔaÕ­äåÄ�À!ÇÖºK».ÇÉÕ§ÇÉÈÃº:ÌÛËø¾aÂ
Ê�¾h½Æ½�ÀaÄ�¾aÂ/À�ÈÃÅÆ¼bº^Ì
¾h½Æº:Ê:×l½�À!Â+Ä]ÅÆ¾h½Æ¾aÔaÕ�Ù��������������
�����! �"$#&%��'�(%��
�)�'"+*�,-, #/.0*��'"21'3��4"+*�56�Ãß ��7 æ98aê�� :�;�<>=�:§ß �@?A?�? Ù

� B���C Ù�á�º:º�Ë�º�ÂÃÌCÀaÑ�Ù6D�º�Ó§ÅÆÊKÀa½+»lÅÆÇÖÊ:¾�¼bº3ÂÖÕ³ÍÐÅØÈÃÏ[ÀaÑ�º:Ñ§ÂÃÅ�Ê/Ï]º:»�ÇÖº�ä
ÌCÀ!Ñ�ÈÃÅ�Ê©Ñ]º�ÈmÍU¾!ÂÃÎ9ÙFEkÑHGI��%)*4*4J
#-�>.��K%�LM"ON�*QPR%���S
��N'%�T�%��
U T!TV, #$)�
"$#&%����(%WLMPR%���J�XY*�"�#-��XY�
"$Z[���A,[\]���0.�Z'�	.0*^G^��%)*��)�)_
#O�>.`1�3
�)"+*�5a�4b Udc \�e c^f \g��X6hjiAk!kAlhß �	?�? ;§Ù

� m
� ¹úÙn��¾hÏlº:Ñ�ß�éyÙpo�×lÂÃÇÉÈKß�ÀaÑ]»qD+Ùnrhº�Ñ]ÇÖº:Ñ�Ù(�úÜ�º�Ó§ÅÆÄ]½ÆºL½ÆºKÀ!ÂÃÑ§ä
ÅÆÑlÔ�ÇÉÕlÇÉÈÃº�Ì Ëø¾aÂ8Í^Â/Àa¿l¿]ÅÆÑ]Ô�È/À!Ä]½Æº:Ç8ÀaÑ�»
½ÆÅÆÇÉÈÃÇ+Å�Ñ�o�ÝÐésDs»l¾�Ê�ä
×lÌ
º:Ñ�ÈÃÇ:ÙsEmÑtG^��%)*)*�J�#O�>.��R%�Lu"ON'*��v,/*�w�*��'"ONx�)��"+*��)�V�
"$#&%��V��,
PR%���,yJzP{#&J!*qPs*@| c %��@L	*��4*��p)*3ß�¿�À!Ôhº:Ç B�mAB < B
7'� ß B�}�}!B Ù

� 7�� �LÙ C º�Ì
¿]ÇÉÈÃº�ÂKß6�ªÙ~DAÀaÅØÂ/»9ß
ÀaÑ]» C Ù � ×]ÄlÅÆÑ�Ù<é³À�ÓlÅÆÌ.×]Ì
½ÆÅÆÎbº:½ÆÅÆÏ]¾�¾­»�Ë�ÂÃ¾hÌ ÅÆÑ]Ê�¾hÌ
¿]½Æº�ÈÃº�»]À!È/À.¼§Å�ÀLÈÃÏ]º�º:Ì À!½ÆÔh¾aÂÃÅØÈÃÏlÌ³Ù
�>%
Z[�)�V��,�%�L�"ON�*��^%�3!��,s1�"9��"$#-�4"$#& 4�A,q1p%	 �#9*�"$3�bQ1V*���#&*��Q�^ß
m�? æ � ê�� � < m ;§ß �@? =A=�Ù

� 8 � �LÙ C ¾bÀ!Ñ�ß�rlÙAé³Àh»§Ï�ÀK¼aÀaÑ�ß � Ù C Ï]ÀaÌCÀaÑlÎbº�ÂKß��SÙ C ¾aÌ
Å�ÑlÔh¾aÇ:ß
À!Ñ�»��LÙgo�À!½Æº:¼�Õ�ÙKD�ºKÀ�ÂÃÑ]ÅÆÑ]ÔsÈÃ¾cÌCÀ!ÈÃÊ/Ï[¾hÑ�ÈÃ¾a½�¾aÔhÅÆº:Ç
¾aÑ[ÈÃÏ]º
ÇÖº�ÌCÀaÑ�ÈÃÅÆÊÁÍ�º:Ä�Ù���N'*��V\]�����>%
Z[�)�V��, ß ��B æ 7 ê�� mA}Am < m>�	? ß
B
}A}�m Ù

� : � éyÙ§ç�ÅØÂÃÅÆÑ�ÀaÎ­Å ß]éyÙ[��À!à:ÅÆÔhÅ�ÀaÑlÑ]ÅÆÇ:ßlÀaÑ�»uE3Ù!��À�ÂÃ½�À!Ì
ÅÆÇ:Ù2�lçI¹ÿº	�^�
��ÇÖÅÆÑ]Ô ÇÖÅØÈÃº"ÇÖº:ÌCÀaÑ�ÈÃÅÆÊ:ÇÛÀaÑ�»ÞÀqÈ/À!Ó§¾hÑl¾hÌ.Õ1ÈÃ¾ º:ÑlÏ�ÀaÑlÊ:º
ÈÃÏlº~ÍUº:Ä"¿�º�ÂÃÇÖ¾aÑ�Àa½ÆÅÆàKÀ�ÈÃÅ�¾aÑq¿§ÂÃ¾�Ê:º:ÇÖÇ:Ù�EkÑ�GI��%)*4*4J
#-�>.��H%�L

"ON�*�X�#-�'"ON Udc]� 1[�
h2�~�����)��"+*��)�V�
"$#&%��V��, c %��@L	*��4*��p �*Y%��
�Y�V%��v,/*�J	.0*���#-�� 4%�w�*��)3{���VJ`�d��"9� � #-�'#-�>.aßl¿�À!Ôhº:Ç ?A? < �	} =­ß
B�}A}�m Ù

� = � �.Ù[��×]ÇÖÏlÌ
º�ÂÃÅÆÊ3Î
À!Ñ�»©á�ÙlÝUÏ]¾hÌCÀ!Ç:Ù2��»]À!¿lÈÃÅÆ¼bº�Å�Ñ§Ëø¾!ÂÃÌCÀ!ÈÃÅÆ¾hÑ
º�Ó­ÈÖÂ/ÀaÊ�ÈÃÅÆ¾hÑ��R��¾aÂÃº©ÈÃº�Ê3ÏlÑ]¾h½Æ¾aÔhÅÆº:Ç
Ëø¾!ÂCÅÆÑlËø¾!ÂÃÌCÀ!ÈÃÅÆ¾hÑxÀaÔaº:Ñ�ÈÃÇ:Ù
EkÑ6�)��"+*�,-, #y.0*���"$���)�@L@%��)5���"$#$%�� U .0*��'"$�2�Y�I�H�)�Y�^Z>��%)T'*	� U �
U .0*���"�\�#-�[SdG�*��)�&T'*� �"$#-w�*3ß9¿�À!Ôhº:Ç�= ? < �@}Am ß B
}A}AB Ù

� ; � �ªÙAé³ÀaºK»§Ê3ÏlºhßIá�ÙIév¾!ÈÃÅ�Î�ßSÀaÑ�»�D+Ùg�­ÈÃ¾��ÖÀ!Ñ]¾�¼­Å�ÊaÙ©é³ÀaÑ�À!ÔhÅÆÑ]Ô
ÌF×]½ØÈÃÅÆ¿]½ÆºjÀaÑ�»Û»lÅÆÇÉÈÖÂÃÅÆÄ]×§ÈÃºK»Û¾aÑ­ÈÃ¾a½Æ¾hÔhÅÆº:Çy¾hÑúÈÃÏlº[ÇÖº:ÌCÀ!Ñ­ÈÃÅÆÊ
ÍUº:Ä�ÙY��N�*��p\g�����>%
Z[�)�V��, ß ��B æ 7 ê�� B ;�:�< mA}!B ß B�}A}�m Ù

� ?
� �ªÙSé³ÀaºK»§Ê3Ïlº©À!Ñ�»���Ù���È/ÀhÀ!Ä�Ù Ú Ñ�ÈÃ¾a½�¾aÔaÕj½�º:À!ÂÃÑ]ÅÆÑlÔ³Ëø¾aÂ.ÈÃÏ]º
ÇÖº:ÌCÀaÑ�ÈÃÅÆÊ�ÍUº:Ä�Ù����������)�'"+*�,-, #/.0*��'"^1�3
�)"+*�5a�Ãß � :læ B ê�� = B <>= ? ß
B�}A}>� Ù

���	}
�u� Ù+évÊ	DAÀ!Ê3Ïl½�ÀaÑãÀ!Ñ�»}Ý�Ù���ÂÃÅÆÇÖÏ]Ñ]ÀaÑ�Ùj��N�*�� � U , .!%��)#-"ON>5
���VJa�2¡�"+*��'�4#&%����ÃÙ¢rh¾hÏlÑv¹ÿÅÆ½Æº�Õ{£��§¾hÑlÇ:ß�EmÑ]ÊhÙÆß �	?�? =­Ù

���A���`� Ù(��ÀK¼­ÅÆÔh½ÆÅ ßa�IÙ(�+º:½�À!Â/»§Åèß.À!Ñ�»j�LÙ � ÀaÑ]Ôaº:Ì
Å Ù Ú Ñ�ÈÃ¾h½Æ¾hÔ!Õ
½�º:À!ÂÃÑ]ÅÆÑlÔ
ÀaÑ]»�ÅØÈÃÇ�Àa¿l¿]½ÆÅÆÊKÀ!ÈÃÅÆ¾hÑ©ÈÃ¾
Àa×§ÈÃ¾hÌCÀ�ÈÃºK»CÈÃº3ÂÃÌ
Å�Ñl¾h½Æ¾hÔ!Õ
ÈÖÂ/ÀaÑ]ÇÖ½�À�ÈÃÅ�¾aÑ�Ù �����2�¤�)��"+*�,-, #/.0*��'"R1'3��4"+*�56�Ãß � ;læ � ê�� B�B < m[� ß
B�}A}�m Ù

����B��`C Ù��­Ï�À!ÇÖÏ�ÀÿÀaÑ]»j�
Ù~¥9Ï]ÀaÑ]Ô§Ù�Gv��"$"+*��)� � �
"9)N>#-�>. U , .!%A_
��#-"ON056�ÃÙ Ú Ó§Ë�¾aÂ/»M��Ñ]ÅÆ¼bº3ÂÃÇÖÅÆÈmÕ{��ÂÃº:ÇÖÇ:ß �	?�? =­Ù

���	m
�`� Ù��­ÈÃº:¼bº�Ñ]Ç:ß���Ù � ¾aÄ]½Æºhß2E3Ù]o�¾aÂÖÂÃ¾�Ê/Î­Ç:ß8ÀaÑ�»t��ÙIá�º�Ê3ÏlÏ]¾aË�º�ÂKÙ
Ú E�D�ÅÆÑlÔ�ÈÃÏlº©Í^À:Õ~ÈÃ¾yÌCÀaÊ/Ï]ÅÆÑ]º©×]Ñ�»§º�ÂÃÇÉÈ/ÀaÑ]»]À!Ä]½ÆºvÄlÅ�¾aÅÆÑlËø¾!ÂÖä
ÌCÀ!ÈÃÅÆÊ:Ç�ÂÃº:ÇÖ¾h×§ÂÃÊ:º:Ç:Ù����2���¦�����
�����! �"$#&%��'�M%��z�)�	L@%
��5`��"$#&%��
�n*�)N>�V%A,y%4.�3u#-�R�^#&%�5u*�J�#$ �#-�n*3ß':læ B ê�� ��B�? < �@m�7 ß B
}A}!B Ù

���@7�� ÝUÏ]º � º:Ñlº Ú Ñ�ÈÃ¾a½�¾aÔaÕ§��¾hÑ]ÇÖ¾!ÂÖÈÃÅÆ×]Ì³Ù � º�Ñ]º�¾hÑ�ÈÃ¾a½�¾aÔaÕn�
ÝA¾�¾h½^Ëø¾!Â
ÈÃÏ]º©×]Ñ]ÅØÒ]ÊKÀ!ÈÃÅÆ¾hÑÁ¾aË�Ä]ÅÆ¾h½Æ¾aÔaÕ�Ù¨XY�
"$Z[��*xh(*��n*�"$#& ��Ãß
B 8§æ � ê�� B 8	< B�? ß B�}A}�} Ù

��� 8 �6© ÙÐÝUÅ �Éº3ÂÃÅ�Ñl¾lß C ÙÐç+Ì.Ä]½Æº�Õ�ß C ÙvD�¾hÑlÇÃ»]Àa½Æºhß�ÀaÑ]» � Ùv��ÀaÔ!Õ�Ù
Ú Ñ­ÈÃ¾a½Æ¾hÔaÕ
Ôhº:Ñlº�Â/À!ÈÃÅÆ¾hÑCË�ÂÃ¾aÌ%È/À!Ä]½Æº:Ç:Ù�EmÑRGI��%)*4*�J�#-�0.���%�L�"ON'*
ª]%��)"ONQ�)��"+*��)�V��"$#&%
�V�A, c %��	L@*��4*��V)*t%��¤Ps*@|K�)�	L@%
��5`��"$#&%��
1�3
�)"+*�5a���^�0.�#-�n*4*��)#-�>.aß]¿�À!Ôhº:Ç B
7!B < B
7!? ß B�}�}Am Ù

��� : � �IÙ:¼hÀ!Ñ.»§º�Âg�+º�ÈSÀaÑ�»��ªÙaé³À!ÂÃÇ:ÙIá8¾aÈÖÈÃ¾hÌ
äå×l¿ªÊ�¾hÑ]ÇÉÈÖÂÃ×lÊ�ÈÃÅÆ¾hÑª¾aË
¾hÑ�ÈÃ¾h½Æ¾hÔaÅÆº:Ç:ÙI���2���������������! �"$#$%���%��{�Y�p%��v,/*�J	.0*d�
�VJa�d��"9�
�^�0.�#-�n*4*��)#-�>.aß �	} æ 7 ê�� 8 �	m <[8 B 8­ß �@?A? ;§Ù

��� = � Ý�Ù>D+Ù�¹j¾hÑ]ÔªÀ!Ñ�»
¹ Ù>D�ÀaÌ³Ù��ÿ¿lÂÃ¾aÄ�À!Ä]ÅÆ½ÆÅ�ÇÉÈÃÅÆÊ�Àa¿]¿§ÂÃ¾bÀ!Ê3ÏCËø¾!Â
Àh»]À!¿lÈÃÅÆÑ]Ô
ÅÆÑ§Ëø¾aÂÃÌCÀ�ÈÃÅÆ¾hÑcº�Ó­ÈÖÂ/ÀaÊ�ÈÃÅÆ¾aÑcÍ^Â/À!¿]¿�º�ÂÃÇ�ÀaÑ]»s»lÅÆÇÖÊ:¾�¼�ä
º�ÂÃÅÆÑ]ÔFÑlº�Í7À!ÈÖÈÖÂÃÅÆÄl×lÈÃº:Ç:Ù�EmÑsGI��%)*4*�J�#-�>.��d%WL�"ON�*�«>¬!¬�­R���2���
�)��"+*��)�V��"$#&%
�V�A, c %��@L	*��4*��p)*u%
�K�d�
"9� � #-�'#-�>.aß]¿�ÀaÔaº:Ç B 8A=	<
B : 7 ß B
}A}�7 Ù

��� ; � Ý�ÙID�Ù+¹j¾hÑlÔ~ÀaÑ]»Á¹ Ù2DAÀ!Ì³Ù®�Q¿§ÂÃ¾hÄ]ÀaÄ]ÅÆ½ÆÅÆÇÉÈÃÅÆÊcÀa¿]¿§ÂÃ¾bÀ!Ê3Ï
Ëø¾aÂ�Àa»]Àa¿§ÈÃÅÆÑ]ÔFÍ^Â/À!¿]¿�º�ÂÃÇ�ÀaÑ]»v»§Å�ÇÖÊ�¾!¼hº�ÂÃÅÆÑ]Ô
Ñlº�ÍÛÀ!ÈÖÈÖÂÃÅÆÄ]×§ÈÃº:Ç:Ù
EkÑ¯��N�* c N0#-�n*���*s°��'#-w�*����4#-"$3M%WL(±Y%��0.6�d%��>.�bg�a*+T[�
��"$5�*���"
%�Ld1'3��4"+*�56�~�I�>.�#-�V*)*��)#-�0.s���VJ��I�>.�#O�n*4*���#O�>. � ���p�	.0*�5u*��'"
�n*�)N>��#& 4�A,V�(*+T[%
��" ß B�}A}
7 Ù

���	?
� Ý�ÙdD+Ù�¹j¾hÑ]Ô7À!Ñ�» ¹ ÙYD�ÀaÌ³Ù ÝAº�Ó­È[Ì
ÅÆÑ]ÅÆÑlÔoË�ÂÃ¾hÌ-ÇÖÅÆÈÃº
Å�Ñ­¼aÀ!ÂÃÅ�ÀaÑ�ÈCÀ!Ñ�»x»lº:¿�º:Ñ]»lº:Ñ�È.ËøºKÀ�ÈÃ×lÂÃº:Ç
Ëø¾!Â�Å�Ñ§Ëø¾!ÂÃÌCÀ!ÈÃÅÆ¾hÑxº�Ó­ä
ÈÖÂ/ÀaÊ�ÈÃÅÆ¾hÑ~Î­Ñl¾�ÍÐ½ÆºK»§Ôhº�Àh»lÀa¿§È/À!ÈÃÅÆ¾hÑ�ÙsEkÑ�G^��%	 �*4*�J�#-�0.��{%�Lu"ON'*
«[¬!¬�­�1>� U�� �)��"+*��)�V��"$#$%��V�A, c %
�	L	*���*��V)*�%��K�Y��"9� � #-�'#-�>.
² 1>� � _&«[¬!¬�­A³Kß�¿�À!Ôhº:Ç 7 8@<[8
:§ß B
}A}�7 Ù

� B�}
� ¹ÿ¾aÂÃ½�»v¹ÿÅ�»lº�¹ÿº�ÄK��¾hÑ]ÇÖ¾!ÂÖÈÃÅÆ×]Ì$æø¹ m �^ê3Ù��­º:ÌCÀaÑ�ÈÃÅÆÊ�ÍUº:Ä�Ù
EkÑ�N0"$"�T�� e!e������¢´/��µ>´O%��$.�e�«[¬!¬Ai�e��4��e]ß B�}�}[� Ù

309

Exploiting Parameter Related Domain Knowledge for Learning in

Graphical Models

Radu S. Niculescu and Tom M. Mitchell
Dept of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{stefann,tom.mitchell}@cs.cmu.edu

R. Bharat Rao
Clinical CAD

Siemens Medical Solutions
Malvern, PA 19355

bharat.rao@siemens.com

Abstract

Building accurate models from a small amount of available

training data can sometimes prove to be a great challenge.

Expert domain knowledge can often be used to alleviate this

burden. Parameter Sharing is one such important form of

domain knowledge. Graphical models like HMMs, DBNs

and Module Networks use different forms of Parameter Shar-

ing to reduce the variance in the parameter estimates. The

goal of this paper is to present a theoretical approach for

learning in presence of several other types of Parameter Re-

lated Domain Knowledge that go beyond the ones in the

above models. First, we introduce a General Parameter

Sharing Framework that describes the models just men-

tioned, but allows for much finer grained parameter sharing

assumptions. In this framework, we present sound proce-

dures for parameter learning from both a Frequentist and a

Bayesian point of view, from both complete and incomplete

data, in the case where a domain expert specifies in ad-

vance the structure of the graphical model, and the subsets

of parameters to be shared. Second, we describe a hierarchi-

cal extension of this framework based on Parameter Shar-

ing Trees. Finally we present algorithms for using domain

knowledge that specifies that certain groups of parameters

share certain properties. In particular, we consider two kinds

of constraints: first kind states certain groups of parameters

share the same aggregate probability mass and second kind

states the ratio of the parameters is preserved (shared) in

several groups. As an example, we derive a novel form of

parameter sharing for Bayesian Multinetworks.

1 Introduction

The task of learning models for many real-world prob-
lems requires researchers to incorporate problem Do-
main Knowledge into the learning algorithm – there is
rarely enough training data to enable the learning of
the structures and underlying relationships in the prob-
lem. Domain Knowledge comes in many forms: Domain
Knowledge about relevance of variables, also called Fea-

ture Selection, can help us ignore certain variables when
building our model. Domain Knowledge specifying con-
ditional independencies among variables can guide our
search over possible model structures. Both these forms
have been extensively studied.

This paper presents a theoretical approach for in-
corporating a different kind of knowledge into learning:
Domain Knowledge about relationships among parame-
ters, specifically knowledge about sharing properties of
groups of parameters across several conditional proba-
bility distributions (CPDs) in graphical models param-
eterized by conditional probability tables(CPTs). It is
somewhat obvious that leveraging such information can
greatly benefit learning, as proved by graphical models
like HMMs, DBNs and Module Networks. For instance,
if a parameter is shared across multiple subproblems,
the variance in the estimates can be reduced by learn-
ing from all the relevant data from the subproblems, as
opposed to estimating the parameter independently for
each subproblem.

In Section 3, we describe a General Parameter Shar-
ing Framework for making very fine-grained parameter
sharing assumptions that go beyond the ones specified
in the above mentioned models, and present sound algo-
rithms for learning, in many different scenarios. In this
framework, the CPDs in the model are partitioned and
a parameter can either be shared among all CPDs in a
subset or not shared at all. Some formal guarantees are
provided about the derived estimators. We also discuss
a scoring metric for comparing different sets of sharing
assumptions and suggest how this metric can be used
for automatically recovering relevant parameter shar-
ing, provided that the expert does specify only a lim-
ited amount of domain knowledge. Section 4 describes a
hierarchical extension of the previous framework, where
we allow some parameters to be shared across all CPDs,
then partition recursively the set of CPDs, allowing new
parameters to be shared among subsets (of CPDs) of the

310

partition. In section 5 we discuss further extensions that
investigate sharing properties of groups of more than
one parameter across several CPDs. In particular, we
consider two kinds of constraints: first kind states cer-
tain groups (each group belonging to a different CPD) of
parameters share the same aggregate probability mass
and second kind states the ratio of the parameters is pre-
served (shared) in several such groups. Section 6 shows
an example that demonstrates that graphical models
learned using parameter sharing, are preferred to the
alternatives of sharing no parameters or using a global
model that effectively shares all parameters on a task
of email modelling using Bayesian Multinetworks. We
plan to apply our work to other more complex real-world
problems in the near future. The final section summa-
rizes the main contributions of this paper and suggests
some directions for future work. We begin by briefly
reviewing some related research.

2 Related Work

The standard way of representing parameter related do-
main knowledge in graphical models is by using Dirich-
let priors. It can be proved [7], that under certain con-
ditions, choosing Dirichlet priors over the parameters of
a Bayesian Network is inevitable. However, Dirichlet
priors are specified over a CPD(Conditional Probability
Distribution) in a CPT (Conditional Probability Table)
and therefore do not represent constraints among pa-
rameters in different CPDs. An approach of relaxing the
local independence assumption for binary variables is in-
vestigated in [8]. In [13], the authors compare several
other smoothing methods for learning language models.

Parameter sharing has also been explored in a vari-
ety of graphical models. For example, HMMs [10] and
Dynamic Bayes Nets [9] make the assumption that the
CPTs (Conditional Probability Tables) corresponding
to a given variable are the same at each point in time.
In Probabilistic Relational Models [5], objects of a cer-
tain type class share the way they depend on related
objects of other type classes. In Module Networks [12],
variables in the same module exhibit similar behavior
i.e. they have the same set of parents, same set of
values and probabilistically they depend on their par-
ents in the same way and therefore their correspond-
ing CPTs can be learned together. Context Specific
Independence (CSI) [1] states conditional independen-
cies that hold only in certain contexts i.e. of the form
P [X|Y,Z, C = c] = P [X|Z, C = c] and therefore can
specify that some CPDs in the CPT for a variable X
are the same (they share all parameters in those CPDs).
CSI can be exploited to efficiently encode and learn
CPTs using default tables, decision trees and decision
graphs as described in [3] and [4].

As an example, in section 6 we will illustrate the
utility of our General Parameter Sharing Framework by
showing how it allows a novel kind of parameter sharing
in Bayesian Multinets [2],[6] for the task of modelling
emails coming from several users.

3 A General Parameter Sharing Framework

We present a General Parameter Sharing Framework
that describes learning in a broad category of graphical
models. We show how to approach learning within this
framework from both a Frequentist and a Bayesian point
of view, from both complete and incomplete data, in
the case where a domain expert specifies in advance
the structure of the graphical model, and an arbitrary
subset of parameters to be shared.

Each CPD (Conditional Probability Distribution)
represents the constraint that its parameters should
sum up to one. We denote by C the set of all CPDs
in all CPT’s in the graphical model. Below we will
describe two assumptions that suffice to derive learning
procedures that take advantage of Parameter Sharing:

Parameter Sharing. The CPD set C can be partitioned
as C = ∪m

k=1Ck, such that some parameters (denote
their set by Gk) are shared (appear exactly once in
each of the different CPDs) within the set Ck, but
not shared within the same CPD or with other sets of
CPDs of the partition. Let Lk = Ck \Gk be the set of
local (not shared) parameters.

Decomposability of Log-Likelihood. For any complete
dataset D, the log-likelihood can be decomposed as:

log(P (D|θ)) =
m∑

k=1

hk(Ck)

where hk(Ck) =∑
θgk∈Gk

Ngk · log θgk +
∑

θlck∈Lk,c∈Ck
Nlck · log θlck

Above, Ngk represents the cumulative count corre-
sponding to shared parameter θgk (appears in each CPD
in Ck exactly once) and Nlck is the count corresponding
to local parameter θlck (in CPD c ∈ Ck).

We now discuss several graphical models which all
fit within our framework and satisfy the Parameter
Sharing assumption. For instance, in HMMs and
Dynamic Bayes Nets, the same variable has the same
CPT at different time instants. Therefore, a subset
Ck of the partition is made out of the CPDs in the
CPTs which correspond to a given variable X and the
same instantiation of the parents PA(X) = pa across all
time instants. In Module Networks, all variables in the
same module share the same set of parents and have the
same CPTs. Consequently, the subsets of the partition

311

contain the set of CPDs corresponding to all variables in
a module for a given instantiation of the parents of those
variables. Context Specific Independence is used to
specify conditional independencies that hold in certain
contexts and therefore is useful to specify which CPDs
should be equal in a CPT for a fixed random variable. In
this case, the subsets of the partition consist of CPDs in
the same CPT which are assumed equal because of the
CSI assumptions. However, note that our framework
allows for much more flexibility in parameter sharing.
We can share at the level of each parameter, not just
at the whole CPD or table level. Also, the CPDs in the
same sets of partition do not have to be the same size.
Moreover, a shared parameter doesn’t need to be in the
same position in different CPDs within the same set of
the partition.

Below we discuss different scenarios in our frame-
work and provide learning algorithms.

3.1 Learning - Frequentist Approach, Full Data
Observability, Known Structure. A Frequentist
tries to learn one single model that ”best” fits the
data. When structure is known in advance, this often
translates into finding the Maximum Likelihood Esti-
mators (MLEs) for the parameters in the model. Sub-
sequently, we are also going to discuss Maximum Apos-
teriori (MAP) Estimators. The MLEs in our General
Parameter Sharing Framework, when structure and pa-
rameter sharing is specified by a domain expert, can be
computed using the following theorem:

Theorem 3.1. Assume we are given a graphical model
with known structure that satisfies the Parameter Shar-
ing and Decomposability of Log-Likelihood assumptions.
Then, the Maximum Likelihood Estimators (MLEs) for
the parameters in our graphical model are given by:

θ̂gk =
Ngk∑

θ
g′k∈Gk

Ng′k +
∑

θlck∈Lk
Nlck

θ̂lck =

∑
θ

lc′k∈Lk
Nlc′k∑

θ
g′k∈Gk

Ng′k +
∑

θ
lc′k∈Lk

Nlc′k
· Nlck∑

θlck∈Lk
Nlck

The MLEs for shared parameters look similar to
the ones in the case of standard Bayes Nets. However,
the MLEs for local parameters are a product of two
factors. First factor represents the probability mass
that remains after subtracting the shared parameters.
The second factor basically says that this remaining
”local” probability mass in a CPD is split into values
proportional to the counts corresponding to the local
parameters in that CPD.

Proof of Theorem 3.1 (Sketch): Because of the Param-
eter Sharing and Decomposability of Log-Likelihood as-
sumptions, the problem of maximizing the data like-
lihood can be broken down into a set of independent
optimization subproblems:

Pk : argmax Ck
{hk(Ck) | gck(Ck) = 0,∀c ∈ Ck}

where
gck(Ck) = (

∑
θgk∈Gk

θgk) + (
∑

θlck∈Lk
θlck)− 1 = 0

When all counts are positive, it can be easily proved
that Pk has a global maximum which is achieved in the
interior of the region determined by the constraints.
In this case the solution of Pk can be found using
Lagrange Multipliers. Introduce Lagrange Multipliers
λk = (λck)c∈Ck

for each CPD in Ck. Let LM(Ck, λk) =
hk(Ck) − ∑

c∈Ck
λck · gck(Ck). Then the point which

maximizes Pk is among the solutions of the system
∇LM(Ck, λk) = 0. It turns out that this system
has a unique solution which is in fact the one in the
statement of the theorem. Since the function achieves
its maximum in the interior of the constraint region,
it means that the solution of the system supplies the
MLEs. In the case when some of the counts are zero,
the corresponding parameters don’t even appear in the
likelihood function and the optimization problem then
has inequality constraints but eventually the MLEs are
given by the same formulas. This concludes the sketch
of our proof. ¤

Note that, if the expert makes a mistake about the
structure or about the shared parameters of the model,
then the learned distribution may be much different
from the true distribution of the data. Below we will
provide formal guarantees about our estimators.

In order to present these results, let us introduce
the notion of True Probabilistic Counts(TPC). Suppose
P is the true distribution of which data is sampled.
If θlck is the local parameter of the graphical model
that is supposed to describe P (X = x|PA(X) = pa),
then let TPClck = P (X = x, Pa(X) = pa). If θgk

is the global parameter of the graphical model that is
supposed to describe the set {P (X1 = x1|PA(X1) =
pa1), . . . , P (Xs = xs|PA(Xs) = pas)}, let TPCgk =∑s

i=1 P (Xi = xi, PA(Xi) = pai). Let P ∗ be the
distribution that factorizes according to the structure
provided by the expert and has parameters given by
theorem 3.1 where the counts are replaced by the True
Probabilistic Counts.

Theorem 3.2. P ∗ is the closest distribution to P (in
terms of KL(P, ·)) that factorizes according to the
given structure and obeys the expert’s parameter sharing
assumptions.

312

Proof of Theorem 3.2 (Sketch): Let Q be such a dis-
tribution. Minimizing K(P, Q) is equivalent to maxi-
mizing

∑
d P (d) · log Q(d). Let θ be the set of param-

eters that describe this distribution Q. After break-
ing the logarithms into products of logarithms based on
the factorization given by the provided structure, our
optimization problem reduces to the maximization of∑

TPCgk · log θgk +
∑

TPClck · log θlck. The solution of
this problem is obviously given by theorem 3.1. This is
equivalent to the fact that P ∗(see the definition above)
minimizes KL(P, ·) out of all the distributions that fac-
torize according to the given structure and obey the
expert’s sharing assumptions. ¤

Theorem 3.3. With infinite amount of data, the dis-
tribution P̂ given by the ML Estimators in Theorem 3.1
converges to P ∗ with probability 1.

Proof of Theorem 3.3 (Sketch): Assume the number of
data points in a dataset sampled from P is denoted by
n. According to the Law of Large Numbers, we have
limn→∞Nlck

n = TPClck and limn→∞
Ngk

n = TPCgk

with probability 1. This is equivalent to the fact the
P̂ converges to P ∗ with probability 1. ¤

3.2 Learning - Frequentist Approach, Partial
Data Observability, Known Structure. If some of
the attributes of the data points are not observed, then
the counts Ngk and Nlck should be treated as random
variables (random counts). One still can do Maximum
Likelihood parameter estimation using the 2-step EM
algorithm. Given the formula of the log-likelihood for
complete data and the parameter sharing assumptions,
by completing the data in all possible ways, it is easy
to see that the standard EM algorithm applied to our
setting will repeat the following steps until convergence
is reached:

E-Step: Use any inference algorithm to compute
expected counts under the current parameter estimates
θ̂. If just starting, assign θ̂ randomly or according to
some domain knowledge.

M-Step: Reestimate the parameters by maximizing the
data likelihood using Theorem 3.1, assuming that the
observed counts are equal to the expected counts given
by the E Step.

3.3 Learning - Bayesian Approach, Full Data
Observability, Known Structure. From a
Bayesian point of view, each choice of parameters is
possible, but some choices have higher probability of
occurring. Therefore, to do model averaging, we need
to specify priors over the space of parameters. It can

be proved [7], that under certain conditions, choosing
Dirichlet Priors over the parameters of a Bayesian
Network is inevitable. Two of the assumptions that
are usually made are local and global independence.
Because of the Parameter Sharing assumption, the
local and global independence assumptions may not
hold. However, in our case we can make the following
similar assumption:

Subset Independence Assumption: parameters in dif-
ferent subsets of the partition are independent of each
other. In other words, p(θ) = p(C) =

∏m
k=1 p(Ck).

Under this assumption it is enough to define a prior
over the parameters in each subset of the partition.
A Subset Specific Dirichlet Distribution over Ck of
parameters {αgk|gk ∈ Gk} ∪ {αlck|lck ∈ Lk} will have
the following formula:

p(Ck) =
1

Zk
·

∏

θgk∈Gk

θ
αgk−1
gk ·

∏

θlck∈Lk,c∈Ck

θαlck−1
lck

over the space
SPk = {∑θgk∈Gk

θgk +
∑

θlck∈Lk
θlck = 1 ∀c ∈ Ck}

Above, Zk is a normalization constant which can be
found by enforcing the condition that the integral of the
pdf should be equal to one:

Zk =
∏

gk∈Gk

Γ(αgk) ·
∏

c∈Ck

∏
lck∈Lk

Γ(αlck)
Γ(

∑
lck∈Lk

αlck)
·

· Γ(
∑

lck∈Lk,c∈Ck
αlck − |Ck|+ 1)

Γ(
∑

lck∈Lk,c∈Ck
αlck +

∑
gk∈Gk

·αgk − |Ck|+ 1)

There are several interesting properties of this Sub-
set Specific Dirichlet Distribution. First, the joint prob-
ability distribution over the shared parameters is a stan-
dard Dirichlet. Second, with no parameter sharing,
this distribution is a product of independent standard
Dirichlet distributions, one for each CPD in Ck. How-
ever, if there are both shared and local parameters, then
the joint probability (obtained by marginalization) over
a CPD c ∈ Ck is not a standard Dirichlet. Finally,
because of the Decomposability of Log-Likelihood, it is
easy to see that the posterior p(θ|D) ∝ p(D|θ) · p(θ) is
also a product of Subset Specific Dirichlet distributions
and therefore the collection of multinomials with shared
parameters (over Ck) and the Subset Specific Dirichlet
distribution are conjugate distributions.

Now that we have defined priors over the space of
parameters, it is trivial to compute MAP Estimators.

313

Because of Decomposability of Log-Likelihood, comput-
ing MAP Estimators is just a matter of adding corre-
sponding Subset Specific Dirichlet exponents (not pa-
rameters) to the observed counts in the ML Estimators
in (1) and (2).

From a Bayesian point of view, we are interested
in predicting the next data point given previous data
points. This can be written as follows:

p(Dn+1|D1, . . . , Dn) =

∫
⋃

SPk
p(Dn+1, . . . , D1|θ) · p(θ)dθ∫

⋃
SPk

p(Dn, . . . , D1|θ) · p(θ)dθ

As stated above, p(θ|D) ∝ p(D|θ) · p(θ) is also
a product of Subset Specific Dirichlet distributions.
Therefore both integrals in (4) are products of normal-
ization constants for some Subset Specific Dependent
Dirichlet distributions. We already showed that we can
compute these normalization constants and thus we can
easily compute these integrals. Looking again at the
formula for Zk, it is worth mentioning that most of the
factors will cancel out when computing the ratio of the
two integrals. The only ones remaining would be the
ones where the introduction of the new data point Dn+1

would increment the counts.

3.4 Learning - Bayesian Approach, Partial
Data Observability, Known Structure. When
data is incomplete, we can no longer write p(D|θ) as
a product of Subset Specific Dirichlet Distributions as
we did in the complete data case discussed above. In
this case, let U be the set of missing values such that
D ∪U is a complete dataset. Then,

∫
p(D|θ) · p(θ)dθ =∑

U

∫
p(D, U |θ) · p(θ)dθ. Therefore, in the case of in-

complete data,
∫

p(D|θ) · p(θ)dθ is a sum of products
of normalization constants for certain Subset Specific
Dirichlet Distributions and can be used to compute the
ratio in (4).

The above procedure for performing Bayesian Esti-
mation is computationally expensive because the num-
ber of terms in the summation grows extremely fast. If
only one binary value is missing in each of the n exam-
ples, there will be 2n terms in the summation. Approx-
imation techniques for p(D|θ) when data is incomplete
are available for standard Bayes Nets, but investigating
them in our parameter sharing framework is beyond the
scope of this paper.

3.5 Comparing Parameter Sharing Schemes.
A Parameter Sharing Scheme PShS over a graphical
model structure S is a set of valid parameter sharing
assumptions (of the type specified in the general pa-
rameter sharing framework) on top of structure S. We

remind the reader that in all our work, the structure of
the model is given by an expert and does not change.
Learning structure in presence of parameter sharing is
subject for future work.

A PShS helps reduce the variance in parameters’
estimates. In section 6, we empirically show that
this translates in estimated distributions closer in KL
distance to the true underlying distribution than the
ones estimated without taking advantage of parameter
sharing. There we also show that the more valid
parameter sharing assumptions we know, the better the
estimates. Therefore it is important to recover these
assumptions, even when the expert doesn’t know the
parameter sharing or can specify only a limited set of
such assumptions.

Assume that a dataset D of examples is provided
and our goal is to learn an optimal PShS over a given
structure S. In order to do this, we need to be able to
compare different PShSs. We propose a metric similar
to the one used for structure search i.e. we try to find
the PShS that maximizes P (D|PShS) (Sharing Score).
Averaging over all sets of parameters θ consistent with
PShS, we obtain:

p(D|PShS) =
∫

θ∈PShS

p(D|θ, PShS) · p(θ|PShS) dθ

It is easy to notice that the quantity inside the
integral represents a product of Subset Specific Dirichlet
Distributions and therefore P (D|PShS) is a product
of normalization constants for such distributions. We
previously showed how such constants can be computed
in the case of complete data. Therefore, in the case of
complete data, it is straightforward how to obtain the
Sharing Score.

What happens in the case of incomplete data is a
little bit more complicated. In this situation we can
write: p(D|θ) =

∑
D′ complete, consistent with D p(D′|θ).

Therefore, P (D|PShS) will be a sum of products of
normalization constants for Subset Specific Dirichlet
Distributions. It is worth pointing out that the number
of such products grows at least exponentially with the
amount of missing data. However, one can think of
techniques to approximate P (D|θ) with Subset Specific
Dirichlet Distributions by processing data points one
at a time and updating the current parameter prior
accordingly. In this case, the order in which examples
are processed matters. Investigating this is however
beyond the scope of this paper.

We suggest that the above scoring metric can be
used to uncover the underlying PShS via some hill
climbing techniques i.e. one can think of deriving
the current PShS candidate from previous one by
using small modifications. Also, restricting the set

314

of potential PShS can be useful. For example, in
module networks one can restrict the variables that
can belong together in a module or in HMMs one
would specify that one expects only transition tables
to have sharing, but no sharing between transition
tables and the tables describing the observed output.
In addition, our suggested method can be useful when
combined with an expert who knows a subset of sharing
assumptions because this restricts further the superset
of valid parameter sharing schemes.

4 Hierarchical Parameter Sharing Framework

Here we present a hierarchical extension of the frame-
work in the previous section. This will address some
of the limitations of the constraints that could be
incorporated in the parameter sharing framework
described before. In order to derive our main results
in this section, we first need to make an important
assumption about the graphical models we are working
on:

Log-Likelihood Assumption. For any complete dataset
of examples D, the log-likelihood can be written as:
log(P (D|θ)) =

∑
θi

Nθi
· log θi where Nθi

represents
the cumulative observed count for parameter θi (which
may appear in multiple places in the graphical model).

We are now ready to describe our learning frame-
work. First of all, we present Parameter Sharing Trees
as a way to encode hierarchical parameter sharing as-
sumptions and second we show how one can take advan-
tage of such a Parameter Sharing Tree in order to allevi-
ate learning. We are going to discuss only the derivation
of ML and MAP Estimates from complete data. Same
as in the previous section, the EM adaptation for learn-
ing from incomplete data is just a matter of estimating
the expected counts under current parameter estimates
using any available inference algorithm, then reestimate
the parameters using the expected counts as if they were
observed counts. Also, the Bayesian approach for learn-
ing from complete and from incomplete data goes along
the same lines with the discussion in previous section.

4.1 Parameter Sharing Trees. Again, let C rep-
resent the set of all CPDs in the graphical model. Each
such CPD introduces a constraint on the possible values
that the parameters θ can take. A Parameter Sharing
Tree (PST) is a tree with the following properties:

• Each node v of the tree consists of a pair
(Scope(v), Shared(v)), where Scope(v) is a sub-
set of C and Shared(v) represents a non-empty set
of parameters that are shared across these CPDs.

A parameter from Shared(v) is a parameter that is
known to appear exactly once in each of the CPDs
in Scope(v), but it is not shared multiple times
within one CPD, nor with CPDs outside the Scope.

• By convention, Scope(Root) = C (this amounts to
the fact that we would like to allow for the extreme
situation when a parameter is shared by all CPDs
in the graphical model).

• The Scopes of the direct descendants of a node v
form a partition of Scope(v). Therefore, the PST
will describe a recursive way of partitioning C, with
the leaf level being the finest grain of such partition.

• A parameter cannot be shared in multiple places
(different nodes of the tree). Because of the
recursive partitioning of the CPDs, this amounts to
the fact that Shared(v) is disjoint with all Shares
on the path from v to the root of PST .

• Each parameter θ of the graphical model is shared
exactly once i.e. there exists a node v such that
θ ∈ Shared(v). One may argue that there are
parameters which are not shared at all, but for
all nodes v that have CPDs in their Scope such
that there remain unshared parameters, one can
partition those nodes further in leaves that have
only one CPD in their Scope, for which previously
unshared parameters become shared at the level of
that single CPD.

Let Desc(v) be the set of descendants of
node v (included) in and Shared(Desc(v)) =⋃

v′∈Desc(v) Shared(v′). Also, denote by Ancestors(v)
the set of nodes on the path from v to the
root of the tree and Shared(Ancestors(v)) =⋃

v′∈Ancestors(v) Shared(v′).

4.2 Learning - Frequentist Approach, Full
Data Observability, Known Structure. Assume
we are given a graphical model with known structure
that satisfies a set of parameter sharing assumptions
given by a PST T and also satisfies the Log-Likelihood
Assumption. In this section we are going to present a
theorem that will justify an algorithm for finding the
Maximum Likelihood Estimators for the parameters in
such a graphical model. Denote by θ̂ the Maximum
Likelihood Estimators.

Theorem 4.1. Let v be a node of T and θi ∈
Shared(v). The following equality holds:

θ̂i = (1−
∑

θj∈Shared(Ancestors(v))

θ̂j) ·

315

· Nθi∑
θk∈Shared(Desc(v)) Nθk

Proof of Theorem 4.1 (Sketch): By definition,

θ̂ = argmaxθ {
∑

θi

Nθi
· log θi | θ satisfies T}

Each CPD represents a constraint on the space of
parameters: gc(θ) = (

∑
θj∈c θj) − 1 = 0. Because of

parameter sharing, these constraints can involve some
common variables. It is easy to show that, if all the
cumulative counts are positive, the likelihood function
has a global maximum inside the region determined by
the constraints in T . In the case when there exist counts
equal to 0, it is also easy to show that the ML estimators
for the corresponding parameters are also zero. When
the maximum is reached in the interior of the domain,
one can apply Lagrange Multipliers to optimize for Pik.
Therefore, let us introduce new variables λc for each
constraint (CPD) c ∈ C. The new function to optimize
will be: LM(θ, λ) =

∑
θi

Nθi
· log θi −

∑
c λc · gc(θ).

According to Lagrange Multipliers theory, any point
that is a local maximum or minimum for the initial
optimization problem and it is NOT on the border of
the region defined by the constraints will be obtained
as a (partial) solution of the system of equations:

∇LM(θ, λ) = 0

Therefore θ̂ verifies the above system for some values
of λ. Because ∂L(θ |D)

∂θi
=

Nθ
i

θi
and ∂gc

∂θi
= λc if CPD c

contains θi (otherwise the partial derivative is zero) ,
we get:

θ̂i =
Nθi∑

c∈Scope(v) λc
∀θi ∈ Shared(v)(4.1)

Let S(v) =
∑

θj∈Shared(Desc(v)) θ̂j . We will prove by
induction the following stronger claim:

S(v) =

∑
θj∈Shared(Desc(v)) Nθj∑

c∈Scope(v) λc

and

θ̂i = (1−
∑

θj∈Shared(Ancestors(v))

θ̂j) ·

Nθi∑
θk∈Shared(Desc(v)) Nθk

Base case: If v is a leaf, then the distributions in
Scope(v) are equal. First part of the claim is verified
directly from 4.1 and the second part follows because
of the fact that the probabilities that add up to S(v)
are proportional to their corresponding counts.

Induction Step: Assume v is not a leaf and has direct
descendants d1, . . . , dk for which the claim holds. It
is obvious that S(d1) = . . . = S(dk). Now, using the
induction hypothesis, we obtain S(d1) = . . . = S(dk) =∑k

l=1
∑

θ
j
∈Shared(Desc(dl))

Nθ
j∑

c∈Scope(v) λc
. This combined with 4.1

gives us the first part of the claim. The second part
of the claim now follows from 4.1 and the fact that

1∑
c∈Scope(v) λc

=
S(v)∑

θj∈Shared(Desc(v)) Nθj

The proof of our theorem is now complete. ¤

The above theorem yields an obvious recursive
top-down, breadth-first algorithm to compute the ML
Estimates of the parameters. The correctness of the
algorithm is justified by theorem 4.1 and the fact that a
node v is processed sometime after all the nodes on the
path from v to the root are processed. The algorithm
uses a queue Q to perform breadth-first traversal of the
tree.

Algorithm:
STEP 1. Enqueue the root of the tree in Q.
STEP 2. If Q = ∅, STOP. Else, v ← Dequeue(Q).
STEP 3. Compute θ̂i for all θi ∈ Shared(v).
STEP 4. Enqueue all children of v. GO TO STEP 2.

4.3 Learning - Bayesian Approach, Full Data
Observability, Known Structure. In order to be
able to compute MAP estimates and predict an example
from the previous ones by bayesian averaging, we have
to define priors over the space of parameters. Note
however that in our case, when hierarchical parameter
sharing is present, the local and global parameter
assumptions are violated. Next we will show how to
define priors over the space of parameters that obey the
constraints given by a Parameter Sharing Tree T. First
of all, it would be nice if P (θ) and P (D|θ) are conjugate
distributions. This suggests we chose our priors of the
following form:

P (θ) =
1

Z(T)

∏
θαi−1

i

Note that these priors are defined over the whole
space of parameters and that a parameter θi can appear
in multiple places in the graphical model (according to

316

the given Parameter Sharing Tree). In addition, the
normalization constant depends heavily on the structure
of the parameter sharing tree since T describes the
constraints among parameters (the sum of parameters
shared on the path from the root to any leaf should
sum up to 1). If for finding MAP estimates the
normalization constant is not important, it becomes
important when computing P (Dn+1|D1, . . . , Dn) (as we
saw in the previous section). Before showing how to
compute Z(T), let us define the Generalized Dirichlet
Integral to be:
∫

∑
θi=S

∏
θαi−1

i dθ = (1−S)(
∑

αi)−1·
∫

∑
θi=1

∏
θαi−1

i dθ

The last integral is a normalization constant for a
standard Dirichlet distribution and this gives us a way
for computing the Generalized Dirichlet Integral. Now,
the constant Z(T) =

∫
θ obeys T

∏
θαi−1

i dθ can be recur-
sively computed as follows. First, note that this integral
can be evaluated starting with the parameters from the
leaf level. For each leaf v, the integral over the parame-
ters involved in Shared(v) is a Generalized Dirichlet In-
tegral. The effect of computing this integral is to get the
constant given by the Standard Dirichlet and propagate
upwards a single parameter (1− S(v)) with cumulative
Dirichlet parameter (

∑
θi∈Shared(v) αi) − 1. Now, it is

easy to see that this parameter is the same for all leaves
that belong to the same parent p. This will make the
integral over the parameters in Shared(p) and the new
parameter to be also a Generalized Dirichlet Integral
and the procedure continues as described above until we
end the computation at the root level. This concludes
or sketch of showing how one can recursively compute
Z(T) using Generalized Dirichlet Integrals. Once the
normalization constant is computed, bayesian predic-
tion can be done in exactly the same way as in the
previous section.

5 Sharing Properties of Subsets of Parameters

In this section we present other extensions to the
framework presented in section 3. Again, the set C
of CPDs in the graphical model is partitioned as: C =
∪m

k=1Ck, where the distributions in a subset Ck are going
to be constrained together. Moreover, assume there are
no constraints tying CPDs in different subsets of the
partition. If in section 3 the constraints were individual
parameter equalities, in this section we are studying
constraints that involve whole subsets of parameters
within the same CPD.

5.1 Probability Mass Sharing. Here we are going
to show how to do Maximum Likelihood learning in the
case when the aggregate probability mass of a certain

parameter type is the same across all CPDs in a given
subset Ck. For example, we would like to show how to
take advantage of constraints like: ”The frequency of
nouns in English is the same as the frequency of nouns
in Spanish”, when modelling the word probability in
each of the two languages. In these case, types would
be: nouns, verbs, etc.

Before stating the main result of this subsection,
let us introduce few notations. Assume for a specific
k, the parameters in Ck may have the following types:
T1, . . . , Ts. Denote by θj

i the ith parameter in jth CPD
in Ck. Each parameter has exactly one type. For
example, in the above example, P (Computer|English)
has type Noun, while P (Blue|English) has type
Adjective. We would like to stress the fact that in our
framework, Ck is an arbitrary subset of CPDs in the
graphical model; these CPDs can have different number
of parameters and they can belong to different CPTs.
Formally, the constraints that we are dealing with are
given by:

Probability Mass Sharing Assumption. For all types
Tl and for any jth

1 and jth
2 distributions in Ck, the

following holds:

∑

θ
j1
i ∈Tl

θj1
i =

∑

θ
j2
i ∈Tl

θj2
i

Back to our example, this translates into: ”The ag-
gregate probability of Nouns is the same in all modelled
languages and same holds for other grammatical cate-
gories/types.” It might seem a little restrictive to have
each parameter belong to one type because, for instance,
one may argue that maybe only the probability of Nouns
is being shared across languages. However, even if one
specifies the Probability Mass Sharing Assumption only
for Nouns, the rest of parameters (non-nouns) verify the
same constraint and therefore that is equivalent to in-
troducing a new dummy type that contains every other
parameter in Ck.

Since there are no constraints between CPDs in
different Cks, one can break the optimization for finding
the ML Estimates into a set of independent optimization
problems. The function to optimize for each Ck will be
f(Ck) =

∑
N j

i ·log θj
i , where N j

i represents the observed
count for parameter θj

i in the training set. With these
considerations we are now ready to present the main
result of this subsection:

Theorem 5.1. The maximum likelihood estimator θ̂j
i

317

for a parameter θj
i in Ck that has type Tl is given by:

θ̂j
i =

N j
i∑

θj

i′∈Tl
N j

i′
·
∑

θj′
i′ ∈Tl

N j′

i′

∑
θj′

i′
N j′

i′

Proof of Theorem 5.1 (Sketch): We introduce new vari-
ables A = (Al)1...s that represent the probability mass
associated with type Tl in any of the distributions in
Ck. As stated above, the log-likelihood function de-
composes nicely in components corresponding to dif-
ferent Ck. With the newly introduced variables, our
optimization problem can be restated as maximizing
f(Ck, A) =

∑
N j

i · log θj
i subject to the constraints that∑

θj
i∈Tl

θj
i = Al for all types Tl and for any jth dis-

tribution in Ck. In addition to these constraints, we
also have

∑
i θj

i = 1. Similarly to the previous theo-
rems, it is easy to show that, if all counts are positive,
then the function reaches a maximum inside the region
defined by the constraints (if any count is zero, then
the specific parameter doesn’t even show up in the log-
likelihood function and its estimator will be zero too).
In this case, we also apply Lagrange Multipliers theory,
introducing a lagrange multiplier for each constraint: λj

l

for the first type of constraints (probability mass equal-
ities) and λj for the second type (distributions should
sum up to 1). Therefore, differentiating with respect to
θ and A, the point that maximizes f inside the region
given by the constraints should also verify:

N j
i = θ̂j

i · (λj + λj
l) ∀θj

i ∈ Tl(5.2)

∑

j

λj
l = 0 ∀ l(5.3)

For a fixed j and l, summing up 5.2 for all i such
that θj

i ∈ Tl we get:
∑

θj
i∈Tl

N j
i = Al · (λj + λj

l)(5.4)

For a fixed l, summing up 5.4 for all j and using 5.3
we obtain:

∑

θj
i∈Tl

N j
i = Al ·

∑

j

λj(5.5)

Further, summing 5.5 over all values of l and using
the fact that the distributions sum up to 1, we can
compute:

∑

i,j

N j
i =

∑

j

λj(5.6)

Now we can use 5.6 in 5.5 to get Al which is further
used in 5.4 to obtain λj + λj

l which, substituted in 5.2
will yield the formulas in the statement of the theorem.
Our sketch of the proof is now complete. ¤

5.2 Probability Ratio Sharing. In the previous
subsection, we showed how to do learning when certain
parameter types share their aggregate probability mass
across different distributions. Now assume we want in-
stead to enforce the constraint that the relative pro-
portions of parameters in a certain type are the same
for all different CPDs within a Ck. Next we describe a
setting where this constraints may arise naturally. We
would like again to model the word probabilities in two
languages i.e. model P (word|language) for both lan-
guages and their corresponding sets of words. In this
case, types can be: ”words about computers” (”com-
puter”, ”mouse”, ”monitor”, ”keyboard” in both lan-
guages) or ”words about business”, etc. In some coun-
tries computer use is more extensive than in others and
one would expect the aggregate probability of ”words
about computers” to be different. However, it would
be natural to assume that the relative proportions of
the ”words about computers” are the same within the
different languages.

We keep the same notations in the previous sub-
section. There are two major differences from the set-
ting presented in the previous subsection. First, in this
case, we must have the same number of parameters of
type Tl in each of the distributions in Ck. For example,
”words about computers” can be ”mouse”,”keyboard”
and ”monitor” in both Spanish and English (if we have
synonyms for a certain word, they can all be modelled as
one cumulative parameter). This allows us to permute
the parameters in the distributions in Ck such that cor-
responding parameters in Tl are located on the same po-
sition in each of the distributions. For example, we can
assume p(mouse|English) and p(mouse|Spanish) are
both on the first position in the two language models.
This allows us to write that a specific position i ∈ Tl.
Second, now there may be parameters that do not be-
long to any type Tl. For example, the expert may specify
that only the ”words about computers” preserve their
relative probability ratios across the languages of in-
terest. With these considerations, let us formalize the
constraints that we are looking at:
Probability Ratio Sharing Assumption. For any fixed
type Tl and for fixed i1, i2 ∈ Tl, the following holds:

θj
i1

θj
i2

= constant ∀ j

The problem of finding the maximum likelihood

318

estimators subject to the above constraints can again
be broken down in independent subproblems over the
different subsets of CPDs Ck and the function to
optimize for each Ck will be f(Ck) =

∑
N j

i · log θj
i .

Theorem 5.2. The maximum likelihood estimator θ̂j
i

for a parameter θj
i in Ck is given by:

a) if i ∈ Tl: θ̂j
i =

∑
j′ Nj′

i∑
i′∈Tl,j′ Nj′

i′
·

∑
i′∈Tl

Nj

i′∑
i′ Nj

i′

b) if θj
i does not have a type: θ̂j

i = Nj
i∑

i′ Nj

i′

Proof of Theorem 5.2 (Sketch): Again, we use Lagrange
Multipliers theory to derive our estimators. Each
CPD should sum up to 1 and that translates in the
constraint (

∑
i θj

i) − 1 = 0. Let the corresponding
lagrange multiplier be λj . The Probability Ratio Sharing
Assumption implies that there exist Aj

l and τi such that
θj

i−Aj
l ·τi = 0 for all i ∈ Tl. Aj

l represent proportionality
constants for distribution j for parameters of type Tl

and τi are reference constants that, when multiplied
with the proportionality constants yield the parameters
on position i in each distribution. Let λj

i be the lagrange
multipliers corresponding to the last type of constraints.
Our new objective function becomes f(Ck, A, τ) =∑

N j
i · log θj

i . When applying Lagrange Multipliers
theory to our optimization problem, differentiating with
respect to θ and the newly introduced Aj

l and τi, we
obtain:

N j
i = θ̂j

i · (λj + λj
i) ∀i ∈ Tl(5.7)

N j
i = θ̂j

i · λj ∀i 6∈ ∪Tl(5.8)

∑

j

λj
i ·Aj

l = 0 or
∑

j

λj
i · θ̂j

i = 0 ∀i ∈ Tl(5.9)

∑

j

λj
i · τi = 0 or

∑

i∈Tl

λj
i · θ̂j

i = 0 ∀ j, l(5.10)

For fixed j and l, summing up 5.7 for all i ∈ Tl,
then using 5.10 we get:

∑

i∈Tl

N j
i = λj

∑

i∈Tl

θ̂j
i(5.11)

If we further sum over all l and use 5.8 we obtain:

λj =
∑

i

N j
i(5.12)

Because θ̂
j1
i

θ̂
j2
i

= A
j1
l

A
j2
l

for all j1,j2, l and i ∈ Tl, we can

write:

Aj1
l

Aj2
l

=

∑
i∈Tl

θ̂j1
i∑

i∈Tl
θ̂j1

i

=
λj2

λj1
·
∑

i∈Tl
N j1

i∑
i∈Tl

N j2
i

(5.13)

For a fixed i ∈ Tl summing up 5.7 over all j and
using 5.9 we have:

∑

j

N j
i = θ̂j

i · (λj +
∑

j′ 6=j

λj′ · θ̂j′
i

θ̂j
i

)(5.14)

Using 5.12 and 5.13 in 5.14 proves part a) of the
theorem. Part b) follows from 5.8 and 5.12. The sketch
of the proof is now complete. ¤

6 Example

Previously published experiments involving learning
with Module Networks, HMMs, DBNs or Context Spe-
cific Independence all support the theory presented in
this paper since they are particular cases of our General
Parameter Sharing Framework. However, the Parame-
ter Sharing assumptions in the above models are at the
level of either entire CPT or entire CPD. In this section
we present experimental results showing the benefits of
incorporating more fine-grained parameter sharing as-
sumptions when training Bayes Multinets.

6.1 Email Modelling and Bayesian Multinets.
Automatic modelling of email documents is a problem of
considerable interest, and has been studied as a means
of automatically sorting email into a user’s email sub-
folders, or into other topical categories such as “email
spam” [11]. Given a set (population) of email, one nat-
ural way to define Bayesian Multinet subpopulations is
to consider each distinct email author to be a generator
of email from a different distribution, forming a differ-
ent subpopulation. This is reasonable because different
people use somewhat different vocabularies and figures
of speech. At the same time, there are many content
words that are shared (used in a similar proportion) by
all authors when emails address specific topics such as
meetings. The conditional probabilities of these words
given that the email is about a meeting should there-
fore be specified as globally shared parameters across
the subpopulations in the Bayesian Multinet.

To study this “meeting” email modelling problem,
we generated synthetic data that captures the charac-
teristics of a real email data set: the PW CALO email
corpus, produced by people in a role-playing game at

319

SRI. Based on this corpus, we generated several artifi-
cial datasets. Each data point consists of a triple: Au-
thor, Email and Topic (Class). The Topic says whether
or not the email is about a meeting. In all experiments
we generated simulated email from six authors, using
the same prior probabilities of an email belonging to
an author as in the PW CALO corpus, and generating
emails from each author to match that author’s topic
priors in this corpus. For each given author and topic,
we generate emails according to a ”Bag of Words” prob-
ability model, where each email contains between 0 and
150 words (to be consistent with the data observed in
PW, even though we are not including stop words in
our artificial dataset). The words are chosen from a vo-
cabulary of 1070 words (same size as in PW). The word
given topic probability models are generated randomly
and differ from user to user, but also have some frac-
tion of parameters in common (the so called shared pa-
rameters Gk in our framework). The fraction of shared
parameters was varied in our experiments from 0 to 1.
Creating this artificial data instead of using the real
data allowed us to control and know which parameters
are truly shared, allowed to assess the performance of
our models in terms of KL Divergence from the true
underlying distribution, and allowed us to control and
study the effect of variations of different parameters in
the true distribution (e.g. the fraction of parameters
that are truly shared).

In our experiments we compare three models. First,
a General Naive Bayes model (GNB) learned from all
training examples. Second, a Bayesian Multinet (SSNB)
in which each component network is a Naive Bayes
model, and for which an oracle has indicated which
parameters are shared when generating the data. Fi-
nally, a Bayesian Multinet (PSNB) identical to SSNB,
but with no parameters shared among component net-
works. Note all three models are essentially Bayesian
Multinets, conditioned on the email author which is ob-
served in the header of the email. Each component
network in each Bayes Multinet is a full naive Bayes
model including both the Class/Topic variable and the
word features in the email. One can think of GNB as a
Bayesian Multinet where the component Bayes nets are
copies of the GNB learned model. The only difference
among the three is in the training procedure. They dif-
fer in their sharing of parameters (all shared in GNB,
some shared in SSNB, not shared in PSNB). There is
also a slight difference in the way we assign Dirichlet
priors (we train all three models using MAP estimates,
as is common when training Naive Bayes models from
sparse data). In the case of GNB the effect is to increase
each word count by one (equivalent to Dirichlet priors
with all parameters equal to 2). In the case of PSNB and

SSNB, for each subpopulation the effect is to increase
that subpopulation’s word counts by one. For PSNB,
this is equivalent to Dirichlet priors with all parameters
equal to 2 for each subpopulation, while for SSNB this is
equivalent to assigning subpopulation-specific Dirichlet
priors with parameters equal to 7 for shared parame-
ters (7 is the number of subpopulations plus 1 in our
experiments), and equal to 2 for local parameters.

6.2 Results and Discussion. We trained the three
models while varying the number of training examples,
and the fraction of word-given-class/topic model param-
eters that were shared (identical across authors). For
each model, we measured the KL divergence KL(T,M)
of the learned model M to the true generating model T .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Training Set Size

K
L(

T
,*

)

GNB

PSNB

SSNB

Figure 1: KL divergence of learned models with respect to
correct model (T)

Figure 1 shows a plot of the KL divergence for each
of the three models, as the number of training exam-
ples varies, keeping the fraction of general parameters
constant at 0.5. As expected, KL(T, ∗) decreases with
increasing training set size for all three models (here ∗
stands for any possible model we are studying). How-
ever, SSNB outperforms the other two models across
the entire range of training set size. It dominates PSNB
especially at small training set sizes, because its shared
global parameters allow it to produce lower-variance pa-
rameter estimates, especially when data is sparse. It
dominates GNB especially with larger training sets, be-
cause it is capable of representing the correct model,
whereas GNB considers a strictly smaller model class
that does not contain the correct model. Note that
asymptotically, as the training set size approaches in-
finity, the SSNB and PSNB models will both converge
to the correct model, whereas GNB will not.

320

We also studied the impact of varying the fraction
of global parameters in the true underlying probability
model from 0 to 1, while holding the training set size
constant at 1K. KL(T,PSNB) is essentially constant as
the fraction of true global parameters varies, because
PSNB does not take advantage of parameter sharing.
In contrast, both GNB and SSNB improve considerably
with an increasing fraction of global parameters. Again,
SSNB dominates the other two methods, as it can mix
global and local parameters in its model.

7 Summary and Future Work

This paper presents a theoretical approach for incorpo-
rating several types of parameter related domain knowl-
edge in learning procedures for graphical models param-
eterized by conditional probability tables. The main
reason for taking advantage of such constraints is to
alleviate learning from sparse data sets. First we de-
scribe in detail a General Parameter Sharing Framework
that characterizes learning in a wide variety of graphi-
cal models like HMMs, DBNs or Module Networks. We
develop sound procedures for learning in such models
from both a Frequentist and a Bayesian point of view,
from both complete and incomplete data, in the case
when a domain expert can specify the structure of the
graphical model and the parameters to be shared. Also,
we prove some formal guarantees about our estimators
and suggest ways for deciding among several potential
Parameter Sharing Schemes. Second, we investigate a
hierarchical extension of this framework based on Pa-
rameter Sharing Trees. Finally we present algorithms
for using domain knowledge that specifies that certain
groups of parameters share certain properties. In sec-
tion 6, as an example, experimental results show that
our shared parameter model achieved lower KL diver-
gence to the true distribution when compared to two
other classical methods: a global model and a standard
Bayesian Multinet without parameter sharing.

This research suggests several directions for future
work. First, we are developing proper conjugate prior
distributions over the space of parameters that would
allow us to develop MAP estimators in the setting
presented in section 5. Second, we intend to explore
the interaction between the different types of domain
knowledge presented in this paper. Another interesting
thing to investigate is how one can take advantage
of parameter related domain knowledge to learn the
structure of the graphical model.

Acknowledgements. This work was supported in
part by DARPA research contract NBCD030010, and
in part by a gift from Siemens Medical Solutions.
We would like to thank the following people for

their useful comments during the development of this
paper: William Cohen, Zoubin Ghahramani, Russ
Greiner, John Lafferty, Andrew Moore and Sathyakama
Sandilya.

References

[1] C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller, Context-specific independence in Bayesian
networks, Proceedings of 12th UAI (1996), pp. 115–
123.

[2] J. Cheng and R. Greiner, Learning bayesian belief net-
work classifiers: algorithms and system, Proceedings
of the Canadian Conference on Artificial Intelligence
(2001).

[3] D. M. Chickering, D. Heckerman, and C. Meek, A
Bayesian Approach to Learning Bayesian Networks
with Local Structure, Technical Report, MSR-TR-97-
07, 1997.

[4] N. Friedman and M. Goldszmidt, Learning Bayesian
Networks with Local Structure, Proceedings of the
12th Annual Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers, CA, 1996,
pp. 252–262.

[5] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer,
Learning Probabilistic Relational Models, Proceedings
of 16th IJCAI (1999), pp. 1300–1307.

[6] D. Geiger and D. Heckerman, Knowledge representa-
tion and inference in similarity networks and Bayesian
multinets, Artificial Intelligence, 82 (1996), pp. 45–74.

[7] D. Geiger and D. Heckerman, A characterization of the
Dirichlet distribution through global and local parame-
ter independence, The Annals of Statistics, 25 (1997),
pp. 1344–1369.

[8] D. Golinelli, D. Madigan, and G. Consonni, Relax-
ing the local independence assumption for quantitative
learning in acyclic directed graphical models through hi-
erarchical partition models, Proceedings of Artificial In-
telligence and Statistics (1999), pp. 203–208.

[9] K. P. Murphy, Dynamic Bayesian Networks: Represen-
tation, Inference and Learning, PhD Thesis, UC Berke-
ley, Computer Science Division, 2002.

[10] R. L. Rabiner, A Tutorial on Hidden Markov Models
and Selected Applications in Speech recognition, Pro-
ceedings of the IEEE, 77 (2) (1989), pp. 257–286.

[11] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz,
A Bayesian Approach to Filtering Junk E-Mail, AAAI
Workshop on Learning for Text Categorization, Madi-
son, WI, 1998.

[12] E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Fried-
man, Learning Module Networks, Proceedings of 19th
UAI (2003), pp. 525–534.

[13] C. Zhai and J. Lafferty, A Study of Smoothing Methods
for Language Models Applied to ad hoc Information
Retrieval, Proceedings of SIGIR (2001), pp. 334–342.

321

Exploiting Geometry for Support Vector Machine Indexing∗

Navneet Panda† Edward Y. Chang‡

Abstract

Support Vector Machines (SVMs) have been adopted by
many data-mining and information-retrieval applications for
learning a mining or query concept, and then retrieving
the “top-k” best matches to the concept. However, when
the dataset is large, naively scanning the entire dataset
to find the top matches is not scalable. In this work, we
propose a kernel indexing strategy to substantially prune
the search space and thus improve the performance of top-k
queries. Our kernel indexer (KDX) takes advantage of the
underlying geometric properties and quickly converges on
an approximate set of top-k instances of interest. More
importantly, once the kernel (e.g., Gaussian kernel) has
been selected and the indexer has been constructed, the
indexer can work with different kernel-parameter settings
(e.g., γ and σ) without performance compromise. Through
theoretical analysis, and empirical studies on a wide variety
of datasets, we demonstrate KDX to be very effective.

1 Introduction

Support Vector Machines (SVMs) [6, 19] have become
increasingly popular over the last decade because of
their superlative performance and wide applicability.
SVMs have been successfully used for many data-mining
and information-retrieval tasks such as outlier detection
[1], classification [5, 11, 14], and query-concept formu-
lation [17, 18]. In these applications, SVMs learn a pre-
diction function as a hyperplane to separate the training
instances relevant to the target concept (representing a
pattern or a query) from the others. The hyperplane is
depicted by a subset of the training instances called sup-

port vectors. The unlabeled instances are then given a
score based on their distances to the hyperplane. Many
data-mining and information-retrieval tasks query for
the “top-k” best matches to a target concept. Yet it
would be naive to require a linear scan of the entire un-
labeled pool, which may contain thousands or millions
of instances, to search for the top-k matches. To avoid a
linear scan, we propose a kernel indexer (KDX) to work
with SVMs. We demonstrate its scalable performance
for top-k queries.

Traditional top-k query scenarios use a point in a
vector space to depict the query, so the top-k matches
are the k nearest instances to the query point in the
vector space. A top-k query with SVMs differs from

∗Supported by NSF grants IIS-0133802, and IIS-0219885.
†Department of Computer Science, UCSB.
‡Department of Electrical and Computer Engineering, UCSB.

that in the traditional scenarios in two aspects. First,
a query concept learned by SVMs is represented by a
hyperplane, not by a point. Second, a top-k query
with SVMs can request the farthest instances from
the hyperplane (the top-k matches for a concept), or
those nearest to it (the top-k uncertain instances1 for a
concept). KDX supports top-k match as well as top-k
uncertainty queries.

Intuitively, KDX works as follows. Given a kernel
function and an unlabeled pool, KDX first finds the
approximate center instance of the pool in the feature
space. It then divides the feature space, to which
the kernel function projects the unlabeled instances,
into concentric hyper-rings (hereafter referred to as
rings for brevity). Each ring contains about the same
number of instances and is populated by instances
according to their distances to the center instance in the
feature space. Given a query concept, represented by a
hyperplane, KDX limits the number of rings examined,
and intelligently prunes out unfit instances from each
ring. Finally, KDX returns the top-k results. Both the
inter-ring pruning and intra-ring pruning are performed
by exploiting the geometric properties of the feature
space. (Details are presented in Section 4.)

KDX supports a couple of important properties.
First, it can effectively support insertion and deletion
operations. Second, given a kernel function, the indexer
works independent of the settings of the kernel param-
eters (e.g., γ and σ). This parameter-invariant prop-
erty is especially crucial, since varied query-concepts
can best be learned under variable parameter settings.
Through empirical studies on a wide variety of datasets,
we demonstrate KDX to be very effective.

The rest of the paper is organized as follows:
Section 2 presents related work. Section 3 provides an
overview on SVMs and introduces geometric properties
useful to our work. We then propose KDX in Section 4,
describing its key operations: index creation, top-k
farthest instances lookup, and updates. Section 5
presents the results of our empirical studies. We offer
our concluding remarks in Section 6, together with
suggestions for future research directions.

1In an active learning setting, the algorithm finds the most

uncertain instances to query the user for labels. The most

uncertain instances are the ones closest to the hyperplane.

322

2 Related Work

Indexing for SVMs to support top-k queries can be very
challenging for three reasons. First, a kernel function
K is the dot product of a basis function Φ, but we
may not explicitly know the basis functions of most
kernels. Second, even if the basis function is known, the
dimension of the feature space F, to which the instances
are projected, can be very high, possibly infinite. It
is well known that traditional indexing methods do
not work well with high-dimensional data for nearest-
neighbor queries [20]. Third, a query represented by
SVMs is a hyperplane, not a point.

Indexing has been intensively studied over the past
few decades. We present some of the representative
work in the field but our discussion is by no means
exhaustive and for a detailed discussion please consult
[13] or [10]. Existing indexers can be divided into two
categories: coordinate-based and distance-based. The
coordinate-based methods work on objects residing in
a vector space by partitioning the space. A top-k query
can be treated as a range query, and, ideally, only
a small number of partitions need to be scanned for
finding the best matches. Example coordinate-based
methods are the X-tree [3], the R∗-tree [2], the TV-
tree [16], and the SR-tree [12], to name a few. All
these indexers need an explicit feature representation
to be able to partition the space. As discussed above,
the feature space onto which an SVM kernel projects
data might not have an explicit representation. Even
in cases where the projection function Φ is known, the
dimension of the projected space could be too high to
use the coordinate-based methods due to the curse of
dimensionality [15]. Thus, the traditional coordinate-
based methods are not suitable for kernel indexing.

Distance-based methods do not require an explicit
vector space. The M-tree [8] is a representative scheme
that uses the distances between instances to build an
indexing structure. Given a query point, it prunes
out instances based on their distances. SVMs use
the distance from the hyperplane as a measure of the
suitability of an instance. The farther the instance from
the hyperplane in the positive half-space, the higher its
“score” or confidence. The traditional distance-based
methods require a query to be a point, whereas in this
case we have a hyperplane. With infinite number of
points on the query hyperplane, a top-k query using
the points on the hyperplane may require scanning all
buckets of the index.

When the data dimension is very high, the cost of
supporting exact queries can be higher than that of a
linear scan. The work of [9] proposes an approximate
indexing strategy using latent semantic hashing. This
approach hashes similar instances into the same bucket

with a high degree of accuracy. A top-k approximate
query can be supported by retrieving the bucket into
which the query point has been hashed. Unfortunately,
this method requires the knowledge of the feature
vector in the projected space, and cannot be used with
SVMs. Another approximate approach is clustering for
indexing [15] but this approach supports only point-
based queries, not hyperplane queries.

We developed KDX to effectively tackle the three
challenges specified in the beginning of this section.

3 Preliminaries

We briefly present SVMs, and then discuss the geomet-
rical properties that are useful in the development of
the proposed indexing structure.

3.1 Support Vector Machines

Let us consider SVMs in the binary classification
setting. We are given a set of data {x1, . . . ,xm+n} that
are vectors in some space X ⊆ R

d. Among the m + n
instances, m of them, denoted as {xl,1, . . . ,xl,m} are
assigned labels {y1, . . . , ym}, where yi ∈ {−1, 1}. The
rest are unlabeled data, denoted as {xu,1, . . . ,xu,n}.
The labeled instances are also called training data; and
unlabeled are sometimes called testing data. In the
remainder of this paper, we refer to a training instance
simply as xl,i, and a testing instance as xu,i. When we
just refer to an instance, either training or testing, we
use xi.

In the simplest form, SVMs are hyperplanes that
separate the training data by a maximal margin. The
hyperplane is designed to separate the training data
such that all vectors lying on one side of the hyperplane
are labeled as −1, and all vectors lying on the other side
are labeled as 1. The training instances that lie closest
to the hyperplane are called support vectors. SVMs
allow us to project the original training data in space
X to a higher dimensional feature space F via a Mercer
kernel operator K. Thus, by using K, we implicitly
project the training data into a different (often higher
dimensional) feature space F.

The SVM computes the αi’s that correspond to the
maximal margin hyperplane in F. By choosing various
kernel functions (discussed shortly) we can implicitly
project the training data from X into various feature
spaces. (A hyperplane in F maps to a more complex
non-linear decision boundary in the original space X.)
Once the hyperplane has been learned based on the
training data {xl,1 . . .xl,m}, the class membership of an
unlabeled instance xu,r can be predicted using the αi’s
of the training instances and their labels {y1, . . . , ym}

323

by

(3.1) f(xu,r) =
m

∑

i=1

αiyiK(xl,i,xu,r).

When f(xu,r) ≥ 0 we classify xu,r as +1; otherwise we
classify xu,r as −1.

SVMs rely on the values of inner products between
pairs of instances to measure their similarity. The
kernel function K computes the inner products between
instances in the feature space. Mathematically, a kernel
function can be written as,

(3.2) K(x1,x2) =< φ(x1), φ(x2) >

where φ is the implicit mapping used for projecting the
instances, x1 and x2. Essentially, the kernel function
takes as input, a pair of instances, and returns the sim-
ilarity between them in the feature space. Commonly
used kernel functions are the Gaussian, the Laplacian
kernels and the Polynomial. These are expressed as:

1. Gaussian : K(x1,x2) = exp(
−‖x1−x2‖2

2

2σ2).

2. Laplacian : K(x1,x2) = exp(−γ ‖ x1 − x2 ‖1).

3. Polynomial : K(x1,x2) = (x1 · x2 + 1)p.

The tunable parameters, σ for Gaussian, γ for the
Laplacian kernel, and p for Polynomial, define different
mappings. In each of the above, the mapping function
φ is not defined explicitly. Yet, the inner product in
the feature space can be evaluated in terms of the
input space vectors and the corresponding parameter
(σ, γ, orp) for the chosen kernel function.

3.2 Geometrical Properties of SVMs

We present three geometrical properties of kernel based
methods used extensively throughout the rest of the
paper.

1. Similarity between any two instances measured by

a kernel function is between zero and one. Commonly
used kernels like the Gaussian and the Laplacian
are normalized kernels where the similarity between
instances, as measured by the kernel function, takes
on values between 0 and 1. A value of 1 indicates
that the instances are identical while a value of 0
means they are completely dissimilar. The polynomial
kernel, though not necessarily normalized, can easily
be normalized by using

(3.3) Kn(x1,x2) =
K(x1,x2)

K(x1,x1)K(x2,x2)
,

where Kn is the normalized kernel function. Here,
we have assumed that the features associated with
each data instance are positive. If not, appropriate
normalization needs to be performed.

2. The projected instances lie on the surface of

a unit hypersphere. For a normalized kernel, the
inner product of an instance with itself, Kn(xi,xi),
is equal to 1. This means that, after projection,
all the instances lie on the surface of a hypersphere.
Further, considering the fact that the kernel values are
inner products, we see that the angle in feature space
between any two instances is bounded above by π

2 .
This is so since the inner product is constrained to be
always greater than or equal to 0 (cos−1(0) = π

2).

3. Data instances exist on both sides of a query hy-

perplane. The hyperplane needs to pass through the
region on the hypersphere populated by the projected
instances. Otherwise, it would be impossible to sepa-
rate the positive from the negative training samples.
This property is easily ensured since we have at least
one training instance from the positive class and one
from the negative class.

4 KDX

In this section, we present our indexing strategy, KDX,
for finding the top-k relevant or the top-k uncertain

instances (defined shortly) given a hyperplane. We
discuss the construction of the index in Section 4.1, the
approach for finding the top-k instances in Section 4.2,
insertion and deletion operations in Section 4.3, and
handling changes in kernel parameters in Section 4.4.

Definition 4.1. Top-k Relevant Instances. Given the

set of instances S = {xr}, and the normal to the hyper-

plane, w, represented in terms of the the support vec-

tors, the top-k relevant instances are the set of instances

(q1,q2, · · · ,qk) ⊂ S such that
∑k

i=1,qi∈S w · φ(qi) is

maximized over all possible choices of q1, · · · ,qk with

qi 6= qj if i 6= j. The subscripts do not represent the

order of their membership in S. Ties are broken arbi-

trarily.

Definition 4.2. Top-k Uncertain Instances. Given

the set of instances S = {xr}, and the normal

to the hyperplane, w, represented in terms of the

the support vectors, the top-k uncertain instances are

the set of instances (q1,q2, · · · ,qk) ⊂ S such that
∑k

i=1,qi∈S |w · φ(qi)| is nearest to zero over all possi-

ble choices of q1, · · · ,qk with qi 6= qj if i 6= j. The

subscripts do not represent the order of their member-

ship in S. Ties are broken arbitrarily.

4.1 KDX-create

The indexer is created in four steps.
1. Finding the instance φ(xc) that is approximately
centrally located in the feature space F,

324

Figure 1: Approximate Central Instance and Rings.

2. Separating the instances into rings based on their
angular distances from the central instance φ(xc),

3. Constructing a local indexing structure (intra-ring

indexer) for each ring, and

4. Creating an inter-ring index.

4.1.1 Finding the central instance As shown in
Figure 1, we attempt to find an approximate center
φ(xc) after the implicit projection of the instances to
the feature space F by kernel function K. The cosine
of the angle between a pair of instances is given by the
value of the kernel function K with the two instances
as input (see Equation 3.2).

Lemma 4.1. The closest approximation of the central

instance is the projection of the instance xc whose sum

of distances from the other instances is the smallest.

Proof. The point in F whose coordinates are the aver-
age of the coordinates of the projected instances in the
dataset is at the center of the distribution of instances
φ(xi), i = 1 . . . n. Choosing the instance which mini-
mizes the variance gives us the closest approximation
to the true center since it is closest to the point with
average coordinates in F.

xc = argminxj

∑

i

(φ(xi) − φ(xj))
2

= argminxj

∑

i

(φ(xi) · φ(xi) + φ(xj) · φ(xj)

− 2φ(xi) · φ(xj))

= argminxj

∑

i

(2 − 2K(xi,xj)).

Given n instances in the dataset, each with d
features, finding the central instance in the projected
space takes O(n2d) time. However, since we are only
interested in the approximate central instance, this cost
can be easily lowered via a sampling method. This step
can be achieved with O(1) storage because at any point
we need to store just the current known minimum, and
the accumulated value of the sum of the angles of the
rest of the instances with the current instance being
evaluated.

4.1.2 Separating instances into rings In this step
we compute the angles of the projected instances in F

with the central instance, φ(xc), using K. The angles
are stored in an array, which is then sorted. Here we
have a choice of the number of instances that need to
be included in a ring. The number of instances per ring
can be based on the size of the L2 cache on the system
to minimize cache misses. As we shall see later, only
the instances in the same ring are processed together.
Hence, at any given time during the processing of
queries, we need only the amount of storage utilized
by the instances in one ring.

Figure 1 shows the division of instances into differ-
ent rings. To divide the instances into rings, we equally
divide the sorted list. That is, if the number of instances
per ring is g, then the first g elements in the sorted ar-
ray are grouped together, and so on. This step requires
O(n log n) time, and O(n) space.

4.1.3 Constructing intra-ring index For each
ring, KDX constructs a local index. We construct for
each ring a g×g square matrix, where the ith row of the
matrix contains the angles between the ith instance and
the other g − 1 instances. Next, we sort each row such
that the instances are arranged according to decreasing
order of similarity (or increasing order of distance) with
the instance associated with the row.

This step requires O(g2) storage and O(g2 d) +
O(g2 log g) computational time for each ring.

4.1.4 Creating inter-ring index Finally, we con-
struct the inter-ring index, which is the closest instance
from the adjoining ring for each instance. This step re-
quires O(n) storage and O(ng) time. All the steps above
are essentially preprocessing of the data which needs to
be done only once for the dataset.

4.2 KDX-top k
In this section, we describe how KDX finds top-k in-

stances relevant to a query (Definition 4.1) by just ex-
amining a fraction of the dataset. Details of the number
of instances evaluated are presented in Section 5.

Let us revisit Definition 4.1 for top-k relevant
queries. The most relevant instances to a query, rep-
resented by a hyperplane trained by SVMs, are the
ones farthest from the hyperplane on the positive side.
Without an indexer, finding the farthest instances in-
volves computing the distances of all the instances in
the dataset from the hyperplane, and then selecting the
k instances with greatest distances. This linear-scan ap-
proach is clearly costly when the dataset is large. Fur-
ther, the number of dimensions associated with each
data instance has a multiplicative effect on this cost.

325

KDX performs inter-ring and intra-ring pruning to find
the approximate set of top-k instances by:
1. Shifting the hyperplane to the origin parallel to
itself, and then computing θc, the angular distance
between the normal to the hyperplane and the central
instance φ(xc).

2. Identifying the ring with the farthest coordinate
from the hyperplane, and selecting a starting instance
φ(x) in that ring.

3. Computing the angular separation between φ(x)
and the farthest coordinate in the ring from the
hyperplane, denoted as φ(x∗).

4. Iteratively, replacing φ(x) with a closer instance to
φ(x∗) and updating the top-k list, until no “better”
φ(x) in the ring can be found.

5. Identifying a good starting instance φ(x) for the
next ring, followed by repeating steps 3 to 5, until the
termination criterion is satisfied.

KDX achieves speedup over the naive linear scan method
in two ways. First, KDX does not examine all rings for
a query. KDX terminates its search for top-k when the
constituents of the top-k set do not change over the
evaluation of multiple rings, or the query time expires.
Second, in the fourth step, KDX examines only a small
fraction of the instances in a ring. The remainder of
this section details these steps, explaining how KDX

effectively approximates the top-k result for achieving
significant speedup. The formal algorithm is presented
in Figure 8.

4.2.1 Computing θc

Parameter θc is important for KDX to identify the ring
containing the farthest coordinate from the hyperplane.
To compute θc, we first shift the hyperplane to pass
through the origin in the feature space. The SVM
training phase learns the distance of the hyperplane
from the origin in terms of variables b and w [19]. The
distance of the hyperplane from the origin is given by
−b/‖w‖. We shift the hyperplane to pass through the
origin without changing its orientation by setting b = 0.
This shift does not affect the set of instances farthest
from the hyperplane because it has the same effect as
adding a constant value to all distances. Next, we
compute the angular distance θc of the central instance
φ(xc) from the normal to the hyperplane.

Given training instances xl,1 . . .xl,m and their la-
bels y1 . . . ym, SVMs solve for weights αi for xl,i. The

normal of the hyperplane2 can be written as

(4.4) w =

∑m
i αiyiφ(xl,i)

√

∑m
i,j αiαjyiyjφ(xl,i) · φ(xl,j)

.

The angular distance between the central instance and
w is essentially cos−1(w · φ(xc)).

4.2.2 Identifying the starting ring

The most logical ring from which to start looking for
the farthest instance is the one containing the coordi-
nate on the hypersphere farthest from the hyperplane.
Let φ(x¦) denote this farthest coordinate. Note that
there may not exist a data instance at φ(x¦). However,
finding an instance close to the farthest coordinate can
help us find the farthest instance with high probability.
The following lemma shows how we can identify the ring
containing the farthest coordinate from the hyperplane.

Lemma 4.2. The point, φ(x¦), on the surface of the

hypersphere, farthest from the hyperplane, is at the

intersection of the hypersphere and the normal to the

hyperplane passing through the origin.

The proof follows from the fact that all the instances
are constrained to lie on the surface of a hypersphere
and the distance from the hyperplane decreases as we
move away from the point of intersection of the normal
with the hypersphere because of the curvature.

We do not need to explicitly compute the farthest
coordinate, since we are only interested in the ring
where it resides. To find the ring, we rely on the angular
separation of φ(x¦) from φ(xc), which is the θc obtained
in the previous section. We use Figure 2 to illustrate.
The figure shows that φ(x¦) is at the intersection of the
hypersphere and the normal to the hyperplane with θc

angular separation from φ(xc). Given xc and the normal
of the hyperplane, we can compute θc to locate the ring
containing the farthest coordinate on the hypersphere
from the hyperplane. The rings were formed from
the sorted array of instances based on their angular
separation from the central instance. Therefore, the
first instance picked for every ring serves as a delimiter
for that ring. To identify the ring, we therefore need to
look only at these delimiters.

4.2.3 Intra-ring pruning

Our goal is to find the farthest instances in the ring
from the hyperplane. In this section, we present our
pruning algorithm, which aims to reduce the number of
instances examined to find a list of approximate farthest

2Training instances with zero weights are not support vectors

and do not affect the computation of the normal.

326

instances. In Section 5 we show that our pruning
algorithm achieves high-quality top-k results, just by
examining a small fraction of instances.

If the ring is the first one being evaluated, KDX

randomly chooses an instance φ(x) in the ring as the
anchor instance. (In Section 4.2.4 we show that if
the ring is not the first to be inspected, we can take
advantage of the inter-ring index to find a good φ(x).)
Let φ(x∗) be the farthest point from the hyperplane in
the ring. We would like to find instances in the ring
closest to φ(x∗). Our goal is to find these instances by
inspecting as few instances in the ring as possible.

Let us use a couple of figures to illustrate how
this intra-ring pruning algorithm works. First, the
circle in Figure 3 depicts the hyperdisc of the current
ring. Please note that the hyperdisc can be inclined
at an angle to the hyperplane as shown in Figure 4.
Back to Figure 3. We would like to compute the
distance s between φ(x) and φ(x∗). Since both φ(x)
and φ(x∗) lie on the surface of a unit hypersphere,
the angular separation between them can be obtained
once s is known. Figure 3 shows that we need to
determine h and v in order to use the Pythagorus
theorem to obtain s. Determination of h and v, in
turn, requires the knowledge of distances d1 and d2.
Distance d1 denotes the distance from the center of the
hyperdisc to the hyperplane, along the hyperdisc, and
d2 the distance of φ(x) to the hyperplane, along the
hyperdisc. It is noteworthy that both these distances
are measured along the surface of the hyperdisc as
shown for d2 in Figure 4. We discuss in detail how
we derive s in the online version of the paper at
http://www.cs.ucsb.edu/̃ panda/sdm complete.pdf. To
focus our presentation on the pruning algorithm, we
assume that we have had s computed.

Given φ(x) and s, KDX at each step tries to find
an instance farther than φ(x) from the hyperplane and
closer to φ(x∗). Such an instance would lie between
φ(x∗) and φ(x), or between φ(x∗) and point C, as
depicted in Figure 5. Once we find a “better” instance
than φ(x), we replace φ(x) with the new instance, and
search for yet another farther instance. Notice that as
we find a farther φ(x) from the hyperplane, the search
range between φ(x) and C is reduced. This pruning
algorithm eventually converges when no instances reside
in the search range. When the pruning algorithm
converges, there is a high probability that we have found
a point φ(x) in the ring that is the farthest from the
hyperplane.

To understand the computational savings of this
intra-ring pruning algorithm, let us move down to the
next level of details. We use the example in Figure 6
to explain the pruning process. Starting at φ(x), we

Q

P

φ (x) 4

φ (x) 5

φ 6(x)

φ φ (x*)

φ (x)

φ (x) 1

ARC P’Q’

φ

HYPERPLANE

φ (x)8

(x)3

φ(x) 2

*

(x)7

Figure 6: Arrangement of instances

seek to find an instance as close to φ(x∗) as possible.
The intra-ring index (Section 4.1.3) of φ(x) contains
an ordered list of instances based on their distances
from φ(x). Let τ denote the angular separation between
φ(x) and φ(x∗). To find an instance close to φ(x∗), we
search this list for instances with an angular separation
of about τ from φ(x). For the example in Figure 6 the
neighboring points of φ(x) appear in the order φ(x3),
φ(x1), φ(x4), φ(x5), φ(x2), φ(x6), φ(x7), and φ(x8) in
the sorted list of φ(x). First, we need only examine the
instances lying within the arc PQ in the figure, since an
instance outside this arc cannot be closer to φ(x∗) than
φ(x) itself. This step allows us to prune instances φ(x8)
and φ(x7).

Next, we would like to re-sort the instances remain-
ing on the list of φ(x) based on their likelihood of being
close to φ(x∗). To quantify this likelihood for instance
φ(xi), we compute how close the angular distance be-
tween φ(xi) and φ(x) is to the angular distance between
φ(x∗) and φ(x) (which is τ). The list does not need to
be explicitly constructed since we have sorted and stored
the distances between φ(xi) and φ(x) in the intra-ring
index. Once we find the instance closest to φ(x∗) in the
index, the rest of the instances on the re-sorted list can
be obtained by looking up the adjacent instances of the
closest instance in the intra-ring index. In our example,
this re-sorted list is φ(x4), φ(x5), φ(x1), φ(x3), φ(x2)
and φ(x6).

It may be surprising that φ(x5) and φ(x4) appear
before φ(x1) on the re-sorted list. The reason is that we
know only the angular distance between two instances,
not their physical order on the ring. Fortunately,
pruning out φ(x5) and φ(x4) from the list is simple—
we need only remove instances that are closer to the
hyperplane than φ(x). In this case, φ(x5) and φ(x4)
are closer to the hyperplane than φ(x). After removing

327

HYPERPLANE

C
(X)

C

W

φ(

θ

RING OF
INTEREST

φ (x)

Figure 2: Start ring

r

d1

d
2

h

v

s

HYPERPLANE

RING

φ (x)

φ (x*)

Figure 3: Finding s

d
d2

ψ

φ (x)

 RING

HYPERPLANE

Figure 4: Distance of φ(x) from inter-
section of hyperplane and disc

C

HYPERPLANE

RING

φ (x*)

φ (x)

s

Figure 5: Stopping
condition

them from the re-sorted list, we harvest φ(x1) as the
next instance for evaluation. Note that although φ(x1)
is chosen in this cycle, the farthest instance from the
hyperplane in the example is actually φ(x3). Next we
use φ(x1) as the anchor instance for the next pruning
iteration.

In the second pruning iteration, arc P’Q’ (obtained
using the ring associated with φ(x1)) is the region that
would be examined, anchored by φ(x1). In this step
we use the re-sorted list of φ(x1) as well as that of its
predecessor, φ(x), to choose the next anchor instance
agreed upon by both anchors. We pick the first instance
that is common in the re-sorted lists of all the anchors.
In the example, φ(x1) and φ(x) agree upon selecting
φ(x3) as the next “better” instance. The algorithm
converges at this point, since we do not have any more
instances to examine. At the convergence point, we
have obtained three anchor instances: φ(x), φ(x1), and
φ(x3).

We make the following important observations on
KDX’s intra-ring pruning algorithm:

• At the end of the first iteration, we have indeed found
the closest instance to φ(x∗) associated with φ(x).
Why do we look for the next anchor instance? Care-
fully examining Figure 6, we can see that instance
φ(x3), though farther than φ(x1) from φ(x∗), is ac-
tually farther from the hyperplane than φ(x1). When
the dimension of the hypersphere is high and the ring
has finite width, we can find instances farther from the
hyperplane in many dimensions on the ring’s surface.

• In the case of a circle (2D ring with zero width)
we can argue about the optimality of the instance
chosen by looking at the re-sorted list of the current
anchor alone, but the ring in our case is in very high
dimensional space and of non-zero width. Therefore,
we use information available from any available re-
sorted lists of prior anchors in the same ring to validate
the choice of the next instance.

Consider the ring shown in Figure 7(a). Suppose
the next instance chosen was φ(x), based on the stop-
ping criteria designed by us, it is possible for us to stop
at φ(x). This is because φ(x1) lies outside the arc of
interest of φ(x). The situation can be alleviated some-
what by considering the instances whose angular dis-

φ (x)1

φ (x)

HYPERPLANE

(a)

φ
φ (x)

(x)3
4

φ (x)

HYPERPLANE

(b)

Figure 7: Errors

tances with φ(x) are less than the value determined by
the width of the ring. Our method chooses the closest
k neighbors of the best instance found in the ring and
updates the current set of top-k instances if necessary.
This can induce errors when the top instances in the
ring are located as in Figure 7(b). Here, if φ(x) is found
to be the farthest instance in the ring, the choice of
top-k closest instances of φ(x) would prefer φ(x3) over
φ(x4). However, in practice, we see that the deviation
from the best possible distance values is relatively small.
This means that although the top-k instances selected
by KDX may not be exactly the same as the true set of k
farthest instances, their distances from the hyperplane
are very close to those of the farthest instances.

4.2.4 Finding starting instance in adjacent ring

Having converged on a suitable instance (the approxi-
mate farthest instance) in a ring, we next use the inter-
ring index to give us a good starting instance for the
next ring. The inter-ring index for an instance contains
the closest instance from the adjacent ring(s). Once we
obtain the anchor instance, φ(x), for the new ring, we
repeat the intra-ring pruning algorithm in Section 4.2.3.
The algorithm terminates when the top-k list is not im-
proved after inspecting multiple rings. The algorithm
can also terminate when the wall-clock time allowed to
run the top-k query expires.

4.3 KDX-insertion and deletion

Insertion into the indexing structure requires the iden-

328

Algorithm 4.1. KDX-top k

1:

Input: Support vectors zi

Dataset instances xi

Intra-ring index Arr
Inter-ring index inter ring

Output: Top-k set top k
2: counter = 0
3: condition = False
4: top k = {}
5: θc = Find θc(zi, xc)
6: R = Find ring of interest(θc, ring)
7: ψ = Find ψ(θc)
8: R′ = R
9: x = random instance in R

10: while counter < n/g and condition = False do

11: Converged = False
12: S = {}
13: while !Converged do

14: (d1, d2) = Find distances(x, w, ψ)
15: (h, v) = Find h v(d1, d2, x, xc, w)
16: (τ, ξ) = Find τ ξ(h, v)
17: index = Bin search(Arr[R′][inverted index[x]], τ)
18: if ring[R′][index] == x then

19: Converged = True
20: else

21: Sx = Arrangement(x,τ ,ξ,R′)
22: xn = ∩S // Intersection chooses unevaluated in-

stance only
23: x = xn

24: end if

25: end while

26: condition = Ring termination condition(top k, x)
27: x = inter ring(x)
28: R′ = Adjacent(R)
29: counter = counter + 1
30: end while

Procedure Find θc(zi, xc)
Section 4.2.1

1: zi ← Support vector i

2: w =
Pnsv

i
αiyiφ(zi)

q

Pnsv
i,j

αiαjyiyjφ(zi)·φ(zj)

3: θc = cos−1(w · φ(xc))

Procedure Find ring of interest(θc, ring)
Section 4.2.2

1: for i = 1 to num rings do

2: temp array[i] = cos−1(K(ring[i][0], xc))
3: end for

4: R = Bin Search(temp array, θc)

Procedure Find ψ(θc)

1: if θc > π/2 then

2: ψ = π − θc

3: else

4: ψ = θc

5: end if

Procedure Find distances(x, w, ψ)

1: d = w · φ(x)
2: d2 = d/sin(ψ)
3: p = φ(x) · φ(xc)
4: d1 = p/tan(ψ)

Procedure Adjacent(R)

1: static direction = 0
2: static num1 = 1, num2 = 1
3: if direction = 0 and R + num1 < n/g then

4: R′ = R + num1

5: num1 = num1 + 1
6: else if R − num2 ≥ 0 then

7: R′ = R − num2

8: num2 = num2 + 1
9: end if

10: direction = 1 − direction
11: return R′

Procedure Find h v(d1, d2, x, xc, w)
Section 4.2.3

1: r = sin(cos−1(φ(x) · φ(xc))
2: if d1 × d2 ≥ 0 and d1 ≥ 0 then

3: temp = d2 − d1

4: v = abs(temp − r)
5: else if d1 ≥ 0 then

6: temp = d1 − d2

7: v = r + temp
8: else

9: temp = d2 − d1

10: v = r − temp
11: end if

12: h =
p

r2 − temp2

Procedure Find τ ξ(h, v)
Section 4.2.3

1: s =
√

h2 + v2

2: τ = cos−1(2−s2

2)

3: ξ = cos−1(
2−(2h)2

2)

Procedure Arrangement(x, τ, ξ, R′)

1: temp S = {}
2: index1 = Bin search(Arr[R′][inverted index[x]], τ)
3: index2 = Bin search(Arr[R′][inverted index[x]], ξ)
4: counter = 0
5: while index1+counter < index2 or index1−counter > 0

do

6: if index1 + counter < index2 then

7: temp S = temp S ∪ Arr[R′][x][index1 + counter]
8: end if

9: if index1 − counter > 0 then

10: temp S = temp S ∪ Arr[R′][x][index1 − counter]
11: end if

12: counter = counter + 1
13: end while

14: return temp S

Procedure Ring termination condition(top k, x)

1: static flag = 0
2: ring top k = k nearest neighbors of φ(x)
3: for i = 1 to k do

4: Merge ring top k and top k
5: if top k modified then

6: flag = 0
7: else

8: flag = flag + 1
9: end if

10: end for

11: if flag == num unproductive rings then

12: return True
13: end if

14: return False

Figure 8: Algorithm for top-k retrieval

tification of the ring to which the new instance belongs
and an update of the indexing structure of the ring.
Identification of the ring requires O(log(|G|)) time, |G|
being the number of rings. Updating the index struc-

ture within the selected ring requires O(g) time, g be-
ing the number of instances in the ring. Insertion of
instances does change the central instance. We are in-
terested in an approximate central instance, which can

329

roughly ensure that the instances are evenly distributed
in each ring. Addition of fresh instances does not dis-
turb this situation, and hence the re-computation of the
central instance is not mandatory. However, when the
number of instances added is high compared to the ex-
isting dataset size, the possibility of a skewed distribu-
tion of the instances in the rings is higher. In such a
case a re-computation of the central instance and the
index would be beneficial. If we assume that the cur-
rent set of instances in the dataset is representative of
the distribution of instances, the approximate central
instance represents a viable choice even after the in-
sertion of new instances into the database. We dis-
cuss the details in the online version of the paper at
http://www.cs.ucsb.edu/̃ panda/sdm complete.pdf.

4.4 KDX-changing kernel parameters

In this section we discuss methods that allow us to
perform indexing using the existing indexing structure
when the kernel parameters can change. The form of the
kernel function is assumed to remain the same. That is,
if we had built the index using the Gaussian kernel,
we would continue using the Gaussian kernel, but the
parameter σ to the kernel would be allowed to change.

Suppose we wish to look at the ordering of the
angles made by instances with a fixed instance say
xf . We are interested in the values taken on by the
function K(xi,xf), where xi is any instance in the
dataset. Consider the Gaussian kernel. The values of
interest are given by K(xi,xf) = exp(−

‖xi−xf‖2

2σ2). Since
the exponential function is monotonic in nature, the
ordering of instances based on their angular separation
from xf does not change with a change in parameter
σ. The same follows for the Laplacian kernel. The
polynomial kernel which has the form (1 + xi · xf)p is
also monotonic in nature if p ≥ 1 and xi · xf ≥ 0,∀xi.

Replacing xf by the central instance, we see that
the ordering of instances based on their angular sepa-
ration with the central instance does not change with
change in the kernel parameter. Effectively, this means
that the grouping of instances into rings, given a partic-
ular form of the kernel function, is invariant with change
in the kernel parameter. Further, each row of the intra
ring index is essentially the ordering of the instances
in the ring based on their angular separation with the
instance associated with that row in the ring. Again,
these orderings are unaffected by changes in the value
of the kernel parameter.

The functioning of the indexing approach outlined
before locates a given angle in the sorted array of angles
using binary search. Now, after changing the kernel
parameter, we do not have the values of the angles which
were used to construct the array. But, since the ordering

is unchanged, we can compute the values on the fly when
we access an instance in the course of the binary search
operation.

Finally, we turn our attention to the inter-group
index. Since this index stores the closest instance
from the adjacent group, the monotonic nature of the
kernel functions implies that this index is completely
unchanged. Thus, the old indexing structure can be
used unchanged by computing only the required values
when necessary. Since binary search in an array of size
g takes O(log g) time, therefore the extra computations
that need to be performed are of the order O(log g) for
each binary search operation.

5 Experiments

Our experiments were designed to evaluate the effective-
ness of KDX using a variety of datasets, both small and
large. We wanted to answer the following questions:

• Are the top-k instances chosen by KDX of good
quality?

• Quantitatively, how good are the results in terms
of their distances from the hyperplane?

• How effective is KDX in choosing only a subset of
the data to arrive at the results?

• How does the change in parameters (number of
instances per ring and kernel parameter) affect the
performance of KDX?

Our experiments were carried out on four UCI
datasets [4], a 21k-image dataset, and a 300k-image
dataset (obtained from Corbis). The four UCI datasets
were selected because of their relatively large sizes; the
two selected image-datasets have been used in several
research prototypes [7]. The details of the datasets
are presented in Table 1. In our experiments on top-
k retrieval we obtained results for k = 10, 20 and 50 for
the Corbis dataset, and k = 20 for the rest of smaller
datasets. The experiments were carried out with the
Gaussian kernel.

UCI Datasets We chose four UCI datasets—
namely, Seg, Wine, Ecoli and Yeast.
Seg: The segmentation dataset was processed as a
binary-class dataset by choosing its first class as the tar-
get class, and all other classes as the non-target classes.
We then performed a top-k query on the first class.
Wine: The wine recognition dataset comes from the
chemical analysis of wines grown in the same region of
Italy but derived from three different cultivators. Each
instance has 13 continuous features associated with it.
The dataset has 180 instances. We performed three top-
k queries on their three classes.

330

Dataset # Classes # Training # Testing

Seg 1 109 103
Wine 3 93 87
Yeast 10 747 737
Ecoli 8 165 171
21-k Image 116 4,321 16,983
Corbis 1,173 1,789 312,712

Table 1: Dataset description

Yeast: The yeast dataset is composed of predicted at-
tributes of protein localization sites. The dataset con-
tains 1, 484 instances with eight predictive attributes
and one name attribute. Only the predictive attributes
were used for our experiments. This dataset has ten
classes, but since the first three classes constitute nearly
77% of the data, we used only these three. Ecoli: This
dataset also contains data about the localization pattern
of proteins. It has 336 instances, each with seven pre-
dictive attributes and one name attribute. It has eight
classes out of which the first three represent roughly 80%
of the data and hence were used for our experiments.

21-k Image dataset The image dataset was col-
lected from the Corel Image CDs. Corel images have
been widely used by the computer vision and image-
processing communities. This dataset contains 21-K
representative images from 116 categories. Each im-
age is represented by a vector of 144 features including
color, texture and shape features [7].

Corbis dataset Corbis is a leading visual solu-
tions provider (http://pro.corbis.com/). The Corbis
dataset consists of over 300, 000 images, each with 144
features. It includes content from museums, photog-
raphers, filmmakers, and cultural institutions. We se-
lected a subset of its more than one thousand concepts.

The number of training and test instances vary
slightly with the different classes in the same dataset
because of differences in the number of positive samples
in each class. The samples were randomly picked from
both positive and negative classes. In the case of the
smaller datasets (Seg, Wine, Yeast and Ecoli), the
percentages of positive and negative samples picked
were equal. We chose 50% of the entire dataset was
chosen as training data. For the larger datasets (21-
k image and the Corbis) the percentage of positive
samples picked was higher (50%) than the percentage
of negative samples chosen. This was done to ensure
that the large volume of negative samples does not
affect the SVM training algorithm, which is sensitive
to imbalances in the sizes of the training and testing
datasets. The details of the separation of the datasets
are presented in Table 1.

5.1 Qualitative evaluation

Given a query, KDX performs a relevance search to
return the k farthest instances from the query hyper-
plane. To measure the quality of the results, we first
establish a benchmark by scanning the entire dataset
to find the top-k instances for each query: this consti-
tutes the “golden” set. The metric we use to measure
the query result is recall. In other words, we are inter-
ested in the percentage of top-k golden results retrieved
by KDX. Results for the qualitative evaluation are pre-
sented in the second column of Table 2. The results
are averaged over three classes for all the datasets ex-
cept for Seg. The average recall values for all datasets
are above 80%. For the Corbis dataset, which has the
largest number of instances, we have an average recall
of 90% with less than 4% of data evaluated. (We report
recall vs. fraction of data evaluated in Section 5.3.) The
recall values are reasonably high for all the datasets.

5.2 Evaluation of discrepancy

This quantitative evaluation involved finding the dis-
crepancy between the average distance to the hyper-
plane from the top-k instances found by KDX, and the
average distance to the hyperplane from the top-k in-
stances in the “golden” set. To obtain a percentage,
we divide the average discrepancy by the difference of
the distances of the most positive and least positive in-
stances in the dataset. The results showing the per-
centage of average discrepancy for all the datasets are
presented in the third column of Table 2. The low values
of the percentage of average discrepancy indicate that
even if the retrieved instances may not exactly match
the golden set of top-k instances, they are comparable
in their distances from the hyperplane. None of the
datasets has more than 0.3% average discrepancy with
the values being very low for the large datasets.

5.3 Percentage of data evaluated

This evaluation aimed to find the percentage of data
evaluated before we obtained the best results using the
indexing strategy. In other words, we were interested
in finding approximately how quickly KDX converged
on its set of best results. The results are reported in
the fourth column of Table 2. These values are mostly
very low (lower than 10%) except in the case of the
smaller datasets where, because of the small size of the
dataset, the percentage of evaluated samples, even with
a small number of samples being evaluated, tends to be
high. For the large datasets, we find that the results are
impressive with less than 4% of the data being evaluated
to reach 90% recall.

Figure 10 gives a detailed report of the percentage
of average discrepancy, percentage of evaluated samples,

331

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

%
d
is

c
r
e
p
a
n
c
y

Number of rings examined

% Average discrepancy (σ2=30)
(σ2=40)
(σ2=60)
(σ2=70)

0

5

10

15

20

25

0 50 100 150 200 250 300 350
0

5

10

15

20

25

%
o
f
d
a
t
a

e
v
a
lu

a
t
e
d

Number of rings examined

% Evaluated samples (σ2=30)
(σ2=40)
(σ2=60)
(σ2=70)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

%
R

e
c
a
ll

Number of rings examined

% Recall (σ2=30)
(σ2=40)
(σ2=60)
(σ2=70)

Figure 9: Corbis dataset: variation with change in σ2 from 30 to 70

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

%
d
is

c
r
e
p
a
n
c
y

Fraction of rings examined

% Average discrepancy (750 points)
(1000 points)
(1250 points)
(1500 points)

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

%
o
f
d
a
t
a

e
v
a
lu

a
t
e
d

Fraction of rings examined

% Evaluated samples (750 points)
(1000 points)
(1250 points)
(1500 points)

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

100

%
R

e
c
a
ll

Fraction of rings examined

% Recall (750 points)
(1000 points)
(1250 points)
(1500 points)

Figure 10: Corbis dataset: variation with change in number of points per ring from 750 to 1500 (σ2 = 50)

and the change in recall as the number of rings increases.
In each of the graphs, the x-axis depicts the fraction
of the total number of rings processed, and the y-
axis depicts the different quantities of interest. The
recall (presented in the right-most graph in Figure 10)
reaches a peak early in the evaluation with only a few
instances being explicitly evaluated (presented in the
middle graph). The discrepancy falls to its lowest level
with roughly 4% of the data being evaluated (presented
in the left-most graph).

5.4 Changes in parameters

This set of experiments focused on two different pa-
rameters. In the first set of experiments, we were in-
terested in evaluating the performance of the indexing
strategy when the kernel parameter (in this case σ of
the Gaussian kernel) was changed after the index had
been constructed. The second set of experiments evalu-
ated the performance of the indexing strategy when the
number of instances per ring was varied.

Figure 9 shows the results obtained by varying
kernel parameter σ2 between 30 and 70 for the Corbis
dataset. Here the x-axis depicts the number of rings
examined and the y-axis the quantities of interest
(average discrepancy, percentage of data evaluated, and
recall). As σ decreases, the angular separation between
instances increases, and so does the width of each
ring. This affects recall since with wider rings KDX

can miss instances as shown in Figure 7(a). However,
the extremely low discrepancy values indicate the high
quality of the selected instances. Figure 10 shows
the results of changing the number of points in the
rings for the Corbis dataset from 750 points to 1, 500.
Though recall generally improves when the number of
instances per ring decreases, the percentage of evaluated
instances increases. The above results indicate that
changes in kernel parameters and number of points in
the ring within reasonable limits do not significantly
affect KDX’s performance.

We also experimented with different k values for
the Corbis dataset. The results of k = 10 and
k = 50 are reported in Table 3. When k is small,
the recall tends to suffer slightly; when k is large,
the recall can approximate 100%. In both cases,
the distance discrepancy remains very small (less than
0.1%). Although KDX may occasionally miss a small
fraction of the “golden” top-k instances, the quality of
the top-k found is very good.

6 Conclusions

We have presented KDX, a novel indexing strategy for
speeding up top-k queries for SVMs. Evaluations on a
wide variety of datasets were carried out to confirm the
effectiveness of KDX in converging on relevant instances
quickly.

As future work we would like to pursue the goal

332

Dataset % Recall % Discrepancy % Evaluated

till recall

Seg 100 0 7.84314
Wine 93.3 0.27225 22.4806
Yeast 80.0 0.06603 3.547
Ecoli 100 0 17.2647
21K 85.0 0.0272883 2.8559
Corbis 90.0 0.03607813 2.94255

Table 2: Qualitative and quantitative comparison

Dataset Class Recall % Discrepancy % Evaluated
till recall

Corbis 0 0.8 0.05241 3.7729
(k = 10) 1 1 0 1.82111

2 0.7 0.119966 2.91755

Corbis 0 0.98 0.000324724 3.83965
(k = 50) 1 0.96 0.00851683 1.84253

2 0.9 0.036358 3.06362

Table 3: Results with varying k

of further lowering the number of instances to be
evaluated. We would also like to develop bounds on
the number of instances that KDX evaluates. Another
objective would be to lower the size of the index
structure used by KDX. Currently, the index structure
takes up O(n g) space (g being the number of instances
in each ring). Although the dataset itself takes up
O(n d) space (d being the dimensionality of each feature
vector), the size of the index structure can quickly
become very large. We would like to explore avenues
restricting the size of the index.

References

[1] Charu C. Aggarwal and Philip S. Yu. Outlier detection
for high dimensional data. In SIGMOD Conference,
2001.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R∗ tree: An efficient and robust access method for
points and rectangles. In ACM SIGMOD Int. Conf. on
Management of Data, pages 322–331, 1990.

[3] S. Berchtold, D. Keim, and H.P. Kriegel. The X-tree:
An index structure for high-dimensional data. In 22nd
Conference on Very Large Databases, Bombay, India,
pages 28–39, 1996.

[4] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

[5] M. Brown, W. Grundy, D. Lin, N. Christianini, C. Sug-
net, M. Jr, and D. Haussler. Support vector machine
classification of microarray gene expression data. 1999.

[6] Christopher J.C. Burges. Geometry and invariance
in kernel based methods. In Alex J. Smola Bern-
hard Schölkopf, Chris Burges, editor, Advances in Ker-
nel Methods. MIT Press Cambridge, MA, 1998.

[7] E. Chang, K. Goh, G. Sychay, and G. Wu. Content-
based soft annotation for multimodal image retrieval

using bayes point machines. IEEE Trans. on Cir-
cuits and Systems for Video Technology Special Issue
on Conceptual and Dynamical Aspects of Multimedia
Content Description, 13(1):26–38, 2003.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. Proc. 23rd Int. Conf. on Very Large Databases,
pages 426–435, 1997.

[9] Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity search in high dimensions via hashing. In
The VLDB Journal, pages 518–529, 1999.

[10] Michael E. Houle and Jun Sakuma. Fast approximate
similarity search in extremely high-dimensional d ata
sets. In ICDE, 2004.

[11] Thorsten Joachims. Text categorization with support
vector machines: learning with many relevant fea-
tures. In Claire Nédellec and Céline Rouveirol, editors,
Proceedings of ECML-98, 10th European Conference
on Machine Learning, number 1398, pages 137–142,
Chemnitz, DE, 1998. Springer Verlag.

[12] Norio Katayama and Shin’ichi Satoh. The SR-tree: an
index structure for high-dimensional nearest neighbor
queries. In ACM SIGMOD Int. Conf. on Management
of Data, pages 369–380, 1997.

[13] D. A. Keim. Tutorial on high-dimensional index struc-
tures: Database support for next decades applications.
In Proceedings of the ICDE, 2000.

[14] Hyunsoo Kim, Peg Howland, and Haesun Park. Di-
mension reduction in text classification using support
vector machines. Journal of Machine Learning Re-
search, to appear.

[15] Chen Li, Edward Chang, Hector Garcia-Molina, and
Gio Wilderhold. Clindex: Approximate similarity
queries in high-dimensional spaces. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 14(4),
July 2002.

[16] King-Ip Lin, H. V. Jagadish, and Christos Falout-
sos. The TV-tree: An index structure for high-
dimensional data. VLDB Journal: Very Large Data
Bases, 3(4):517–542, 1994.

[17] Simon Tong and Edward Chang. Support vector
machine active learning for image retrieval. ACM
International Conference on Multimedia, pages 107–
118, 2001.

[18] Simon Tong and Daphne Koller. Support vector ma-
chine active learning with applications to text classifi-
cation. In Pat Langley, editor, Proceedings of ICML-
00, 17th International Conference on Machine Learn-
ing, pages 999–1006, Stanford, US, 2000. Morgan Kauf-
mann Publishers, San Francisco, US.

[19] V. Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, 1995.

[20] Roger Weber, Hans-Jörg Schek, and Stephen Blott.
A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces.
In Proc. 24th Int. Conf. Very Large Data Bases,
VLDB, pages 194–205, 24–27 1998.

333

Parallel Computation of RBF Kernels for Support Vector Classifiers∗

Shibin Qiu† Terran Lane‡

Abstract

While kernel support vector machines are powerful classifi-

cation algorithms, their computational overhead can be sig-

nificant, especially for large and high-dimensional data sets.

A recent biomedical dataset, for instance, could take as long

as 3 weeks to compute its RBF kernel matrix on a mod-

ern, single-processor workstation. In this paper, we develop

methods for high-performance parallel computation of kernel

matrices. There are two key components to a parallel imple-

mentation: distribution of the computation across nodes and

communication to combine the results. To address the first,

we employ a dimension-wise data partition that yields effi-

cient computation and low communication overhead during

the initial phase. This partition provides dramatic speedups

on large and high-dimensional data, applies to a wide variety

of kernel functions, and is an exact computation, producing

the same kernel matrix as its sequential implementation. To

address communication needs during the second phase, we

introduce an approximation specific to the Gaussian RBF

kernel that yields sparse partial kernel matrices and, thus,

efficient communication. We analyze the approximation er-

ror of this method, demonstrating that it falls off exponen-

tially with N , the parameter of the approximation. We also

examine the positive definiteness of the approximation with

respect to Mercer’s condition and show that (a) in the limit

of N our approximation becomes positive definite for any

data set and (b) for a fixed data set, there exists a finite

N yielding a positive definite kernel matrix. We also give a

simple iterative method for selecting N to yield a positive

definite kernel matrix on any fixed data set. In practice, we

find that positive definiteness is achieved on all of the data

sets we examine with very small N (2–5). Finally, we test

the empirical performance of our two methods on a variety

of large, real-world data sets, demonstrating large computa-

tional speedups with little or no impact on accuracy.

Keywords: Parallel algorithms, Support vector
machines, Kernel approximation, SVM performance.

∗This work is supported by NIH Grant Number 1P20RR18754
from the Institutional Development Award (IDeA) Program of
the National Center for Research Resources.

†Computer Science Department, University of New Mexico,
sqiu@unm.edu.

‡Computer Science Department, University of New Mexico,
terran@cs.unm.edu.

1 Introduction

Kernel support vector machines have gained prominence
in recent years for their strong classification perfor-
mance on a variety of linearly nonseparable and high-
dimensional data. Unfortunately, particularly large
and high-dimensional data sets, such as often arise in
biomedical applications, may require substantial effort
simply to compute the kernel matrix itself. For exam-
ple, computing a Gaussian radial basis function (RBF)
kernel matrix for a recent drug design database could
require weeks on a current, high-end workstation. In
this paper, we develop methods for a high-performance
parallel implementation of the kernel computation.

There are two key components to a parallel im-
plementation: distribution of the computation across
nodes and communication to combine the results. To
address the first component, we employ a dimension-
wise data partition that yields efficient computation
and low communication overhead during the initial, dis-
tributed computation, phase. This partition applies to
a wide variety of kernel functions (e.g., those that are
scalar functions of inner products) and is an exact com-
putation, producing the same kernel matrix that would
be computed on a uniprocessor system.

Even with efficient distributed computation, how-
ever, the communication overhead incurred in combin-
ing the partial results is substantial and significantly
detracts from theoretical peak performance. To ad-
dress communication overhead during this second, re-
sult combination, phase of the computation, we intro-
duce an approximation specific to the Gaussian RBF
kernel that yields extremely sparse partial kernel matri-
ces and, therefore, low bandwidth requirements. This
method employs a series of N rectangles of width τ to
approximate the RBF kernel function. We analyze the
approximation error of this method, demonstrating that
it falls off exponentially with N . We also examine this
approximation with respect to Mercer’s positive defi-
niteness condition. First we demonstrate that, in the
limit of N , our approximation converges to the true
RBF kernel and, therefore, obeys Mercer’s condition for
any data set. Unfortunately, for fixed τ and finite N ,
the approximate kernel matrix may not be positive def-
inite for some data sets. However, we show that for any

334

fixed data set it is possible to choose N and τ so that the
resulting approximate kernel matrix is positive definite.
In practice, we employ a simple iterative procedure for
selecting N for a specific data set, X, to yield a sparse,
positive definite kernel matrix for that X. In practice,
we find that positive definiteness is achieved on all of the
data sets we examine with very small N (2–5), yielding
extremely sparse matrices (fill factors of roughly 2%).

Finally, we examine the empirical performance of
our two methods on a variety of large, real-world data
sets including microarray data analysis, classification
of functional magnetic resonance imaging (fMRI) neu-
roimaging data, and drug design. We find that our
parallel implementation is able to achieve substantial
speedups – up to 24 folds for the dimension-wise par-
tition alone and 45 folds for the two approaches com-
bined. With the two methods combined, the speedup is
nearly linear in the number of processors dedicated to
the computation up to 32 nodes in the cluster. Simulta-
neously, the approximate RBF kernel method produces
small impact on classification accuracy – less than 1%
in the cases we tested.

This paper is organized as follows. In Section
2, we analyze the necessity for parallel computing for
large datasets. Section 3 discusses related works for
enhancing SVM performance. Section 4 presents the
dimension-wise partition method. Section 5 introduces
the kernel approximation method and proves for its
positive definiteness. Performance tests are conducted
in Sections 4 and 5. Comprehensive experiments are
given in Section 6, where more tests are conducted by
combining the dimension-wise partition and the kernel
approximation method. We conclude the paper in
Section 7. Some related mathematical derivations are
given in the appendices.

2 The Need for Parallel Computing

Higher dimensional datasets usually require more data
points. Data for text mining has high dimensionality
[12]. Prediction for biological sequences using string
kernels also involves computation of high dimensional
data [16]. Fortunately, kernels for these structured data
can be implemented efficiently and direct computing in
the high dimensional space can be avoided.

However, for some datasets, kernel computation
must be conducted by direct matrix operations in the
input space. The thrombin dataset [25], which was de-
veloped for the 2001 KDD cup, has 139,351 features
and 2,543 data points. Computing an RBF kernel on
this dataset requires a considerable amount of process-
ing time. The CDK2 drug design dataset has 14,223
compounds, each of which has 35,926,557 descriptors
[28]. This data set requires a few Tera bytes of memory

space, which is beyond the capacity of most uniproces-
sor computers. However, training time is an even sig-
nificant barrier. The time complexity of computing an
RBF kernel matrix is O(m2n) [4], where m is the num-
ber of data points and n is the dimension of input space.
A computer with sufficient memory and the capacity of
4 GFlops per second, the common speed of today’s high
end computer, would need 21 days to compute the ker-
nel matrix for this data set (details in Appendix 1). And
it takes much longer if memory is not enough. Modern
high density microarrays have dimensions of more than
60 million [20]. If a dataset generated by this type of
microarray has a few thousand data points, using the
data representation as used by Brown et al. [1], then
a few Tera bytes of space will be needed just for stor-
age of the data. A uniprocessor computer would need a
few weeks to compute the kernel matrix for this dataset
(Appendix 1). Although the capacity of a uniprocessor
computer may double in a few years to come, the kernel
computing time will still be a matter of weeks. And the
sizes of datasets are increasing constantly. Thus, even
though the space requirement might be satisfied some
time in the future by installing Tera byte memories in
uniprocessor computers, the computing time is still in-
hibitive. Advanced feature selection can be used to re-
duce the dimension of the data and improve the training
efficiency for some datasets. But the preprocessing in
feature selection also takes considerable amount of time.
In addition, direct use of the original features are pre-
ferred for some datasets. For instance, each element in a
microarray represents a particular segment of sequence
from the genomic data and is not intended to be re-
placed or mixed with any other element. For datasets
whose dimensions can be reduced by feature selection,
classification accuracy based on original features can be
used as a reference for comparison with the feature selec-
tion approaches. Therefore, parallel computing is neces-
sary for the improvement of computational performance
for large and high dimensional data. A computer clus-
ter of 512 nodes, with proper implementation of the
algorithm, can reduce the training time for such large
datasets roughly to a couple of hours, or less than an
hour. Parallel computing can also use distributed mem-
ory in the system and satisfy larger space requirement.

Empirical results show that on a single computing
node 85% to 98% of an SVM’s training time is spent
on computing its kernel matrix. This phenomenon has
also been observed by other authors such as in [18].
Therefore, improving the computational performance
of an SVM depends on enhancing its kernel computing
efficiency.

335

3 Related Work

Kernel computation and quadratic programming for
training an SVM take substantial amount of time. To
make the quadratic search faster, Joachims invented
SVM light [11], which selects a smaller working set
than the training set at each iteration and reduces the
amount of computation. Similar strategies were used to
achieve faster performance in quadratic programming
to solve the SVMs [9][13][21], while other authors have
introduced different variants of SVMs, such as SMO [22]
and SSVM [15]. To reduce space and time consumption,
an approximate SVM, the RSVM was introduced [14],
which randomly selected a subset from the training
set and trained on this reduced subset. The proximal
SVM (PSVM) was introduced as an alternative to
quadratic programming [7], as it only depends on linear
algebraic operations. Incremental training methods
were proposed for PSVM to save space and to unlearn
old data [8], where only linear classifiers without kernels
were considered. An incremental learning algorithm
was suggested for high dimensional data, but for only
for the linear SVM [5]. This training method for high
dimensional data used linear algebraic manipulations
based on the Sherman-Morrison-Woodbury formula and
is not applicable for nonlinear kernels. Leslie et al. [16]
proposed an efficient implementation for their string
kernels, which is, however, not applicable to general
numerical data. Mahe et al. [18] introduced efficient
algorithms for computing graph kernels, which are
again, not suitable for general numerical data.

A parallel incremental learning algorithm was pro-
posed for the linear PSVM [26]. A data parallel ap-
proach was proposed for Guassian process regression
using local learning method [2]. But the parallelism
achieved in computing the compactly supported covari-
ance function is based on the assumption that training
data can be clustered into disjoint and spatially local-
ized subsets. In practice, when this assumption is not
met, a kernel matrix cannot be efficiently computed be-
cause each computing node needs to access data from
all other nodes. A parallel mixture of SVMs was imple-
mented and performance was improved on large data
sets [3]. However, this work focused on reducing the
impact of large number of training examples on com-
putational efficiency (similar to RSVM [14]). It did
not study the effect of high dimensionality and did not
yield a unified kernel matrix over all training data. It
is also noted that most related works use linear SVMs
and avoid kernels for large and high dimensional data
sets due to the cost of kernel computation. And par-
allel computation has only been implemented for linear
PSVM without kernels [26] because of the difficulty in
parallel implementation for kernel computation.

To parallelize the computation of a nonlinear kernel,
we employ the dimension-wise partition to distribute
the calculation across computing nodes with minimum
data access overhead. To further improve parallel per-
formance, we minimize communication cost by intro-
ducing a novel kernel approximation method. Our par-
allel algorithms are analyzed and proved theoretically,
and tested for large data sets on a computer cluster.

4 The Dimension-wise Partition for Parallel
Kernel Computation

In this section, we present the dimension-wise partition
for parallel computation of RBF kernel matrices.

4.1 Kernel based support vector machines For
the sake of notation, we first briefly summarize the
optimization problem and the classifier function of
a kernel based SVM. The nonlinear support vector
machine can be formulated as follows,

min ν
1
2
‖y‖2 +

1
2
(uTu + γ2)(4.1)

subject to D(K(X, XT)Du− eγ) + y ≥ e,

where X ∈ Rm×n is the training data matrix, m is the
number of data points in the training set and n is the
dimension of input space [19]. We use Xi to denote the
ith row of matrix X, representing the ith data point.
D ∈ Rm×m is the diagonal label matrix, Dii = 1(−1),
if the label at the ith data point is 1(−1). u ∈ Rm and
γ ∈ R are to be solved. ν is a weighting parameter
for the separation error vector y ∈ Rm. e ∈ Rm is
a vector of all ones. K = K(X, XT) ∈ Rm×m is the
kernel matrix between X and XT. The optimization
problem of (4.1) is generally solved through quadratic
programming. When it is solved, the classifier function
for an input data point x is,

(4.2) f(x) = sgn

(
m∑

i=1

αiDiik(x, xi) + γ

)
,

where the nonzero αi determine the support vectors.
PSVM, on the other hand, solves (4.3) below,

a variant optimization problem of (4.1) using linear
algebra operations only and obtains equivalent quality
on training and generalization [7].

min ν
1
2
‖y‖2 +

1
2
(uTu + γ2)(4.3)

subject to D(K(X, XT)Du− eγ) + y = e.

And its classifier function is,

(4.4) f(x) = sgn
(
(K(xT, XT)K(X, XT) + eT)Dv

)
.

336

We implement the PSVM in this paper. But the
kernel computation methods are equally applicable to
other forms of SVMs.

4.2 The dimension-wise partition We formulate
the dimension-wise partition method using the RBF
kernel. In the RBF kernel family, a kernel function
of two vectors x and x′ only depends on the distance
between them, and is of the form, K(x, x′) = K(x−x′).
A commonly used kernel function is the Gaussian kernel.
The ith row and jth column entry in a Gaussian kernel
matrix is evaluated as,

(4.5) (K(X, XT))ij = exp(−‖Xi −Xj‖2 /2σ2).

We use r = ‖x− x′‖ to denote the Euclidian distance
between vectors x and x′, and write the kernel function
as k(r) = K(x, x′) = e−r2/2σ2

.
One common transform used for the calculation

of (4.5) is to use the identity of exp(−‖x − x′‖2) =
exp(2x>x′ − ‖x‖2 − ‖x′‖2). However, this formula does
not eliminate the cross evaluation between the vectors
x and x′ and still has O(m2n) complexity.

Parallel computation of a kernel matrix involves two
major parts: simultaneous calculation on all nodes and
communication to combine the intermediate output into
the final result. One way to compute the kernel matrix
in parallel is to partition the data row-wise such that
each computing node is assigned a subset of the train-
ing data. However, this row-wise partition has serious
problems. First, communication cost is too high, as
computing each element in the kernel matrix on a node
requires data from all other nodes. Second, when com-
bining the partial matrices to obtain the final kernel
matrix, the computation is complicated and the time
complexity increases. Therefore, the row-wise partition
does not improve computational performance and only
deteriorates performance. In fact any partitioning in-
volving divisions among the rows has this problem of
accessing data across nodes and has high communica-
tion overhead. Therefore, dividing the data matrix into
blocks also results in low performance.

When m and n are substantially different, lin-
ear SVM can take advantage of exchanging rows and
columns by using the Sherman-Morrison-Woodbury for-
mula [5]. However, this technique is not applicable for
SVMs with nonlinear kernels [14].

In the following, we show how to efficiently partition
the data for parallel kernel computing and how to
further reduce communication cost. Specifically, we
propose the dimension-wise partition and show that
it indeed speeds up computation. Communication
performance is dealt with in Section 5.

Parallel calculation of the kernel function between

vector Xi and Xj using dimension-wise partition can be
formulated as follows. We partition the data matrix X
in the following way:

(4.6) X = (X1|X2|...|Xp).

Each partition Xk is of dimension m× l, where l = n/p
and p is the total number of processing nodes in the
computing system. We assume l is an integer. The ith

row of Xk is Xk
i = (Xk

i1, X
k
i2, ..., X

k
il). For Gaussian

kernel,

r2
ij = ‖Xi −Xj‖2

(4.7)

= (Xi1 −Xj1)2 + (Xi2 −Xj2)2 + ... + (Xin −Xjn)2

= (X1
i1 −X1

j1)
2 + ... + (X1

il −X1
jl)

2

+ (X2
i1 −X2

j1)
2 + ... + (X2

il −X2
jl)

2+

... + (Xp
i1 −Xp

j1)
2 + ... + (Xp

il −Xp
jl)

2

=
p∑

k=1

Nk
ij ,

where Nk
ij is the partial squared distance computed on

the kth computing node,

Nk
ij =

l∑

d=1

(Xk
id −Xk

jd)
2.(4.8)

Then the kernel function can be rewritten as,

(K(X, XT))ij = exp(−
p∑

k=1

Nk
ij/2σ2)(4.9)

=
p∏

k=1

exp(−Nk
ij/2σ2) =

p∏

k=1

K
(k)
ij .

where K
(k)
ij is the element computed by node k and

the multiplication is element by element (the Schur
product). We can express the kernel matrix as,

K(X, XT) =
p∏

j=1

K(j).(4.10)

Thus, node j computes a partial kernel matrix K(j)

based on its partition of the data without accessing
data from other nodes, and a coordinator node com-
bines these partial kernel matrices by multiplying them
together to obtain the Schur product.

For an m × m kernel matrix, the partial matrices
are also of dimension m × m. The computing cost on
each node is O(m2n/p). The communication cost for

337

200

400

600

800

1000

1200

1400

1600

1800

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

tim
es

 (
se

c)

number of nodes (p)

fmri
thrombin

(a)

2

4

6

8

10

12

14

16

18

20

22

24

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

sp
ee

du
p

number of nodes (p)

fmri
thrombin

(b)

Figure 1: Parallel SVM classification times (a) and
speedups (b) for fMRI and thrombin datasets using
dimension-wise partition and Gaussian kernels.

sending these partial kernel matrices for combining is
proportional to their sizes. If we neglect the startup
cost, then the communication cost is approximately
Tcomm = ηm2, where η is a coefficient. Therefore the
speedup can be represented by,

Sp(p) =
m2n

m2n/p + ηm2
=

p

1 + pη/n
.(4.11)

If n is large and the communication cost is small,
the speedup is close to linear in p, the number of
computing nodes. Thus, dimension-wise partition can
approximately achieve linear speedup. It is especially
effective for high dimensional datasets and computing
systems with fast interconnections.

Figures 1 shows the experimental results with the
dementia fMRI dataset [6] and the thrombin dataset
[25] on a cluster of 65 nodes. The dementia dataset
contains m = 2, 500 data points and has a dimension of
n = 65, 536. The purpose of this dataset is to classify
a patient as demented or normal based on the patient’s
fMRI images. The task of the thrombin dataset is
to classify a chemical compound into the active class
or the inactive class. Figure 1 demonstrates speedups
are achieved by using the dimension-wise partition.
When p is less than 16, the speedups are roughly
linear. But the speedups slow down as the number of

k(r)

0 τ 3τ2τ r

Figure 2: Approximating a Gaussian kernel with rectan-
gle functions having widths τ , and heights of the kernel
function evaluated in the center of the rectangles.

computing nodes increases. This decrease of speedup
is because of the communication cost incurred during
the process of combining the partial kernel matrices
in (4.10). If communication cost is not reduced, the
speedup will be saturated at some point. Since the
thrombin dataset has larger dimension, it achieves more
speedup when the cluster has more than 24 nodes.
This is because the thrombin dataset has a larger
computing task and each node is assigned larger load
to compute and simultaneous calculation increased the
speedup. In this case, computing cost dominates the
overall performance. On the other hand, the computing
task is relatively small for the fMRI dataset, and
the communication cost becomes more evident and its
speedup is decreased.

The communication cost for transferring the partial
kernel matrices is proportional to their sizes. We
use an approximation method in calculating the RBF
kernel function, which makes the partial kernel matrices
sparse. We then only need to send the nonzero elements
by using sparse matrix technology. In the next section,
we investigate the approximation method.

5 RBF Kernel Approximation for
Communication Cost Reduction

In this section we introduce an approximation method
for RBF kernel calculation and use it to improve com-
munication performance.

5.1 RBF kernel approximation using rectangle
functions We first show an RBF kernel can be approx-
imated by an infinite series of rectangle functions and
then truncate the series for implementation to obtain
sparse matrices. We can approximate an RBF kernel
function k(r) by a series of rectangle functions,

k(r) ≈ k̂(r) =
∞∑

j=−∞
k(jτ)a(r − jτ),(5.12)

338

where τ > 0 is the width of the rectangles, a(r − jτ) is
the shifted rectangle function of a(r) [10], and k(jτ)
is the value of k(r) evaluated at points of r = jτ ,
j ∈ Z. The solid rectangles in Figure 2 denote the
shifted rectangle functions.

According to the Mercer’s theorem (finite case),
if a symmetric function k(x, x′) satisfies the following
positive definiteness condition, then it is a legitimate
kernel function for SVM [24],

(5.13)
∫

χ×χ

k(x, x′)f(x)f(x′)dxdx′ ≥ 0 ∀f ∈ L2(χ),

where k : χ × χ → R is any symmetric function and
is square integrable in χ × χ. For an RBF kernel,
Mercer’s condition can be expressed through its Fourier
transform as,

(2π)
n
2

∫

χ

∣∣∣f̃(ω)
∣∣∣
2

k̃(ω)dω ≥ 0,(5.14)

where k̃(ω) is the Fourier transform of k(r), and f̃(ω) is
the Fourier transform of f(x), and n is the dimension of
x ∈ χ (details in Appendix 2). For k(r) to satisfy (5.14),
we need

(5.15) k̃(ω) ≥ 0 ∀ω ∈ χ.

A Gaussian kernel, for instance, has a Fourier trans-
form in the form of Gaussian function [10], whose value
is nonnegative in frequency domain, therefore satisfy-
ing Mercer’s condition (5.15). The Fourier transform of
the rectangle function a(r) is ã(ω) = τsinc(τω

2) and has
negative values for ω ∈ (−∞,∞) [10]. Therefore a sin-
gle rectangle function as the approximation of an RBF
function does not satisfy Mercer’s condition. However,
the sum of an infinite series of weighted rectangle func-
tions, as in (5.12), satisfies the Mercer’s condition when
τ is infinitely small, as shown in the following theorem.

Theorem 5.1. Given a positive definite kernel k(r),
the approximate kernel k̂(r) in (5.12) is also positive
definite when τ → 0.

Proof: We first take the Fourier transform of k̂(r)
in (5.12) as follows.

˜̂
k(ω) = F{k̂(r)} = F{

∞∑

j=−∞
k(jτ)a(r − jτ)}(5.16)

=
∞∑

j=−∞
k(jτ)F{a(r − jτ)}

=
∞∑

j=−∞
k(jτ)τsinc(

τω

2
)e−iτjω,

where F{·} is the Fourier transform operator, and i =√−1. We then find the limit of the Fourier transform
of (5.16), when τ approaches zero as follows.

lim
τ→0

˜̂
k(ω) = lim

τ→0

∞∑

j=−∞
k(jτ)τsinc(

τω

2
)e−iτjω(5.17)

= lim
τ→0

∑
r

k(r)e−irωτ =
∫ ∞

−∞
k(r)e−irωdr

= F{k(r)} = k̃(ω).

In evaluating the above limit, we use the fact that
limx→0 sinc(x) = 1, and limτ→0 jτ = r. Thus, (5.17)
indicates that if an RBF kernel function satisfies Mer-
cer’s condition, k̃(ω) ≥ 0, ∀ω ∈ χ, then the limit of the
Fourier transform of its approximation also satisfies the
Mercer’s condition. ¤

To use (5.12) to approximate the RBF kernel func-
tion, we truncate the series and use a fixed value for τ .
Equation (5.12) becomes,

k(r) ≈ k̆(r) =
N∑

j=−N

k(jτ)a(r − jτ).(5.18)

Since the value of the approximate kernel function
in (5.18) is zero for |r| > Nτ , the kernel matrix contains
many zeros. For a given dataset X, we can pick τ and
N so that the approximate kernel matrix is positive
definite, as shown in the following theorem.

Theorem 5.2. For any fixed and finite data set X and
a positive definite RBF kernel function k(r), there exist
a fixed τ > 0 and a finite N for which k̆(r) in (5.18) has
zero error and yields a positive definite kernel matrix.

Proof : We note that the Gaussian RBF kernel is
purely a function of the Euclidean distances between
data points in the input space. Since the distance is
nonnegative, we ignore the rectangles positioned to the
left of the origin in Figure 2. Let D = {d1, d2, . . . , dm2}
be the set of all distances derived from data set X. Our
problem now reduces to showing that we can construct
a set of rectangles by choosing τ and N , such that every
di falls precisely at the midpoint of one rectangle where
the height of the rectangle equals the value of the kernel
function. On any real computer, all di must be of finite
precision, i.e., be rational. There exists some integer q >
0, such that qD = {qd1, . . . , qdm2} are all nonnegative
integers. Then let α = GCD({qdi : qdi 6= 0}) be
the greatest common divisor of the nonzero elements
of the scaled, integral distances. Now every qdi can be
written as biα for some integer bi. We choose τ = α/q
and N = maxi{bi} + 1. Then every di falls at the

339

midpoint of some rectangle function, and k̆(di) = k(di)
for all i. Thus, the approximation error is zero and the
approximate kernel matrix is positive definite. ¤

In practice, of course, this choice of τ and N is
hardly a useful approximation – the resulting kernel
matrix will be the same (and just as dense) as the
exact kernel matrix. Theorem 5.2, however, establishes
the existence of finite approximations to the kernel
function that are positive definite for fixed data sets.
For any given data set, then, our task is to find a sparse
positive definite approximation to the kernel function.
We address this question in Section 5.2.

We next show the error bounds in frequency domain
and in the distance domain when the series is truncated.

Theorem 5.3. The sum of squared errors of the ap-
proximate kernel given by (5.18) decreases exponentially
with N in the frequency domain.

Proof : We combine the conjugate terms in (5.16)
and obtain,

˜̂
k(ω) = ã(ω)k(0) + ã(ω)

∞∑

j=1

(e−iτjω + eiτjω)k(jτ)

(5.19)

= ã(ω)k(0) + ã(ω)
∞∑

j=1

2 cos(jτω)k(jτ).

If we only take the first N terms in the summation
in (5.19), we get the Fourier transform of (5.18),

˜̆
k(ω) = ã(ω)k(0) + ã(ω)

N∑

j=1

2 cos(jτω)k(jτ).(5.20)

The error generated by the series truncation is the
difference between (5.19) and (5.20),

e(ω) = ˜̂
k(ω)− ˜̆

k(ω)(5.21)

= 2ã(ω)
∞∑

j=N+1

cos(jτω)k(jτ) = 2ã(ω)D,

where D is bounded as,

D =
∞∑

j=N+1

cos(jτω)k(jτ) ≤
∞∑

j=N+1

|cos(jτω)k(jτ)|

(5.22)

≤
∞∑

j=N+1

|k(jτ)| =
∞∑

j=N+1

e−
(jτ)2

2σ2 =
∞∑

j=N+1

(
e−

τ2

2σ2

)j2

=
∞∑

j=N+1

(
1
g

)j2

≤
∞∑

j=N+1

(
1
g

)j

=
1

(g − 1)gN
,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

fil
l f

ac
to

r

number of rectangles

a=0.005
a=0.24
a=0.43

a=0.6675
a=0.81

a=0.9525

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

fil
l f

ac
to

r

number of rectangles

a=0.5
a=0.75
a=1.0
a=1.5
a=2.0
a=2.5

(b)

Figure 3: Fill factors of kernel matrices change with
τ = aσ, width of the rectangles, and N , the number
of rectangles. (a) The ionosphere dataset. (b) The
thrombin dataset.

where g = eτ2/2σ2
> 1. Therefore e(ω) is bounded by,

e(ω) ≤ 2ã(ω)
1

(g − 1)gN
.(5.23)

The total squared error in the frequency domain is,

sse(N) =
∫ ∞

−∞
e(ω)2dω(5.24)

≤ 4
(g − 1)2g2N

∫ ∞

−∞
ã(ω)2dω

=
8πτ

(g − 1)2g2N
.

In calculating the integral of (5.24), we used the fact
that

∫∞
−∞ sinc2(x)dx = π. The actual error bound is

tighter than that given in (5.24) because the geometric
series used in (5.22) is a loose bound. Equation (5.24)
shows that the total squared error in frequency domain
decreases exponentially with N , the number of rectan-
gles used in the approximation. ¤

To evaluate the error bounds in the distance do-

340

Table 1: Sparseness of kernel matrices. ρ1 and ρ2 are the 10 fold cross validation accuracies using Gaussian kernel
and the approximate kernel, respectively. φ is the fill factor of the kernel matrices. N is the number of rectangles
used. eω and er are the error bounds in frequency domain and distance domain, respectively.

datasets size (m× n) ρ1 N φ ρ2 eω er

HD 297×14 0.99±0.032 2 0.01 0.99±0.031 0.07σ 1.73σ
mushroom 550×50 0.98±0.033 3 0.03 0.98±0.032 0.1σ 1.78σ

OC 253×15,154 0.99±0.032 5 0.018 0.99±0.033 962σ 4.59σ
TIS 13,375×927 0.99±0.033 2 0.01 0.99±0.034 0.01σ 1.68σ

thrombin 2,543×139K 0.97±0.034 2 0.14 0.96±0.035 1005σ 45.2σ

main, we show the total absolute error sae(N) as below.

sae(N) ≤
∣∣∣∣
τ

2
+ τ

g

g − 1
(1− 1

gN
)−

√
π

2
σ

∣∣∣∣ .(5.25)

The derivation of sae(N) in (5.25) is given in Appendix
3. The behavior and performance of the approximate
kernel is discussed next.

5.2 Sparseness of the approximate kernel ma-
trix Before applying the kernel approximation method
into parallel computing, we first investigate some prop-
erties of the approximate kernel. We study the relation-
ship between the approximation parameters and the fill
factors (the proportion of nonzero elements in a ma-
trix) of the approximate kernel matrix. We show that
high classification accuracies can be achieved with very
small fill factors. We also describe our tuning proce-
dure and analyze the communication reduction of the
approximate kernel.

Algorithm 1 Setting Approximation Parameters
1: Pick a < 1, set τ=aσ and N0 = 2;
2: Compute approximate kernel matrix and solve SVM

optimization program;
3: if solution succeeds then
4: return;
5: else
6: Ni+1 = Ni + 1;
7: Go to 2;
8: end if

Since the value of the approximate kernel in (5.18)
is zero for r > Nτ , the kernel matrix becomes sparse.
Figure 3 shows how the fill factor changes with the
rectangle width τ and the number of rectangles N . In
Figure 3(a), we let the number of rectangles change from
1 to 19 for the ionosphere dataset [27], and observe
the changes of the fill factor with different rectangle
widths. In Figure 3(b), we investigate similarly on
the thrombin dataset. It can be seen that the fill
factor increases with larger τ and larger N . But the

relationships are not always linear. High classification
accuracies can be achieved even for small τ and N . We
therefore prefer lower fill factors. Very small fill factors
may cause the kernel matrix to become non-positive
definite. This situation can be detected when the matrix
inversion operation used for solving the PSVM does
not go through, or the Cholesky decomposition used
for solving the PSVM encounters negative operand for
the square root operation.

Table 1 shows the behavior of the approximate
kernels for the five datasets. In Table 1, mushroom
and HD (heart disease, also referred to as Cleveland
heart) are datasets from the UCI machine learning
repository [27]. Mushroom and HD are small datasets.
We use them here to show the approximation accuracies.
TIS (translation initiation site, based on biological
sequences), OC (ovarian cancer, microarray data) are
the same as in [5]. TIS, OC and thrombin [25] are large
datasets and are time consuming in training. They can
be sped up via our parallel computing algorithms. As
shown in the table , the fill factors can be quite low
while high cross validation accuracies are maintained.

Our procedure for setting the approximation pa-
rameters is summarized in Algorithm 1. First, we
choose τ to be a fraction of σ. For the three datasets in
Table 1, we set τ = 0.2σ. Then starting with N0 = 2, we
increase N until the solution to the PSVM succeeds. If
nothing goes wrong in the process of solving the PSVM,
we obtain the smallest possible N . If the matrix inver-
sion or the Cholesky decomposition when solving the
PSVM does not go through, then increase N .

The reduction in communication cost by the kernel
approximation method can be analyzed in the following.
If we neglect the startup overhead of a data transfer,
the communication cost is proportional the data size.
The approximate kernel’s reduction of communication
time from the exact kernel can roughly be formulated
as, βcomm = φw1/w2, where w1 is the width of one
encoded element of the sparse kernel matrix and w2 is
the element width of the exact kernel matrix, which
for double precision data type is 8. By using proper

341

Table 2: Improvement by the approximate kernel.
γcomm and γtotal are the average reduction in commu-
nication time and total classification time, respectively.

datasets OC TIS thrombin average
γcomm 90.2% 84.6% 76.4% 83.7%
γtotal 30.5 33.7% 29.6% 31.26%

encoding, e.g., differential encoding for matrix indices,
w1 is close to w2 and βcomm is close to the fill factor
φ given in Table 1. Therefore, the communication
cost of the approximate kernel matrix is only a small
percentage of that of the exact kernel matrix.

6 Experiments

In previous sections, we have independently tested the
speedups of the dimension-wise partition, the sparseness
of the approximate kernel matrix, the error bounds
and the classification accuracies. In this section we
test the combined performances of the dimension-wise
partition and the approximate kernel methods in a
single parallel implementation on a cluster of computers
consisting of 65 nodes. We test these algorithms on the
ovarian cancer, translation initiation site, and thrombin
datasets. Figure 4 shows the improvement made by
using the approximate kernel as compared to using
the exact Gaussian kernel, for the thrombin dataset.
Figure 4 demonstrates that on a cluster of size p = 65
nodes, a speedup of 45 folds has been achieved. From
Figure 4(b) we can see that the approximate kernel
achieved nearly linear speedups when p is less than
32. Figure 4 also indicates that the approximate kernel
has gained more speedup when the cluster size is large.
This is also evident in Figure 4(a), where for large p,
the time used by the approximate kernel is reduced
more compared with the situation when the number
of nodes is small. This pattern of improvement is due
to the effective reduction in communication time and
has the potential to scale up to even larger clusters.
Tests on other datasets (not shown) demonstrate similar
speedups and patterns.

Table 2 shows the improvement contributed by the
approximate kernel method by displaying the average
reductions of communication time and total computing
time that the approximate kernel has gained over the
exact Gaussian kernel. In Table 2, γcomm and γtotal are
the average reduction in communication time and total
classification time, respectively. They are defined as,

γcomm = (T exact
comm − T app

comm)/T exact
comm,(6.26)

γtotal = (T exact
total − T app

total)/T exact
total ,(6.27)

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

tim
es

 (
se

c)

number of nodes (p)

ex k
app k

(a)

0

5

10

15

20

25

30

35

40

45

50

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

sp
ee

du
p

number of nodes (p)

ex k
app k

(b)

Figure 4: Comparison of parallel classification times (a)
and speedups (b) between approximate kernel (“app k”)
and the exact kernel (“ex k”) for the thrombin dataset.

where T exact
comm and T app

comm are the average communica-
tion times used by the exact kernel and the approxi-
mate kernel, respectively, and T exact

total and T app
total are the

average total times used by the exact kernel and the
approximate kernel, respectively. As seen in the table,
the communication times have been reduced by 83.7%
on average, and the overall computing times have been
reduced by 31.26% on average.

7 Conclusion and Future Work

The computational performance for training an SVM
depends on the efficiency of its kernel computation
which can easily become intolerable on a single pro-
cessor computer for large, high-dimensional data sets.
We have proposed two methods for a high-performance
parallel implementation of kernel computation. An ef-
fective parallel algorithm relies on a proper partition of
the data and an efficient communication pattern in the
computing system. Through analysis of the commonly
used RBF kernel, we proposed the dimension-wise parti-
tion, which has a close to linear theoretical speedup and
has achieved substantial speedups in real experiments.
The dimension-wise partition alone has achieved a linear

342

speedup for clusters of up to 16 nodes. When 65 nodes
are available, this method achieved a speedup of 23
folds. While we demonstrated the dimension-wise par-
tition only for the Gaussian RBF kernel in this paper, it
is also applicable to other kernels, such as string kernels
[16, 17], where kernel inner products must be computed
explicitly in the high dimensional feature space.

Speedup of the dimension-wise partition is limited
because of the communication costs incurred when
partial results are transferred to a coordinator node for
combination. To overcome this barrier, we proposed
an approximation method for RBF kernel functions
that reduces a kernel matrix to a sparse matrix with
a much smaller bandwidth requirement. We have
proved that the approximated kernel matrix satisfies
Mercer’s positive definiteness criterion in the limit for
any dataset, and using only a finite approximation
for a fixed data set. Further, we showed that the
error bound decreases exponentially with the number
of rectangles used. In practical implementations, we
have found that we can achieve very low fill factors
(< 2%) while maintaining high classification accuracies
and positive definiteness of the kernel matrix. Doing
so has improved communication performance by 83.7%
and overall parallel performance by 31% on average.
With the approximation method and the dimension-
wise partition, a linear speedup has been achieved when
the cluster has fewer than 32 nodes. And with 65 nodes,
a speedup of 45 folds has been observed.

The kernel approximation method will be more ef-
fective for even larger clusters, since communication
overhead is more critical in larger systems and the ap-
proximate method can scale up well. For distributed
computing environments connected through slow links,
the approximation method is especially useful in reduc-
tion of communication cost. Since the approximation
method makes the kernel matrix sparse, it can directly
be used in circumstances where the space requirement
is crucial.

We are currently working to refine our understand-
ing of the RBF kernel approximation. Specifically, while
we have a practical method for searching for the approx-
imation parameters, N and τ , we would like an a priori
method for designing these parameters for a fixed data
set so as to minimize the fill factor while maintaining
positive definiteness. Additionally, while the dimension-
wise partition applies to a wide class of kernels, our ker-
nel approximation method was developed specifically for
the RBF kernel. We are developing similar approxima-
tion schemes for other classes of nonlinear kernels.

Acknowledgements We thank Lance Williams for his
assistance with some of the formulations. We also thank

the anonymous reviewers for their invaluable feedback
and suggestions.

Appendices

Appendix 1: Requirement Analysis for the
CDK2 drug design and high density microar-
ray datasets. The CDK2 drug design dataset has m =
14, 223 compounds and a dimension of n = 35, 926, 557,
representing descriptors of the compounds [28]. Using
double precision data type, its space requirement for
the data alone is S = 14223 × 35, 926, 557 × 8byte =
4.087TB. This amount of space is beyond the capacity
of a uniprocessor computer and distributed memory in
a parallel system must be used. The time complexity of
computing an RBF kernel matrix is T = O(m2n) [4]. A
computer of the capacity of 4 GFlops per second, which
is the typical processing power of a high end Pentium
4 computer, would need 21 days to compute the kernel
matrix,

T =
m2n

4GFlop/second
=

142232 × 35.93× 106

4× 109
(A-1)

= 1.82× 106second = 21 days.

And this time is based on full CPU utilization, not
accounting for cache misses and page faults.

A high density microarray has 60 million elements
[20]. Due to cost considerations, today’s microarray
datasets usually have a few hundred data points. How-
ever, with that high dimension, much more data points
are necessary for effective classification. With the de-
velopment of DNA technology, costs of microarrays are
getting lower rapidly. Suppose, in the near future, the
dataset has a few thousand data points, m = 10, 000.
Using the approach as in [1], n = 60 × 106. The space
needed to store the data alone is, S = 10000×60×106×
8byte = 4800GB = 4.8TB. A computer of the capacity
of 4 GFlops per second would need 17 days to compute
the kernel matrix,

T =
m2n

4GFlop/second
=

100002 × 60× 106

4× 109
(A-2)

= 1.5× 106second = 17.38 days.

Appendix 2: Positive definiteness expressed in
Fourier transform. We express the Mercer’s condi-
tion in terms of Fourier transforms as follows. Recall
the Mercer’s condition from (5.13),

∫

χ×χ

k(x, x′)f(x)f(x′)dxdx′ ≥ 0 ∀f ∈ L2(χ).(A-3)

343

For an RBF kernel, the condition can be written as,
∫

χ×χ

k(x, x′)f(x)f(x′)dxdx′(A-4)

=
∫

χ×χ

k(x− x′)f(x)f(x′)dxdx′

=
∫

χ

(f ◦ k)(x)f(x)dx(A-5)

= 〈(f ◦ k), f〉 = (2π)
n
2 〈f̃ · k̃, f̃〉(A-6)

= (2π)
n
2

∫

χ

∣∣∣f̃(ω)
∣∣∣
2

k̃(ω)dω ≥ 0,(A-7)

where f̃ and k̃ are the Fourier transforms of functions
f and k. In (A-5), (f ◦ k)(x) =

∫
χ

k(x− x′)f(x′)dx′, is
the convolution between f and k. In (A-6), we used the
fact that the Fourier transform of a convolution can be
expressed as the dot product in the frequency domain,

F [f ◦ k] = (2π)
n
2 f̃ · k̃.(A-8)

For (A-7) to be true, we need k̃(ω) ≥ 0, ∀ω ∈ χ. Ex-
pressing positive definiteness through Fourier transform
is related to Bochner’s theorem [23].

Appendix 3: Error bound in the distance do-
main. Since the distance between two vectors is non-
negative, we only consider the case when r ≥ 0. We
first consider the sum of the error and then obtain the
bound on the total absolute value. The error to approxi-
mate a kernel function k(r) with a series of N rectangles
functions k̆(r) is,

se(N) =
∫ ∞

0

[k̂(r)− k(r)]dr

(A-9)

=
∫ (N− 1

2)τ

0

[k̂(r)− k(r)]dr +
∫ ∞

(N− 1
2)τ

[k̂(r)− k(r)]dr

= se1(N) + se2(N),

where,

se1(N) =
∫ (N− 1

2)τ

0

[k̂(r)− k(r)]dr,(A-10)

se2(N) =
∫ ∞

(N− 1
2)τ

[k̂(r)− k(r)]dr.(A-11)

se1(N) represents the sum of errors in the region
where the series of N rectangle functions exist. It is
the integral of the errors between the solid rectangles
and the kernel function, as shown in Figure 2. It
is smaller than the integral of the errors between the

dashed rectangles and the kernel function in Figure 2.
Therefore,

se1(N)

(A-12)

≤
∫ 1

2 τ

0

[k(0)− k(r)]dr +
∫ 1 1

2 τ

1
2 τ

[k(
1
2
τ)− k(r)]dr

+
∫ 2 1

2 τ

1 1
2 τ

[k(1
1
2
τ)− k(r)]dr + ...

+
∫ (N− 1

2)τ

(N−1− 1
2)τ

[k((N − 1− 1
2
)τ)− k(r)]dr

= 1× τ

2
+ k(

1
2
τ)τ + k(1

1
2
τ)τ + ...

+ k((N − 1− 1
2
)τ)τ −

∫ (N− 1
2)τ

0

k(r)dr.

And se2(N) represents the total error in the region
where the series of rectangle functions are absent,
se2(N) = − ∫∞

(N− 1
2)τ

k(r)dr. Adding them together, we
have,

se(N) = se1(N) + se2(N)(A-13)

≤ 1× τ

2
+ k(

1
2
τ)τ + k(1

1
2
τ)τ + ...

+ k((N − 1− 1
2
)τ)τ−

−
∫ (N− 1

2)τ

0

k(r)dr −
∫ ∞

(N− 1
2)τ

k(r)dr

= 1× τ

2
+ k(

1
2
τ)τ + k(1

1
2
τ)τ + ...

+ k((N − 1− 1
2
)τ)τ −

∫ ∞

0

k(r)dr

= T −
∫ ∞

0

k(r)dr,

where
∫∞
0

k(r)dr =
√

π
2 σ, and,

T = 1× τ

2
+ k(

1
2
τ)τ + k(1

1
2
τ)τ + ...

(A-14)

+ k((N − 1− 1
2
)τ)τ =

τ

2
+ τ

N−2∑

j=0

k(j +
1
2
τ)

=
τ

2
+ τ

N−2∑

j=0

e−
((j+ 1

2)τ)2

2σ2 ≤ τ

2
+ τ

N−2∑

j=0

e−
(jτ)2

2σ2

≤ τ

2
+ τ

N−2∑

j=0

(
1
g
)j ≤ τ

2
+ τ

g

g − 1
(1− 1

gN
),

344

where g = e
τ2

2σ2 > 1. Consequently,

se(N) ≤ τ

2
+ τ

g

g − 1
(1− 1

gN
)−

√
π

2
σ.(A-15)

It is usually the case that se(N) ≥ 0, then the
absolute total error is bounded by,

sae(N) ≤
∣∣∣∣
τ

2
+ τ

g

g − 1
(1− 1

gN
)−

√
π

2
σ

∣∣∣∣ .(A-16)

In the worst case where N = 1 and τ → 0, the absolute
total error is bounded by, sae(N) ≤ √

π
2 σ.

References

[1] M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini,
C. W. Sugnet, T. S. Furey, Jr. M. Ares and D. Haus-
sler, Knowledge-based analysis of microarray gene ex-
pression data by using support vector machines, Proc.
Natl. Acad. Sci. USA, 97(2000), pp. 262-267.

[2] A. Choudhury, P. B. Nair and A. J. Keane, A data
parallel approach for large-scale Gaussian process mod-
eling, In R. L. Grossman, J. Han, V. Kumar, H. Man-
nila and R. Motwani, Eds., Proc. 2nd SIAM Int’l Conf.
Data Mining, Arlington, VA, USA, SIAM 2002.

[3] R. Collobert, S. Bengio and Y. Bengio, A parallel
mixture of SVMs for very large scale problems, Neural
Computation, 14(5)(2002), pp. 1105–1114.

[4] N. Cristianini and J. Shawe-Taylor, An introduction to
support vector machines, Cambridge University Press,
2000.

[5] Thanh-Nghi Do and F. Poulet, Incremental SVM and
visualizaiotn tools for bio-medical data mining, In Proc.
European Workshop on Data Mining and Text Mining
for Bioinformatics, Dubrovnik, Croatia, Sep., 2003.

[6] fMRI data center, http://www.fmridc.org.
[7] G. Fung and O. L. Mangasarian, Proximal support

vector machine classifiers, Proc. 7th ACM Intl. Conf.
KDD, San Francisco, USA, pp. 77–86, ACM, 2001.

[8] G. Fung and O. L. Mangasarian, Incremental support
vector machine classification, In R. Grossman, H.
Mannila, R. Motwani, et al., Eds., Proc. 2nd SIAM
Int’l Conf. Data Mining, pp. 247–260, SIAM 2002.

[9] P. E. Gill, W. Murray, and M. H. Wright, Practical
Optimization, Academic Press, 1981.

[10] R. C. Houts and O. Alkin, Signal Analysis in Lin-
ear Systems, Saunder College Publishing, ISBN 0-03-
028744-8.

[11] T. Joachims, Making large scale SVM learning practi-
cal, In B. Scholkopf, C. Burges and A. J. Smola, Eds.,
Advances in Kernel Methods-Support Vector Learning,
pp. 169–184, MIT Press, 1999.

[12] T. Joachims, Text categorization with support vector
machines: Learning with many relevant features, In C.
Nedellec and C. Rouveirol, Eds., Proc. European Conf.
Machine Learning, pp. 137-142, Berlin, Springer, 1998.

[13] L. Kaufman, Solving the quadratic programming prob-
lem arising in support vector classification, In B.
Scholkopf, C. Burges and A Smola, Eds., Advances in
Kernel Methods - Support Vector Learning, MIT Press,
Cambridge, USA, 1998.

[14] Y.-L. Lee and O. L. Mangasarian, RSVM: Reduced
support vector machines, In Proc. 1st SIAM Int’l Conf.
Data Mining, Chicago, IL, April, SIAM, 2001.

[15] Y.-L. Lee and O. L. Mangasarian, SSVM: A smooth
support vector machine, Computational Optimization
and Applications, 20(2001), pp. 5–22.

[16] C. Leslie, E. Eskin and W. S. Noble, The spectrum
kernel: a string kernel for SVM protein classification,
In Proc. Pacific Symp. Biocomputing, pp. 566–575,
PSB, 2002.

[17] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C.
Watkins, Text classification using string kernels, In T.
K. Leen, T. G. Dietterich and V. Tresp, Eds., NIPS
2000, pp. 563-569, MIT Press, 2001.

[18] P. Mahe, N. Ueda, T. Akutsu, Jean-Luc Perret and
Jean-Philippe Vert, Extensions of marginalized graph
kernels, In Proc. 21st Intl. Conf. Machine Learning,
Banff, Canada, ICML, 2004.

[19] O. L. Mangasarian, Generalized support vector ma-
chines, In A. Smola, P. Bartlett, B. Scholkopf, and D.
Schuurmans, Eds., Advances in Large Margin Classi-
fiers, pp. 135-146, Cambridge, MA, MIT Press, 2000.

[20] L. Melton, Pharmacogenetics and Genotyping: On the
trail of SNPs, Nature, 422(2003), pp. 917–923.

[21] E. Osuna, R. Freund and F. Girosi, Support vector
machines: training and applications, Tech. Report,
AIM–1602, MIT, 1997.

[22] J. Platt, Sequential minimal optimization: A fast
algorithm for training support vector machines, In B.
Scholkopf, C. Burges, and A Smola, Eds., Advances in
Kernel Methods - Support Vector Learning, MIT Press,
Cambridge, USA, 1998.

[23] M. Reed and B. Simon, Methods of Modern Mathemat-
ical Physics I: Functional Analysis, 2nd edition, Aca-
demic Press, San Diego, CA, 1980.

[24] B. Schölkopf and A. J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond, MIT Press, 2001.

[25] The thrombin dataset, http://www.cs.wisc.edu/
˜dpage/kddcup2001/.

[26] A. Tveit and H. Engum, Parallelization of the incre-
mental proximal support vector machine classifier using
a heap-based tree topology, Tech. Report, IDI, NTNU,
Trondheim, Norway, Aug. 2003.

[27] UCI machine learning data datasets, http://
www.ics.uci.edu/˜mlearn/MLRepository.html.

[28] M. K. Warmuth, J. Liao, G. Ratsch, M. Mathieson,
San-tosh Putta and C. Lemmen, Support vector ma-
chines for active learning in drug discovery process,
Journal of Chemical Information Science, 43(2)(2003),
pp. 667–673.

345

Loadstar: A Load Shedding Scheme for Classifying Data Streams

Yun Chi∗, Philip S. Yu†, Haixun Wang†, Richard R. Muntz∗
∗Department of Computer Science, University of California, Los Angeles, CA 90095

†IBM Thomas J. Watson Research Center, Hawthorne, NY 10532
ychi@cs.ucla.edu, {psyu,haixun}@us.ibm.com, muntz@cs.ucla.edu

Abstract
We consider the problem of resource allocation in min-
ing multiple data streams. Due to the large volume and
the high speed of streaming data, mining algorithms
must cope with the effects of system overload. How to
realize maximum mining benefits under resource con-
straints becomes a challenging task. In this paper, we
propose a load shedding scheme for classifying multi-
ple data streams. We focus on the following problems:
i) how to classify data that are dropped by the load
shedding scheme? and ii) how to decide when to drop
data from a stream? We introduce a quality of deci-
sion (QoD) metric to measure the level of uncertainty
in classification when exact feature values of the data
are not available because of load shedding. A Markov
model is used to predict the distribution of feature val-
ues and we make classification decisions using the pre-
dicted values and the QoD metric. Thus, resources are
allocated among multiple data streams to maximize the
quality of classification decisions. Furthermore, our load
shedding scheme is able to learn and adapt to changing
data characteristics in the data streams. Experiments
on both synthetic data and real-life data show that our
load shedding scheme is effective in improving the over-
all accuracy of classification under resource constraints.

keywords: data mining, data streams, load shedding,
classification, quality of decision, feature prediction,
Markov model.

1 Introduction
Many new applications process multiple data streams
simultaneously. For instance, in a sensor network,
data flows from a large number of embedded sensors;
and in the stock market, each security generates a
stream of quotes and trades. However, applications
that handle these unbounded, high speed incoming data
are constrained by limited resources (e.g., CPU cycles,
bandwidth, and memory).

∗The work of these two authors was partly supported by NSF
under Grant Nos. 0086116, 0085773, and 9817773.

Resource allocation for distributed stream appli-
cations is often formulated as an optimization prob-
lem [12, 8]. Much work focuses on allocating resources
in a best-effort way so that performance degrades grace-
fully. For instance, if the data characteristics from a
sensor exhibit a predictable trend, then the precision
constraints might be satisfied by transmitting only a
fraction of the sensor data to the remote server.

Other approaches assume that a set of Quality-
of-Service (QoS) specifications are available [1, 3, 14].
A load shedding scheme decides when and where to
discard data and how much data to discard according to
the QoS specification. In other words, these approaches
assume that the impact of load shedding on performance
is known a priori through the QoS specifications.

Goal In this paper, we argue that for many data
mining tasks a more intelligent load shedding scheme
for streaming data is required. The goal of mining is to
maximize certain benefits (e.g., to detect as many credit
card transaction frauds as possible). It is more complex
than achieving high precision of simple computations
such as aggregation (e.g., AVG, SUM, and COUNT).
Because in those cases, high precision can usually be
secured as long as the percentage of data sampled from
the stream reaches a certain threshold.

The benefits of mining does not depend on the
sampling rate. For instance, assume the percentage of
fraudulent credit card transactions is p and our fraud
detector has 100% accuracy. Then, under random
sampling, the expected number of frauds we can detect
per investigated transaction is fixed at p. To increase
the efficiency of fraud detection, we need to know how
benefits of mining will be affected by the next incoming
data before resources are committed to investigate it.

Thus, our goal is to design a load shedding scheme
to maximize the benefits per resource used in mining.

Challenges Load shedding in mining data streams is a
new topic and it raises many challenges. Although load
shedding has been studied for managing data streams,
many assumptions in these studies are not appropriate

346

for data mining tasks.
First, for many simple queries (e.g., aggregation)

considered for managing data streams, it is often safe to
assume that the quality of the query result depends only
on the sample size. Some approaches assume simple
(e.g., monotonic, or even concave or piecewise linear)
QoS curves, which depict the relationship between
the quality and the sample size, are available to the
load shedding mechanism. In contrast, in mining
data streams, sample size itself cannot guarantee good
mining result, because the quality of mining often
depends on specific feature values in a non-monotonic
way. For example, in certain regions of the feature
space, a classifier may have very high confidence in
its classification decision, even if the feature value is
only known approximately. But in other regions, the
classifier may not be very sure about its classification
decision because in these regions, a small variation
in a feature value may change the decision. In this
case, resources (i.e., computing the exact feature values)
should be allocated to a stream if the decision is more
sensitive to the feature value of the data in this stream.
Thus, the challenge lies in determining how to make
the resource allocation in a best effort way to minimize
classification errors.

Second, data mining applications are often more
sensitive to changes in data characteristics. For in-
stance, a small move in the feature space may totally
change the classification results, and more often than
not, it is such changes that we care about the most.
Thus, feature value prediction is important to load shed-
ding design for mining data streams. Fortunately, many
feature values (e.g, the reading of sensors that measure
the temperature or the water level of a river, or the fea-
ture values extracted from consecutive satellite images)
have strong time-correlation and we can build models to
take advantage of such correlation. Thus, the challenge
lies in building a feature predictor that is able to capture
the time-correlation and adapt to the time-variance of
the feature values.

Our Contributions To the best knowledge of the au-
thors, this is the first work on load shedding for mining
data streams. We make the following contributions. (1)
We define two quality of decision (QoD) measures for
classification based on the predicted distribution of the
feature values in the next time unit. (2) We develop a
prediction model for feature values using Markov models
whose parameters can be updated in real time to reflect
parameter changes. (3) We combine the first two to ob-
tain a load shedding scheme, Loadstar1, for classifying
multiple data streams. Experiments on both synthetic

1A Load Shedding Scheme for Streaming Data Classifiers

data and real-life data show that our load shedding
scheme is effective in improving the accuracy of data
stream classification in the presence of system overload.

Paper Organization The rest of the paper is orga-
nized as follows. We formally define the problem in
Section 2. In Section 3, we introduce two QoD (qual-
ity of decision) measures. In Section 4, we present our
Markov-chain model for predicting feature values. In
Section 5, we describe Loadstar, the overall load shed-
ding scheme. In Section 6, we summarize experiment
results which demonstrate Loadstar’s effectiveness. In
Section 7, we review related work and we conclude in
Section 8 with future directions.

2 Problem Definition
The major system components are illustrated in Fig-
ure 1. Raw data flows in via multiple streams and are
fed to the data preparation and analysis block through
a communication channel. The data preparation and
analysis block is responsible for data cleaning, feature
extraction and composition, etc. The derived features
enter the data classification block, which outputs min-
ing results.

In this paper, we assume that data preparation
and analysis is CPU intensive. In comparison, the
CPU consumption for classification is negligible. This
is true in many real applications especially those that
handle multimedia data, for which feature extraction is
usually a CPU intensive procedure. For example, if the
raw data are text documents, the data preparation and
analysis may involve removing stop words, counting the
frequency of important words, projecting the vector of
word frequencies to some pre-defined conceptual space,
filtering the projected values in each dimension using
thresholds, etc [2]; if the raw data are images from
satellites, computing the features, such as luminance,
shape descriptor, amplitude histogram, color histogram
and spatial frequency spectra, will usually take a lot
of CPU time [13]. As a result, when the system is
overloaded, the data preparation and analysis block
cannot process all of the data and load shedding is
needed. (Another equivalent scenario is when the
bandwidth of the communication channel is limited and
therefore not all raw data can be transmitted to the
data preparation and analysis block.)

The input to the system consists of multiple streams
of raw data. When the system is overloaded, data
from some of the streams are dropped. For those
streams whose data is dropped, their feature values
can be predicted by the feature predictor block, based
on historic feature values. Therefore, the classifier
will handle both the real feature values generated by

347

Predictor

channel

multiple raw
data streams

input:

quality of decision

Feature

communication

dropped
raw data

historic
feature
values

output:

all streams
result for

Load
Shedding
Scheme and Analysis

Preparation
Data Data

Stream
Classifier

Figure 1: The System Setup

the data preparation and analysis block, and predicted
feature values for those streams whose data has been
dropped.

We assume that the classifier handles data streams
consisting of a d-dimensional feature vector x ∈ Xd (xi

can be either continuous or categorical) and produces
a class label ci ∈ {c1, . . . , cK}. The classifier performs
classification for each incoming x no matter whether
x is real or predicted feature values. The objective is
to design a load shedding scheme that minimizes the
overall error rate of the data mining task when the
system is overloaded.

In this paper, we restrict the data mining task to
be the classification problem, although the technique
can be extended to other data mining tasks, such as
clustering, on data streams.

3 Quality of Decision
Load shedding takes place when data from multiple
streams exceeds the processing capacity. We are inter-
ested in load shedding schemes that ensure shed load
has minimal impact on the benefits of mining.

In order to do this, we need a measure of benefit loss
if data x from a certain stream is discarded. However,
we must be able to do that without seeing x’s real
feature values. In this section, we propose two QoD
metrics, and in Section 4, we present a method to
predict feature values such that we can make load-
shedding decisions before seeing the real data.

3.1 The Quality of Classification One way to
view a classifier is to consider it as a set of discrimi-
nant functions fi(x), i = 1 . . . K. The classifier assigns
class label ck to x if fk(x) ≥ fi(x), ∀i ([6]). For tradi-
tional classification, only the ranks of the discriminant
functions are important in decision making, i.e., we only
care if we are right or wrong, and do not care how far
off we are.

Consider an example where there are two classes

and the data is one dimensional (i.e., there is a single
feature x). Figure 2(a) shows the two discriminant func-
tions and Figure 2(b) their log ratio. We use logarith-
mic values because first, logarithm is a monotonically
increasing function which preserves the original ranks
of the discriminant functions; second, the ratio is in-
variant with the respect to the scale; third, as we will
see shortly, it makes computations simpler.

For a given feature value x, if f2(x) is greater than
f1(x), we assign class label c2 to x; we do not care
how much f2(x) is greater than f1(x). For example,
in two data streams, incoming elements with feature
values x = 2 and x = 1.5 are both classified as c2.
However, when the feature values are not exact, the
two classification decisions will have different levels of
certainty. For example, assume that x = 2 and x = 1.5
are current feature values and we believe x will not
change dramatically in the next step. In such a case,
if the classifier has to make a classification decision for
the next step without updated feature values, it may
still assign class label c2 to both data streams; however,
in this case, for the data stream with x = 2, the classifier
is much more certain about its decision than for the
data stream with x = 1.5. Intuitively, the quality of the
classification decision for the first data stream is higher
than that of the second data stream. If we have to shed
load in the next step, we should shed load from the data
stream whose current feature value is x = 2, because
by allocating the available resource to the data stream
with less quality of decision (i.e., the data stream with
current feature value x = 1.5), we expect to gain more
benefits in term of the improvement in the classification
accuracy.

The question is, how to quantify this quality of
decision?

−0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Feature Value

Discriminant Functions

f
1
(x) f

2
(x)

f
1
(x)

f
2
(x)

−0.5 0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

5

Feature Value

Log Ratio of Discriminant Functions

decision boundary

(a) (b)
Figure 2: Certainty of a Classifying Decision

3.2 Quantifying the Quality of Decision Assume
we have derived a probability density function for X, the
feature value in the next time unit:

(3.1) X ∼ p(x)

348

It is worth mentioning that p(x) is different from
the estimated prior distribution p(x|D) that can be
obtained from the training data D. When we build
the classifier based on D, we consider each observation
in D as an independent sample from an unknown
distribution. Here by p(x), we mean that through some
mechanism (e.g., by taking advantage of the temporal
locality of the data), we have obtained an estimation of
the feature value of the next time unit, and it is in the
form of a density p(x).

Quality Defined on Log Ratio We assume that
the discriminant functions have positive values. Using
Eq (3.1), the distribution of feature values in the next
time unit, we can compute the expected logarithmic
value of the discriminant functions:

(3.2) EX(log fi(x)) =
∫

x

(log fi(x))p(x)dx

We use δ1 to represent the decision which chooses
the class label that maximizes the expected value:

(3.3) δ1 : k = arg max
i

EX (log fi(x))

Eq (3.3) only gives the classifying decision; to
perform load shedding, we need to give a quantitative
measure about the certainty of the decision. We
introduce our first quality of decision (QoD) measure:

Q1 = EX log
(

fk(x)
fk̃(x)

)
(3.4)

= EX(log fk(x))− EX(log fk̃(x))

where k̃ is the second best decision according to
Eq (3.2).

From the definition, we have Q1 ≥ 0. Intuitively,
the higher the Q1, the more we are confident in our best-
effort decision, that is, we compare our decision with the
second-best choice, and if the expected performance of
our decision is much better than that of the second-best
choice, we believe that our decision has high quality.

Quality Defined on Overall Risk We introduce
another quality of decision measure based on Bayesian
decision theory. We use the posterior distribution of
the classes given the feature vectors as the discriminant
functions.

At point x in feature space X, if we decide the class
is ci, then the conditional risk of our decision is

R(ci|x) =
K∑

j=1

σ(ci|cj)P (cj |x)

where σ(ci|cj) is the loss function, i.e., the penalty
incurred when the real class is cj and our decision is
ci. For example, for zero-one loss, we have:

σ(ci|cj) =

{
0 i = j

1 i 6= j

in which case we can simplify the conditional risk as

R(ci|x) = 1− P (ci|x)

Because we have the distribution of the feature
value x at the next time unit, we can compute the
expected risk for a decision for next time unit as

EX [R(ci|x)] =
∫

x

R(ci|x)p(x)dx

We use δ2 to represent the best-effort decision rule
which minimizes this expected risk:

(3.5) δ2 : k = arg min
i

EX [R(ci|x)]

Assume for x ∈ X, the optimal decision is c∗. (More
rigorously, c∗ should be written as c∗(x).) Because the
real value of x is unknown, c∗ is infeasible to realize
in our load shedding environment. The risk associated
with c∗ is

EX [R(c∗|x)] =
∫

x

R(c∗|x)p(x)dx

This risk is the Bayesian lower bound based on distri-
bution p(x). We then define the QoD based on the dif-
ference between the expected risk and the lower bound:

Q2 = 1− (EX [R(ck|x)]− EX [R(c∗|x)])(3.6)

= 1−
∫

x

[P (c∗|x)− P (ck|x)] p(x)dx

From the definition, we have 0 ≤ Q2 ≤ 1. Also,
Q2 = 1 if and only if ck is the optimal decision for every
x ∈ X where p(x) > 0. Intuitively, the larger the Q2,
the higher quality the decision.

A Comparison of the Two QoDs The quality of
classification depends on two factors. The first factor
is the feature distribution p(x). Both Q1 and Q2 have
taken p(x) into consideration. For example, as shown
in Figure 2, we are quite confident that if x = 1 then
the class is c1, and if x = 2 then the class is c2. If p(x)
is given by P (x = 1) = P (x = 2) = 0.5, then both Q1

and Q2 will give low values. Thus, resources allocated
to the stream (which helps to reveal the real feature
values) will improve the quality of decision.

349

The second factor is the discriminant functions. In
this case, although both Q1 and Q2 reflect the quality
of decision, Q2 is a better metric, because it indicates
the benefit of allocating resources to the data stream.
For example, consider an extreme case where f1(x) =
f2(x) = 0.5 for all x. Then, Q1 is 0, which (correctly)
indicates that the classification result is very unreliable.
Q2 is 1, which (also correctly) indicates that allocating
more resources to the data stream will not improve the
accuracy of the classification.

Base on the above discussion, we expect Q2 to per-
form better than Q1. This is verified by the experiments
that will be given in a later section.

Naive Bayesian Classifier The QoDs defined above
are mathematically appealing but computationally chal-
lenging, especially when the dimension of the feature
space d is large. We can, however, simplify the QoD
defined on log ratio (δ1 and Q1) by assuming that each
feature is conditionally independent given the class la-
bels. With this assumption, a very simple classifier, the
naive Bayesian classifier, can be applied. In spite of
its naivety, it has been shown in many studies that the
performance of naive Bayesian classifiers are competi-
tive with other sophisticated classifiers (such as deci-
sion trees, nearest-neighbor methods, etc.) for a large
range of data sets [5, 9]. Because of the “Bayesian” as-
sumption, we restrict the discriminant function to be
the posterior distribution of each class. (Without the
“Bayesian” restriction, for δ1 and Q1, the discriminant
functions could be any positive functions on the feature
space.)

With the assumption of a naive Bayesian classifier,
we have

EX(log fi(x)) = EX(log P (ci|x))

= EX

(
log

P (x|ci)P (ci)∑
j P (x|cj)P (cj)

)

The classifying decision δ1 and the QoD Q1 only
depend on the relative value. So we ignore the denomi-
nator and derive the following.

EX [log(P (x|ci)P (ci))] = EX log P (x|ci) + EX log P (ci)

= EX

∑

j

log P (xj |ci) + log P (ci)

=
∑

j

EX log P (xj |ci) + log P (ci)

=
∑

j

EXj log P (xj |ci) + log P (ci)

Thus, we only need the distribution of each feature Xj ∼
p(xj) instead of the joint density function X ∼ p(x) to
compute δ1 and Q1.

4 Prediction in the Feature Space
In Section 3, we assume that we know the distribution
of the feature values when their real values are not
available. The computation of the QoD and the choice
of load shedding are based on the distribution. In this
section, we study how to obtain the feature distribution.

If the feature values of the current time is indepen-
dent of those in the next time unit, the best we can do
is to use the prior distribution of the feature values2.
This is commonly assumed in data stream management
systems, where data-value histograms are often created
to assist in query answering.

However, in many real life applications, feature
values often have short-term temporal correlation. For
example, temperatures of a region and water levels
of a river usually do not change dramatically over a
short period of time. Feature values extracted from
consecutive satellite images also have strong temporal
correlation. On the other hand, data characteristics of
a stream usually change with time. Thus, our task is
to capture short-term time correlation in a time-varying
environment.

In this section, we propose a finite-memory Markov
model and introduce an algorithm to incrementally up-
date the Markov model so that it reflects the character-
istics of the most recent data.

4.1 The Markov Model Markov models have been
used extensively in many fields to model stochastic
processes [11]. In this study, we use discrete-time
Markov-chains with a finite number of states. A
discrete-time Markov-chain is defined over a set of
M states s1, . . . , sM , and an M × M state transition
probability matrix P , where Pij is the probability of
transition from state si to sj . We use one Markov-
chain for each feature in each data stream. The Markov-
chains are used to model both categorical and numerical
features. For continuous values, we discretize them into
finite number of bins.

Consider any feature x and its corresponding
Markov-chain. Assume the feature value at time t0 is
known to us, and we have x = si, 1 ≤ i ≤ M . Thus,
the distribution of the feature value at t0 is p0(x) = ei,
where ei is a 1×M unit row vector with 1 at position i
and 0’s at other positions. The distribution of the fea-
ture value in the next time unit t1 is p1(x) = p0(x)P =
eiP , where P is the state transition probability matrix.
In the next time unit t2, the distribution of the feature
value becomes p2(x) = p1(x)P = eiP

2.
If we shed load at time t1, p1(x) will give us

a distribution of the value of x at t1. At time ti,

2In such a case, the quality of decision for each classifier will
not change with time.

350

the distribution is pi(x). When i becomes large, the
distribution will converge to p(x) = π, where π is the
steady-state solution of the Markov-chain, i.e., π is the
solution to {

π = πP,∑
j πj = 1.

It is clear that π is the prior distribution (among
the historic data based on which we have built the
Markov-chain) of the feature values. In other words,
the probability of a certain feature value in the next
time unit is approximately the fraction of its occurrence
in the historic data. This makes sense, because as the
gap between the current time and the time when we
last investigated the feature values becomes larger, the
temporal correlation will disappear.

In this study, we assume that for a given data
stream, the Markov-chains for the features are indepen-
dent. In other words, we assume that given the feature
values of the data stream at current time, the distri-
bution of each feature of next time unit is independent
of the distributions of other features. This assumption
makes it easier for us to solve the problem (e.g., to com-
pute δ2 and Q2) numerically by using, e.g., Monte Carlo
methods. Without this assumption, we have to use some
special sampling technique (e.g., for the Gibbs sampler,
we need the marginal distribution for each feature given
all other features [10]), with the independence assump-
tion, sampling is easier, i.e., we can draw samples for
each feature following its own distribution, independent
of other features. To study the cases in which the fea-
ture distributions are dependent is among our future
work.

4.2 Finite-Memory Markov-Chains An impor-
tant issue in data stream is time-variation, i.e., the data
characteristics may drift with time. To handle this phe-
nomena, we adopt a finite-memory Markov-chain model
and incrementally update its parameters so that they
reflect the characteristics of the most recent data. The
main idea is to maintain the Markov-chains using a slid-
ing window of the most recent W transitions and update
the parameters of the Markov-chains when new obser-
vations are available.

First, we consider a simple case in which there is no
load shedding. At time t, the most recent W + 1 states
are s(t−W), . . . , s(t− 1), s(t), and these W + 1 states
contain W transitions, i.e., from s(t′) to s(t′ + 1) for
t−W ≤ t′ < t. Assume s(t−W), . . . , s(t− 1), s(t) are
generated by a Markov-chain P , it can be shown that
the maximum-likelihood estimation (MLE) for Pij is

(4.7) P̂ij =
nij∑
k nik

where nij is the number of observed transitions from
state si to sj among the W transitions. To obtain the
MLE, we only need to maintain a matrix P̄ of M ×M
counters and update the entries using the most recent
observations. For example, assume that s(t−W) = sp,
s(t −W + 1) = sq, s(t) = si, and at time t + 1, a new
observation becomes available and s(t + 1) = sj . To
update P̄ , we increase P̄ij by 1 as we insert sj into the
sliding window, and decrease P̄pq by 1 as we remove sp

from the sliding window. To get the MLE, we multiply
each row of P̄ by a normalizing factor to make the row
sum to 1.

However, when load shedding takes place, we may
not have consecutive observations. When load shedding
is frequent, the observations could be very sparse. To
obtain the maximum-likelihood estimation of the pa-
rameters based on observations with missing values, we
can use, for example, the EM algorithm to compute
the unobserved feature values. However, iterative algo-
rithms such as EM are time-consuming, which makes
them unacceptable for data stream applications. In ad-
dition, such algorithms very often only converge to local
maximums.

To solve this problem, we use an approximate
approach to update the parameters of the Markov-
chains: for each data stream, we maintain a flag to
indicate if it has been observed in the previous time
unit (we say that a data stream is observed or it gets an
observation at time t if we do not shed load from the
data stream at time t); if at time t, a data stream is
observed, and it was not observed at time t − 1, then
we will observe the data stream in two consecutive time
units (i.e., t and t + 1), whenever possible. In such
a case, we say that the data stream has a consecutive
observation request (COR) at time t. If all CORs are
satisfied, the observations from a data stream will be in
pairs of consecutive states, with possible gaps among
the pairs. Therefore, instead of maintaining W + 1
most recent states, we maintain in the sliding window
the most recent W transitions, where each transition
consists of a pair of states (sfrom, sto). The method to
compute and update P̄ is similar to the one introduced
above, and we still use Eq (4.7) to estimate the P
matrix for a Markov-chain, knowing that it is just an
approximation.

Furthermore, because the memory of the Markov-
chains is finite, it is possible that some rows of P̄ are
zero vectors. To handle this case and to represent cer-
tain prior knowledge about the models, in our imple-
mentation we added some pseudo-counts to P̄ , that is,
instead of all zeros, some counters in the P̄ matrix (e.g.,
those on diagonal) are initialized with some small posi-
tive integers.

351

5 The Load Shedding Scheme
Our load shedding scheme, Loadstar, is based on the two
components introduced in the previous two sections, i.e.,
the quality of decision and the predicted distribution
in the feature space. Pseudo-code for the Loadstar
algorithm is given in Figure 3. The inputs to the
algorithm are i) N ′ data streams that contain data at
time t (N ′ ≤ N), and ii) the capacity C of the system,
in terms of the number of data streams that the system
can handle, at time t. When N ′ > C, load shedding is
needed. The outputs of the algorithm are the decision
of the classifier for each data stream at time t.

Figure 3 actually contains two versions of our load
shedding scheme: the basic Loadstar algorithm (with-
out lines 8–11), in which the parameters of Markov-
chains are fixed, and the extended version (with lines
8–11), which we call Loadstar*, in which the param-
eters of Markov-chains are updated in real time. For
the basic version Loadstar, we assume that the param-
eters of Markov-chains do not drift with time so they
are learned from training data; for the extended version
Loadstar*, we assume that the parameters of Markov-
chains drift with time and they are updated using the
most recent observations.

Algorithm Loadstar(N ′, C)
inputs: data from N ′ streams,

and system capacity C;
outputs: decisions (δ1, . . . , δN);
static variables: feature distributions p(x)’s,

Markov-chains MC’s,
COR flags (f1, . . . , fN);

1: update p(x) for each feature x using its MC;
2: compute decisions (δ1, . . . , δN)

and QoDs (q1, . . . , qN) using p(x)’s;
3: select C streams from N ′ data streams

based on (q1, . . . , qN) and (f1, . . . , fN);
4: for each selected stream i do
5: observe the feature value for stream i;
6: revise δi for stream i;
7: revise pi(x) for stream i;
8:* if stream i has had load in the

previous time unit then
9:* update MC’s for stream i;

10:* fi ← false;
11:* else fi ← true;
12: return (δ1, . . . , δN);

Figure 3: The Loadstar and Loadstar* Algorithms

Some internal variables are maintained as static by
the algorithm. Among them, p(x)’s are the distributions
of the features in the current time unit; MC’s represent
the Markov-chains learned from training data for Load-
star or the Markov-chains in the current time unit for

Loadstar*; (f1, . . . , fN) are a vector of COR flags for
the data streams in Loadstar*, and in Loadstar, they
are all set to false.

At time t − 1, the feature distributions at time t
are predicted by updating the p(x)’s using the Markov-
chains (line 1). Each stream first assumes that it will
not be observed at time t; it computes the decisions
using Eq (3.3) or Eq (3.5) and the qualities of decision
using Eq (3.4) or Eq (3.6), both based on the predicted
feature distributions (line 2). Then when N ′ and C
are available at time t, if N ′ > C, load shedding is
applied. C streams are selected to be observed based
on the COR flags and the QoDs: if among the N ′ data
streams, the number of streams with true COR flags is
less than C, then their requests are fulfilled first and
the remaining resources are assigned to other streams
based on their QoDs; otherwise, the C streams will be
only selected from the data streams whose COR flags
are true, based on their QoDs (line 3). When deciding
which streams to be observed based on QoDs, we use a
weighted randomized algorithms where the chance for
a stream to be observed is inversely proportional to its
QoD value. We choose to use a randomized scheme in
order to avoid starvation of a data stream. For the data
streams that are observed, because they obtain the real
feature values, their feature distributions are changed
to unit vectors, and their classification decisions are
updated using the new feature distributions (lines 5–7).
For Loadstar*, after the data streams to be observed are
selected, their COR flags are updated, and if necessarily,
their MC’s are updated (lines 8–11). Finally, the
classification decisions are returned (line 12).

Time Complexity We study the overhead introduced
by the load shedding algorithm shown in Figure 3. For
each feature of each data stream, updating p(x) (line 1)
takes O(M2) time, where M is the number of states in
the Markov-chain. In the Loadstar* version, updating
the Markov-chains (lines 8–11) takes O(1) time, because
it only involves updating a counter and a flag. The most
time-consuming step is to compute the decision and the
QoD for each data stream (line 2), because it requires in-
tegrations over the whole (possibly multi-dimensional)
feature space. This situation, however, can be allevi-
ated by making some assumptions. For example, we
have shown that the conditional independence assump-
tion on the feature values makes Q1 easy to compute;
furthermore, we have argued that the conditional inde-
pendence assumption on the feature distributions makes
the numerical integration easier. In the section of ex-
perimental studies, we will show that a numerical in-
tegration using only a few samples can give us a very
accurate approximation and save us from computing the
exact integration over the whole feature space.

352

6 Experimental Results
In this section, we use both synthetic and real-life data
sets to study the performance of the Loadstar algorithm.
We compare Loadstar with a naive algorithm, in which
loads are shed from each data stream equally likely.
Both algorithms are implemented in C++. In the
experiment setup, for easy of study, instead of varying
loads, we fix the load (to be 100 data streams for both
the synthetic and the real-life data sets) and change the
number of data streams that the system can handle at
each time unit. In other words, we study the system
under different levels of overloads. In addition, because
of the random nature of the algorithms, for all the
experiments we run 10 times with different random
seeds and report the average values.

6.1 The Synthetic Data Set By using synthetic
data, we sought to answer the following experimental
questions about our load shedding algorithm:

(1) Does Loadstar improve the performance over the
naive algorithm? If so, how is the improvement
achieved?

(2) Do the Markov-chains capture the models of feature
space accurately? Do they adapt to drifts of data
characteristics?

We generate data for 100 data streams, and for each
data stream, we set the number of features d to be
3. Among the three features, x1 and x2 are numerical
and x3 is categorical. The two numerical features are
generated using the following random walk model:

(6.8) xt = xt−1 + ε, where ε ∼ N(0, σ2)

where N(µ, σ2) is a Normal distribution with mean
µ and variance σ2. In addition, we add boundaries
at 0 and 1 in the random walk model, i.e., at a
given time unit t, if xt > 1 or xt < 0, we switch
the sign of the corresponding ε and make xt between
0 and 1. We partition the 100 streams into two
families: for the first family, which consists of 10
data streams, the σ in Eq (6.8) is set to be 0.1; for
the second family, which consists of 90 data streams,
σ = 0.01. For obvious reasons, we call the first family
the volatile streams and the second family the non-
volatile streams. As can be seen soon, such a setup
reveals the mechanics that Loadstar uses to obtain good
performance. For the categorical feature x3, which
consists of 4 distinct values s1, . . . , s4, all data streams
have the same characteristics: the feature values are
generated as time series using a Markov-chain whose P
matrix has the following form: the element on diagonal
is 0.91 and all other elements have value 0.03.

To generate the model for the classification prob-
lem, we use two class labels, + and −, and we assume
the features to be independent given the class label.
For the two numerical features, their likelihood func-
tions are given as p(x1|+) ∼ N(0.2, 0.12), p(x1|−) ∼
N(0.8, 0.12), p(x2|+) ∼ N(0.8, 0.12), and p(x2|−) ∼
N(0.2, 0.12). For the categorical feature x3, its likeli-
hood functions are given as p(s1|+) = p(s3|+) = 0.4,
p(s2|+) = p(s4|+) = 0.1, p(s1|−) = p(s3|−) = 0.1, and
p(s2|−) = p(s4|−) = 0.4. Because of the symmetry of
the model, we assume that the prior distribution for the
two classes to be equally likely. Finally, the real class
label for each feature triplet is assigned to be the class
that has higher joint posterior distribution value.

We generate data for 11,000 time units, where data
for each time unit consists of 100 observations for the
100 data streams. Data in the first 6,000 time units
are used as training data to build a naive Bayesian
classifier. For the naive Bayesian classifier, we use 10
bins with equal width to discretize the two features with
numerical values. Although our algorithm allows each
data stream to have its own classifier, for simplicity, in
the experiments we use a single naive Bayesian classifier
for all data streams. Data in the last 5,000 time units
are used as test data. We set the window size W for
Markov-chain learning in Loadstar* to be 100.

Performance Comparison In this study, we compare
Loadstar (and its extension, Loadstar*) with the naive
algorithm in terms of error rates under different levels
of overload. For this, we fix the load to be 100
data streams, and increase the number of data streams
to have loads shed at each time unit from 0 to 80.
Figure 4(a) and Figure 4(b) show the error rates of the
classifier under different levels of overload, using δ1, Q1

and δ2, Q2, respectively.

0 20 40 60 80
3.5

4

4.5

5

5.5

6

6.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

(%
)

Naive Algorithm
Loadstar*
Loadstar

(a) δ1 and Q1

0 20 40 60 80
3.5

4

4.5

5

5.5

6

6.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

(%
)

Naive Algorithm
Loadstar*
Loadstar

(b) δ2 and Q2

Figure 4: Performance Comparison
From the figures we can see that in both cases

Loadstar has lower error rates than the naive algorithm
under different levels of overload. Loadstar that uses
δ2 and Q2 has better performance than that uses δ1

and Q1. In particular, for the former one, when the
percentage of loads shed is under 70%, the error rate
remains the same as that of the case with no load

353

shedding. Because of this, in the remaining discussion,
we focus on δ2 and Q2. Also can be seen from the
figures, the error rates of Loadstar* are higher than
those of Loadstar. This result is not unexpected,
because for learning Markov-chains, Loadstar* requires
consecutive observations. That is, with 80% loads
shed, for Loadstar, on average each data stream is
observed every 5 time units; for Loadstar*, each stream
is observed consecutively every 10 time units. As we
know, because of the temporal locality, consecutive
observations every 10 time units does not provide as
much information as two separate observations with
distance of 5 time units.

To shed light on the reasons for Loadstar’s good
performance, in Figure 5(a) we plot the percentage
of observations that are assigned to the volatile data
streams under different levels of load shedding. As can
be seen from the figure, the naive algorithm always
assigns 10% observations to the volatile streams because
there are 10 out of 100 data streams that are volatile.
In contrast, for Loadstar, as the number of available
observations becomes smaller, a higher fraction of them
are assigned to the volatile streams. For example, when
there are only 20 observations available, on average, at
each time unit the naive algorithm assigns 2 of them to
the volatile streams, but Loadstar assigns more than 5
observations to the volatile streams.

0 20 40 60 80
5

10

15

20

25

30

Percentage of Loads Shed (%)

O
bs

er
va

tio
ns

 g
iv

en
 to

 V
ol

at
ile

 S
tr

ea
m

s
(%

)

Naive Algorithm
Loadstar

(a)

0 20 40 60 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

R
at

io
 (

V
ol

at
ile

/N
on

−
V

ol
at

ile
)

Naive Algorithm
Loadstar

(b)

Figure 5: (a) Percentage of Observations Assigned
to Volatile Data Streams, and (b) Error Rate Ratio
between Volatile and Non-Volatile Data Streams

In addition, we compute the error rates for the
volatile and non-volatile families separately. Figure 5(b)
shows the error rate ratio between the volatile family
and the non-volatile family, under different levels of load
shedding. As can be seen, for the naive algorithm,
because it sheds loads from all data streams equally
likely without considering their data characteristics, as
the percentage of load shedding increases, the error rate
of the volatile family suffers more and more comparing
to that of the non-volatile family; in contrast, for
Loadstar, because the quality of decision automatically
includes the characteristics of data into consideration,
the error rate ratio between the two families remains
around 1 until the percentage of load shedding increases

to 60%, and does not go beyond 1.5 even when the
percentage of load shedding increases to 80%.

In summary, when different data streams have
different characteristics, Loadstar is more fair in that
it gives more available resources to the data streams
that are less certain, and as a result, it balances
the error rates among the data streams with different
characteristics and achieves better overall performance.

Markov-Chain Learning In this experiment, we
study the Markov-chain learning part of our load shed-
ding scheme. We generate the data streams such that
x3 has time-varying characteristics, using the following
two Markov-chains:

PA =




.91 .03 .03 .03

.03 .91 .03 .03

.03 .03 .91 .03

.03 .03 .03 .91


 , PB =




.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25




For the test data, for the first 1,000 time unit, we
generate x3 using PA (PA is also used to generate the
training data); then at time unit 1,000, we switch to
PB ; finally, at time unit 3,000, we switch back to PA.

To quantify the performance of Markov-chain learn-
ing, we use the Kullback-Leibler divergence as the mea-
sure of error. Notice that each row Pi of the P ma-
trix is a distribution; in our algorithm, we have a es-
timation matrix P̂ and each row P̂i of P̂ is also a dis-
tribution. To see if the two distributions are near to
each other, we compute their Kullback-Leibler diver-
gence d(Pi, P̂i) =

∑
j Pij log(Pij

P̂ij
). And finally, we sum

the Kullback-Leibler divergences over all the rows and
all the data streams. Figure 6 shows the results over
time units 500 to 5,000 for Loadstar and Loadstar*. For
Loadstar*, we report the results for two cases: the case
in which there is no load shedding and the case in which
there is 50% load shedding.

1000 2000 3000 4000 5000
0

50

100

150

200

250

Time Unit

K
−

L
D

iv
er

ge
nc

e

Loadstar

(a) Without Learning

1000 2000 3000 4000 5000
0

50

100

150

200

Time Unit

K
−

L
D

iv
er

ge
nc

e

Loadstar*

No Shedding
50% Shedding

(b) With Learning

Figure 6: Learning the Markov-Chains

As can be seen from Figure 6(a), because Loadstar
learns the parameters of Markov-chains from the train-
ing data and because PA is used to generate the training
data, before time 1,000, the error is very small; the error
increases sharply when the parameters are changed at

354

time 1,000, and remains high until at time 3,000, when
the original parameters are restored. In contrast, as
can be seen from Figure 6(b), Loadstar* can learn the
new parameters of Markov-chains in real time: when
the parameter change happens, the error of Loadstar*
also increases sharply; however, when there is no load
shedding, as we expected, after 100 time units (which
is the sliding window size W), the new parameters are
learned and the error drops back; this learning takes
longer time for the case of 50% load shedding.

It is interesting to observe from Figure 6(b) that
when the Markov-chain has parameter PA, Loadstar*
has more accurate estimation for the parameters when
there is 50% load shedding than when there is no
load shedding. To explain this, we have to see the
difference between the two cases: in the case of no
load shedding, data from the most recent 100 time
units are used to learn the parameter; in the case of
50% load shedding, on average, samples from the most
recent 200 time units are used. When the distributions
are skewed (e.g., PA), the temporal locality prevents
us from learning the parameter very accurately using
only 100 time units; when there is 50% load shedding,
samples are drawn from longer history (on average 200
time units) and therefore the parameters can be learned
more accurately. To verify this, we look at Figure 6(b)
between time units 2,000 and 3,000. During this period,
PB is used and from the parameters we can see that
when PB is used, there is no temporal locality at all.
Therefore, as expected, during this period both cases
learned the parameters equally accurately.

Monte Carlo From Eq (3.5) and Eq (3.6) we can see
that to compute δ2 and Q2, we need to do an inte-
gration (or weighted sum) over all the feature space.
We now show that a sampling method can help us re-
duce the computation. We use a Monte Carlo method
that instead of integrating over the whole feature space,
just samples some points from the feature space, and
compute unweighted average of δ2 and Q2 over these
points. In our implementation, because of the condi-
tional independence assumption on the feature distribu-
tions, to draw a sample point (x1, x2, x3), we can draw
x1 following p1(x), x2 following p2(x), x3 following p3(x)
(all with replacement) and then put them together.
Figure 7(a) and Figure 7(b) show the results for the
Monte Carlo method with 5 sample points and 10 sam-
ple points, respectively. As can be seen from the figures,
with only 5 sample points, the Monte Carlo method
has already clearly outperformed the naive method, and
with 10 sample points, the performance of the Monte
Carlo method becomes very close to that of the original
Loadstar algorithm in which integration is taken over
the whole feature space. This experiment demonstrates

that our load shedding scheme is particularly suitable
for data stream applications, in which quick response
time is crucial.

0 20 40 60 80
3.5

4

4.5

5

5.5

6

6.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

(%
)

Naive Algorithm
Monte Carlo (5 points)
Loadstar

(a) 5 Points

0 20 40 60 80
3.5

4

4.5

5

5.5

6

6.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

(%
)

Naive Algorithm
Monte Carlo (10 points)
Loadstar

(b) 10 Points

Figure 7: The Performance for Monte Carlo

6.2 The NASDAQ Data Set For real-life data,
we use a data set of stock streaming price data. We
recorded 2 weeks of price data for 100 stocks (NASDAQ-
100) as well as the NASDAQ index. For each stock,
the close price at the end of each minute is recorded.
The streaming price for each stock is considered as a
data stream. Therefore, there are 100 data streams and
for each data stream, there are observations for 3,900
time units (10 business days × 61

2 hours per day × 60
minutes per hour) with a time unit of 1 minute. The
price for each stock is normalized with respect to the
stock’s open price on the first day. In other words, after
normalization, the price of a stock at time unit t will be
vt

v1
, where vi is the stock’s real price at time unit i.

We define the classification problem as the follow-
ing. At a given time t, a stock is called outperform if
its normalized price is higher than that of the NASDAQ
index, underperform otherwise. The classification prob-
lem is defined as at each time unit t, predicting the class
(outperform or underperform) of each stock at time t+1.

Here is the way how we build our classifier. We
assume that the NASDAQ index follows the random
walk model given in Eq (6.8). (Stock price is one of
the best-known examples of time series that behave like
random walks [4].) We assume the noises at different
time units are independent. Because we do not have
the noise variance σ2, at any given time t we use the
sample variance σ̂2 of the NASDAQ index in the hour
before t as an estimation for σ2. If we have yt, the
NASDAQ index value at time t, then according to our
model, the NASDAQ index value at time t+1 follows a
Normal distribution:

yt+1 ∼ N(yt, σ̂
2)

For our Bayesian classifier, we choose the posterior
probability, as shown in Figure 8, as our discriminant
function (here we assume an equal prior distribution for
outperform and underperform). For example, assume

355

yt = 1.2 and we know the value of a stock at time
t+1 to be x̃t+1 = 1.3, then if we decide the class to
be outperform, the probability for the decision to be
correct is the area under the curve of the distribution of
yt+1 for which yt+1 is less than 1.3; if we decide the class
to be underperform, the probability for this decision to
be correct is the area under the curve where yt+1 is
greater than 1.3. Obviously, conditioning on the value of
a stock x̃t+1 at time t+1, the decision will be outperform
if x̃t+1 > yt, and underperform otherwise (here we use
x̃t+1 because we do not know the real value xt+1, i.e.,
we are making decisions about time t+1 at time t).

1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2
Distribution for y

t+1

y
t

(a)

1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1
Discriminant Functions

underperform outperform

x

(b)

Figure 8: Bayesian Classifier for the Stock Data Set

For our load shedding scheme, we choose δ2 and
Q2 as they are defined before. For the Markov-chains,
because the feature values (i.e., normalized stock price
at time t) are continuous, we discretize them into 20
bins with equal width where each bin corresponds to
1 percentile. In this experiment, because the prices
for all stocks behave similarly, for simplicity we use
a single Markov-chain for all data streams, where the
parameters of the Markov-chain are learned using the
first hour of data. Again, as a base case, we defined
a naive load shedding algorithm, which chooses data
streams to have observations shed equally likely.

0 20 40 60 80
1

1.2

1.4

1.6

1.8

2

Percentage of Loads Shed (%)

E
rr

or
 R

at
e

(%
)

Naive Algorithm
Loadstar

Figure 9: The Performance for the Stock Data

The experimental results are shown in Figure 9. As
can be seen from the figure, because the stock prices
do not change very dramatically in a time interval of
1 minute, the error rate for this classification problem
is not very high. However, as load shedding becomes
more severe, the error rate for the naive algorithm grows

continuously. In contrast, when the load shedding level
is between 0% and 40%, there is no obvious change in
error rates for our load shedding algorithm. In the whole
load shedding range, Loadstar always outperforms the
naive algorithm.

7 Related Work
In [8], Jain et al. proposed using Kalman filters to adap-
tively manage resources in data stream management
systems, where the main goal is to minimize bandwidth
usage under a given precision requirement. In [12], Ol-
ston et al. proposed an adaptive-filter scheme for con-
tinuous queries over distributed data sources, where the
main concern is also the tradeoff between the precision
of the answers to queries and the communication cost.
These studies are similar to ours in that they use math-
ematical models to model the data sources and adap-
tively allocate resources accordingly. The main differ-
ence of these methods with ours is they assume that the
data sources have processors to do complicated compu-
tation (to filter data based on thresholds or to solve
linear equations). This assumption may be acceptable
for simple numerical values; however, for complex data
types, such as multimedia data, whose feature values
must be derived using specialized software or hardware,
such an assumption become invalid. In addition, these
studies all assume numerical data; in our algorithm the
features can have either numerical values or categorical
values.

In [3], Babcock et al. studied the load shedding
problem in systems that process continuous monitoring
queries over data streams. The main idea of the
study is that when overload happens, inserting load
shedders in various locations of the query plan, such
that the maximum relative error among all queries is
minimized (with high probability). However, this study
was restricted to sliding window aggregate queries and
did not consider queries that involve the join operation
among multiple streams. In [14], Tatbul et al. described
a scheme for load shedding in the Aurora Data Stream
Management System. In the study, the load shedding
is based on the QoS specifications on latency, values,
and loss-tolerance. This work is similar to ours in that
it adjusts load shedding according to the status of each
sub system of the whole system. However, it assumed
static QoS curves (e.g., concave or piece linear curves)
are available to guide load shedding. In contrast, how
to defined the quality measure for data mining tasks is
a major part of our work.

Another topic that is closely related to our work is
concept drifts in mining data streams. In [15], Wang et
al. proposed an algorithm for mining concept-drifting
data streams using weighted ensemble classifiers. In

356

[7], Fan et al. proposed an active mining method
that detects potential changes in data streams. These
studies are similar to ours in that statistics are defined
to measure the characteristics of current data streams.
However, they assume that the correct class labels are
readily available for newly arrived testing data and
therefore, as the concepts in data streams change, it is
possible to revise the decision models correspondingly
in real-time. In our study, we do not assume the
availability of the correct class labels for test data,
and therefore our classifier is fixed beforehand based on
training data. Instead, we assume that at different time,
the feature values are moving around different regions
of the feature space. In other words, it is the region of
the concept we are currently in, not the concept itself,
that changes with time.

8 Conclusion and Future Directions
In this paper, we studied the resource allocation prob-
lem in mining data streams and in particular, we devel-
oped a load shedding algorithm, Loadstar, for classify-
ing data streams. The Loadstar algorithm consists of
two main components: i) the quality of decision (QoD)
measures that are defined based on the classifier, the
feature space, and the predicted feature distribution of
the next time unit, and ii) the feature predictor which is
based on finite-memory Markov-chains, whose param-
eters can be updated in real time. Extensive experi-
mental results on both synthetic and real-life data sets
showed that Loadstar has better performance than a
naive algorithm in term of classification accuracy, where
its superior performance is achieved by automatically
focusing on data streams that are more uncertain while
shedding data streams whose class labels in the next
time unit are more certain. In addition, experiments
showed that the Loadstar algorithm can efficiently learn
parameters of its Markov-chains and computation in
Loadstar can be reduced by using Monte Carlo meth-
ods.

For future work, we plan to extend our study in
the following directions. First, in this paper we assume
that the streams are independent; however, in many
real-life applications, one mining task may need multiple
data streams and each data stream can be involved in
multiple data mining tasks. To take these relationships
into consideration in our algorithm is one of our future
directions. Second, in this paper we assume the data
mining task (the classification) is the last stage of the
system. In the future, we plan to consider systems in
which data mining is just an intermediate computation,
e.g., as a filter to decide which data streams to be sent
for more detailed analysis. Third, in this paper we
consider a simple case that at each given time, we either

apply load shedding to a data stream or not; in the
future, we plan to extend our load shedding algorithm
to control the communication rates of the data streams,
e.g., given many video streams, the frame rate of each
stream is proportional to its importance.

References

[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture
for data stream management. The VLDB Journal,
12(2):120–139, 2003.

[2] C. C. Aggarwal and P. S. Yu. On effective conceptual
indexing and similarity search in text data. In Proc. of
the 2001 IEEE Intl. Conf. on Data Mining, 2001.

[3] B. Babcock, M. Datar, and R. Motwani. Load shed-
ding for aggregation queries over data streams. In 20th
International Conference on Data Engineering, 2004.

[4] C. Chatfield. The Analysis of Time Series: An
Introduction. Chapman & Hall/CRC, 2004.

[5] P. Domingos and M. Pazzani. On the optimality of the
simple Bayesian classifier under zero-one loss. Mach.
Learn., 29(2-3):103–130, 1997.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. John Wiley & Sons, Inc., 2001.

[7] W. Fan, Y-A Huang, H. Wang, and P. S. Yu. Active
mining of data streams. In Proceedings of the Fourth
SIAM International Conference on Data Mining, 2004.

[8] A. Jain, E. Y. Chang, and Y-F Wang. Adaptive
stream resource management using kalman filters. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, 2004.

[9] P. Langley, W. Iba, and K. Thompson. Analysis
of Bayesian classifiers. In Proceedings of the Tenth
National Conference on Artificial Intelligence, 1992.

[10] J. S. Liu. Monte Carlo Strategies in Scientific Com-
puting. Springer-Verlag, 2001.

[11] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[12] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, 2003.

[13] W. K. Pratt. Digital Image Processing. John Wiley &
Sons, 1991.

[14] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In Proc. of the 29th Intl. Conf. on Very Large
Databases (VLDB’03), 2003.

[15] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble classi-
fiers. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, 2003.

357

���������
	���
���������������������
����! #"$��
&%&�!�'�)(*�+�,�-%/.0�1.2�3�4���65

7�8:9�;�<4=1>�?A@ B)CD?�EF;�CHGI>�EFJ�K
8:L!M

N!O�P�QFRFS�T$Q
UWVYX�Z\[^]�_�`a_�b�ced2f'bhg\b�ijV\bhX�Z\bh_\c�k$ljm^b�nokqp�rtsvuxwzy�{}|a~�w��a���
y�������rt��~�w����ad�f�Z\[���Z�k$c���`aVj[��eb�])`�g\k����\n�beV�X)��kqm^m�be��X�[^k$V�`$���
��k$c�g\[^V\��X�k�`��q[���b�V�]�b�X�kqp�X�k$_j[��e]�����b�_jc�ka_ k$]�b¡X�Z�c�b�b
X�ka_�[����zg�c�[¢��beV£]��vZjb�n�b�]IX�Zj`aXI��kqV\]�[^g\b�cIX�Zjb�]�[�n�[^m^`ac�[�XW¤Yl�b��
XWf'b�b�V,g\k��e�\n�b�V�X�]
`$V\g,X�k$_j[��e]
`$V\g�X�Zjb4c�b�m¥`¦X�[^kqV\]�Z\[�_�`$n�kqV\�
g\k����\n�b�VDX�]�X�Z\ben�]�b�m��qbe]I]�[^n��jm¢Xv`$V\bek$�j]�m¢¤��§��bh_\c�b�]�beV�XH`
��kqn�_\c�b�Z\beV\]�[��qb�b�¨�_�b�c�[^n�b�V�Xv`$mxb��$`$m���`¦X�[^kqV!kqp�X�Zjb0_\c�k$_�kq]�b�g
X�ka_�[����zg�c�[¢��beV�]��vZ\ben�b�]�kqV�i\��b4gj`aXv`$]�b�X�]��ª©���c
b�¨�_�b�c�[^n�b�V�Xv`$m
c�b�]��\m�X�]1]�ZjkefAX�Zj`aX1X�Z\b�_\c�k$_�kq]�b�g�X�k$_j[^���zg\c�[¢��b�V�]���Z\b�n�b�]4`ac�b
b�«¬��[^b�V�X­`aVjg®b�¯�be��X�[��qb°f�[�X�Z�X�k$_j[^�°_\c�k$X�k$XW¤�_�b�]0k$p
g\[�¯�b�c�b�V�X
m�b��qbem�]+kqp�]±_�b��e[¢i���[�XW¤q�
² ³e´ QFR¦µ3¶�·¸T$Q¦¹�µ ´
º�`$]±X»`$V\g¼Z\[��qZ��t½D�j`$m^[¢XW¤Ag\k����\n�beV�X!��m^�\]±X�b�c�[^V\��`$m��qk$c�[�X�Z\n�]
jm^`e¤¬`$V![�n��k$c�Xv`$V�X¾c�k$m^b0[�V!_\c�kF��[^g\[^V\�,[�VDX��\[¢X�[���b0Vj`e��[^��`aX�[�kqV
`aVjg)l\c�kFf�]�[^V\�¬n�be�vZj`$V\[^]�n�]�lD¤)kac���`$V\[^��[^V\�¬m¥`¦c��qb,`$n�kq�\VDX�]
k$p1[�Vjp¿k$c�n¬`aX�[�kqV®[^V�X�k»`¬]�n�`$m^m¸V��\n�l�b�c­k$p1n�be`$V\[^V\�qp¿�\m¸�em��j]±�
X�b�c�]���À�]2�\V\]���_�b�c���[�]�begÁm�bF`ac�V\[�Vj�)n�b�X�Z\k�g\]�d¸��m^�\]±X�b�c�[^V\�®`$m¢�
�kc�[�X�Z\n�]�gjk�V\k$X�c�be½D�\[�c�bÂ`$V�¤Ã_\c�[^kacÁÄ�V\kFf�m�beg\�qb¡kqp¬X�Z\b
gj`aXv`a]�b�X�]�[^V��$beV\b�cv`$m:��Å�kFf'b���b�ced
f�Z\b�V�]��\��Zh_jc�[�k$c,Ä�V\kFf�m¢�
b�g\�qb�[^]�`e�$`$[�m¥`aljm^b$d4�em��\]±X�b�c�[�Vj�Á`am^�qk$c�[¢X�Z\n�]�]�Z\kq�\m^gÂ`$m^]�kHl�b
`¦l�m�b­X�kÆl�beV\b�ijX�p¿c�kqnÇ[¢X+X�k,_\c�k�g\�j��b°n�k$c�b°g\b�]�[�c�b�g���m^�\]±X�b�c��
[�V\�Æ]�kqm^��X�[^k$Vj]��ªUWV!_�`ac�X�[^���\m¥`aced�f'b�p�kD�e�\]'kqV!X�Zjb0XW¤D_ b�k$p3X�Z\b
_\c�[�k$c�Ä�V\kFf�m�beg\�qb­X�Zj`aX+c�b�È�b���X�]�X�Zjb°��kq�qV\[�X�[�kqV�kqp�X�Zjb°Vj`aX����
cv`amª��m^�\]±X�b�c�]°lD¤�g\kqn�`$[^Vhb�¨�_�b�c�X�]��¬º�kac�b�¨\`an�_jm^b$d¸[^Vhn�`$V�¤
Ä�Vjkef�m^b�gj�$b�n¬`$Vj`$�qb�n�b�VDX¬`a__�m�[^�e`aX�[^k$Vj]�d4b���b�V¡X�Z\kq�\�qZ�X�Z\b
��kqn�_jm�b�X�b)Xv`a¨�kqV\kqn2¤Akqp�X�Z\b®g\k����jn�beV�X»��kqm�m^b���X�[�kqV¼[^]¬V\k$X
`��q`$[�m¥`aljm�bqd�kqp¥X�beVIX�[^n�b�]°gjk$n¬`$[^VÁb�¨�_�b�c�X�]­�e`$VÁg\b�]���c�[¢l�b�X�Z\b
n�`aÉ}k$c1X�k$_j[^��]�ÊË��m^�\]±X�b�c�]�Ì3X�Zj`aX
X�Zjb���kqm^m�be��X�[^kqVÆ�eke��b�c�]��
ÍIk$c�b��
ke��b�ced�X�Z\b�¤!f'kq�\m^g)m�[�Ä�b­X�Z\b°�em��\]±X�b�c�[�Vj��`$m^�qkac�[�X�Z\n�]�_\c�k�g\�\�eb
Î�Ï3Ð¦Ñ�Ò,Ó Ô�Õ:ÖHÓ ×�ÒÆÒzØ¦Ù¦Ù$Ô�ÕËÚzÛ±Ü�Ñ�ÝÁÙ¦×�ÕËÚ�Þ�ß�à�áFâ�ã�ã ä å¿æ�æ�ç�è�éeê�æFëìjí�î å�æ�æ�ï�ð�ñ�ò�èeë î ã í å¿æ�æ�ï�è�è�çvò¦ë î ã í å¥ñaê±ó�ó�ò�ð�òFë¦×�Ý¦Ü î ã í å¥ñ�óFê�èvï�è�ïeôFÚzÐFÛõ Ñ�ö�Ñ Úz×�÷xÏ�Û±øWÐFÝ¦Ô�÷�Ô�ö�ß�ã Û}Ý�ÚzÛ±Õ'×vÚ'ÚzÐ¦Û­ù�Ý¦Ñ ú�Û±Õ:ÒzÑ Ú¿ß�Ô�û¸ü°Ñ�ÝFÝ¦Û±ÒzÔvÚz×¦ô ×�ÝFÜÞ�ßhÚzÐ¦Û î Õ:ýªß�þ¸Ñ�ö�Ð¡ÿ�Û±Õ:û¢Ô�Õ:ý�×�ÝFø±Û®ã�Ô�ý'Ù¦ØFÚzÑ�Ý¦öÁä3Û±ÒzÛ}×�Õ:øtÐAã�Û±Ý�ÚzÛ±Õ

� î þ�ÿxã3ä3ã��¸ØFÝ¦Ü¦Û±Õ
ÚzÐ¦Û�×�ØFÒzÙ¦Ñ�ø±Û}Ò1Ô�ûxÚzÐ¦Û õ Û}Ù¦×�ÕËÚzý�Û}Ý�Ú1Ô�û�ÚzÐ¦Û î Õ:ý4ß�ëî Õ:ý4ß'ä3Û±ÒzÛ±×�Õ:øWÐ��D×�Þ$Ô�Õ:×�ÚzÔ�ÕËß � î ä����\Ø¦ÝFÜ¦Û±Õ ã�ÔeÔ�ÙqÛ}Õ:×�ÚzÑ ú�Û î ö�Õ:Û±Û}ý�Û±Ý�ÚÝ�Ø¦ý4Þ$Û±Õ õ�î¸î
õ ê±ævå¥ñaêWåËè�å¥ñ�ñaê}ò��6Ï3Ð¦Û�ø±Ô�Ý�ÚzÛ±Ý�Ú�Ô�û0Ó�Ð¦Ñ�øtÐ�ÜFÔeÛ±Ò�Ý¦ÔvÚÝFÛ±ø±Û±Ò:Òz×�Õ:Ñ�÷ ß�Õ:Û
	aÛ±ø}Ú4ÚzÐFÛ0Ù$Ô�ÒzÑ ÚzÑ�Ô�ÝÆÔ�ÕªÚzÐ¦Û�Ù$Ô�÷�Ñ�ø}ß�Ô�û ÚzÐ¦Û+ö�Ô�ú�Û±Õ:Ý¦ý�Û}Ý�Ú±ë×�Ý¦Ü'ÝFÔ1Ô��+ø±Ñ�×�÷eÛ}Ý¦Ü¦Ô�Õ:Ò:Û±ý�Û±Ý�ÚjÒzÐ¦Ô�Ø¦÷�Ü¾Þ$Û3Ñ�Ý¦û Û±Õ:Õ:Û±Ü
� î ø±ø}Û±ÒzÒ�ÚzÔ
Õ:Û±Ò:Û±×�Õ:øtÐ×�Ý¦Ü°ø±Ô�ý�Ù¦ØFÚzÑ�ÝFö+û¢×�ø±Ñ�÷�Ñ ÚzÑ�Û}Ò Ó ×�Ò¸Ù¦Õ:Ô�úFÑ�Ü¦Û}Ü°Þ�ß�ÚzÐFÛ õ Ñ�ö�Ñ Úz×�÷DÏ�Û±øtÐ¦Ý¦Ô�÷�Ô�övßã�Û±Ý�ÚzÛ±Õ ×�Ý¦Ü0ÚzÐ¦Ûªü°Ñ�ÝFÝ¦Û±ÒzÔvÚz×+áeØ¦Ù$Û±Õ:ø±Ô�ý�Ù¦ØFÚzÑ�Ý¦ö í Ý¦Ò:ÚzÑ ÚzØFÚzÛ��
� õ Û±ÙeÚ���Ô�û
ã�Ô�ý�ÙFØFÚzÛ±Õ+á�ø±Ñ�Û±Ý¦ø±Û0×�ÝFÜ ì Ý¦ö�Ñ�Ý¦Û±Û±Õ:Ñ�Ý¦öFë�ù¸ÝFÑ ú�Û±Õ:ÒzÑ Ú¿ß�Ô�ûü­Ñ�Ý¦Ý¦Û}ÒzÔ�Úz×Fëaü2à
� õ Û±ÙeÚ���Ô�û
ã�Ô�ý�ÙFØFÚzÛ±Õ+á�ø±Ñ�Û±Ý¦ø±Û0×�ÝFÜ ì Ý¦ö�Ñ�Ý¦Û±Û±Õ:Ñ�Ý¦öFë�ù¸ÝFÑ ú�Û±Õ:ÒzÑ Ú¿ß�Ô�ûü­Ñ�Ý¦Ý¦Û}ÒzÔ�Úz×Fëaü2à

X�Z\b��em��j]±X�b�c�[^V\�h]�k$m^��X�[^kqV\]�X�Z�`¦X»`ac�b)�ekqV\]�[�]±X�beV�X!f�[¢X�ZÂX�Z\b�[�c
��kq�qV\[�X�[�kqVhn�k�g\bem�]���Å�b�Vj��b¬[�X�[^]�[^nÆ_ kac�Xv`$V�X�X�k)l b!`¦l�m�b�X�k
k$c��q`$V\[^��b2`,g\k��e�\n�b�V�X��ekqm�m^b���X�[�kqV)`$���ekac�gj[�V\�ÆX�k�`,�q[¢��beV�]�b�X
kqp4X�ka_�[��e]¬ÊËb�[�X�Z\b�c2p¿c�k$n g\kqn�`$[^VÁb�¨�_�b�c�X�]�d3k$c,`a]�`�c�be½D�\[�c�b��
n�b�V�X0]�`aX�[^]�p¥¤�[^V\�¬�\]�b�c�]��jVjb�b�gj]�Ìv�ª��b°c�b�p�b�c�X�kÆX�Zj[�]+_jc�kal�m�ben
`$]2rtsvuxwzy�{±|a~�w¿�$���hy�������rt��~�w¿���$�

º�kac�b�¨\`$n�_jm�bqd�[^V)`�XW¤�_j[^�e`$m b�V���[�c�k$Vjn�beV�X+kqp�m¥`�fYi\c�n�]�d
`�m^`ac��qb­`$n�kq�\VDX'kqp m^b�X�X�b�c�]�d�n�ben�kacv`$V\g�`�d\b��zn¬`$[�mxn�b�]�]�`$�qb�]�d
`$V\gY��kqV�X�cv`$��X�]®`¦c�b��qbeV\b�cv`aX�b�gYkqVY`¡gj`$[^m¢¤�l�`$]�[^]�����Z��\]�d
k$c��q`$V\[^��[^V\��m^b���`$m®g\k����\n�b�VDX�]�[�V�X�k�n�bF`$V\[�Vj�$p��\mI��m^�\]±X�b�c�]
X�kHm^b���b�cv`$�qb!ljc�kef�]�[^V\�h`$V\g¡]�be`ac��vZ\[^V\��[^],��b�c�¤�[^nÆ_ kac�Xv`$V�Xe�
�ª�qbeVAX�Z\kq�\�qZ¼`Á�ek$n�_jm^b�X�b®m¥`ef&ijc�n Xv`a¨�kVjkn�¤Ân¬`e¤ÂV\k$X
l�b®`e�q`a[^m¥`¦l�m�bqd�m^`ef m�[�l\cv`ac�[¥`aVj]¬[^V�`�m¥`ef&ijc�n �e`$VA_\c�kF��[�gjb
]�kqn�b,[^V\p�kac�n¬`aX�[^k$V®kqV�X�Z\b�n¬`¦É±kac0X�k$_j[^��]0kqp�X�Z\b�g\k����jn�beV�X
��kqm^m�be��X�[^k$V°l�`$]�b�g�kqV­X�Z\be[¢c�Ä�V\kFf�m�beg\�qb1kqV°X�Z\b1_\cv`$��X�[^��b4`ac�be`$]
kqp!X�Z\bAm¥`ef i\c�n)d¬c�bem^`aX�b�g m^`ef#�e`aX�b��qk$c�[�be]�d!`$V\g ���\]±X�kqn
l�`$]�b$� ºjk$c�b�¨�`$n�_jm^b$d�` m¥`ef i\c�n n¬`e¤Çp¿k��e�\]¼k$VÇX�Zjb
`ac�be`$]AkqpIl�`$V�Ä�[�V\�\d®l�`$V�Ä�c���_jX���¤qdI[�Vj]���cv`$V\��bqdH`$V\g&g\b�l\Xe�
��Z\[^]°[^V\p¿k$c�n¬`aX�[�kqV�[^]°V\k$X°kqV\m�¤HZ\b�m�_jp��\m
p�k$c°k$c���`$V\[^��[^V\�»X�Zjb
g\k����\n�beV�X�]�d�lj�\X°`am^]�k»]�b�c���b�]°`a]°`¬c�bF½D�\[¢c�ben�b�V�X­kqpªg\b�]�[�c�b�g
��m^�\]±X�b�c�[^V\�Ã]�k$m^��X�[^kqV\]�����Zj`aX�[�]�d!X�Z\b¼c�b�]��\m�Xv`$V�X���m^�\]±X�b�c�]
]�Z\kq�\m^g��ekac�c�be]±_�kqV\g!X�k,X�Z\b­[�g\beV�X�[�ijb�g»X�k$_j[^��]°ÊËp�k$c'b�¨\`an�_jm^b$d
X�Z\b2p�k$�\c+_\cv`$��X�[��eb�`¦c�bF`$]�Ìv�4À�m�]�k¬V\k$X�b°X�Zj`aX0`$�e½D�\[�c�[�V\��_jc�[�k$c
Ä�V\kFf�m�beg\�qb®kqp­m¥`al�b�m^b�g¼g\k����jn�beV�X�]»`a]�]�k��e[^`aX�b�g¼f�[¢X�Z¼bF`a��Z
X�k$_j[��qd$b���b�VÆ`0]�n¬`$m^m�`$n�k$�jV�Xedq�e`$V,l�b4��b�c�¤°X�[^n�b��z��kqV\]��\n�[^V\�
`$V\g���kq]±X�m¢¤��
��Z\bÇX�cv`$g\[¢X�[^kqVj`$mÂ�em^`$]�]�[�ij�e`aX�[^kqV `$m^�qkac�[�X�Z\n�] �e`$V\V\k$X

]�kqm¢��bAX�ZjbÂX�k$_j[^���zg\c�[¢��b�V���m^�\]±X�b�c�[^V\� _\c�k$ljm^b�n�l�b��F`$�\]�b¼k$p
X�Z\b¡[^V\]���«¬�e[�beV�XÁ[^V\p�k$c�n�`aX�[^kqV `al�kq��XÁbe`$�vZ ��m¥`a]�]¼Ê�X�k$_j[^�¦Ìv�
� [^V\��bÂ]�kqn�b�X�[^n�b�]�X�Z\bA`e�$`$[�m¥`aljm^b¡g\be]���c�[�_\X�[�kqV\]hn�`e¤�k$Vjm¢¤
��kqV�Xv`$[^V¬`°p�b�fÂf'k$c�g\]�d�[�V¬kac�gjb�cªX�k­_\c�k�g\�\�eb+�qkDk�g�k$c���`aVj[��F`¦�
X�[�kqV d¸X�Zjb�[^V\p¿k$c�n¬`aX�[�kqVhkqp¾�jV\m^`al�bem�beghg\k����\n�b�VDX�]�n,�\]±X2l b
Xv`aÄqbeV»[^V�X�k�`a�e��kq�\V�X�X�kÆm�b��qb�cv`$�$b­��m¥`$]�]�[¢i��e`aX�[�kqV�X�b���Z\V\kqm�kq�$¤q�
� b�n�[��z]���_�b�c���[^]�b�gÂ�em^`$]�]�[�ij�e`aX�[^kqV�������d����+`$V\gÂ`$��X�[¢��b»m^be`ac�V��
[�Vj� � !�d�"#�$�ª`¦c�bÆXWf'k»kqpª]��j�vZÁ`a__\c�k�`$�vZ\be]��2Å�kFf'b���b�ced�X�Z\be]�b
`a__\c�k�`$�vZ\be]Æbe[¢X�Z\b�c�V\b�beg�]��\«��e[�beV�X�m^`al�bem�beg�gj`aXv`�X�kI]±Xv`ac�X
f�[¢X�Z3d3k$c°V\beb�gHX�k�Zj`e��b�`$���eb�]�]­X�k)`�V\kqV�X�c�[¢��[¥`$m1`$n�k$�jV�X2k$p
m^`al�bem�beg�gj`aXv`Ægj��c�[�Vj��X�Z\b°_\c�k���b�]�]��
��Z\b,����c�c�beV�X�`a__\c�k�`$�vZ\be]0kqp
]�b�n�[��z]���_�b�c���[^]�b�gI�em��j]±X�b�c��

[�Vj�%� "#&�d'�$d�"#!Dd(�#�)�zd�f�Z\[^�vZ»�e`$V¬�j]�b��em^`$]�]¾m^`al�bem�]¾k$c4_�`$[¢c�f�[^]�b
��kqV\]±X�cv`$[^V�X�]�kqVY]�kqn�bÁg\k����\n�beV�X�]�g\��c�[^V\�¡X�ZjbÁ��m^�\]±X�b�c�[^V\�
_\c�k���be]�]�d�pË`a[^m�X�k¡]�`aX�[�]�p¿¤¼X�ZjbIc�be½D�\[�c�b�n�beV�X�]�kqp2X�ZjbIX�k$_j[^���
g�c�[��qbeV¡��m^�\]±X�b�c�[^V\�I_jc�kal�m�ben�`$],f'bem�m:d4n�`$[^V\m�¤hl�be�e`$�\]�b!X�Zjb
_\c�[^kac2Ä�V\kFf�m�beg\�qb�kqpªX�Z\bÆX�k$_j[����zg�c�[��qbeV��em��j]±X�b�c�[^V\�»_jc�kal�m�ben
[�]ÆV\k$XÆ[^VhX�Zjb!p¿k$c�n¬`aXÆk$p+m^`al�bem�beg�k$l\É}be��X�]�d
lj��XÆkqp�X�Z\b!gjb��

358

]���c�[�_\X�[�kqV\]�kqp�_ k$]�]�[�ljm^b°X�k$_j[^��]��
�hbÆ_jc�ka_ k$]�b�X�Z\b�X�k$_j[����zg�c�[��qbeVÁ��m^�\]±X�b�c�[�V\��]���Z\b�n�b�]2X�k

]�k$m���bÁX�Z\[�]�_jc�kal�m�ben*lD¤Yg\b�i�V\[�Vj�ÂXWf'kA_\c�k$_�b�c�X�[^b�]�X�Zj`aX®`
�$k�k�g���m^�\]±X�b�c�[�V\��]�kqm��\X�[�kqV�n,�\]±X)Zj`e�qbq�Ãº
[�c�]±Xed+X�Z\bHg\k������
n�beV�X�]!��m^�\]±X�b�c�begÂX�k�`Á��b�c�Xv`$[�VÂX�k$_j[^��]�Zjk$�jm�g���kqV�Xv`$[�VAX�Z\b
��kqV�X�b�VDX­k$p
X�Zjb�X�k$_j[^��Ê}w��¿���^d�X�Z\b,g\k����\n�b�VDX�]­`ac�b,]�[^n�[�m¥`ac­k$c
c�b�m^b��$`$V�X�X�kHX�Z\b»X�k$_j[^�¦Ìv� � b��ek$Vjg d4X�Z\b�g\k����\n�beV�X�]�f�[¢X�Z\[^V
k$Vjb¬�em��\]±X�b�c,]�Z\kq�\m^ghl�b!n�k$c�b!]�[�n�[^m^`ac,X�k�bF`$�vZ�k$X�Z\b�c�X�Zj`$V
X�Z\b°g\k��e�\n�b�V�X�]�p¥c�kqn6XWf'k�gj[¢¯�b�c�b�V�X��em��j]±X�b�c�]��
��Z\b���kqV�X�c�[�lj��X�[^k$V»kqp X�Z\[�]¾_�`a_�b�c'[�]¾XWf'k$�zp�kqm�g �ªº
[¢c�]±Xed�X�k

k$�\c�Ä�V\kFf�m�beg\�qb$d¦f'b4[�VDX�c�kDgj�\��bªX�Z\[^]�V\kF��b�m�_\c�k$ljm^b�n£kqpDX�k$_j[^���
g�c�[¢��beVH��m^�\]±X�b�c�[�V\�\� � be��kqV\g d f'b,_jc�ka_ k$]�b�b�¯�be��X�[��qb�`$V\gHbep¥�
ij��[^b�V�X,X�ka_�[����zg�c�[¢��beV���m^�\]±X�b�c�[^V\�®n�b�X�Z\k�g\]�X�Zj`aX,b�n�_jZj`$]�[^��b
X�Z\bªc�b�m¥`¦X�[^kqV\]�Z\[�_�l�b�XWf'b�b�V�g\k����jn�beV�X�]�`$V\g2X�k$_j[^��]�`$V\g2c�bem^`a�
X�[�kqV\]�Z\[�_A`$n�kqV\�HgjkD�e�\n�b�V�X�]�X�Z\b�n�]�b�m���b�]�]�[�n,�\m�Xv`$V\b�kq�\]�m�¤q�
UWV�`$g\g\[�X�[^k$V3d1f'b¬_jc�b�]�b�VDX�`®��kqn�_\c�b�Zjb�V\]�[���b�b�¨�_�b�c�[^n�b�V�Xv`$m
b��$`$m^�j`aX�[�kqV)�\]�[^V\���q`¦c�[^kq�\]�gj`aXv`a]�b�X�]�`$V\g)kq��c0b�¨�_�b�c�[^n�b�V�Xv`$m
c�b�]��\m�X�]Æ]�Z\kFf X�Zj`aX,X�Z\b!_\c�k$_�kq]�beg�X�k$_j[����zg�c�[��qbeV���m^�\]±X�b�c�[�V\�
]��vZ\ben�be]°`ac�bÆb�¯�be��X�[���b�f�[�X�Z®X�k$_j[^�,_\c�k$X�k$XW¤�_�b�]�kqpªg\[�¯�b�c�b�V�X
m�b��qbem�]+kqp�]±_�b��e[¢i���[�XW¤q�
��Z\b2c�be]±X�k$p
X�Zj[�]0_�`a_�b�c�[^]0k$c���`aVj[��eb�gH`a]�p¿kqm^m�kFf�]�� � be���

X�[�kqV "�g\[^]����j]�]�b�]�]�k$n�b!c�b�m¥`aX�b�g�c�b�]�bF`¦c���Z � � be��X�[^k$V �)_\c�k$�
��[^g\be]!]�kqn�bH[^V\p�kac�n¬`aX�[^k$V�kqV�Z\kFf gjkD�e�\n�b�V�X�])`ac�b�c�b�_\c�b��
]�b�V�X�beg�`$V\g)Z\kFfYX�Z\b2]�[�n�[^m^`ac�[�XW¤»k$c�g\[^]±Xv`$V\��b°l�b�XWf'beb�V)g\k����
�\n�b�V�X�]�[^]��ekqnÆ_���X�b�g � � be��X�[^kqV\]��»g\be]���c�[�l�b�]0X�Z\bÆ��c�[�X�b�c�[^kqV
p¿�\Vj��X�[^k$Vj]'X�Zj`aX+`ac�b­X�Z\b­p�k����\]�kqp3X�Z\[^]'_x`¦_ b�c�`$V\g)g\be]���c�[�l�b�]
X�Z\bH`$m��qk$c�[�X�Z\n X�Z�`¦X�k$_\X�[^n�[��eb�]!X�Zjb®�$`ac�[^k$�j]!X�k$_j[^���zg�c�[���b�V
��c�[�X�b�c�[^k$VÂp¿�jV\��X�[^kqV\]¬`aVjg¡X�Z\b)��m^�\]±X�b�c�[�V\�h`$m��qk$c�[�X�Z\n�[�X�]�b�m^pW�
� b���X�[�kqV &2_\c�kF��[�g\be]¾X�Z\b­g\b�Xv`$[^m�beg»b�¨�_�b�c�[^n�b�V�Xv`$m�b��q`$m��j`aX�[^kqV
k$pªX�Z\b,�$`ac�[^k$�j]0X�k$_j[^���zg�c�[���b�V���c�[�X�b�c�[^k$VHp��\V\��X�[�kqV\]��2º
[�V�`am^m�¤qd
� b���X�[�kqV !,_\c�kF��[�gjb�]�]�kqn�b2��kqV\�em��\gj[�V\��c�b�n¬`ac�Ä�]��
� ���	� S\Q � ¶ ��� P � S�RaT�

À���X�[��qb�m^be`ac�V\[^V\� � !�d "#����`$��Ä�V\kFf�m^b�g\�qbe]�X�Z\b)p�`$��X�X�Zj`aX¬`$���
½��j[¢c�[^V\��m^`al�bem�beg»gj`aXv`Æ[�]'��b�c�¤¬X�[^n�b��z��kqV\]��jn�[^V\��`$V\g��ekq]±X�m¢¤�d
`aVjgÂX�c�[�be]�X�kÁn�[�Vj[�n�[^��b�X�Z\b®VD�\n�l�b�c»kqp�m¥`al�b�m^b�gAgj`aXv`�c�b��
½��\c�[�beg�X�k!lj�\[^m^gH`!]��\���eb�]�]�p��\m���m¥`$]�]�[�p�b�ce� ��Z\b�`$��X�[��qb,m^be`ac�V��
[�V\��`¦_j_\c�k�`a��Z\b�]¸]±Xv`ac�X�f�[�X�Z�`���b�c�¤­]�n¬`$m�mDVD�\n�l�b�c�kqp�m¥`¦l b�m^b�g
gj`aXv`�`$V\g)c�bF½��jb�]±X+�jV\m^`al�bem�beg�kal\É±b���X�]�X�k�l�b2m^`al�bem�beg)l�`$]�b�g
k$VAf�Z\b�X�Z\b�c¬X�Z\b��\V\m¥`al�b�m^b�g¼k$l�É±b���X�]!`ac�b
��n�kac�b®[�Vjp¿k$c�n¬`a�
X�[¢��b��»_�kq[�VDXe� ��Z\b�`$��X�[���bÆm�bF`ac�V\[�Vj�)`¦_j_\c�k�`a��Z\b�]°��X�[^m^[��eb,X�Z\b
[�V\p�k$c�n¬`¦X�[^kqV®_\c�kF��[�gjb�gIlD¤®�\V\m¥`aljm�begHgj`aXv`��­Å�kFf'b���b�cedxX�Zjb�¤
]±X�[�m^m Vjb�b�g)X�k�Zj`e��b�`$����be]�]�X�k�]���«¬��[^b�V�X0m¥`al�b�m^b�g�gj`aXv`��

UWV\�ekac�_ kacv`aX�[^V\��_\c�[^kac)Ä�V\kFf�m�beg\�qbH[^V�X�k�X�ZjbH��m^�\]±X�b�c�[�V\�
\c�k���b�]�]°Zj`$]°g�cv`ef�V��b�k$_jm^b �]2`¦X�X�beV�X�[^k$VHc�be��beV�X�m¢¤�� ��Zjb�p¿k$�
���\]Ækqp�X�Z\[^],c�b�]�bF`¦c���Z�Zj`$]Æl�b�beV�kqV�]�ben�[��z]���_�b�c���[�]�beg��em��j]±�
X�b�c�[^V\�\d�f�Z\[^�vZ»`$]�]��\n�b�]¾X�Z\b+_\c�[^k$c4Ä�V\kFf�m^b�g\�qbÆÊ�l�`$��Ä��$c�kq�\V\g
Ä�Vjkef�m^b�gj�$baÌ�[^]��q[¢��b�V�lD¤�`�m�[^n�[¢X�beg�]�b�X)kqp2m¥`al�b�m^b�g�gj`aXv`�d
p¥c�kqn�f�Z\[^�vZ»X�Z\b0Ä�V\kFf�m^b�g\�qb­kqp XWf'kÆk$l\É}be��X�]']�Zjk$�jm�g»l�bem�kqV\�
X�k,X�Z\b°]�`$n�b°�em��\]±X�b�c�ÊËn,�\]±X��zm^[�V\ÄjÌ¾k$c�]�Z\kq�\m�g�V\k$X+l�b�m^kqV\�ÆX�k
X�Z\b�]�`$n�b0��m^�\]±X�b�c­ÊË�e`$V\VjkaX��zm^[^V�Ä�Ì��F`$V�l�b0g\b�c�[¢��beg ���1c�b���[�kq�\]
]�b�n�[¢�z]��_�b�c���[^]�b�gÃ`a__jc�kq`$��Z\b�]HpË`am^m�[^V�X�kAX�Z\c�b�b��e`aX�be�kc�[^b�]��
��kqV\]±X�cv`$[�VDX��:l�`$]�b�g d�n�b�X�c�[����:l�`$]�b�g£`$V\g X�Z\bÁ��kqn�lj[^V\b�gÃ`a_\�

_\c�k�`$�vZ\be]����¾kqV\]±X�cv`$[�V�X��:lx`a]�begH`a__\c�k�`$�vZ\be]�b�¨�_jm^[��e[¢X�m�¤�n�k�g��
[�p¿¤¡X�Z\b�k$l\É}be��X�[���b)p��\V\��X�[�kqVAk$c!n¬`aÄ�b���b�c�Xv`$[�VA�ekqV\]±X�cv`$[�V�X�]
g\��c�[^V\� X�Zjb¼��m^�\]±X�b�c�[�V\� _\c�k��eb�]�]�� " & �:� ��Zjb�c�be`$]�d»n�b�X�c�[^���
l�`$]�b�g�`a__\c�k�`$�vZ\be]�_�`acv`$n�b�X�c�[^��b'g\[�]±Xv`$V\�eb'n�b�X�c�[^��`$V\gÆm^be`ac�V
X�Z\b+n�b�X�c�[^��_�`acv`$n�b�X�b�c�]ª[^V¬`°n¬`aVjV\b�cedD]�k°X�Zj`aX1X�Z\b+gj[�]±Xv`$V\�eb
l�b�XWf'beb�V�kal\É±b���X�]'��kqV\Vjb���X�beg!lD¤!n,�\]±X��zm^[^V�Ä�]'[^]�]�n¬`am^m^b�c�`$V\g
X�Z\b�g\[^]±Xv`$V\��b0l�b�XWf'b�beV!k$l�É±b���X�]¾�ek$VjV\b���X�b�g¬lD¤!�e`$V\V\k$X��zm^[�V\Ä�]
[�]¬m¥`ac��qb�c![^VA�qb�V\b�cv`am ���$d "#!��z�¼º
[�Vj`$m^m¢¤ÂX�Z\b���kqn�lj[^V\b�g¼`a_\�
_\c�k�`$�vZ\be]+[^V�X�b��$cv`aX�b­l�k$X�Z�kqp¸X�Z\b�]�b­X�be�vZ\V\[¥½D�\b�]+[^V�X�Z\b°�em��\]±�
X�b�c�[^V\��_jc�kD�eb�]�] � "��z�ªÀ�VjkaX�Zjb�c+c�b��eb�V�X0`a__jc�kq`$��Z�kqp�[^V\��k$c�_�k$�
cv`aX�[�V\�H_\c�[^kac�Ä�V\kFf�m�beg\�qb»Xv`$��Ä�m�be],X�Z\b»_\c�k$ljm^b�n�g\[¢¯ b�c�b�VDX�m¢¤
� �#���:� ��Z\b�¤�g\b�i�V\b�g¡X�Z\b�Vjk$V\�:c�b�g\�\Vjgj`$V�X!gj`aXv`H��m^�\]±X�b�c�[^V\�
`$]°`¬_\c�k$ljm^b�n/kqpªg\[^]���kF��b�c�[^V\�)`$m¢X�b�c�Vj`aX�[¢��b,�em��j]±X�b�c�[^V\��]�kqm����
X�[�kqV\]¾�q[¢��b�V»`°Ä�V\kFf�V!��m^�\]±X�b�c�[^V\��]�kqm^��X�[�kqV d�f�Z\b�c�b+X�Zjb+_jc�[�k$c
Ä�V\kFf�m�beg\�qb2[�]0`$V)b�V�X�[�c�b2��m^�\]±X�b�c�[�V\�¬]�kqm���X�[^kqV �
� � R �	� ¹��h¹ ´ S�Ra¹ � P
��Z�c�kq�\�qZ��zkq��X2X�Z\[^]­_�`a_�b�c°f'bÆf�[^m^m1�\]�b�X�Z\b�]±¤�n�l�kqm�]��
d��Hd
`$V\g��¬X�k�g\beV\k$X�b­X�Z\b2VD�\n�l�b�c0kqp¸g\k��e�\n�b�V�X�]�djX�Z\b2VD�\n�l�b�c
kqp1X�b�c�n�]�d3`$V\gHX�Z\bÆVD�jn2l b�c2kqpª��m^�\]±X�b�c�]�d c�be]±_�b���X�[¢��bem¢¤��­��b
f�[�m^m��\]�b�X�Z\b�]±¤�n�l�kqm ��X�k2g\beV\k$X�b+X�Z\b�]�b�X¾kqp"!/gjkD�e�\n�b�V�X�]
X�Zj`aX,f'b»f�`aVDX,X�kI�em��\]±X�b�ced#�%$�&'�)(*&,+�+,+-&'�).)X�kIg\b�VjkaX�b»bF`a��Z
kqV\b¾kqp�X�Zjb/�°��m^�\]±X�b�c�]�d0�1$�&2��(*&,+�+�+�&2��.'X�k�g\b�VjkaX�b4X�Z\b¾]�[^��b�]
k$p
X�Z\b���k$c�c�be]±_�kqV\g\[^V\�Æ��m^�\]±X�b�c�]�dj`$V\g435$,&63 (7&�+,+�+�&63 .°X�k,g\beV\k$X�b
X�Z\b­X�k$_j[^�­_jc�kaX�k$XW¤�_�b°�qbe��X�k$c�]+�q[¢��beV�`$]�_\c�[^k$c+Ä�V\kFf�m^b�g\�qbq�
��Z\bª�$`ac�[�kq�\]¸��m^�\]±X�b�c�[^V\�0`$m��qk$c�[¢X�Zjn�]�X�Zj`aX�`¦c�b4g\b�]���c�[¢l�beg

[�V�X�Z\[^]­_�`a_�b�c2�\]�bÆX�Zjb,��b���X�k$c��z]±_�`$��b�n�k�g\b�m � "�8 �
X�k�c�b�_jc�b��
]�b�V�X�bF`$�vZ)g\k����\n�b�VDXe�1UWV�X�Z\[�]+n�k�g\bemËd\bF`a��Z�gjkD�e�\n�b�V�X�9�[�]
��kqV\]�[^g\b�c�beg!X�k2l b�`2��b���X�k$c'[^V!X�Z\b�X�b�c�n��z]±_�`$��bq�1UWV!_�`ac�X�[��e���
m^`aced\f'b°benÆ_�m�kF¤�b�g�X�Zjb;:6<>=@?A9B<�X�b�c�n f'be[��qZ�X�[^V\��n�kDgjb�m:d\[^V
f�Z\[^�vZ�be`$�vZ�g\k��e�\n�b�V�X0�e`$V�l�b°c�b�_\c�be]�b�V�X�beg®`a]
Ê±r C $ m^kq�xÊD�5E\|FC $ ÌG&er C (m�kq�xÊD�5E\|FC (Ì2&,+�+,+-&Fr CAH�m�kq��ÊD�5E\|FCAH2Ì�ÌG+

f�Z\b�c�bÇr CJI¡[^]�X�Z\b p¿c�be½D�\beV\��¤-kqphX�Z\bK?zX�Z X�b�c�n [^V X�Zjb
g\k����\n�beV�X�`$V\g-|FC I [^]HX�Z\bÂV��\n�l�b�chkqp!gjkD�e�\n�b�V�X�]ÁX�Zj`aX
��kqV�Xv`$[^V£X�Z\bL?zX�Z£X�b�c�n)� �¸k�`a�e��kq�\V�X�p�k$cHg\k����\n�beV�X�]Hk$p
g\[�¯�b�c�beV�X�m�beV\�$X�Z\]�d\X�Z\b°m^b�V\�$X�Z)kqp¸bF`a��Z)g\k����jn�beV�X+��b���X�kac�[�]
V\k$c�n¬`am^[^��b�gÆ]�k�X�Zj`aX�[�X�[�]
k$p\�\V\[�X
m�beV\�$X�Z»ÊGM'9	N OQPDR-MTS �¦ÌvdaX�Zj`aX
[�],bF`a��Zhg\k��e�\n�b�V�X,[^]Æ`)��b���X�k$c,kqVhX�Z\b¬�\V\[�X,Z�¤�_�b�c�]±_jZ\b�c�bq�
UWV»X�Zjb0c�be]±X�kqp�X�Z\b�_�`a_�b�ced�f'b­f�[�m^m `$]�]��\n�b°X�Zj`aX'X�Z\b���b���X�k$c
c�b�_\c�be]�b�V�Xv`aX�[^kqV�p�k$c1bF`a��Z�g\k����jn�beV�X¾`aVjg�p¿k$cªbF`a��ZÆX�k$_j[^�'Z�`a]
l�b�beV,f'be[��qZ�X�beg��\]�[^V\��r C�{zwz|FC¸`$V\g�[�X1Zj`$]
l�beb�V�V\k$c�n¬`am^[^��b�g�]�k
X�Zj`aX
[�X
[�]
kqpj�\V\[�X
m^b�V\�$X�Z �VU�[¢��beVÆ`�]�b�X�WÂkqp\gjkD�e�\n�b�V�X�]ª`$V\g
X�Z\b�[�c���k$c�c�b�]±_ k$Vjg\[�Vj����b���X�k$cHc�b�_jc�b�]�b�VDXv`¦X�[^kqV\]�d,f'b¡g\b�ijVjb
X�Z\bYX[Z]_^)Za`7bJc2dI��b���X�kacfe>gÃX�khl�bheigjSlknm,o g 9\d0`$V\g
X�Z\bpX*d�q�cFr[Z]b6s!��be��X�k$c�t/g�X�k¬l but/gvSwe>g�E]x W>xx���hb,`$m^]�k
g\b�i�V\bÆX�Z\bÆ�ek$n�_�kq]�[�X�b,��be��X�k$c°kqp1X�Z\b�b�V�X�[�c�b�gj`aXv`a]�b�X­X�k!l b
eySzk|{I~} $ 9 I d�`aVjg¡X�Z\b���kqn�_�kq]�[¢X�b)��b���X�kac¬kqp0X�Z\b)beV�X�[�c�b
X�k$_j[��e]�X�k�l�b�3�S k .I~} $ 3 I �

UWV X�Z\b��qbe��X�k$c��z]±_�`$��b�n�k�g\bemËd)X�Z\b���kq]�[^V\b�]�[�n�[^m^`ac�[�XW¤
[�]IX�Z\b�n�kq]±XH��kqn�n�k$Vjm¢¤£�\]�b�gÃn�b�X�Z\k�g X�k¼�ekqnÆ_���X�bhX�Zjb
]�[�n�[^m^`ac�[�XW¤hl�b�XWf'beb�V�XWf'kIg\k����\n�beV�X�]�9 I `$V\g�9��$d
f�Z\[^�vZ�[�]
g\b�i�V\b�g�X�k­l�b���kq]FÊ�9 I &29��¦Ì�Sn9 I�� 9��*E�ÊGM'9 I M�M'9���M�Ìv� ��Z\b���kq]�[�Vjb

359

p¿k$c�n,�\m¥`®�F`$Vhl�b»]�[�n�_jm^[¢i�b�g�X�k®�ekq]FÊ�9 I &29��¦Ì S 9 I�� 9��qd�f�Zjb�V
X�Z\b2gjkD�e�\n�b�V�X���b���X�k$c�]0`ac�b�kqp1�\V\[�X0m^b�Vj�aX�Z3� ��Zj[�]�n�bF`$]���c�b
l�b��ek$n�be]�kqV\b�[^p0X�Z\b�g\k����jn�beV�X�]!`ac�b�[�g\beV�X�[^�e`$mËd+`$V\gA�eb�c�k
[�p¾X�Zjb�c�b¬[^]�VjkaX�Zj[�V\�®[^Vh�ekqn�n�kqVÁl b�XWf'b�beVÁX�Z\ben Ê}w��¿���^d¸X�Z\b
�qbe��X�k$c�]�`ac�b°k$c�X�Z\kq�qkqVj`$m X�k�be`$�vZ)k$X�Z\b�c�Ìv�� � µ��
¹�T��v¶¸R$¹�� �\´
	u� ·¸P�Q � Ra¹ ´�� N ��� µxR$¹¥Q*
%�ÁP
À�X�`�Z\[^�qZ��zm�b���b�m�X�Z\b0_\c�k$ljm^b�n kqp�X�k$_j[^���zg\c�[¢��b�V���m^�\]±X�b�c�[^V\�Æ[�]
g\b�ijVjb�g�`$]�p�kqm�m^kFf�]�� U�[���b�V�`�]�b�X��¡kqp5�Hg\k��e�\n�b�V�X�]�`$V\g�`
]�b�X�3 k$pT��X�k$_j[��e]�d f'b�f'kq�\m^g�m^[�Äqb�X�k»_�`ac�X�[�X�[�kqVHX�Z\b�g\k������
n�beV�X�]+[^V�X�k��!]���lj]�b�X�]��1$�&G��(*&�+,+�+�&G��.Dd\be`$�vZ)��k$c�c�be]±_�kqV\g\[^V\�
X�kÁkqV\b®kqp�X�Z\b)X�k$_j[^��]�d+]��\�vZAX�Zj`aXHÊË[�Ì,X�Z\b�g\k��e�\n�b�V�X�]»`$]±�
]�[��qV\beg�X�k�bF`$�vZ�]���l�]�b�X�`ac�bHn�k$c�bH]�[^n�[^m¥`¦c)X�k�be`$�vZ�k$X�Z\b�c
X�Zj`$VhX�Z\b!g\k����jn�beV�X�]Æ`$]�]�[^�qV\b�g�X�kIg\[�¯�b�c�beV�XÆ]���lj]�b�X�]�dª`$V\g
ÊË[�[�Ì�X�Zjb+g\k��e�\n�b�V�X�]4kqp�be`$�vZ¬]���lj]�b�X'`ac�b�n�k$c�b�]�[^n�[�m¥`ac4X�k2[¢X�]
��k$c�c�b�]±_�kqV\gj[�V\��X�k$_j[��°X�Zj`$V�X�Z\b°c�b�]±X0k$p¸X�Z\b°X�ka_�[��e]��
�ª��b�VÁX�Z\kq�\�qZÁX�Z\b�c�b!`ac�b!`)V��\n�l�b�c,kqp'gj[¢¯�b�c�b�V�X�f�`e¤�]

X�Zj`aX­�e`$VIl�bÆ�\]�b�gHX�k»�ek$VD�qb�c�X�X�ZjbÆ`al�kF��bÆZ\[��qZ��zm^b���bem¸_jc�kalj�
m�benÃg\b�ijV\[�X�[�kqV�[�VDX�k°`�_jc�b���[^]�b���m^�\]±X�b�c�[^V\�°`$m^�qkac�[�X�Z\n)dq[^V,X�Zj[�]
�`a�b�ced�f'b�f�[^m^m�m^[�n�[�X+kq��c+p¿k��e�\]'X�k,X�Z\b°��m¥`a]�]+kqp¸`$m��qk$c�[�X�Z\n�]
X�Zj`aX)�\]�bÁ`��m^kl�`$m­��c�[�X�b�c�[^kqV�p��\V\��X�[^kqV�
 X�k¡�e`a_\X���c�bHX�Z\b
\c�k$�b�c�X�[^b�]�`$V\g�½���`am^[�XW¤¬kqp X�Z\b�g\b�]�[�c�b�g���m^�\]±X�b�c�[^V\�,]�kqm^��X�[^k$V
`aVjg�p�k$c�n,�\m^`aX�b+X�Z\b��em��j]±X�b�c�[^V\�°_\c�k$ljm^b�n `$]
X�Z�`¦X4kqp�`$V�ka_jX�[¢�
n�[^�e`aX�[^kqV,_\c�k$ljm^b�n�X�Zj`aX
X�c�[^b�]�X�k­��kqn�_j��X�b+`����:f�`e¤Æ��m^�\]±X�b�c��
[�V\��]�kqm^��X�[�kqV®]��\�vZ)X�Zj`aX+X�Z\b°�$`$m��jb°kqp�
�[�]�k$_\X�[�n�[^��beg ���,8 �:�

UWV!X�Zjb0c�b�]±X�kqp X�Z\[^]�]�b���X�[�kqV!f'b�i\c�]±X'_jc�b�]�b�VDX+`,VD�\n�l�b�c
k$p2g\[�¯�b�c�beV�X���c�[¢X�b�c�[�kqV�p¿�\Vj��X�[^k$Vj]!X�Zj`aX��e`$V�c�b�_\c�be]�b�V�X�X�Z\b
c�be½D�\[�c�b�n�b�V�X�]Âkqp�X�Z\b�X�k$_j[^���zg�c�[���b�V6�em��j]±X�b�c�[^V\�Ã_\c�k$ljm^b�n)d
p¿kqm^m�kFf'b�gAlD¤A`�gjb�]���c�[�_\X�[^kqVAkqp�X�Z\b®`$m��qk$c�[¢X�Zjn�]¬X�Zj`aX�f'b�c�b
�\]�b�g)X�k�_�b�c�p�k$c�n6X�Z\b�[�c�k$_\X�[�n�[^�e`aX�[^k$V3�����² 	 R$¹¥Q � R$¹¿µ ´�� · ´ T$Q¦¹�µ ´ P
� [�Vj��b�X�Z\bhc�bF½D�\[¢c�ben�b�V�X�]Hkqp�X�Z\b�X�k$_j[^���zg�c�[���b�VÃ��m^�\]±X�b�c�[�V\�
��kqV�Xv`$[�V)XWf'k¬��kqn�_�kqV\b�V�X�]�djf'b°i\c�]±X0m^kDk$Ä�`¦X�Zjkef£X�k�n�k�g\bem
X�Z\b�n]�b�_�`acv`aX�b�m�¤q� ��Z\b!i\c�]±X���kqn�_�kqV\beV�X�b�n�_jZj`$]�[^��be],X�Z\b
c�b�m¥`¦X�[^kqV\]�Z\[�_�l b�XWf'b�beV�g\k����\n�beV�X�]2`$V\gHX�c�[^b�]­X�k)�$�j[�g\b�X�Z\b
��m^�\]±X�b�c�[^V\� _\c�k���be]�]hX�k _\c�k�g\�\�eb¼�em��\]±X�b�c�[�Vj�£]�kqm��\X�[�kqV\]�[^V
f�Z\[���Z,g\k����\n�b�VDX�]¸p¿c�kqn X�Z\b¾]�`an�b¾�em��\]±X�b�c
`ac�b¾n�k$c�b¾]�[^n�[�m¥`ac
X�k¬bF`a��Z®k$X�Z\b�c0X�Zj`$V�X�Z\b,g\k����\n�b�VDX�]­`a]�]�[^�qV\b�gIX�k¬g\[�¯�b�c�b�V�X
��m^�\]±X�b�c�]�� ��Zj[�]2�ek$n�_�kqV\beV�X2gjkDbe]°V\k$X���kqV\]�[^g\b�c2X�Z\b�X�k$_j[^��]
`aVjg f'bhf�[^m�m�c�b�p�b�cIX�k¼X�Z\b���c�[¢X�b�c�[�kqV£p¿�jV\��X�[^kqV\]®X�Zj`aXHp�`$m^m
[�V�X�k�X�Z\[^]��e`aX�b��qk$c�¤¡`$])���j�v�Fu���~��Fw¿���v|�y�~�wËrt��~�wzsa�hCv����y�rËw:sa�j�v�
©0V�X�Z\b�k$X�Z\b�c�Zj`$V\g d�X�Zjb�]�be��kqV\gh��kqn�_�kqV\beV�X�b�n�_jZj`$]�[^��be]
f�Z\b�X�Z\b�c2X�Zjb¬g\k����\n�b�VDX�]�[^VhbF`$�vZh�em��j]±X�b�cÆ`ac�b¬c�b�m^b��$`$V�X�X�k
X�Z\b�X�k$_j[^�¬`$]�]�k���[¥`aX�b�gÁf�[¢X�ZÁX�Z\b¬��m^�\]±X�b�ce�!�hb�f�[^m�mªc�b�p�b�c2X�k
X�Z\b���c�[�X�b�c�[^kqV p��\V\��X�[�kqV\]I[^V X�Z\[^]I�e`aX�be�kc�¤ `$]��v�Fuj��~��Fw¿���v|
y�~�wËrt��~�wzsa� C����xy�rËwzsa�\�v� UWV6X�Z\b�c�be]±XAkqpIX�Z\[^]A]�b���X�[�kqV6f'b
f�[�m^m�i\c�]±X»g\[^]����\]�]�]�b���b�cv`$m���c�[�X�b�c�[^k$V¼p��\V\��X�[�kqV\]»p¿c�k$n bF`$�vZ
�e`aX�kq�$b�c�¤ `$V\g X�Z\beV _\c�k$_�kq]�b¼XWf'k]��vZ\ben�b�]�X�kY�ek$n�lj[^V\b
X�Z\b�n�X�kq�qb�X�Z\b�ce�¸À�X X�Z\bªb�Vjg dFf'b1_\c�k$_�kq]�b1X�Z\b1X�Z\[¢c�g2]��vZ\ben�b$d
f�Z\[���Z¡[^]�`IZD¤Dljc�[�gA`¦_j_\c�k�`a��Z¡X�Zj`aX�[^V\�ekac�_ kacv`aX�be],X�Z\b»XWf'k
`a]±_ b���X�]+[^V�X�k!`Æ]�[^V\�qm^b2��c�[�X�b�c�[^k$V�p¿�\Vj��X�[^k$V3�

���Ë²���² ��´ PF·�� � R��¸¹�P � ¶ 	 Ra¹¿Q � Ra¹�µ ´�� · ´ T$Qa¹¿µ ´ P
�
b�k$_jm^b°Zj`e��b­_\c�k$_�kq]�beg�`��ac�bF`aX+VD�\n�l�b�c�kqp¸��c�[�X�b�c�[^k$V�p¿�\Vj���
X�[�kqV\]�[^V2X�Zj[�]��e`aX�b��qk$c�¤2kF�qb�c¸X�Zjbª_�`$]±X
p¿b�f�¤qbF`ac�]�� �Dd �$&�d���d����:���b��eb�V�X�m�¤qd f'b � ���$d���8 �
]±X��\gj[�beg�b�[^�$ZDX­g\[�¯�b�c�b�V�X­_x`¦c�X�[�X�[^k$V�`am
��m^�\]±X�b�c�[^V\�¼��c�[�X�b�c�[^kqVYp��\V\��X�[�kqV\]®[^VYX�Z\bh��kqV�X�b�¨�XIk$pÆgjkD�e���
n�b�V�X��em��\]±X�b�c�[�Vj��daf�Z\[^�vZ�k$_\X�[^n�[��ebª�$`ac�[^kq�\]�`$]±_�b���X�]�kqp�[�VDX�cv`¦�
��m^�\]±X�b�c�]�[^n�[�m¥`ac�[¢XW¤�d�[^V�X�b�c��z�em��j]±X�b�c�gj[�]�]�[^n�[�m¥`ac�[¢XW¤�d�`$V\g¼X�Z\b�[�c
��kqn�lj[^Vj`aX�[�kqV\]��¬©0�\c°b�¨�_�b�c�[^n�b�V�X�]­c�b���bF`am^b�gHX�Zj`aX°g\[�¯�b�c�beV�X
��c�[�X�b�c�[^kqV�p��\V\��X�[�kqV\]�m^be`$g�X�k0]���lj]±Xv`$V�X�[¥`$m�m�¤�g\[�¯�b�c�beV�X�c�b�]��\m�X�]�d
f�Z\b�c�bF`$]4kq��c'`$Vj`$m�¤�]�[�]¾]�Z\kFf'b�g¬X�Zj`aX4X�Z\be[¢c4_�b�c�p¿k$c�n¬`$V\��b�gjb��
�b�Vjg\]1kqVÆX�Zjb�g\be�ac�beb'X�k­f�Z\[^�vZÆX�Zjb�¤Æ�e`$V��ekac�c�be��X�m�¤,k$�b�cv`aX�b
f�Z\b�V»X�Zjb­gj`aXv`$]�b�X��ek$VDXv`a[^V\]+��m^�\]±X�b�c�]+k$p�g\[�¯�b�c�b�V�X+g\beV\]�[¢X�[^b�]
Ê}w�������d¦X�Z\b�¤­��kqV�Xv`$[�V2gjkD�e�\n�b�V�X�]3f�Z\kq]�b1_x`a[�c�f�[^]�bª]�[^n�[�m¥`ac�[¢X�[^b�]
`ac�b0g\[�¯�b�c�beV�X�Ì1`$V\g¬X�Z\b0g\be�ac�beb�X�k2f�Z\[^�vZ¬X�Z\b�¤��e`$V¬_\c�k�g\�\�eb
l�`$m^`$V\�eb�g���m^�\]±X�b�c�]��

UWVYX�Zj[�]I]±X��\g�¤�d°f'bhp�k����\]®kqVYXWf'k¼[^V�X�b�c�V�`am���c�[�X�b�c�[^kqV
p¿�jV\��X�[^kqV\]!Ê��/$�`$V\g��V(FÌ�`aVjgÁkqV\b�b�¨�X�b�c�Vj`$m1��c�[¢X�b�c�[�kqVÁp¿�\Vj���
X�[�kqV Ê�� $vÌ � " ��d ���)�:� ��Z\[^]¡]��\lj]�b�XÂc�b�_\c�be]�b�V�X�]Â]�kqn�b�k$p
X�Z\b¬n�kq]±X2f�[^g\b�m�¤��z�\]�b�g���[�c�b�X�c�[^kqVÁp��\V\��X�[�kqV\]�p�kac,g\k����jn�beV�X
��m^�\]±X�b�c�[^V\�\d+`$V\g¼[^V\��m^�\g\be]¬]�kqn�b®kqp0X�Z\b)l�be]±X��,`$V\gAf'kac�]±X��
_�b�c�p�k$c�n�[�V\�¬]��vZ\ben�b�]��
��Z\b!�/$4��c�[�X�b�c�[^kqV�p��\V\��X�[^kqV®Ê �4½D�j`aX�[^kqV��\� �¦Ì¸n¬`a¨�[�n�[^��b�]

X�Z\bH]��\n#kqp°X�Z\bH`e��b�cv`$�qb®_�`$[�c�f�[�]�b�]�[�n�[^m^`ac�[�X�[�be]ÁÊ:`$]!n�bF`¦�
]���c�b�gAlD¤¡X�Z\b���kq]�[�Vjb�p��\V\��X�[^kqVxÌ�l b�XWf'b�beV¡X�Zjb)gjkD�e�\n�b�V�X�]
`$]�]�[��qV\begHX�k!bF`$�vZH��m^�\]±X�b�c­f'b�[^�qZ�X�b�gÁ`$����k$c�g\[^V\�»X�k¬X�ZjbÆ]�[��eb
kqp1bF`a��Z®�em��j]±X�b�c°`$V\gIZj`$]0l�beb�VI�\]�b�gH]��\���eb�]�]�p��\m�m�¤®p�k$c��em��\]±�
X�b�c�[^V\��gjkD�e�\n�b�V�X�g�`¦Xv`$]�b�X�] �����$�z�

�T$ S ."# } $ � #
$% �
� (# "

m'&)(m+*'o-,�. ��kq]FÊ�9 I &G97�aÌ0/1
�/$TS ."# } $ M'e # M (� # +ÊD�\� �¦Ì

��Z\b2�V(h��c�[�X�b�c�[^k$V£p¿�\Vj��X�[^k$V Ê �4½D�j`aX�[^kqV �\� "qÌ�[^]I�\]�b�g
lD¤ X�Z\b�_�k$_j�\m¥`acH��b���X�k$c��z]±_�`$��b��q`¦c�[¥`$V�X�kqp�X�Z\b43®�zn�be`$V\]
`$m��qk$c�[¢X�Zjn � �Dd��$&�d���d "#"��:�ÆUWV�X�Z\[�]�`$m��qk$c�[¢X�Zjn/bF`a��Z��em��j]±X�b�c
[�]°c�b�_\c�be]�b�V�X�begHlD¤H[¢X�]2��b�VDX�c�k$[^gH��b���X�kac�`aVjgHX�Z\b��qk�`am1[�]­X�k
ijV\g»X�Z\b­]�kqm��\X�[�kqV»X�Zj`aX�n�`a¨�[^n�[^��be]'X�Z\b�]�[�n�[^m^`ac�[�XW¤¬l b�XWf'b�beV
be`$�vZ¡g\k����\n�b�VDX�`aVjg�X�Zjb!�eb�V�X�c�kq[^g�kqp�X�Z\b»�em��j]±X�b�c,X�Z�`¦X�[�]
`$]�]�[��qV\beg)X�k\�

�V(�S ."# } $ "
m'&Ao-,�. ��kq]¦Ê�9 I &'t # Ì S ."# } $ M'e # M[+ÊD�\� "�Ì

��Z\b5��$���c�[�X�b�c�[^k$V®p��\V\��X�[�kqV�Ê �¾½D�j`aX�[�kqV �\� �qÌ���kqn�_j��X�b�]
X�Z\b!��m^�\]±X�b�c�[^V\�®lD¤�ijV\g\[^V\�H`�]�kqm^��X�[^k$VhX�Z�`¦XÆ]�b�_�`acv`aX�b�]2X�Zjb
g\k����\n�beV�X�]®kqp,be`$��ZY�em��\]±X�b�c®p¿c�kqn X�Z\bhbeV�X�[¢c�bh��kqm�m^b���X�[�kqV �
� _�be��[�ij�e`$m^m¢¤�dj[�X+X�c�[^b�]+X�k�n�[�Vj[�n�[^��b2X�Z\b°�ek$]�[^V\b2l�b�XWf'beb�V�X�Zjb
��beV�X�c�kq[�g,��b���X�k$c�kqpjbe`$�vZÆ��m^�\]±X�b�cª`aVjg�X�Z\b'��beV�X�c�kq[�g,�qbe��X�k$c
k$p
X�Z\b�beV�X�[¢c�b0�ek$m^m^b���X�[^kqV � ��Z\b0��kqV�X�c�[�lj��X�[^k$V!kqp�bF`a��Z¬�em��j]±X�b�c¾[�]
f'b�[^�qZ�X�b�g,_\c�k$_�k$c�X�[�kqVj`$m^m¢¤2X�k�[¢X�]�]�[^��b']�k0X�Zj`aX
m^`ac��qb�c
��m^�\]±X�b�c�]

360

f�[�m^mql b1f'be[��qZ�X�beg�Z\[^�qZ\b�c�[^V�X�Z\b4ke��b�cv`am^mD��m^�\]±X�b�c�[^V\�0]�kqm���X�[^kqV ���$ªf�`$]ªn�k$X�[¢�q`¦X�beg�lD¤�n,�\m�X�[�_jm�b0g\[�]���c�[�n�[^Vj`$V�X'`$Vj`$m�¤�]�[�]¾`$V\g
[�]ª]�[^n�[�m¥`ac4X�k°n�[�Vj[�n�[^��[^V\�°X�Zjb�X�cv`a�eb+kqp�X�Z\b�l�b�XWf'b�b�V\�z��m^�\]±X�b�c
]��e`aX�X�b�c�n�`aX�c�[�¨ � �,8 �z�

��$ S ."# } $ � # ��kq]FÊ�t # &'t�Ì��
."# } $ � # e # � eM'e # M +ÊD��� ��Ì

����²��~� � ·�� � R��¸¹�P � ¶ 	 Ra¹¿Q � Ra¹�µ ´�� · ´ T$Qa¹¿µ ´ P
ºjk$cÂX�Zjb�X�k$_j[^���zg�c�[���b�VÇ��m^�\]±X�b�c�[^V\� _\c�k$ljm�ben)d)f'b `$]�]��\n�b
X�Zj`aX�X�Z\bÃgjb�]���c�[�_\X�[^kqV kqpÁbe`$��Z ��m^�\]±X�b�c�[^]�`e�$`$[^m^`aljm^b�`$]
\c�[�k$c®Ä�Vjkef�m^b�gj�$b�`aVjgY�F`aVYl�b�c�b�\c�b�]�beV�X�b�g£`$]®`¡��b���X�k$ce�
U�[¢��b�V�X�Z\b�]�bÂ��m^�\]±X�b�cÁ_\c�k$X�k$XW¤D_ b���be��X�k$c�]�dÆX�Z\b¡]�[�n�[^m^`ac�[�XW¤
l�b�XWf'beb�V�bF`a��Z�g\k��e�\n�b�V�X®`$V\g�[¢X�]�X�k$_j[����F`$V�l b�g\b�ijVjb�g
`a]�X�Zjb ��kq]�[^V\b]�[^n�[�m¥`ac�[¢XW¤/l�b�XWf'beb�V/X�Zjb���b���X�kac kqphX�Z\b
g\k����\n�b�VDXu9�`$V\g�X�Z\b!_\c�k$X�k$XW¤�_�b���be��X�k$cÆk$p�X�Z\b¬X�k$_j[^�43 # �Å�b�V\�eb$d�f'b»�e`$V�g\b�ijV\b»[^V�X�b�c�Vj`$m�`$V\g�b�¨�X�b�c�Vj`$m4]��_�b�c���[^]�b�g
��c�[�X�b�c�[^k$V»p��\V\��X�[�kqV\]']�[^n�[�m¥`ac�X�k�X�Z\b­�\V\]���_ b�c���[�]�beg���c�[�X�b�c�[^kqV
p¿�\Vj��X�[^k$Vj]��
��Z\b2[�V�X�b�c�Vj`$m3]���_�b�c���[�]�beg)��c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV djg\beV\k$X�b�g

lD¤�����d�X�c�[^b�]®X�k�n¬`a¨�[�n�[^��b�X�Zjb�]�[^n�[�m¥`ac�[¢XW¤ l�b�XWf'beb�V£X�Z\b
g\k����\n�b�VDX�]+[^V�`���m^�\]±X�b�c�X�kÆX�Z\b°X�k$_j[���`$]�]�kD�e[^`aX�beg�f�[�X�Z�X�Z\b
��m^�\]±X�b�ce� ��Z\b2p¿k$c�n¬`$m3g\b�ijV\[�X�[�kqV��e`$V�l�b°f+c�[¢X�X�beV�`$]

���fS
."# } $ "
m &�o-, . �ekq]FÊ�9 I &63 # Ì S ."# } $ e # � 3 # +ÊD��� ��Ì

��Z\b'b�¨�X�b�c�V�`am�]���_ b�c���[�]�begÆ��c�[¢X�b�c�[�kqVÆp��\V\��X�[�kqV dqg\b�VjkDgjb�g
lD¤�����d�X�c�[^b�]hX�k n�[�Vj[�n�[^��bAX�Z\b¼]�[�n�[^m^`ac�¤ l�b�XWf'b�b�V bF`$�vZ
g\k����\n�b�VDX�X�kÆX�Z\b­X�k$_j[^��]�X�Zj`aX�`ac�b°V\k$X�`$]�]�k���[¥`¦X�beg»f�[�X�Z)[¢X�]
��m^�\]±X�b�ce�
	�b�X 3 # S|3 = 3 # d�X�Z\b�V�X�Z\b�b�¨�X�b�c�Vj`$m3]��_�b�c���[^]�b�g��c�[�X�b�c�[^k$V�p¿�\Vj��X�[^k$V�Ê����jÌ¾�e`$V�l�b°f+c�[¢X�X�beV�`$]

���>S
."# } $ "
m & o-, . �ekq]FÊ�9 I & 3 # Ì S ."# } $ e # � 3 # E]M 3 # M,+ÊD��� &�Ì

�k$X�b X�Zj`aX�]�[�Vj��b�n�`a¨�[^n�[^��[^V\� k .# } $ e # � 3 # [^]�X�Z\b
]�`an�b4`$]¸n�[^V\[^n�[��e[�V\� k .# } $ e # � 3 # d¦X�Z\b4g\[¢¯ b�c�b�Vj��b1l�b�XWf'b�beV
��� `aVjg�����[^]hX�Zj`aX�[^V����ÃX�ZjbAg\[^]�]�[�n�m¥`¦c�[�X�[^b�]�l�b�XWf'b�beV
g\k����\n�b�VDX�]»X�k�X�Z\bIk$X�Z\b�c»X�k$_j[^��]�[^]�]��e`$m�beg¼l�¤AX�ZjbIVjkac�n
k$p¸X�Z\b2��kqn�_�kq]�[¢X�b2k$p¸X�Z\b2kaX�Zjb�c+X�k$_j[^��]������²�� � 	 µ"�HO�¹ ´)� ¶ 	 R$¹¥Q � R$¹¿µ ´�� · ´ T$Q¦¹�µ ´ P
�¾k$n�lj[^V\[^V\���\V\]���_ b�c���[�]�beg�`$V\g)]���_ b�c���[�]�beg���c�[¢X�b�c�[�kqV)p¿�jV\���
X�[�kqV\]Æ�e`$Vhl�b!X�c�be`aX�b�g�`$]Æ`®n,�\m^[¢X��zk$l\É}be��X�[���b!k$_\X�[^n�[��F`aX�[�kqV
_\c�k$ljm�ben)dxf�Z\[^�vZIZj`$]0l�beb�VI]±X��\g\[^b�gI[^VIn�`$V�¤®g\[�¯�b�c�b�V�X­g\k$�
n�`$[^V\] � ���\d " ��d "�� �z�¼©0V\b)kqp+X�Zjb»c�bF`am�g\[�«¬���\m�X�[^b�]�[�V¡X�Zj[�]
_\c�k$ljm�ben�[^]ÆX�Zj`aX�Vjk�]�[^V\�qm�b�ka_jX�[�n¬`$m�]�k$m^��X�[^kqVÂb�¨�[�]±X�]��¡UWV��
]±X�be`$g d4`$V�k$_\X�[^n�`$m']�kqm^��X�[^k$V¡b�¨�[^]±X�]�p¿k$c�be`$��Z�k$l�É±b���X�[¢��b»[^V

X�Z\b�]�kqm���X�[^kqV�]±_x`a�eb$� ��Z\b�c�be]��\m¢X�[�]°X�Zj`aX°X�Z\b�g\b�ijV\[�X�[�kqVÁk$p
`¬�qk�kDg®]�kqm^��X�[^k$V®l�be��kqn�b�]�`$n�lj[^�q�\kq�\]�� ��Z��\]�d�f'b,V\beb�g�X�k
g\b���bem�k$_h`�]��vZ\ben�b�X�Zj`aX°�F`$V�g\[�]�`$n�lj[^�q�j`aX�bÆX�ZjbÆg\b�ijV\[�X�[�kqV
kqp�`®�qk�k�g�]�kqm���X�[^kqV ��ÀÇ�$k�k�g�]��vZ\ben�b�]�Z\kq�\m^g¡`$m^m�kFf ijV\b��
X��\V\beg!�ekqV�X�c�kqm�kqp X�Z\b�X�cv`$g\beka¯]'`an�kqV\�,X�Z\b0k$l\É}be��X�[��qbe]'`$V\g
l�b2`aljm�b°X�kÆZ�`aVjg\m�b2k$l�É±b���X�[¢��b�]�X�Zj`aX+�ekac�c�be]±_�kqV\g�X�k�½D�j`$V�X�[¢�
X�[�be]ªX�Zj`aX¾`ac�b�l�k$X�Z¬k$p]�[�n�[^m^`ac'`$]ªf'b�m^m�`$]4k$p g\[�¯�b�c�beV�XªXW¤�_�b�]��

©�V\b�]±X�cv`$[^�$ZDX�p¿k$c�f�`ac�g¼n�bF`$V\]¬kqp�g\[^]�`$n�lj[��q�j`aX�[^V\�ÁX�Zjb
g\b�i�V\[¢X�[^kqV!kqp3`��$k�k�g!n��jm¢X�[��zk$l�É±b���X�[¢��b0]�kqm^��X�[^k$V»[�]¾X�k,`$]�]�[��qV
X�Z\bÆk$l�É±b���X�[¢��be]�g\[¢¯ b�c�b�VDX�f'be[��qZ�X�]�l b�p�kac�bÆ��kqn�lj[^V\[�Vj�»X�Z\b�n
X�kq�$b�X�Z\b�ced\f�Z\[^�vZ)f'b­c�bep¿b�c+X�k¬`a]+X�Z\b��¾��w^���Drt�v|°]��vZ\ben�b$�

U�[���b�V*XWf'k ��c�[¢X�b�c�[�kqV*p��\V\��X�[�kqV\]�� `aVjg��!d�X�Zjb
f'b�[^�qZ�X�b�g�]��vZjb�n�b2�e`$V)l�b­f+c�[�X�X�b�V�`$]

�
$FÊ�� &���Ì�S�������Ê��/=��
Ì �V&ÊD�\� !�Ì
f�Z\b�c�b!��[�]+X�Z\b­_jc�b�p�b�c�b�Vj��b°p�`$��X�kace�
��Z\bhf'be[��qZ�X�beg£]��vZ\ben�b�`$m^m�kFf�]H`AijV\b��:X��\V\b�g£�ek$VDX�c�k$m

kqp2X�Z\bIX�cv`$g\bek$¯�])`$n�kqV\��X�Zjb�kal\É±b���X�[���b�]»lD¤��$`ac�¤�[�Vj��X�Zjb
_\c�b�p�b�c�beV\��b¬p�`$��X�kac"�4�»Å�kFf'b���b�ced¸X�Z\[�]�p�kac�n,�\m¥`aX�[�kqV��e`$V\V\k$X
Zj`$V\g\m^b�g\[^]�]�[�n�[^m^`ac¡��c�[¢X�b�c�[�kqV p��\V\��X�[�kqV\]�k$c�X�Z\b¼��c�[�X�b�c�[^kqV
p¿�jV\��X�[^kqV\]¡X�Z�`¦XA�vZj`$V\�qbY[�V6gj[¢¯�b�c�b�V�XA]��F`$m�be]�d)l�b��F`$�\]�bY`
f'b�[^�qZ�X�b�g�]��\n&kqp¸X�Z\b�nÇ�e`$V)l�b2n�bF`$V\[�Vj�$m^b�]�]��

#­b�c�[¢��[^V\�HX�k$_j[^���zg�c�[���b�VÂ��c�[�X�b�c�[^kqVÂp¿�jV\��X�[^kqV\]�l�`$]�b�gÂkqV
X�Z\b�f'b�[^�qZ�X�b�gI]���Z\b�n�bÆ�e`$V�l b�gjk$Vjb,be`$]�[^m¢¤®p¿k$c �#(�`$V\g2� $�d
]�[�Vj��b¬l�k$X�Z �V(¬`$V\g � $�Zj`e��bi! X�b�c�n�]2[^VÁX�Z\be[¢c�p�k$c�n,�\m^`$]��
Å�kFf'b���b�cedxp¿k$c �/$ed�X�k�n¬`aÄ�b�[¢X­`am^]�k¬��kqV�Xv`$[^V ! X�b�c�n�]�`a]0[^V
����dªf'b�V\b�beg�X�k�n,�\m¢X�[�_jm�¤hX�Z\b �T$�p��\V\��X�[�kqV�lD¤L! l�bep¿k$c�b
��kqn�lj[^V\[�Vj�¬[¢X+f�[�X�Z$���3�

ÍIk$X�[��$`aX�b�gÃlD¤£X�Z\b¡n�b�X�Z\k�g�kqp!��kqn�lj[^V\[�Vj��n,�\m�X�[¢_jm^b
k$l�É±b���X�[¢��b»p¿�jV\��X�[^kqV\]Æ[�V¡�acv`a_jZ�_�`ac�X�[¢X�[^kqV\[�Vj� � "��)�:d1f'b¬_jc�ka�
_�kq]�b�X�Z\b�]�b���kqV\gh]��vZ\ben�bqd�X�Z\b)�xsa~&%('$��w*)F��|]��vZjb�n�b$�»©���c
p¿k$c�n,�\m¥`aX�[�kqV£[�]®l�`$]�b�g£k$V X�Z\bh[^V�X��\[�X�[¢��b�V\k$X�[�kqV kqp,f�Zj`aX
��kqV\]±X�[�X���X�b�]¬`I�qk�kDg¡n,�\m�X�[¢�zk$l\É}be��X�[���b�]�kqm^��X�[�kqV �,+��\[�X�b�k$p¿�
X�b�V dx`�Vj`aX���cv`$m�f�`�¤)kqp
b��q`$m��j`aX�[^V\��X�Zjb�½D�j`$m^[¢XW¤)k$p1`�n,�\m�X�[¢�
k$l�É±b���X�[¢��b®]�kqm��\X�[�kqV¼[�]!X�kÁm^k�k$ÄÂ`aX»Z\kFf-�em�kq]�b®[�X![^]¬X�k�X�Zjb
k$_\X�[�n¬`$m0]�kqm���X�[^kqV¼kqp­bF`a��Z¼[^V\g\[���[�g\��`am�k$l�É±b���X�[¢��b$�YÅ�b�V\�eb$d
l�b�p�k$c�b���kqn�lj[^V\[^V\�!XWf'k¬��c�[¢X�b�c�[�kqV®p��\V\��X�[^kqV\]�dxf'b�V\k$c�n¬`am^[^��b
X�Z\b�n§f�[¢X�Z�X�Z\b�k$_\X�[^n¬`am
�q`$m��\be]­X�Zj`aX2�e`$V�l�b¬`$�vZ\[^b���b�g�lD¤
k$_\X�[�n�[^��[^V\��X�Zjb­XWf'k���c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV\]�]�b�_x`¦cv`aX�bem¢¤��

U�[���b�V»XWf'k���c�[�X�b�c�[^k$V�p¿�jV\��X�[^kqV\]
� `$V\g-�!d\m�b�X
�/.�`$V\g
� . g\b�VjkaX�b�X�Z\b���c�[�X�b�c�[^kqVÁp¿�jV\��X�[^kqV��$`$m^�\b�]2kqp¾X�Z\b�k$_\X�[^n¬`am
]�kqm���X�[^kqV\]3f�[�X�Z°c�b�]±_ b���X�X�k0��`$V\g1�!dFc�b�]±_ b���X�[���b�m�¤qdFX�Zjb�V­X�Zjb
V\k$c�n¬`am^[^��b�g!]��vZjb�n�b0kqp��ekqn2l�[�V\[^V\��XWf'k���c�[�X�b�c�[^k$V!p��\V\��X�[^kqV\]
�e`$V)l�b°gjb�ijV\beg®`a]

�v($Ê�� &���Ì�S��
�
� .

��Ê��/=��
Ì �
� .

&ÊD�\� �qÌ
f�Z\b�c�b!��[�]+X�Z\b­_jc�b�p�b�c�b�Vj��b°p�`$��X�kace�

UWV b�]�]�beV\��bqd�k$_\X�[^n�[��e[�Vj� �¾½D�j`aX�[�kqV �\� ��`aX�X�b�n�_\X�]HX�k
��kqn�_j��X�b ` �q�:f�`e¤6��m^�\]±X�b�c�[�V\�]��j�vZ6X�Z�`¦XÂX�Zjb���c�[�X�b�c�[^kqV
p¿�jV\��X�[^kqVÂ�$`$m^�\b�]�f�[¢X�ZÂc�b�]±_�be��X¬X�kÁbe`$�vZA��c�[�X�b�c�[^kqVA`ac�b�V\k$X
p�`ac�`ef�`e¤Áp¿c�kqn X�Z\b!k$_\X�[^n�`$m4�$`$m��jb�]�� ��Z\[^],]��vZ\ben�b¬f'k$c�Ä�]
f�[¢X�Z£l�k$X�Z£]�[^n�[�m¥`acÁ`$V\gÃg\[^]�]�[�n�[^m^`acÁkal\É±b���X�[���b�]�� ��Z\[^]H[�]

361

l�b��F`a�j]�b+[¢X4n¬`¦Ä�be]4`$m^mj½D�j`$V�X�[�X�[�be]ª]�[�n�[^m^`ac4l�bep¿k$c�b+��kqn�lj[^V\[^V\�
X�Z\b�n)� �¾`$�vZ���c�[¢X�b�c�[�kqV�p¿�jV\��X�[^kqV��$`$m^�\b»[�]Æg\[���[�gjb�g�lD¤hX�Z\b
ka_jX�[�n¬`$m,�q`$m��\b¡kqp¬[�X�]H��k$c�c�be]±_�kqV\g\[^V\����c�[¢X�b�c�[�kqV d�`aVjg�]�k\d
c�b�_\c�be]�b�V�X�]'`���b�c�Xv`$[�V!p¥cv`$��X�[�kqV!k$p�X�Zjb�k$_\X�[^n¬`$m��$`$m^�\b$� � [�V\�eb
`am^m���kqn�_�kqV\b�VDX�]�Vjkef£c�b�_\c�be]�b�V�X­`�p¿cv`a��X�[�kqV�kqp�X�Z\b2k$_\X�[^n¬`$m
�$`$m��jb$d\X�Z\b�¤»�F`$V�l b°��kqn�lj[^V\b�g�n�be`$V\[^V\�qp��\m�m�¤q�

º
[�V�`am^m�¤qd\X�Z\b°�q`ac�[�kq�\]+X�k$_j[����zg�c�[��qbeV���c�[�X�b�c�[^k$V�p��\V\��X�[�kqV\]
g\b�c�[���b�g�lD¤»X�Z\b­XWf'k���kqn�lj[^V\b�g�]���Z\b�n�b�]0`ac�b°]�Z\kFf�V�[^V �¸`a�
ljm�b �ad�X�Z\b­�em��\]±X�b�c�[�Vj�,_\c�k$ljm^b�n6l�b��ek$n�be]¾X�Z�`¦X+kqp�n¬`a¨�[�n�[^���
[�V\� �Y$¦Ê��T$�Ì�d �
$FÊ��V(FÌvd �v($Ê��/$�Ìvd¾`$V\g,�v(qÊ��V(eÌvd¾`$V\g¡n�[^V\[��
n�[^��[^V\� �Y$¦Ê���$�Ì'`$V\g �L(qÊ���$�Ì'`$����k$c�g\[^V\�qm�¤q�����²���� ��� O�Ra¹Ë¶ 	 Ra¹¿Q � Ra¹�µ ´�� · ´ T$Q¦¹¿µ ´ P
ºjk$c �/$+`$V\g �V($dDf'b�_\c�k$_�kq]�b�X�Z\b0X�Zj[¢c�g�]��vZ\ben�b­X�Zj`aX'[^V\��k$c��
�k$cv`¦X�be]'X�Z\b­XWf'k¬`$]±�b���X�]�[^V�X�k¬`�]�[�V\�qm^b°��c�[¢X�b�c�[�kqV)p¿�\Vj��X�[^k$V3�
��Z\b)n�k$X�[¢�q`¦X�[^kqV�l�beZ\[^V\g¡X�Zj[�]¬Z�¤�l\c�[�gA]��vZjb�n�b�[�]�X�Zj`aX�f'b
V\k$X�[��eb�g�X�Z\b�c�bem^`aX�[^kqV\]�Z\[�_hl�b�XWf'b�b�VÁX�Z\b¬�\V\]���_ b�c���[�]�begh��c�[¢�
X�b�c�[^k$V)p��\V\��X�[^kqV �#(­`$V\g�X�Z\b°[^V�X�b�c�V�`am3]���_�b�c���[�]�beg)��c�[�X�b�c�[^kqV
p¿�\Vj��X�[^k$V � �3� ��Z\b�p�k$c�n�b�c2n¬`a¨�[�n�[^��be]°X�Z\b�]��\n�n�`aX�[^kqVÁkqp
X�Z\b¬]�[�n�[^m^`ac�[�XW¤Ákqp'bF`$�vZhgjkD�e�\n�b�V�X,X�k�[�X�]���m^�\]±X�b�cÆ��b�VDX�c�k$[^g
`aVjgÂX�Zjb�m¥`¦X�X�b�c¬n¬`a¨�[�n�[^��b�]!X�Z\b�]��\n�n¬`aX�[�kqV�k$p�X�Z\b®]�[�n�[��
m^`ac�[�XW¤!kqp�bF`$�vZ)g\k����\n�b�VDX'X�k�[�X�]���m^�\]±X�b�c'X�k$_j[^�$�ªUWp3f'b°��kq�\m^g
g\b�ijVjb�`­V\b�fA��b�VDX�b�c
X�Zj`aX
c�b�_\c�be]�b�V�X�]
l�k$X�ZÆX�Z\b'�em��\]±X�b�c1�eb�V��
X�c�k$[^gh`aVjgHX�Z\b�X�k$_j[^�$d3X�Zjb�V�f'b��ekq�\m�gÁn¬`a¨�[^n�[��eb�X�Z\b�]��\n��
n�`aX�[^kqVÁkqp4X�Z\b�]�[�n�[^m^`ac�[�XW¤�kqp¾be`$�vZhg\k����\n�b�VDX2X�k�X�Z\[^]2V\b�f
��b�VDX�b�c�`$V\gÂ`agjg�c�b�]�]ÆX�Z\b!XWf'kIc�be½D�\[�c�b�n�b�V�X�]Ækqp�X�Z\b!X�k$_j[^���
g�c�[¢��beV���m^�\]±X�b�c�[^V\��_\c�k$ljm^b�nÃ`aX¸X�Z\b4]�`$n�b4X�[�n�bq� ��k�X�Z\[^]¸b�V\g3d
f'b+g\b�ijVjb�X�Z\b2rtsvuxwzy�{ �¾��w�� �Drt�v|���kqn�_�kq]�[¢X�b+��b���X�kacªkqp�X�Zjb��¦X�Z
��m^�\]±X�b�c#t��# `$]Ve��# S k m,o , . ��kq]¦Ê�9	&23 # ÌB9 I `$V\g�X�Z\b�f'b�[^�$ZDX�b�g]�[��ebT�	�# S knm,o-,�.��ekq]FÊ�9]&63 # Ìv� ��Zjb2rtsvuxw:y�{ �¾��w�� �Drt�v|+��b�VDX�c�k$[^g�e`$V�l�b2g\b�ijVjb�g®`$]

t �# S k m[o-, . �ek$]¦Ê�9]&63 # ÌB9 I
� �# &

f�Z\[���Z­Xv`aÄ�b�]3[^V�X�k0`$����kq�\VDX3X�Z\b1]�[^n�[^m¥`¦c�[�XW¤°k$p�bF`a��Z°g\k��e�\n�b�V�X
X�k¬[¢X�]0��m^�\]±X�b�c�X�k$_j[^�$��
�]�[�V\�¬X�Z\b,`al�kF�qb,g\b�ijVj[¢X�[^kqV d�X�Z\b�Z�¤��
l\c�[�g �V()��c�[�X�b�c�[^kqVÂp��\V\��X�[�kqV d�g\b�VjkaX�begÂlD¤��¡Ê��V(¦Ì�d��e`$VÂl�b
kaljXv`a[^V\beghlD¤hc�be½D�\[�c�[�V\�IX�Z\b»�em��\]±X�b�c�[�Vj�I]�kqm���X�[^kqV�X�kIn¬`a¨�[¢�
n�[^��b4X�Zjb¾]�[�n�[^m^`ac�[�XW¤2l�b�XWf'beb�V�X�Z\b¾g\k����jn�beV�X�]1`$]�]�[��qV\beg�X�k�`
��m^�\]±X�b�c¾`$V\g![�X�]1X�k$_j[^���:f'be[��qZ�X�beg¬��beV�X�c�kq[�g ����Z\[�]¾[�]4p�k$c�n�`$m^m¢¤
g\b�ijVjb�g®`$]+p¿kqm^m�kFf�]��

�¡Ê��V(FÌ�S ."# } $ "
m'&Ao-, . �ekq]FÊ�9 I &'t �# Ì�S ."# } $ e # � t �#ÊD��� ��Ì

� [^n�[�m¥`ac�m¢¤�d\X�Z\b �T$��e`$V)l�b­c�b�f+c�[¢X�X�beV)`$]
�/$/S ."# } $ "

m &�o , . 9 I�� e #� # +

UWpªf'b��\]�b�X�Z\bÆX�k$_j[^���:f'be[��qZ�X�beg��ek$n�_�kq]�[�X�b¬`aVjg�]�[^��b�kqp4X�Z\b
����m^�\]±X�b�c�X�k¬c�b�_jm¥`$��b�X�Z\bÆ��kqn�_�kq]�[¢X�bÆ`$V\gI]�[^��bqdxf'b,�F`aVH�$b�X

X�Z\b,Z�¤�l\c�[^g �/$���c�[¢X�b�c�[�kqV®p��\V\��X�[�kqV d�g\b�VjkaX�beg�l�¤���Ê��T$�Ìvd�`$]
p¿kqm^m�kFf�]��

�¡Ê��/$�Ì S ."# } $ "
m'&Ao , . 9 I�� e��#� �# +ÊD�\� ��Ì

U�[���b�V X�Zjb�p¿k$c�n,�\m¥`¦X�[^kqVÃkqp
��Ê��T$�Ì)`$V\g���Ê��V(FÌvd2X�Zjb
��m^�\]±X�b�c�[^V\�¬_\c�k$ljm^b�n&l�b��ek$n�be]+X�Zj`aX0kqp�ijV\g\[^V\�¬X�Z\b2�em��j]±X�b�c��
[�Vj�!]�kqm^��X�[^k$Vj]0X�Zj`aX­n�`a¨�[^n�[^��b��¡Ê��/$�Ì+`$V\g��¡Ê��V(FÌ�d�c�b�]±_�be���
X�[¢��bem¢¤�����~� � S�RFQ¦¹¥Qa¹¿µ ´ S � 	 � ·�P�Q � Ra¹ ´�� N ��� µxRa¹¿Q*
%�
��Z\b+_�`ac�X�[�X�[�kqVj`$mjn�b�X�Z\k�g�f'b��\]�b�g�X�k2k$_\X�[�n�[^��b+X�Zjb��q`¦c�[^kq�\]
��c�[�X�b�c�[^kqV°p��\V\��X�[^kqV\]3[^]3�qb�c�¤­]�[�n�[^m^`ac�`$V\g2`$m^]�k+]�[^n�[�m¥`ac�X�k�X�Zj`aX
�\]�b�g�[^V � " "�d " ���:�'©0��c�k$_\X�[^n�[��eb�c��ekqnÆ_���X�b�]'X�Z\b­��m^�\]±X�b�c�[^V\�
]�kqm���X�[^kqV�lD¤¼i\c�]±X)kaljXv`a[^V\[^V\�Â`$V�[^V\[�X�[^`$m����:f�`�¤���m^�\]±X�b�c�[^V\�
`$V\g�X�Z\b�VI`a__�m¢¤�[^V\�!`$V®[�X�b�cv`aX�[��qb°c�b�ijV\ben�beV�X­`$m��qk$c�[¢X�ZjnÇX�k
p¿�\c�X�Z\b�c�[�n�_\c�kF��b)[¢Xe� ��Z\b)`$m^�$k$c�[�X�Z\n�]ÆX�Zj`aX�ka_jX�[�n�[^��b��\V��
]���_�b�c���[^]�b�g3d�]���_�b�c���[^]�b�g�`$V\gÁX�k$_j[����zg�c�[��qbeVh��c�[�X�b�c�[^k$Vhp¿�\Vj���
X�[�kqV\]�g\[�¯�b�c�[�V»XWf'kÆf�`e¤�]��
f�Z\b�X�Z\b�c'X�k$_j[^���qbe��X�k$c�]�`ac�b­�\]�b�g
`$]�[�Vj[¢X�[¥`$mª]�beb�g\]��4`$V\gÁf�Z\b�X�Z\b�c�X�k$_j[^���qbe��X�k$c�],`ac�b!`$m�m^kFf'b�g
X�k�n�kF��b°X�k¬`$V\k$X�Z\b�c��em��\]±X�b�ce����~� ��² ³e´ ¹¥Qa¹¿S � ¹���S\Q¦¹¿µ ´
�hb�b�n�_jm^ke¤�beg�XWf'k2g\[¢¯ b�c�b�VDXªf�`e¤�]4k$px_\c�k�g\�j��[^V\�°X�Z\b�[�V\[�X�[¥`am
��m^�\]±X�b�c�[^V\�\�­ºjk$c­k$_\X�[^n�[��e[�V\���\V\]���_ b�c���[�]�begH��c�[�X�b�c�[^k$VHp¿�\Vj���
X�[�kqV\]�d­g\��c�[^V\�¡[^V\[�X�[^`$m­�em��j]±X�b�c�[^V\�\d��¼g\k����\n�b�VDX�])`ac�bIcv`$V��
g\kqn�m¢¤�]�b�m^b���X�b�g�X�kÂp�k$c�n X�Z\bÂ���v�v|a�!kqp�X�Z\b��em��j]±X�b�c�]®`$V\g
be`$�vZ�g\k��e�\n�b�V�X0[�]0`$]�]�[��qV\beg)X�k�X�Z\b2��m^�\]±X�b�c0��k$c�c�b�]±_ k$Vjg\[�Vj�
X�k�[¢X�]�n�k$]±X0]�[^n�[^m¥`¦c0]�b�beg �

º�kac¬X�Zjb��$`ac�[^k$�j]¬]���_�b�c���[^]�b�g¼`$V\gÂX�k$_j[^���zg�c�[���b�VA��c�[�X�b��
c�[�kqV¬p¿�\Vj��X�[^k$Vj]�d�X�Z\b ��X�k$_j[^����be��X�k$c�]ª`ac�b��\]�b�g!`$]1X�Z\b�[�V\[�X�[¥`am
]�b�beg\]°p¿k$c­X�Z\bi���em��\]±X�b�c�]°`$V\gHbF`$�vZHgjkD�e�\n�b�V�X°[^]°`$]�]�[^�qV\b�g
X�k�X�Z\b°�em��\]±X�b�c��ek$c�c�b�]±_�kqV\g\[^V\��X�k�[�X�]+n�kq]±X�]�[^n�[�m¥`ac0]�b�beg ����~� � � � ��Q¦¹D��¹���S\Q¦¹�µ ´��w� Q*
�µ3¶�P
��Z\b'c�b�ijV\ben�beV�Xª]±X�cv`aX�b��$¤�X�Zj`aX1f'b��\]�beg��ekqV\]�[�]±X�]ªkqpx`­VD�\n��
l�b�c0kqp¸[�X�b�cv`aX�[^kqV\]�� #­��c�[^V\��bF`$�vZ�[¢X�b�cv`aX�[�kqV d\X�Z\b°gjkD�e�\n�b�V�X�]
`ac�b
��[^]�[¢X�beg°[^V�`'cv`aVjg\kqnYk$c�g\b�ce�¸ºjk$c¸be`$��Z°g\k����jn�beV�Xed79 I d¦f'b
��kqn�_j��X�bªX�Z\bª��Zj`$V\�qb4[�V2X�Z\bª�$`$m^�\bªkqpDX�Z\b4��c�[¢X�b�c�[�kqV2p��\V\��X�[^kqV
k$l\Xv`$[�V\beg�lD¤�n�ke��[^V\��9 I X�k2k$Vjb+k$p�X�Z\b+k$X�Z\b�c �V= �+�em��\]±X�b�c�]��
UWp�X�Z\b�c�b2b�¨�[�]±X�]�kqn�b�n�ke��be]�X�Zj`aX0m^be`$g�X�k»`aV®[^n�_\c�kF��b�n�b�V�X
[�VIX�Z\b,ke��b�cv`am^m��$`$m^�\b,kqp
X�Z\b,��c�[�X�b�c�[^k$V®p��\V\��X�[�kqV d�X�Z\b�V�9 I [�]
n�ke��beg�X�k,X�Zjb­�em��j]±X�b�c�X�Zj`aX+m�bF`agj]�X�k,X�Z\b°Z\[��qZ\be]±X�[�n�_\c�kF��b��
n�b�V�Xe�1UWp�V\k�]��\�vZ!��m^�\]±X�b�c¾b�¨�[�]±X�]�d�9 I c�ben¬`a[^V\]4[^V�X�Z\b+�em��j]±X�b�c
X�Zj`aX�[�X­`am�c�be`$g�¤�l�b�m^kqV\�q]0X�k�� ��Zjb2c�b�ijV\ben�beV�X0_�Zj`$]�b,b�Vjg\]�d
`$]»]�k�kqV�`a]!f'b®_ b�c�p�kac�n `$V�[¢X�b�cv`aX�[�kqV¼[^V¼f�Z\[^�vZ�V\k�g\k����
�\n�b�V�X�]Æn�kF��b�g�l�b�XWf'beb�V���m^�\]±X�b�c�]��
�kaX�b¬X�Zj`aXÆ�\V\m^[¢Ä�b¬X�Zjb
X�cv`$g\[¢X�[^kqVj`$m c�b�i�V\b�n�b�VDX�`a__\c�k�`$�vZ��j]�b�g)lD¤ 3®�zn�be`$V\]+XW¤�_�b
kqpj`$m��qk$c�[¢X�Zjn�]�daX�Zjb¾`al�kF��b'`am^�qk$c�[¢X�Z\nÃn�ke��be]�`0g\k����\n�b�VDX
`$]
]�k�k$V)`$]'[¢X�[^]'gjb�X�b�c�n�[^V\b�g!X�Zj`aX�[¢X'f�[^m�m�m^be`$g!X�k�`aV�[�n�_\c�kF��b��
n�b�V�X'[�V�X�Z\b��$`$m��jb+kqpxX�Zjb���c�[�X�b�c�[^kqV¬p¿�\Vj��X�[^k$V3� ��Z\[^]ªXW¤�_�b�k$p
c�b�ijVjb�n�b�V�X0`$m��qk$c�[¢X�Zjn�]�`ac�b­kqp¿X�b�V��F`am^m^b�g�w¿��y�~��&%!���jr '$��� �,8 �:�
� [^V\��b2be`$�vZ)n�ke��b2g\[¢c�be��X�m�¤!k$_\X�[^n�[��eb�]�X�Z\b­_�`ac�X�[��e�\m^`ac���c�[�X�b��

362

�¸`aljm^b ��� �¾m^�\]±X�b�c�[^V\�f�4c�[¢X�b�c�[�kqV)º��\V\��X�[^kqV\]�����������
	��
���������
���
����������� �!�"���$#%���'&)(+*,�-�/.0# k21354 �76�8 3 6�9: . ; �=<�>�.?� k@1354 � 8 3�ACB+3� � ���ED
� �!� � ���ED�&F(* �-�/. k21354 � 658 3 6 ; �=<�>G.?� k21354 � 8 3 ACB 3�����$H?��� �!�"���$H?�I&=(KJL� �/. k 1354 � M .�N M6�8 3 6�658O6

; �=<P>�.?� k 1354 � 8 3�A BQ3
RQS�TF�%UWV���X��
�Y���5���
���

� D ������� �!� D �$#%���'&)(+*,�-�/. k@Z.=[]\ 658 3 6�9^ .�-_ � ; �=<P>�.?� k2Z.=[]\ M .
Na`�.(+*cb
� D ��� D � �!� D ��� D &F(c*,�-�/. k2Z.F[]\ 658 3 6� _ D ; �=<P>�.?� k2Z.F[]\ M . Na` .(c* b
� D �$H?��� �!� D �$H?�I&=(KJL� �/. k Z.F[]\ d . N d

6�8 3 6�6�8e6H+_ � ; �=<�>�.?� k Z.=[]\ M . N ` .(KJ�b
c�[�kqV!p¿�\Vj��X�[^k$V3d�X�Z\[^]ªc�b�ijV\ben�beV�X¾]±X�cv`aX�be�a¤�`$m�f�`e¤�]¾�ekqV���b�c��qb�]
X�k�`�m^k��e`$m n�[^V\[^n�`��

�k$X�bAX�Zj`aX�p¿k$c�X�Z\b¼�$`ac�[�kq�\]�]���_�b�c���[�]�beg�`$V\g X�k$_j[^���
g�c�[¢��beV¡��c�[�X�b�c�[^kqV¡p��\V\��X�[�kqV\]�d¾[�X�[^]�[�n�_�k$c�Xv`$V�X�X�kHÄ�b�b�_¡X�Z\b
X�ka_�[��Ã��be��X�k$c `$m�f�`�¤�] `$]�]�k���[¥`aX�bÃf�[�X�Z/[�X�]Ykef�V§��m^�\]±X�b�ce�
Å�b�V\�ebÆf'b¬g\k�VjkaX,`$m^m�kFf X�Z\b�X�k$_j[^����be��X�k$c2n�kF��b�X�k)k$X�Z\b�c
��m^�\]±X�b�c�]�d°`aVjg�X�Z\b���m^�\]±X�b�c�[^V\�¡_\c�k$ljm^b�n l�be��kqn�b�]�X�Zj`aX)kqp
p¿k$c�n�[�Vj����m^�\]±X�b�c�]�`¦c�kq�\Vjg)X�Z\b°X�ka_�[��°�qbe��X�k$c�]��
��Z\b*k$_\X�[^n�[��F`¦X�[^kqV n�b�X�Z\k�g p�k$c�X�Z\b*Vjkac�n¬`$m^[��eb�g

]��vZ\ben�bÆ[�]­g\[�¯�b�c�beV�X­p¿c�k$n-X�Z\b,k$X�Z\b�c�]�dxl b��e`$�\]�bÆ[¢X�c�be½D�\[�c�b�]
X�Z\bÆk$_\X�[�n¬`$m
��c�[�X�b�c�[^kqVIp��\V\��X�[�kqVI�$`$m^�\b�]°kaljXv`a[^V\beg®l�¤Ika_jX�[¢�
n�[^��[^V\�0X�Z\b¾XWf'k���c�[�X�b�c�[^kqV,p��\V\��X�[�kqV\]�]�b�_�`acv`aX�b�m�¤2l�b�p�k$c�b4_�b�c��
p¿k$c�n�[�Vj�+X�Z\b4k$_\X�[�n�[^�e`aX�[^k$V�kqp�X�Z\b4��kqn�lj[^V\b�g���c�[¢X�b�c�[�kqV�p¿�jV\���
X�[�kqV\]���Å�b�V\�eb$d�X�Z\b�k$_\X�[^n�[��F`aX�[�kqVIn�b�X�Z\k�g®p¿k$c0X�Z\b�Vjkac�n¬`$m��
[��eb�g�]��vZjb�n�b»��kqV�Xv`$[�Vj]2X�Z\c�b�b¬c�kq�\V\gj],kqp'c�b�ijV\b�n�beV�Xe� ��Z\b
i\c�]±X¬XWf'kÁc�k$�jV\g\]!k$_\X�[^n�[��eb)X�Z\b)XWf'kh[�Vjg\[¢��[^g\�j`$m0��c�[�X�b�c�[^kqV
p¿�\Vj��X�[^k$Vj]�d�`$V\g¬X�Z\b+X�Z\[¢c�g¬c�kq�\V\g!]±Xv`ac�X�]ªp¿c�kqn X�Z\b�]�`$n�b�[^V\[��
X�[^`$m���m^�\]±X�b�c�[^V\�h`$V\g¡�\]�be]�X�Z\b)k$_\X�[^n�`$m���c�[�X�b�c�[^kqV¡p��\V\��X�[�kqV
�$`$m��jb�],`$�vZj[�b��qbegh[^VÁX�Z\b¬i\c�]±X�XWf'k�c�kq�\Vjg\]Æ`a]�X�Z\b¬Vjkac�n¬`$m��
[��F`¦X�[^kqV)pË`a��X�k$c�]��
��Z\b+�$c�b�beg�¤ÆV�`¦X��\c�b+k$pxX�Z\b�c�b�ijVjb�n�b�V�X¾`$m��qk$c�[�X�Z\n g\k�b�]

V\k$X­�$��`¦cv`$V�X�beb�X�Zj`aX­[�X0f�[^m�m
��kqV���b�c��qb�X�k�`!�qm�k$l�`$m�k$_\X�[^n¬`�d
`aVjgYX�Zjb�m�k��e`$m�k$_\X�[�n¬`¼]�k$m^��X�[^kqV£[�XIk$l\Xv`$[^V\]®gjb�_�beV\g\]IkqV
X�Z\b­_�`ac�X�[^���\m¥`ac�]�b�X�kqp�]�b�beg)gjkD�e�\n�b�V�X�]+X�Zj`aX+f'b�c�b2]�bem�be��X�beg
g\��c�[^V\�!X�Z\bÆ[�Vj[¢X�[¥`$m���m^�\]±X�b�c�[^V\�\� �¸k!bem�[^n�[�V�`¦X�bÆ]�kqn�bÆkqp
X�Zj[�]
]�b�V\]�[�X�[¢��[�XW¤qdÆX�Z\b¡kF��b�cv`$m^m,_\c�k��eb�]�]Á[�]Hc�b�_�be`aX�b�g `�VD�\n�l�b�c
k$p0X�[^n�b�]�� ��Z�`¦X![�]�d¾f'b®��kqn�_j��X�b_! g\[¢¯ b�c�b�VDX¬��m^�\]±X�b�c�[�V\�
]�k$m^��X�[^kqV\] Ê}w��¿���^dh[�Vj[¢X�[¥`$mH��m^�\]±X�b�c�[�V\�6p�k$m^m^kef'beg lD¤ ��m^�\]±X�b�c
c�b�ijV\ben�b�V�X�Ìvd'`$V\g¡X�Z\b)kqV\b�X�Zj`aX¬`$�vZj[�b��qbe]�X�Z\b�l�be]±X��q`$m��\b
p¿k$c�X�Zjb�_�`ac�X�[��e�\m¥`¦c!��c�[¢X�b�c�[�kqVAp¿�jV\��X�[^kqVÂ[^]�Ä�b�_\Xe�¼UWVA`$m^m+kqp
k$�\c­b�¨D_ b�c�[^n�beV�X�]�d�f'bÆ�j]�b�g�! S ��8��°º�k$c�X�Z\b,c�be]±X­kqp1X�Zj[�]
g\[�]��e�\]�]�[^k$V�f�Z\b�Vhf'b¬c�b�p�b�c�X�k�X�Zjb!��m^�\]±X�b�c�[^V\�I]�kqm���X�[^kqVhf'b
f�[�m^m¾n�bF`aV�X�Z\b�]�kqm���X�[^kqV�X�Zj`aXÆf�`a]�k$l\Xv`$[�Vjb�g�lD¤�]�b�m^b���X�[�V\�
X�Z\b­l�be]±X�kq��X�kqp�X�Z\be]�b�! _ kaX�beV�X�[¥`am^m�¤»gj[¢¯�b�c�b�V�X�]�kqm^��X�[^k$Vj]��

���~� � � 	 µ"� �
·3QeS\Q¦¹�µ ´ S � 	 µ"� � �~�]f ¹¥Q �
©0V\b2kqp�X�Z\b2`$g��q`aVDXv`a�qbe]+k$p�kq��c+_�`ac�X�[�X�[�kqVj`$m�`am^�qk$c�[¢X�Z\n-`$V\g
X�Zj`aX¬k$p�k$X�Z\b�c�]�[^n�[�m¥`ac¬_�`ac�X�[¢X�[^kqVj`$m+`$m^�kc�[�X�Z\n�]�d¾[^]�X�Zj`aX�[�X
Zj`$]�c�b�m¥`aX�[¢��bem¢¤�m^kef ��kqn�_j��Xv`aX�[^kqVj`$m�c�be½D�\[�c�b�n�b�VDX�]���À �q�
f�`e¤��em��\]±X�b�c�[�Vj��k$p�`0]�b�X�kqpjg\k����\n�beV�X�]
�e`$V�l�b¾�ekqnÆ_���X�b�gÆ[^V
X�[�n�b¾m�[^V\be`ac
kqV2X�Z\b4V��\n�l�b�c
kqp�g\k��e�\n�b�V�X�]
`$V\g2X�Z\b¾VD�\n�l�b�c
kqp1��m^�\]±X�b�c�]��jd `$]0[^V®n�kq]±X��F`a]�be]�X�Z\b,VD�\n�l�b�c­kqp1[¢X�b�cv`¦X�[^kqV\]
c�be½D�\[�c�b�g�lD¤�X�Z\b��$c�b�beg�¤¼c�b�ijV\b�n�beV�X®`$m��qk$c�[�X�Z\n*[�]�]�n�`$m^m
ÊËm�be]�]0X�Z�`aV "78DÌvd3`$V\gI[^]0X�k�`!m¥`¦c��qbÆb�¨DX�beV�X�[^V\g\b�_�b�Vjg\b�V�X°kqV
X�Z\bHVD�\n�l�b�c)k$p2gjkD�e�\n�b�V�X�]�� ��Z\bHb��$`$m^�j`aX�[�kqV�kqp�`$m�m0X�Zjb
�$`ac�[^k$�j]���c�[¢X�b�c�[�kqV�p¿�jV\��X�[^kqV\]»_jc�b�]�b�VDX�b�g�[�V�X�Z\[^]�_�`a_�b�c�`aX
be`$�vZ�c�b�ijV\b�n�beV�Xª]±X�b�_¬�e`$V�l�b�[^n�_jm�ben�b�V�X�beg�b�«¬�e[�beV�X�m¢¤�`$V\g
l�kq�\V\g\beg�l�¤�`¡�ek$Vj]±Xv`aVDX�gjb�X�b�c�n�[^V\b�g�l�¤�X�Z\bÁg\k����jn�beV�X
X�Zj`aX��ek$VDXv`a[^V\]0X�Z\b,n¬`a¨�[�n,�\n VD�\n�l�b�c­kqp
X�b�c�n�]�dxX�ZD�\]0X�Zjb
kF�qb�cv`$m�m2`$n�k$�jV�X�kqp°X�[^n�bHc�be½D�\[�c�b�g�X�k¡�ekqnÆ_���X�bÁ`
���:f�`e¤
��m^�\]±X�b�c�[^V\�¬]�k$m^��X�[^kqV)[^]hg¬ÊA� !ÁÌv�
i jkf � � Ra¹�� �\´ QeS �V��� PF· � Q¦P
�hb�b�¨�_�b�c�[^n�b�V�Xv`$m^m¢¤ b��$`$m^�j`aX�b�g X�Z\b�_�b�c�p�k$c�n�`$V\�eb�kqpÆX�Zjb
�$`ac�[^k$�j]�X�ka_�[����zg�c�[¢��beV��em��\]±X�b�c�[�Vj��]��vZ\ben�b�]�dj�ek$n�_�`ac�beg»f�[�X�Z
X�Z\b���k$c�c�be]±_�kqV\g\[^V\�,�\Vj]���_�b�c���[^]�b�g)`aVjg!]��_�b�c���[^]�b�g»�em��j]±X�b�c��
[�Vj��]��vZ\ben�b�]�kqV»i\��b­g�`¦Xv`$]�b�X�]�d\`$V\g)]±X��\g\[^b�g»�$`ac�[^kq�\]�[�]�]��\be]
`$]�]�kD�e[^`aX�beg)f�[�X�Z)kq��c�X�k$_j[^���zg�c�[���b�V��em��j]±X�b�c�[^V\��]���Z\b�n�b�]��'UWV
X�Z\b�c�be]±XHkqp�X�Z\[�]�]�b���X�[�kqV£f'b�i\c�]±XÁg\b�]���c�[¢l b�X�Z\b��q`¦c�[^kq�\]
gj`aXv`$]�b�X�]�`$V\gYkq��c�b�¨�_�b�c�[^n�b�V�Xv`$m­n�b�X�ZjkDgjk$m^kq�$¤qd�p�kqm�m^kFf'b�g
lD¤)`�g\be]���c�[�_\X�[^k$V�kqp¸X�Z\b°b�¨D_ b�c�[^n�beV�Xv`$m c�b�]��jm¢X�]��
i �Ë² l µ3TD·%� �\´ Q 	 µ �D� � T$Q¦¹¿µ ´ P
UWV kq��cIb�¨�_�b�c�[�n�beV�X�]�d°f'bh�\]�beg£`ÂX�k$Xv`$m2kqp,i\��bhg\[�¯�b�c�beV�X
gj`aXv`$]�b�X�]�d�f�Z\kq]�b,�qb�V\b�cv`am¸�vZj`acv`$��X�b�c�[�]±X�[^��]�`ac�b�]��\n�n¬`ac�[��eb�g
[�V �¸`aljm^b "D����Z\b®]�n¬`$m^m�be]±X»kqp�X�Zjb�]�b®gj`aXv`$]�b�X�]!�ekqV�Xv`$[�V\beg
�$d &#!�8�g\k����\n�beV�X�]0`$V\g)X�Z\b2m¥`¦c��qbe]±X��ek$VDXv`a[^V\beg "�d �#����gjkD�e���
n�b�V�X�]�� �¸k,beV\]���c�b­g\[¢��b�c�]�[¢XW¤![�V»X�Z\b0gj`aXv`$]�b�X�]�d�f'b�k$l\Xv`$[�V\beg
X�Z\b�n p¥c�kqn g\[¢¯ b�c�b�VDX']�k$�\c���b�]��ªº�k$c�`$m^mxgj`aXv`$]�b�X�]�d�f'b��\]�b�g�`

363

]±X�ka_j�zm�[^]±X+X�kÆc�b�n�kF��b°�ek$n�n�kqV�f'k$c�g\]�d�`$V\g�X�Zjb�f'k$c�g\]�f'b�c�b
]±X�b�n�n�b�g��\]�[^V\�p��k$c�X�b�c��]°]���«�¨��z]±X�c�[¢_j_j[�Vj��`$m^�qkac�[�X�Z\n � �����z�
ÍIk$c�b�kF��b�ced�`$V�¤�X�b�c�n6X�Z�`¦X�k��e����c�]�[�V�p�b�f'b�c+X�Zj`$V�XWf'k¬g\k����
�\n�b�V�X�]+f�`$]+bem�[^n�[�Vj`aX�beg �
��Z\b�gj`aXv`$]�b�X�]�rË~��vy��¦d»rË~��vy���`$V\g rË~��vy���f'b�c�b�g\b�c�[���b�g

p¥c�kqn#X�ZjbHº
[�V�`aVj��[¥`am ��[^n�b�]$	�[^n�[�X�b�g ÊËº �0Ì!`$V\g�X�Zjb 	�kq]
À�V\�qb�m^b�] ��[^n�b�]¬Ê�	�À ��[�n�be]�Ì�`ac�X�[^��m^b�]�X�Zj`aX2`ac�b�g\[^]±X�c�[¢lj�\X�b�g
`a]¸_�`ac�X�kqp�X�Zjb � � �/�Á��kqm�m^b���X�[�kqV%� "7� �:�¸�hb¾�\]�b�g�X�Z\b'½D�\b�c�[^b�]
k$p�X�Zjb°`$g)ZjkD�­X�be]±X+p¿c�k$n � � �/�4�
! � "*� �zd � � � �4� � � "7� �¸`$V\g
� � �/�4�0� � "7� ��`$],X�Z\b�X�k$_j[^�¬_\c�k$X�k$XW¤�_�b�]�dª`$V\g�g\b�c�[¢��beghX�Z\b
gj`aXv`a]�b�X�]­lD¤�[^V\��m^�\g\[^V\�®`$m�m1X�Z\b�c�b�m^b��q`$V�X2g\k��e�\n�b�V�X�[�VÁº �
`aVjg 	¸À���[^n�b�]�X�k�_�`ac�X�[^���\m¥`ac»½��jb�c�[^b�]�� ��Z\b®½D�\b�c�[^b�]�X�Zj`aX
Zj`e�qb­p�b�f'b�c�X�Zj`$V �,8�c�b�m^b��q`aVDX�g\k����\n�beV�X�]'f'b�c�b­b�m^[�n�[^Vj`aX�b�g
p¥c�kqn X�Z\b�g�`¦Xv`$]�b�X�]�� �¾`a��Z � � �/�Â½��jb�c�¤���kqV�Xv`$[^V\]¾`­X�[�X�m^b$dD`
g\b�]���c�[¢_\X�[^kqV�`$V\gÁ`»Vj`ac�cv`¦X�[���b$� ��Z\bÆX�[�X�m�bÆ�\]���`am^m�¤I��kqV�Xv`$[�Vj]
"F�
�!f'k$c�g\]2`$]­X�Z\bÆÄ�b�¤®f'k$c�g\]�� ��ZjbÆg\be]���c�[�_\X�[^k$VÁg\be]���c�[�l�b�]
f�Zj`aX0`ac�b°X�Z\b���kqV�X�beV�X�]�kqp¸X�Z\b°c�bem�b��$`$V�X0g\k����\n�b�VDX�l\c�[^b�È\¤�d
`aVjghX�Z\b!Vj`ac�cv`aX�[¢��b¬_jc�ke��[^g\b�]Æn�kac�b»g\b�Xv`$[^m�beg�g\b�]���c�[¢_\X�[^kqV\]��
��ZD�\]�dªf'b���kq�\m^g¡�\]�b»X�Z\b»X�[¢X�m^b�]�dªgjb�]���c�[�_\X�[^kqV\]�`$V\g¡V�`¦c�cv`a�
X�[¢��b�]­X�k�p�k$c�n X�Z\b�X�ka_�[��Æ_\c�k$X�k$XW¤D_ b�]°kqpªgj[¢¯�b�c�b�V�X2m^b���b�m^]°kqp
]±_�b��e[¢ij�e[¢XW¤���UWV¡_�`ac�X�[��e�\m¥`¦c�m�¤qd4f'b)�\]�b�g¡X�Zjb»X�[�X�m�be]ÆX�k�p�kac�n
]�Z\k$c�X3X�k$_j[^��]�daX�[¢X�m^b�]¸`$V\g�g\b�]���c�[¢_jX�[�kqV\]�X�k+p�k$c�n n�b�g\[^�\nYX�k$_\�
[��e]�d�`$V\g�`$m�m3X�Z�c�b�b°_�`ac�X�]�X�k�p�k$c�nÇm^kqV\��X�k$_j[^��]��
��Z\b¡gj`aXv`$]�b�X¡~����h[^]�p¥c�kqn �0b���X�b�c�]±�
" �$&-���¼X�b�¨�X��e`aX��

b��qk$c�[��F`¦X�[^kqV X�b�]±X���kqm^m�be��X�[^kqV #°[�]±X�c�[�lj��X�[^kqV �$� 8 ���$!��:d)`$V\g
��kqV�Xv`$[�Vj]»X�Z\bHg\k��e�\n�b�V�X�])p¥c�kqn "#&��e`aX�b��qk$c�[�be]�� ºjk$c�~����¦d
f'b]�bem�be��X�beg&g\k��e�\n�b�V�X�]¼X�Zj`aX�Zj`e��bÃ`]�[^V\�qm^b£��m¥`$]�]�m^`a�
l�b�m:�£º
[�V�`am^m�¤qd�X�Z\bIgj`aXv`$]�b�X � 'vu¼`ac�bIp¥c�kqn X�Z\b®�hb�ljÀ � �
\c�kaÉ±b���X ��� �Dd �$"�dQ��d�&��:� �4`$��Z®g\k��e�\n�b�V�X­�ekac�c�be]±�kqV\g\]0X�k»`
f'b�l)_�`$�qb2m^[�]±X�beg)[�V)X�Z\b2]���l\É}be��X0Z\[�b�cv`ac��vZ�¤)k$p��¾`aZjkDk
	 � "-�$�z�
��Z\b®k$c�[��q[^Vj`$m�]�kq��c��eb�]!p�k$c¬X�Z\bh~����)`$V\g � 'vu¡g�`¦Xv`$]�b�X�]¬g\k
V\k$X���kqV�Xv`$[^V�]���«¬��[^b�V�X+[^V\p¿k$c�n¬`aX�[�kqV»X�Zj`aX'f'b°�e`$V»g\b�c�[¢��b°`$]
X�ka_�[��e]�����ZD�\]�d\f'b°]�b�m^b���X�b�g»X�Z\b­n�beg\[^`$V)g\k����\n�beV�X+kqp�bF`$�vZ
��m¥`a]�]�`$]�X�Z\b­c�b�_\c�b�]�beV�X�b�c�kqp�X�Z\b°��kqV�X�beV�X0`$V\g�X�c�bF`¦X�beg�[�X�`$]
X�Z\b­X�k$_j[^�­_\c�k$X�k$XW¤�_�b$�

�¸`aljm^b "�� � �jn�n¬`ac�¤£k$p¬gj`aXv`$]�b�X�]H�\]�b�g£X�k�b��$`$m^�j`aX�bhX�Z\b
�$`ac�[�kq�\]+�em��j]±X�b�c�[^V\����c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV\]��

�
��� ����� �
���
��������������� ����� !� "#�%$�&� � � �# � ��� &�' �)(�������)�
� & � +* ,�- $�. ,%/�-10 �3254768� � ' �)� (* $+9 , (�:�9 - ,%;
� & � : ,%/ $�.=< -%-10 �3254768� � ' �)� (;�,%; ,%, 9 *�, < /
� & � +; < - $�.=< /�-10 �3254768� � ' �)� (;�- < ,%*�, <>: < ,
& � $? � $ ��� & � .~(-$ / : ;A@ $ *CB $ *%/ : , : /�; (/
D � � E �+F�6HGJI @ $B(B $ /�*%- ; < *%- (-

i � � jkf � � Ra¹D� �\´ QFS � � � Q*
�µ3¶�µ � µ � � S ´ ¶ � � QFRa¹ËT�P
ºjk$c�be`$��Z�kqV\bÁk$p�X�Z\b�gj[¢¯�b�c�b�V�X�gj`aXv`$]�b�X�]�f'bÁk$l\Xv`$[�Vjb�gY`
�q�:f�`e¤Ã�em��j]±X�b�c�[^V\��]�k$m^��X�[^kqVÃX�Z�`¦XÁk$_\X�[�n�[^��begÃX�Z\b��q`ac�[�kq�\]
X�ka_�[����zg�c�[¢��beVA��c�[�X�b�c�[^kqVAp¿�jV\��X�[^kqV\]¬]�Zjkef�V¼[^V ��`¦l�m�b �®`$V\g
�4½D�j`aX�[^kqV\]u�\� �®`$V\g���� ��d1f�Z\b�c�b_�Á[�]ÆX�Z\b»VD�\n�l�b�c�kqp�X�k$_\�
[��e]�ÊË��m¥`a]�]�be]�Ì»_\c�b�]�beV�XI[^VYX�Z\bhg�`¦Xv`$]�b�Xe� UWV£`$g\g\[�X�[�kqV d2f'b
��kqn�_�`ac�b�g»X�Z\b�X�Z\c�b�b�X�ka_�[����
g\c�[¢��b�V�]���Z\b�n�be]�f�[¢X�Z»X�Z\b­��k$c��

c�b�]±_�kqV\gj[�V\�Â�\V\]���_ b�c���[�]�begY`aVjg�]���_�b�c���[^]�b�g�]���Z\b�n�b�]�� UWV
�`ac�X�[��e�\m¥`¦c�m�¤qdªp¿k$c�]����b�c���[^]�b�g�]���Z\b�n�be]�d1f'b!�ekqnÆ_x`¦c�beghX�Zjb
�$`ac�[^k$�j] �/$­`$V\g �V(°X�k$_j[^���zg�c�[���b�VI��c�[�X�b�c�[^k$V®p��\V\��X�[�kqV\]�f�[�X�Z
����d�`$V\gHX�Z\bÆ�$`ac�[^k$�j] � $­X�k$_j[����zg�c�[��qbeVH��c�[¢X�b�c�[�kqV�p��\V\��X�[^kqV\]
f�[¢X�Z������ �¸kA[�m^m��j]±X�cv`¦X�bÁf�Z\b�X�Z\b�c�X�Z\bÁ_�b�c�p�k$c�n�`$V\�ebÁ[^nÆ�
_\c�kF��b�n�b�V�X�]���`a[^V\beg�lD¤�X�Z\b2�$`ac�[�kq�\]�X�k$_j[^���zg�c�[���b�V®]���Z\b�n�b�]
`ac�b¬g\�jb¬X�k�X�Z\b![�V\[�X�[¥`am^[^�e`aX�[�kqVhf�[¢X�ZhX�ka_�[��¬_\c�k$X�k$XW¤D_ b�]�d�f'b
`$m�]�k!_�b�c�p¿k$c�n�b�gH`$V\k$X�Z\b�c�]�b�X�kqp1b�¨�_�b�c�[^n�b�V�X�]��\]�[�Vj�!X�k$_j[^��]
`$]�X�Z\b°[�V\[�X�[¥`am3]�b�beg\]�lj��X�k$_\X�[^n�[��e[�Vj�ÆX�Zjb��q`ac�[�kq�\]+�\Vj]���_�b�c��
��[�]�begh��c�[�X�b�c�[^kqVhp¿�\Vj��X�[^k$Vj]�d¸f�Z\[���ZÁf'b�f�[^m�mªc�bep¿b�c2X�k®`$]°X�Zjb
�����v|${�K�'a���v|­]��vZjb�n�b$�

UWVh`$g\gj[¢X�[^kqV d¸p�k$c�be`$�vZ � � � �Ãgj`aXv`$]�b�Xed�f'b¬`$m^]�k)�ekqnÆ�
�`ac�b�g�X�Zjb��$`ac�[^k$�j]�X�ka�[����zg�c�[¢��beV��em��\]±X�b�c�[�Vj��]���Z\b�n�be]+�\]�[�Vj�
m�kqV\�\d3n�b�gj[��\V3d�`aVjg�]�Z\k$c�X­X�k$_j[��e]°`$]�X�Z\b,X�k$_j[^�,_\c�k$X�k$XW¤D_ b�]
X�kÁb��q`$m��j`aX�b�X�Z\b)b�¯�b���X�[¢��b�Vjb�]�]�kqp0X�Z\b�_\c�k$_�kq]�b�g¼n�b�X�Z\k�g\]
f�[¢X�Z)X�k$_j[^�­_\c�k$X�k$XW¤�_�b�]+kqp�g\[�¯�b�c�beV�X�m�b���b�m^]+kqp�]±_�b��e[¢ij�e[¢XW¤��
��Z\b»½D�j`$m�[�XW¤Ákqp+`��em��\]±X�b�c�[�Vj�®]�kqm^��X�[�kqVhf�`$],b��q`am^�j`aX�b�g

�\]�[^V\�ÁX�Z\b d0q�cBr*Z ^ML�n�bF`$]���c�b�X�Zj`aX¬[�]�l�`$]�b�gÂkqVAZ\kFf6X�Zjb
�$`ac�[^k$�j]1��m¥`a]�]�be]1kqp�g\k����\n�b�VDX�]ª`¦c�b�g\[^]±X�c�[�lj��X�b�g�f�[¢X�Z\[^V�bF`a��Z
��m^�\]±X�b�ce�

U�[���b�V»`­_�`ac�X�[^���\m¥`ac¾��m^�\]±X�b�c/� # kqp]�[��eb � # d�X�Z\b0b�V�X�c�k$_D¤kqp�X�Z\[^]���m^�\]±X�b�c0[�]�g\b�ijV\b�g)X�k�l�b

N ��O 3 � � > <V�S ��P
Q"
R 4 �

S R3
S 3 V�S��

S R3
S 3 &

f�Z\b�c�bUT�[^]0X�Z\bÆVD�\n�l�b�c2k$pª��m¥`$]�]�b�]­[�VIX�Z\b,gj`aXv`$]�b�X°`$V\g�� I#[�]�X�Z\b�VD�jn2l b�c,kqp'g\k����\n�b�VDX�]2kqp¾X�Z\bi?:X�Zh��m¥`$]�]°X�Zj`aX2f'b�c�b
`$]�]�[��qV\beghX�k�X�Z\b �¦X�Zh��m^�\]±X�b�ce� ��Z\b!beV�X�c�k$_D¤Ákqp'X�Z\b¬beV�X�[�c�b
]�kqm���X�[^kqV�[^]�g\b�ijV\b�g2X�k+l�bªX�Z\bª]��\n£kqpDX�Z\b4[�V\gj[¢��[^g\�j`$m��em��j]±X�b�c
b�V�X�c�k$_j[^b�]+f'b�[^�qZ�X�b�g®`$���ek$c�g\[�Vj��X�k�X�Z\b°�em��j]±X�b�c�]�[^��b$d�w������^d

VMWYX[Z+\�]Y^ � 1"
354 �

S 3
S
N ��O 3 ��_

À�_�b�c�p¿be��X0�em��j]±X�b�c�[^V\�!]�kqm��\X�[�kqV®f�[^m�m�l b2X�Zjb�kqV\b�X�Zj`aX0m^be`$g\]
X�kH��m^�\]±X�b�c�]ÆX�Zj`aXÆ�ek$VDXv`a[^V¡g\k����\n�beV�X�]Æp¿c�kqn k$Vjm¢¤�`I]�[�Vj�$m^b
��m¥`$]�]�d�[�V�f�Zj[���Z¬�e`$]�b+X�Z\b�b�V�X�c�k$_D¤�f�[^m�mjl�b+�eb�c�k\�
UWV¬�qb�Vjb�cv`$mËd
X�Z\b�]�n¬`$m�m^b�c¾X�Z\b�beV�X�c�k$_D¤Æ�q`$m��\be]�d�X�Zjb�l�b�X�X�b�cªX�Zjb���m^�\]±X�b�c�[^V\�
]�kqm���X�[^kqV�[^]��
�¸k�b�m^[�n�[^Vj`aX�b)`$V�¤�[^V\]±Xv`$V\�eb�]�X�Zj`aX�`I_x`¦c�X�[^���jm^`ac��em��\]±�

X�b�c�[^V\�Â]�kqm��\X�[�kqVYp�kacI`�_�`ac�X�[^���\m¥`ac���c�[�X�b�c�[^kqV�p��\V\��X�[�kqV��qk$X
X�cv`a__�b�g�[^V�X�k�`!lx`ag�m^k��e`$m
k$_\X�[�n,�\n)d�[^VÁ`$m�m1kqp4kq��c2b�¨�_�b�c��
[�n�beV�X�]�f'b!p�kq�\V\g�X�b�V�g\[¢¯ b�c�b�VDX,�em��j]±X�b�c�[^V\�®]�kqm^��X�[^k$Vj]��®À�]
g\[^]����\]�]�beg¡[^V � b���X�[�kqVv�HbF`a��Z�kqp�X�Zjb�]�b!X�b�V��em��j]±X�b�c�[^V\�H]�ka�
m��\X�[�kqV\]���k$c�c�b�]±_ k$Vjg�X�k�X�Z\b­l�be]±X�]�kqm���X�[^kqVhÊË[^V�X�b�c�n�]�k$p�X�Zjb
c�b�]±_�be��X�[���b°��c�[�X�b�c�[^kqV)p��\V\��X�[^kqVxÌ¾kq��X�kqp�X�beV)g\[�¯�b�c�beV�X0[�V\[�X�[¥`am
_�`ac�X�[¢X�[^kqV\[^V\�¬`$V\g)c�b�i�V\b�n�b�VDX+_jZ�`a]�be]��
i � � 	 µ"� �¸SjR$¹�P�µ ´ µH` Q*
 �ba S�R$¹¿µ�·¸P 	u� ·¸P�Q � Ra¹ ´��

� T�
 � � � P
��Z\bÆi\c�]±X2]�b�X°kqpªb�¨�_�b�c�[^n�b�V�X�]­f�`$]°p¿k����j]�b�g�kqVHb��$`$m���`¦X�[^V\�
X�Z\b£½D�j`$m^[¢XW¤6kqpIX�Z\b �em��\]±X�b�c�[�Vj�]�kqm^��X�[�kqV\]¼_\c�k�g\�\�eb�gÇlD¤
X�Z\b)X�Z�c�b�b)X�k$_j[^���zg�c�[���b�VA]���Z\b�n�be]!`aVjgÂX�Z\b���k$c�c�b�]±_ k$Vjg\[�Vj�

364

�\V\]���_�b�c���[�]�beg d+]���_ b�c���[�]�beg d�`$V\g�]�beb�g��:lx`a]�beg�]��vZ\ben�b�]»p�k$c
X�Z\b �T$ed �V(Æ`$V\g � $­��c�[¢X�b�c�[�kqV�p¿�\Vj��X�[^k$Vj]�� ��Z\b�m^k$Vj�»X�k$_j[^��]
ÊË[�V\�em��jg\[�Vj�0X�[¢X�m^b�]�d$g\be]���c�[�_\X�[^k$Vj]�d�`$V\g,Vj`ac�cv`aX�[��qbe]�Ì�f'b�c�b¾�j]�b�g
p¿k$c)X�Z\bArË~��vy��¦d�rË~��vy7�ed°`$V\g rË~��vy��hgj`aXv`a]�b�X�])[^V�X�Z\[�]�]�b�X�kqp
b�¨�_�b�c�[^n�b�V�X�]�� ��Z\b!�h�$`$m^�\b�]+�j]�b�g�[^V)X�Z\b°�$`ac�[^kq�\]+]���Z\b�n�be]
f'b�c�bªi\¨�b�g�p�k$c�`$m^mqX�Z\b4gj`aXv`$]�b�X�]��¸��bªf�[^m�m�g\[^]����j]�]�Z\kFf�X�Z\kq]�b
�$`$m��jb�]�f'b�c�b2g\b�X�b�c�n�[�V\beg�[�V � be��X�[^k$V &D� &��
��`¦l�m�b ��]�Z\kFf�]�X�Z\bAc�b�m¥`aX�[¢��b¼[�n�_\c�kF��b�n�beV�X�]�kqp»X�Z\b

�$`ac�[�kq�\]
X�k$_j[����zg�c�[��qbeV�]��vZjb�n�b�]ª`$V\gÆX�Z\b�]�b�beg��:l�`$]�b�g�]���Z\b�n�b
ke��b�c�X�Zjb��ekac�c�be]±_�kqV\g\[^V\���\Vj]���_�b�c���[^]�b�gÇ`$V\g]��_�b�c���[^]�b�g
]��vZ\ben�be]�`e��b�cv`$�qb�g�kF��b�c�`$m�m X�Z\b­ij�qb2g�`¦Xv`$]�b�X�]��
��Z\b¬c�b�]��\m�X�],[�V �¸`aljm^b%�)]�Z\kFf]�b���b�cv`am4X�c�b�V\gj]��)º
[�c�]±Xed

`am^mDX�Zjb¾X�k$_j[����zg�c�[��qbeVÆ]���Z\b�n�be]1k$�\X�_�b�c�p�k$c�n£X�Z\b���k$c�c�b�]±_�kqV\g\�
[�V\�2�jV\]���_�b�c���[^]�b�g»`$V\g¬]���_�b�c���[�]�beg¬]��vZ\ben�be]�d�`$V\g�X�Zjb+kF��b�c��
`am^m¾l�be]±XÆX�k$_j[����zg�c�[��qbeV¡]���Z\b�n�b)[�]ÆX�Z\b�V\k$c�n¬`$m�[^��beg�]���Z\b�n�b
ÊË��kqn�lj[�Vj[�V\�H�\V\]���_�b�c���[�]�beg�`$V\g�]���_ b�c���[�]�beghf�[¢X�Z�Vjkac�n¬`$m��
[��F`¦X�[^kqVxÌvdjf�Zj[���ZI`a��Z\[^b���b�g®X�Z\b�n�kq]±X­[�n�_\c�kF��b�n�b�VDX�]0p�kac­`$m^m
X�Z\b+X�Z�c�beb���c�[¢X�b�c�[�kqV¬p��\V\��X�[�kqV\]�� � b��ek$Vjg dD[^V»`$g\g\[�X�[^k$V¬X�k2X�Z\b
[�n�_\c�kF��b�n�b�VDX�]
n¬`$g\b¾lD¤�[^V\[�X�[^`$m^[��e[�V\�­�\]�[^V\��X�k$_j[^��]
`$]
]�b�beg\]�d
`am^mDX�Z\b4X�k$_j[^���zg�c�[���b�VÆ]��vZjb�n�b�]
n¬`$g\b'p���c�X�Z\b�c
[^nÆ_jc�ke��ben�beV�X�]
p¿k$c �/$Á`aVjg��V(ad�f�Z\[^�vZÃ]�Z\kFf'beg£X�Zj`aXIX�Z\b�kal�]�b�c���b�gÃ[^n��
_\c�kF�qben�b�V�X�]'`ac�b�V\k$X'k$Vjm¢¤�l�b��F`$�\]�b0k$p �qkDk�g¬[^V\[�X�[^`$m^[��F`¦X�[^kqV\]�d
lj��X+`am^]�k�l b��e`$�\]�b�kqp X�Zjb��$k�k�g¬_\c�k$_�b�c�X�[�be]¾kqp X�Zjb0_\c�k$_�kq]�b�g
X�ka_�[����zg�c�[¢��beV!��c�[¢X�b�c�[�kqV»p��\V\��X�[^kqV\]��1º�k$c � $�d�X�Z\b�Vjkac�n¬`$m^[��eb�g
]��vZ\ben�b°n�`$g\b2`agjg\[¢X�[^kqVj`$m�[^n�_\c�kF�qben�b�V�X�]�lj��X'X�k�`,m^b�]�]+b�¨��
X�b�V�Xe�¡º
[^Vj`$m�m�¤qd �/$!`$�vZ\[^b���b�g¡X�Zjb)n�k$]±X¬[^n�_\c�kF�qben�b�V�X�]�lD¤
`¦_j_jm¢¤�[^V\��X�k$_j[^���zg\c�[¢��b�V�]���Z\b�n�b�]��
��`¦l�m�b��]�Zjkef�]�X�Z\b�n�k$c�b�g\b�Xv`$[^m�beg c�b�]��\m�X�]�kqp»X�Zj[�]

]�b�XÆkqp�b�¨�_�b�c�[�n�beV�X�],kqV�be`$�vZ�gj`aXv`$]�b�Xe�®À�m^m4X�Z\b!beV�X�c�[^b�],[^V
�¸`aljm^b��»`ac�b2beV�X�c�k$_D¤��$`$m^�\b�]�dxb�¨���b�_\X0p¿k$c0X�Z\b°XWf'k!��kqm��jn�Vj]
�\V\g\b�c�X�Z\b¾�\V\]��_�b�c���[^]�b�g�`aVjg,]�b�beg��:l�`$]�b�gÆn�b�X�Z\k�g\]�m¥`¦l b�m^b�g
�G�4c�º��\V	�\d�f�Z\b�c�b�X�Zjb�b�VDX�c�[�be]!`ac�b�X�Z\b®��c�[¢X�b�c�[�kqVAp��\V\��X�[�kqV
�$`$m��jb�]
kqpjX�Z\b��em��\]±X�b�c�[�Vj�­]�kqm^��X�[^k$Vj]��
�k$X�b¾X�Z�`¦X1X�Z\b�b�V�X�c�k$_D¤
�$`$m��jb�]�[^V®X�Z\b,]���_�b�c���[^]�b�gHn�b�X�ZjkDgI��kqm^�\n�VIf'b�c�bÆ`$��Z\[�b���b�g
lD¤�X�Zjb2]���_ b�c���[�]�beg®��c�[¢X�b�c�[�kqV®p��\V\��X�[�kqV\]0��kqn�_�`ac�b�gH`$��`a[^V\]±X
X�Z\b°k$X�Z\b�c�]��vZ\ben�be]�� ��Zjb2]���_�b�c���[^]�b�g���c�[�X�b�c�[^kqV)p��\V\��X�[^kqV�[�]
����p�k$c �/$2`$V\g �V(ad�`$V\g ���®p¿k$c � $�� ��Z\b�b�V�X�c�[^b�]�X�Z�`¦X2`ac�b
l�kqm�g��zpË`$��beg»��k$c�c�be]±_�kqV\g!X�k,X�Z\b�n�b�X�Z\k�g\]'X�Zj`aX¾_�b�c�p¿k$c�n�X�Z\b
l�b�]±X�p�k$c0`,_x`¦c�X�[^���jm^`ac0gj`aXv`a]�b�X0`$V\g���c�[�X�b�c�[^k$V�p¿�\Vj��X�[^k$V3�

ÀAVD�\n�l�b�c1kqp\k$lj]�b�c��$`aX�[�kqV\]
�e`$V�l�b¾n¬`$g\b¾lD¤,`$Vj`$m¢¤��e[�V\�
X�Z\b�c�b�]��\m�X�]4[�V �¸`aljm^b �\�
º
[�c�]±XedDp¿k$c4n�kq]±X4kqpxX�Z\b+�F`$]�b�]1X�k$_j[^���
g�c�[¢��beVI]��vZ\ben�b�]�_�b�c�p�k$c�n&X�Zjb2l b�]±Xe� ��Z\b,b�¨���b�_\X�[^k$VI[^]0X�Z\b
� 'vu­gj`aXv`$]�b�Xed$p¿k$c�f�Zj[���Z2X�Zjbª]�beb�g��:lx`a]�beg,]��vZ\ben�b4_�b�c�p�k$c�n�b�g
X�Z\b�l�b�]±X,`$V\g�X�Zjb�X�k$_j[^���zg�c�[���b�VÁ]���Z\b�n�b�],]�k$n�b�X�[�n�b�]2b���b�V
�b�c�p�k$c�n�beg¡f'k$c�]�b)X�Zj`$VÂX�Z\b��\V\]����b�c���[�]�begA]��vZ\ben�b$��©�V\b
k$p�X�Zjb°g\[�¯�b�c�beV\��be]�l�b�XWf'beb�V�X�Z\b � 'vu»g�`¦Xv`$]�b�X0`aVjg�X�Z\b­c�b�]±X
k$p�X�Zjb!g�`¦Xv`$]�b�X�],[^],X�Zj`aX,X�Z\b»n�b�g\[¥`$V�g\k����jn�beV�X�]��\]�b�g¡`$]
X�ka_�[��e]¸`ac�bª]�[^�$Vj[¢ij�F`$V�X�m�kqV\�qb�c�X�Zj`$V2X�Z\b1X�k$_j[^��]��j]�b�g�[^V2k$X�Z\b�c
gj`aXv`a]�b�X�]�� � [�Vj��bÁf'b�g\[^g VjkaX®_�b�c�p�k$c�no`aVD¤�_jc��\V\[^V\�¼kqV
X�Z\b0n�b�gj[^`$V»gjkD�e�\n�b�V�X�]�d�X�Z\b�¤!��kqV�Xv`$[^V!X�Z\b0X�b�c�n�]¾X�Zj`aX�`ac�b
V\k$X0]±_�b��e[¢i��°X�k�X�Z\b2X�k$_j[^�$�'À�]0`�c�be]��\m¢Xed�X�Z\b2_�b�c�p�k$c�n�`$V\�eb�]
k$p
X�Z\b,]���_�b�c���[^]�b�gH]��vZ\ben�be]0f'b�c�b,n,�\�vZIf'kac�]�b,X�Zj`$V®k$X�Z\b�c
]��vZ\ben�be]�`$V\g®X�k$_j[����zg�c�[��qbeV®]���Z\b�n�be]�g\[�gIV\k$X0l�b�Vjb�i\X�p¿c�k$n

[�Vj��k$c�_�k$cv`aX�[�V\�!X�Z\be]�b�X�ka_�[��e]�� � b���kqV\g3dxX�Z\b�XWf'k»]���_�b�c���[^]�b�g
]��vZ\ben�b�]�� � `$V\g ����_�b�c�p�k$c�n]�[�n�[^m^`ac�m�¤qd»f�Z\[^�vZ�[�]�V\k$X
]���c�_\c�[^]�[�Vj�°`$]¸f'b¾Zj`e��b¾g\[^]����j]�]�b�gÆX�Z\b4c�b�m¥`aX�[�kqV\]�Z\[�_,l b�XWf'b�beV
X�Z\b�n*[�V � be��X�[^kqVn�\� �$� "���º�[^Vj`$m^m¢¤�d � $�l�b�Vjb�i\X�]»X�Z\b�n�kq]±X
lD¤��j]�[�V\��X�Zjb�X�k$_j[^��]�`$]2[^V\[�X�[^`$mª]�beb�g\]����'¤Hm^kDk$Ä�[^V\�®`¦X2X�Zjb
��c�[�X�b�c�[^kqVÁp��\V\��X�[�kqVÁ�$`$m^�\b�],`$�vZ\[^b���beg�l�¤HX�Z\b¬�\Vj]���_�b�c���[^]�b�g
`$V\g,]�b�b�g\�:l�`$]�b�g,]��vZ\ben�b�]�p¿k$c�� $ed¦f'b4�F`$V�]�b�b4X�Zj`aX¸�\V\m^[�Äqb �/$
`$V\g �#(ad\�\]�[�Vj�ÆX�k$_j[��e]�[^V»X�Z\b­[^V\[�X�[^`$m^[��F`¦X�[^kqV»_\c�k���be]�]�Z\bem¢_�beg
X�Z\bHk$_\X�[�n�[^�e`aX�[^k$V�_\c�k���be]�]!X�k�i�V\g�`���m^�\]±X�b�c�[^V\��]�kqm^��X�[�kqV
f�[¢X�Z®`Æl�b�X�X�b�c+��c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV��q`$m��\b2p¿k$c � $��
i ��� � µ��
¹�T � R¦µjQeµjQ � � � P/µH` l ¹�� � R �\´ Q�� � � �	� P µH`

� � � TD¹��
TD¹¥Q �
��Z\b,]�b��ek$Vjg®]�b�X�kqp
b�¨D_ b�c�[^n�beV�X�]�f�`$]�p�k����\]�beg®k$VIZ\kFf£X�Zjb
�$`ac�[^k$�j]�X�k$_j[^���zg\c�[¢��b�V]��vZjb�n�b�]h_�b�c�p�k$c�n f�[¢X�Z X�Z\bÂX�k$_j[^�
\c�k$X�k$XW¤D b�]�kqpÆg\[�¯�b�c�b�V�XIm�b��qbem�]®kqpÆ]±_�be��[�ij��[�XW¤q� ºjk$cIbF`a��Z
� � �/�Âg�`¦Xv`$]�b�XedDf'b0_ b�c�p�kac�n�beg¬X�Zjb0]�`$n�b�]�b�X'b�¨D_ b�c�[^n�beV�X�]
`$]­[^V � be��X�[^k$V &�� �¬f�[�X�ZHm^kqV\�\d3n�beg\[��jn�d�`aVjg�]�Z\k$c�X­X�k$_j[^��]��
��Z\bÂc�be]��\m¢X�]�`ac�bA]�Z\kFf�V [^V �¸`aljm^b &�d¬[^V f�Z\[^�vZ�`am^m�X�Zjb
b�V�X�c�[^b�]¾`ac�b+X�Z\b+beV�X�c�k$_D¤��$`$m��jb�]4kqp�X�Zjb+�em��\]±X�b�c�[�Vj�2]�kqm^��X�[�kqV\]
k$l\Xv`$[�V\beg¡l�¤�X�Z\b)�$`ac�[^k$�j]�]��vZjb�n�b�]��¼À���`a[^V d¾X�Z\b�b�V�X�c�k$_D¤
c�b�]��\m�X�]�p�k$cÆX�Z\b»f'b�[^�qZ�X�b�gÂ`$V\g¡V\k$c�n¬`am^[^��b�gÂ]��vZ\ben�b�]Æf'b�c�b
k$l\Xv`$[�V\beg�f�[�X�ZH`�i\¨�b�g ���$`$m^�\b,p¿k$c­`$m�m�X�Z\b,gj`aXv`$]�b�X�]�� ��Zjb
b�V�X�c�[^b�]�X�Zj`aXÆ`ac�b�l�kqm^g��zpË`a�eb�g���k$c�c�b�]±_�kqV\ghX�k�X�Z\b!n�b�X�Z\k�g\]
X�Zj`aXÂ_�b�c�p�k$c�n X�Z\b�l�b�]±X¼p�kac¼`�_�`ac�X�[��e�\m¥`¦c¼gj`aXv`$]�b�X�`$V\g
��c�[�X�b�c�[^kqV)p¿�jV\��X�[^kqV �

ÀAVD�\n�l�b�c
kqpjk$lj]�b�c��q`aX�[�kqV\]��F`$V�l�b¾n¬`$g\b¾lD¤,`$Vj`$m¢¤���[^V\�
X�Z\b�c�b�]��\m�X�])[^V ��`¦l�m�b �\� º
[¢c�]±Xed�X�Zjb�]���_ b�c���[�]�beg�]���Z\b�n�b
_�b�c�p�k$c�n�]�l b�X�X�b�c2`$]­X�Z\b,X�k$_j[^��]­l�be��kqn�bÆn�k$c�b�]±_�be��[�ij��p¿k$c
`$m�m�X�Z\b)gj`aXv`$]�b�X�]�� � b���kqV\g3d¾p�kac¬n�kq]±X!k$p�X�Z\b��e`$]�b�]�X�k$_j[^���
g�c�[��qbeVÂ]���Z\b�n�be]�_�b�c�p�k$c�n X�Z\b)l�b�]±Xe�Aº�[^Vj`$m^m¢¤�d'ke��b�cv`am^m'X�Zjb
�$`ac�[^k$�j]ÆX�k$_j[����zg�c�[��qbeV¡]���Z\b�n�b�]�_�b�c�p¿k$c�n�b�g¡]�[^n�[�m¥`ac�m¢¤�f�[�X�Z
X�Z\b¡X�k$_j[^��_\c�k$X�k$XW¤�_�b�]Ákqp¬g\[�¯�b�c�b�V�Xhm�b���b�m^]�kqp!]±_�be��[�ij��[�XW¤qd
g\b�]±_�[¢X�bYX�Z\bYpË`a��XÂX�Z�`¦XÂX�ZjbY]�Z\k$c�X�`$V\gÇn�b�gj[��\n X�k$_j[^��]
`$m�kqV\b¼ÊË�\]�b�gY[�V�X�Z\b�]��_�b�c���[^]�b�gY]��vZjb�n�b¦Ì¬_�b�c�p�k$c�n*n,�\�vZ
f'k$c�]�b�X�Zj`$V/X�Z\b�m^k$Vj� X�k$_j[^��]�dhf�Z\[^�vZ]�Z\kFf�]�X�Zj`aX�X�Zjb
\c�k$�kq]�b�g X�ka_�[����zg�c�[¢��beV�]���Z\b�n�be]Á`ac�bÂb�¯ b���X�[���b�f�[¢X�ZÃX�Zjb
X�k$_j[��°_\c�k$X�k$XW¤D_ b�]+kqp�g\[�¯�b�c�beV�X�m^b���b�m^]+kqp�]±_�b��e[¢i���[�XW¤q�
i �$i � S�R¦Sa� � Q � R � �\´ PF¹¿Q¦¹ ��¹¿Q �
UWV�X�Z\[^]�]�be��X�[^kqV djf'b2_jc�b�]�b�VDX�X�Zjb°c�be]��\m¢X�]0kqp�X�Z\b2_�`acv`an�b�X�b�c
]±X��\g�¤�k$V,�Yp�kacÆX�Zjb»f'b�[^�$ZDX�b�gÂ`$V\g¡V\k$c�n�`$m^[��eb�gÂ]��vZ\ben�be]�d
`$V\g¼]�Z\kFf-Z\kFf-f'b®g\b�X�b�c�n�[�V\begÂX�Z\b � �$`$m^�\b�]�X�Zj`aX¬f'b�c�b
�\]�b�gHX�k»_jc�kDgj�\��b���m^�\]±X�b�c�[^V\��]�kqm^��X�[�kqV\]°]�Z\kFf�V�[^V �¸`aljm^b����
��Z\b¾_j��c�_�kq]�b'kqp\X�Z\[^]�]±X��\g�¤�[^]�XWf'ka�zp�kqm�g)�'Ê��¦Ì�X�k�]�b�b¾f�Z\b�X�Zjb�c
X�Z\b�c�b»[�]�`�cv`$V\�qb!kqp ���q`am^�\be]2X�Z�`¦XÆ�F`aV�_�b�c�p¿k$c�n f'b�m^m¾p¿k$c
n�k$]±X­kqp
X�Z\b,gj`aXv`a]�b�X�]��1Ê "�Ì'X�k!]�b�b�f�Z\[^�vZI]���Z\b�n�bÆ[�]0l�b�X�X�b�c
lD¤ ��kqn�_�`ac�[�Vj�YX�ZjbAg\¤�V�`an�[^�Acv`aVj�$b�`$V\g Z\kFf]�beV\]�[�X�[¢��b
X�Z\b�XWf'k�]��vZ\ben�b�]�`ac�b�X�k�X�Z\b��vZj`$V\�qb¡kqp(� �$`$m��jb�]���UWV
_�`ac�X�[��e�\m¥`¦c�m�¤qd�f'b­X�b�]±X�b�g»X�Z\b�XWf'kÆ]���Z\b�n�b�]�f�[�X�Z$�@Sn8 + �0X�k
8 + �Æf�[¢X�Z�`$V�[^V\��c�ben�beV�X�kqp18�� �°kqV)X�Z\b­ij�qb2gj`aXv`$]�b�X�]�p¿k$c0`$m�m
X�Z�c�b�b���c�[¢X�b�c�[�kqVÁp��\V\��X�[�kqV\]��
�k$X�b�X�Zj`aX°X�Z\b�XWf'k���kqn�lj[^V\b�g
]��vZ\ben�b�]°b�n�_jZj`$]�[^��b�n�kac�bÆkqVIX�Z\bÆ]���_ b�c���[�]�begH�ek$n�_�kqV\beV�X

365

�¸`aljm^b ���
À0��b�cv`$�qb�c�bem^`aX�[��qb�[^nÆ_jc�ke��ben�beV�X�]4kqpxX�Z\b+�$`ac�[^k$�j]1X�k$_j[^���zg\c�[¢��b�V¬]���Z\b�n�be]4kF��b�c4X�Z\b��\V\]���_�b�c���[�]�beg!`aVjg¬]���_�b�c���[^]�b�g
]��vZ\ben�be]��

" �+��� . F�������� � �%��� . � &[� � ��� "> �� � ' �)�
"> �� � ' � �	��F &[� � E � �
�� ����� � ��&�' � (�
 ���

G &�0�$ � � \ � \ �
9 ��� � \�� ��� � 9

� � \ � � \�� � \ � � \�� � \ � � 9
� �

9 �
� \�� �

9 �
� \����

9 �
�
9
�

�	��� $�� � &��#� ����� *�� ,�� /�� $ /�� 9 � /�� (*�� 6 � 9 � (*�� $J(�
">$�� � &��#� ����� (,�� < � (*�� $ *�� ,%-�� (2(� (�: � , $ � (/�� (�: � , (�

��`aljm�b��	� �¾kqn�_�`ac�[�]�kqV®k$p¸X�Z\b2��m^�\]±X�b�c�[^V\��]�kqm^��X�[^k$Vj]+k$l\Xv`$[^V\b�g)lD¤»X�Z\b°�$`ac�[�kq�\]���m^�\]±X�b�c�[�V\�¬n�b�X�Z\k�g\]��
� & � C*

G &�0�$ � ����� $�� � &��#� ������� �)� ��� � "#$�� � &��#� ����� " �)��� . F��%�[����� ��� ��� � � �%��� . � &[� � �����A��� ��� ���
G &�0�$ � I��%� &[�%� � � �)� ��� ��� G &�0�$ � I �>� &[�%� � ��� � �%\ � � �

9 �
�

� \ ,"! 9 ; -"! (,%; -"! (; $,"! 9 * -#! (-$ - -"! (-$ / $&%('*),+� \ < ! , : -"! (%: / -"! (;%, < ! , (-#! (*�; -#! (,�; $&%('#-,- -#! $;�-�
9

$! - $ -"! (-%; -"! (;%, $! - $ -#! $+9 * $&%('�.&- -"! $C: ; -#! $ * (

� & � :
G &�0�$ � ����� $�� � &��#� �[����� ��� ��� � "#$�� � &��#� ����� " �)��� . F��%�[�����A��� ��� � � �%��� . � &[� � �����A��� ��� ���

G &�0�$ � I �>� &[�%� � � ��� ��� ��� G &�0�$ � I �>� &[�%� � ��� � � \ � � �

9 �
�

� \ < ! : * -#! (* $ -"! ,�->/ < ! : * -#! (, 9 -"! (�<>9 $&%0/,/"1� \ < ! * : -#! , (6(-"! ,�- : < ! / 9 -#! ,%, < -#! (* < $&%2/&'#- -"! ('$+9�
9

$! - 9 -#! (2(�: -"! ,�- : $! - 9 -#! (,%/ -#! (-$ / $&%2/"$3- -"! ('2

� & � C;
G &�0�$ � ����� $�� � &��#� �[����� ��� ��� � "#$�� � &��#� ����� " �)��� . F��%�[�����A��� ��� � � �%��� . � &[� � �����A��� ��� ���

G &�0�$ � I �>� &[�%� � � ��� ��� ��� G &�0�$ � I �%� &[��� � ��� � � \ � � �

9 �
�

� \ < ! / $ -#! (- $ -"! (%:%: < ! /�- -"! ('$ / -"! $+9 * $&%('*134� \ < ! $+9 -#! (%: - -"! (%: / < ! $ * -"! (�: ; -#! (/ (-"! $;%* $&%('#-,4�
9

$! - < -#! (-�; -"! (%: / $! -�, -"! $)9�< -#! $;�; -"! $C: - $&%('*5,$

& � $
G &�0�$ � ����� $�� � &��#� �[����� ��� ��� � "#$�� � &��#� ����� " �)��� . F��%�[�����A��� ��� � � �%��� . � &[� � �����A��� ��� ���

G &�0�$ � I �>� &[�%� � � ��� ��� ��� G &�0�$ � I �%� &[��� � ��� � � \ � � �

9 �
�

� \ $! 9�< -#! (�9%: -"! , $ / $! 9 , $&%0/,-"+ -"! (%:%: -"! (; (� \ (! *%* -#! ,%*%/ -"! , 2 (! / 9 -"! ,�-%; -#! (;�; -"! (%: - $&%0/,4,/�
9 *"! , $ -#! (�9 - -"! , 2 *"! (�9 -"! (*>/ -#! (*�; -"! (/ ($&%0/#.&-

D � �G &�0�$ � �	��� $�� � &��#� �������A��� ��� � "#$�� � &��#� �[��� " �+��� . F��������6�A��� ��� � � �%��� . � &[� � ����� �)� ��� ���
G &�0�$ � I �>� &[�%� � � �)� ��� ��� G &�0�$ � I �>� &[�%� � ��� � � \ � � �

9 �
�

� \ $! : / -#! ,%, $ -"! <�<'($! : * $&% +,$3- -#! , (�: -"! ,%, :� \ $! *%/ -#! , :6(-"! < / < $! *%/ -#! ,>/�/ $&% +,$,5 -#! ,>/ 9 -"! , :%:�
9

< ! * 9 -#! , (�: -"! < / < < ! *�* $&% +,$,5 -#! , <G(-#! ,%, (-"! , <#:

f�[¢X�Z£`¼]�n¬`am^m^b�c � �q`$m��\bqd�`$V\g£b�n�_jZ�`a]�[^��b�n�k$c�b�k$V X�Z\b
�\V\]���_�b�c���[�]�begÆ�ek$n�_�kqV\beV�X
f�[�X�Z�`�m^`ac��qb�c ���$`$m^�\b$� ��Z\b¾XWf'k
��kqn�lj[�Vjb�g¡]���Z\b�n�be]Æl�b��ekqn�b»X�Zjb�]���_�b�c���[^]�b�gÂ]��vZ\ben�b�`$V\g
X�Z\b¾�jV\]���_�b�c���[^]�b�g�]��vZjb�n�b'f�[¢X�Z���S|8�`$V\g �ad$c�b�]±_ b���X�[���b�m�¤q�
��Z\b�c�b�]��jm¢X�]2p�k$c �/$�`$V\g��V(�`¦c�b¬]�[�n�[^m^`acÆ`$V\g�f'b�kqV\m¢¤

]�Z\kFf X�Z\b¼c�b�]��\m�X�]�p�k$c �V(a��UWV�º
[^�$�\c�b �ad»f'bA_jm^k$X�X�Z\b
b�V�X�c�k$_D¤°�$`$m^�\b�]�k$l\Xv`$[�Vjb�g2lD¤2X�Z\bªf'be[��qZ�X�begÆ`aVjg�Vjkac�n¬`$m^[��eb�g
]��vZ\ben�be]�`$��`$[�Vj]±X2X�Z\b(�A�$`$m^�\b�]2p¿k$c,`$m�m1X�Z\b�gj`aXv`$]�b�X�]2[^Vh`DÌ
`aVjg°l�Ìvd¦c�b�]±_�be��X�[��qbem¢¤����hbª�e`$V2]�beb1X�Zj`aX�`¦X ��Sn8 + �0`$V\g!�@S
8�+ !�dDn�k$]±X'kqp�X�Zjb+gj`aXv`$]�b�X�]4c�be`$�vZjb�g�X�Z\b+l�b�]±X¾beV�X�c�k$_D¤Æ�q`$m��\b
ÊËkacª��m^kq]�b'X�k�X�Z\b�l�b�]±Xªb�V�X�c�k$_D¤,�q`am^�\baÌ�p�kac1X�Z\b'f'be[��qZ�X�beg�`$V\g
V\k$c�n�`$m^[��eb�g�]��vZ\ben�be]�d+c�b�]±_�be��X�[���b�m�¤q���hbH`am^]�khX�b�]±X�begAX�Z\b
]�`an�b!�h�$`$m^�\b�]+kqV)X�Z\b2]�`an�b�gj`aXv`$]�b�X+f�[�X�Z)m^kqV\�\djn�b�g\[^�\n)d
`aVjg�]�Z\k$c�X�X�k$_j[��e]�� º
[^�$�\c�b "h]�Zjkef�])]��\��Z�`�_jm^k$X)kqp°X�Z\b
b�V�X�c�k$_D¤°�$`$m^�\b�]�k$l\Xv`$[�Vjb�g2lD¤2X�Z\bªf'be[��qZ�X�begÆ`aVjg�Vjkac�n¬`$m^[��eb�g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

α

E
n

tr
o

p
y

trec6
trec7
trec8
re1
wap

`DÌ4�hb�[^�qZ�X�b�g � ��Z\b�n�b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

α

E
n

tr
o

p
y

trec6
trec7
trec8
re1
wap

l�Ì
�k$c�n¬`$m�[^��beg � �vZ\ben�b
º
[��q��c�b �����ªVDX�c�ka_�¤¬�q`am^�\be]'k$l\Xv`$[�V\beg»lD¤!X�Z\b0f'be[��qZ�X�beg)`$V\g
V\k$c�n¬`am^[^��b�g�]���Z\b�n�b�]�f�[¢X�Z �#(­p�k$c0`am^m X�Z\b2gj`aXv`$]�b�X�]��

366

�¸`aljm^b & ���¾kqn�_�`ac�[�]�kqVIkqp�X�Zjb��em��j]±X�b�c�[^V\�!]�kqm��\X�[�kqV\]�k$l\Xv`$[^V\b�g�lD¤�X�Z\b2�$`ac�[^kq�\]0�em��\]±X�b�c�[�Vj�!n�b�X�Z\k�g\]0f�[¢X�ZIm�kqV\�\d�n�b�g\[^�\n)d
`aVjg)]�Zjkac�X+X�k$_j[^��]��

� & � C*
� ����� G &�0�$ � ����� $�� � &��#� ����� "#$�� � &��#� ����� " �)��� . F��%�[��� � �%��� . � &[� � ����� ��� ��� ���
��� � � � �)� ��� � � ��� ��� ��� �A��� ��� � ��� � � \ � � �

9 �
�

(� �
 � \ -"! (; $ -"! ('$ - -"! ('$ / $&%('*),+
' ��� � $ ' � \ -#! (,�; -"! (�9 ; -"! (-%* -"! (6(- $&%('*) '
� ����& � � \ -"! , (, $&%0/&',' -"! ('$ / -#! (-$ *
(� �
 � \ -"! (;%, -"! (*%; -"! (,%; $&% '#-,- -#! $;�-
' ��� � $ ' � \ -#! (%: / -"! (�9%9 -"! (* 9 -"! (C< * -"! $)9%9 $&%('*),1
� ����& � � \ -"! , (, -"! (�:�9 -"! , $)< -"! (6(2($&%0/"$34
(� �
 �

9 -"! (;%, -"! $)9 * $&%('�.&- -"! $+: ; -#! $ * (
' ��� � $ ' �

9 -#! (-�; -"! (�9%9 -"! (->/ $&%('#4,- -"! $ * $ -#! $; $
� ����& � �

9 -"! , (, -"! (-%; -"! $;%* $&% '#-#. -#! $+9 -

� & � :
� ����� G &�0�$ � ����� $�� � &��#� ����� "#$�� � &��#� ����� " �)��� . F��%�[��� � �%��� . � &[� � ����� ��� ��� ���
��� � � � �)� ��� � � ��� ��� ��� �A��� ��� � ��� � � \ � � �

9 �
�

(� �
 � \ -"! ,�->/ -"! (, 9 -"! (C<>9 $&%0/,/"1
' ��� � $ ' � \ -#! (* $ -"! ,�, < -"! (C<%< -"! (, 9 $&%0/,/,-
� ����& � � \ -"! , :-$ -"! (C<'($&%2/#. ' -#! (�<>:
(� �
 � \ -"! ,�- : -"! ,�, < -"! (* < $&%2/&'#- -#! (-$)9
' ��� � $ ' � \ -#! , (6(-"! ,�, (-"! , $; -"! (�:�9 $&%2/&'*) -#! (2('$
� ����& � � \ -"! , : - -"! ,�, $ -"! (�9 / $&%2/#.&- -#! (�< ;
(� �
 �

9 -"! ,�- : -"! (,>/ -"! ('$ / $&%2/"$3- -#! (-6
' ��� � $ ' �

9 -#! (2(�: -"! ,�, (-"! (C< * $&%0/"$3/ -"! ('$ - -#! (- <
� ����& � �

9 -"! , :-$ -"! (,%, $&%0/"$,1 -"! (6(�< -#! (2(;

� & � C;
� ����� G &�0�$ � �	��� $�� � &��#� ����� "#$�� � &��#� ����� " �)��� . F��%�[��� � �%��� . � &[� � ����� ��� ��� ���
��� � � � ��� ��� � � ��� ��� ��� �A��� ��� � ��� � � \ � � �

9 �
�

(� �
 � \ -"! (%:%: -"! ('$ / -"! $)9 * $&%('*134
' ��� � $ ' � \ -#! (- $ -"! (�9G(-"! (-%- -"! (- $ $&%('*),+
� ����& � � \ -"! ,%-%, $&% '*)". -"! ('$C: -#! $; 9
(� �
 � \ -"! (%: / -"! (�: ; -"! (/ (-"! $;%* $&%('#-,4
' ��� � $ ' � \ -#! (%: - -"! (�9�$ -"! (*>/ -"! (*%- $&%('*),$ -#! $+9-$
� ����& � � \ -"! (�9 / -"! (; (-"! (/%/ $&%('*134 $&%('*134
(� �
 �

9 -"! (%: / -"! $)9�< -"! $;%; -"! $+: - $&%('*5,$
' ��� � $ ' �

9 -#! (-�; -"! (�9�$ -"! $)9 * -"! $; ($&%('*5,) -#! $C:6(
� ����& � �

9 -"! ,%-%- -"! (- (-"! $+: * $&%('#-&' -#! $C:C<

]��vZ\ben�be]�`$�q`$[^V\]±X+X�Z\b1�Á�$`$m��jb�]�p�k$c�X�Z\b�rË~��vy��2gj`aXv`a]�b�X+[^V�`DÌ
`aVjg�l�Ìvd4c�b�]±_ b���X�[���b�m�¤q� ��Z\b»c�be]��\m�X�]�`ac�b)]�[�n�[^m^`ac!p¿k$c�rË~��vy �
`aVjg£rË~��vy���`$]¬f'b�m^mË� À�]!]�Z\kFf�V�[^V¼º
[��q��c�b "Dd�X�Z\b®c�b�]��jm¢X�]
k$p0m^kqV\�\d4n�b�g\[^�\n)d'`$V\gÂ]�Z\k$c�X�X�k$_j[^��]¬`ac�b��qb�c�¤�]�[^n�[�m¥`ac�X�k
k$VjbÆ`$V\k$X�Z\b�ce�­UWVHº
[^�$�\c�b�] �Æ`$V\g "�dxX�Z\b,�e��c���b�]�_\c�k�g\�\�eb�g
lD¤IX�Z\b�Vjkac�n¬`$m^[��eb�gÁ]���Z\b�n�b¬`ac�b�]�n�k�k$X�Z\b�c2X�Zj`$VHX�Zjk$]�b�lD¤
X�Z\b!f'b�[^�$ZDX�b�g¡]��vZ\ben�b$��Å�kFf'b��qb�ced1X�Z\b»g�¤�Vj`$n�[��»cv`$V\�qb»kqp
X�Z\bHf'b�[^�qZ�X�b�gY]��vZ\ben�bh[�])V�`¦c�c�kFf'b�c®`ac�k$�jV\g�X�Z\b � �q`$m��\b
X�Zj`aX�`$�vZ\[^b���beg�X�Z\b!l b�]±XÆbeV�X�c�k$_D¤h�$`$m^�\b!X�Zj`$V�X�Z�`¦X�kqp�X�Z\b
V\k$c�n�`$m^[��eb�g�]��vZ\ben�bqd�f�Z\[^�vZ�]��\�q�qb�]±X�]!X�Zj`aX¬X�Zjb�f'b�[^�$ZDX�b�g
]��vZ\ben�b®�F`$V¼`$��Z\[�b���b�c�b�m¥`¦X�[���b®�qkDk�gÂ_ b�c�p�kac�n¬`$V\�eb�f�[¢X�Z¼`
l\c�k�`agjb�c��vZjk$[^��b2kqp �Á�$`$m^�\b�]�p�kac!�#(a�

º
[��q��c�b ��]�Z\kFf�]hX�Z\b¼]�`an�bA_jm^k$Xh�qbeV\b�cv`aX�b�g lD¤�X�Z\b
f'b�[^�$ZDX�b�g�`$V\g�V\k$c�n¬`$m�[^��beg�]��vZ\ben�be]!f�[�X�Z
� $!p�k$c�`$m^m�X�Z\b
gj`aXv`a]�b�X�]��
�V\m^[¢Ä�b5�/$Æ`aVjg��V(ad¸X�Z\b�X�c�beV\g�`$V\gÁX�Z\b�l b�]±X"�
�$`$m��jb'gj[¢¯�b�c1p¿c�kqn�g�`¦Xv`$]�b�X
X�k­gj`aXv`$]�b�Xªp¿k$c � $�d�b�]±_�be��[¥`am^m�¤,p�k$c
X�Z\b,f'b�[^�qZ�X�b�g�]���Z\b�n�b$d3f�Z\[^�vZ�]��\�q�qb�]±X�]­X�Zj`aX­X�Zjb,_\c�k$ljm�ben
k$p°g\[¢¯ b�c�b�VDX!]��F`am^b�]»Zj`$]!�$c�be`aX�b�c![^n�_�`$��X�]!kqV � $¬X�Zj`$V �/$
`aVjg �V(a�ÆÀ�V\k$X�Z\b�c2g\[¢¯ b�c�b�Vj��bÆl�b�XWf'b�beV �V(�`$V\g � $°[�]°X�Zj`aX
p¿k$cª]�Z\k$c�XªX�ka_�[��e]�dqX�Z\b+V\k$c�n�`$m^[��eb�g¬]��vZ\ben�b�X�beV\g\]1X�k2`a��Z\[^b���b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

E
n

tr
o

p
y

α

trec8−long
trec8−median
trec8−short

`DÌ4�hb�[^�qZ�X�b�g � ��Z\b�n�b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

α

E
n

tr
o

p
y

trec8−long
trec8−median
trec8−short

l�Ì
�k$c�n¬`$m�[^��beg � �vZ\ben�b
º
[��q��c�b "����ªVDX�c�ka_�¤¬�q`am^�\be]'k$l\Xv`$[�V\beg»lD¤!X�Z\b0f'be[��qZ�X�beg)`$V\g
V\k$c�n¬`am^[^��b�g,]��vZ\ben�be]�f�[�X�Z �V(1p�k$c�X�c�b�� �¾f�[�X�Z�m�kqV\�\dan�beg\[��jn
`$V\g�]�Z\k$c�X+X�k$_j[^��]��

X�Z\b)l b�]±X¬_�b�c�p¿k$c�n¬`$V\��b�f�[¢X�Z¼`Ám¥`ac��$b�c-�Y�q`$m��\bI`$]¬]�Z\kFf�V
[�V º
[^�q��c�b ��� � [�Vj��bÂX�Z\b�c�bÂ[^]hV\k ��kqV\]�[^]±X�b�V�X�X�c�b�V\g p¿k$c
X�Z\b¬f'be[��qZ�X�beg�]��vZ\ben�b!f�[¢X�Z � $�d
f'b¬]�bem�be��X�b�ghX�Zjb ���$`$m��jb

367

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

E
n

tr
o

p
y

α

trec6
trec7
trec8
re1
wap

`DÌ4�hb�[^�qZ�X�b�g � �vZ\ben�b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

α

E
n

tr
o

p
y

trec6
trec7
trec8
re1
wap

l Ì
�k$c�n¬`$m�[^��beg � �vZjb�n�b
º�[^�q��c�b ��� �4V�X�c�k$_D¤¬�q`$m��\be]�kaljXv`a[^V\beg!lD¤!X�Z\b�f'b�[^�$ZDX�b�g)`$V\g
V\k$c�n�`$m^[��eb�g�]��vZjb�n�b�]+f�[�X�Z � $+p�k$c0`$m�m X�Zjb°gj`aXv`$]�b�X�]��
�¸`aljm^b !�� � b�m^b���X�b�g � �q`$m��\be])p�kac�X�Z\bH�q`ac�[�kq�\]���kqn�lj[^V\b�g
]��vZ\ben�be]�`$V\g���c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV\]��� \ �

9
� \ � \ � � ���%& � �

E � �
�� ��� "# �� � ' � -#! < -"! < -#! / -#! /
� �%&�' � (�
 ��� "# �� � ' � -#! < -"! * -#! / -#! :

X�Zj`aX,`a��Z\[^b���b�ghX�Z\b�l�b�]±XÆ`e��b�cv`$�qb¬b�V�X�c�k$_D¤��q`am^�\bq�»ºjk$c�X�Z\b
V\k$c�n�`$m^[��eb�g)]���Z\b�n�b°f�[¢X�Z � $ed�f'b°g\b�X�b�c�n�[�Vjb�g�X�Z\b1�Á�q`$m��\b
[�V£`A]�[^n�[�m¥`acIpË`$]�Z\[�kqV � ��ZjbhkqV\m�¤�gj[¢¯�b�c�b�V\�ebh[^]�X�Z�`¦X®f'b
]�b�m^b���X�beg,k$Vjb
�!�q`$m��\b¾p�k$c�]�Zjkac�X�X�k$_j[^��]
`$V\gÆ`$V\k$X�Z\b�c �!�q`$m��\b
p¿k$c+X�Z\b°c�b�]±X�kqp�X�Zjb°�e`$]�be]��

UWV�]��\n�n�`ac�¤�d�X�Z\b�]�b�m^b���X�beg����$`$m��jb�]
X�Zj`aX
f'b�c�b��\]�b�g�X�k
_\c�k�g\�\��b­X�Z\b°��m^�\]±X�b�c�[^V\��]�kqm���X�[^kqV\]+[^V � be��X�[^kqV\] &�� �Æ`$V\g &�� �
`¦c�b2]�Z\kFf�V�[^V ��`¦l�m�b !��

ºj�\c�X�Z\b�c�n�k$c�b$d f'bÆ��kqn�_�`ac�b�gIX�Zjb�_�b�c�p¿k$c�n¬`$V\��bÆkqp1X�Z\b
XWf'kÆ�ek$n�lj[^V\beg)]��vZ\ben�b�]'f�[�X�Z»X�Z\b�ij¨�beg ���$`$m^�\b�]�f�[¢X�Z»X�Z\b
l�b�]±X!_ b�c�p�kac�n¬`$V\�ebI`$n�kqV\��`$m^m�X�Z\b®X�b�]±X�beg �Ã�q`am^�\be]�d�`$V\g
�e`$m��e�\m¥`¦X�begIX�Z\b,c�b�m¥`aX�[¢��b,gjb��$cv`$gj`aX�[�kqVHkqVÁ`am^m¸X�Z\bÆg�`¦Xv`$]�b�X�]��
�hb,]�Z\kFf�X�Zjb�l�kF¨�_�m�k$X�]­k$pªX�Z\b,c�b�m¥`aX�[¢��b,gjb��$cv`$gj`aX�[�kqV\]­p�k$c
`am^m X�Z\b°�ek$n�lj[^V\beg���c�[�X�b�c�[^kqV)p��\V\��X�[^kqV\]�[�V)º
[^�q��c�b &��

ÀAVD�\n�l�b�c1kqp\k$lj]�b�c��$`aX�[�kqV\]
�e`$V�l�b¾n¬`$g\b¾lD¤,`$Vj`$m¢¤��e[�V\�
X�Z\b�c�b�]��jm¢X�]®[�V º
[��q��c�b &��&º
[�c�]±Xed°p¿k$cH`am^m­X�ZjbÁ�e`$]�b�]�d°X�Z\b
n�beg\[¥`aV�c�b�m¥`aX�[¢��b+g\be�acv`$gj`aX�[^kqV�[^]ªm^kFf'b�cªX�Z�`aV " � b�¨���b�_\Xªp�k$c
�Y$¦Ê���$�Ì�d¾f�Z\[���ZÂ]��j�$�qbe]±X�]�X�Zj`aX�X�Zjb�i\¨�b�g � �F`aV¡_ b�c�p�kac�n
f'b�m^m+p�k$c¬n�kq]±X!k$p0X�Zjb)g�`¦Xv`$]�b�X�]�� ��Zjb)_�k�k$c�_�b�c�p¿k$c�n¬`$V\��b
k$p�X�Z\b»i\¨�b�g ��p�k$c(�
$FÊ�� $�Ì�[�]���kqV\]�[^]±X�b�V�X�f�[�X�Z�X�Z�`¦X�pË`a��X
X�Zj`aX�X�Z\b�f'b�[^�$ZDX�b�gÂ]��vZjb�n�b�g\k�b�]�V\k$X�_�b�c�p¿k$c�n f'b�m^m'f�[�X�Z��$�`$]�]�Z\kFf�V�[^V�º
[^�$�\c�b ��� � b��ek$Vjg d1X�Z\b!�$`ac�[¥`aVj��b»kqp�X�Z\b
c�b�m¥`¦X�[���b�g\be�acv`$gj`aX�[^kqV®k$p
X�Zjb�V\k$c�n¬`am^[^��b�gI]��vZjb�n�b,[�]�m^`ac��qb�c
X�Zj`$V�X�Z�`¦X0kqp¸X�Z\b°f'be[��qZ�X�beg�]��vZjb�n�b�p�kac �/$�`$V\g �V(adjf�Z\[^�vZ
[�]ª�ekqV\]�[�]±X�beV�X4f�[¢X�Z�X�Z\b+pË`a��X1X�Z�`¦X4X�Z\b�f'b�[^�qZ�X�b�g¬]���Z\b�n�b�Zj`$]
`�Vj`ac�c�kef'b�c�g�¤�Vj`$n�[^�2cv`$V\�qb2X�Zj`$V�X�Z\b2V\k$c�n¬`am^[^��b�g®]���Z\b�n�b
p¿k$c!�V(°`$]�]�Z\kFf�V�[^V)º
[^�q��c�b �$�
� 	 µ ´ T � ·¸¶�¹ ´��L��� ��S�R��3P
UWV¡X�Z\[^]�_�`a_�b�ced¾f'b�g\b�ijV\b�gAX�Z\b)_\c�k$ljm�ben k$pÆrtsvuxwzy�{}|a~�w��a���
y�������rt��~�w����ad�f�Z\[���Z�k$c���`aVj[��eb�])`�g\k����\n�beV�X)��kqm^m�be��X�[^k$V�`$���

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

α

E
n
tr

o
p
y

trec6−short
trec7−short
trec8−short

º
[��q��c�b_�	� �4V�X�c�k$_D¤¡�$`$m��jb�]�k$l\Xv`$[�V\beg¡l�¤�X�Z\b�V\k$c�n�`$m^[��eb�g
]��vZ\ben�b°f�[�X�Z � $�`$V\g�]�Z\k$c�X�X�ka_�[��e]��

0

2

4

6

8

10

12

R
e
la

tiv
e
 D

e
g
ra

d
a
tio

n
 %

M1(E1) M2(E1) M1(I1) M2(I1) M1(I2) M2(I2)

º
[��q��c�b & � �0b�m¥`¦X�[���b�_�b�c�p¿k$c�n¬`$V\��b°kqp�X�Z\b°]�b�m^b���X�b�g/�Áp�k$c�`$m�m
X�Z\b°�ekqn2l�[�V\beg���c�[¢X�b�c�[�kqV)p��\V\��X�[�kqV\]��

��k$c�g\[^V\��X�k¬`��q[¢��beV)]�b�X�kqp¸X�ka_�[��e]�dj]��\�vZ)X�Zj`aX+X�Z\b°c�b�]��\m�Xv`$V�X
��m^�\]±X�b�c�]®�ek$c�c�b�]±_�kqV\gYX�kAX�Z\bh�q[��qbeV�X�k$_j[^��]I`$V\g X�Z\bhg\k����
�\n�b�V�X�]�[�V¼X�Zjb®]�`$n�bI��m^�\]±X�b�c�`ac�bI]�[�n�[^m^`ac�X�khX�Z\b®�em��j]±X�b�c
X�k$_j[��q�
�hb­_\c�k$_�kq]�b�g�X�Z�c�b�b­b�«¬��[^b�V�X+X�ka_�[����zg�c�[¢��beV�]���Z\b�n�b�]
X�Zj`aX
��kqV\]�[^g\b�c
X�Z\b']�[�n�[^m^`ac�[�XW¤2l b�XWf'b�beV,X�Z\b'g\k����\n�b�VDX�X�k�[�X�]
X�k$_j[��'`$V\g2X�Z\bªc�b�m¥`aX�[�kqV\]�Zj[¢_,l�b�XWf'b�b�V2X�Z\b4g\k����jn�beV�X�]¸X�Z\b�n��
]�b�m���b�]']�[^n,�\m¢Xv`$V\bekq�\]�m¢¤��'©���c�b�¨�_�b�c�[^n�b�V�Xv`$m�c�be]��\m�X�]']�Z\kFf'b�g
X�Zj`aX�X�Z\b­_\c�k$_�kq]�beg�X�k$_j[����zg�c�[��qbeV)]��vZjb�n�b�]+kq��X�_�b�c�p¿k$c�n X�Zjb
�\V\]���_ b�c���[�]�beg�`$V\g�]���_�b�c���[�]�beg�]��vZ\ben�be]�d+f�Zj[���Z�]��\�q�qb�]±X�]
X�Zj`aX1X�Z\b'_\c�k$_�kq]�b�g�X�k$_j[^���zg�c�[���b�V�]��vZ\ben�b�]1Xv`¦Ä�b�`ag\�$`$V�Xv`$�qb�]
kqp+l�k$X�Z�X�Z\b��\V\]���_ b�c���[�]�begÂ`$V\g¡]���_�b�c���[�]�beg¡��kqn�_�kqV\beV�X�]��
�hb�`$m�]�k,]�Z\kFf'b�g!X�Zj`aX4X�Z\b+_jc�ka_ k$]�beg¬X�k$_j[^���zg�c�[���b�V!]���Z\b�n�b�]
_�b�c�p�k$c�n6f'b�m^m�f�[�X�Z»X�k$_j[^�­_jc�kaX�k$XW¤�_�be]�kqp¸gj[¢¯�b�c�b�V�X�m�b���b�m^]+k$p
]±_�b��e[¢i���[�XW¤q�
� N!T�� ´ µ�� � � ¶ � � ��´ QFP
�hb2f�[�m^m�m^[¢Ä�b2X�k�X�Zj`$V�Ä	��`$��ÄhU,�)�¾k$V\cv`ag3d � beV\[�k$c ��be]�be`ac��vZ
� ��[^b�VDX�[�]±X4[�V ��b�]�bF`ac��vZ�
 #­b���bem�k$_jn�b�VDX4`aX ��Z\kqn�]�kqV�	�be��`am

 ��be�$�jm^`aX�k$c�¤qd�p¿k$c2[^V�X�c�k�g\�\��[^V\�)�j]�X�k�X�Z\bÆXW¤�_j[��F`$m�Ä�V\kFf�m¢�
b�g\�qbªn¬`aV�`a�qben�beV�X¸b�V���[�c�kqV\n�b�V�X¸kqp�m^`efÁi\c�n�]¸`$V\g°�$`$m^�j`aljm^b
g\[^]����\]�]�[^kqV\]0k$V)X�Z\b°��m^�\]±X�b�c�[^V\��c�be½D�\[�c�b�n�b�VDX�]+[�V)m¥`efYi\c�n�]��

368

�i� ` � R �\´ T � P
� <�� ����� UW	�S�� U��	��

�Y����� UW��V��E��V�������S�
?U������QU��L��S�����������S����
�������! #"�TFS�$ U%$���V��&�=	����(' T�UW� ��) S�T	�*' S�T!�F�
�����+�	��",�
T-,��&����� �
V&���	�	��
TF�&�����
./��0MZC\�132 \-4 X65�798�:�X;5=<�W X3> ?(@ \ W�4�7�ZA7%WB1C7 \ WED W \%FG? H
7AI�JK7*LNMPO�1�\%Q%7%Z�^SR�WBITL9R X+RTUVM=W�M=W�J%
BW%X�X%Y��

� W3�Z�Y�&�
� UW��V[�E��V������ S�
 ����� U�	�S\� U%�A��
 U%���]�QU���� S����^���
�YS
S����_���`./�
	��
��T�U�	��&�����
S����=	�T�U����
	A��U%��� ����	�TF��� V��'UWT	���&����&�a���
�����+�	��",��T-,L�&�F�
� ��V&���F	��
TF�������
./��0MZ+\�1b2�\-4*c�8�X;5S<CWYX/7%Z�WdR%H
XeM \ WdR%?f@ \ W�4�7�ZC7�WB1_7 \�W�UgR�1_5KM=Wh7Ti!7AR Z�W�M WKJ#j6<3@!Uki�H/c�:�:�lbm3

W%X�X%Y��

� n �T 9�Z�EV&��� U%���`op�Z�Y��	��5���
V�V6�rq S��s$��&���&��� V U%$]�
V��
� U%���
����V U%$,��V��
� � U�	5Ut)P��	��@�
S%�$	�T�U������&�����u./�v@ \ W�4�7�ZC7�WB1_7 \ W
@ \%w]dx�X/R�XeM \ WBRb?yiy7AR Z�W�M=WKJgzy5�7C\�Z�^{8�83
 <3|�|�}��

� Y%�T~s���ES V�����
������ �&���6
������ TFS��A��
���� �9�
� U���
��Z�
� U%�F	��&������

�s���7UWT-��"�����
��s���p���%UWT�
*�f�G��S�$ U%�F���
T�
 U%�������G��S�S�TF���
~ S����������
	k�'U�	��
��S�TF��X'U�	���S���U����������
T-�O�������
T�U�	���S��GS��O	����
) S TFV���) �����=)���$����F�&���Y����$� �qG���g�f<s��7_Q3Me7�Fhmb
E< <�� n������
n |�<�
+<�|�|�|��

� � �T~s���ES V�����
������ �&���6
������ TFS��A��
���� �9�
� U���
��Z�
� U%�F	��&������

�s���7UWT-��"�����
��s���p���%UWT�
*�f�G��S�$ U%�F���
T�
 U%�������G��S�S�TF���
� UWT=	���	���S����&���%�e$ U��F�
�!��V&���F	��
TF������' S�TE) ��$ ��S
����� ���
	Y�'U�	������S TF��X'U�	���S����[L97A1�MPOCM \ W���x�]�] \ Z�XT�Y^bO�X/7�wsOC
*W��L� n �_� n W%| ��n Y <�
<�|�|�|��

� � �T~s�=qES ����
k���S�Q� U���T�UW� U%���e
 U%���`���Z��S�TF� U����u Q��	���, �V��'UWT	���&����) ��	����=	5UW	����F	����'UWV���S����
V����t� \%x�Z�WBRb? \�4a� Z�X6M ��1�M6R%?
<�W X�7_?;? M�J�7�WB1_7*��7�O�7	R Z	1�5K
�Y���<3W%| � <�Y �
c<�|�| � �

� �3�T~s� ����q��L	F	��&����
���� �s���K�
���
T	�F����
�~s� �N���7UWTF���
T�
PU%������� ���
o���������� ���'U�	F	��
TC��� U�	����
T�� �
V&���=	��
T-�+$ U%����� U%"�"�TFS UW���!	�S
$�TFS3)��F�&��� V UWTF���G��S����������
	 �
S�V�V��
��	���S������¡./�¢0MZ+\�1_7C7AI%M=WKJ�O
\-4AX;5�7f�9@!U£��<3¤�<-�f
�" UW� ���G" U������ n <�} ��n W%|�
�qES�",����� UW������
<�|�|�W��

� }b�T./�����
T;¥=��	-�B�3~ ����V�V�S��hU%���9~ � UWTF� ������T�U �B�%��S���� U��
qES�������"L	���
�
S��Z",S���� 	���S�����' S T�V�U�TF���f�A" UWT	���Q	���¦
	P� U�	5Us���F�&��� ��V&���F	��
T-��&������UgR�1_5KM=Wh7piy7AR Z�W�M=WKJ�
�Y�WL�=<3��W��_��<�Y n3� <3� �
�W%X�XL<��
� |b�=q ��TF�&��~ �&����
9§Q� UWS�' ����� �Q��
9�QS����%��� U%�¨�,� U�
s���&�����*��
U%���¢�QS�T	�=	"������S���� ��"]�
��	�T�UWV%���&��� � Ub¦ ���L	�' S T���T�U%"��
" UWT=	���	���S����&��� U���� � U�	5U �
V����F	��
TF�&�����©oK�
�5�������'UWVE� ��"]S�T=	
ª��ERfªy�eY��%| n ��
!ª0U�) TF�������S�E�
T	���
V����eR U�	���S�� UWV
ªKU%$,S�T�U�	�S�T-��

«f����, �
T	��� 	�� S�'
q UWV��&' S�T	��� U�
�� ��T	� ��V�����
dq� 9
dW%X�XL<��

� <3Xb�T��� �s�a~*��� U�
���� ���a� UWT=	�
�U%���¬~s�­�s� �
	�S�T	�B� 0GR X X�7%Z�W
@®?&RbOCOCM ��1CR�XeM \ W�����S���� �/��V����{¯ ��S�����
dW%X�XL<��

� < <��T~ U�,����g� S���������U%���VoP��S��%U%�f�QS�' �%U%�����QRQS���� TF�
������� U%�
	� U�	5UY�
V&���=	��
TF�&������./��0!Z+\�1b2 \-4 X65�7f4>\bx Z�X;5g<)V�V V[<CWYX/7%Z�WdR%H
XeM \ WdR%?�@ \ W�4�7�ZC7�WB1_7 \�WkL9R�X/RTUVM=W�M=W�J%
BW%X�X%Y��

� <bW3�Z��� �9��� U���
(~T�
�ES V�����
������ �&���6
��N���QTFS��	��

�Z�®� U%�F	��&������

�s���7UWT-��"�����
��s���p���%UWT�
*�f�G��S�$ U%�F���
T�
 U%�������G��S�S�TF�������$� fq����N °) ��$ UW� ���
	�' S�TO��S������ ��� 	G�'U�	��
��S�TF��X'U�	���S��U%���2��¦�"�V�S UWT=	���S����±./�²0!Z+\�1b2 \-4 X;5�7 c�WdI³<CWYX/7%Z�WdR XeM \ WdR%?
@ \ W�4�7�ZC7�WB1_7 \�Wk��x�X�\ W8\%w \%x�Op�(J�7�WYXeOA
�� U��Y<�|�|�}��

� < n �Top�E��S UW�������Z��� ��I%Q%R�WB1_7_O³M=W´DT7�Z�Wh7�?aU�7%X;5 \�I%O�µ¶��x�]dH
] \ Z�Xs·d7A1>X�\ Z*i!7AR Z�W�M=W�J�
 �5� U%"L	��
T�� U%��������V UWTF�����)���'UWV��k�K�p�
ª0�'UWT	���&���Z�-T�U���	����'UWVe�(��./o��/�-TF���	��
+<�|�|�|��

� <�Y%�T���9� �
�������@U%���¸�9�s� U��­¹+U��ºL97A1�MPOCM \ W�O�F
M=X65»UVx�? X6M]d?¼7
½�¾6¿ 7A1%XeMPQ�7_O�µs0!ZA764�7�ZC7�WB1_7_OZR WBI ·dRb?­x�7gz ZAR�IK7C\-ÀGOC�{���+�/��V����
¯ ��S�����
�RQ��)³Á-S�T	�B
+<3|�� � �

� < � �Z�y¥=S T	� UWT�ª0UWT	����� U%���Vq ���&� U�	A�A�k QS�������Â]U%�F	 U�������¹c�
��	���, �	���¦�	7� �����&���E�����&����V��&���'UWT-�a	���������S
����� ���
	k��V&���F	��
TF�������S./�

0MZC\�132 \-4 X65�7SÃ(M 4�X65g�9@!UÄ��<b¤�DpLfL´<�W X3> ?p@ \ W�4�7%ZA7%Wd1_7U\ W
D�W8\%FG?¼7	I�J�7kLNMPO�1C\%Q�7�Z�^ÅR WdI�L�R X/R�UVM=W�M WKJ�
f" UW�����e< �3� W�W�
<�|�|�|��

� < � �T~s�Æ~s�Æª0��)P�&��� � ���L	��
T	�-��W�< � ��} 	���¦
	 �
UW	��_���S�TF��X'U�	���S�� 	����=	 �
S�V�V��
��	���S�� ���&�F	�TF��$��L	���S�� <�� X��
57X X]�µ Ç�Ç�F
F
F�2 ZC7_O�7AR Z	1_5�2¼R X[X/2P1C\%w*Ç�È9?¼7_F(MPOC
 <�|�|�|��

� <3�3�Z���%�YS
S�TF��
����3� U%��
%~s�%�ES V�����
������ �����e
%����� TFS��A��
%�T�b� U%�F		��&������
��s�®�7UWT-��"�����
(�s�
�p���%UWT�
EU%�����f�
�YS�$ U%�����
T��G����$
" UW���%�'U�	��
��S�TF��X'U�	���S��GU%����' �'U�	A��TF�S����V��
��	���S������������ U��	��S
�
���U�	���S��GT	��V�� U%����"�TF�&���
�&" UWVE�
S��Z",S������ 	 �
V����F	��
TF�&������./�»É#X65
Ê3\ ZCË3OA5 \�] \ W»<CW�4%\ Z_wZR X6M[\�WÌzB7A1_57W \b? \AJ%M+7_O�R WdI��Y^bO�X�7_wsOC

~ �
���+<�|�|����

� <�}b�Z���yÂ��!�?S�T=	��
T��= f� UWV���S�TF��	����Í' S�T��	��ÎZ¦��F	�TF�&"�"��������E0MZ+\%H
J Z	R%ws
+<�Y � n �_��< n X � < n ��
,<3|�}�X��

� <�|b�Z� U��k�(��X
����� U�
�oP��S��%U%�G�QS�' �%U%����
 U%������S UW�������²������������ U������Z 	����
S�T-�OS�'�"�TFS3¦���� � 	���$ U��F�
����V&���F	��
TF�������k�
	�T	�����	A��TF� ����	�����	���S��Ï$�� S�"L	�������X'U�	���S����Ð0h�Nz�� V*@�µa0�R X X�7�Z�W
��7A1�\AJ W�M=XeM \ W�Ñ®0�7%ZeJKRbw \ Wk0!ZA7�OAOC
 n�n � � <3� ����n Y�
�W%X�X�X��

� W%Xb�S�s�0�LU�V 	�S����{��x�X�\%wZR�XeM61gzB7CÒ�X�0MZ+\�1_7�OAOCM=W�J�µVzy5�7�z Z	R W�OP4%\ Z_H
wZR X6M[\�W�Ñh� WdR%? ^bOCMPOAÑ!R WdIf��7%X[Z_Me7_Q%R%? \-4(<CW�4%\ Z_wZR�XeM \ W ¾ ^s@ \bwsH
]dx�X�7�Z_�
 Q�����&��S����$������V��_��
 <�|�}�|��

� W�<��T�T��������V�S��
���
Ve
k�s�9�7UWT-��"��&��
 U%���¢�s�s�p���%UWT��Ó Ô����)UWV���S�TF��	����Ä' S T �s��V�	���� S�$�¥=�
��	���, � ��T�U%"��¨" UWT=	���	���S����&�����v./�
0MZC\�1C7C7AI%M=W�J%O \-4 V�x�Z+\�]�R ZT8�Õ�Õ�Õ%
,����"L	��
�s$]�
T <�|�|�|��

� W�W3�Z���,�
	��
�&�K$ U��5��
y�9���7UWT-��"�����
,U%���k�s�d�p���%UWT��� ��S �Z" UWTF���
��S�� S�'?��S
���������
	Q��V&���F	��
TF������	��
�5�����&�K��������./��DpL*L£Ê3\�ZCËbH
OA5 \�]5\ W�zB7CÒ�X
UVM=W�M=W�J%
BW%X�X�X��

� W n � �B�BoKS����%U�����~s�B� S�V�V��
T��Q����"�"]S�T=	*, �
��	�S�TQ� UW�����&���7UW��	���, �V��'UWT	���&����)P��	��hU%"�"�V����
UW	���S����0	�S 	���¦
	 �
V�U��	����Ö �
UW	���S������ \bx Z�WdR%?
\-4fUgR�1_5KM=Wh7*i!7AR Z�W�M WKJZ��7�O�7	R Z	1�5K
dW�� Y �������
�W%X�XL<��

� WbY%�To�����q*��o0��¦�	®�f� 	�TF����,WUWV���S���' �
TF�����
����57X X]�µ Ç�Ç X[ZA7A1b2 W�M;OCX�2 J7\%Q�
<�|�|�|��
� W � �T�T���GU����=	5U%¹®
pq*��q�UWTF�����%
7�B��� S����
T	��
 U%��� �B� ���5��TFS��
��Ve�

q S����=	�T�U������
�Ð�K� ���'U%��� �
V&���F	���TF�&���©) ��	��Ð$ UW�C����TFS������
����S�) V��
�������×./�Ì0!Z+\�1b2 \-4t8%Ø X;5¢<CWYX/7%Z�WdR XeM \ WdR%?�@ \ W�4�7%Z_H
7%Wd1_75\ W³UgR�1�5KM=Wh7Viy7AR Z�W�M=WKJtj6<b@!UEi®H/c�:�:�8Cmb
p" UW� ��� � ��� �
� }%Y�
�W�X�XL<��

� W � �Z�����®��§Q������
G 9��Ás�ERQ��
�����.C��� S�TF� U%��
 U%���/�B�������A�F�
V�Ve�
~ �&�F	5U%���
�7����	�TF���7V��'UWT	���&���=)P��	�� U%"�"�V����'U�	���S�� 	�S%�
V&���=	��
TF�&���
) � 	��{�F������� ����' S�TF� U�	���S�������I%QbR WB1C7�O*M=WEÙ�7�x�Z	R%?B<CW�4%\ Z_wZR X6M \ W
0MZC\�1C7�OCOCM=WKJ=�Y^bO�X�7�Z_wsO98%Ú%
�" UW� ��� � X ����� <3W�
�W%X�X n �

� W��3�sÁ UW��S�S�ÛpÁ UW��S�S�Û7� 	F	A"�� ���3)�)�)N� �
UW��S�S�� �
S��E�
� W%}b�Z���®Á(����UVx�? XeM]d?&7�H_@ Z_M=X�7�Z_MeR�Ls7A1�M;OAM[\�WÅUgRbË3M=W�J�µ#@ \ Wd1_7�]YXeOAÑ

zB7A1_57W�M6Ü�xd7_OAÑ�R WBI V�Ò�X�7%W�OCM \ W�OA���-V��������´�-TF���A��
]RQ��)tÁ-S T	�d
<�| �K� �
� W%|b�sÁs�¢�,� UWS U%���r�9�¨� UWT-��"��&��� qETF��	��
TF��S��Ý';������	���S����

' S�T2��S����������
	@�
V&���=	��
TF�&�����Þ�
¦�",�
TF��� ��� 	A� U%��� U%� UWV��K�
�������×o0�
���������'UWV�� ��",S�T=	�oG�]ßTXL< � YKX�
�~ ��" UWT=	������
	 S�'
q S��Z"��L	��
T ���
�������
��
¨«f����, �
T	��� 	�� S�'»���&�������FS�	5U�
¨�Y�����
���'U%"]S V��&��
#�YR9
�W�X�XL<�� �,WUW��V U%$�V�� S�� 	���� � � � U�	
57X X]�µ Ç�ÇB1�O�2�x�w Wh2P7AI%xbÇGà+Ë%R Z�^�]dMPO/Ç]dx ¾ ? M61CR X6M[\�W�OC�

� n Xb�sÁs���,� UWS U%���t�s���7UWT-��"��&���á�
,WUWV&� U�	���S��/S�'7�����
T�UWTF�5�����'UWV�
V&���=	��
TF�&��� UWV���S�TF��	����Z��' S�Tk��S���������� 	h� U�	5U��F��	A���E./��0MZ+\�1b2
\-4�<�W X3> ?¼2�@ \ W�4�2 \ WE<CW�4%\ Z_wZR X6M \ WgR WBITD W \%FG?&7AI�JK7*UgR�WBR�JK7�H
w=7%W Xe
�" UW� ��� � < ����� WbY�
�W%X�X�W��

� n <��sÁs�f�,� U�S�U����»�9��� UWT-��"��&���²�-�Z"���TF���'UWV U%���!	�����S TF��	����'UWV�
S��Z" U�TF����S���� S�'����
V��
��	��
�7�
TF��	���TF��S���'P������	���S�����' S�T0��S
����� ���
	�
V&���=	��
TF�&������UgR�1_5KM=Wh7*i!7AR Z�W�M WKJ�
 ��� � n �_� n <�< ��n�n <�
�W%X�X%Y��

369

Variational Learning for Noisy-OR Component Analysis

Tomas Singliar and Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

{tomas, milos}@cs.pitt.edu

Abstract

Latent factor models offer a very useful framework
for modeling dependencies in high-dimensional mul-
tivariate data. In this work we investigate a class of
latent factor models with hidden noisy-or units that
let us decouple high dimensional vectors of observable
binary random variables using a ’small’ number of
hidden binary factors. Since the problem of learning
of such models from data is intractable, we develop
its variational approximation. We analyze special
properties of the optimization problem, in particular its
“built-in” regularization effect and discuss its impor-
tance for model recovery. We test the noisy-or model
on an image deconvolution problem and illustrate the
ability of the variational method to succesfully learn
the underlying image components. Finally, we apply
the latent noisy-or model to analyze citations in a
large collection of Statistical Machine Learning papers
and show the benefit of the model and algorithms by
discovering useful and semantically sound components
characterizing the dataset.

Keywords: Learning, Variational methods, Bayesian
networks.

1 Introduction

Latent variable models [14, 2] provide a very useful
framework for modeling dependencies in high dimen-
sional data. The models are often used in the compo-
nent analysis where we want to identify characteristics
of a small number of underlying components (factors,
sources, or signals) that combine into the expression
of observed high dimensional data. Examples of la-
tent factor models include probabilistic principal com-
ponent analysis [18, 3], mixtures of factor analysers [1],
multinomial PCA (or aspect) models [5, 10, 4], multi-
cause model [9, 16], or other independent component
analysis frameworks [1, 15]. In addition to their role
in modeling and understanding the structure of high-

dimensional data, latent factor models used in the com-
ponent analysis can be applied in the dimensionality
reduction where the vector of hidden factors represents
a low-dimensional representation of the data sample.

In this work we investigate a special class of latent
factor models that let us represent high-dimensional
multivariate distributions of binary attributes and their
local dependencies. The dependencies are modeled in
terms of a small number of hidden binary factors that
are combined through noisy-or units. Intuitively, noisy-
or units let us model local dependencies (couplings)
among observable components in the data indirectly – in
terms of hidden factors and their values. Such a frame-
work is especially useful if we want to model random bi-
nary variables with confounded stochastic fluctuations.
However, it can be also applied in more general set-
tings to approximate local dependencies among random
variables. We believe that models with such characteris-
tics can be very useful and applied to represent stochas-
tic dependencies among components of large distributed
systems, such as failures or congestions in transporta-
tion networks, spread of disease in epidemiology, and
others.

The key step of component analysis corresponds to
the learning of the parameters of the latent factor model
from the data. Once the model is learned it can be
used to make inferences on hidden factors, such as to
identify the document topics in the aspect model [10, 4]
or regulatory signals in the microarray DNA data [13].
In the statistical sense the learning corresponds to the
estimation of parameters of the model. The limitation
of latent factor models is the complexity of the learning
problem; the standard EM formulation (decomposition)
becomes exponential in the number of hidden factors.
Variational approximations offer one possible solution to
make the learning task more efficient, but at some loss
of accuracy. To address this problem, we develop and
test a variational learning algorithm for optimizing the
parameters of the noisy-or network with hidden factors.
Our algorithm builds upon and extends the work of

370

s s s s

x x x x x x

1 2 k

1 4 5 d2 3

3 Latent factor layer

Observable layer

Figure 1: A bipartite belief network structure of the
latent factor models with noisy-or units. x is a vector
of binary random variables that are observable and s
is a vector of hidden binary factors. Latent factors
and noisy-or units model local interactions between
components of xj .

Jaakkola and Jordan who focused on and developed
methods of variational inference for noisy-or networks
[11]. The methods for learning a noisy-or network model
with hidden components have not yet been investigated,
to our knowledge. A very restricted model was explored
by Kearns and Mansour [12] but their algorithm is
exponential in the maximum number of hidden factors
contributing to any observable variable. Our algorithm
does not make any structural assumption and it is able
to recover very well the active (nonzero) structure of a
noisy-or network.

In the following text, we first describe the noisy-
or network model with hidden units and its limitation
in efficient inferences. Next we analyze the problem
of learning the parameters of the latent factor network
from data and point out the shortcommings of the exact
Expectation-Maximization (EM) technique associated
with its computational complexity. To alleviate the
problems with the exact EM we develop and present
its variational approximation. We test the model
and the approximation algorithm on a synthetic image
deconvolution problem. We investigate two aspects
of the approach: recovery of complex multivariate
distributions and dimensionality reduction, and show
a very good performance of the algorithm on both of
these tasks. Finally, we apply the model to analyze
citations in a large collection of Machine Learning
papers. We show the benefit of the new model and the
algorithm by discovering useful and semantically sound
subcommunities characterizing the dataset.

2 Latent Factor Model with Noisy-or Units

Consider a latent variable model with bipartite be-
lief network structure illustrated in Figure 1. Nodes
in the top layer represent a vector of latent factors
s = {s1, s2, . . . , sK} with binary {0, 1} values and nodes
in the bottom layer an observable vector of binary vari-
ables x = {x1, x2, . . . , xd}. We assume that x is a

high-dimensional vector and that d > K. The connec-
tions between two layers of the bipartite graph represent
dependencies among the components of the observable
variables: the nodes coupled by one of the latent fac-
tor nodes are assumed to exhibit a local dependency
pattern. The probabilistic dependency between nodes
in the two layers is modeled via the noisy-or conditional
distribution, which gives us a compact (low-complexity)
parameterization of the relation among configurations of
hidden factors and observable variables. The parame-
ters Θ of the model consist of:

• a set of prior probabilities πi parameterizing the
(Bernoulli) prior distributions P (si) for every hid-
den factor i;

• a set of probabilities pij representing parameters of
noisy-or conditional probability tables, one for each
pair of hidden factor i and observed component j.

The structure of the model is similar to the QMR-DT
model used for diagnosis in internal medicine [17]; the
difference is that the top layer variables in our model
are hidden. Their sole purpose is to model stochastic
interaction patterns among observable variables in x.

2.1 The joint distribution over observables
Given the bipartite model, the joint probability of an
observation vector x is defined as:

P (x) =
∑

{s}




d∏

j=1

p(xj |s)



(
K∏

i=1

p(si)

)
, (2.1)

where {s} denotes the sum over all configurations of s,
and P (si) is the prior probability of a hidden factor
si. Given a vector of hidden binary factors s, the
conditional probability p(xj |s) for an observable random
component xj ∈ {0, 1} is obtained through a noisy-or
model as:

P (xj |s) =

[
1− (1− p0j)

K∏

i=1

(1− pij)si

]xj

.

[
(1− p0j)

K∏

i=1

(1− pij)si

](1−xj)

,(2.2)

where p0j is the leak probability that models “all other”
causes. The Equation 2.2 can be reparameterized with
θij = − log(1− pij) to obtain:

P (xj |s)

= exp

[
xj log

(
1− exp

{
−θ0j −

k∑

i=1

θijsi

})

+ (1− xj)

(
−θ0j −

K∑

i=1

θijsi

)]
. (2.3)

371

2.2 Factorization The bottleneck in computing the
joint probability over observables P (x) in Equation 2.1
is the sum that ranges over all possible latent factor
configurations, and thus, it is exponential in K. It is
easy to see that if P (xj |s) for both xj = 0 and xj = 1
can be expressed as:

P (xj |s) =
K∏

i=1

h(xj |si), such that ∀i, j : h(xj |si) ≥ 0

(2.4)
then the full joint and the joint over the observables
P (x) decompose as:

P (x, s) =
d∏

j=1

P (xj |s)
K∏

i=1

P (si) =

K∏

i=1


P (si)

d∏

j=1

h(xj |si)


 , (2.5)

P (x) =
∑

{s}

K∏

i=1


P (si)

d∏

j=1

h(xj |si)




=
K∏

i=1


∑

{si}




d∏

j=1

h(xj |si)


 P (si)


 .(2.6)

But this means that the summation in Equation 2.1 can
be performed efficiently. We note that Condition 2.4 is
sufficient to ensure the efficiency of other probabilistic
inferences, such as the posterior of a hidden factor si:

P (si|x) ∼ P (si)
d∏

j=1

h(xj |si). (2.7)

2.3 Factorization via variational approximation
The Equation 2.3 for P (xj |s) does not factorize for

xj = 1. Thus, in general, it is impossible to compute
P (x) efficiently. To address this problem we approx-
imate P (xj |s) for xj = 1 with a factored variational
lower bound used by Jaakkola and Jordan [11] in fully
observable settings:

P (xj = 1|s) (2.8)

≥
K∏

i=1

exp
{

qj(i)si

[
log(1− e

−θ0j− θij
qj(i))

− log(1− e−θ0j)

]
+ qj(i) log(1− e−θ0j)

}
,

where qjs represent sets of variational parameters defin-
ing a multinomial distribution. Each component qj(i)
of the distribution can be viewed as a responsibility of
a latent factor si for observing xj = 1.

Incorporating the variational bound in the first
part of Equation 2.3 we can obtain approximations
P̃ (x|s,Θ,q) ≤ P (x|s,Θ), P̃ (x, s|Θ,q) ≤ P (x, s|Θ) and
P̃ (x|Θ,q) ≤ P (x|Θ) that factorize along latent factors
si.

3 Learning of Noisy-or Networks with Hidden
Units

The problem of learning of noisy-or bipartite networks
has been addressed only in fully observable settings,
that is, when both sources and observations are known.
The learning methods take advantage of the decomposi-
tion of the model created by the introduction of special
hidden variables. EM algorithm is then used to estimate
the parameters of the modified network, which translate
directly into the parameters of the original model. A
reader interested in these transformations may consult
papers by Heckerman [6], Vomlel [19] or Diez and Galan
[8].

3.1 Standard EM learning Learning of the latent
factor version of the Noisy-or network is much harder.
Let D = {x1,x2, · · ·xN} be a set of independent
identically distributed samples of observable variables.
Our objective is to find parameters Θ that maximize the
likelihood of the data, P (D|Θ). A standard approach
to learn the parameters of the model in the presence of
hidden variables is to use the Expectation-Maximization
(EM) algorithm [7]. The EM computes the parameters
iteratively by taking the following parameter update
step:

Θ∗ = arg max
Θ

N∑
n=1

〈log P (xn, sn|Θ)〉P (sn|xn,Θ′)

where Θ′ denotes previous-step parameters.
The main problem in applying the EM to our

noisy-or model is that the joint distribution over ev-
ery “completed” sample P (xn, sn|Θ) does not de-
compose along hidden factors si and its expectation
〈log P (xn, sn|Θ)〉P (sn|xn,Θ′) requires to iterate over all
possible factor configurations. This is unfeasible since
the configuration space grows exponentially in the num-
ber of factors. To alleviate this problem we optimize the
parameters using the variational learning framework.

3.2 EM for variational learning The idea is to
approximate the likelihood terms with their imprecise,
but structurally more convenient surrogates. Additional
set of free variational parameters is introduced to offer
more flexibility and tune the approximation to specific
settings. In our model, we substitute true conditional
probabilities P (xn|sn, Θ) that do not factorize, with

372

their factored lower-bound variational approximation
P̃ (xn|sn,Θ,qn) as described in Section 2.3. Note
that every datapoint xn comes with a different set of
variational parameters qn.

In maximum likelihood learning we optimize the
loglikelihood log P (D|Θ). In our variational approach
we optimize its lower bound:

log P̃ (D|Θ,q) =
N∑

n=1

log P̃ (xn|Θ,qn)

The new quantity log P̃ (D|Θ,q) depends on both pa-
rameters of the noisy-or model Θ as well as on the vari-
ational parameters q. Although we are ultimately inter-
ested in optimizing Θ and variational parameters only
play an auxiliary role, from the viewpoint of optimiza-
tion of log P̃ (D|Θ,q) there is no difference between the
two and they must be treated the same way. Such an
optimization can be carried out within the EM frame-
work. In particular, the quantity can be maximized by
iteratively reoptimizing (Θ,q) pairs:

(Θ,q)∗ = arg max
Θ,q

N∑
n=1

〈
log P̃ (xn, sn|Θ,qn)

〉
, (3.9)

where 〈·〉 denotes the expectation, in this case taken
over P (sn|xn,Θ′,q′n) and

P̃ (xn, sn|Θ,qn) = P̃ (xn|sn,Θ,qn)P (sn|Θ) (3.10)

P (sn|xn,Θ′,q′n) = Q′(sn) =
P̃ (xn, sn|Θ,qn)
P̃ (sn|Θ′,q′n)

,

and Θ′,q′n represent values of the parameters in the
previous step. To simplify the notation in the rest of the
paper, we use Q′(sn) to denote the posterior on hidden
factors given the previous-step parameter values. Note
that even if the P̃ quantities are not probabilities, the
posterior Q′(sn) is.

3.3 Factorization of Expectations Thanks to the
factored form of P̃ (xn|sn,Θ,qn), optimization steps
in Equation 3.9 do not require us to iterate ex-
plicitly over all possible hidden factor configurations.
More specifically, by substituting the expressions for
P̃ (xn, sn|Θ,qn) and by taking the expectation in terms
of the posterior Q′(sn) we obtain:
〈
log P̃ (xn, sn|q)

〉
Q′(sn)

(3.11)

=

[
K∑

i=1

〈sn
i 〉Q′(sn) log

πi

(1− πi)
+ log(1− πi)

]
+

+

[
d∑

j=1

(
K∑

i=1

−〈sn
i 〉Q′(sn) − θij(1− xn

j)

)
− θ0j(1− xn

j)

]

+

d∑
j=1

K∑
i=1

[
〈sn

i 〉Q′(sn)q
n
j (i)xn

j log

(
1− e

−θ0j−
θij

qn
j

(i)

)

+
(
1− 〈sn

i 〉Q′(sn)

)
qn

j (i)xn
j log(1− e−θ0j)

]

We see that for our factored approximation, the
expectations are easy and the computations boil down
to taking expectations over individual factors. Since
the hidden factors take on binary values 0 and 1,
the expectations for individual factors are just their
probabilities of assuming value 1 and can be calculated
using Equation 2.7.

3.4 Parameter optimizations in EM In every
cycle of the EM algorithm we must reoptimize both
the parameters Θ and all variational parameters qn,
one set per every data point. Unfortunately, no closed
form solution for this task exists. We resort to iterative
solutions, where parameters qn and Θ are updated
(optimized) until convergence.

We apply numerical and iterative optimization tech-
niques to obtain partial solutions. However, we note
that the dependencies among parameters to be opti-
mized are relatively sparse and optimizations can be
often performed quite efficiently. In particular, the iter-
ative formula for a variational parameter qn

j (i) only in-
volves qn

j (i) itself. We are dealing with DK instances of
one-dimensional optimization for each datapoint, rather
than with optimization in a higher-dimensional space.

Complete parameter update formulas we derived
and use in our procedure are summarized in Figure
2. The updates were derived by calculating partial
derivatives of the objective function and setting them
to 0.

The precise analysis of algorithm’s time complex-
ity would be a tedious undertaking as it involves con-
siderations of the convergence rates of nested iterative
procedures. We demonstrate experimentally that the
approximation yields a tractable algorithm.

3.5 Regularization effect While testing our vari-
ational learning algorithm we noticed its ability to au-
tomatically shut off “unused” noisy-or links. This sug-
gests the presence of an inherent regularization correc-
tion. Examining the objective function (Equation 3.9)
and optimization updates (in Figure 2) we can see that
there is indeed a “natural” tendency of the method to
drive unused parameters to 0, due to the presence of the
term: −〈sn

i 〉Q′(sn)θij(1−xn
j) in the objective function in

Equation 3.9. The term can be viewed as a regulariza-
tion penalty assigned to large values of θij if these are
not supported by data. Intuitively, the link with a poor

373

Updates of variational parameters qn
j (i) (one per sample). Iterate until fixpoint:

qn
j (i) ← 〈sn

i 〉Q′(s)
1

log(1− e−θ0j)

[
qn
j (i) log(1−An(i, j))− θij

An(i, j)
1−An(i, j)

− qn
j (i) log(1− e−θ0j)

]
(3.12)

subject to condition
∑K

i=1 qn
j (i) = 1 assured through the normalization step. An(i, j) stands for e

−θ0j− θij
qn
j

(i) .
Updates of θijs.Search for the root of ∂F/∂θij via a numerical method:

N∑
n=1

〈sn
i 〉Q′(s)

[
−1 + xn

j

1
1−An(i, j)

]
= 0 (3.13)

Updates θ0js. Search for the root of ∂F/∂θ0j via a numerical method:

N∑
n=1

[
K∑

i=1

〈sn
i 〉Q′(s)qn

j (i)xn
j

(
An(i, j)

1−An(i, j)
− e−θ0j

1− e−θ0j

)]
+

[
−(1− xn

j) +
K∑

i=1

xn
j qn

j (i)
e−θ0j

1− e−θ0j

]
= 0 (3.14)

Updates of πis:

πi =
1
N

N∑
n=1

〈sn
i 〉Q′(s) (3.15)

Figure 2: A summary of iterative optimization steps for the variational learning method

support in the data is shut down to avoid the penalty.

4 Evaluation of the variational learning
algorithm

To analyze the performance of our variational algo-
rithm, we applied it first to an image deconvolution
problem. In this problem, we use a a bipartite noisy-or
network with 8 hidden sources. Each source is associ-
ated with an 8 × 8 image pattern. The patterns are
shown in Figure 3. If the source is active (set to 1)
its noise-corrupted pattern is projected to the output.
The patterns from multiple sources (if they are active)
and the leak pattern are combined using noisy-or units
to generate the output image. The image patterns and
their associated noise components are defined fully by
the parameters of the noisy-or model.

We used the above noisy-or model to generate a set
of training images. Figure 4 shows examples of 16 con-
voluted images generated by the model. The learning
objective was to estimate and recover the distribution of
the original model purely from the observational data
– the noise-corrupted convoluted images. In order to
assess the characteristics of our variational algorithm
we run two sets of experiments, observing the quality
of the solution and its running time while varying (1)
the number of samples and (2) the number of assumed
latent sources.

Figure 3: Image patterns associated with hidden sources
used in the image deconvolution problem. The ninth
(bottom-right) pattern corresponds to the leak.

4.1 Effect of the sample size We used the noisy-
or network with 8 hidden sources and image patterns
from Figure 3 to generate datasets with 50 - 5000
examples. These samples were then given to the
learning algorithm. The learning process always starts
from the complete network, no structure relating the
sources and observables is given. The new (learned)
model was evaluated in terms of: (1) Comparison
of learned source images to original images (2) Data

374

Figure 4: Example images generated by the latent
noisy-or model with parameters corresponfing to pat-
terns in Figure 3.

reconstruction error.1

Figure 5 shows the parameters of three noisy-or
models recovered by the learning algorithm for varied
sample sizes. It is apparent from the figure that larger
number of samples lead to progressively improving mod-
els that are closer to the original model and approxi-
mates its patterns better. The model learned from 50
samples is cumbered with high variance brought about
by the low number of training examples, but neverthe-
less it begins to capture some of the original source pat-
terns. Sample sizes of 500 and 1000 improve the pattern
recovery. For 1000 samples we were able to recover al-
most all sources used to generate data with relatively
small distortion. Naturally, inherent stochasticity will
cause the sources to differ slightly in each run of the
algorithm.

Latent variable models are very useful in dimen-
sionality reduction. Given the learned noisy-or model
and an image observed on the output, one can compute
the posterior of each hidden source and pick the value
(0 or 1) that comes with the higher posterior proba-
bility. Hidden sources and their 0/1 values then act
as a low-dimensional representation of the data. High-
dimensional data can be recovered back by sampling the
output according to hidden source values and the pa-

1Note that it is very difficult to apply standard distance mea-
sures for distributions, such as KL-divergence or Hellinger’s dis-
tance, to evaluate and compare two high-dimensional multivariate
distributions. In our case, it would require to compute and com-
pare probabilities of 264 possible image configurations. Approxi-
mate distance measures based on corresponding empirical distri-
butions obtained via sampling suffer from a similar problem: it
is extremely difficult to achieve an overlap carrying a significant
probability mass between the supports of the respective empirical
distributions.

50 100 150 200 300 500 1000 2000 5000
12

12.5

13

13.5

14

14.5

15

15.5

16
Reconstruction errors

Number of samples

P
er

ce
nt

 r
ec

on
st

ru
ct

io
n

er
ro

r

Figure 6: Reconstruction errors obtained from the
learning algorithm for varied sample-sizes, averaged
over 50 trials.

rameters of the noisy-or model. The difference between
the original data point and its reconstruction after the
initial reduction defines the reconstruction error. In our
case, the reconstruction error is computed as portion of
bits in which the original data differs from the recon-
structed data.2

Figure 6 illustrates the reconstruction error of the
model learned by the variational algorithm for different
sample sizes. We clearly see the reconstruction error
is smaller for very small sample sizes and stabilizes
for sample sizes over 200. This can be explained by
overfitting of the model for small sample sizes, and the
saturation of the model to its stochastic limit for larger
sample sizes.

The running time of the variational algorithm for
different sample sizes is shown in Figure 7. The nearly
straight line plotted indicates that the complexity of
the algorithm grows polynomially with the number of
samples. Indeed, we have observed that the time com-
plexity scales approximately linearly with the number of
samples. There appears to be no statistically significant
effect of sample size on the number of EM iterations the
algorithm performs.

4.2 Model selection In real-world data, the correct
number of hidden sources is only rarely known in ad-
vance. Then the important question is whether the cor-
rect number of sources can be determined automatically
by the learning algorithm. To analyze this aspect of the
problem we run a series of learning experiments on mod-
els with different number of latent sources. To assure

2To assess the significance of the learning error, consider that
the training sets used contain on average approximately 32% of
1s. Therefore, the trivial majority-class reconstruction baseline
would achieve that error.

375

Figure 5: Examples of models learned from 50, 200 and 1000 samples (from left to right). The differences among
models illustrate the improvement in the model recovery for increasing sample size. Although some source images
are visibly identified with as few as 50 samples, the noise in many images is apparent. Models learned from 200
and 1000 samples are improved. Contrasting 200-sample model to 1000-sample model, a source image stepped
out of the leak factor (top row, right column). Additionally, the sources have stabilized, “shadows” were cleaned
(compare the source in left column, second row). The only flaw to the 1000-sample model is the source in the
center which captured two of the original sources.

50 100 150 200 300 500 1000 2000 5000
10

5

10
6

10
7

10
8

Running times

Number of samples

R
un

ni
ng

 ti
m

e

Figure 7: Runtimes of the algorithm, averaged over 50
trials. Considering the wide range of sample sizes tested,
we plot the runtimes on a log-log plot.

a fair comparison, the dataset used to train the models
was fixed over the course of the experiment.

The results are summarized in Figure 8. The recon-
struction error plot demonstrates that as we increase the
number of latent sources the learner takes advantage of
all sources available to it at 6 sources or fewer, then
starts to plateau at 8 sources. This agrees well with the
number of latent sources used to generate the data.

To assess the recovery performance, we looked at
patterns learned by the algorithm, much like those in
Figure 5 and counted the number of identified sources.
The inspection of the learned models showed that
the number recovered sources levels out at around
7, other sources were shut down via regularization

effects (Section 3.5). Taking into account the existence
of the leak node (which effectively adds one source),
this matches or is very close to the true number of
sources. Taking advantage of these phenomena one does
not have to identify the number of hidden sources in
advance, the algorithm finds a reasonable estimate of
the correct number on its own at only minor additional
computational cost.

The analysis of running times for different number
of sources in Figure 8 shows that the runtimes scale
roughly linearly with the number of assumed latent
sources. This gives an empirical support for the effi-
ciency of variational EM approximation as compared to
the exponential complexity of the exact EM algorithm
with respect to the number of sources.

5 Noisy-or component analysis of citation data

To show the benefit of our model in a real-world applica-
tion we applied the model to perform component analy-
sis of a citation dataset derived from online publications
in the area of Machine learning. The dataset was built
from approximately 17,000 hypertext documents from
the CiteSeer service. We chose 40 prominent authors in
the field of Statistical Machine Learning, to limit our-
selves to a domain where we can confidently assess the
soundness of the obtained results. The data were then
processed into a binary matrix. This matrix contains 1
at position (i, j) if the document i cites author j.

The noisy-or model fits well the structure this
dataset exhibits. A contemporary paper in this field
is likely to touch upon several topics and combine or
improve on them. We would expect the hidden factors
to roughly match the paper keywords, each topic factor

376

2 4 6 8 10 12 14 16
14

16

18

20

22

24

26

28
Reconstruction errors

Number of sources

R
ec

on
st

ru
ct

io
n

er
ro

r
(p

er
ce

nt
)

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9
Average number of identified sources

Number of latent sources

N
um

be
r

of
 s

ou
rc

es

sources identified
true number of sources

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
x 10

6 Running times

Number of latent sources

M
ed

ia
n

ru
nn

in
g

tim
e

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
x 10

6 Running times

Number of latent sources

M
ed

ia
n

ru
nn

in
g

tim
e

Figure 8: Average reconstruction error (left panel), average number of identified sources (middle) and median
running times (right) plotted against the number of assumed latent sources. The red dotted line in the middle
plot represents the true number of sources (8). The statistics in this figure were obtained from 25 experimental
runs.

Source
1 2 3 4 5

Attias
Bishop

Buntine
Burges

Chickering
de Freitas

Dechter
Doucet

Freeman
Frey

Friedman
Geman

Ghahramani
Gordon
Hastie

Heckermann
Hinton
Horvitz

Jaakkola
Jain

Jordan
Kearns

Koller
Lauritzen
MacKay

Minka
Murphy

Neal
Pearl
Saul

Schollkopf
Schuurmans

Smola
Spiegelhalter

Tipping
Vapnik

Wainwright
Weiss

Welling
Yedidia

Figure 9: The result of the noisy-OR component anal-
ysis on the citation dataset. The columns visualize the
parameters of the noisy-or loading matrix after they are
rescaled by the prior of the source. Black fields corre-
spond to 0s in the loading matrix, while white would
correspond to 1s.

having its seminal papers whose authors thereby become
likely to be cited.

We ran our noisy-or model on the CiteSeer dataset
using 5 hidden sources. Figure 9 illustrates the outcome
of the analysis. The obtained results indicate the
presence of the following components:

• The authors dominating the first component are: J.
Pearl, M. Jordan, S. Lauritzen and D. Spiegelhal-
ter. Weaker ties are to W. Buntine, N. Friedman
and D. Koller. This component discovered many
respected authors of basic references and tutorials
on Bayesian belief networks.

• The second source was shut down as the algorithm
did not reveal any other interesting group in this
run.

• C. Burges, B. Schölkopf, A. Smola and V. Vapnik
form the core of the third component. Without
any doubt, this component represents the kernel
and SVM research community.

• The authors prominent in the fourth factor are
Z. Ghahramani, M. Jordan, G. Hinton, R. Neal,
L. Saul, C. Bishop and M. Tipping. This source
captures the variational approximation community.

• The last component consists of the following au-
thors: B. Frey, W. Freeman, K. Murphy, S. Lau-
ritzen, J. Pearl, Y. Weiss and J. Yedidia. All au-
thors published extensively on loopy belief propa-
gation, using J. Pearl’s BP algorithm. The pres-
ence of an outlier in this set, S. Lauritzen, can be
attributed to the fact that he is among the most
frequently cited authors in the general context of
Bayesian networks. Conclusively, we can say our
algorithm found the LBP community.

377

The results obtained for the citation data show the
potential benefit of the noisy-or model and its ability to
uncover semantically sound component structure in the
binary data. We note there is a conceptual difference
between the noisy-or model and mixture models, such
as the aspect model [10], used frequently in the analysis
of documents. The key difference is that the aspect
model assigns each document a convex combination
of topic factors, while our model computes a vector
of binary indicators, each corresponding to one topic.
Each model stresses a different type of the structure and
both analyses can complement each other to improve
the understanding of the data at hand.

6 Conclusions

We have devised and presented an EM-based variational
algorithm for learning latent factor models with noisy-or
units. The algorithm alleviates the key limitation of ex-
act learning algorithms – their exponential dependency
on the number hidden factors. The proposed variational
algorithm makes no assumption about the structure of
of the underlying noisy-or network, the structure is fully
recovered during the learning process.

We tested the algorithm on two problems: (1) image
deconvolution problem and (2) analysis of citation data.
The algorithm showed a good scale-up potential with
a very good model recovery and error reconstruction
performances on the image problem. On citation data
it successfully discovered components that represent
established communities. We demonstrated how the
noisy-or latent variable model offers itself as a tool of
inquiry of social networks and internet communities.

An in-depth comparison of the noisy-or component
analyzer to alternative component analysis frameworks,
most importantly Probabilistic Latent Semantic Analy-
sis, remains an interesting open problem and a focus of
our continued research interest.

7 Acknowledgements

This research was supported in part by the Research
Development Fund Award 36851 from the University of
Pittsburgh and by National Science Foundation grants
CMS-0416754 and ITR-0325353.

References

[1] Hagai Attias. Independent Factor Analysis. Neural
Computation, 11(4):803–851, 1999.

[2] Christopher M. Bishop. Latent variable models. In
Michael I. Jordan, editor, Learning in Graphical Mod-
els, pages 371–403. MIT Press, 1999.

[3] Christopher M. Bishop. Variational principal compo-
nents. In Proceedings of Ninth International Confer-

ence on Artificial Neural Networks, volume 1, pages
509–514. ICANN, 1999.

[4] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, JAN 2003.

[5] W. Buntine. Variational extensions to EM and multi-
nomial PCA. In ECML 2002, 2002.

[6] Heckerman David. Causal independence for knowledge
acquisition and inference. In Proc. of 9th Conf. on
UAI93, San Francisco, CA, 1993. Morgan Kaufmann
Publishers.

[7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maxi-
mum likelihood for incomplete data via the EM algo-
rithm. Journal of Royal Statistical Society, 39:1–38,
1977.

[8] Francisco Diez and Severino Gallan. Efficient compu-
tation for the noisy max. International Journal of In-
telligent Systems, 2003.

[9] Zoubin Ghahramani and Michael I. Jordan. Facto-
rial hidden Markov models. In David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, editors,
Proceedings of Advances in Neural Information Pro-
cessing Systems, NIPS, volume 8, pages 472–478. MIT
Press, 1995.

[10] Thomas Hofmann. Probabilistic latent semantic anal-
ysis. In Proc. of Uncertainty in Artificial Intelligence,
UAI’99, Stockholm, 1999.

[11] Tommi Jaakkola and Michael I. Jordan. Variational
probabilistic inference and the QMR-DT network.
Journal of Artificial Intelligence Research, 10:291–322,
1999.

[12] Michael Kearns and Yishay Mansour. Exact inference
of hidden structure from sample data in noisy-OR
networks. In Proc. 14th Conf. on UAI98, pages 304–
310, 1998.

[13] Xinghua Lu, Milos Hauskrecht, and Roger S. Day.
Modeling cellular processes with variational bayesian
cooperative vector quantizer. In Pacific Symposium
on Biocomputing (PSB), page to appear, 2004.

[14] David MacKay. Probable networds and plausible
predictions - a review of practical Baysian methods for
supervised nerual networkds. Network: Computation
in Neural Systems, 6(3):469–505, 1995.

[15] James W. Miskin. Ensemble Learning for Independent
Component Analysis. PhD thesis, Selwyn College,
University of Cambridge, 2000.

[16] D. Ross and R. Zemel. Multiple cause vector quanti-
zation. In Advances in Neural Information Processing
Systems, 2002.

[17] M. Shwe, B. Middleton, D. Heckerman, M. Henrion,
E. Horvitz, H. Lehmann, and G. Cooper. Probabilistic
diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base I. The probabilistic model
and inference algorithms. Methods of Information in
Medicine, 30:241–255, 1991.

[18] Michael Tipping and Christopher Bishop. Probabilis-
tic principal component analysis. Technical Report
NCRG/97/010, Neural Computing Research Group,

378

Aston University, September 1997.
[19] Jǐŕı Vomlel. Noisy-or classifier. In Proceedings of

the 6th Workshop on Uncertainty Processing (WUPES
2003), pages 291–302, September 2003.

379

Summarizing Sequential Data with Closed Partial Orders ∗

Gemma Casas-Garriga†

Abstract

In this paper we address the task of summarizing a set of
input sequences by means of local ordering relationships on
items occurring in the sequences. Our goal is not mining
these structures directly from the data, but going beyond
the idea of closed sequential patterns and generalize it into
a novel notion of closed partial order. We will show that
just a simple (but not trivial) post-processing of the closed
sequences found in the data leads to a compact set of
informative closed partial orders. We analyze our proposal
not only algorithmically but also theoretically, by showing
the connection with Galois lattices. Finally, we illustrate the
approach by applying it to real data.

General Terms. Closed partial orders, sequence ana-
lysis, post-processing closed sequential patterns.

1 Introduction

Mining sequences of events is an important data mining
task with broad applications in business, web mining,
computer intrusion detection, DNA sequence analysis
and so on. The problem was first introduced in [1]
as a problem of mining frequent sequential patterns
in a set of sequences, and since then, it has been
extensively studied (e.g., algorithms like SPADE [19]
or PrefixSpan [13] among others). Unfortunately, one
problem of this sequential pattern mining task arises
when considering a very low support in the algorithms
or when mining very long sequences; in these cases, the
number of frequent patterns is usually too large for a
thorough examination and the algorithms face several
computational problems. A proper solution to this
problem is recently proposed in some papers, such as
[15, 16, 17], and it consists on mining just a compact
and more significative set of patterns called the closed

sequential patterns (or closed sequences). These closed
sequential patterns are defined to be “stable” in terms
of support, that is, they are maximal sequences among
those others having the same support in the database.

The idea of mining just closed sequential patterns
instead of all frequent patterns stems from the parallel
case of mining closed itemsets in a binary database
([12, 18]). The foundations of closed itemsets are based
on the mathematical model of concept lattices ([7, 8]):

∗Supported by MCYT TIC 2002-04019-C03-01 (MOISES)
†Universitat Politècnica de Catalunya, Barcelona, Spain

a closure operator is defined by using the properties of
the Galois connection, and from there, one can draw a
lattice of formal concepts. Then, it can be proven that
the set of closed itemsets is necessary and sufficient to
capture all the information about frequent itemsets and
association rules in the unordered context. Moving to
the sequential case again, a recent work in [4] proves
that the set of closed sequential patterns mined by
existing algorithms [15, 16, 17] can be formalized in
terms of a closure operator as well.

In general, dealing with closed patterns is currently
an interesting topic in data mining since it provides a
more compact set of patterns. However, we consider
that there are still some criticisms to be done about the
closed sequences: mainly, the number of those patterns
can be still quite large due to the combinatorial nature
of the problem, and it is not clear how they can be useful
to the final user once we have mined them.

1.1 Goals of this Work In this paper we propose a
way to handle these resulting closed sequences so that
they provide useful information of our data. We are
not focusing here on algorithmic solutions for finding
closed sequential patterns, and we rely on current
proposals such as TSP [15], BIDE [16] or CloSpan [17];
our intention is not contributing to the efficiency of
existing algorithms, but to the post-processing of closed
sequences once we have mined them. Our goal is to
outcome with a new notion of partial orders that can
be obtained out of the closed sequences, in such a way
that (1) it advances in the summarization of sequential
data; (2) it has a sound theory supporting it; and (3)
it can be implemented with efficient algorithms without
accessing the input data, just the set of closed sequences.
Finally, we will show that these partial orders represent
indeed the closure of hybrid episodes introduced in [11],
and they can be seen also as complementary to other
works of mining episodes.

1.2 Paper Overview The rest of the paper is or-
ganized as follows. In section 2 we present some basic
definitions of the frequent closed sequence mining. Sec-
tion 3 motivates our intention of going beyond closed
sequences and defines our post-processing approach for
generating partial orders out of the set of closed se-

380

quences. Sections 4 and 5 develop algorithmically and
theoretically the two steps of the proposal; section 6 dis-
cusses other algorithmic issues to complete the current
proposal. Finally, section 7 evaluates this work with
experiments, and section 8 discusses the relation of our
final partial orders with the hybrid episodes of [11]. In
section 9 we conclude the study.

2 Preliminaries

Let I = {i1, . . . , in} be a finite set of items. In the classi-
cal formalization given by [1], sequences are ordered lists
of itemsets. The input data we are considering consists
of a database of ordered transactions D = {t1, t2, . . . tn}
that we model as a set of sequences, i.e. each transac-
tion ti is in fact a sequence, also called input sequence.
Our notation for the component itemsets of a given se-
quence will be s = 〈(I1)(I2) . . . (In)〉, where each Ii ⊆ I
and Ii occurs before itemset Ij if i < j. Note that each
Ii may contain several items that occur simultaneously;
e.g. 〈(AC)(B)〉, meaning that items A and C come at
the same time but always before item B. The universe
of all sequences is noted with S. An example of such
data D is presented in figure 1, where each itemset Ii

contains only one single item. We choose this simplifica-
tion to make this first example more clear, and because
we consider that these single-item sequences model pop-
ular types of data such as DNA, Web click streams,
command histories of Unix users and so on. However,
our proposals will work also when having sequences of
subsets of items, and in section 6 of this paper we will
follow up an example with simultaneity.

Seq id Input sequences

t1 〈(C)(B)(C)(A)(C)〉

t2 〈(C)(B)(A)(C)(C)(C)(A)〉

t3 〈(A)(C)(A)(C)(C)(A)(A)(A)〉

t4 〈(C)(A)(C)〉

Figure 1: Collection of data D

Some basic operations on sequences can be defined
in a general way as follows. Sequence s = 〈(I1) . . . (In)〉
is a subsequence of another sequence s′ = 〈(I ′1) . . . (I ′m)〉
if there exist integers j1 < j2 · · · < jn such that I1 ⊆
I ′j1 , . . . , In ⊆ I ′jn

. We note it by s ⊆ s′. For example,
s = 〈(C)(B)(A)〉 is a subsequence of the first and second
input sequences from figure 1, s ⊆ t1 and s ⊆ t2. For
later formalization purposes it will be necessary to keep
track of the identifiers of those input sequences where
a certain s is contained, named its tid list, tid(s); e.g.,
tid(〈(C)(B)(A)〉) = {t1, t2} = {1, 2} in figure 1. Then,
the support of a sequence s is the number of input
sequences where s is contained, support(s) = |tid(s)|;
e.g., the support of 〈(C)(B)(A)〉 is 2.

The intersection of a set of sequences s1, . . . , sn ∈ S
is the set of maximal subsequences contained in all the
si. Note that the intersection of a set of sequences, or
even the intersection of two sequences, is not necessarily
a single sequence. For example, the intersection of the
two sequences s = 〈(A)(C)(B)〉 and s′ = 〈(A)(B)(C)〉
is the set of sequences {〈(A)(C)〉, 〈(A)(B)〉}: both are
contained in s and s′, and among those having this prop-
erty they are maximal; all other common subsequences
are not maximal since they can be extended to one of
these. The maximality condition discards redundant
information since the presence of, e.g., 〈(A)(B)〉 in the
intersection already informs of the presence of each of
the itemsets (A) and (B).

The head of a sequence s = 〈(I1) . . . (In)〉 up to a
position j s.t. 1 ≤ j ≤ n, is noted by head(s, j) =
〈(I1) . . . (Ij)〉. Similarly, the tail of a sequence from
position j s.t. 1 ≤ j ≤ n, is noted by tail(s, j) =
〈(Ij) . . . (In)〉. The concatenation of two sequences will
be noted by s ⋄ s′.

2.1 Mining Closed Sequential Patterns Tipi-
cally, associated to this discrete sequential data there
is the problem of mining frequent sequences, that is,
those subsequences in D whose support is over a user-
specified threshold. Unfortunately, the performance of
the algorithm degrades when using a very low support
or having a dense database. Some recent works, such as
[15, 16, 17], propose to mine frequent closed sequences
instead.

A sequence s is closed in input data D if s is
maximal in the set of transactions where it is contained,
that is, it cannot be extended. More formally:

Definition 2.1. (Closed Sequence) A sequence

s ∈ S is closed for data D if there exists no sequence s′

with s ⊂ s′ s.t. support(s) = support(s′).

For instance, taking data from figure 1, sequence
〈(A)(C)〉 is not closed since it can be extended to
〈(C)(A)(C)〉 in all the input sequences where it belongs.
However, 〈(C)(B)(A)(C)〉 or 〈(C)(C)(C)〉 are closed
sequences in D. In other words, closed sequences are
“stable” in terms of support since they are maximal
among those having the same support. The set of all
closed sequential patterns of data from figure 1 is shown
in figure 2. Usually, a minimum support condition is
provided by the user to mine only those closed sequences
up to the threshold; here, given that data in figure 1 is
small enough, we will suppose that the threshold is set
to zero for this ongoing example.

381

Tid list Closed Sequential Patterns

{1, 2, 3, 4} 〈(C)(A)(C)〉

{1, 2, 3} 〈(C)(C)(A)〉

{1, 2, 3} 〈(C)(C)(C)〉

{2, 3} 〈(A)(C)(C)(C)(A)〉

{2, 3} 〈(C)(A)(C)(C)(A)〉

{1, 2} 〈(C)(B)(A)(C)〉

{1, 2} 〈(C)(B)(C)(A)〉

{1, 2} 〈(C)(B)(C)(C)〉

{1} 〈(C)(B)(C)(A)(C)〉

{2} 〈(C)(B)(A)(C)(C)(C)(A)〉

{3} 〈(A)(C)(A)(C)(C)(A)(A)(A)〉

Figure 2: Set of all closed sequences and their tid lists

3 Discussion and Motivation

Frequent closed sequential patterns represent the most
informative total orders in D with respect to support.
So, apart from reducing the algorithmic overhead, this
final set of closed patterns is useful in many ways: (1)
the user needs to examine fewer patterns obtained as an
output of the mining algorithms; (2) hitting with the
right minimum support threshold is not so important;
for example, mining all the subsequences in D with a
threshold close to zero is unrealistic and it does not
provide useful information about the data, but the set
of all closed sequences is not so dramatic and still gives
an overall idea of the whole database; and (3) closed
patterns have a sound theoretical background based on
formal concept analysis (see [4]), which provides several
important properties and formalizations.

Therefore, the set of closed sequences provides a
more compact set of patterns that keeps the same
information as frequent sequences. However, many
questions arise: what do these sequences say about
our data D? what to do with these closed sequential
patterns once we have mined them? how to go beyond
closed sequential patterns?

We consider that the set of closed sequential pat-
terns does not represent all the particularities hidden in
the sequential data. Formally, it can exist two closed se-
quences s and s′ such that they occur in the same trans-
actions, so that support(s) = support(s′), but s * s′

and s′ * s. In other words, contrary to the case of
closed itemsets in binary data ([12, 18]), here there is
no unique representative closed pattern for a given set
of ordered transactions. By way of example, the closed
sequences 〈(A)(C)(C)(C)(A)〉 and 〈(C)(A)(C)(C)(A)〉
from figure 2 occur exactly in the same transactions but
none of them can be considered “better” than the other,
they simply coexist together. This fact cannot be cap-
tured by the unidimensional representation of the set of
closed sequences.

We want to go beyond the notion of closed sequen-

tial patterns. Our goal is to generalize this idea of com-
pacting the information as much as possible so that we
can produce not just fewer patterns, but also more in-
formative ones. Next, we will show how these closed
sequences coexisting together lead to a novel notion of
closed partial order that summarize the data in a com-
pact way. We formalize our proposal:

1. First, grouping closed sequential patterns occurring
together in a maximal set of transactions. We
will see that this task has not a direct solution
since some closed sequences can coexist in several
groups and also, we want to make these groups
nonredundant and maximal.

2. Second, constructing a new notion of closed partial
orders out of those groups, without the need of
accessing again the data D.

We will see that this process is supported by the
mathematical theory of formal concept analysis since
the set of maximal sequences in a maximal set of
transactions is a closure system. This ensures the good
properties of the obtained results. In next two sections,
we describe with detail the goals of our approach and
we provide efficient algorithms to implement each one
of the steps.

4 Grouping Closed Sequential Patterns

The first step of our proposal is to make nonredundant
groups of sequences coexisting together in the same
maximal set of transactions. Formally, we state this
problem as: given the set of frequent closed sequential
patterns CS = {s1, s2, . . . , sn} mined by any of the
existing algorithms, we want to output a list of valid

pairs (S, T).

Definition 4.1. A valid pair (S, T) is one where: S ⊆
CS is a nonredundant set of closed sequences, whose

tid lists are at least T ; and T ⊆ D is the maximal set

of transactions where all s ∈ S are contained.

We say that a set S of closed sequences is nonre-

dundant when for all s, s′ ∈ S s.t. s 6= s′ we have
that s * s′ and s′ * s. By computing the list of valid
pairs (S, T) from CS, we get nonredundant groups S

of closed sequences where all s ∈ S is contained in all
t ∈ T , and there is no other set of transactions T ′ with
T ⊂ T ′ where sequences in S still coexist together. An
obvious observation then is that the set of transactions
T of a valid pair (S, T) will correspond to the max-
imal tid list of one of the sequences s ∈ S, that is,
T = max{tid(s)|∀s ∈ S}. Otherwise T would not be
maximal as we want, since all the sequences in S must
have tid lists at least T by definition.

382

E.g., sequences 〈(A)(C)(C)(C)(A)〉 and
〈(C)(A)(C)(C)(A)〉 from figure 2, will be fitted
into the same set S since they appear exactly in the
same input sequences T = {2, 3}. Any other closed
sequence whose tid list is at least T (i.e. coexisting still
in transactions T) would not fit in S, since it would
turn it redundant. Moreover, the set T = {2, 3} is a
maximal set of transactions for this S as well, that
is, for any other larger set of transactions we have
that the sequences in S coexist together. A complete
example of the desired groups for the closed sequences
in 2, is shown in figure 3. Note that there is no valid
pair involving the set of transactions T = {1, 3}: this
T is not maximal for the set of closed sequences whose
tid list is at least T = {1, 3} (and no closed sequential
pattern has a tid list coinciding with this T).

T S

{1, 2, 3, 4} {〈(C)(A)(C)〉}
{1, 2, 3} {〈(C)(A)(C)〉, 〈(C)(C)(A)〉, 〈(C)(C)(C)〉}
{2, 3} {〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉}
{1, 2} {〈(C)(B)(A)(C)〉, 〈(C)(B)(C)(A)〉, 〈(C)(B)(C)(C)〉}
{1} {〈(C)(B)(C)(A)(C)〉}
{2} {〈(C)(B)(A)(C)(C)(C)(A)〉}
{3} {〈(A)(C)(A)(C)(C)(A)(A)(A)〉}

Figure 3: Groups of closed sequences occurring together

Obviously, an initial algorithmic naive approach is
to group all those closed sequences in CS with the
same tid list, that is, create each pair (S, T) so that
all s ∈ S has the same tid list and T = tid(s). In
this way we ensure that the set T will be maximal.
However, the set S created in the naive way may be
incomplete, with some missing element. The following
property formalizes this idea.

Proposition 4.1. Let (S, T) be a valid pair, then we

have that S =
⋂

t∈T

t.

Proof. If T is a set of transactions from a given valid
pair, then the intersection of transactions t ∈ T returns
a set of sequences S s.t. for all s ∈ S we have that
tid(s) is at least T . Moreover, all sequences s ∈ S

will be closed and nonredundant by definition of the
intersection operation, that always keeps only maximal
subsequences.

Proposition 4.1 simply states that the nonredun-
dat group of closed sequences coexisting in a set of
transactions T must necessarily coincide with the in-
tersection of those transactions. Note that the re-
verse implication of the proposition does not hold,
because we cannot ensure the maximality of the set
of transactions T . Then, a naive gropuping such as
S1 = {〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉} and

T = {2, 3} of our example, is valid because it co-
incides with the intersection of second and third in-
put sequences of D. However, another naive group
such as {〈(C)(C)(A)〉, 〈(C)(C)(C)〉} and T = {1, 2, 3},
does not form a valid pair because the intersec-
tion of first, second and third input sequences con-
tains one more closed sequence; the proper fam-
ily of sequences of this valid pair should be S2 =
{〈(C)(A)(C)〉, 〈(C)(C)(A)〉, 〈(C)(C)(C)〉}. Indeed, the
closed sequence 〈(C)(A)(C)〉 is contained in all the
transactions of the database; then, it always occurs si-
multaneously with any other sequence, and it should be
included in any S as long as it does not make it redun-
dant. Because of this, 〈(C)(A)(C)〉 belongs to S2 as an
element, but not to S1, where it is already included as
a subsequence of 〈(C)(A)(C)(C)(A)〉.

Of course, we want to output the valid list of pairs
(S, T) without directly intersecting the transactions of
the database, just by grouping the sequences in CS.
But there can be closed sequences that belong to several
sets S as long as S is not redundant. The general
property that follows from this reasoning is expressed
by the following lemma.

Lemma 4.1. Given two valid pairs (S′, T ′) and (S, T),
if T ⊆ T ′ then for all s′ ∈ S′ there exists s ∈ S s.t.

s′ ⊆ s.

Proof. For all s′ ∈ S′ we have that s′ is subsequence
of t′, for all t′ ∈ T ′ (proposition 4.1); in particular, if
T ⊆ T ′, then we have that s′ is subsequence of t for all
t ∈ T , and thus there exists s ∈ S s.t. s′ ⊆ s.

4.1 Algorithmic Analysis Conceptually, lemma
4.1 provides a way to organize the list of valid pairs
into a graph where each node is a pair (S, T), and there
is an edge between each node and its predecessors. The
predecessors of a node (S, T) are those pairs (S′, T ′) s.t.
T ⊆ T ′. The property stated in lemma 4.1 must hold
between each node and their predecessors.

In figure 4 we graphically depict the mentioned
conceptual graph for the valid pairs of figure 3. Each
node represents a valid pair (S, T), and here we depict
only those edges connecting immediate predecessors:
(S′, T ′) is an immediate predecessor of (S, T) if T ⊆ T ′

and there is no other (S′′, T ′′) s.t. T ⊂ T ′′ and
T ′′ ⊂ T ′. E.g. the node {〈(C)(B)(C)(A)(C)〉}
has one immediate predecessor, which is
{〈(C)(B)(A)(C)〉, 〈(C)(B)(C)(A)〉, 〈(C)(B)(C)(C)〉}.
We will note immediate predecessors by relation �:
(S′, T ′) � (S, T). Notice that if lemma 4.1 holds for
immediate predecessors of a given node, then it will
hold for the rest of predecessors as well (see figure 4).

This conceptual graph will be used as a tool to

383

{ <(C)(B)(A)(C)>,
<(C)(B)(C)(A)>,
<(C)(B)(C)(C)> }

{ <(C)(B)(C)(A)(C)> } { <(C)(B)(A)(C)(C)(C)(A)> } { <(A)(C)(A)(C)(C)(A)(A)(A)> }

{ <(C)(A)(C)> , <(C)(C)(A)>, <(C)(C)(C)> }

1,2

{ <(C)(A)(C)> }

1,2,3

1,2,3,4

{ <(A)(C)(C)(C)(A)> , <(C)(A)(C)(C)(A)> }

2,3

1 2 3

Figure 4: Conceptual graph of pairs (S, T)

analyze our algorithmic proposal: it simplifies the
pseudocode and it eases the complexity analysis. How-
ever, the final implementation does not necessarily need
to recreate such structure in memory, and a wise use of
lists and indexes turns out to be enough to come up
with the right groupings. The pseudocode to obtain
valid pairs is presented in algorithm 1.

Algorithm 1 Grouping Closed Sequential Patterns

Input: List CS of closed sequential Patterns
Output: List of pairs (S, T)

1: Sort CS in descending order by tid list;
2: while CS 6= ∅ do

3: S ← Next sequences s ∈ CS with same tid list;
4: T ← tid(s), for some s ∈ S;
5: for each (S′, T ′) � (S, T) do

6: for each s′ ∈ S′ do

7: if s′ * s, ∀s ∈ S then S ← S ∪ {s′} end if

8: output (S, T);
9: end for

10: end for

11: end while

The idea of algorithm 1 is simple: lines 3-4 perform
naively by getting groups of closed sequences in CS with
same tid list. Then, lines 5-11 complete the set S with
sequences already belonging to immediate predecessors
that should be also in S. Considering that CS is ordered
in descending order by the tid list of its elements, then
the algorithm traverses the conceptual graph bottom-up
in a breadth-first fashion.

Notice again the fact that it is only necessary to
look for immediate predecessors of a set S to make
lemma 4.1 hold. The algorithmic proposal is bounded
by O(n ·m · k2), where we consider n to be the number
of closed sequences in CS, m is the maximum number

of immediate predecessors for a node (S, T), and k is
the maximum number of closed sequences belonging to
immediate predecessors of S.

4.2 Theoretical Analysis An important theoretical
consideration to be done at this point is that the set
of closed sequential patterns in S of valid pairs (S, T)
can be formalized in terms of a closure operator named
∆, presented in [4]. Basically, a closure operator of any
fixed universe is one that satisfies the three basic closure
axioms: monotonicity, extensivity and idempotency.
The formal operator ∆ developed in [4] works with sets

of sequences.
Broadly speaking, this resulting ∆ stems from

the composition of two derivation operators forming
a Galois connection and it works as follows: given
D, the closure ∆(S) of a set of sequences S, includes
all the maximal sequences that are present in all
transactions having all sequences in S; for example,
in data from figure 1 we have ∆({〈(A)(C)(C)〉}) =
{〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉} because
all the maximal subsequences contained in those
transactions where {〈(A)(C)(C)〉} belongs are
〈(A)(C)(C)(C)(A)〉 and 〈(C)(A)(C)(C)(A)〉. Then, we
say that closed sets of sequences are those coinciding
with their closure, that is, ∆(S) = S.

Given proposition 4.1 and lemma 4.1, it is possible
to prove that the set of closed sequences S from each
pair valid (S, T) indeed fulfills ∆(S) = S. So, sets
S from valid pairs are also a closed set of sequences
according to ∆. This characterization carries several
consequences. The first important consequence is that
the conceptual graph described in subsection 4.1 can be
considered a Galois lattice ([7, 8]) under these certain
conditions: (1) when nodes of the graph are closed
under intersection; and (2) there exists a supremum
and infimum for any pair of elements. Broadly, first
condition means that when intersecting two sets of
sequences S1 and S2 of to two different nodes, we
get another set of sequences, S3 = S1

⋂
S2, belonging

to another node of the same graph. That is, the
intersection of two sets of sequences from valid pairs
returns another set of sequences from another valid
pair. Here, the intersection of two sets of sequences
S1

⋂
S2 is defined as the cross intersection of all s1 ∈ S1

with all s2 ∈ S2. Similarly, the set of transactions T

of valid pairs must be also close under intersection to
be considered a Galois lattice. For example, the graph
depicted in figure 4 is closed under intersection, so, if we
added an artificial top connected to the upper vertices
of the graph, then we would get a Galois lattice. The
conceptual graph of valid pairs may not be always closed
under intersection, then, the missing nodes must be

384

added to form a closure system. More details can be
followed from [4].

The second consequence of having this characteri-
zation in terms of ∆, is that it is possible to derive a
notion of deterministic association rules from valid pairs
(S, T) and the generators of S. We say that a set S′ is
a generator of S when ∆(S′) = S and S 6= S′. Then,
the theory of associations for this ordered context can
be completely formulated by considering implications of
the form S′ → S. Actually, a recent work in [3] shows
that these implications axiomatize the Horn theory for
ordered data.

5 Obtaining Closed Partial Orders

The second step of our proposal is to obtain a compact
representation from each valid pair (S, T). Our starting
point is to realize that each s ∈ S is in fact a total
order compatible with all transactions t ∈ T . Since
sequences in S coexist together in T , it should be
possible to derive a partial order describing the set of
transactions T by properly combining all s ∈ S. To
get an initial intuition of this idea we show in figure
5 the desired transformation that will turn the sets
S from figure 3 into partial orders; e.g., the set S =
{〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉} is converted
into a partial order compatible with transactions T =
{2, 3}. Basically, we are creating a partial order out of
S, without adding new restrictions among the different
items and still respecting all the restrictions given by
each s ∈ S. We may think that this is an easy task, but
the way of overlaping the positions of a set of sequences
S to get a partial order still compatible with a set
of transactions T is not direct, specially when having
repeated items.

A C A C A AC A

C B C CA

C B A C AC C

C A C

A C
C A

C A

C

{<(C)(B)(A)(C)(C)(C)(A)>}

{<(C)(B)(C)(A)(C)>}

{<(C)(B)(A)(C), <(C)(B)(C)(A)>, <(C)(B)(C)(C)>}

{<(A)(C)(C)(C)(A)>, <(C)(A)(C)(C)(A)>}

{<(C)(A)(C)>, <(C)(C)(A), <(C)(C)(C)> }

{<(C)(A)(C)>}

{<(A)(C)(A)(C)(C)(A)(A)(A)>}

C B

A

C A

C

C A

A C

C

Figure 5: Partial orders from (S, T)

To make this goal more formal we introduce some
basic definitions. A partial order can be modelled as

a triple p = (V, E, l) where V is the set of vertices;
E ⊆ V × V is the set of edges such that the relation on
V established by edges in E is reflexive, antisymmetric
and transitive; and l is the labelling function mapping
each vertex into a set of items, i.e. l : V → 2I . In
our proposed example of figure 5, this labelling func-
tion simply maps each vertice to a single item, but in-
deed a node can be labelled with a set of items when
considering sequences of itemsets. The transitive reduc-

tion of p = (V, E, l) is the smallest relation resulting
from deleting those edges in E that come from transi-
tivity. Partial orders will be graphically depicted here
by means of its transitive reduction to make them more
understandable, but of course, all edges of the transitive
closure are present in E. The graphical representation
of partial orders is particularly useful for displaying re-
sults: we display a poset by using arrows between the
connected labelled vertices, and the symbol ‖ (parallel)
to indicate trivial order among the different components
of a partial order.

We say that a partial order p = (V, E, l) is com-

patible with an (input) sequence s if: ∀u ∈ V we
have that l(u) is in s; and, ∀(u, v) ∈ E we have that
〈(l(u))(l(v))〉 ⊆ s. The support of a partial order is the
number of input transactions that is compatible with.

Given (S, T) our goal is to generate a partial order
p = (V, E, l) s.t. for all s′ ⊂ s ∈ S, we have that
s′ is included in p; and p is still compatible with
all transactions in T . The first condition forces the
partial order p to respect all the restrictions given by
each s ∈ S, and the second condition ensures that
no extra edges will be added between vertices (next
lemma 5.1 will formalize this idea). This partial order
will summarize the set of transactions T in the most
specific way. In subsection 5.1 we will provide more
clear formalizations about this notion. We want the
partial order generated from a pair (S, T) to be exactly
compatible with transactions in T .

One way to get such structure out of (S, T) is by
considering a partial order whose maximal paths are

exactly defined by sequences s ∈ S. We define a
path from a partial order p = (V, E, l) as a sequence
〈(I1) . . . (In)〉 such that there is an equivalent list of
different nodes u1, . . . , un in V that (uj , uj+1) ∈ E

and l(uj) = Ij and l(uj+1) = Ij+1. E.g. in figure
5, groups of sequences S define the maximal paths of
the new partial orders, and the maximal paths of these
partial orders coincide exactly with the sequences in the
set S. Moreover, if we considered different paths not
included in S, then p would not be compatible with all
transactions in T , as it shows the following lemma.

Lemma 5.1. Given a valid pair (S, T) and a partial
order p, we have that:

385

(1) if p has maximal paths exactly defined by sequences in

S, then p is only compatible with transactions in T .

(2) if p has any paths not included in S, then p is not

compatible with transactions T .

Proof. Proving part (1) is easy: if p has maximal paths
defined by sequences in S of a valid pair (S, T), then p

will be compatible with transactions in T , since all s ∈ S

is a subsequence of all t ∈ T (prop. 4.1). Moreover,
p cannot be compatible with more transactions not
considered in T , because by definition of valid pair we
have that T is a maximal set of transactions for S. So,
it does not exist an larger set of transactions T ′ where
sequences in S are all of them included at a time.

Part (2) of the lemma can be proved as follows. If
there exists a sequence s′ representing path of p s.t.
s′ /∈ S, then we can rewrite it as s′ /∈

⋂
t, ∀t ∈ T

(prop. 4.1). This implies that s′ is not a subsequence
of some t ∈ T , and so, the considered p cannot be
compatible with all transactions T , as stated by the
lemma.

According to lemma 5.1, given (S, T) it is not pos-
sible to create a partial order which is still compati-
ble with T and includes more paths not considered in
S. Following this idea, we will generate partial orders
whose maximal paths are exactly defined by sequences
in S. Then, we have that (1) p will be compatible with
all transactions t ∈ T , since each s ∈ S appears in all
t ∈ T ; (2) p is not having new edges representing restric-
tions not considered in S; and (3) p obviously respects
each s ∈ S, since for all s′ ⊂ s we have that s′ will be in-
cluded in p. In subsection 5.2 we will detail theoretical
results making this partial order closed for data D.

5.1 Algorithmic Analysis The point is now how to
match positions of sequences in S so that they form
the maximal paths of a partial order. This is not a di-
rect task since sequences can be overlapped in several
ways so that the resulting partial order still has maxi-
mal paths in S. For example, from the set of closed se-
quences S = {〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉}
there are several partial orders whose maximal paths are
exactly sequences in S: starting from the fully indepen-
dent parallelization of both sequences, or just matching
the last item (A) of both sequences, or just matching
the two last items (C)(A) of both sequences, and so on;
but we are interested only in the partial order generated
as in figure 6, which is matching the last three positions
(C)(C)(A) from both sequences.

In other words, from all the partial orders whose
maximal paths are exactly sequences in S, we are
interested in the most specific one. We define that

A C
C A

C A

C{ <(A)(C)(C)(C)(A)> , <(C)(A)(C)(C)(A)> }

Figure 6: Transformation into a partial order

a partial order p′ = (V ′, E′, l′) is more specific than
another partial order p = (V, E, l), noted by p E p′, if
there exists an injective mapping h : V → V ′ such that
preserves labels (that is, l ⊆ l′ ◦ h), and (u, v) ∈ E ⇒
(h(u), h(v)) ∈ E′.

To construct the most specific partial order p

we will match as many positions as possible from
sequences s ∈ S. Yet there is still the prob-
lem of identifying which positions must be matched.
Note that not all positions having same label are
good to be overlapped: e.g. taking again the set
S = {〈(A)(C)(C)(C)(A)〉, 〈(C)(A)(C)(C)(A)〉}, the
first (C) of 〈(A)(C)(C)(C)(A)〉 will not be overlapped
with any (C) of the other sequence, otherwise we would
get a partial order having more paths than the ones in-
cluded in S. So, when matching positions of sequences
in S, the algorithm has to take care of not adding new
paths to p that are not in S (and so, keep the proper-
ties of lemma 5.1). The idea is that, given two sequences
s, s′ ∈ S, two positions can be matched as long as they
are path preserving with respect to all sequences in S.

Definition 5.1. (Path Preserving Positions)
Given a set of sequences S and let s, s′ ∈ S be

two sequences s.t. s = 〈(I1) . . . (Ii) . . . (In)〉 and

s = 〈(I ′1) . . . (I ′j) . . . (I ′m)〉, then positions i of s and j of

s′ are path preserving if,

− Ii = I
′
j; and,

− head(s, i) ⋄ tail(s′, j + 1) ⊆ s
′′, for some s

′′
∈ S; and,

− head(s′, j) ⋄ tail(s, i + 1) ⊆ s
′′, for some s

′′
∈ S.

Then, we say that position i of s matches with

position j of s′; we note it by p[i] ∼ q[j].

This definition ensures that when matching differ-
ent positions of sequences in S, any new possible paths
that can be created by this overlapping will be always
included in S. Note that this operation is symmetric,
i.e. if p[i] ∼ q[j] then q[j] ∼ p[i]; and also transitivite as
it is showed in the following proposition.

Proposition 5.1. (Transitivity) Given a valid pair

(S, T) and let s, s′, s′′ ∈ S, if s[i] ∼ s′[j] and s′[j] ∼
s′′[k], then s[i] ∼ s′′[k].

Proof. For a given valid pair (S, T) we have that S =⋂
t, ∀t ∈ T (prop. 4.1), which makes this set S consis-

tent for transitivity property. In particular, if s[i] ∼

386

s′[j] and s′[j] ∼ s′′[k], then we have that S contains
at least these following three sequences among oth-
ers: head(s, i) ⋄ tail(s, i + 1) (i.e. sequence s), and
head(s′, j)⋄ tail(s, i+1), and head(s′, j)⋄ tail(s′′, k+1).
The presence of these three sequences in S forces the se-
quence head(s, i) ⋄ tail(s′′, k + 1) to be also present in
the intersection of all t ∈ T as well. Similarly, we can
justify that S also contains the other necessary path
head(s′′, k) ⋄ tail(s, i+ 1); thus, reaching the conclusion
that s[i] ∼ s′′[k].

Transitivity also ensures that a position from a
sequence s ∈ S cannot be matched with two different
positions from s′ ∈ S; otherwise, we would get a cycle
and sequences in S would not be valid. The algorithmic
solution for this problem finds the matching positions
of a group of sequences S, of a valid pair (S, T). The
idea is checking definition 5.1 for all positions of the
sequences in S. It is possible to improve the algorithm
by using the transitivity property, and we rely on the
fact that the number of sequences in S and the length
of these sequences is quite reasonable.

Algorithm 2 Matching Positions of a Set of Sequences

Input: A group of sequences S

Output: A list of positions to be joined

1: for all s, s′ ∈ S s.t. s 6= s′ do

2: for all positions i of s and j of s′ do

3: output whether p[i] ∼ q[j];
4: end for

5: end for

Algorithm 2 is the pseudocode that decides which
positions must be matched of a group of closed se-
quences S. To get the most specific partial order, all
the path preserving positions must be overlapped. Of
course, this algorithm must be used over each set of
closed sequences S obtained after algorithm 1, leading
to different partial orders for each (S, T). For example,
in figure 5, each poset is the result of matching all the
path preserving positions of sequences in S.

5.2 Theoretical Analysis In this section we want to
show that the partial orders obtained by the proposed
approach are indeed closed partial orders in D.

Definition 5.2. (Closed Partial Order) We say

that a partial order p is closed if there exists no

other partial order p′ with p E p′ s.t. support(p) =
support(p′).

A closed partial order is the most specific one
among all those posets compatible with the same set

of input sequences, so they are the most informative
ones. Actually, we can prove the following result.

Lemma 5.2. Given a valid pair (S, T), a partial order

obtained by matching all the path preserving positions of

sequences in S is a closed partial order.

Proof. It follows from lemma 5.1: part (1) ensures that
the generated partial order whose maximal paths are
in S is compatible with all transactions T ; part (2) of
the same lemma ensures that this partial order cannot
contain other paths not included in S, otherwise it is
not compatible with T . Then, by matching all the path
preserving positions from sequences in S we get a partial
order p such that for no other partial order p′ we have
that p E p′ and p′ compatible with T . Thus, p is closed.

Note that closed partial orders can be obtained
only by means of a set of closed sequences, that is,
from the set S of each valid pair (S, T); otherwise the
partial orders would not be closed. The set of closed
partial orders describe the input sequential data D in
the most specific way. In terms of category theory, this
process can be formalized as a coproduct transformation
when not considering repetition of items in the input
sequences (already proved in [5])

In the practice, this equivalence between groups of
closed sequences and closed partials orders represents an
important algorithmic simplification, since algorithms
such as BIDE or CloSpan or TSP are now able to
efficiently transform their patterns into closed partial
orders and we do not need to mine them directly from
the data. Note that if a minimum support condition
is specified over the closed sequences mined by those
algorithms, then the generated closed partial orders will
be also over that minimum support.

6 Further Discussions

In this section we would like to note first that the con-
tribution presented here also works when considering
simultaneity condition of input sequences, that is, when
having input sequences of itemsets, as in example of fig-
ure 7. Notice that algorithms such as CloSpan, BIDE
or TSP are already able to mine closed sequential pat-
terns when having sequences of itemsets, and grouping
those sequences in valid pairs (S, T) can be done with
the described algorithm.

Seq id Input sequences

t1 〈(AF)(D)(E)(A)〉

t2 〈(E)(ABF)(G)(BDE)〉

t3 〈(E)(A)(B)(G)〉

Figure 7: Collection of data D

387

The way of matching positions of sequences s ∈ S

for each (S, T) will be done as usual, that is, according
to definition 5.1. This definition takes care of not adding
new paths in the generated closed partial order: because
of that, the set of items of two different positions must
coincide exactly to be matched. The results obtained
from the example of figure 7 are shown in figure 8 and
figure 9.

T S

{1, 2, 3} {〈(E)(A)〉}

{2, 3} {〈(E)(A)(B)〉, 〈(E)(A)(G)〉, 〈(E)(B)(G)〉}

{1, 2} {〈(AF)(D)〉, 〈(AF)(E)〉, 〈(E)(A)〉}

{1} {〈(AF)(D)(E)(A)〉}

{2} {〈(E)(ABF)(G)(BDE)〉}

{3} {〈(E)(A)(B)(G)〉}

Figure 8: Groups of closed sequences occurring together

E

AF AE

E GA B

AF

E

D

G

E

A

B

B

ABF DBEG

AE

{ <(E)(A)(B)> , <(E)(A)(G)> , <(E)(B)(G)> }

{ <(AF)(D)(E)(A)> }

{ <(E)(A)> }

{<(AF)(D)> , <(AF)(E)> }

{ <(ABF)(G)(BDE)>}

{<(E)(A)(B)(G)>}

, ||||

E A

Figure 9: Partial orders from (S, T)

A different observation is that instead of generating
all the closed partial orders out of the closed sequences,
we may want to generate only those partial orders whose
support is over a maximum threshold. To perform this
transformation is also easy since we just need to select
those valid pairs (S, T) s.t. the number of transactions
in T is over this maximum value. We can play with
other parameters, such as the length or the structure of
the partial order.

Finally, we want to raise the discussion of how to
represent the obtained partial orders. A first approach
is to use adjacency matrices and consider that each
different node is an entry of the matrix. It is easy
to transform a group of sequences S and the list of
overlapping positions given by algorithm 2 into an
adjacency matrix. Other more visual solutions would
involve graphical representations of directed acyclic
graphs, which can certainly ease the interpretation of

the partial order made by the user. We are currently
working towards a visualization of the final partial
orders with GraphML.

7 Experimental Results

We evaluate our approach by performing experiments
on different discrete sequential databases: a first data-
base of 1000 transactions of synthetic data (we used a
context-free grammar as generative model for sequences
of words); a second database of 607 transactions corre-
sponding to the command history of a unix computer
user (downladed from the UCI repository1); and a third
database corresponding to the first chapter of the book
“1984” by George Orwell, where each different word is
considered a different item and each sentence an input
sequence. We are aware that these two real databases
are quite small; but due to our lack of a large real
dataset, we decided to perform here just a preliminary
experimentation as an overview of the first results.

Our first goal is to evaluate the number of total
closed partial orders in comparison to closed sequential
patterns, and also, to analyze the quality of those partial
orders. The process is first mining the closed sequential
patterns over a certain minimum threshold named σ (we
can use any existing algorithm), and then, organizing
the closed sequences into valid pairs, as described in
section 4. We also want to compare the performance of
these two phases.

A first set of numerical comparisons obtained with
the synthetic data are shown in table 1. We observe that
the number of closed partial orders is always less than
or equal to the number of closed sequential patterns;
moreover, as we decrease the minimum support and
we get more frequent sequences, the number of closed
partial orders gets considerabley smaller. Actually, we
generated a first set of only 1000 synthetic transactions,
to show that, even when the number of frequent sets
and closed sequences is larger than the number of
transactions, the number of closed posets never beats
this limit.

σ Frequent Seqs. Closed Seq. Closed Posets

200 31 26 26

100 114 92 92

50 520 401 92

40 850 645 224

30 1467 1108 389

Table 1: Counting of patterns for the synthetic data

The same results are shown in figure 2 using the
unix command data. Here, we forced the minimum sup-

1http://kdd.ics.uci.edu/summary.data.type.html

388

port to very low values, in order to evaluate the number
of closed sequences with respect to the total posets. We
still have that the number of closed partial orders is less
than the number of closed sequences; however, we see
this number is sometimes larger than the 607 original
transactions, making the final patterns less manageable.
Some real closed partial orders extracted from this data-
base are shown in next figure 10.

σ Frequent Seqs. Closed Seq. Closed Posets

30 277 259 259

20 1111 913 885

10 23460 1890 1565

5 37898 4778 3779

Table 2: Counting of patterns for the Unix command
database

fingerelm rm

fg

ls

cd

ls cd
cd ls ls ls exit

cd ls

elm

cd

cdls

ls

cd

Figure 10: Some partial orders obtained from the Unix
command database

In case we are dealing with unix user data, the fre-
quent closed partial orders may be later used as the
normal user profile for the intrusion detection systems
(such as proposed in [9]). However, these closed posets
may have other utilities in the field of knowledge discov-
ery depending on the context. For example, in case of
having a text (such as our second database with a text
written by George Orwell), the closed partial orders can
be used to classify subsequent texts according to a list
of authors. In the first chapter of “1984” we have a total
of 340 input sequences. We experimented with differ-
ent minimum supports, and some of the obtained closed
posets are shown in figure 11.

As mentioned, we can divide our discovery process
in two phases: a first one of finding the closed sequences,
and a second phase of obtaining valid pairs and closed
partial orders from there. We observed that the first
phase is the most I/O intensive, since it requires to ex-
amine a combinatorial number of patterns. On the other
hand, the second phase is not an intensive step: the in-
put to be examined is only the set of frequent closed

Big Brother
and

the

of

with

the

of

the of

Goldstein
of

the

Figure 11: Some partial orders obtained from the
“1984” database

sequences, and we do not require to combine those pat-
terns, just organizing them in the conceptual struture;
moreover, the operations performed to get such lattice
are simply standard operations of sets, such as inclu-
sion, intersection and so on. With small datasets, as
the ones described here, this organization takes only a
few seconds. We must point out though, that this sec-
ond phase can be more costly when considering a very
large database: in this case the tid lists are larger and
the comparisons between these lists can be more expen-
sive; however, we evaluated with synthetic data that,
regardless the length of the database, the cost of orga-
nizing closed sequences is still insignificant compared to
the first phase.

With these preliminary experiments we wanted
to show that the main profit of our proposal is the
possibility of generating classical partial orders out
of closed sequences, without dealing direclty with the
input data.

8 Related Work

The importance of mining partial order structures from
sequential data was first introduced in [11]. There,
the authors start with a slightly different data model
described as a long sequence of events; in the practice,
this long sequence can be divided in several sliding
windows, so, coinciding with the transactional model
presented here.

The basic problem defined in [11] is to find frequent
episodes, i.e. collections of events occurring frequently
together in the input sequence. Episodes are formalized
as acyclic directed graphs, so, it is equivalent to the
one presented in section 5 of this paper. Episodes can
be classified into: serial episodes (total orders), parallel
episodes (trivial orders), and finally, hybrid episodes
(indeed, general partial orders).

389

The work in [11] discusses different algorithmic
approaches for the discovery of serial, parallel and
hybrid episodes. In particular, the popular approach
called Winepi is intended to look for frequent episodes
in a Apriori fashion by sliding a window of fixed width
along the event sequence: i.e., a complete pass along the
data is used to compute the support of current episode
candidates and, after each pass, new larger episodes are
generated as long as the antimonotonicity property of
support keeps them alive. So, at the end of the process
Winepi has discovered all the frequent episodes of any
kind fitting in the window.

This mentioned algorithmic approach performs two
complex operations: first, generating new candidate
episodes out of the smaller ones, and second, recognizing
episodes in the sequence to update the support. In case
of mining dense data, and specially, when dealing with
hybrid episodes (i.e., general partial orders) or with
non-injective episodes (those having repeated items),
the algorithm incurs in a substantial runtime overhead
(see [11] for more details). Apart from this algorithmic
overhead, the number of the final discovered episodes is
quite large and many of these episodes are not the most
specific ones and they could be considered redundant:
e.g. many of the final parallel episodes may be less
informative than some of the serial episodes, and also,
many serial episodes may be less informative than the
hybrid episodes.

The proposals suggested in this paper reduce the
discovery of episodes to the most specific ones, i.e. those
which are closed. In this sense, it represents a semantic
advance of hybrid episodes, since we just consider
the most informative partial orders to summarize the
database. Moreover, we show that it is not necessary
to mine these structures directly from the data (as it is
done by the Winepi approach), but just post-processing
the closed sequential patterns. Operations done by
algorithms such as CloSpan or BIDE are less expensive
than Winepi since they just compare plain sequences,
so, the final process is less costly.

Alternatively, the work in [11] proposes also another
algorithmic approach called Minepi. In this case the
mined episodes are unbounded in length, and for the
moment, it is not clear how our proposal can improve
semantically these episodes. Another work worth men-
tioning is [10]: it presents a method based on viewing a
partial order as a generative model for a set of sequences
and it applies different mixture model techniques. The
final partial orders are not necessarily closed and so,
they could be redundant; besides, they restrict the at-
tention to a subset of partial orders called series-parallel
partial orders (such as series-parallel digraphs) to avoid
computational problems. Note that here we do not re-

strict in any sense the form of the final closed posets or
the repetition of items.

Other works worth mentioning are [2] or [6, 14], but
they deal with serial episodes more than hybrid struc-
tures as we manage here. Moreover, the difference with
respect the current proposal, is that we are considering
the discovery of episodes as a post-processing step of
closed sequences, more than a direct discovery from the
original data.

9 Conclusions

We have presented the notion of closed partial orders
compatible with input sequences of itemsets. We show
that this is a general data model that can be adapted
to long sequences of events as well. By definition, these
orders are the most informative ones for a set of maximal
transactions and they provide a more compact overview
of the input data. As a main contribution, we show that
these closed partial orders can be derived simply from
the closed set of sequences mined by existing algorithms.

In the practice, this transformation implies that go-
ing beyond closed partial orders once we have the closed
sequential partterns is not costly. So, current algorithms
can efficiently transform the discovered patterns into
closed partial orders; thus, avoiding the complexity of
mining these structures directly from the data. First ex-
periments show that postprocessing closed sequences is
not a costly phase, so that the real profit of the proposal
is in the ability to generate closed partial orders with-
out accessing the input data, more than the reduction
in the number of patterns.

Yet there is still the work of formalizing the match-
ing process of closed sequences into a partial order. We
mentioned that in case of not having repetition of items
in the input sequences, this process can be formalized
by means of coproduct operations of category theory (as
it shows [5], where also the necessary closure system of
partial orders is characterized). The next step is to do
this formalization for the general data model, that is,
when having repetition of items and simultaneity. We
are currently working towards this characterization by
means of colimit operations of category theory.

Other further work includes the study of implica-
tions or association rules of partial orders. Given that
implications among closed sequential patterns are al-
ready formalized, it is reasonable to go further and find
a similar characterization for these closed partial orders.

Acknowledgements: The author thanks José L.
Balcázar for his useful discussions and comments, and
also Pablo Dı́az-López for helping with the implemen-
tations and experiments.

390

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns.
In Eleventh International Conference on Data Engi-

neering, pages 3–14. IEEE Computer Society Press,
1995.

[2] M.J. Atallah, R. Gwadera, and W. Szpankowski. De-
tection of significant sets of episodes in event sequences.
In Proceedings of the 4th International Conference on

Data Mining, pages 3–10, 2004.
[3] J.L. Balcázar and G. Casas-Garriga. On Horn axiom-

atizations for sequential data. In Proceedings of the

10th Int. Conference on Database Theory, pages 215–
229, 2005.

[4] G. Casas-Garriga. Towards a formal framework for
mining general patterns from structured data. In
Workshop Multi-relational Datamining, in KDD Int.

Conf, pages 215–229, 2003.
[5] G. Casas-Garriga and J.L. Balcázar. Coproduct trans-

formations on lattices of closed partial orders. In Pro-

ceedings of 2nd. Int. Conference on Graph Transforma-

tion, pages 336–351, 2004.
[6] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and

J. Kärkkäinen. Episode matching. In Proceedings of

the 8th Annual Symposium on Combinatorial Pattern

Matching, pages 12–27, 1997.
[7] B.A. Davey and H.A. Priestly. Introduction to Lattices

and Order. Cambridge, 2002.
[8] B. Ganter and R. Wille. Formal Concept Analysis.

Mathematical Foundations. Springer, 1998.
[9] W. Lee, S.J. Stolfo, and K. Mok. A data mining

framework for building intrusion detection models. In
Proceedings of the IEEE Symposium on Security and

Privacy, pages 120–132, 1999.
[10] H. Mannila and C. Meek. Global partial orders from

sequential data. In Proceedings of the 6th Int. Con-

ference on Knowledge Discovery in Databases, pages
161–168, 2000.

[11] H. Mannila, H. Toivonen, and A.I. Verkamo. Discov-
ering frequent episodes in sequences. Data Mining and

Knowledge Discovery, 1(3):259–289, 1997.
[12] N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal.

Closed set based discovery of small covers for associa-
tion rules. In Proceedings of the 15th Int. Conference

on Advanced Databases, pages 361–381, 1999.
[13] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,

U. Dayal, and M. Hsu. PrefixSpan: mining sequential
patterns by prefixprojected growth. In Proceedings of

the 17th Int. Conference on Data Engineering, pages
215–224, 2001.

[14] Z. Tronicek. Episode matching. In Combinatorial

Pattern Matching, pages 143–146, 2001.
[15] P. Tzvetkov, X. Yan, and J. Han. TSP: Mining top-k

closed sequential patterns. In Proceedints of the 3rd

IEEE International Conference on Data Mining, pages
347–358, 2003.

[16] J. Wang and J. Han. BIDE: Efficient mining of
frequent closed sequences. In Proceedings of the 19th

Int. Conference on Data Engineering, pages 79–90,
2003.

[17] X. Yan, J. Han, and R. Afshar. CloSpan: Mining
closed sequential patterns in large datasets. In Proceed-

ings of the Int. Conference SIAM Data Mining, pages
166–177, 2003.

[18] M. Zaki. Generating non-redundant association rules.
In Proceedings of the 6th Int. Conference on Knowledge

Discovery and Data Mining, pages 34–43, 2000.
[19] M. Zaki. SPADE: An efficient algorithm for mining

frequent sequences. Machine Learning Journal, special

issue on Unsupervised Learning, 42(1/2):31–60, 2001.

391

SUMSRM: A New Statistic for the Structural Break Detection in Time Series

Kwok Pan PANG and Kai Ming Ting

Gippsland School of Computing and Information Technology
Monash University, Victoria 3842, Australia

Email : {ben.pang, kaiming.ting}@infotech.monash.edu.au,

Abstract. Structural break is one of the important concerns
in non-stationary time series prediction. The cumulative sum
of square (CUSUMS) statistic proposed by Brown et al
(1975) has been developed as a general method for detecting
a structural break. To better understand CUSUMS, this paper
analyses the relationship among the bias of the break location
estimation, pre-break data size and the decay rate of square
residual. Our analysis reveals that small pre-break data size
or low decay rate will greatly increase the bias of the break
location estimation when there is a change of the mean.
Based on the analysis, the paper proposes a new statistic
SUMSRM to improve the performance of structural break
detection and to reduce the bias of break location estimation.
Our empirical evidence confirms that our intended design of
the new statistic performs better than the CUSUMS statistic
when there is a change of mean in the time series.

1. Introduction
In forecasting time series, ignoring structural breaks which
often occur in the time series significantly reduces the
accuracy of the forecast (Pesaran and Timmermann, 2003).
Since the classical Chow test (1960) was developed, the past
decade has seen considerable empirical and theoretical
research on structural break detection in time series.
Cumulative Sum of Recursive Residual (CUSUM) and
Cumulative Sums of Square (CUSUMS) statistics (Brown et
al. 1975) have been developed as general methods for single
structural break detection. Kramer and Schotman (1992)
proposed a modified statistic from CUSUM; the structural
change is detected based on the range of the CUSUM rather
than the maximum point of the absolute value of CUSUM.
Chu et al (1995) proposed a test for the structural change
based on the moving sums (MOSUMS) of the recursive
residual. Inclan and Tiao (1994) used the CUSUMS for
multiple structural breaks detection. Pesaran and
Timmermann (2002) proposed Reverse CUSUM for
detecting the most recent break. They showed that the
accuracy of the forecast can be improved only if the data
after the most recent break is selected as the training set,
instead of using all available data for training in the time
series which contains structural breaks. Pang and Ting (2003)
further extended the idea of Reverse CUSUM and proposed a
data selection method for time series prediction: all segments
that have the same structure as the most recent segment will
be grouped together to form an accumulated segment to be
used as the new training set. Further, Pang and Ting (2004)

provided an analysis about the centered version of CUSUMS.
Their analysis reveals that the structural break detection
performance can be improved if we can increase the pre-
break data size or decrease the post-break data size, resulting
a modified Centered CUSUMS that overcome the existing
weakness.

This paper first analyses Centered CUSUMS by examining
the relationship among the pre-break data size, decay rate of
square residual and the bias of the structural break estimation.
The analysis shows that small pre-break data size or low
decay rate will increase the bias of the break location
estimation when there is the structural change of mean or
trend. The decay rate of square residual is defined as the
change rate of the Centered CUSUMS, decay rate = (square
residual at time b - square residual at time a)/(b-a), where
b>a. Then, it proposes a new statistic SUMSRM by using
square deviation about the median and the sliding window
prediction residual. Our analysis shows that the square
deviation about the median has higher sensitivity to the
structural change compared with the square deviation about
the mean used in Centered CUSUMS. The analysis also finds
that the sliding window prediction residual can provide a
higher decay rate than recursive residual. The empirical
evidence shows that the proposed statistic can effectively
improve the break detection, and eliminate the bias of the
break location estimation, especially when there is a mean
change. In the paper, we evaluate the performance of the
proposed statistic when there are structural changes with
single or multiple breaks.

Section 3 briefly describes the background of the Centered
CUSUMS. We present the bias analysis for the Centered
CUSUMS in section 4, and the new statistic SUMSRM is
proposed in section 5. The experiments and results are
reported in section 6.

2. Structural change
The parameters of the predictive model are assumed to be
consistent and constant over time. If these conditions cannot
be met, it is said that the structural change has occurred in
the time series.

Let us take a linear regression as an example. Suppose a time
series can be explained by:

392

ttttt xy εσβ += , where)1,0(~ Ntε
The time series is regarded to have “no structural change” if
the parameters tβ and tσ are constant and consistent over
time.

3. Background of CUSUMS
Let y1, y2,….yn be the time series under consideration. We
first convert the series into input and output pairs to be used
for ordinary linear regression.

The basic linear regression model we used is having the
output ty with k input variables:

ktkttt yyyy −−− ++++= λλλλ ...22110 .

We use the following notation to denote the observation
matrices nmY , and nmX , which consist of n observations in
the time series.

Ym,n =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

n

m

m

y

y
y

...

...
1 ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k

n

λ

λ
λ

β
..
..

1

0

 and

Xm,n=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

n

m

m

x

x
x

.

.
1 =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−−

−−−−−

knnn

kmmm

kmkmmm

yyy

yyy
yyyy

...
............
............

...
..

1
..
..
1
1

21

132

221

where m < n, and the nmm xxx ,...,1, + are the row vectors.

Using the observations as the training data, the least square
coefficients nβ can be estimated by

nnnnn YXXX ,1
/
,1

1
,1

/
,1)(ˆ −=β .

The CUSUM and CUSUMS statistics (Brown et al 1975) are
defined as follows. The CUSUM statistic is based on the
standardized recursive residual rw :

rrrrr dxyw /)ˆ(1−−= β , r = 2k+1,…,n-1,n (1)
where

rrrrr YXXX ,1
/
,1

1
,1

/
,1)(ˆ −=β (2)

/1
,1

/
,1)(1 rrrrr xXXxd −+=

The CUSUMS is defined in terms of rw :

,r =2k+1,…,n-1,n (3)

∑

∑

=

== n

i
i

r

i
i

r

w

w
s

1

2

1

2

The Centered CUSUMS is defined as:

, r =2k+1,…,n-1,n (4) n

r

w

w
s n

i
i

r

i
i

nr −=

∑

∑

=

=

1

2

1

2

*
,

Note that *

,nrs has zero mean.

The test statistic for structural break detection is:

*
,max

2 nrr
snT =

The estimated break location, if T is above a critical value
(for a specific confidence level), is defined as:

*
,maxargˆ nr

r
sr =

Under variance homogeneity, Inclan and Tiao (1994) show
that *

,nrs behaves like a Brownian Bridge asymptotically.

Pang and Ting (2004) show that small post-break data size or
large pre-break data size can improve the structural break
detection performance, and they propose the modified
Centered CUSUMS statistic as follows:

, where nnr ≤≤ 1 1

1

2

1

2

0 11
1 2

max
n
r

w

w
nMT n

i
i

r

i
i

i

nrn −=

∑

∑

=

=

≤≤

The estimated break location will be obtained by:

, where nnr ≤≤ 1

1

1

2

1

2

0 1
1 2

maxargˆ
n
r

w

w
nr n

i
i

r

i
i

i

nr
−=

∑

∑

=

=

≤≤

In the modified Centered CUSUMS statistic, we will use an
adjustable data size n1 instead of data size n. n1 is always
within the range nnr ≤≤ 1 , and it is not fixed.

1nMT will be
optimized by selecting an appropriate n1. As *

, 1nrS behaves
like the Brownian Bridge asymptotically, we can use the
same critical value for the specified n1 that are tabulated in
Inclan and Tiao (1994).

393

4. Bias analysis for the Centered CUSUMS
In this section, we concentrate on analyzing the bias of the
break location estimation when changing the parameter β
or σ . We will split the analysis into two parts: (a) change
of tβ and (b) change of tσ , after we show the effect of a
step change of the Centered CUSUMS below.

The Centered CUSUMS in (4) can be rewritten as

C(r) =

⎟
⎠

⎞
⎜
⎝

⎛
−∑

=

rVw
nV

r

i
i

1

21

where ∑
=

=
n

i
i nwV

1

2 /)(can be interpreted as the average of

the square residual.

The step change of the Centered CUSUMS can be written as:

()Vw
nV

rCrC r −=−− 21)1()((5)

It shows that the change of the Centered CUSUMS can be
explained using the difference between the value of the
square residual and the average square residual value. If

Vwr >
2 , the Centered CUSUMS will increase at time r.

However, if Vwr <
2 , the Centered CUSUMS will decrease at

time r.

(a) The bias of the break location estimation when there

is a change of tβ
We suppose the time series is composed of two segments.
We assume the variance 2

tσ is constant over the time, and

only the mean or the trend tβ changes.

 Aβ t = 1,2,…,r

=tβ

{
Bβ t = r+1, r+2, …., n

where BA ββ ≠

Based on the above structural change, we generate the square
residual plot (the square of the recursive residual vs. time) in
figure 1. It produces the peak at t = r+1, and a downward
slope after the peak. Then we take the average of the square
of the recursive residual (i.e. the horizontal dotted line in
figure 1).

Figure 1: square residual vs.
time (when the mean or the
trend change)

Figure 2: the Centered
CUSUMS (when the mean
or trend changes)

Based on the equations (4) and (5), we convert the square
residual to the Centered CUSUMS, and produce the plot of
the Centered CUSUMS in figure 2. The value of the
Centered CUSUMS starts to decrease until it reaches the
minimum point at t = r. Then the value of Centered
CUSUMS starts increasing until t = h, and the value
decreases after t = h.

After taking the absolute value to the Centered CUSUMS,
the estimated break location can be determined by :

Break point =

r when)()(hCrC ≥

 { h when)()(hCrC <

Let us consider the first condition)()(hCrC ≥

⎟
⎠

⎞
⎜
⎝

⎛
−≥⎟

⎠

⎞
⎜
⎝

⎛
−⇒≥ ∑∑

==

hVw
nV

rVw
nV

hCrC
h

i
i

r

i
i

1

2

1

2 11)()(

hVwrVw
h

i
i

r

i
i −≥−⇒ ∑∑

== 1

2

1

2

As C(h) > 0 and C(r)<0, the above formula can be rewritten
as :

⎟
⎠

⎞
⎜
⎝

⎛
−≥⎟

⎠

⎞
⎜
⎝

⎛
−⇒≥ ∑∑

==

hVwwrVhCrC
h

i
i

r

i
i

1

2

1

2)()(

hVwwwrV
h

ri
i

r

i
i

r

i
i −+≥−⇒ ∑∑∑

+=== 1

2

1

2

1

2

VrhwwrV
h

ri
i

r

i
i)(22

1

2

1

2 −−≥−⇒ ∑∑
+==

())()(22
1

2 rChCnVwrV
r

i
i −≥−⇒ ∑

=

Using the similar approach for the second condition, we can
write it as:

())()(22)()(
1

2 rChCnVwrVhCrC
r

i
i −<−⇒< ∑

=

394

Based on the above analysis, a bias estimate of the break
location, instead of r, will be introduced when

())()(22
1

2 rChCnVwrV
r

i
i −<⎟
⎠

⎞
⎜
⎝

⎛
− ∑

=

The bias of the break location estimation can be reduced by
the following two factors:

(i) Pre-break data size
(ii) Decay rate of square residual after the break.

If the pre-break data size is large enough, then

())()(22
1

2 rChCnVwrV
r

i
i −≥− ∑

=

, and the estimated break

location is expected to be r. Unfortunately, it is not possible
to increase the pre-break data size in many situations.
Increasing the decay rate is the other way to eliminate the
bias of the break location estimation by forming a steeper
slope after the break, which makes the value h closer to the
value r.

In order to increase the decay rate, we propose to use sliding
window prediction residual instead of the recursive residual.
More details will be discussed in section 5.2.

b) Break location estimation when there is a change of

tσ
We suppose the time series are composed of two segments.
We assume the mean or trend tβ is constant over the time

and only the variance 2
tσ changes.

Aσ t = 1,2,…,r

=tσ

{

Bσ t = r+1, r+2, …., n

Where: BA σσ ≠

Based on the above structural change, let us consider the
situation : BA σσ < . Its square residual plot (the square of
the recursive residual vs. time) is indicated in figure 3. The
square residual plot consists of two horizontal lines. The
lower horizontal line represents the square residual of the
first segment, and the upper horizontal line represents the
square residual of the second segment. The average of the
square of the recursive residual is shown as the horizontal
dotted line in figure 3.

Based on the equations (4) and (5), we convert the square
residual to the Centered CUSUMS, and produce a plot of the
Centered CUSUMS in figure 4. The value of the Centered
CUSUMS starts to decrease until it reaches the minimum

point at t = r. Then the value starts increasing until t = n. The
estimated break location = r will be determined after taking
the maximum absolute value of the Centered CUSUMS.

It is interesting to note that the square residual after the break
point (t = r) keeps constant and all stay above the average of
the square residual. The estimated break location is thus
expected to be at t = r. We have provided the evidence to
show that changing the pre-break data size or the decay rate
won’t make any alternation on the bias of the break location
estimation.

Same approach can be applied into the situation BA σσ > .
The bias of break location estimation won’t be affected by
the change of the variance.

Figure 3: square residual vs.
time (when the variance
change)

Figure 4: the Centered
CUSUMS (when the variance
changes)

5. A new statistic
Based on the above analysis, the paper proposes a new
statistic using the square deviation about the median and
sliding window prediction residual. The details of discussion
are listed in the followings.

5.1 Square deviation about the median
Let us consider the mean of square deviation about the
parameter θ

2

22

22

22

)()(
))((]))([(

}])([])()][([2)]({[
]))()([(])[(

BiasxVar
xExExE

xExExExxExE
xExExExE

+=

−+−=

−+−−+−=

−+−=−

θ

θθ

θθ

Note that the Bias here refers to the bias the residual
estimation, which is different from the bias of the break
location estimation discussed in the previous sections.

If we let mean=θ , square deviation about the mean will be
exactly the same as the var(x). If we let Median=θ , the
Median will be approximately equal to the E(x) when x is
symmetrically distributed and when the data size is large
enough. However, when the structure changes, the median

395

starts to deviate from E(x). It is found that the structural
change intensifies the bias, which leads to larger value of
square deviation about the median. There is an implication
that the square deviation about the median is more sensitive
to the structural change (i.e. change of the mean or trend)
comparing with the square deviation about the mean. For
instance, we let x be the residual. The mean of residual is
always assumed to be zero in the ordinary linear regression.
The square deviation for the residual will be the same as the
sum of square residual no matter the structural change occurs
or not. However, if we use the square deviation about the
median, we expect the difference between the value of square
deviation about the median and square deviation about the
mean will be small if no structural change occurs, and the
difference will be enlarged if the structure changes

5.2 Sliding window prediction residual
We propose to use the sliding window prediction residual
instead of the recursive residual because the sliding window
prediction can increase the decay rate. When using the
sliding window approach, only the windows that cover the
break point will be affected by the structural change.
Suppose the data size of the time series is n, the size of slide
window is m and the break is located at c. If we use the
recursive residual, all prediction residual after point c will be
affected by the structural change. However, if we use the
sliding window prediction residual instead, only the
prediction residuals },{ mcicwi +≤≤ will be affected by
the structural change. That means less data or residual will be
affected by the structural change when using sliding window
prediction residual. It also implies that higher decay rate (i.e.
the slope after the peak become steeper in the square residual
plot) is obtained.

The sliding window prediction residual can be described as
figure 5. For each window, the size of the each window (p)
is fixed. The prediction residuals are obtained by using
sliding window. All data in the window will be used as
training set to train the model, and then we use the trained
model to make a one step ahead prediction. After obtaining
the prediction residual, we slide the window one step ahead
to make the next prediction residual. This approach is
different from the Centered CUSUMS which adopts the
recursive residual.

Figure 5 : Sliding window prediction residual

5.3. SUMSRM statistic
As mentioned in section 5.1, when the structure changes, the
square deviation about the median increases as the bias of the
expected residual estimation increases. Also, using the slide
window prediction residual, instead of the recursive
prediction residual, will increase the decay rate of square
residual after the peak caused by the structural change. We
propose a new statistic by combining these two ideas and the
main idea from the modified Centered CUSUMS, searching
for an appropriate post-break data size for structural break
detection. Empirical evidence from Pang and Ting (2004)
has shown that large post-break data size weakens the
structural break detection performance, so it is important to
select appropriate post break data size. We call the new
proposed statistic “Sum of Square Sliding Residual about the
Median” (SUMSRM).

Suppose the time series },...,2,1),,{(ntyx tt = , where tx is

the row vector,),...,,(21 ktttt yyyx −−−= and p is the size of
each sliding window.

The SUMSRM test statistic for the break detection is:

1
1

1 ,0
max nrpnrn DS

−≤≤
= , pnpnr −≤−≤ 1

where

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
=

∑

∑
−

=

=

pn
rpnD pn

i
i

r

i
i

nr
1

1

2

1

2

1
, 11 2 γ

γ , pnpnr −≤−≤ 1

i

ii
i d

Med)(−
=

εγ ,

 /1
1,

/
1,)(1 iipiipiii xXXxd −

−−−−+= , i = p+1, p+2,…,n

396

iε is the prediction residual of the ith slide window:
=iε iii xy β

)
− , i = p+1,p+2,…,n

iMed is the median of the ith window training set residual:

)(1,1, iipiipii XYMedianMed β
)

−−−− −= , i = p+1, p+2,…,n

If

1nS is above the critical value for the adjusted data size n1 ,
the estimated break location is defined as

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
+=

∑

∑
−

=

=

−≤≤ pn
rpn

rgapk pn

i
i

r

i
i

pnr 1

1

2

1

2

1

0 1
1 2

maxˆ

γ

γ , pnpnr −≤−≤ 1

The parameter β of each sliding windows can be obtained by:

1,
/

1,
1

1,
/

1,)(−−−−
−

−−−−= ipiipiipiipii YXXXβ
) , i = p+1, p+2,…,n

We assume that the residual is normally distributed. Based
on this assumption,

1,nrD behaves like the Brownian Bridge
Asymptote, and its proof is shown in the appendix A.
According to the above statistic, the critical value at different
data size and window size are estimated through the
simulation. The critical value tables are shown in the
appendix B. For the simulation, we use a Gaussian random
walk with varied data size and varied window size to
approximate the wiener process and replicate 10000 times
with different seeds.

6. Experiment
We divide the experiments into two sections. The first
section of our experiments is designed to verify the analysis
conducted in section 4, showing the relationship between the
pre-break data size and the bias of the break location
estimation. The second section aims to evaluate the
performance of the SUMSRM test statistic when single break
or multiple breaks exist. In the experiments, we use the
significant level α at 0.01 for the statistical test. The
performance will be measured in terms of (a) accuracy, (b)
mean of square deviation, (c) estimated bias and (d) mode of
the estimated break location. We define the first three
measures below.

(a) Accuracy is the percentage of correct classification.
Every predicted break location falls into one of the following
categories:

(i) Correct Classification: If the estimated break

location is within the
boundary (i.e. actual break

location 10±), we classify it
to be correct classification.

(ii) Incorrect Classification: If the estimated break

location is outside the
boundary (i.e. actual break
location 10±), we classify it
to be incorrect classification.

(b) Mean of Square Deviation (MSD) is defined as:

v

Actbb
MSD

v

i
ii∑

=

−
= 1

2)ˆ(

where

b̂ is the estimated break location, Actb is the actual break
location which is the nearest break point to the estimated
break location, and v is the number of simulation used in the
experiment.

(c) The bias of the estimated break location (EB) is defined
as:

Estimated Bias (EB) =
v

Actbb
v

i
ii∑

=

−
1

)ˆ(

As some simulated time series data with the structural
change cannot be detected in some cases (i.e. the estimated
break location will be defined as zero when the series with
the structural change cannot be detected), these undetected
observations may make EB generate the misleading
measurement. Therefore, we mainly use the mode of the
estimated location for measuring the bias of estimated break
location, and EB is used for the reference.

For each experiment, we simulate the series 3000 times with
different seeds, and we report the average performance over
3000 runs. In the experiments, we specify the number of
input variables to be 3, and the size of each sliding window
to be 40.

6.1 Validating the analysis result for the Centered

CUSUMS
This experiment aims to validate the relationship between the
pre-break data size and the bias of the break point estimation
when the mean or variance changes. The procedure is
described in the following.

Procedure

1. Two single break time series are designed to
evaluate the break point estimation, as shown in the

397

table 1. The first time series is designed for the
mean change, and the second one is for the variance
change. Both series have the pre-break data size 300,
and post break data size 300. We specify σ to be
0.2 for both segments in the first series, and in the
second series, σ is specified to be 0.5 and 2.0
respectively for the first and second segment of the
second series. We record their break detection
performance and break location estimation.

2. We use the same time series as in (1), but the pre-

break data size is reduced to 100 (the post-break
data size remains the same). We record their break
detection performance and break point estimation,
and then compare the result with (1).

Table 1. Description of the two single-break series (when

mean or variance changes): each series is
composed of two segments. The whole sequence
of the series is }600,...,2,1,{ =tyt

Category
of the
structural
change

Segment 1
}300,...,2,1,{ =tyt

Segment2

}600,...,302,301,{ =tyt

Mean
change ,1.03.0

6.020

132

1

ttt

tt

yy
yy

εσ++
++=

−−

−

2.01 =σ
,1.03.0

6.030

132

1

ttt

tt

yy
yy

εσ++
++=

−−

−

2.01 =σ
Variance
change ,1.0

3.06.0

23

21

tt

ttt

y
yyy

εσ+
++=

−

−−

5.02 =σ
,1.0

3.06.0

33

21

tt

ttt

y
yyy

εσ+
++=

−

−−

23 =σ .0

Experiment Results
The results are summarized as follows:

The effect of Pre-break data size to the estimation of
the break location (when the mean changes).
As shown in figures 6a and 6b, the result shows the bias of
the break location estimation is affected by the pre-break
data size. When the pre-break data is 300, the mode of the
estimated break location is 300 that is exactly the same as
the actual break location. However, when we reduce the
pre-break data size to 100, we find the mode of estimated
break location is 122 and the estimated bias of break
location is 21.7 where the actual break location is 100. The
bias of estimate break location is increased to 22 after
reducing the pre-break data size.

The effect of the pre-break data size to the estimation
of the break location (when the variance changes)
As shown in figures 7a and 7b, the result shows that pre-
break data size has a small impact on the bias of the break

location estimation. When the pre-break data size is 300,
the mode of the estimated break location is 300 that is
exactly same as the actual break location. When we reduce
the data size to 100, the mode of the estimated break
location is 100 that is also the same as the actual break
location.

Figure 6a : The distribution
of the estimated break
location (change of mean
with the pre-break data size
=300)

Figure 6b : The distribution
of the estimated break
location (change of the mean
with the pre-break data size
=100)

Figure 7a: the distribution of
the estimated break location
(change of variance with the
pre-break data size =300)

Figure 7b: the distribution
of the estimated break
location (change of variance
with the pre-break data size
=100)

6.2 Evaluating the effectiveness of the proposed
statistic
The following experiment is designed to evaluate the
performance of the proposed statistic and compare it with the
traditional Centered CUSUMS and the modified Centered
CUSUMS statistics when single break or multiple breaks
exist.

6.2.1 Time series with a single break
The experiment is designed to evaluate the performance of
the proposed SUMSRM statistic for the time series in which

398

a single break exists. In the experiment, we will use the same
time series as in the experiment in section 6.1 with the pre-
break data size 100 and post break data size 300. We record
the break detection performance and break point estimation
using the traditional centered CUSUMS, modified centered
CUSUMS and SUMSRM statistic.

Experiment Results
The results are summarized as follows:

- As shown in figure 8a, when the mean changes, the

SUMRM significantly reduces the bias of the break
location estimation. The result clearly shows that the
SUMSRM statistic outperforms the traditional Centered
CUSUMS and the modified Centered CUSUMS, and is
significantly better in all four performance measures.
The difference between the mode of estimated break
location and actual break location is reduced from 22 to
4 after switching to SUMSRM from the traditional
Centered CUSUMS or modified Centered CUSUMS.

- As shown in figure 8b, when variance changes, the
SUMSRM statistic performs better than the traditional
Centered CUSUMS, but is slightly worse than the
modified Centered CUSUMS, in terms of the percentage
of correct classification and MSD. Also, the modes of
the estimated break location derived by those three
selected statistics are almost identical, and they are the
same or almost the same as the actual break location.

Fig 8a : Comparison of the break detection performance using
traditional Centered CUSUMS, modified Centered CUSUMS
and SUMSRM statistics (the change of mean with pre-break
data size =100)

Fig 8b : Comparison of the break detection performance using
traditional Centered CUSUMS, modified Centered CUSUMS
and SUMSRM statistics (the change of variance with pre-break
data size =100)

6.2.2 Time series with multiple breaks
This part of the experiments is to evaluate the performance of
the SUMSRM statistic for the time series with multiple
breaks when the mean or the variance changes. It also
examines whether the SUMSRM can still detect any one of
the structural changes and whether the estimated break
location still falls into the acceptable range of break location.
The time series is composed of 7 segments {seg1, seg2,…,
seg7}. The characteristics of the series with the change of
mean and variance are described in tables 2 and 3
respectively.

Table 2: Descriptions of 7 segment series with the change of

mean: the sequence of the series is {seg1, seg2, seg3,
seg4, seg5, seg6, seg7}. The length of each segment
is specified to be 100, and the initial value of the
series are specified as: y1= y2= y3= 1. The
distribution of tε is)1,0(~ Ntε .

seg1, seg3, seg5, seg7 seg2, seg4, seg6

,1.03.0
6.020

132

1

ttt

tt

yy
yy

εσ++
++=

−−

−

2.01 =σ
,1.03.0

6.030

132

1

ttt

tt

yy
yy

εσ++
++=

−−

−

2.01 =σ

399

Table 3: Description of 7 segment series with the variance
change: the sequence of series is {seg1, seg2, seg3,
seg4, seg5, seg6, seg7}. The length of each
segment is specified to be 100, and the initial
value of the series are specified as: y1= y2= y3= 1.
The distribution of tε is)1,0(~ Ntε

seg1, seg3, seg5, seg7 seg2, seg4, seg6

,1.0
3.06.0

123

21

tt

ttt

y
yyy

εσ+
++=

−

−−

5.02 =σ
,1.0

3.06.0

33

21

tt

ttt

y
yyy

εσ+
++=

−

−−

0.23 =σ

Experiment Result
The results are summarized as follows:

The performance of the three statistics in the multiple-
break time series when the mean changes.
As shown in table 4a, the SUMSRM statistic outperforms
the traditional Centered CUSUMS and the modified
Centered CUSUMS. The SUMSRM obtains 100% correct
classification rate and has the smallest bias of the
estimated break location in terms of the estimated bias and
the mode among three statistics. A large bias of the
estimated break location has been observed in the
experiment using the traditional Centered CUSUMS.

The performance of the three statistics in the multiple-
break time series when the variance changes.
As shown in table 4b, all three statistics perform
comparably in this experiment. While Modified Centered
CUSUMS performs the best in terms of the correct
classification; Centered CUSUMS is the best in terms of
estimated bias; SUMSRM is the best in terms of MSD.
Nevertheless, the differences are small.

Table 4a: Comparison of the break detection performance

among the Centered CUSUMS, the modified
Centered CUSUMS and the SUMSRM statistic
when the mean changes in the time series with the
multiple breaks. The actual break location are :
100, 200, 300, 400, 500 and 600.

Traditional
Centered
CUSUMS

Modified
Centered
CUSUMS SUMSRM

mode 213 101 100
Correct
Classification 13.5% 100% 100%
Estimated
Bias 11.8 1 0

MSD 145.5 1 0

Table 4b: Comparison of the break detection performance
among the Centered CUSUMS, the modified
Centered CUSUMS and the SUMSRM statistic
when the variance changes in the time series with
the multiple breaks points. The actual break
location are: 100, 200, 300, 400, 500 and 600.

Traditional
Centered
CUSUMS

Modified
Centered
CUSUMS SUMSRM

mode 600 100 100
Correct
Classification 92.7% 95.2% 93.7%
Estimated
Bias -0.4 2 0.8

MSD 36 35 33

8. Conclusions

This paper makes the following contributions in the
structural break detection and break location estimation.

- It provides a better understanding on how the pre-
break data size and the decay rate of square residual
affect the bias of the break location estimation in
CUSUMS. Large pre-break data size and high decay
rate of the square residual can effectively reduce the
bias of the structural break location estimation.

- We identify a key weakness of the CUSUMS

statstic: high bias of the break location estimation.
We proposed a new statistic SUMSRM which has a
low bias.

- Our experimental results show that the proposed

SUMSRM statistic can effectively minimize the
bias of the break location estimation and provide
better structural break detection performance when
there is a change of mean in the time series with
single or multiple breaks. This result confirms our
claim about the SUMSRM statistic - using the
square deviation about the median and sliding
window prediction residual can improve the break
detection performance and eliminate the bias of the
break location estimation.

- SUMSRM significantly outperforms the Centered

CUSUMS and modified Centered CUSUMS, when
there is a structural change of mean with a single
break or multiple breaks in all four performance
measures.

400

- Empirical experiments have demonstrated that when
there is a structural change of variance in the time
series with single or multiple breaks, the SUMSRM
and modified Centered CUSUMS outperform the
Centered CUSUMS. Both SUMSRM and modified
Centered CUSUMS can improve the structural
break detection by selecting appropriate post break
data size.

- When there is a variance change in the time series

with single or multiple breaks, SUMSRM performs
a bit less satisfactory than the modified Centered
CUSUMS. Sliding window approach cannot help
SUMSRM to improve the structural break detection
in this situation. As mentioned in sections 4b and
5.2, sliding window approach can help increase the
decay rate. However, empirical evidence has shown
that the decay rate has no relationship with the bias
of the break location estimation when a variance
change occurred in the time series. Besides, sliding
window approach adopted by SUMSRM generates
fewer pre-break prediction residuals and thus
resulted in less satisfactory performance. This result
can be supported and explained by our previous
research analysis (Pang and Ting 2004) which
clearly demonstrates that fewer pre-break data size
(number of pre-break residual) will weaken the
structural break detection performance, especially
when the data set with small pre-break data size is
used.

Appendix A: Proof of the proposed statistics
SUMSRM having the Brownian asymptotes.

The notion below will be used in the following proof.

⎯→⎯p : Probability Convergence
⎯→⎯D : Distribution Convergence

W : Brownian Motion
oW : Brownian Bridge

Let])[()(22

ttttt MwEMw −−−=ξ , t = p+1, p+2,…., n

Let i = t –p, then

])[()(22
iiiii MwEMw −−−=ξ , i =1,2,3,…,n-p

])[()[()(22

iiii MwEMwEE −−−=ξ

0

])[(])[(22

=
−−−= iiii MwEMwE

]})[(){()(22

iiiit MwEMwVarVar −−−=ξ

])[(

0])[(
2

2

ii

ii

MeVar

MwVar

−=

−−=

when data size for median is large enough, 2~ χξ
distribution.

Let 22])[(ψσ=− ii MeE
])[(22])[()(222

iiiii MeEMeVarVar −===−= ψσσξ
where])[(2

ii MeE
t
− is the mean of square deviation from the

median; ie is the residual,),0(~ 2σNe

Let =−)(tX pn

1])[(

])[(

0)(
1]))[()((

)(
1

+−

−

= −
−−−+

−
∑ tpn

tpn

i
i pn

tpntpn
pn

ξ
σ

ξ
σ

where t, 10 ≤< t

Based on the Donsker’s Theorem (Billingsley 1968 Theorem

10.1) , WX
d

n → ,

and based on the theorem 5.1 of Billingsley (1968), so

oD
nn WtXtX ⎯→⎯−)}1()({

then

∑

∑
−

=

+−

−

=

−−

−

−
−

−−−+
−

=−

pn

i
i

tpn

tpn

i
i

pnpn

pn
t

pn
tpntpn

pn

tXtX

0

1])[(

])[(

0

1]))[()((
)(

1

)1()(

ξ
σ

ξ
σ

ξ
σ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= ∑∑

−

=

−

=

pn

i
i

tpn

i
i t

pn 0

])[(

0

1 ξξ
σ

1])[(

1]))[()((+−−
−−− tpnpn

tpntpn ξ
σ

= +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−
− ∑∑

−

=

−

=

pn

i
i

tpn

i
i pn

tpn
pn 0

])[(

0

)(1 ξξ
σ

1])[(

1]))[()((+−
−

−−− tpnpn
tpntpn ξ
σ

Let the integer r = (n-p)t, then

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=− ∑∑
−

==
−−

pn

i
i

r

i
ipnpn pn

r
pn

tXtX
00

1)1()(ξξ
σ

1

1]))[()((+−
−

−−− pnpn
tpntpn ξ
σ

401

When ,∞→n

01]))[()((lim 1

p

pnn pn
tpntpn →

−
−−− +−∞→

ξ
σ

 and

0)1()(WtXtX pnpn →− −−

According to the theorem (Billingsley theorem 4.1, p.25), it
shows that:

If XX
D

n → and distance 0),(
p

nn YX →ρ then XY
D

n →

Therefore,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=− ∑∑
−

==
−−

pn

i
i

r

i
ipnpn pn

r
pn

tXtX
00

1)1()(ξξ
σ

substitute])[()(22

iiiii MedianeEMediane −−−=ξ and
22 2 ψσσ = into above equation.

=− −−)1()(pnpn tXtX

−−−−
− ∑

=

r

i
iiii MedianeEMediane

pn 0

22]})[(){((
)(2

1

ψσ

)]})[(){(

0

22∑
−

=

−−−
−

pn

i
iiii MedianeEMediane

pn
r

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−−

−
= ∑∑

−

==

pn

i
ii

r

i
ii Mediane

pn
rMediane

pn 1

22

1

)()(
)(2

1

ψσ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

−
−

−

−

−

−
=

∑

∑

∑

∑∑
−

=

−

=
−

=

=

−

=
pn

i
ii

pn

i
ii

pn

i
ii

r

i
ii

pn

i
ii

Mediane

Mediane

pn
r

Mediane

Mediane

pn

Mediane

1

2

1

2

1

2

1

2

1

2

)(

)(

)(

)(

)(2

)(

ψσ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

−

−

−
=

∑

∑∑
−

=

=

−

=

pn
r

Mediane

Mediane

pn

Mediane

pn

i
ii

r

i
ii

pn

i
ii

1

2

1

2

1

2

)(

)(

)(2

)(

ψσ

When ∞→n , 2

1

2)(1
ψσ→−

− ∑
−

=

pn

i
ii Mediane

pn

Therefore,

o
D

pn

i
ii

r

i
ii

W
pn

r

Mediane

Mediane
pn

→
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

−
−

∑

∑
−

=

=

1

2

1

2

)(

)(

2

And the distribution of o
tt Wsup was given in equation

(11.39) of Billingsley (1968)

∑
∞

=

−−+=≤
1

2 22

)1(21}sup{
k

brro
t

t
ebWP , b > 0

Appendix B. Critical Value

singnificant level :0.1
 data size 200 300 400 500 600 700 800 900 1000 2000 4000
win_width

20 1.21 1.23 1.24 1.25 1.25 1.26 1.26 1.26 1.26 1.28 1.27
30 1.18 1.21 1.22 1.23 1.23 1.24 1.24 1.24 1.25 1.26 1.26
40 1.17 1.19 1.21 1.21 1.21 1.23 1.22 1.23 1.23 1.24 1.25
50 1.15 1.18 1.19 1.19 1.21 1.21 1.22 1.22 1.22 1.24 1.24
60 1.15 1.18 1.19 1.19 1.2 1.21 1.21 1.22 1.22 1.23 1.24
70 1.15 1.17 1.17 1.19 1.2 1.2 1.21 1.22 1.21 1.23 1.24
80 1.15 1.17 1.17 1.19 1.2 1.19 1.21 1.21 1.21 1.23 1.23
90 1.14 1.17 1.17 1.18 1.19 1.19 1.21 1.21 1.21 1.23 1.23

100 1.14 1.16 1.17 1.18 1.19 1.19 1.2 1.21 1.21 1.22 1.22
200 ---------- 1.15 1.17 1.18 1.18 1.18 1.18 1.2 1.2 1.21 1.21

singnificant level :0.05
 data size 200 300 400 500 600 700 800 900 1000 2000 4000
win_width

20 1.35 1.37 1.38 1.39 1.38 1.4 1.4 1.41 1.41 1.43 1.42
30 1.32 1.35 1.36 1.36 1.37 1.38 1.37 1.39 1.38 1.4 1.39
40 1.31 1.33 1.35 1.35 1.35 1.37 1.37 1.37 1.37 1.38 1.39
50 1.28 1.31 1.32 1.33 1.34 1.34 1.35 1.36 1.36 1.37 1.38
60 1.28 1.31 1.31 1.33 1.33 1.34 1.34 1.36 1.36 1.37 1.37
70 1.29 1.31 1.31 1.32 1.33 1.33 1.34 1.36 1.35 1.37 1.37
80 1.27 1.31 1.3 1.32 1.33 1.33 1.34 1.36 1.35 1.36 1.37
90 1.27 1.31 1.3 1.32 1.32 1.33 1.34 1.35 1.34 1.36 1.36

100 1.27 1.29 1.3 1.31 1.32 1.32 1.34 1.35 1.34 1.36 1.36
200 ---------- 1.29 1.3 1.3 1.31 1.31 1.33 1.34 1.33 1.35 1.35

singnificant level :0.01
 data size 200 300 400 500 600 700 800 900 1000 2000 4000
win_width

20 1.64 1.65 1.67 1.67 1.67 1.7 1.68 1.71 1.68 1.71 1.7
30 1.6 1.63 1.65 1.64 1.62 1.66 1.65 1.65 1.65 1.68 1.7
40 1.58 1.61 1.63 1.63 1.61 1.64 1.64 1.65 1.64 1.66 1.67
50 1.57 1.6 1.6 1.6 1.61 1.61 1.62 1.63 1.63 1.66 1.66
60 1.55 1.59 1.6 1.6 1.61 1.61 1.62 1.61 1.64 1.66 1.65
70 1.55 1.58 1.6 1.59 1.6 1.61 1.61 1.6 1.64 1.64 1.64
80 1.55 1.58 1.58 1.59 1.6 1.61 1.61 1.6 1.62 1.64 1.64
90 1.54 1.57 1.58 1.58 1.59 1.6 1.61 1.6 1.63 1.64 1.64

100 1.52 1.57 1.58 1.59 1.6 1.61 1.61 1.6 1.62 1.64 1.64
200 ---------- 1.54 1.57 1.57 1.59 1.57 1.61 1.6 1.59 1.62 1.62

References

[1] Billingsley, P. (1968), Convergency of Probability

Measures, New York : John Wiley.
[2] Brown, R.L., Durbin, J., and Evans, J.M. (1975)

“Techniques for Testing the constancy of Regression
Relationship over Time”, Journal of Royal Statistical
Society, Series B, 37, 149-192.

402

[3] Chow, G. (1960), Tests of equality between sets of
coefficients in two linear regressions. Econometrica,
Vol. 28, No. 3, 591-605

[4] Inclan, C. and Tiao, G. C.. (1994) “Use of
Cumulative Sums of Squares for Retrospective
Detection of Changes of Variance”, Journal of the
American Statistical Association, September 1994.
Vol. 89, no. 427, 913-923.

[5] Krämer, Walter and Schotman, Peter (1992) “Range
vs Maximum in OLS-based version of CUSUM test”,
Economics letter 40, pp 379-381

[6] Pang, K. P. and Ting, K. M. (2003) “Improving Time
series prediction by data selection” International
Conference on Computational Intelligence for
Modeling, Control & Automation, February 2003,
803-813

[7] Pang, K. P. and Ting, K. M. (2004) “Improving the
Centered CUSUMS statistic for Structural Break
Detection in Time Series”, Forthcoming of 17th
Australian Joint conference on Artificial Intelligence.

[8] Pesaran, H. and Timmermann, A. (2002) “Market
timing and Return Prediction under Model
instability”, Journal of Empirical Finance, December
2002. Vol. 9, 495-510

[9] Chu, Chia Shang J., Hornik, Kurt and Kuan, Chung
Ming (1995) “MOSUM Tests for Parameter
constancy ”, Biometrika 82, 3 pp. 603-617

[10] Pesaran, H. and Timmermann, A., (2003) "How
Costly is it to Ignore Breaks when Forecasting the
Direction of a Time Series?," Cambridge Working
Papers in Economics 0306, Department of Applied
Economics, University of Cambridge.

403

Markov models for identification of significant episodes

Robert Gwadera ∗

Purdue University
Department of Computer Sciences

gwadera@cs.purdue.edu

Mikhail Atallah †

Purdue University
Department of Computer Sciences

mja@cs.purdue.edu

Wojciech Szpankowski ‡

Purdue University
Department of Computer Sciences

spa@cs.purdue.edu

Abstract

We propose a new method for a reliable identification
of significant sequential episodes occurring within a win-
dow of size w in an event sequence modeled by a Markov
source. As a measure of significance we use Ω∃(n,w),
the number of windows containing the episode as a
subsequence. We prove that Ω∃(n, w) is a sum of a
ϕ-mixing sequence of random variables and therefore
obeys the central limit theorem. This leads us to a
computational formula for a threshold to identify signif-
icant episodes. The novelty of our method for Markov
source stems from the fact that, instead of scoring the
whole sequence using a Markov model, we compute the
expected value of Ω∃(n,w) and its variance in order
to estimate the threshold and compare it to the ob-
served Ω∃(n, w). Since performance of the method crit-
ically depends on the model structure and parameters,
we argue that variable-length Markov models of event
streams are superior to fixed-length Markov models. We
chose DNA sequences as event sources in experiments,
and compared the performance of fixed-length Markov
models with interpolated Markov models. This paper
is an extension of our previous work in [8, 1] where we
considered the problem of the reliable detection of sig-
nificant episodes for memoryless sources.

∗The work of this author was supported by the NSF Grant
CCR-0208709, and NIH grant R01 GM068959-01.

†Portions of this author’s work were supported by Grants
EIA-9903545, IIS-0219560, IIS-0312357, and IIS-0242421 from the
National Science Foundation, Contract N00014-02-1-0364 from
the Office of Naval Research, by sponsors of the Center for
Education and Research in Information Assurance and Security,
and by Purdue Discovery Park’s e-enterprise Center.

‡The work of this author was supported by the NSF Grant
CCR-0208709, NIH grant R01 GM068959-01 and AFOSR Grant
FA 8655-04-1-3074.

Keywords: frequent episode mining, probabilistic
models

1 Introduction

1.1 Episode mining

Mining episodes was introduced in [11], where the prob-
lem of finding frequent episodes in event sequences was
defined. An episode was defined as a partially ordered
collection of events that occur as a subsequence in a
window of a given size in an event stream. The notion
of an occurrence is as a subsequence rather than as a
substring (that is, contiguity is not required), a require-
ment dictated by practical considerations because (for
example) an “interesting” (e.g., suspicious) sequence of
events need not be contiguous in the event stream. An
arbitrary episode can be abstractly represented as a di-
rected acyclic graph (DAG), where nodes correspond to
events and directed edges define precedence among the
events in the episode. Formally, such a graph defines
a set of episodes whose members correspond to all dis-
tinct paths from the start vertex to end-vertices. We
distinguish three types of episodes.

1. A serial episode is a sequence of events that occurs
in the specified order. In the graph representation
a serial episode corresponds to a single path from
the first event of the episode to the last one.

2. A parallel episode is an unordered collection of
events. In the graph representation a parallel
episode corresponds to a single node containing
all events of the episode. Formally, a parallel
episode corresponds to the set of all permutations
of symbols of the episode.

404

3. A composite episode corresponds to an arbitrary
DAG built from an event and/or an episode by a
serial and/or a parallel composition.

In the episode mining we shift the sliding window of
a given size w n consecutive events in an event stream T
and count the number of windows in which the episode
occurred at least once as a subsequence. Note that
the same episode may be present in several consecutive
windows but within a particular window we count one
occurrence even if there are may instances of it in that
particular window. Given a window size w and an event
sequence T , an episode was defined as frequent if its
frequency, defined as the fraction of windows in which it
occurred at least once, was more that a given frequency
threshold τ .

In our work we are interested in episodes that are
“significant” (e.g., anomalous); note that the frequency
of occurrence is not enough to determine significance
(e.g., an infrequent episode might have more significance
than a frequent one, depending on the probabilistic
characteristics of the event stream).

1.2 Previous work

In our previous papers [8, 1] we assumed that the event
sequence T was generated by the Bernoulli (memory-
less) source and showed how to compute the threshold
τ as well as how to design the window size w such that
the discovered frequent episodes are statistically signif-
icant. Observe that, for an appropriately large window
size any episode will almost surely occur in every win-
dow because the probability of its existence in the win-
dow of size w P ∃(w), estimated as a fraction of windows
in which the episode occurred, will be close to one. Fur-
thermore, for an appropriately low frequency threshold
any episode may be found to be frequent.

Paper [8] considered serial episodes and [1] consid-
ered sets of episodes including the special case of the
parallel episode. In order to derive the threshold we
analyzed Ω∃(n, w), the number of windows of length w,
that contain an episode as a subsequence in an event
sequence T after n shifts of the sliding window. Us-
ing the fact that Ω∃(n,w) is a sum of w − 1 dependent
random variables we proved that appropriately normal-
ized Ω∃(n,w) is normally distributed, where clearly the
expected value E[Ω∃(n,w)] = nP ∃(w) and P ∃(w) is
the probability that the episode occurs at least once
in a window of length w in an event sequence T over
an alphabet A. We also showed that the variance
Var[Ω∃(n,w)] ≤ cn

[
P ∃(w)− (P ∃(w))2

]
for c > 0.

Given the Bernoulli model of an event source, we pre-
sented the upper threshold for detecting significant over-

represented episodes τu(w) = P ∃(w) + b
√

Var[Ω∃(n,w)]

n

such that P
(

Ω∃(n,w)
n > τu(w)

)
≤ β(b). That is, the

probability that the frequency of the episode Ω∃(n,w)
n

is greater than the threshold τu(w) is smaller than
β(b), i.e., the episode is significant with probabilistic
guarantee 1 − β(b). We also analogously defined the
lower threshold τ`(w) for detecting significant under-
represented episodes such that P

(
Ω∃(n,w)

n < τ`(w)
)
≤

α(a). The quantity Ω∃(n,w)
n is an estimator of P ∃(w) de-

noted P ∃e (w). While developing the formula for P ∃(w)
we found a formula for the set of all distinct windows
W∃(w) of length w containing the serial episode S of
length m at least once as a subsequence. The impor-
tance of W∃(w) stems from the fact that P ∃(w) =∑

x∈W∃(w) P (x) for a Markov model of an arbitrary
order including the 0-order (Bernoulli), where P (x) is
the probability of x as a string of symbols of length
w in a given model. The advantage of the Bernoulli
model versus the 1-order Markov or higher is that for
the Bernoulli model P ∃(w) can be computed efficiently
exploiting the structure of W∃(w) and the fact that the
model requires only |A| probabilities of symbols of the
alphabet A. Using generating functions and complex
asymptotics we presented an asymptotic approximation
of P ∃(w), which is of the form P ∃(w) = 1 − Θ(ρw) for
large w and 0 < ρ < 1. We provided fast dynamic
programming algorithms for computing P ∃(w) for a se-
rial episode and for an arbitrary set of episodes. In [8]
we mined two apparently non-memoryless sources (the
English alphabet and the web access data) and showed
that, even for these cases, P ∃(w) closely approximated
the actual P ∃e (w), which demonstrated that the memo-
ryless assumption did not limit the practical usefulness
of the formula. In [1] we mined a large database of Wal-
Mart transactions for sets of episodes. We also showed
that the threshold mechanism indeed provides a sharp
detection of significant episodes by continually injecting
some episodes until they exceeded the threshold.

1.3 Present work

The present paper extends our previous work to the case
of Markov sources that are more applicable and flexible
than memoryless sources. The formula for the thresh-
old for Markov models is the same as for the Bernoulli
model, the difference is in using conditional probabilities
to compute P ∃(w) and Var[Ω∃(n,w)]. Furthermore,
we cannot use the efficient dynamic programming algo-
rithm for computing P ∃(w) that was designed for the
Bernoulli model because in Bernoulli model the proba-
bility of a symbol does not depend on its context. There

405

were three main new challenges that we faced and re-
solved in this extension. The first was theoretical: in
order to use the threshold formula we had to prove
that Ω∃(n,w) is a sum of a ϕ-mixing sequence of ran-
dom variables meaning that the distant future is practi-
cally independent of the present and past and therefore
Ω∃(n,w) satisfies the central limit theorem. The second
challenge was algorithmic: we had to provide an algo-
rithm for computing P ∃(w) using conditional probabil-
ities. Finally the third challenge was to select a Markov
model structure and a method of parameter estimation
to ensure that the prediction of the model is accurate:
we suggested variable-length Markov models and in par-
ticular, in experiments conducted on DNA sequences,
we focused on the interpolated Markov model.

Given an event sequence T , we need to choose an op-
timal Markov model for the data and given that model
we need to choose an optimal method for parameter esti-
mation for our method for detecting significant episodes.
Higher order models describe data more accurately but
increase the number of excessive parameters. Using a
fixed-length Markov model of order k with |A|k+1 pa-
rameters can be inefficient since for real-life data the
actual memory length varies. The number of model
parameters can be significantly reduced by merging
equivalent states (contexts of length k) that have iden-
tical conditional probabilities. Such reduced models,
first considered in [15] were termed the variable-length
Markov chains/models or tree models [20, 12] since they
can be conveniently represented with a tree structure.
Thus, the advantage of variable-length Markov models
over fixed-length models is that they efficiently capture
the redundancies that are typical for real-life data. Be-
cause of that fact they are particularly well suited for
our method for detecting significant episodes since we
can efficiently build such models based on our empirical,
expert, knowledge of the source of events. For exam-
ple: sometimes we know that some symbols occur only
in n-grams (strings of n ordered elements) and using a
full fixed-length Markov model is too excessive and may
drastically limit the usefulness of our method while the
Bernoulli model is too inaccurate to capture the depen-
dency of symbols in the n-grams.

Formally, given an alphabet A = {a1, a2, . . . , a|A|}
a k-order variable-length Markov model can be repre-
sented as a context tree [15]. Let C = {c1, c2, . . . , c|S|} be
the set of contexts in a k-order variable-length Markov
model where cj = cj [|cj |] . . . , cj [2], cj [1] is the j-th con-
text of length 1 ≤ |cj | ≤ k, written as a time-reversed
string, where cj ∈ A|cj |. A context tree is a suffix tree,
built from the contexts in C that is called a model. The
set of parameters of a k-order variable-length Markov
model is defined as Θ = {θ1,1, θ1,2, . . . θ|A|,|C|} where

θi,j = P (ai|cj) is the conditional probability of gen-
erating the symbol ai given the context cj subject to∑|A|

i=1 P (ai|cj) = 1. Thus, C is the set of states and Θ is
the set of transition probabilities in a k-order variable-
length Markov chain. In [15] the context algorithm was
presented for estimation of the minimal state space and
the parameters of a variable-length Markov model. In
[16] minimization of stochastic complexity of a source
in a given model was suggested as a criterion for select-
ing an optimal (minimal) model. In [21] the context tree
weighting algorithm was proposed for computing proba-
bility P (T) of a Markov source T using an average over
all possible models having orders less than a given or-
der k. However the optimal model selection problem
for the class of variable-length Markov models is still
not well understood. Furthermore the parameter esti-
mation from sparse data presents another problem.

Therefore we turn our attention to a class of
variable-length Markov models called interpolated
Markov model (IMM). IMM does not optimize the state
space but builds a variable-length Markov model im-
plicitly as a result of parameter estimation from sparse
data. Given an alphabet of size |A|, we could model
the event stream T by a k-order fixed-length Markov
model with Ak+1 conditional probabilities to be esti-
mated from the training data. If we are not interested
in optimality of the model then a higher-order model
should always do at least as well as, and frequently bet-
ter than a lower-order model. In practice, when using
a k-order model, if the training sequence is of length
N then there are only N − k strings of size k + 1 avail-
able to estimate |A|k+1 conditional probabilities and fre-
quencies of some of the |A|k context strings become too
small or even zero. Deriving a model of too high order
form such sparse data will lead to over-fitting. More
formally, let cj = cj [k] . . . , cj [2], cj [1] be the j-th con-
text of length k, written as a time-reversed string, in
a k-order fixed-length Markov model, where ci ∈ Ak.
We estimate the conditional probabilities P (ai|cj) us-
ing the maximum likelihood (ML) estimate given by
the following formula P (ai|cj) = n(cjai)P|A|

i=1 n(cjai)
, where

n(cjai) is the frequency of the string cjai observed in
the training set. Notice that even if the training set
is too short to accurately estimate all probabilities, for
some probabilities P (ai|cj) the number of occurrences of
the string cjai will be sufficient and should be accepted
by the model. The problem of parameter estimation of
Markov models from sparse data is known as smoothing
and has been widely discussed in the literature on lan-
guage modeling [6]. The smoothing is a technique for
adjusting the maximum likelihood estimates of prob-
abilities to produce more accurate probabilities. The

406

name smoothing comes from the fact that these meth-
ods tend to make the probabilities more uniform, by
adjusting low probabilities upward and higher probabil-
ities downward. Not only do smoothing methods gen-
erally prevent zero probabilities, but they also improve
the accuracy of the model as the whole. Whenever a
probability is estimated from a fewer counts, smoothing
has the potential to significantly improve estimation.

Techniques as back-off [10] and interpolation [13]
have been implemented to deal with sparse data. The
back-off model backs off to lower order models depend-
ing on counts of respective contexts. The interpolated
model is a Markov chain with a new structure, where
a conditional probability of order k is a combination of
equal and lower order probabilities weighted by inter-
polation parameters, giving hight weight to probabil-
ity estimates corresponding to high frequency contexts
and lower weight to estimates corresponding to low fre-
quency contexts. A further extension of IMM is inter-
polated context model (ICM) [7]. While in IMM we es-
timate the probability P (ai|cj) of a symbol ai based on
variable length contexts immediately preceding ai the
ICM is more flexible and general by allowing to choose
any contexts (not just those adjacent to ai).

In this paper we focus on the interpolated Markov
model and we compare its performance with fixed-
length Markov models for detecting significant episodes.
We use the notation cj [1 : n] for n = k, k − 1, . . . 1
to denote a suffix of length n of context cj of length
k and we omit the notation for n = k, i.e., we
write cj instead of cj [1 : k] in cases where k is
implied. We are interested in Markov models that
define conditional probabilities P (ai|cj) as a linear
combination of conditional probabilities corresponding
to suffixes of cj . The following recursion defines a value
of the interpolated conditional probability in IMM:

PIMM (ai|cj) = λ(cj) · P (ai|cj)+
(1− λ(cj)) · PIMM (ai|cj [1 : k − 1]),

where 0 ≤ λ(cj) ≤ 1 and P (ai|cj) is the probability
estimate using the maximum likelihood (ML) estimate
from the training data. For contexts cj not observed
in the training data, i.e., if n(cjai) = 0 then we set
P (ai|cj) = P (ai|cj [1 : n]) for n = max1≤n≤k{n|n(cj [1 :
n], ai) > 0} and this is exactly the place in the
computation of parameters of an IMM where a variable-
length Model is being implicitly built. The value of
the parameter λ(cj) can be interpreted in many ways.
Following [17] interpretation of the parameter depends
on the following interpretations of the IMM:

• Context model interpretation: the parameters
combine the predictions from contexts of varying

length. Since longer contexts support stronger pre-
dictions and shorter contexts have more accurate
statistics the interpolation of the predictions of dif-
ferent context lengths results in more accurate pre-
diction than from a fixed context.

• State model interpretation: the parameters are hid-
den transitions from a higher order Markov model
to a lower Markov model where the interpolation
parameters model our beliefs about how much of
the past is necessary to predict a state transition
in an underlying Markov source of unknown order.

• Nonuniform model interpretation: the parameters
are beliefs about conditional independence with
probability (1 − λ(cj)) that the future does not
depend on cj [k].

In general if the frequency of context cj is sufficiently
high, the value of λ(cj) is close to 1. In the opposite case
λ(cj) is close to zero and the interpolation probability
PIMM (ai|cj) gains more from PIMM (ai|cj [1 : k −
1]). However the problem of finding interpolation
parameters is still more of an art than an exact science.
In our experiments we assumed a given order of IMM
and used a modification of the method based on χ2-test
introduced in [18].

We conduct our experiments on genomic data repre-
sented as strings of nucleotide symbols over the alphabet
A = {A,C, G, T}. Markov models of DNA sequences
have frequently been used in gene finding algorithms
[18], where the interest was in finding strings of sym-
bols instead of subsequences in the form of episodes.
The novelty of our approach is that we treat the ge-
nomic sequence as a stream of symbols generated by
a Markov model of an unknown order and we do not
consider any biological structures as coding/non-coding
regions in the DNA. Furthermore we do not score the
testing sequence using a trained Markov model, as in the
work on gene discovery, in order to determine whether
the sequence has been generated by the model. Adapt-
ing the method of scoring the sequence for episode dis-
covery would mean training a separate Markov model
for every combination of window length and episodes
type. Note that in the episode framework we consider
Ω∃(n,w) the number of windows containing an episode
as a subsequence, which is a function of a Markov chain
rather than a well defined structure (coding/non-coding
regions) of the sequence as in the gene discovery meth-
ods. Therefore in our method for the reliable detection
of significant episodes we use a Markov model only to
compute the expected value and variance of Ω∃(n,w)
needed for the threshold computation. Because of the
sequential nature of Markov sources we consider only se-
rial episodes while using Markov models. We do not test

407

the threshold τu(w) directly in experiments by comput-
ing its value and simulating occurrences of significant
episode as in [8, 1] because we already showed in [8, 1]
that the accuracy of the threshold is determined by pre-
diction accuracy of the formula for P ∃(w). Therefore we
test the threshold indirectly by focusing on the predic-
tive performance of the formula for P ∃(w) for Markov
models.

Perhaps the most intriguing question is whether we
can improve our detection method on DNA data in
terms of accuracy by employing a Markov model rather
than the Bernoulli model. As we will see in experiments
the answer to this question is affirmative.

The paper is organized as follows. Section 2
presents example applications of our theory. Section
3 presents our main results containing theoretical foun-
dation. Section 4 contains experimental results demon-
strating the applicability of the derived formulas.

2 Applications of our method

There are multiple uses for the theory we developed.
Given a probabilistic model of an event sequence T ,
example applications of our method include:

• Designing the sliding window size: given a priori
knowledge of episodes of interest, we can select an
appropriate window size w such that the discovered
episodes are meaningful.

• Validation of the sliding window size: given a
window size w and an episode (e.g., a frequent
episode) discovered in the event stream T , we
can validate the window size w for the discovered
episode.

• Identification of significant episodes: given a win-
dow size w and an episode (e.g., a frequent episode)
discovered in the event stream T , we can determine
whether the episode is significant.

• Episode ranking: given a collection of episodes
(e.g., all frequent episodes) discovered in the event
stream T , we can rank the episodes with respect to
their significance.

Given a probabilistic model of an event sequence
T and an episode with observed frequency Ω∃(n,w)

n , the
episode can be classified using the upper threshold τu(w)
and the lower threshold τ`(w) as follows:

• significant:

– if Ω∃(n,w)
n > τu(w) for over-represented

episodes

– if Ω∃(n,w)
n < τ`(w) for under-represented

episodes

• normal: if Ω∃(n,w)
n ∈ [τ`(w), τu(w)]

• meaningless: if Ω∃(n,w)
n ≈ 1 and P ∃(w) ≈ 1

meaning that the window size w is too large.

3 Analytical results

3.1 Definition of the problem of identi-
fication of significant episodes

For clarity of the presentation we analyze only the case
of a single serial episode S = S[1]S[2] . . . S[m] of length
m but the results can be generalized to an arbitrary set
of serial episodes. Of course we do not analyze parallel
episodes since they are unordered sequences.

The problem of identification of significant episodes
in a Markov source T can be stated as follows.

Given:

• an alphabet A = {a1, a2, . . . , a|A|}
• a k-order variable-length Markov model of the

source T with parameters represented as follows:

– C = {c1, c2, . . . , c|S|} is the set of contexts
where cj = cj [|cj |] . . . , cj [2], cj [1] is the j-th
context of length 1 ≤ |cj | ≤ k, written as a
time-reversed string and cj ∈ A|cj |.

– Θ = {θ1,1, θ1,2, . . . θ|A|,|C|} is the set of param-
eters where θi,j = P (ai|cj) is the conditional
probability of generating the symbol ai given
the context cj subject to

∑|A|
i=1 P (ai|cj) = 1.

• Ω∃(n,w), the observed number of windows of
length w containing at least one occurrence of a
serial episode S = S[1]S[2] . . . S[m] after n shifts of
the window

• a level β(b) (e.g., β(b) = 10−5),

is the observed episode S significant?
In Section 3.2 we prove that Ω∃(n, w) is normally

distributed (Theorem 1). This will allow us to compute
the threshold as follows





τu(w) = P ∃(w) + b
√

Var[Ω∃(n,w)]

n

β(b) = 1√
2π

∫∞
b

e
−t2
2 dt

(1)

where Var[Ω∃(n,w)] ≤ [n + (2n − w)(w − 1)][P ∃(w) −
(P ∃(w))2].

408

Thus, if Ω∃(n,w)
n > τu(w) then episode S is sig-

nificant with probabilistic guarantee 1 − β(b), i.e.,
P

(
Ω∃(n,w)

n > τu(w)
)
≤ β(b).

In section 3.3 we provide an algorithm for comput-
ing P ∃(w).

3.2 Central limit for Ω∃(n, w)

In this section we show that Ω∃(n,w) is a sum of ϕn-
mixing sequence of random variables and therefore it
satisfies the central limit theorem even though indepen-
dence of the random variables summing to Ω∃(n,w) is
clearly violated.

We consider a stationary and ergodic infinite k-
order Markov source T .

Definition 1 A k-order Markov source is a sequence
of random variables t1, t2 . . . over an alphabet A =
{a1, a2, . . . , a|A|} with the Markov property

P (t1, . . . tn) = P (t1, . . . tk) ·
n∏

i=k+1

P (ti|ti−1, . . . , ti−k)

where k is the minimum integer for which the Markov
property holds.

A k-order fixed-length Markov source can be de-
scribed by a finite state Markov chain.

Definition 2 A finite state k-order Markov chain is a
sequence of random variables Q1, Q2, . . ., where Qi =
(ti−1, ti−2 . . . , ti−k) is a symbol from a finite state al-
phabet Q of cardinality |Q| = Ak and there is a tran-
sition from state Qi = (ti−1, ti−2 . . . , ti−k) to state
Qj = (ti, ti−1 . . . , ti−k+1) with transition probability
P (ti|ti−1, . . . , ti−k).

We use the Markov chain model of a k-order Markov
source in the proof that Ω∃(n,w) is a sequence of ϕ-
mixing sequence of random variables.

A formal definition of a ϕ-mixing sequence is as
follows.

Definition 3 Let ϕ1, ϕ2, . . . be a sequence of numbers
such that ϕn → 0. A stationary sequence of random
variables X1, X2, . . . Xn is ϕ-mixing if |P (E2|E1) −
P (E2)| ≤ ϕn. for every j and E1 ∈ (X1, . . . , Xj) and
every k and E2 ∈ (Xj+n, . . . , Xj+n+k).

In this definition, E1 is an event that depends only
on X1, . . . , Xj , and E2 is an event that depends only
on Xj+n, . . . , Xj+n+k. The condition requires that
E1 and E2 are almost independent in the sense that
|P (E2|E1)− P (E2)| is small for large n.

Now we derive the normal limiting distribution of
Ω∃(n,w). Observe that

Ω∃(n,w) =
n∑

i=1

I∃i (w)

where

I∃i (w) =





1 the episode S occurs at least once as a
subsequence in the window ending at
position i in T ;

0 otherwise,

where i is the relative position with respect to the
first position (i = 1). Thus, we easily have
E[I∃i (w)] = P ∃(w), Var[I∃i (w)] = P ∃(w) − (P ∃(w))2

and E[Ω∃(n,w)] = nP ∃(w).
Thus, the independence of the sequence of I∃i (w)

for 1 ≤ i ≤ n is violated twofold since:

1. observation windows overlap within w − 1 events
meaning |P (I∃i+k(w) = 1|I∃i (w) = 1)−P (I∃i+k(w) =
1)| 6= 0 for 1 ≤ k ≤ w − 1

2. the event sequence T is not memoryless meaning
|P (I∃i+k(w) = 1|I∃i (w) = 1) − P (I∃i+k(w) = 1)| 6= 0
for k > w − 1.

For Markov sources the central limit theorem holds
as long as |P (I∃i+k(w) = 1|I∃i (w) = 1) − P (I∃i+k(w) =
1)| → 0 as k → ∞, i.e., I∃i+k and I∃i are practically
independent as k becomes large meaning the sequence
I∃1 (w), I∃2 (w), . . . , I∃n(w) is ϕ-mixing.

Notice that according to the definition of a
ϕ-mixing sequence the w − 1-dependent sequence
I∃1 (w), I∃2 (w), . . . , I∃n(w) is ϕ-mixing with ϕn = 0 for
|i− j| > w − 1.

Given a k-order Markov event source T , I∃i (w) is
a function of the corresponding Markov chain of order
k. Therefore to prove that I∃1 (w), I∃2 (w), . . . , I∃n(w)
is ϕ-mixing we use the fact that the Markov chain
is ϕ-mixing. According to [3], let Y1, Y2, . . . Yn be
a Markov chain with finite state space and positive
transition probabilities pij . Let Xi = f(Yi), where
f is some real function of the state space. If the
initial probabilities are stationary then Y1, Y2, . . . Yn is
stationary. Moreover |pn

ij − pj | ≤ ρn where ρ < 1. Let r
be the number of states. Then according to [3] Example
27.6 X1, X2, . . . Xn is ϕn-mixing with ϕn = rρn.

Based on Theorem 27.5 in [3] and the fact that
I∃1 (w), I∃2 (w), . . . I∃n(w) is ϕ-mixing the central limit
theorem holds for Ω∃(n, w) in a k-order Markov source.

Theorem 1 The random variable Ω∃(n,w) obeys the
Central Limit Theorem in the sense that its distribution

409

is asymptotically normal, for a, b = O(1) we have

lim
n→∞

P

{
a ≤ Ω∃(n,w)−E[Ω∃(n,w)]√

Var[Ω∃(n,w)]
≤ b

}
=

1√
2π

∫ b

a

e
−t2
2 dt

for fixed w.

Theorem 1 leads to the Formula (1) for the threshold.

3.3 Algorithm for computing P ∃(w)

In this section we present an algorithm for computing
P ∃(w) for Markov models.

The probability of existence of an episode can be
expressed as follows

P ∃(w) =
∑

x∈W∃(w)

P (x).(2)

where W∃(w) is the set of all distinct windows of length
w containing the episode as a subsequence. Let xi

be the i-th symbol of a window x ∈ W∃(w) then the
probability of the window can be computed as follows

P (x) = P (x0)P (x1|x0) . . . P (xk−1|xk−2 . . . x0) ·
w−1∏

i=k

P (xi|xi−1 . . . xi−k)

where k is the order of the model. In our papers
[8, 1] we gave formulas for W∃(w) for a single serial
episode S = S[1]S[2] . . . S[m] and for an arbitrary set
of serial episodes S = {S1, S2, . . . Sm} respectively. In
particular, W∃(w) for a single serial episode can be
enumerated as follows

W∃(w) =
⋃

Pm+1
k=1 nk=w−m

S[1]
n1 × S[1]× . . .×

S[m]
nm × S[m]×Anm+1 ,

where a denotes A − a for a ∈ A. Using formula (3)
directly is computationally very expensive. Further-
more computing P (x) for every window x independently
would be inefficient because many windows share the
same prefix. Therefore we propose a computational
method where we enumerate the windows according to
the depth-first traversal of a trie build from the members
of W∃(w) without the trailing Anm+1 that contributes
a factor of 1 to the computation of the probability. The
idea of this method is that the probability of each dis-
tinct prefix of the set of windows W∃(w) is computed
once. An example of such a trie for S = abc and w = 4
is shown in Figure 1.

a

b

c c

c

b

b

c

a

a

b

c

Figure 1: A trie for W∃(3) the set of windows of length
w = 4 containing S = abc as a subsequence

4 Experimental results

The ultimate measure of a statistical model is its pre-
dictive performance in the domain of interest. There-
fore in experiments we compare the actual (observed)
P ∃e (w) = Ω∃(n,w)

n value with P ∃(w) obtained using a
trained model. As we stated in the introduction, we
consider only a serial episode S of length m in exper-
iments. We used an algorithm for finding occurrences
of a serial episode to find Ω∃(n,w). To evaluate the
performance of a model we used the following distance
measure between two functions

d =

[
1
r

r∑

i=1

|P ∃e (wi)− P ∃(wi)|
P ∃e (wi)

]
100%(3)

where w1 < w2 < . . . wr are the tested window sizes. We
tested the prediction of Markov models on the following
genomic sequences: Haemophilius influenzea of length
1, 830, 025, Helicobacter pylori of length 1, 667, 826 and
Human chromosome 22 two segments of length 234, 227
and 3, 661, 561 respectively. We estimated the condi-
tional probabilities using the maximum likelihood esti-
mator for both the fixed-length and interpolated model
IMM. We used Helicobacter pylori and the first segment
of Human chromosome 22 as training sets. For each
training set we built a k-order fixed-length models and
a k-order IMM for k = 0, 1, 2, 3, 4, 5. All our algorithms
have been implemented in C++ and run under Linux
operating system. The IMM algorithm is presented in
Section 4.1.

4.1 Interpolated Markov model

We used a modification of the χ2-confidence based
interpolation method introduced in the GLIMMER
gene finding algorithm in [18] for computing the λ(ci)
in the equation for the conditional probability in the

410

interpolated Markov model

PIMM (ai|cj) = λ(cj) · P (ai|cj)+
(1− λ(cj)) · PIMM (ai|cj [1 : k − 1]).

Algorithm 1: k-order IMM parameter estimation
input : n(cj), n(cj , ai), N, k

output: k-order PIMM (ai|cj)
begin

for j = 1 to |A|k do
th = (N − k + 1)P (cj) ;
if n(cj) ≥ th then

λ(cj) = 1

else
chisquare = 0 ;
for i = 1 to |A| do

chisquare+ =
(n(cj ,ai)−n(cj)∗PIMM (ai|cj [1:k−1]))2

n(cj)∗PIMM (ai|cj [1:k−1]) ;

p = gammp(chisquare,A− 1) ;
if p < 0.5 then

λ(cj) = 0

else
λ(cj) = p∗n(cj)

th
for i = 1 to |A| do

PIMM (ai|cj) = λ(cj)
n(cj ,ai)

n(cj)
+

(1−λ(cj))·PIMM (ai|cj [1 : k−1])

end

The algorithm takes as its input the following
parameters: n(cj) the frequency of context cj , n(cj , ai)
the frequency of string cjai, k the order of the IMM
and N the length of the training set. The function
gammp(chi, df) computes the probability that the χ2

random variable is smaller that chisquare i.e. it
computes the cumulative distribution function of the χ2

for A − 1 degrees of freedom. The GLIMMER system
used a fixed value for th = 400. We interpreted the
threshold as the expected number of occurrences of a
context ci of length i as a string in the training set for
0-order Markov source. Thus, we set th = E[n(cj)] =
(N − k + 1)P (cj), where P (cj) is the probability of the
context in the 0-order Markov model. Alternatively we
could use th = (N − k + 1)P (cj) −

√
Var[n(cj)]. The

following sections use the IMM computed by Algorithm
1.

4.2 Fixed-length versus IMM for the
same training and testing source

In this experiment we experimentally confirmed the cor-
rectness of our theoretical results including the proof of
the central limit theorem, the derived formula for P ∃(w)
and the algorithm for computing P ∃(w). We expected
to achieve a better prediction accuracy using the 5-order
(fixed-length and IMM) comparing to the 0-order. To
exclude a possibility of model misbehavior (over-fitting,
etc.) we used the the same sequence of Haemophilius
influenzea as a training and testing source. We set a
serial episode S = CCGT and for each k-order fixed-
length model for k = 0, 1, 2, 3, 4, 5 and 5-order IMM we
computed P ∃(w) and compared to an observed P ∃e (w)
for w = [5, 20] by computing the prediction error using
Equation 3. The computed prediction errors are repre-
sented by a bar graph in Figure 2. Clearly the predic-
tion error decreases monotonically starting from 1-order
fixed-length model up. 5-order (fixed-length and IMM)
gives the best prediction significantly outperforming the
0-order. This validates our theoretical and algorithmic
results. 5-order IMM performs closely to 5-order fixed-
length model since the training source was sufficiently
large and the IMM did not use the lower order models.

Comparison of prediction error for fixed−length Markov models and 5−order IMM

Fixed−length Markov model and 5−order IMM

P
re

di
ct

io
n

er
ro

r
%

0 1 2 3 4 5
0

1

2

3

4

5

6

5−order IMM

Figure 2: Prediction error d between P ∃(w) (computed)
and P ∃e (w) (observed) for a serial episode using a k-
order fixed-length Markov models for k = 0, 1, 2, 3, 4, 5
and 5-order IMM

411

4.3 Fixed-length versus IMM for the
same training source and a different
testing source

In this experiment we compared the fixed-length 5-order
with 5-order IMM. We used Haemophilius influenzea for
computing the conditional probabilities and we tested
the performance of both models on Helicobacter pylori.
We expected the IMM to perform better than the
fixed-length model because of its smoothing properties
while we expectorated the fixed-length model to suffer
from over-fitting. Also we did not expect a significant
improvement in accuracy of IMM because the training
set of size (1,830,025) was sufficiently large to find all
context strings. We set a serial episode S = CCGT and
for each k-order fixed-length model for k = 0, 1, 2, 3, 4, 5
and 5-order IMM we compared P ∃(w) with the observed
P ∃e (w) for w = [5, 20] by computing the prediction
error given in Equation 3. The results, shown as a
bar graph in Figure 3 confirm our expectations and
the IMM performed slightly better than 5-order fixed-
length model. Also 1-order fixed-length turned out to
be the winner probably because there is a difference
in the structure of DNA of Helicobacter pylori and
Haemophilius influenzea and the 1-order captured the
necessary structure without over-fitting.

Comparison of prediction error for fixed−length Markov models and 5−order IMM

Fixed−length Markov model and 5−order IMM

P
re

di
ct

io
n

er
ro

r
%

0 1 2 3 4 5
8.5

9

9.5

10

10.5

11

11.5

5−order IMM

Figure 3: Prediction error d between P ∃(w) (computed)
and P ∃e (w) (observed) for a serial episode using a k-
order fixed-length Markov models for k = 0, 1, 2, 3, 4, 5
and 5-order IMM

4.4 Fixed-length versus IMM for sparse
data

In this experiment we wanted to check whether the 5-
order IMM outperforms the 5-order fixed-length model
when both are trained from sparse training data. To
accomplish it we chose the first segment of Human
chromosome 22 of length 234, 227 as a training set
and we tested both models on the second segment of
the same chromosome of length 3, 661, 561. We set a
serial episode S = CCGT and computed P ∃(w) for
both models and compared to the observed P ∃e (w) for
w = [5, 20]. We plotted the results in Figure 4 to show
the shape of the curves. From the figure we can see that
5-order IMM slightly better approximates the observed
P ∃e (w).

5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P∃(w): actual, 5−order fixed−length Markov and 5−order IMM

Window size w

P
ro

ba
bi

lit
y

of
 e

xi
st

en
ce

 P
∃ (w

)

P∃
e
(w) (actual)

P∃(w) (5−order fixed−length)

P∃(w) (5−order IMM)

Figure 4: Observed P ∃e (w) and computed P ∃(w) for a
serial episode using 5-order fixed-length Markov model
and 5-order IMM

5 Conclusions and extensions

We presented a new method for a reliable identifica-
tion of significant episodes in variable-length Markov
source. As a measure of significance we used Ω∃(n,w)
the number of windows in which the episode occurred
in the event stream. We proved that Ω∃(n,w) is a
sum of so called ϕ-mixing random variables and obeys
the central limit theorem, which leads to a compu-
tational formula for the threshold τu(w) for discover-
ing significant episodes. We proposed to use variable-
length Markov models with the threshold mechanism
because of their flexibility for modeling a wide variety

412

of event sources. In particular we compared the inter-
polated Markov model with the fixed-length Markov
model in experiments conducted on DNA sequences.
We showed that the IMM slightly outperforms the fixed-
length model in terms of prediction accuracy. We also
showed that for DNA source the use of Markov mod-
els outperforms memoryless models in terms of accu-
racy in predicting occurrences of episodes even though
a Markov model can be susceptible to over-fitting. The
drawback of using Markov models is the high computa-
tional cost of computing the threshold. This could be
overcome by using a combination of a Bernoulli model
and a Markov model. In such a technique we could use
a Markov model for small values of w where the accu-
racy of the prediction would be crucial and we could use
the Bernoulli model for large w, where P ∃(w) for both
a Markov and the Bernoulli model converge to 1.

References

[1] M. Atallah, R. Gwadera and W. Szpankowski,
Detection of significant sets of episodes in event
sequences, Fourth IEEE International Conference
on Data Mining, pages 67-74, Brighton UK.

[2] R. Azad and M. Borodovsky, Effects of choice of
DNA sequence model structure on gene identifica-
tion accuracy, Bioinformatics 2004.

[3] P. Billingsley (1986), Probability and measure, John
Wiley, New York.

[4] L. Boasson, P. Sequels, I. Guessarian, and Y.
Matiyasevich (1999), Window-Accumulated Subse-
quence Matching Problem is Linear, Proc. PODS,
327-336.

[5] S. Brin, R. Motwani, C. Silverstein, Beyond Market
Baskets: Generalizing Association Rules to Cor-
relations, SIGMOD 1997, Proceedings ACM SIG-
MOD International Conference on Management of
Data, May 13-15, 1997, Tucson, Arizona

[6] S. Chen, J. Goodman, An Empirical Study of
Smoothing Techniques for Language Modeling,
Technical Report TR-10-98, Computer Science
Group, Harvard University, 1998.

[7] A. Delcher, D. Harmon, S. Kasif, O. White, S.
Salzberg, Improved microbial gene identification
with GLIMMER Nucleic Acids Research, Vol. 27,
No 23, 1999.

[8] R. Gwadera, M. Atallah, and W. Szpankowski,
Reliable detection of episodes in event sequences,

In Third IEEE International Conference on Data
Mining, pages 67-74, Melbourne Florida.

[9] J. Han, J. Pei, Y. Yin, R. Mao, Mining Fre-
quent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach, Data Mining and
Knowledge Discovery, 8, 53-87, 2004

[10] S. Katz, Estimation of probabilities from sparse
data for the language model component of a
speech recognizer, IEEE Transactions on Acous-
tics, Speech and Signal Processing, 35(3):400–401,
March 1987.

[11] H. Mannila, H. Toivonen, and A. Verkamo, Discov-
ery of frequent episodes in event sequences, Data
Mining and Knowledge Discovery, 1(3), 241-258,
1997.

[12] A. Martin, G. Seroussi and M. Weinberger, IEEE
Transaction on Information Theory, Vol. 50, No.
7, July 2004.

[13] F. Jelinek, R. Mercer, Interpolated estimation of
Markov source parameters from sparse data, Pro-
ceedings of Workshop on Pattern Recognition in
Practice, pages 381–397, 1980.

[14] M. Régnier and W. Szpankowski (1998), On pat-
tern frequency occurrences in a Markovian se-
quence, Algorithmica, 22, 631-649.

[15] J. Rissanen, A Universal Data Compression Sys-
tem, IEEE Trans. Inform. Theory, Vol. IT-29, No.
5, pp 656-664, 1983

[16] J. Rissanen, Fast Universal Coding with Context
Models, IEEE Transactions on Information The-
ory, Volume 45, No. 4, 1065-1071, May 1999

[17] E. Ristad and R. Thomas, Nonuniform Markov
Models, International Conference on Acoustics,
Speech, and Signal Processing, Munich, Germany,
April 20-24, 1997.

[18] S. Salzberg, A. Delcher, S. Kasif, O. White, Micro-
bial gene identification using interpolated Markov
models, Nucleic Acids Research, Vol. 26, No 2,
1998.

[19] W. Szpankowski (2001), Average Case Analysis of
Algorithms on Sequence, John Wiley, New York.

[20] M. Weinberger, J. Rissanen, and M. Feder, A uni-
versal finite memory source, IEEE Trans. Inform.
Theory, vol. IT-41, pp. 643–652, May 1995. 48

413

[21] F. Willems, Y. Shtarkov, and T. Tjalkens, The
context-tree weighting method: Basic properties,
IEEE Trans. Inform. Theory, vol. IT-41, pp. 653–
664, May 1995 John Wiley, New York.

414

Efficient Mining of Maximal Sequential Patterns Using Multiple Samples ∗

Congnan Luo† Soon M. Chung‡

Abstract

In this paper, we propose a new algorithm, named
MSPX, which mines maximal sequential patterns by us-
ing multiple samples to effectively exclude infrequent
candidates. MSPX begins with a bottom-up search.
But at each pass, instead of processing all candidates,
it always tries to find most of the infrequent ones effec-
tively by counting only the potentially infrequent candi-
dates against the whole database. After removing veri-
fied infrequent candidates, the remaining candidates are
used to generate new candidates. Finally, with a top-
down search, all the maximal frequent sequences can
be identified efficiently. Sampling technique is used at
each pass to distinguish potentially infrequent candi-
dates. How to increase the minimum support level for
the mining of samples to estimate if candidates could be
infrequent is analyzed theoretically. Due to the superse-
quence frequence based pruning, MSPX reduces much
more search space than other algorithms. Unlike the
traditional single-sample methods proposed for mining
frequent itemsets, MSPX uses multiple samples. Thus,
it can avoid or alleviate some problems inherent in the
single-sample methods. Our experiments show MSPX
has very good performance and better scalability than
other algorithms. Moreover, even though MSPX uses
sampling, the variance of its performance is very small
in multiple runs for the same task.

1 Introduction
Mining sequential patterns from large databases is an
important problem in data mining. With numerous
practical applications, such as consumer market-basket
data analysis and web-log analysis, it has become an
active research topic. Since it was introduced in [2],
many algorithms have been proposed, but most of them
are to discover the full set of frequent sequences.

In pure bottom-up, breadth-first search algorithms
such as GSP [6] and PSP [5], only subsequence infre-

∗This research was supported in part by Ohio Board of
Regents, LexisNexis, NCR, and AFRL/Wright Brothers Institute
(WBI).

†Dept. of Computer Science and Engineering, Wright State
University, Dayton, Ohio 45435, USA.

‡Dept. of Computer Science and Engineering, Wright State
University, Dayton, Ohio 45435, USA.

quency based pruning is used to reduce the number of
candidate sequences. So, if a sequence with length l
is frequent, all of its 2l subsequences must be enumer-
ated first. Thus, if some frequent sequences are long,
the overhead of enumerating all of their subsequences is
so much that mining the full set of frequent sequences
is impractical. An alternative approach is mining only
the maximal frequent sequences. A frequent sequence is
maximal if none of its supersequences is frequent. Min-
ing only the maximal frequent sequences is efficient be-
cause the search space can be reduced a lot by using the
supersequence frequency based pruning. In interactive
data mining, after mining the set of maximal frequent
sequences quickly, we can selectively count the inter-
esting patterns subsumed by this set by scanning the
database just once. Moreover, managing and querying
a small set of maximal patterns is easy, time-saving and
space-saving.

For the association rule mining, many efficient
algorithms were proposed to mine maximal frequent
itemsets [4]. However, differences between the two
kinds of mining make those algorithms very difficult
or impossible to be applied for the maximal frequent
sequence mining. For example, given a set of items,
the search space for mining frequent itemsets is limited,
whereas it is unlimited for sequence mining. An item
can appear at most once in an itemset but it may appear
multiple times in a sequence at different positions.

A critical question for the maximal frequent se-
quence mining is how to look ahead for longer or maxi-
mal frequent sequences at a reasonable cost. In Aprior-
iSome and DynamicSome algorithms [2], the candidates
at some passes are directly used to generate longer can-
didates for the next pass. Actually, it leaves the job
of excluding infrequent candidates to the later passes.
Since the subsequence infrequency based pruning is not
performed at all, a very large number of longer infre-
quent sequences are generated as candidates. The cost
of identifying and removing these infrequent candidates
can offset the gain from the supersequence frequency
based pruning. On the other hand, in GSP, all the can-
didates at each pass are counted. In this way, we can
exclude all the infrequent candidates at each pass, and
hence avoid generating many false candidates. However,
we cannot benefit from the supersequence infrequency

415

based pruning. Based on these observations, a new
MSPX algorithm is proposed in this paper, which em-
phasizes how to effectively exclude most infrequent can-
didates, so that the performance gain from the superse-
quence frequency based pruning can be maximized.

MSPX adopts the Apriori candidate generation
method [1, 2, 6] and performs a bottom-up, breadth-
first search first. But, instead of counting all the can-
didates on the whole database at each pass, it always
tries to find and remove most of the infrequent candi-
dates by counting as few candidates as possible. To
achieve this, we count the candidates on a random sam-
ple drawn from the database at each pass to estimate
which candidates are most potentially infrequent. Then,
only the potentially infrequent candidates are verified
against the whole database to remove really infrequent
ones. The mining process is continued with the sur-
vived candidates to the next pass. At the end of the
bottom-up phase, a superset of all frequent sequences is
obtained. Starting from the border of this superset, a
top-down search is performed to pick up maximal fre-
quent sequences efficiently.

To improve the performance of MSPX, additional
optimization methods are integrated: A signature tech-
nique is used to perform the subsequence infrequency
based pruning when the seed set for the new candidate
generation is too big to be loaded into memory. A prefix
tree structure is developed to count the candidate se-
quences of different sizes during the database scanning,
and it also facilitates the customer sequence trimming.
MSPX outperforms GSP considerably, and also shows
better scalability than SPAM [3] and SPADE [9]. By us-
ing multiple samples, the performance of MSPX is also
much more stable than those of single-sample methods.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the basic concepts of sequence min-
ing. Section 3 reviews some related works on sequence
mining. Section 4 describes the MSPX algorithm. The
experimental results and performance analysis are pre-
sented in Section 5. Section 6 contains some conclusions
and future work.

2 Sequence Mining
Let I = {i1, i2, . . . , in} be a set of items. An k-itemset i
is a set of k items denoted by {im1 , im2 , . . . , imk

}, where
1 ≤ m1 < m2 < . . . < mk ≤ n. A sequence s is an
ordered list of itemsets denoted by < s1, s2, . . . , sk >,
where each si, 1 ≤ i ≤ k, is an itemset. A sequence
sa =< a1, a2, . . . , ap > is contained in another sequence
sb =< b1, b2, . . . , bq > if there exist integers 1 ≤ j1 <
j2 < . . . < jp ≤ q such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , ap ⊆
bjp . If sa is contained in sb, sa is a subsequence of
sb, and sb is a supersequence of sa. An item may

appear at most once in an itemset, but it may appear
multiple times in different itemsets of a sequence. If
there are k items in a sequence, the length of the
sequence is k, and we call it a k-sequence. For example,
a 3-sequence < {A}, {B, C} > is a subsequence of a
5-sequence < {C}, {A, D}, {B, C} >. For simplicity,
these two sequences can be represented as A−BC and
C −AD −BC.

Given a database D of customer transactions, each
transaction consists of a customer-id, transaction-time
and an itemset which includes all the items purchased
by the customer in that single transaction. All the
transactions of a customer can be viewed as a customer
sequence, where these transactions are ordered by their
transaction times. We denote a customer sequence t as
< T1, T2, . . . , Tm >, which means the customer has m
transactions in the database and each transaction Ti,
1 ≤ i ≤ m, contains all the items purchased in that
transaction. A customer supports a sequence if the
sequence is contained by the customer sequence. The
support for a sequence in database D is defined as the
fraction of total customers who support the sequence.
Given a user-specified minimum support, denoted by
minsup, a sequence is frequent if its support is greater
than or equal to minsup. The problem of sequence
mining is to find all the frequent sequences in the
database with respect to a user-specified minsup. If
a sequence is frequent and none of its supersequences is
frequent, then it is a maximal frequent sequence.

Based on the above definitions, two properties are
often utilized to speed up the sequence mining: 1) Any
supersequence of an infrequent sequence is not frequent,
so it can be pruned from the set of candidates. This is
called subsequence infrequency based pruning. 2) Any
subsequence of a frequent sequence is also frequent, so
it can be pruned from the set of candidates. This is
called supersequence frequency based pruning.

In [6], the above definition of sequence mining was
generalized by incorporating time constraints, sliding
time windows, and taxonomy. This generalization
makes the sequence mining more complex. For example,
a sequence A − BC − D − GH is frequent does not
necessarily mean that its subsequence A−BC −GH is
also frequent, because the subsequence may not satisfy
the time constraints. In this research, we consider the
nongeneralized sequential pattern discovery.

3 Related Work

Mining sequential patterns was introduced in [2] with
AprioriAll, AprioriSome and DynamicSome algorithms.
Although AprioriSome and DynamicSome try to gener-
ate and count long candidate sequences before enumer-
ating all their subsequences, their performance is usu-

416

ally worse than that of AprioriAll. The reason is that
too many false candidates are generated without being
pruned by the subsequence infrequency based pruning.
The performance gain from the supersequence frequency
based pruning is not enough to offset the cost of count-
ing so many false candidates.

GSP [6] was proposed for generalized sequence min-
ing, and it requires multiple passes on the database. At
pass k, the set of candidate k-sequences are counted on
the database and frequent k-sequences are determined.
Then, the candidate (k + 1)-sequences are generated by
joining frequent k-sequences for the next pass. This pro-
cess will continue until no candidate is generated. Even
though GSP is much faster than AprioriAll, it has a very
high overhead of enumerating every single frequent sub-
sequence when there are some long patterns. This is also
the main weakness of other Apriori-like algorithms, such
as PSP [5]. For PSP, a prefix tree was developed as the
internal data structure to organize and count candidates
more efficiently. The differences between the PSP’s pre-
fix tree and the one developed for our MSPX are: 1) our
prefix tree is used to count candidates of different sizes,
whereas PSP prefix tree is only used to count the can-
didates of the same size; 2) to improve the candidate
counting, a bit vector is associated with our prefix tree
to facilitate the customer sequence trimming; and 3) the
supersequence frequency based pruning reduces the size
of our prefix tree.

SPADE [9] works on the databases with a vertical
id-list format, where a list of (customer-id, transaction-
time) pairs are associated with each item, and the
candidates are counted by intersecting the id-lists. A
lattice-theoretic approach is used to decompose the
search space into small pieces so that all working id-lists
can be loaded into memory. SPAM [3] uses a vertical
bitmap representation of the database for candidate
generation and counting. A bitmap is created for each
item in the database, where each bit corresponds to a
transaction. If transaction j contains item i, then bit
j in the bitmap for item i is set to 1; otherwise, it
is set to 0. SPAM also uses a depth-first traversal of
the Lexicographic sequence tree and an Apriori-based
pruning of candidates.

Both SPADE and SPAM were reported more effi-
cient than GSP. However, their performance may not be
scalable in certain cases. For SPADE, if the database
is in the horizontal format, where the transactions form
the tuples in the database, transforming it to a verti-
cal one requires extra disk space of roughly the same
size. This may be a problem in practice if the database
is large. Even if the database is in the vertical format,
to efficiently count 2-sequences, SPADE proposes trans-
forming it back to the horizontal one on the fly. This

usually requires much time and memory for very large
databases and results in a performance degradation.

SPAM is claimed to be a memory-based algorithm.
According to our tests, its scalability is much more
sensitive to the number of items and the database size
than other algorithms. The comparison between MSPX,
GSP, SPADE and SPAM is presented in detail in the
performance analysis section.

In [8], sampling was evaluated as an efficient way to
mine an approximate set of frequent itemsets. In [7], a
lowered minsup is used to mine the sample, so that the
probability a frequent itemset is missed from the sample
result would be small. Then, one more database scan is
needed to find the misses and the overestimates.

Our proposed MSPX algorithm also uses sampling
to mine maximal frequent sequences from databases.
While most of other sampling-based mining algorithms
use only one sample in the whole mining, MSPX uses
multiple samples, one for each pass in its bottom-up
phase.

4 MSPX Algorithm
We present MSPX in this section. First, we use a simple
example to explain the basic idea of MSPX. Figure 1
shows how GSP mines a small database with 4 distinct
items A, B, C and D. The whole mining includes
4 passes, and each pass corresponds to a level in the
lattice in Figure 1. At each pass, all candidate sequences
are shown and the infrequent sequences identified are
in gray color. In our description, Ck denotes the set
of candidate k-sequences and Lk denotes the set of
frequent k-sequences.

DCBA

A−B−BAC−C A−BC A−B−C A−C−C

B−A B−B B−C C−A C−B C−CA−CA−AACAB A−B BC

A−B−BC C−AC−C C−C−C−A C−C−AC

AC−C−C A−C−C−C C−A−C−C C−C−A−C C−C−C−C

ABC B−C−CB−B−CB−B−BAB−B AB−C BC−C

B−BC C−AC C−A−C C−C−A C−C−C

Figure 1: Candidate and Frequent Sequences in GSP

At pass 3 with C3, there are three possible strategies
to continue the mining: I) As in GSP, we count all
17 candidate 3-sequences, and then generate C4 from
L3. The subsequence infrequency based pruning is fully
applied because all infrequent 3-sequences are known.
II) As in AprioriSome and DynamicSome, we generate
C4 directly from C3 without counting any candidate 3-
sequence. Then, the candidate 4-sequences are counted

417

earlier than 3-sequences. The purpose of such look-
ahead is to apply the supersequence frequency based
pruning. If a 4-sequence is identified as frequent, then
we can avoid counting its four subsequences of length
3. For the mining task requiring many passes, we can
look ahead in this way during several passes or even
all passes until the longest candidates are generated.
But it has been shown that this method often produces
many false candidates and even causes an explosion
of the candidate set size [2]. III) Suppose that, with
some a priori information, we can divide C3 into two
disjoint subsets, such that the first subset contains most
of the infrequent candidates in C3 while containing as
few frequent ones as possible, and the second subset
contains almost only the frequent candidates in C3. For
example, we may get the following two subsets: {ABC,
AB-B, B-B-B, AC-C, AB-C, BC-C, A-B-B} and {A-BC,
A-B-C, A-C-C, B-BC, B-B-C, B-C-C, C-C-C, C-AC, C-
A-C, C-C-A}.

Then, we just count the candidates in the first
subset on the whole database. Even though the second
subset is not processed yet, we can expect that most
of the infrequent candidates in C3 should have been
identified because they are already clustered into the
first subset. As a next step, the candidates already
identified as frequent and those not counted yet are
used to generate the candidates for the next pass. That
means, the candidates in the second subset, which are
not counted yet, are assumed to be frequent.

While all 17 candidate 3-sequences are counted in
strategy I, only 7 candidate 3-sequences are counted
in strategy III. In addition, there are 12 candidate
4-sequences generated in strategy III. This number
is very close to 9 of strategy I, but much smaller
than 25 of strategy II. As shown in this example,
strategy III provides a much more effective way to
exclude infrequent candidates at pass 3 and look ahead
for longer patterns. At the same time, it doesn’t
impose much extra overhead for excluding longer false
candidates in the later passes, because the subsequence
infrequency based pruning still can be applied very
effectively. Thus, the explosion of the candidate set
size reported for strategy II can be avoided. Based on
this idea, MSPX employs strategy III at each pass, and
eventually obtains the set of potential maximal frequent
sequences. Then, an efficient top-down search for real
maximal frequent sequences can be performed, starting
with this set.

Essentially, strategies I and II can be viewed as
two extreme cases of strategy III, where the counted
subsets are the whole candidate set and the empty
set, respectively. However, both of them ignore the
possibility of each candidate to be infrequent. Actually,

strategy III shows that such information can be used
to improve the effectiveness of excluding infrequent
candidates. A practical question regarding strategy
III is how to divide Ck into such two disjoint subsets
as desired. In our research, a sampling technique is
developed as a part of the proposed MSPX algorithm.

Our description of MSPX is composed of the fol-
lowing parts: an overview of MSPX; a new signature
technique used for subsequence infrequency based prun-
ing; the issue of dividing Ck into two disjoint subsets;
the prefix tree structure and the customer sequence
trimming; and finally the comparison of our sampling
method with previous ones.

4.1 Overview of MSPX. MSPX includes three
phases:

Initial Phase: L1 and L2 are determined. Candidate
3-sequences are generated from L2. To count
candidate 2-sequences, a two-dimensional array is
used. The entry at position (i, j) in the upper-
triangle of the array contains the counts of three
candidates i− j, ij and j − i.

Bottom-up Phase: MSPX starts the bottom-up
phase from pass 3. At pass k (k ≥ 3), a small ran-
dom sample db is drawn from the database DB. We
count all the candidates in Ck on db for their local
supports (i.e., supports in db). Then, we choose a
support level θ as the criterion to divide Ck into two
subsets C−

k and C+
k . All the candidates with local

supports lower than θ are put into C−
k , and others

are put into C+
k . The notation C−

k (C+
k) means

the candidates in C−
k (C+

k) are negative (positive)
to be frequent. We must try to make C−

k contain
almost all the infrequent candidates while contain-
ing as few frequent ones as possible. How to achieve
this will be discussed later. After determining these
two subsets, we just count the candidates in C−

k on
the rest of the database DB. The really infrequent
candidates are removed. A set L∗

k is constructed
by including all the candidates which are already
verified frequent and those in C+

k , which are not
processed yet. Obviously, we have Lk ⊆ L∗

k. Then,
L∗

k is used as the seed set to generate candidates
for the next pass; i.e., the candidates in Ck+1 are
generated by joining the sequences in L∗

k as in GSP.
At the end of this phase, we obtain a superset of
all frequent sequences. The maximal sequences are
extracted from this superset to construct MFS∗,
the set of potential maximal frequent sequences. It
is guaranteed that all maximal frequent sequences
are under the border formed by MFS∗.

Top-down Phase: Starting with MFS∗, a top-down

418

search is performed. All the sequences in MFS∗

are counted on DB. If a k-sequence (k > 3)
is infrequent, all of its (k − 1)-subsequences are
considered as candidates for the next pass. For a
frequent k-sequence, we stop splitting it, and put it
into the set of maximal frequent sequences, MFS,
if none of its supersequences is already in this set. If
a subsequence of the frequent k-sequence is already
in MFS, this subsequence should be removed from
MFS. For a newly generated candidate (k − 1)-
sequence, if it has any supersequence in MFS,
we remove it from further consideration. We also
check if the newly generated (k − 1)-sequence has
any subsequence which is already identified as
infrequent. If yes, this candidate must be split
again. This top-down process continues until no
new candidates are generated.

4.2 Candidate Generation and Pruning in the
Bottom-up Phase. At pass k in the bottom-up phase,
the candidates are generated in two steps:

Join Step: we generate candidate (k+1)-sequences by
joining L∗

k with L∗
k. For any two k-sequences s1 and

s2 in L∗
k, if the subsequence obtained by dropping

the first item of s1 is the same as the subsequence
obtained by dropping the last item of s2, a new
candidate is generated by extending s1 with the last
item of s2. The added item starts a new itemset
for s1 if it was a separate itemset in s2. Otherwise,
it becomes a member of the last itemset in s1.

Prune Step: The candidate (k+1)-sequences with any
subsequence of length k which is not in L∗

k are re-
moved. If L∗

k is too large to be loaded into memory
totally, we perform the partial subsequence infre-
quency based pruning as described below.

A weakness of GSP is the way that a large Lk

is processed. When minsup is very small, Lk could
be too large to be loaded into memory totally. For
this case, GSP proposed to use a relational merge-
join technique to generate candidates. But in this
manner, subsequence infrequency based pruning cannot
be applied because the whole Lk is not available in
memory and retrieving the relevant portions of Lk from
a disk requires too many swaps. Without subsequence
infrequency based pruning, usually the performance of
GSP degrades a lot. In MSPX, we adopted a new
method to solve this problem. If the L∗

k at some pass
requires too much memory, we assign each k-sequence
in L∗

k an integer signature which is highly correlated
to the content of the sequence. A simple example of
generating the signature is shown below, where t is the

number of itemsets in the sequence; mi is the number
of items in the ith itemset; Iij is the jth item in the
ith itemset; Ci, 1 ≤ i ≤ t, is the weight imposed on the
ith itemset; and C0 is the weight imposed on the total
number of itemsets.

(C0 ∗ t) +
t∑

i=1

(Ci ∗mi ∗
mi∑
j=1

Iij)

All the signatures are sorted and put into an array.
Compared with the case of loading the whole L∗

k into
memory, the signature array requires much less space.
Thus, we can load working portions of L∗

k and all the
signatures into memory at the same time. When a new
candidate (k + 1)-sequence is generated, the signatures
of its k-subsequences are computed and searched in
the signature array. If any one of them is not in
the array, the candidate should be removed. Since all
the signatures are in memory, subsequence infrequency
pruning still can be applied. It is possible that two or
more k-subsequences have the same signature. However,
that probability is very low. Our experiments showed
that signatures are much more effective than hashing.
MSPX performs much better than GSP when the seed
set for the candidate generation cannot be loaded into
memory totally at some passes. If the memory cannot
hold all the candidates, we need to generate them
in several parts. For each part, the candidates are
counted on the sample. After all parts are processed,
the candidates with the local support lower than θ are
loaded into memory to perform the counting on the rest
of the whole database.

4.3 Dividing the Candidate Set. At each pass in
the bottom-up phase, we need to divide Ck into two
disjoint subsets, C−

k and C+
k , such that C−

k contains
most of the infrequent candidates while containing
as few frequent ones as possible, and almost all the
candidates in C+

k are frequent. To achieve this, we
collect the local support of each candidate in the sample
db. We set a support level θ as the criterion to estimate
if a candidate could be frequent or not. If the local
support of a candidate is lower than θ, it is estimated
to be infrequent and put into C−

k . Otherwise, we expect
it to be frequent and put it into C+

k . If an infrequent
candidate is misestimated as frequent, we call it an
overestimate. On the other hand, if a frequent candidate
is misestimated as infrequent, it is an underestimate.

Obviously, underestimates can affect only the com-
putation overhead of the current pass. In the extreme
case, even if we misestimate all frequent candidates by
setting C−

k as Ck, it just makes MSPX work like GSP at
that pass. But it is hard to predict how much overesti-
mates can affect the whole mining, because the misesti-

419

mated infrequent candidates in C+
k will be directly used

to generate new candidates. A certain number of over-
estimates may easily increase the number of false candi-
dates and thus make the candidate set for the next pass
much bigger than the case without those overestimates.
This usually results in two consequences: First, the
overhead of counting all candidates on the sample in the
next pass increases. Second, but more importantly, with
much more false candidates, the probability of making
further overestimates tends to increase. Therefore, pre-
venting overestimates is important for MSPX because
they may make the case complicated and unpredictable.

The easiest way to choose θ is setting it to the user-
specified minsup. But we found out that, in practice, if
there are many candidates whose supports are slightly
lower than minsup, a lot of overestimates may occur.
Furthermore, since the distribution characteristics of
the database to be mined is usually unknown, we do
not know if this will happen when the database is
mined with respect to a specific minsup. Thus, it is
necessary to take some measures to prevent the problem
of having too many overestimates. In this research,
we increase the user-specified minsup a little for θ
and explore the relationship between the increment of
minsup and the probability of an overestimate. We
believe this theoretical analysis can provide a guideline
for us in running MSPX. We must keep in mind that
if we increase the user-specified minsup too much, a lot
of underestimates may happen, and it contradicts our
purpose of using the sampling. On the other hand, if we
increase minsup too little for θ, we may have too many
overestimates.

Consider an original database DB and an arbitrary
sequence X . If the support of X in DB is PX , then the
probability that a customer sequence randomly selected
from DB contains X is also PX . Let’s consider a
random sample db with m customer sequences that
are independently drawn from DB with replacement.
The random variable TX , which represents the total
number of customer sequences containing X in db, has
a binomial distribution of m trials with the probability
of success PX . In general, if m is greater than 30,
TX can be approximated by a normal distribution
whose mean is m ∗ PX and the standard deviation is√

m ∗ PX ∗ (1− PX).
In MSPX, suppose that we draw a sample db

with m customer sequences from DB, and then try
to use the point estimator P ′

X = TX/m to estimate
the support of X in the population of DB. Then,
P ′

X is an unbiased estimator with mean m ∗ PX/m =
PX and standard deviation

√
m ∗ PX ∗ (1− PX)/m =√

PX ∗ (1− PX)/m.
If we assume the support of X in DB, PX , is

the user-specified minsup, then P ′
X , which is observed

from a sample db, should be around PX with a normal
distribution as described above. If we set θ to a
support level P ′′

X , P ′′
X > PX , the probability that

the local support of X observed in the sample is
not lower than P ′′

X is 1 − PZ , where Z = (P ′′
X −

PX)/
√

PX ∗ (1− PX)/m. Z is often called the z-score,
and PZ is the probability at the z-score value of Z.

Let’s consider the standard deviation of P
′
X ,√

PX ∗ (1− PX)/m. The value of its part PX ∗(1−PX)
= −(PX − 1/2)2 + 1/4 is increasing in the PX interval
of [0, 1/2]. Since minsup is usually lower than 50%, we
can assume the value of PX ∗ (1 − PX) is increasing in
the PX interval of [0, minsup]; that means, the standard
deviation of P

′
X is increasing in this PX interval. If the

support of another sequence Y in DB is lower than the
minsup PX (i.e., Y is actually an infrequent sequence),
then both the mean and standard deviation of observed
P

′
Y should be smaller than those of P

′
X , respectively.

Therefore, compared with P
′
X , the distribution curve of

P
′
Y is shifted left and shaper. Thus, the probability that

the local support of an infrequent sequence Y observed
in the sample is not lower than P

′′
X should be smaller

than 1 − PZ . In other words, the probability that Y is
overestimated is smaller than 1− PZ .

For a specific mining job, if we specify the upper
bound of the probability that an infrequent candidate
is overestimated as σ (i.e., 1−PZ = σ), then PZ = 1−σ.
Let’s denote the corresponding z-score for PZ as Z(1−σ),
which can be found from the z-score table. Then, we
can compute P

′′
X using the formula (4.1). Actually, P

′′
X

is the value of θ for the upper bound σ.

P
′′
X = PX + Z(1−σ) ∗

√
PX(1 − PX)/m(4.1)

Here, PX = minsup and m = |db|. For example,
if we set σ = 20%, the corresponding Z(1−σ) value is
about 0.85. Our experiments show that the value of
θ (i.e., P

′′
X) computed using the formula (4.1) often

tends to be very conservative. In the above analysis,
we just considered a single sample and tried to control
the occurrence of overestimates at a very low level for
that pass. However, it is not an easy goal to achieve
unless we increase minsup very much for θ, which may
cause too many underestimates.

Let’s include the multiple samples into the analysis.
In MSPX, if an infrequent sequence Y is overestimated
at a pass, it will be used to generate new candidates.
In the next pass, a new sample is drawn. If Y is
not overestimated in the new sample, then all the
false candidates grown from Y are not overestimated
either, and hence they are removed. That means, the
progressive overestimating based on Y can be avoided,
and the negative effect caused by Y is limited within

420

these two passes. Based on this observation, we can
relax our policy as follows: Overestimates are allowed
at a reasonable level at the current pass, but they are
strictly prevented from happening again at the next
pass. With this policy, two consecutive samples are
used for the analysis. Obviously, if the two samples are
drawn independently, the probability that an infrequent
candidate is overestimated in both samples cannot
be bigger than (1 − PZ)2. Thus, with the same
requirement σ on the upper bound of the probability
of an overestimate, PZ is changed from 1−σ to 1−√σ.
Thus, we can rewrite the formula (4.1) as

θ = minsup + Z(1−√
σ) ∗

√
minsup ∗ (1−minsup)/|db|

(4.2)
Here, σ = 20% means that the probability an in-

frequent candidate is overestimated in two consecutive
samples is at most 20%. Actually, the upper bound of
the probability of an overestimate in the first sample is
relaxed to 45%, not the original 20%. The correspond-
ing z-score Z(1−√

σ) is about 0.13. Our tests show that
the formula (4.2) provides a tighter θ value, and MSPX
works better with it in practice.

4.4 Efficient Counting of Candidates Using the
Prefix Tree and the Customer Sequence Trim-
ming. During the top-down search for maximal pat-
terns covered by MFS∗, to reduce the number of passes,
we need to count candidates of different sizes at each
pass over the database. For that purpose, we developed
a new prefix tree structure. Since it is much more ef-
ficient than the hash tree, we also use it to count the
candidates of the same size during the bottom-up phase.

The following example shows how the prefix tree
works. Suppose we have 10 candidates of length 2 or
3. The prefix tree is constructed as shown in Figure 2.
Each node is associated with a pointer. If the path from
the root to a node represents a candidate, the pointer
points to the candidate; otherwise, it is NULL. A node
may have two types of children. The “I-extension”
child means the item represented by the child node is
in the same itemset with the item represented by its
parent node. The “S-extension” child means the item
represented by the child node starts a new itemset.
All the S-extension (I-extension) children of a node are
linked together, and only the first child is linked to
their parent node by a dashed (solid) line. For example,
nodes 4 and 5 are the S-extension children of node 1,
and the corresponding pathes represent the candidates
A − A and A − E, respectively. Nodes 6 and 7 are I-
extension children, and their pathes represent AC and
AD, respectively.

To speed up the counting, a bit vector is associated

with the prefix tree to facilitate the customer sequence
trimming. In this example, we have 8 items in the
database: A, B, C, D, E, F, and H . Since B, F , and
G do not appear in any candidate, they should be
ignored during counting. Thus, the bit vector is set as
(10111001), where 1 at the i-th bit position means item
i appears in the prefix tree. All the bits are initialized
to 0, and the corresponding bits are set to 1 as we insert
candidates into the prefix tree.

Candidates :

10) D − A − H
9) D − AE
8) AD − A
7) ADE
6) D − A
5) CH

3) A − A
2) AD
1) AC

4) A − E ACD − ADE − DH

ABCD − ADEFG − B −DH

Bit Vector (10111001)

1 2
CA

3
D

4
6 7 8

9

10
11

12
13

EA

C

H

A

E
E A

D H

 Root

5

DH
ADE − DH E − DH

DE − DH
CD − ADE −DH

ADE − DH
DH

D − ADE − DH

ADE − DH
DH

DH
DE − DH

Figure 2: Prefix Tree of MSPX

Given a customer sequence s = ABCD−ADEFG−
B −DH , we trim it to s′ = ACD − ADE −DH using
the bit vector first. Then, a recursive method is used
to count all the candidates contained in s′. At the root
node, we check each item in ACD−ADE −DH to see
if it is in the root node’s S-extension children. The first
item of s′ is A, and it appears as the first S-extension
child of the root node. So we recursively call the count
function at the root node with two sequence segments.
The segment CD − ADE −DH is used in the call for
node 1’s I-extension link, while ADE−DH is for its S-
extension link. Then, we can locate the second item of
s′, C, at node 2. Since node 2 has no S-extension child,
only one recursive call with the segment D−ADE−DH
is made for its I-extension link. The third item of s′,
D, is the last item of the first itemset in s′. Only one
call with segment ADE −DH is made for node 3’s S-
extension link. The fourth item of s′, A, can be located
it at node 1 again, and we make two recursive calls. One
is for the node 1’s I-extension link with DE −DH , and
the other one is for its S-extension link with DH . Then,
we process the remaining items in s′, one by one, in the
same way. Whenever we locate an item at some node,
if the pointer associated with the node is not NULL
and the count of the corresponding candidate is not

421

increased yet (for the current customer sequence), it
should be increased.

The root node is processed differently from other
nodes. At the root node, there is no constraint on
which items in the customer sequence should be checked
against the root’s S-extension link, because the first
item of a candidate can appear anywhere in the cus-
tomer sequence. At other nodes, there are always some
constraints. Let’s see how to make recursive calls at
node 1 along its I-extension link. Recall that we have
made two recursive calls at the root node with seg-
ments, CD − ADE − DH and DE − DH , for node
1’s I-extension. Now we process them at node 1. Since
the two segments are specified for node 1’s I-extension
link, we should check the items in their first itemsets,
CD and DE, against node 1’s I-extension link. For
CD−ADE−DH , since C appears at node 6 which has
no child, we stop there by just increasing the count of
AC. Another item, D, appears at node 7. We increase
the count of AD and make recursive calls for node 7’s
links. Since D is the last item of the first itemset in
CD−ADE−DH , only one recursive call with the seg-
ment ADE−DH is made for node 7’s S-extension link.
For another sequence segment DE−DH at node 1, two
items of the first itemset, D and E, are checked. D is
located at node 7. Since the count of AD is already
increased before, we should not increase it again. Two
recursive calls are made at node 1 for node 7’s links.
One is with E −DH for node 7’s I-extension link and
the other is with DH for the S-extension link. We can
ignore E because it is not an I-extension child of node
1. This process will continue until a leaf node is reached
or the sequence segment is empty.

4.5 Sampling in MSPX. The way of using the
sampling in MSPX is unique compared to other previous
researches [7, 8]. We use multiple samples in MSPX,
instead of using a single one. However, we just collect
the local supports of candidates of the same size in
the sample, rather than mining the sample completely
using a fixed minsup. There are some problems in the
previous studies [7, 8]: 1) As only one random sample
is used, if the sample does not represent the database
well, it will affect the whole mining and degrade the
overall performance very much. 2) It is not a surprise
that the performance of the algorithms using a single
sample may vary considerably from one run to another
for the same mining task. 3) When mining a sample,
a fixed minsup, either the user-specified minsup or a
lowered one, is used. For those candidate sequences
whose global supports are slightly higher or lower than
the minsup, misjudgement happens frequently because
their local supports in the sample often diverge from

their global supports. Then, a lot of effort is needed
to identify the overestimates and the underestimates
in the sample results. 4) For single-sample methods,
when the minsup is very small, simply using this minsup
or a lowered one to mine the sample is risky, because
minsup∗ |db| or lowered minsup∗ |db| used to filter the
candidates during the mining of the sample could be
too low. In that case, many overestimates may happen.
They not only make the mining of the sample itself very
difficult, but also pose a heavy overhead on verifying
the sample results. We found this problem is more
serious for sequence mining than for mining the frequent
itemsets, because the search space of sequence mining is
much bigger. Thus, the sampling method used in [7, 8]
is challenged when minsup is very small. Using a large
sample can relieve these problems to some extent, but
it cuts the merit of sampling.

In MSPX, these problems are avoided or alleviated
by using multiple samples, one for each pass in the
bottom-up phase. If a sample is bad, we may need to
count many underestimated candidates in C−

k . How-
ever, it just affects the current pass. We may also over-
estimate many infrequent candidates and put them into
C+

k . Then, they may generate many false candidates
and affect the next pass. Fortunately, in the next pass,
such false candidates will be categorized into C−

k or C+
k

again based on their local supports in a new sample.
Thus, we still have the opportunity to stop the candi-
date growth caused by the overestimates made in the
previous passes. Actually, the probability of choosing
bad samples in a row is extremely small if the sample
size is reasonable. Due to the joint contribution from
multiple samples, the negative effect from one bad sam-
ple can be limited within a couple of passes, rather than
the whole mining. Our experiments showed that the
variance of the execution time of MSPX during 100 runs
for each test is very small. The worst case of MSPX was
also much better than that of single-sample methods.

In MSPX, we do not set a fixed minsup for the
mining of samples. Instead, we simply collect the local
supports of the candidates in the sample. Even though
we use the local supports to categorize candidates into
C−

K or C+
K , whether to remove a candidate from the

search space or not is still based on its global support
after it is verified against the whole database. Thus,
no frequent sequence will be missed in the bottom-up
phase. This enables us to perform an efficient top-
down search for all maximal patterns. Moreover, to
avoid having too many overestimates, we increase the
minsup a little for mining the sample. Thus, we releave
the problem that too many infrequent sequences are
overestimated as frequent and placed into C+

k .
Initially, we concerned if MSPX would incur a lot of

422

overhead due to multiple samples when it is compared
to the case of using a single sample. In single-sample
methods, we draw one single sample but mine it in
multiple passes. On the other hand, MSPX draws
multiple samples, but each sample is processed in a
single pass. Roughly speaking, in both methods, the
sampling procedure includes three steps: 1) randomly
selecting distinct customer ids for the sample, 2) loading
the sample into memory, and 3) processing the sample.

The time required for step 1 is negligible. For step
2, in the traditional single-sample methods, we just need
to load the sample into memory once if we have enough
memory space. In MSPX, we must do it multiple times
because the samples are different at different passes.
However, due to the small size of the sample, the loading
time is not a dominant factor. Step 3 is the dominant
part in the overhead related to the sampling. Even
though MSPX uses multiple samples, it does not mine
each sample completely. For each sample, it just counts
the candidates of the same length for that pass (i.e.,
candidate k-sequences for the kth pass). The single-
sample methods mine the sample completely in multiple
passes with respect to a minsup.

Let’s simplify the situation by assuming that any
sample drawn can represent the database well. In the
single-sample methods, if GSP is used to mine the sam-
ple, the number of passes and the candidate set size at
each pass will be similar to those of running GSP on the
whole database. In the bottom-up phase of MSPX, since
most infrequent candidates can be excluded at each pass
as discussed before, the subsequence infrequency based
pruning can be performed as effectively as in GSP. Thus,
in this phase, the number of passes and the candidate set
size at each pass are also similar to the case of running
GSP on the whole database. Therefore, the computa-
tion costs for step 3 in both single-sample methods and
our multi-sample method are actually very close to each
other.

The overhead for sampling in both types of meth-
ods is actually determined by steps 2 and 3. Our tests
showed that MSPX incurs a little more overhead than
single-sample methods, but not much. Overall, MSPX
still demonstrates its advantage in terms of the average
performance, the worst-case performance and the sta-
bility in performance. Some relevant test results will be
shown in the following performance analysis section.

5 Performance Analysis

To compare MSPX with other algorithms, we imple-
mented GSP and obtained the source codes of SPAM
and SPADE from their authors’ web sites. In addi-
tion, we are also interested in the comparison between
multi-sample method MSPX and the traditional single-

sample methods. Thus, we implemented a variant of
GSP, which will be called GSP-Samp in this paper, by
integrating the sampling technique in a traditional way:
using GSP to mine a random sample with respect to
minsup first, validating sample results to remove false
patterns, then performing GSP on the database and us-
ing the longest frequent sequences found in the sample
to prune candidates at each pass.

All the experiments were performed on a SuSE
Linux PC with a 2.6 GHz Pentium processor and 1
Gbytes main memory. For MSPX and GSP-Samp, since
sampling technique is probabilistic, we repeated each
test 100 times. The average execution time of the 100
runs was reported as the performance result. The de-
fault sample size for MSPX and GSP-Samp was fixed as
10% of the test database for all experiments. For MSPX,
the support level θ for the sample is computed using the
formula (4.2). The upper bound of the probability that
an infrequent candidate is overestimated at two consec-
utive passes is set as 20%, i.e. σ = 0.2. Thus, we have
Z(1−√

σ) = Z0.55 = 0.13. The databases used in our
experiments are synthetically generated as in [2]. The
database generation parameters are described in Ta-
ble 1. For all databases, NS = 5000 and NI = 25, 000;
and the names of the databases reflect other parameter
values used to generate them.

Table 1: Parameters Used in Database Generation

D Number of customers in the database

C Average number of transactions per customer

T Average number of items per transaction

S Average length of maximal potentially frequent sequences

I Average length of maximal potentially frequent itemsets

N Number of distinct items in the database

NS Number of maximal potentially frequent sequences

NI Number of maximal potentially frequent itemsets

5.1 Performance Comparison. We ran MSPX,
GSP, SPADE and SPAM on databases with medium
sizes of about 100 Mbytes. The number of items in these
databases is 10,000. The test results on D400K-C10-T5-
S10-I2.5-N10K database are presented in Figure 3. In
our tests, SPAM could not mine these databases, and
its run was terminated by the operating system. Our
machine is a 32-bit system, but the user address space
is limited to 2 Gbytes. In all these tests, SPAM always
required more than 2 Gbytes memory, and hence caused
the termination.

With the optimization components integrated,
MSPX performs much better than GSP because it pro-
cesses fewer candidates in a much more efficient way.

423

When the minsup is decreased, more and more can-
didates appear during the mining. In that case, the
overhead of GSP in candidate generation, pruning, and
especially counting using a huge hash tree increases
drastically. For MSPX, this situation is considerably
improved by using the supersequence frequency based
pruning, the prefix tree structure, and the customer se-
quence trimming. At each pass in the bottom-up phase
of MSPX, only a part of the candidates are selected to
be counted on the whole database. As most infrequent
sequences were identified early, the situation that too
many false candidates are generated did not happen in
all the tests. In the top-down phase of MSPX, the search
starts with the potential maximal frequent sequences.
Once a maximal frequent sequence is found, all of its
subsequences are removed from the search space. Thus,
the total number of candidates being counted on the
whole database is much smaller than that of GSP. Fig-
ure 3(b) shows how many candidates with length greater
than 2 have been counted on the whole databases in
GSP and MSPX.

In SPADE, the subsequence infrequency based
pruning is performed only partially. Compared with
GSP, SPADE is expected to process more candidates.
The main advantage of SPADE is the efficient counting
of the candidates by intersecting the id-lists. An ineffi-
cient part of SPADE is the counting of C2 for medium
and large databases in the vertical format, which de-
grades the whole performance of SPADE very much.
Considering both factors, we can say that if there are
not enough number of candidates of length greater than
2 to be counted, SPADE cannot show its efficiency.
That is why SPADE is even worse than GSP when min-
sup is big as shown in Figure 3(a). In these tests, MSPX
performed best for large and medium minsups. Only
when the minsup is very small, SPADE performed best.

5.2 Scalability Evaluation. Both SPADE and
SPAM need to store a huge amount of intermediate
data to save their computation cost. When the mem-
ory space requirement is over the memory size avail-
able, CPU utilization drops quickly due to the frequent
swapping. Compared with them, MSPX and GSP pro-
cess the customer sequences one by one, hence only a
small memory space is needed to buffer the customer
sequences being processed. MSPX can also handle the
situation that L∗

k or Ck cannot be totally loaded into
memory by using the signatures as explained in Sec-
tion 4. Therefore, MSPX does not require the memory
space as much as GSP, SPADE and SPAM.

Many real-life customer market-basket databases
have tens of thousands of items and millions of cus-
tomers, so we evaluated the scalability of the mining al-

0

500

1000

1500

2000

2500

3000

0.33 0.3 0.25 0.2 0.18

Minimum Support (%)

Ex
ec

ut
ion

 T
im

e
(s

ec
)

GSP
SPADE
MSPX

(a) Performance

0

500

1000

1500

2000

0.33 0.3 0.25 0.2 0.18
Minimum Support (%)

To
ta

l N
um

be
r o

f C
an

did
at

es
 C

ou
nt

ed
 o

n
DB

 a
fte

r
Pa

ss
 2

 (
'00

0s
)

MSPX
GSP

(b) Search Space (MSPX vs. GSP)

Figure 3: Tests on D400K-C10-T5-S10-I2.5-N10K

gorithms in these two aspects. First, we started with a
very small database D1K-C10-T5-S10-I2.5 and changed
the number of items from 500 to 10,000. The user-
specified minsup was 0.5%. To run MSPX on such a
small database with only 1000 customers, we selected
the whole database as the sample and set θ to minsup.
Since MSPX does not apply the sampling on such a
small database, supersequence frequency based pruning
is not performed in mining. Thus, in this case, SPADE
and SPAM performed better than MSPX and GSP as
long as their memory requirement is satisfied.

As the number of items is increased, SPAM shows
its scalability problem. Theoretically, the memory space
required to store the whole database into bitmaps in
SPAM is D ∗C ∗N/8 bytes. For the id-lists in SPADE,
it is about D ∗ C ∗ T ∗ 4 bytes. But we found these
values are usually far less than their peak memory space
requirement during the mining, because the amount
of intermediate data in both algorithms is quite large.

424

As shown in Figure 4, even though the D1K-C10-T5-
S10-I2.5-N8000 database takes only 260 Kbytes, and
the theoretical memory space requirement to store the
database in SPAM is about 1000 ∗ 10 ∗ 8000/8 bytes
≈ 10 Mbytes, it could not finish the mining when
the minsup was 0.5%, because it required more than
2 Gbytes of memory. Compared with SPAM, SPADE
divides search space into small pieces so that only
the id-lists being processed need to be loaded into
memory. Another advantage of SPADE is that the id-
lists become shorter and shorter with the progress in
mining, whereas the length of the bitmaps does not
change in SPAM. These two differences make SPADE
much more space-efficient than SPAM. We also fixed
the parameter N as 1000 and changed the database size
from 1K to 100K customer sequences. SPAM could not
mine the databases with more than 20K customers due
to its memory requirement problem. Our tests showed
that SPAM is very sensitive to the number of items
and the number of customers, which mainly limits its
applicability.

0

50

100

150

200

250

500 1000 2000 4000 8000 10000

Number of Items

Ex
ec

ut
ion

 T
im

e
(s

ec
)

GSP
SPAM
SPADE
MSPX

Figure 4: Scalability: Number of Items (on D1K-C10-
T5-S10-I2.5, minsup=0.5%)

Second, we investigated how they perform on C10-
T5-S10-I2.5-N10K when the user-specified minsup min-
sup is 0.18%. We fixed the number of items as 10,000
and increased the number of customers from 400,000
to 2,000,000. SPAM could not perform the mining due
to its memory requirement problem. For SPADE, we
partitioned the test database into multiple chunks for
better performance when its size was increased. Other-
wise, the counting of C2 for a large database could be
extremely time-consuming. We made each chunk con-
tain 400,000 customers so that its size is only about
100 Mbytes, which is one tenth of our main memory
size. Thus, D400K-C10-T5-S10-I2.5-N10K is processed
as one chunk, D800K-C10-T5-S10-I2.5-N10K is divided
into two chunks, and so on. Figure 5 shows that the
scalability of MSPX and GSP are quite linear. But

SPADE cannot maintain a reasonable scalability as the
database becomes larger. As the database size is in-
creased, MSPX performs much better than the others.

When the database was relatively small with only
400,000 customers, SPADE performed best — about
20% faster than MSPX. But when the database size
is increased from 1600K customers to 2000K customers,
there is a sharp performance drop in SPADE, such that
it is even slower than GSP. In that case, MSPX is faster
than SPADE by a factor of about 8. As discussed
before, counting C2 is a performance bottleneck for
SPADE, because the transformation of a large database
from the vertical format to the horizontal format takes
too much time. When the database is very large, the
transformation also requires a large amount of memory
and frequent swapping, hence the performance drops
drastically. Partitioning the database can relieve this
problem to some extent but does not solve it completely.
Moreover, for the database with a large number of items
and customers, SPADE needs more time to intersect
more and longer id-lists.

100

1000

10000

100000

400 800 1200 1600 2000

Number of Customers ('000s)

Ex
ec

ut
ion

 T
im

e
(s

ec
)
GSP
SPADE
MSPX

Figure 5: Scalability: Number of Customers (on C10-
T5-S10-I2.5-N10K, minsup=0.18%)

Finally, we mined a large database D2000K-C10-
T5-S10-I2.5-N10K, which takes about 500 Mbytes, for
various minsups. This database was partitioned into
5 chunks for SPADE, and the results are shown in
Figure 6. Based on our tests, we found SPADE
performs best for small size databases. For medium
size databases, MSPX performs better for relatively
big minsups while SPADE is faster for small minsups.
When the database is large, SPADE’s performance
drops drastically, and MSPX outperforms SPADE very
much.

5.3 Multi-Sample MSPX vs. Single-Sample
GSP-Samp. As far as we know, all the previous
researches on the association rule mining based on the
sampling used a single random sample or refined a

425

100

1000

10000

100000

0.33 0.3 0.25 0.2 0.18

Minimum Support (%)

Ex
ec

ut
ion

 T
im

e
(s

ec
)

GSP
SPADE
MSPX

Figure 6: Performance on a Large Database D2000K-
C10-T5-S10-I2.5-N10K

single big sample to a smaller one. In MSPX, multiple
samples are used. We compared MSPX and GSP-
Samp to see if multiple samples can avoid or alleviate
the problems inherent in the single-sample methods
discussed earlier. To exclude other factors affecting
the performance of GSP-Samp, the signature based
subsequence infrequency pruning, the prefix tree and
the customer sequence trimming techniques were also
used for the implementation of GSP-Samp.

Compared with GSP-Samp, MSPX has better av-
erage performance. Most importantly, the performance
variance of MSPX is much smaller than that of GSP-
Samp. The worst performance of MSPX also indicates
that even if a few bad samples had been drawn, MSPX
could successfully suppress their negative effect. Oth-
erwise, the worst case of MSPX could have been much
worse than what we observed, probably similar to the
worst case of GSP-Samp. This proves that MSPX is
not sensitive to a couple of bad samples because of the
contribution of multiple samples.

6 Conclusions and Future Work
In this paper, we proposed an algorithm named MSPX,
which mines maximal frequent sequences by effectively
excluding infrequent candidates. Multiple samples are
used in MSPX to avoid or alleviate some problems in-
herent in the algorithms using only one sample. For
MSPX, we explored the relationship between the incre-
ment of the user-specified minsup for the sample and
the probability of an overestimate. A theoretical guide-
line is given to increase the minsup for the sample in
the context of multiple samples. Our extensive exper-
iments proved that MSPX is a practical and efficient
algorithm. Its excellent scalability makes it a very good
candidate for mining customer market-basket databases
which usually have tens of thousands of items and mil-
lions of customer sequences. More importantly, even

though MSPX is a sampling-based algorithm, the vari-
ance of its performance during multiple runs for the
same mining task is usually very small. Applying the
proposed idea of effectively excluding infrequent candi-
dates and the multiple sampling technique to other se-
quence mining algorithms will be an interesting project.

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proc. of the 20th VLDB
Conf., 1994, pp. 487–499.

[2] R. Agrawal and R. Srikant, “Mining Sequential Pat-
terns,” Proc. of Int’l Conf. on Data Engineering, 1995,
pp. 3–14.

[3] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequen-
tial Pattern Mining Using a Bitmap Representation,”
Proc. of ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining, 2002, pp. 429–435.

[4] S. M. Chung and C. Luo, “Distributed Mining of Max-
imal Frequent Itemsets from Databases on a Cluster
of Workstations,” Proc. of the 4th IEEE/ACM Int’l
Symp. on Cluster Computing and the Grid – CCGrid
2004, IEEE Computer Society Press, 2004.

[5] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP
Approach for Mining Sequential Patterns,” Proc. of
European Symp. on Principle of Data Mining and
Knowledge Discovery, 1998, pp. 176–184.

[6] R. Srikant and R. Agrawal, “Mining Sequential Pat-
terns: Generalizations and Performance Improve-
ments,” Proc. of the 5th Int’l Conf. on Extending
Database Technology, 1996, pp. 3–17.

[7] H. Toivonen, “Sampling Large Databases for Associa-
tion Rules,” Proc. of the 22nd VLDB Conf., 1996, pp.
134–145.

[8] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara,
“Evaluation of Sampling for Data Mining of Associa-
tion Rules,” Proc. of the 7th Int’l Workshop on Re-
search Issues in Data Engineering, 1997.

[9] M. J. Zaki, “SPADE: An Efficient Algorithm for Min-
ing Frequent Sequences,” Machine Learning, 42(1),
2001, pp. 31–60.

426

Gaussian Processes for Active Data Mining of Spatial Aggregates

Naren Ramakrishnan†, Chris Bailey-Kellogg#, Satish Tadepalli†, and Varun N. Pandey†

†Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
#Department of Computer Science, Dartmouth College, Hanover, NH 03755

Abstract

Active data mining is becoming prevalent in applica-
tions requiring focused sampling of data relevant to a
high-level mining objective. It is especially pertinent
in scientific and engineering applications where we seek
to characterize a configuration space or design space in
terms of spatial aggregates, and where data collection
can become costly. Examples abound in domains such
as aircraft design, wireless system simulation, fluid dy-
namics, and sensor networks. This paper develops an
active mining mechanism, using Gaussian processes, for
uncovering spatial aggregates from only a sparse set of
targeted samples. Gaussian processes provide a unify-
ing framework for building surrogate models from sparse
data, reasoning about the uncertainty of estimation at
unsampled points, and formulating objective criteria for
closing-the-loop between data collection and data min-
ing. Our mechanism optimizes sample selection using
entropy-based functionals defined over spatial aggre-
gates instead of the traditional approach of sampling
to minimize estimated variance. We apply this mech-
anism on a global optimization benchmark comprising
a testbank of 2D functions, as well as on data from
wireless system simulations. The results reveal that the
proposed sampling strategy makes more judicious use
of data points by selecting locations that clarify high-
level structures in data, rather than choosing points that
merely improve quality of function approximation.

Keywords: spatial mining, active mining, sparse data,
spatial aggregation, Gaussian processes.

1 Introduction

Many data mining applications in scientific and engi-
neering contexts require analysis and mining of spa-
tial datasets derived from computer simulations or field
data, e.g., wireless system simulations, aircraft design
configuration spaces, fluid dynamics simulations, and
sensor network optimization. In contrast to traditional
data mining contexts that are dominated by massive
datasets, these domains are actually characterized by
a paucity of data, owing to the cost and time involved

10 20 30 40

10
20

30
40

SNR1, dB

SN
R

2,
 d

B

Figure 1: Mining configuration spaces from wireless
system simulations. The shaded region denotes the
largest portion of the configuration space where we can
claim, with confidence at least 99%, that the average bit
error rate (BER) is acceptable for voice-based system
usage. Each ‘cell’ in the plot is the result of the spatial
and temporal aggregation of hundreds of wireless system
simulations, many of which take hours.

in conducting simulations or setting up experimental
apparatus for data collection. Nevertheless, the com-
putational scientist has control of where data can be
collected; it is hence prudent in such domains to focus
data collection in only those regions that are deemed
important to support a high-level data mining objec-
tive.

As a concrete example, consider the characteri-
zation of WCDMA (wideband code-division multiple
access) wireless system configurations for a given in-
door environment. A configuration comprises many ad-
justable parameters, and the goal of wireless system
characterization is to assess the relationship between
these parameters and performance metrics such as BER
(bit error rate), a measure of the number of bits trans-
mitted in error using the system. When a wireless engi-
neer designs a system for a given indoor environment, he
or she sets an acceptable performance criterion for BER
(e.g., 10−3 for a system designed to carry voice traffic,
stricter thresholds for data traffic) and seeks a region

427

in the configuration space that can satisfy this crite-
rion (see Fig. 1). To collect the data necessary for min-
ing configuration spaces, the engineer either performs a
costly Monte Carlo simulation (where a model of radio
propagation in the wireless channel is embedded inside a
system-wide model encapsulating wireless protocols and
communications standards), or installs channel sound-
ing equipment and system instrumentation in the envi-
ronment, and actually enacts usage scenarios. In either
approach, it is not feasible to first organize a volumi-
nous body of data and subsequently perform data min-
ing on the collected dataset. It is thus imperative that
we interleave data collection and data mining and focus
sampling at only those locations that maximize well-
defined notions of relevance and utility. Importantly, we
will not need to sample the entire configuration space,
only enough so as to identify a region with acceptable
confidence.

Active data selection has been investigated in a
variety of contexts [4, 25]. A sampling strategy typically
embodies a human assessment of where might be a good
location to collect data [1, 13] or is derived from the
optimization of specific design criteria [5, 17, 22]. Many
of these strategies, however, are either based on utility
of data for function approximation purposes [24], or are
meant to be used with specific data mining algorithms
and tasks (e.g., classification [10]). In this paper, we
present a formal framework that casts spatial data
mining as uncovering successive multi-level aggregates
of data, and uses properties of higher-level structures to
help close the loop between mining and data collection.
This approach helps us design sampling strategies that
bridge higher-level quality metrics of structures (e.g.,
entropy) with lower-level considerations of data samples
(e.g., locations and fidelity). While we focus on spatial
contexts, we point out that spatial can denote any
dimension that affords a metric; our approach thus
applies equally well to a wide range of data sets with
more abstract notions of space (such as the wireless
simulation example above).

Our active mining mechanism is based on the
spatial aggregation language (SAL; [3]), a generic data
mining framework for spatial datasets, and Gaussian
processes (GPs; [27]), a powerful unifying theory for
approximating and reasoning about datasets. Gaussian
processes provide the ‘glue’ that enables us to perform
active mining on spatial aggregates. In particular,
they aid in (i) creation of surrogate models from data
using a sparse set of samples (for cheap generation
of dense approximate datasets), (ii) reasoning about
the uncertainty of estimation at unsampled points, and
(iii) formulation of objective criteria for active data
collection.

classes
Equivalence

objects
Spatial

N-graph

Ambiguities

Sample

Aggregate

Interpolate

LocalizeRedescribe

LocalizeRedescribe

Lower-Level Objects

Higher-Level Objects

Abstract Description

Classify

Input Field

Figure 2: SAL uncovers multi-layer spatial aggregates
by employing a small set of operators (a spatial mining
“vocabulary”) utilizing suitable domain knowledge. A
variety of spatial data mining tasks, such as vector field
bundling, contour aggregation, correspondence abstrac-
tion, clustering, and uncovering regions of uniformity
can be expressed as multi-level spatial aggregate com-
putations.

1.1 Contributions: This paper builds on our prior
work in [1, 23] by presenting a novel integration of
Gaussian processes with SAL:

• While classical active mining work in spatial mod-
eling focuses on quality of function approximation,
the mechanism presented here focuses on clarifying
high-level structures. The entropy-based sampling
approach introduced in this paper is applicable to
mining a broad range of spatial structures.

• Unlike traditional data mining contexts that deal
with voluminous amounts of data, the mechanism
is targeted at scenarios where data collection costs
far outshadow data mining costs. For instance,
in the wireless simulation study, each data sample
requires a few hours to acquire on a cluster of
workstations whereas the data mining (and sample
selection optimization) algorithms as implemented
here can be executed in a matter of minutes on a
workstation.

428

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−2

−1.5

−1

−0.5

0

0.5

1

Figure 3: de Boor’s ‘pocket’ function in 2D, depicting
contours around basins of local minima.

• Since Gaussian processes are re-statements of
kernel-based learning methods [7] this work helps
bridge the qualitative nature of SAL algorithms
with rigorous quantitative methodologies necessary
to evaluate and assess active mining strategies.

This work assumes a moderate background of algo-
rithms for spatial aggregation and spatial statistical
modeling. Nevertheless, Sec. 2 and Sec. 3 overview ear-
lier work on SAL and GPs for the SIAM DM audience
and instantiate such work for a motivating case study
— identifying and characterizing pockets in a space
(such as the wireless system design configuration space).
Sec. 4 then moves to active mining and introduces two
important classes of sampling strategies integrating SAL
and GPs. Sec. 5 evaluates the mechanism using both
synthetic and real-world datasets. Sec. 6 provides a dis-
cussion and reviews related work.

2 Spatial Aggregation Language

The Spatial Aggregation Language (SAL) [3, 28, 30] is
a generic framework to study the design and implemen-
tation of spatial data mining algorithms. SAL is cen-
tered on a field ontology, in which the spatial data in-
put is a field mapping from one continuum to another
(e.g. 2-D temperature field: R2 → R1; 3-D fluid flow
field: R3 → R3). SAL programs employ vision-like rou-
tines, in an imagistic reasoning style [29], to uncover and
manipulate multi-layer geometric and topological struc-
tures in fields. Due to continuity, fields exhibit regions
of uniformity, and these regions can be abstracted as
higher-level structures which in turn exhibit their own
continuities. Task-specific domain knowledge specifies
how to uncover such uniformity, defining metrics for
closeness of objects and similarity of features. For exam-
ple, streamlines are connected curves of nearby points
with vectors flowing in similar enough directions, while
pressure cells are connected regions of similar (and ex-
treme) enough pressure.

SAL supports structure discovery through a small
set of generic operators, parameterized with domain-

specific knowledge, on uniform data types. These oper-
ators and data types mediate increasingly abstract de-
scriptions of the input data (see Fig. 2) to form higher-
level abstractions and mine patterns. The primitives
in SAL are contiguous regions of space called spatial
objects; the compounds are (possibly structured) collec-
tions of spatial objects; the abstraction mechanisms con-
nect collections at one level of abstraction with single
objects at a higher level. This vocabulary has proved
effective for expressing the mechanisms required to un-
cover multi-level structures in spatial datasets in ap-
plications ranging from decentralized control design [2]
and object manipulation [30] to analysis of weather
data [12], diffusion-reaction morphogenesis [21], and
matrix perturbation analysis [22].

The identification of structures in a field is a form
of data reduction: a relatively information-rich field
representation is abstracted into a more concise struc-
tural representation (e.g. pressure data points into iso-
bar curves or pressure cells; isobar curve segments into
troughs). Navigating the mapping from field to abstract
description through multiple layers rather than in one
giant step allows the construction of modular data min-
ing programs with manageable pieces that can use sim-
ilar processing techniques at different levels of abstrac-
tion. The multi-level mapping also allows higher-level
layers to use global properties of lower-level objects as
local properties of the higher-level objects. For example,
the average temperature in a region is a global property
when considered with respect to the temperature data
points, but a local property when considered with re-
spect to a more abstract region description. As this pa-
per demonstrates, analysis of higher-level structures in
such a hierarchy can guide interpretation of lower-level
data.

Let us begin with a spatial mining task motivated
by the wireless study — determining the number and
locations of pockets, or basins of local minima, in a
vector field. Fig. 3 illustrates four pockets in a field
defined by Carl de Boor’s function in 2D (from [22]):

α(X) = cos

(
n∑

i=1

2i

(
1 +

xi

| xi |

))
− 2(2.1)

δ(X) = ‖X− 0.5I‖(2.2)

p(X) = α(X)(1 − δ2(X)(3− 2δ(X))) + 1(2.3)

where X is the n-dimensional point (x1, x2, · · · , xn) at
which the pocket function p is evaluated, I is the identity
n-vector, and ‖ · ‖ is the L2 norm. The property of this
function is that it assumes a pocket in each corner of
the cube, just outside the sphere enclosed in the cube.
Since the ratio of cube volume (2n) to that of the sphere
(πn/2/(n/2)!) grows unboundedly, global optimization

429

algorithms cannot exploit any special properties and
must consider every one of the 2n corners! Hence, the
de Boor function is a well-known benchmark for global
optimization (esp. in high dimensions), but we focus
here on a somewhat different objective of characterizing
the high-level structure of the field. The algorithmic
encoding of the calculus definition of local minima
suggests that the four pockets in Fig. 3 can be identified
via convergent flows in the gradient underlying the
vector field. Let us assume we are given a dense set of
samples covering the region of interest. Fig. 4 illustrates
an example of key spatial aggregation operations:

(a) Establish the input field, here by calculating the
gradient field (normalized, since we’re interested
only in direction in order to detect convergence).

(b) Localize computation with a neighborhood graph,
so that only spatially proximate objects are com-
pared. Here, an 8-adjacency neighborhood graph
is employed, which results in somewhat ‘blocky’
streamlines but fast computation.

(c)-(f) Use a series of local computations to find equiv-
alence classes of neighboring objects with simi-
lar features. Here, we systematically eliminate all
neighborhood graph edges but those whose direc-
tions best match the vector direction at both end-
points. ‘Forward neighbor’ computation compares
graph edge direction with the average of the vec-
tor directions, and keeps only those that are simi-
lar enough (implemented as a cosine angle similar-
ity threshold). ‘Best forward neighbor’ at junction
points then selects from among these neighbors,
by a third metric combining similarity in direction
with closeness in point location. Backward calcula-
tions are analogous, but deal with the predecessor
along a streamline rather than the successor.

(g) Move up a level in the spatial object hierarchy by
redescribing equivalence classes into more abstract
objects. Here, connected vectors are abstracted
into curve objects, which have both a reduced
representation and additional semantic properties
(e.g. curvature is well-defined).

(h) Apply the same mechanism — aggregate, classify,
and redescribe — at the new level, using the exact
same operators but with different metrics. Here,
curves are grouped into coherent pockets with con-
vergent flow. Neighborhood (not shown) is de-
rived from neighborhood of constituent vectors,
and equivalence tests direction of flow for conver-
gence.

Notice that SAL is not a specific data mining al-
gorithm, but rather a language to construct complex
mining operations (such as in Fig. 4) from a small core
set of operations. As such, the quality of results from a
SAL implementation depends on suitable choices of ab-
straction levels and appropriate settings of any relevant
parameters. For instance, in the above example, three
parameters control the relationship from input field to
output structures: adjacency neighborhood size (used in
step (b)), angle for vector similarity (used in step (c)),
and distance penalty metric (used in step (d) to com-
bine distance with direction). For Fig. 4, we set these
parameters to 1.5 (generates an 8-adjacency neighbor-
hood), 0.75, and 0.1 respectively. This paper is not
concerned with evaluating particular SAL implementa-
tions but instead focuses on using them from within an
active mining context.

Localized computations are integral to SAL, and
hence an effective SAL application relies on a dense
set of samples covering the domain. When data is
scarce, we can first build an approximation to the
underlying field with the given samples, and use the
approximation to generate a dense field of data (e.g.,
on a uniform grid). Such an approximation is called
a surrogate model — cheap-to-compute substitutes for
complex functions. One way to build surrogate models
relies on Gaussian processes.

3 Gaussian Processes

The use of Gaussian processes in machine learning and
data mining is a relatively new development, although
their origins can be traced to spatial statistics and the
practice of modeling known as kriging [14]. In contrast
to global approximation techniques such as least-squares
fitting, GPs are local approximation techniques, akin
to nearest-neighbor procedures. In contrast to function
approximation techniques that place a prior on the form
of the function, GP modeling techniques place a prior
on the covariance structures underlying the data.

The basic idea in GPs is to model a given dataset
as a realization of a stochastic process. Formally, a
GP is a set of random variables any finite subset of
which have a (multivariate) normal distribution. For
our purposes, we can think of these variables as spatially
distributed (scalar) response variables ti, one for each
2D location xi = [xi1, xi2] where we have collected a
data sample. In our vector field analysis application,
ti denotes the modeled response, i.e., the value of de
Boor’s function at xi. Given a dataset D = {xi, ti}, i =
1 . . . n, and a new data point xn+1, a GP can be used
to model the posterior P (tn+1|D, xn+1) (which would
also be a Gaussian). This is essentially what many
Bayesian modeling techniques do (e.g., least squares

430

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Example steps in SAL implementation of vector field analysis of de Boor’s function. (a) Input vector
field. (b) 8-adjacency neighborhood graph. (c) Forward neighbors. (d) Best forward neighbors. (e) Neighborhood
graph transposed from best forward neighbors. (f) Best backward neighbors. (g) Resulting adjacencies redescribed
as curves. (h) Higher-level aggregation and classification of curves whose flows converge.

approximation with normally distributed noise) but it is
the specifics of how the posterior is modeled that make
GPs distinct as a class of modeling techniques.

To make a prediction of tn+1 at a point xn+1, GPs
place greater reliance on ti’s from nearby points. This
reliance is specified in the form of a covariance prior for
the process and will be central to how we embed SAL
in a broader GP framework:

Cov(ti, tj) = α exp

(
−

1

2

2∑
k=1

ak(xik − xjk)2

)
(3.4)

Intuitively, this function captures the notion that re-
sponse variables at nearby points must have high corre-
lation. The reader will note that this idea of influence
decaying with distance has an immediate parallel to how
SAL programs localize computations. In Eq. 3.4, α is
an overall scaling term whereas a1, a2 define the length
scales for the two dimensions. However, this prior (or
even its posterior) does not directly allow us to deter-
mine tj from ti, since the structure only captures the
covariance; predictions of a response variable for new
sample locations are thus conditionally dependent on
the measured response variables and their sample lo-
cations. Hence, we must first estimate the covariance
parameters (a1, a2, and α) from D and then use these
parameters along with D to predict tn+1 at xn+1.

3.1 Using a GP: Before covering the learning pro-
cedure for the covariance parameters (a1, a2, and α), it

is helpful to develop expressions for the posterior of the
response variable in terms of these parameters. Since
the jpdf of the response variables P (t1, t2, · · · , tn+1) is
modeled Gaussian (we will assume a mean of zero), we
can write:

P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1) =

1

λ1
exp

(
−

1

2
[t1, t2, · · · , tn+1] Cov−1

n+1 [t1, t2, · · · , tn+1]
T

)

where we ignore λ1 as it is simply a normalizing factor.
Here, Covn+1 is the covariance matrix formed from the
(n + 1) data values (x1,x2, · · · ,xn+1). A distribution
for the unknown variable tn+1 can then be obtained as:

P (tn+1|t1, t2, · · · , tn,x1,x2, · · · ,xn+1, Covn+1)

=
P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1)

P (t1, t2, · · · , tn |x1,x2, · · · ,xn+1, Covn+1)

=
P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1)

P (t1, t2, · · · , tn |x1,x2, · · · ,xn, Covn)

where the last step follows by conditional independence
of {t1, t2, · · · , tn} w.r.t. xn+1 and the part of Covn+1

not contained in Covn. The denominator in the above
expression is another Gaussian random variable, given
by:

P (t1, t2, · · · , tn |x1,x2, · · · ,xn, Covn) =

1

λ2
exp

(
−

1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T
)

431

Putting it all together, we get:

P (tn+1|t1, t2, · · · , tn,x1,x2, · · · ,xn+1, Covn+1) =

λ2

λ1
exp (−

1

2
[t1, t2, · · · , tn+1] Cov−1

n+1 [t1, t2, · · · , tn+1]
T

−
1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T)

Computing the mean and variance of this Gaussian
distribution, we get an estimate of tn+1 as:

t̂n+1 = kT Cov−1
n [t1, t2, · · · , tn](3.5)

and our uncertainty in this estimate as:

σ2
t̂n+1

= k − kT Cov−1
n k(3.6)

where kT represents the n-vector of covariances with
the new data point:

kT = [Cov(x1,xn+1) Cov(x2,xn+1) · · · Cov(xn,xn+1)]

and k is the (n + 1, n + 1) entry of Covn+1. Eqs. 3.5
and 3.6, together, give us both an approximation at any
given point and an uncertainty in this approximation;
they will serve as the basic building blocks for closing-
the-loop between data modeling and higher level mining
functionality.

The above expressions can be alternatively derived
by positing a linear probabilistic model and optimizing
for the MSE (mean squared error) between observed and
predicted response values (e.g., see [24]). In this sense,
the Gaussian process model considered here is also
known as the BLUE (best linear unbiased estimator),
but GPs are not restricted to linear combinations of
basis functions.

To apply GP modeling to a given dataset, we
must first ensure that the chosen covariance struc-
ture matches the data characteristics. We have cho-
sen a stationary structure above under the assumption
that the covariance is translation invariant. Various
other functions have been studied in the literature (e.g.,
see [18, 19, 24]), all of which satisfy the required prop-
erty of positive definiteness. The simplest covariance
function yields a diagonal matrix, but this means that
no data sample can have an influence on other locations,
and the GP approach offers no particular advantages.
In general, by placing a prior directly on the function
space, GPs are appropriate for modeling ‘smooth’ func-
tions. The terms a1, a2 capture how quickly the influ-
ence of a data sample decays in each direction and, thus,
the length scales for smoothness.

An important point to note is that even though the
GP realization is one of a random process, we can nev-
ertheless build a GP model for deterministic functions

(like the de Boor’s function) by choosing a covariance
structure that ensures the diagonal correlations to be
1 (i.e., perfect reproducibility when queried for a sam-
ple whose value is known). Also, the assumption of
zero mean for the Gaussian process can be relaxed, by
including a constant term (gives another parameter to
be estimated) in the covariance formulation. This ap-
proach is used for our experimental studies.

3.2 Learning a GP: Learning the GP parameters
θ = (a1, a2, α) can be undertaken in the ML and MAP
frameworks, or in the true Bayesian setting where we
obtain a distribution over values. The log-likelihood for
the parameters is given by:

L = log P (t1, t2, · · · , tn|x1,x2, · · · ,xn, θ)

= c + log P (θ)−
n

2
log(2π)−

1

2
log | Covn |

−
1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T

To optimize for the parameters, we can compute partial
derivatives of the log-likelihood for use with a conjugate
gradient or other optimization algorithm:

∂L

∂θ
=

∂ log P (θ)

∂θ

−
1

2
tr

(
Cov−1

n

∂ Cov−1
n

∂θ

)

+
1

2
[t1, t2, · · · , tn] Cov−1

n

∂ Cov−1
n

∂θ

Cov−1
n [t1, t2, · · · , tn]T

where tr(·) denotes the trace function. In our running
example, we need only estimate three parameters for θ,
well within the purview of modern numerical optimiza-
tion software. For larger numbers of parameters, we can
resort to the use of MCMC methods [19].

4 Active Data Mining Strategies

The above section showed two important uses of GPs
for spatial mining: designing a surrogate function for
generating a dense field (via Eq. 3.5), and assessing un-
certainties in our estimates of the function at unsampled
points (using Eq. 3.6). We are now ready to formulate
objective criteria for active data selection, a pre-cursor
to active mining.

4.1 Variance Reducing Designs: A simple strat-
egy for sampling is to target locations to reduce our
uncertainty in modeling, i.e., select the location that
minimizes the posterior generalized variance of the func-
tion. This approach can be seen as optimizing sample

432

selection for the functional:

ΦV =
1

2
log

[
∂t

∂θ

]
H−1

[
∂t

∂θ

]T

(4.7)

where
[

∂t
∂θ

]
is the (row) vector of sensitivities w.r.t. each

GP parameter computed at a sample location, and H is
the Hessian (second order partial derivatives) of t, again
w.r.t. the parameters. A straightforward derivation will
show that optimizing ΦV suggests a location whose
‘error bars’ σ2 are highest.

To implement this strategy, we can adopt either a
block design (optimize for K locations simultaneously),
or apply it sequentially to determine one extra sampling
location at a time. The former is appropriate when
we can farm out function evaluations across nodes in
a compute cluster, whereas the latter will track the
design functional better. We adopt the sequential
approach here; Fig. 5 shows this strategy for the pocket
function of Fig. 3 and concomitant results from pocket
mining of the surrogate model data. At each step,
we determine the best sample location (from among
unsampled locations on a regular grid of 21� 21), build
the GP model from the data collected thus far, and
apply our SAL-based vector aggregation mechanism to
the gradient field derived from the function values.

The initial design has one point in the center of each
quadrant, and one at the center. Not surprisingly, we
find a significant number (16) of basins in the gradient
field. The next four points added are actually at the
corners; this is because estimated variances are typically
high toward the boundaries of an interpolation region.
As MacKay points out [17], such a metric has a tendency
to ‘repeatedly gather data at the edges of the input
space.’ Continuing the sampling, we see that the 13-
point design actually has the samples organized in a
diagonal design (a layout that has been referred to
as ‘whimsical’ [9]). The emphasis on overall quality
of function approximation more than data mining is
evident from the fact that it takes over 30 points before
the SAL-based pocket finder can infer that there are
four pockets. In further experiments not reported here,
we have found that pushing the initial points outward
(or inward) does not have any appreciable effect on
future samplings, and the variance-based metric favors
the outer envelope of the design space.

4.2 Entropy-Based Functionals: It is a classical
result in experiment design (e.g., see [8]) that, for Gaus-
sian priors, the variance-reducing design is actually
equivalent to the design minimizing the (expected) pos-
terior entropy of the distribution t

D|D
, where D denotes

the unsampled locations in D. For a proof, see [16].
This criterion is also equivalent to the D-optimality de-

sign criterion in spatial statistics, under the assumption
that the noise factor on all measurements is the same.
MacKay generalizes this idea [17], and pre-specifies a
collection of points requiring high-quality approxima-
tion; the goal then is to minimize entropy of data distri-
bution w.r.t. these points. This strategy does not apply
here since our understanding of which locations are rel-
evant improves as active mining proceeds.

To develop a better active mining strategy, notice
that our goal is the identification of regions defined
by convergent flows. If we view the SAL program as
an information processor that maps a data field into
a class field (defined over the same underlying space),
then the utility of sampling in a region is directly related
to our inferential capabilities about the corresponding
region in the class field. Intuitively, we should be
more interested in samples that tell us something about
the boundary between regions than those that capture
the insides of a region, even though the latter might
have high variance in its current estimate. Repeatedly
sampling function values inside an already classified and
abstracted region is not as useful as sampling to clarify
an emerging boundary classification. This means that
we must bridge high-level information about pockets
from SAL into a preference of where to collect data.

An idea that suggests itself is to adopt variance-
based design, but instead of minimizing the entropy of
the data distribution, minimize the entropy of the class
distribution as revealed by the SAL pocket finder. By
positing a class distribution at each point, based on the
class labels occupied by neighboring points, we achieve
our goal of ranking locations along region boundaries
higher. While this basic strategy appears reasonable,
it will repeatedly gather information at the region
boundaries, just as variance-based design repeatedly
focuses on the edges. So a point with high entropy is
a good location to sample only as long as the variance
surrounding it is sufficiently high. As our confidence in
the data value increases, our preference for this location
should decrease even if the class entropy remains large
(as it will, if it lies on a boundary). This suggests using
class entropy to define a distribution PE(x) over points,
and using that distribution to scale the variance-based
design criterion:

ΦE =
1

2

∑
x

PE(x) log

[
∂t

∂θ

]
H−1

[
∂t

∂θ

]T

(4.8)

The expression inside the summation contains the same
term as in Eq. 4.7 but is now evaluated across the design
space and scaled by the amount of interest in location
x:

PE(xi) ∝
∑

x∈N (xi)

P (C(x)) log P (C(x))(4.9)

433

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Currently design space: 5 points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Currently design space: 9 points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Currently design space: 13 points

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Currently design space: 31 points

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

GP model with 5 points

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

GP model with 9 points

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

GP model with 13 points

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

GP model with 31 points

16 3 3 4

Figure 5: How variance-based sampling selects locations. (top row) initial design of 5 points, followed by snapshots
taken at later stages (9, 13, and 31 points). Old sample locations are shown with red circles and new locations are
shown with blue diamonds. (middle row) GP model fits to the given samples. (bottom row) Number of pockets
identified by SAL pocket miner.

whereN (xi) is a neighborhood around xi, C(x) denotes
the (flow) class of point x as inferred by the SAL miner,
and P (C(x)) denotes the probability of encountering
this class in the neighborhood. The proportionality con-
stant in Eq. 4.9 must be set to ensure that

∑
PE = 1.

Formal characterization of this criterion (i.e., conver-
gence properties) is difficult since PE(x) changes dur-
ing every iteration of data mining, and we do not have
a model of how PE(x) varies across samplings. Oper-
ationally, to apply this criterion, we can identify the
location that gives the highest information gain, given
that we are intending to make a measurement at that
location. Fig. 6 shows a design that optimizes ΦE and
successfully reveals all four pockets with only 11 points.

4.3 Computational Considerations: Other than
any data collection costs, the primary costs to im-
plementing the active mining mechanisms involve the
nested optimizations and the necessary matrix compu-
tations. There are two optimizations per round of data
collection: a multi-dimensional optimization over θ to
fit the surrogate model, and a 2D optimization over x
to identify the next sample point. Both can be done
either locally or globally, depending on our fidelity re-
quirements and availability of resources. Here, to reduce
the computational complexity in building the surrogate
model, we adopt the public domain Netlab scaled con-
jugate gradient algorithm [18] which runs in O(|D||θ|)
time. While this algorithm avoids having to work with
the Hessian explicitly, the active sample selection step
requires the computation of the Hessian inverse, which

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Current design space: 11 points

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

GP model with 11 points

Figure 6: Active data mining with an entropy-based
functional. This sampling strategy picks six additional
points (top), in various quadrants; the SAL miner finds
four pockets (bottom) when a GP model is constructed
using the given points. Contrast this with the per-
formance of variance-based sampling for a comparable
number of samples.

434

takes O(|D||θ|2 + |θ|3) time. To reduce the cost of opti-
mization, we use a discrete lattice search or hill climb-
ing, restricting our attention to locations over a uniform
grid. If the number of locations on the grid is |G|, then
each round of active mining requires O(|G||θ|2) time,
plus the cost of computing the inverse Hessian. This
expression applies to both variance-based mining and
entropy-based mining, since the computation of PE(x)
is just linear in |G| for a fixed neighborhood calculation
of entropy. Recall that this cost is typically negligible
compared to the actual cost of running a simulation (to
acquire a data sample).

4.4 Stopping Criteria: How do we know when to
stop sampling? If a cost metric is defined over data col-
lection, and if it can be determined that we can sample
at most K points within the given resources, then we
should ideally perform a K-dimensional optimization,
rather than adopting a sequential sampling strategy. In
the absence of such a cost-metric, a sampling strategy
could terminate when the estimated dataset log like-
lihood is within bounds. In this paper, we primarily
evaluate sampling strategies using classes of problems
for which the ‘right’ answer is known, and pose ques-
tions such as: ‘starting from an initial grid, how many
samples does it take to mine the right number of higher-
level structures?’ The answer to this question gives us
an indication of how aggressive the sampling strategy is,
its stability (i.e., once mined, does it continue to mine
the patterns?), and comparisons with the other strategy.

5 Experimental Results

We now present empirical results demonstrating the ef-
fectiveness of our active mining strategy on both syn-
thetic and real datasets. We employed the Netlab suite
of algorithms for GP modeling. Netlab supports a co-
variance formulation similar to Eq. 3.4, along with a
bias term that overcomes our earlier assumption of zero
mean. In addition, the model includes a noise term that
can capture uncertainties in individual measurements;
while this is not required for the deterministic functions
considered here, it ensures that the numerical compu-
tation doesn’t become unstable. All GP parameters are
given a relatively broad Gaussian prior. A surrogate
model was fit on a regularly spaced grid (more below),
with a limit of 100 iterations for conjugate gradient
search. The SAL parameters were set to (1.5, 0.75, 0.1),
as before. The standard variance-based sampling has
no adjustable parameters; a fixed 8-adjacency neigh-
borhood was utilized for defining P (x) in entropy-based
sampling. Optimization for ΦV and ΦE was conducted
over the same grid as the domain of the surrogate func-
tion.

20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

9

rounds of data collection

nu
m

be
r

of
 p

oc
ke

ts
 m

in
ed

Variance−based Sampling

20 40 60 80 100 120 140
−120

−100

−80

−60

−40

−20

0

rounds of data collection

lo
g

lik
el

ih
oo

d

Variance−based Sampling

20 40 60 80 100 120 140
2

3

4

5

6

7

8

rounds of data collection

nu
m

be
r

of
 p

oc
ke

ts
 m

in
ed

Entropy−based Sampling

20 40 60 80 100 120 140
−120

−100

−80

−60

−40

−20

0

lo
g

lik
el

ih
oo

d

rounds of data collection

Entropy−based Sampling

Figure 8: Pocket mining performance on the 7-pocket
function from Fig. 7. (top) variance-based and (bottom)
entropy-based sampling. (left) number of pockets found
and (right) negative log-likelihood.

5.1 Synthetic Datasets: For the synthetic bench-
mark, we adopted the suite of test functions from [11],
an ACM TOMS algorithm to readily generate classes of
functions with known local and global minima. The al-
gorithm systematically distorts a convex quadratic func-
tion with cubic or quintic polynomials to yield continu-
ously differentiable (D-type) and twice continuously dif-
ferentiable (D2-type) functions over the closed interval
[−1, 1]2. Since our active mining proceeds by discrete
search over a pre-defined grid, we evaluated the gener-
ated functions over a regular 21 � 21 grid in [−1, 1]2

(|G| = 441) and used these function values as the ‘or-
acle’ that is queried by the active mining mechanism.
We verified whether in each instance, the SAL miner is
able to resolve all pockets when given a complete 21�21
dataset. This is necessary because the radii of the basins
of attraction interact with the spacing of the sampling
grid, and hence influence the number of samples avail-
able for aggregation by the SAL miner. We found that
the pocket miner is able to resolve only those generated
functions that have up to 7 local minima; functions with
more (e.g., 8–12) local minima use only a handful of
points (typically 3–9) to represent some of their pock-
ets, too few to be aggregated into a flow class under
the SAL miner’s parameter settings. Hence, we pruned
the automatically generated functions by requiring that
that each local minima have at least 12 samples per
pocket, when sampled over the 21�21 grid. This yields
a collection of 43 functions (21 D-type and 22 D2-type),
with numbers of pockets ranging from 4 to 7. Fig. 7
depicts some of these functions.

435

−1
0

1

−1

0

1

0

2

4

−1
0

1

−1

0

1

0

2

4

−1
0

1

−1

0

1

0

2

4

6

−1
0

1

−1

0

1

0

2

4

Figure 7: Example test functions with 4, 5, 6, and 7 pockets (respectively). Note that the viewpoint chosen makes
visible only some of the pockets in these functions.

Both algorithms were initially seeded with a 52

design, comprising 25 points (about 5% of the design
space of 441 points). Sampling was conducted for an
additional 100 sample values (a total of 125 points, or
about 25% of the design space). We reasoned that this is
a good interval over which to monitor the performance
of the sampling strategies, as even a regularly spaced
grid covering 25% of the design space would mine the
pockets correctly! Fig. 8 reveals the results for the 7-
pocket function of Fig. 7. Both sampling strategies
systematically reduce the (negative) log likelihood (as
estimated from the GP model parameters) but variance-
based sampling shows more oscillatory behavior w.r.t.
the number of pockets mined. On close inspection,
we found that this strategy goes through stages where
adjacent pockets are periodically re-grouped around
sample values (which are mostly at the boundaries),
causing rapid fluctuations in the SAL miner’s output.
We say that this strategy is more prone to ‘being
surprised.’ The number of pockets stabilizes around
7 only toward the end of the data collection interval.
In contrast, the entropy-based sampling first mines the
seven pockets with 68 points, and proceeds to stabilize
beyond this point. Similar results have been observed
with other test functions.

Next, we analyzed the performance of both algo-
rithms across all 43 test functions. We tested for what
fraction of the datasets the mining was correct by, and
stayed correct following, a given number of rounds of
sampling. Our hypothesis was that the D2-type func-
tions, being smoother, are more easily modeled using
GPs and should lend themselves to more aggressive sam-
pling strategies. In addition, the entropy-based sam-
pling strategy should be more effective w.r.t. number of
rounds than the variance-based sampling. Fig. 9 shows
that this is indeed the case.

5.2 Mining Wireless System Configuration
Spaces: Our second application involves characteriza-
tion of configuration spaces of wireless system designs
(see again Fig. 1). The goal is to understand the joint

20 40 60 80 100 120
0

20

40

60

80

100

samples

%
 c

or
re

ct

variance
entropy

40 60 80 100 120
0

20

40

60

80

100

samples

%
 c

or
re

ct

variance
entropy

Figure 9: Overall pocket mining performance (fraction
of cases correctly identified) with increasing number of
samples, for (left) D-type and (right) D2-type functions.

influence of selected configuration parameters on sys-
tem performance. This can be achieved by identify-
ing spatial aggregates in the configuration space, ag-
gregating low level simulation data (typically multiple
samples per configuration point) into regions of con-
strained shape. In particular, the setup in Fig. 1 is
from a study designed to evaluate the performance of
STTD (space-time transmit diversity) wireless systems,
where the base station uses two transmitter antennas
separated by a small distance, in an attempt to im-
prove received signal strength. In this application, the
aim is to assess how the power imbalance between the
two branches impacts the performance (measured by
bit error rate, BER) of the simulated system, across a
range of signal-to-noise ratios (SNRs). When the signal
components are significant compared to the noise com-
ponents, and when the SNR ratios of the two branches
are comparable, then it is well known that the system
would yield high quality of BER performance. What
is not so clear is how the performance will degrade as
the SNRs move apart. Posed in the spatial aggregation
framework, this objective translates into identifying and
characterizing (in terms of width, or power imbalance)
the pocket in the central portion of the configuration
space. Identifying and characterizing other pockets is
not as important, since some of them will actually con-
tain suboptimal configurations.

We adopt an experimental methodology similar
to that in the previous case studies, and created an
‘oracle’ from the simulation data described in [26].

436

SNR1,
dB

SNR2, dB

log(B
E

R
)

−1

−3

−4

−5

10

20

30

40

10

20

30

40

−2

Figure 10: Estimates of BER performance in a space of
wireless system configurations.

Fig. 10 demonstrates that the dataset is quite noisy,
especially when the SNR values are low. The design
of the oracle, surrogate model building, and sample
selection all employ a 55�55 grid over the configuration
space (SNR levels ranging from 3dB to 58dB for each
antenna). Both variance-based sampling and entropy-
based sampling were initialized using a 112 design
(about 4% of the configuration space). Sampling was
conducted for an additional 650 points, yielding a total
of 771 points (25% of the design space, as with the
earlier studies). For each round of active mining, we
determined the majority class occupied by points having
equal SNR and determined the maximum width of this
class. This measure was periodically tracked across
the rounds of data collection. Fig. 11 shows how
the sampling strategies fare compared to the correct
estimate of 12dB, as reported in [26] by applying a
spatial data mining algorithm over the entire dataset.
Entropy-based sampling once again selects data that
systematically clarify the nature of the pockets, and
cause a progressive widening of the trough in the middle.
However, it doesn’t mine the ideal width of 12dB (within
the given samples). We reason that this is because the
GP model has difficulty approximating the steep edge
of the basin. Variance-based sampling fares worse and
demonstrates a slower growth of width across samples.
This application highlights the utility of our framework
for mining both qualitative and quantitative properties
of spatial aggregates.

6 Discussion

This paper has presented a novel integration of ap-
proaches from three areas, namely spatial structure dis-
covery, probabilistic modeling using GPs, and active
data mining. The spatial aggregation language pro-
vides a methodology for identifying multi-level struc-
tures in field data, Gaussian processes provide a prob-

200 400 600 800
2

4

6

8

10

12

samples

re
gi

on
 w

id
th

variance
entropy
ideal

Figure 11: Performance of active mining strategies on
wireless simulation data, characterizing width of the
main pocket in Fig. 10 with increasing numbers of
samples.

abilistic basis for reasoning about uncertainty in field
data, and active data mining closes the loop to opti-
mize new samples for uncertainty in field data as well
as information content relevant to high-level structures.
Entropy-based sampling is suitable whenever we can de-
fine information-theoretic functionals over spatial aggre-
gates. In this paper, we have primarily focused on char-
acterizing region boundaries, but this same strategy is
applicable to any case where we expect locations with
spatial proximity but informational impurity, e.g., iden-
tifying breaks and fissures in volumetric data, picking
outliers from geographical maps, and detecting viola-
tions of coherence in spatio-temporal datasets.

There are several extensions to the work presented
here. First, our assumption of sampling over a de-
fined grid can be relaxed and the scope of active min-
ing can be expanded to include subsampling. Second,
the modeling of vector fields using GPs warrants fur-
ther investigation, in particular to address the issue of
how to model data fields given only (or also) deriva-
tive information or when the underlying function is not
smooth or differentiable. Other investigators have done
related work in this area [6]. Third, we assume here
that the model (of flow classes) posited by SAL is cor-
rect, and use this information to drive the sampling.
To overcome this assumption, we must create a proba-
bilistic model of SAL’s computations (including uncer-
tainty and non-determinism in aggregation procedures)
and integrate this model with the GP model for the
data fields. Instantiating SAL to popular spatial mining
algorithms investigated in the data mining community
(e.g. [15, 20]) and applying them in an active mining
context is a final direction we are pursuing. These and
similar ideas will help establish the many ways in which
mathematical models of data approximation can be in-
tegrated with data mining algorithms.

437

Acknowledgements

This work is supported in part by US NSF grants IIS-
0237654, EIA-9984317, and IBN-0219332. The wireless
simulation dataset is courtesy of Alex Verstak.

References

[1] C. Bailey-Kellogg and N. Ramakrishnan. Ambiguity-
Directed Sampling for Qualitative Analysis of Sparse
Data from Spatially Distributed Physical Systems. In
Proc. IJCAI, pages 43–50, 2001.

[2] C. Bailey-Kellogg and F. Zhao. Influence-Based Model
Decomposition for Reasoning about Spatially Dis-
tributed Physical Systems. Artificial Intelligence, Vol.
130(2):pages 125–166, 2001.

[3] C. Bailey-Kellogg, F. Zhao, and K. Yip. Spatial
Aggregation: Language and Applications. In Proc.

AAAI, pages 517–522, 1996.
[4] K. Brinker. Incorporating Diversity in Active Learning

with Support Vector Machines. In Proceedings of

the Twentieth International Conference on Machine

Learning (ICML’03), pages 59–66, 2003.
[5] D.A. Cohn, Z. Ghahramani, and M.I. Jordan. Active

Learning with Statistical Models. Journal of Artificial

Intelligence Research, Vol. 4:pages 129–145, 1996.
[6] D. Cornford, I.T. Nabney, and C.K.I. Williams.

Adding Constrained Discontinuities to Gaussian Pro-
cess Models of Wind Fields. In Proceedings of NIPS,
pages 861–867, 1998.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction

to Support Vector Machines and Other Kernel-Based

Learning Methods. Cambridge University Press, 2000.
[8] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker.

Bayesian Prediction of Deterministic Functions, with
Applications to the Design and Analysis of Computer
Experiments. J. Amer. Stat. Assoc., Vol. 86:pages 953–
963, 1991.

[9] R.G. Easterling. Comment on ‘Design and Analysis of
Computer Experiments’. Statistical Science, 4(4):425–
427, 1989.

[10] J. Garcke and M. Griebel. Data Mining with Sparse
Grids using Simplicial Basis Functions. In Proceedings

of the Seventh ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages
87–96, 2001.

[11] M. Gaviano, D.E. Kvasov, D. Lera, and Y.D. Sergeyev.
Algorithm 829: Software for Generation of Classes of
Test Functions with Known Local and Global Minima
for Global Optimization. ACM Transactions on Math-

ematical Software, Vol. 29(4):pages 469–480, Dec 2003.
[12] X. Huang and F. Zhao. Relation-Based Aggregation:

Finding Objects in Large Spatial Datasets. In Proceed-

ings of the 3rd International Symposium on Intelligent

Data Analysis, 1999.
[13] J.-N. Hwang, J.J. Choi, S. Oh, and R.J. Marks II.

Query-based Learning Applied to Partially Trained
Multilayer Perceptrons. IEEE Transactions on Neural

Networks, Vol. 2(1):pages 131–136, 1991.

[14] A.G. Journel and C.J. Huijbregts. Mining Geostatis-

tics. Academic Press, New York, 1992.
[15] G. Karypis, E.-H. Han, and V. Kumar. Chameleon:

Hierarchical Clustering using Dynamic Modeling.
IEEE Computer, Vol. 32(8):pages 68–75, 1999.

[16] J. Koehler and A. Owen. Computer Experiments. In
S. Ghosh and C. Rao, editors, Handbook of Statistics:

Design and Analysis of Experiments, pages 261–308.
North Holland, 1996.

[17] D.J. MacKay. Information-Based Objective Functions
for Active Data Selection. Neural Computation, Vol.
4(4):pages 590–604, 1992.

[18] I.T. Nabney. Netlab: Algorithms for Pattern Recogni-

tion. Springer-Verlag, 2002.
[19] R.M. Neal. Monte Carlo Implementations of Gaussian

Process Models for Bayesian Regression and Classifica-
tion. Technical Report 9702, Department of Statistics,
University of Toronto, Jan 1997.

[20] R.T. Ng and J. Han. CLARANS: A Method for
Clustering Objects for Spatial Data Mining. IEEE

Transactions on Knowledge and Data Engineering, Vol.
14(5):pages 1003–1016, 2002.

[21] I. Ord�oñez and F. Zhao. STA: Spatio-Temporal Ag-
gregation with Applications to Analysis of Diffusion-
Reaction Phenomena. In Proc. AAAI, pages 517–523,
2000.

[22] N. Ramakrishnan and C. Bailey-Kellogg. Sam-
pling Strategies for Mining in Data-Scarce Domains.
IEEE/AIP CiSE, Vol. 4(4):pages 31–43, 2002.

[23] N. Ramakrishnan and C. Bailey-Kellogg. Gaussian
Process Models of Spatial Aggregation Algorithms. In
Proc. IJCAI, pages 1045–1051, 2003.

[24] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn.
Design and Analysis of Computer Experiments. Sta-

tistical Science, Vol. 4(4):pages 409–435, 1989.
[25] S. Tong and D. Koller. Support Vector Machine Ac-

tive Learning with Applications to Text Classification.
Journal of Machine Learning Research, Vol. 2:pages
45–66, 2001.

[26] A. Verstak et al. Using Hierarchical Data Mining to
Characterize Performance of Wireless System Configu-
rations. Technical Report cs.CE/0208040, CoRR, Aug
2002.

[27] C.K.I. Williams. Prediction with Gaussian Processes:
From Linear Regression to Linear Prediction and Be-
yond. In M.I. Jordan, editor, Learning in Graphical

Models, pages 599–621. MIT Press, Cambridge, MA,
1998.

[28] K.M. Yip and F. Zhao. Spatial Aggregation: Theory
and Applications. JAIR, Vol. 5:pages 1–26, 1996.

[29] K.M. Yip, F. Zhao, and E. Sacks. Imagistic Reasoning.
ACM Computing Surveys, Vol. 27(3):pages 363–365,
1995.

[30] F. Zhao, C. Bailey-Kellogg, and M.P.J. Fromherz.
Physics-Based Encapsulation in Embedded Software
for Distributed Sensing and Control Applications. Pro-

ceedings of the IEEE, 91:40–63, 2003.

438

Correlation Clustering for Learning Mixtures of Canonical Correlation Models

Xiaoli Z. Fern∗ Carla E. Brodley† Mark A. Friedl‡

Abstract

This paper addresses the task of analyzing the correlation

between two related domains X and Y . Our research is

motivated by an Earth Science task that studies the rela-

tionship between vegetation and precipitation. A standard

statistical technique for such problems is Canonical Correla-

tion Analysis (CCA). A critical limitation of CCA is that it

can only detect linear correlation between the two domains

that is globally valid throughout both data sets. Our ap-

proach addresses this limitation by constructing a mixture

of local linear CCA models through a process we name cor-

relation clustering. In correlation clustering, both data sets

are clustered simultaneously according to the data’s corre-

lation structure such that, within a cluster, domain X and

domain Y are linearly correlated in the same way. Each clus-

ter is then analyzed using the traditional CCA to construct

local linear correlation models. We present results on both

artificial data sets and Earth Science data sets to demon-

strate that the proposed approach can detect useful correla-

tion patterns, which traditional CCA fails to discover.

1 Introduction

In Earth science applications, researchers are often
interested in studying the correlation structure between
two domains in order to understand the nature of
the relationship between them. The inputs to our
correlation analysis task can be considered as two data
sets X and Y whose instances are described by feature
vectors ~x and ~y respectively. The dimension of ~x and
that of ~y do not need to be the same, although there
must be a one-to-one mapping between instances of X

and instances of Y . Thus, it is often more convenient to
consider these two data sets as one compound data set
whose instances are described by two feature vectors ~x

and ~y. Indeed, throughout the remainder of this paper,
we will refer to the input of our task as one data set,
and the goal is to study how the two sets of features are
correlated to each other.

Canonical Correlation Analysis (CCA) [4, 6] is a

∗School of Elect. and Comp. Eng., Purdue University, West
Lafayette, IN 47907, USA

†Dept. of Comp. Sci., Tufts University, Medford, MA 02155,
USA

‡Dept. of Geography, Boston University, Boston, MA, USA

multivariate statistical technique commonly used to
identify and quantify the correlation between two sets
of random variables. Given a compound data set
described by feature vectors ~x and ~y, CCA seeks to find
a linear transformation of ~x and a linear transformation
of ~y such that the resulting two new variables are
maximumly correlated.

In Earth science research, CCA has been often
applied to examine whether there is a cause-and-effect
relationship between two domains or to predict the
behavior of one domain based on another. For example,
in [13] CCA was used to analyze the relationship
between the monthly mean sea-level pressure (SLP) and
sea-surface temperature (SST) over the North Atlantic
in the months of December, January and February. This
analysis confirmed the hypothesis that atmospheric SLP
anomalies cause SST anomalies.

Because CCA is based on linear transformations,
the scope of its applications is necessarily limited. One
way to tackle this limitation is to use nonlinear canoni-
cal correlation analysis (NLCCA) [5, 8]. NLCCA applies
nonlinear functions to the original variables in order to
extract correlated components from the two sets of vari-
ables. Although promising results have been achieved
by NLCCA in some Earth science applications, it tends
to be difficult to apply such techniques because of the
complexity of the model and the lack of robustness due
to overfitting [5].

In this paper we propose to use a mixture of lo-
cal linear correlation models to capture the correlation
structure between two sets of random variables (fea-
tures). Mixtures of local linear models not only provide
an alternative solution to capturing nonlinear correla-
tions, but also have the potential to detect correlation
patterns that are significant only in a part (a local re-
gion) of the data. The philosophy of using multiple lo-
cal linear models to model global nonlinearity has been
successfully applied to other statistical approaches with
similar linearity limitations such as principal component
analysis [12] and linear regression [7]. Our approach
uses a two-step procedure. Given a compound data set,
we propose to first solve a clustering problem that par-
titions the data set into clusters such that each cluster
contains instances whose ~x features and ~y features are
linearly correlated. We then independently apply CCA

439

to each cluster to form a mixture of correlation models
that are locally linear.

In designing this two-step process, we need address
the following two critical questions.

1. Assume we are informed a priori that we can model
the correlation structure using k local linear CCA
models. How should we cluster the data in the

context of correlation analysis?

2. In real-world applications, we are rarely equipped
with knowledge of k. How can we decide how many

clusters there are in the data or whether a global

linear structure will suffice?

Note that the goal of clustering in the context of cor-
relation analysis is different from traditional clustering.
In traditional clustering, the goal is to group instances
that are similar (as measured by certain distance or sim-
ilarity metric) together. In contrast, here we need to
group instances based on how their ~x features and ~y fea-
tures correlate to each other, i.e., instances that share
similar correlation structure between the two sets of fea-
tures should be clustered together. To differentiate this
clustering task from traditional clustering, we name it
correlation clustering1 and, in Section 3 we propose an
iterative greedy k-means style algorithm for this task.

To address the second question, we apply the tech-
nique of cluster ensembles [2] to our correlation cluster-
ing algorithm, which provides a user with a visualization
of the results that can be used to determine the proper
number of clusters in the data. Note that our correla-
tion clustering algorithm is a k-means style algorithm
and as such may have many locally optimal solutions—
different initializations may lead to significantly differ-
ent clustering results. By using cluster ensembles, we
can also address the local optima problem of our clus-
tering algorithm and find a stable clustering solution.

To demonstrate the efficacy of our approach, we
apply it to both artificial data sets and real world Earth
science data sets. Our results on the artificial data
sets show that (1) the proposed correlation clustering
algorithm is capable of finding a good partition of
the data when the correct k is used and (2) cluster
ensembles provide an effective tool for finding k. When
applied to the Earth science data sets, our technique
detected significantly different correlation patterns in
comparison to what was found via traditional CCA.
These results led our domain expert to highly interesting
hypotheses that merit further investigation.

1Note that the term correlation clustering has also been used
by [1] as the name of a technique for traditional clustering.

The remainder of the paper is arranged as follows.
In Section 2, we review the basics of CCA. Section 3 in-
troduces the intuitions behind our correlation clustering
algorithm and formally describes the algorithm, which
is then applied to artificially constructed data sets to
demonstrate its efficacy in finding correlation clusters
from the data. Section 4 demonstrates how cluster en-
semble techniques can be used to determine the num-
ber of clusters in the data and address the local optima
problem of the k-means style correlation clustering al-
gorithm. Section 5 explains our motivating application,
presents results, and describes how our domain expert
interprets the results. Finally, in Section 6 we conclude
the paper and discuss future directions.

2 Basics of CCA

Given a data set whose instances are described by two
feature vectors ~x and ~y, the goal of CCA is to find linear
transformations of ~x and linear transformations of ~y

such that the resulting new variables are maximumly
correlated.

In particular, CCA constructs a sequence of pairs
of strongly correlated variables (u1, v1), (u2, v2),· · ·,
(ud, vd) through linear transformations, where d is the
minimum dimension of ~x and ~y. These new variables
ui’s and vi’s, named canonical variates (sometimes
referred to as canonical factors). They are similar
to principal components in the sense that principal
components are linear combinations of the original
variables that capture the most variance in the data and
in contrast canonical variates are linear combinations of
the original variables that capture the most correlation
between two sets of variables.

To construct these canonical covariates, CCA first
seeks to transform ~x and ~y into a pair of new variables
u1 and v1 by the linear transformations:

u1 = (~a1)
T ~x, and v1 = (~b1)

T ~y

where the transformation vectors ~a1 and ~b1 are defined
such that corr(u1, v1) is maximized subject to the
constraint that both u1 and v1 have unit variance.2

Once ~a1,~b1;· · ·; ~ai,~bi are determined, we then find the
next pair of transformations ~ai+1 and ~bi+1 such that the

correlation between (~ai+1)
T ~x and (~bi+1)

T ~y is maximized
with the constraint that the resulting ui+1 and vi+1 are
uncorrelated with all previous canonical variates.3 Note
that the correlation between ui and vi becomes weaker
as i increases. Let ri represent the correlation between
the ith pair of canonical variates, we have ri ≥ ri+1.

2This constraint ensures unique solutions.
3This constraint ensures that the extracted canonical variates

contain no redundant information.

440

It can be shown that to find the projection vectors
for canonical variates, we only need to find the eigen-
vectors of the following matrices:

Mx = (Σxx)−1Σxy(Σyy)−1Σyx

and
My = (Σyy)−1Σyx(Σxx)−1Σxy

The eigenvectors of Mx, ordered according to de-
creasing eigenvalues, are the transformation vectors ~a1,
~a2, · · ·, ~ad and the eigenvectors of My are ~b1, ~b2, · · ·,
~bd. In addition, the eigenvalues of these two matrices
are identical and the square-root of the i-th eigenvalue√

λi = ri, i.e., the correlation between the i-th pair of
canonical variates ui and vi. Note that in most ap-
plications, only the first few most significant pairs of
canonical variates are of real interest. Assume that we
are interested in the first d pairs of variates, we can rep-
resent all the useful information of the linear correlation
structure as a model M, defined as

M = {(uj, vj), rj , (~aj , ~bj) : j = 1 · · ·d}

where (uj , vj) represent the jth pair of canonical vari-

ates, rj is the correlation between them and (~aj , ~bj) rep-
resent the projection vectors for generating them. We
refer to M as a CCA model.

Once a CCA model is constructed, the next step is
for the domain experts to examine the variates as well
as the transformation vectors in order to understand
the relationship between the two domains. This can be
done in different ways depending on the application. In
our motivating Earth science task, the results of CCA
can be visualized as colored maps and interpreted by
Earth scientist. We explain this process in Section 5.

3 Correlation Clustering

In this section, we first explain the basic intuitions that
led to our algorithm and formally present our k-means
style correlation clustering algorithm. We then apply
the proposed algorithm to artificially constructed data
sets and analyze the results.

3.1 Algorithm Description Given a data set de-
scribed by two sets of features ~x and ~y, and the prior
knowledge that the correlation structure of the data can
be modeled by k local linear models, the goal of corre-
lation clustering is to partition the data into k clusters
such that for instances in the same cluster the features

of ~x and ~y are linearly correlated in the same way. The
critical question is how should we cluster the data to
reach this goal. Our answer is based on the following
important intuitions.

Table 1: A correlation clustering algorithm

Input: a data set of n instances, each described
by two random vectors ~x and ~y

k, the desired number of clusters

Output: k clusters and k linear CCA models, one
for each cluster

Algorithm:

1. Randomly assign instances to the k clusters.

2. For i = 1 · · · k, apply CCA to cluster i to build
M

i = {(uj , vj), rj , (aj , bj) : j = 1 · · · d}, i.e., the
top d pairs of canonical variates, the correlation
r between each pair, and the corresponding
d pairs of projection vectors.

3. Reassign each instance to a cluster based on
its ~x and ~y features and the k CCA models.

4. If no assignment has changed from previous
iteration, return the current clusters and CCA
models. Otherwise, go to step 2.

Intuition 1: If a given set of instances contains multiple

correlation structures, applying CCA to this instance set

will not detect a strong linear correlation.

This is because when we put instances that have
different correlation structure together, the original
correlation patterns will be weakened because they are
now only valid in part of the data. Conversely, if CCA
detects strong correlation in a cluster, it is likely that
the instances in the cluster share the same correlation
structure. This suggests that we can use the strength of
the correlation between the canonical variates extracted
by CCA to measure the quality of a cluster. Note that
it is computationally intractable to evaluate all possible
clustering solutions in order to select the optimal one.
This motivates us to examine a k-means style algorithm.
Starting from a random clustering solution, in each
iteration, we build a CCA model for each cluster and
then reassign each instance to its most appropriate
cluster according to its ~x and ~y features and the CCA
models. In Table 1, we describe the basic steps of such
a generic correlation clustering procedure.

The remaining question is how to assign instances
to their clusters. Note that in traditional k-means
clustering, each iteration reassigns instances to clusters
according to the distance between instances and cluster
centers. For correlation clustering, minimizing the

441

Table 2: Procedure of assigning instances to clusters

1. For each cluster i and its CCA model M
i, described

as {(ui
j , v

i
j), r

i
j , (

~
ai

j ,
~
bi
j) : j = 1 · · · d}, construct d linear

regression models v̂i
j = β

i
j ∗ u

i
j + α

i
j , j = 1 · · · d, one

for each pair of canonical variates.

2. Given an instance (~x, ~y), for each cluster i, compute
the instance’s canonical variates under M

i as

uj = (~ai
j)

T
~x and vj = (~bi

j)
T
~y, j = 1 · · · d,

and calculate v̂j as
v̂j = β

i
j ∗ uj + α

i
j , j = 1 · · · d,

and the weighted err
i

err
i =

∑d

j=1

rj

r1
∗ (vj − v̂j)

2,

where
ri

j

ri
1

is the weight for the jth prediction error.

3. Assign instance (~x, ~y) to the cluster minimizing err
i.

distance between instances and their cluster centers is
no longer our goal. Instead, our instance reassignment
is performed based on the intuition described below.

Intuition 2: If CCA detects strong a correlation pattern

in a cluster, i.e., the canonical variates u and v are

highly correlated, we expect to be able to predict the value

of v from u (or vice versa) using a linear regression

model.

This is demonstrated in Figure 1, where we plot a
pair of canonical variates with correlation 0.9. Shown
as a solid line is the linear regression model constructed
to predict one variate from the other. Intuition 2
suggests that, for each cluster, we can compute its
most significant pair of canonical variates (u1, v1) and
construct a linear regression model to predict v1 from
u1. To assign an instance to its proper cluster, we can
simply select the cluster whose regression model best
predicts the instance’s variate v1 from it’s variate u1.
In some cases, we are interested in the first few pairs of
canonical variates rather than only the first pair. It is
thus intuitive to construct one linear regression model
for each pair, and assign instances to clusters based
on the combined prediction error. Note that because
the correlation ri between variate vi, ui decreases as i

increase, we set the weight for the ith error to be ri

r1
. In

this manner, the weight for the prediction error between
u1 and v1 is always one, whereas the weights for the
ensuing ones will be smaller depending on the strength

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 1: Scatter plot of a pair of canonical variates
(r = 0.9) and the linear regression model constructed
to predict one variate from another.

of the correlations. This ensures that more focus is
put on the canonical variates that are more strongly
correlated. In Table 2, we describe the exact procedure
for reassigning instances to clusters.

Tables 1 and 2 complete the description of our cor-
relation clustering algorithm. To apply this algorithm,
the user needs to specify d, the number of pairs of canon-
ical variates that are used in computing the prediction
errors and reassigning the instances. Based on our em-
pirical observations with both artificial and real-world
datasets, we recommend that d be set to be the same as
or slightly larger than the total number of variates that
bear interest in the application. In our application, our
domain expert is interested in only the top two or three
pairs of canonical variates, consequently we used d = 4
as the default choice for our experiments.

The proposed correlation clustering algorithm is a
greedy iterative algorithm. We want to point out that
it is not guaranteed to converge. Specifically, after re-
assigning instances to clusters at each iteration, there is
no guarantee that the resulting new clusters will have
more strongly correlated variates. In our experiments,
we did observe fluctuations in the objective function,
i.e., the weighted prediction error. But, fluctuations
typically occur only after an initial period in which the
error computed by the objective function quickly de-
creases. Moreover, after this rapid initial convergence,
the ensuing fluctuations are relatively small. Thus we
recommend that one specify a maximum number of it-
erations, and in our experiments we set this to be 200
iterations.

442

Table 3: An artificial data set and results

Data Sets Global Mixture of CCA
D1 D2 CCA clust. 1 clust. 2

r1 0.85 0.9 0.521 0.856(.001) 0.904(.001)
r2 0.6 0.7 0.462 0.619(.001) 0.685(.004)
r3 0.3 0.4 0.302 0.346(.003) 0.436(.003)

3.2 Experiments on Artificial Data Sets To ex-
amine the efficacy of the proposed correlation clustering
algorithm, we apply it to artificially generated data sets
that have pre-specified nonlinear correlation structures.
We generate such data by first separately generating
multiple component data sets, each with a different lin-
ear correlation structure, and then mixing these com-
ponent data sets together to form a composite data set.
Obviously the resulting data set’s correlation structure
is no longer globally linear. However, a properly con-
structed mixture of local linear models should be able
to separate the data set into the original component
data sets and recover the correlation patterns in each
part. Therefore, we are interested in (1) testing whether
our correlation clustering algorithm can find the correct
partition of the data, and (2) testing whether it can
recover the original correlation patterns represented as
the canonical variates, and (3) comparing its results to
the results of global CCA on the composite data set.

In Table 3, we present the results of our correlation
clustering algorithm and traditional CCA on a compos-
ite data set formed by two component data sets, each
of which contains 1000 instances. We generate each
component data set as follows.4 Given the desired cor-
relation values r1, r2, and r3, we first create a multi-
variate Gaussian distribution with six random variables
u1, u2, u3, v1, v2, v3, where ui and vi are intended to be
the ith pair of canonical variates. We set the covariance
matrix to be:



1 0 0 r1 0 0
0 1 0 0 r2 0
0 0 1 0 0 r3

r1 0 0 1 0 0
0 r2 0 0 1 0
0 0 r3 0 0 1




This ensures that corr(uj , vj) = rj , for j = 1, 2, 3
and corr(ui, uj) = corr(vi, vj) = corr(ui, vj) = 0 for
i 6= j. We then randomly sample 1000 points from this
joint Gaussian distribution and form the final vector of
~x using linear combinations of uj’s and the vector of ~y

using linear combinations of vj ’s.

4The matlab code for generating a component data set is
available at http://www.ecn.purdue.edu/∼xz

Columns 2 and 3 of Table 3 specify the correlation
between the first three pairs of canonical variates of
each of the constructed datasets, D1 and D2. These
are the values that were used to generate the data. We
applied the traditional CCA to the composite data set
(D1 and D2 combined together) and we report the top
three detected canonical correlations in Column 4. We
see from the results that, as expected, global CCA is
unable to extract the true correlation structure from
the data.

The last two columns of Table 3 show the results of
applying the proposed correlation clustering algorithm
to the composite data set with k = 2 and d = 4.
The results, shown in Columns 5 and 6 are the average
over ten runs with different random initializations (the
standard deviations are shown in parentheses). We
observe that the detected canonical correlations are
similar to the true values. In Figure 2, We plot the
canonical variates extracted by our algorithm (y axis)
versus the true canonical variates (x axis) and the plots
of the first two pairs of variates are shown. We observe
that the first pair of variates extracted by our algorithm
are very similar to the original variates. This can be seen
by noticing that for both u1 and v1 most points lie on or
are close to the line of unit slope (shown as a red line).
For the second pair, we see more deviation from the red
line. This is possibly because our algorithm put less
focus on the second pair of variates during clustering.
Finally, we observe that the clusters formed by our
algorithm correspond nicely to the original component
data sets. On average, only 2.5% of the 2000 instances
were assigned to the wrong cluster.

These results show that our correlation clustering
algorithm can discover local linear correlation patterns
given prior knowledge of k, the true number of clusters
in the data. Our algorithm performs consistently
well on artificially constructed data sets. This is in
part due to the fact that these data sets are highly
simplified examples of nonlinearly correlated data. In
real applications, the nonlinear correlation structure
is often more complex. Indeed, when applied to our
Earth science data sets, we observe greater instability of
our algorithm—different initializations lead to different
clustering solutions. We conjecture that this is because
our clustering algorithm is a k-means style greedy
algorithm and has large number of locally optimal
solutions.

4 Cluster Ensembles for Correlation Clustering

In this section we address a problem in the practi-
cal application of the proposed correlation clustering
algorithm—identification of the number of clusters in
the data. A complicating factor is that because we are

443

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Original u
1

E
xt

ra
ct

ed
 u

1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Original v
1

E
xt

ra
ct

ed
 v

1

(a). The first pair of canonical variates

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

E
xt

ra
ct

ed
 u

2

Original u
2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Original v
2

E
xt

ra
ct

ed
 v

2

(b). The second pair of canonical variates

Figure 2: Comparing the first two pairs of canonical variates extracted by our mixture of CCA algorithm and the
original canonical variates.

dealing with a k-means style greedy algorithm there may
be many locally optimal solutions. In particular, differ-
ent initializations may lead to different clusters. In this
section we show how to apply cluster ensemble tech-
niques to address these issues.

The concept of cluster ensembles has recently seen
increasing popularity in the clustering community [11,
2, 10, 3], in part because it can be applied to any type
of clustering as a generic tool for boosting clustering
performance. The basic idea is to generate an ensemble
of different clustering solutions, each capturing some
structure of the data. The anticipated result is that by
combining the ensemble of clustering solutions, a better
final clustering solutions can be obtained. Cluster
ensembles have been successfully applied to determine
the number of clusters [10] and to improve clustering
performance for traditional clustering tasks [11, 2, 3].

Although our clustering tasks are significantly different
from traditional clustering in terms of the goal, we
believe similar benefits can be achieved by using cluster
ensembles.

To generate a cluster ensemble, we run our correla-
tion clustering algorithm on a given data set with k=2
for r times, each run starting from a different initial as-
signment, where r is the size of the ensemble. We then
combine these different clustering solutions into a n×n

matrix S, which describes for each pair of instances the
frequency with which they are clustered together (n is
the total number of instances in the data set.) As de-
fined, each element of S is a number between 0 and 1.
We refer to it as a similarity matrix because S(i, j) can
be considered as the similarity (correlation similarity in-
stead of the conventional similarity) between instances
i and j.

444

After the similarity matrix is constructed, we can
then visualize the matrix using a technique introduced
by [10] to help determine how many clusters there are
in the data. This visualization technique has two steps.
First, it orders the instances such that instances that
are similar to each other are arranged to be next to each
other. It then maps the 0-1 range of the similarity values
to a gray-scale such that 0 corresponds to white and
1 corresponds to black. The similarity matrix is then
displayed as an image, in which darker areas indicate
strong similarity and lighter areas indicate little to no
similarity. For example, if all clustering solutions in the
ensemble agree with one another perfectly, the similarity
matrix S will have similarity value 1 for these pairs of
instances that are from the same cluster and similarity
value 0 for those from different clusters. Because
the instances are ordered such that similar instances
are arranged next to each other, the visualization will
produce black squares along the diagonal of the image.
For a detailed description of the visualization technique,
please refer to [10].

To demonstrate the effect of cluster ensembles on
our correlation clustering, we generate three artificial
data sets using the same procedure as described in
Section 3.2. These three data sets contain one, two, and
three correlation clusters respectively. We apply our
correlation clustering algorithm 20 times with different
initializations and construct a similarity matrix for each
data set. In Figure 3 we show the images of the resulting
similarity matrices for these three data sets and make
following observations.

• For the one-cluster data set, shown in Figure 3 (a),
the produced similarity matrix does not show any
clear clustering pattern. This is because our cor-
relation clustering algorithm splits the data ran-
domly in each run—by combining the random runs
through the similarity matrix, we can easily reach
the conclusion that the given data set contains only
one correlation cluster.

• For the two-cluster data set, shown in Figure 3 (b),
First, we see two dark squares along the diagonal,
indicating there are two correlation clusters in the
data. This shows that, as we expect, the similarity
matrix constructed via cluster ensembles reveal
information about the true number of clusters in
the data.

In addition to the two dark diagonal squares, we
also see small gray areas in the image, indicating
that some of the clustering solutions in the ensem-
ble disagree with each other on some instances.
This is because different initializations sometimes
lead to different local optimal solutions. Further,

we argue that these different solutions sometimes
make different mistakes—combining them can po-
tentially correct some of the mistakes and produce
a better solution.5 Indeed, our experiments show
that, for this particular two-cluster data set, ap-
plying the average-link agglomerative clustering to
the resulting similarity matrix reduces the cluster-
ing error rate from 2.0% (the average error rate of
the 20 clustering runs) to 1.1%. In this case, clus-
ter ensembles corrected for the local optima prob-
lem of our correlation clustering algorithm. Cluster
ensembles have been shown to boost the clustering
performance for traditional clustering tasks, here
we confirm that correlation clustering can also ben-
efit from cluster ensembles.

• For the last data set, shown in Figure 3 (c), we see
three dark squares along the diagonal, indicating
that there are three correlation clusters in the data.

Comparing to the two-cluster case, we see signifi-
cantly larger areas of gray. In this case, our corre-
lation clustering algorithm was asked to partition
the data into two parts although the data actually
contains three clusters. Therefore, it is not sur-
prising that many of the clustering solutions don’t
agree with each other because they may split or
merge clusters in many different ways when differ-
ent initializations are used, resulting in much larger
chance for disagreement. However, this does not
stop us from finding the correct number of clusters
from the similarity matrix. Indeed, by combining
multiple solutions, these random splits and merges
tend to cancel out each other and the true structure
of the data emerges.

With the help of the similarity matrix, now we
know there are three clusters in the last data set. We
then constructed another cluster ensemble for this data
set, but this time we set k=3 for each clustering run.
The resulting similarity matrix S′ is shown in Figure 3
(d). In this case, the average error rate achieved by the
individual clustering solutions in the ensemble is 7.5%
and the average-link agglomerative clustering algorithm
applied on S′ reduces the error rate to 6.8%.

To conclude, cluster ensembles help to achieve two
goals. First, they provide information about the true
structure of the data. Second, they help improve
clustering performance of our correlation clustering
algorithm.

5It should be noted that if the different solutions make the
same mistakes, these mistakes will not be corrected by using
cluster ensembles.

445

(a) (b)

(c) (d)

Figure 3: Visualization of similarity matrices: (a). S for the one-cluster data set; (b). S for the two-cluster data
set ; (c). S for the three-cluster data set, and (d). S′ for the three-cluster data set

5 Experiments on Earth Science Data Sets

We have demonstrated on artificial data sets that our
correlation algorithm is capable of finding locally linear
correlation patterns in the data. In this section, we ap-
ply our techniques to Earth science data sets. The task
is to investigate the relationship between the variability
in precipitation and the dynamics of vegetation. Below,
we briefly introduce the data sets and then compare our
technique to traditional CCA.

In this study, the standardized precipitation index
(SPI) is used to describe the precipitation domain and
the normalized difference vegetation index (NDVI) is
used to describe the vegetation domain [9]. The data for
both domains are collected and aligned at monthly time
intervals from July 1981 to October 2000 (232 months).
Our analysis is performed at continental level for the

continents of North America, South America, Australia
and Africa. For each of these continents, we form a
data set whose instances correspond to time points. For
a particular continent, the feature vector ~x records the
SPI value at each grid location of that continent, thus
the dimension of ~x equals the number of grid locations
of that continent. Similarly, ~y records the NDVI values.
Note that the dimensions of ~x and ~y are not equal
because different grid resolutions are used to collect the
data. The effect of applying our technique to the data
is to cluster the data points in time. This is motivated
by the hypothesis that during different time periods the
relationship between vegetation and precipitation may
vary.

For our application, a standard way to visualize
CCA results is to use colored map. In particular, to

446

(a)Conventional CCA (b) Cluster 1 of MCCA (c) Cluster 2 of MCCA

Figure 4: The results of conventional CCA and Mixture of CCA (MCCA) for Africa. Top panel shows the NDVI
and SPI canonical variates (time series). Middle and bottom panel show the NDVI and SPI maps.

analyze a pair of canonical variates, which are in this
case a pair of correlated time series, one for SPI and
one for NDVI. We produce one map for SPI and one
map for NDVI. For example, to produce a map for
SPI, we take the correlation between the time series
of the SPI canonical variate and the SPI time series
of each grid point, generating a value between −1
(negative correlation) and 1 (positive correlation) for
each grid point. We then display these values on the
map via color coding. Areas of red (blue) color are
positively (negatively) correlated with the SPI canonical
variate. Considered together, the NDVI map and SPI
map identify regions where SPI correlates with NDVI.
Since our technique produces local CCA models, we
can visualize each cluster using the same technique.

Note that an exact geophysical interpretation of the
produced maps is beyond the scope of this paper. To
do so, familiarity with the geoscience terminologies and
concepts is required from our audience. Instead, we will
present the maps produced by traditional CCA and the
maps produced by our technique, as well as plots of
the time series of the SPI and NDVI canonical variates.
Finally, a high level interpretation of the results is
provided by our domain expert. For brevity, the rest
of our discussion will focus on the continent of Africa,
which is a representative example where our method
finds patterns of interest that were not discovered by
traditional CCA.

We apply our technique to the data set of Africa
by setting k=2 and constructing a cluster ensemble of

447

size 200.6 The final two clusters were obtained using
the average-link agglomerative algorithm applied to the
similarity matrix.

Figure 4 (a) shows the maps and the NDVI and SPI
time series generated by traditional CCA. Figures 4 (b)
and (c) show the maps and the time series for each of
the two clusters. Note that each of the maps is asso-
ciated with the first pair of canonical variates for that
dataset/cluster. Inspection of the time series and the
spatial patterns that are associated with the canonical
variates for each cluster demonstrates that the mixture
of CCA approach provides information that is clearly
different from results produced by conventional CCA.
For Africa, the interannual dynamics in precipitation
are strongly influenced by a complex set of dynamics
that depend on El-Nino and La Nina, and on the re-
sulting sea surface temperature regimes in Indian Ocean
and southern Atlantic ocean off the coast of west Africa.
Although exact interpretation of these results requires
more study, the maps of Figures 4 (b) and (c) show that
the proposed approach was able to isolate important
quasi-independent modes of precipitation-vegetation co-
variability that linear methods are unable to identify.
As shown in [9], conventional CCA is effective in iso-
lating precipitation and vegetation anomalies in eastern
Africa associated with El-Nino, but less successful in
isolating similar patterns in the Sahelian region of west-
ern Africa. In contrast, Figures 4 (b) and (c) show that
the mixture of CCA technique isolates the pattern in
eastern Africa, and additionally identifies a mode of co-
variability in the Sahel that is probably related to ocean-
atmosphere dynamics in the southern Atlantic ocean.

6 Conclusions and Future Work

This paper presented a method for constructing mix-
tures of local CCA models in attempt to address the
limitations of the conventional CCA approach. We de-
veloped a correlation clustering algorithm, which parti-
tions a given data set according to the correlation be-
tween two sets of features. We further demonstrated
that cluster ensembles can be used to identify the num-
ber of clusters in the data and ameliorate the local op-
tima problem of the proposed clustering algorithm. We
applied our technique to Earth science data sets. In
comparison to traditional CCA, our technique led to in-
teresting and encouraging new discoveries in the data.

As an ongoing effort, we will closely work with our
domain expert to verify our findings in the data from

6We use large ensemble sizes for the Earth science data sets
because they contain a small number of instances, making it
computationally feasible and also larger ensemble sizes ensure that
the clusters we found in the data are not obtained by chance.

a geoscience viewpoint. For future work, we would also
like to apply our technique to more artificial and real-
world data sets that have complex nonlinear correlation
structure. Finally, we are developing a probabilistic
approach to learning mixture of CCA models.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. Machine Learning, 56:89–113, 2004.

[2] X. Z. Fern and C. E. Brodley. Random projection for
high dimensional data clustering: A cluster ensemble
approach. In Proceedings of the Twentieth Interna-

tional Conference on Machine Learning, 2003.
[3] X. Z. Fern and C. E. Brodley. Solving cluster ensemble

problems by bipartite graph partitioning. In Proceed-

ings of the Twenty First International Conference on

Machine Learning, pages 281–288, 2004.
[4] H. Hotelling. Relations between two sets of variants.

Biometrika, 28:321–377, 1936.
[5] W. Hsieh. Nonlinear canonical correlation analysis

by neural networks. Neural Networks, 13:1095–1105,
2000.

[6] R.A. Johnson and D. W. Wichern. Applied multivari-

ate statistical analysis. Prentice Hall, 1992.
[7] M. Jordan and R. Jacobs. Hierarchical mixtures of

experts and the EM algorithm. Neural Computation,
6:181–214, 1994.

[8] P. L. Lai and C. Fyfe. Kernel and nonlinear canonical
correlation analysis. International Journal of Neural

Systems, 10(5):365–377, 2000.
[9] A. Lotsch and M. Friedl. Coupled vegetation-

precipitation variability observed from satellite and cli-
mate record. Geophysical research letter, In submis-
sion.

[10] S. Monti, P. Tamayo, J. Mesirov, and T. Golub.
Consensus clustering: A resampling-based method for
class discovery and visualization of gene expression
microarray data. Machine Learning, 52:91–118, 2003.

[11] A. Strehl and J. Ghosh. Cluster ensembles - A
knowledge reuse framework for combining multiple
partitions. Machine Learning Research, 3:583–417,
2002.

[12] M. Tipping and C. Bishop. Mixtures of probabilistic
principal component analysers. Neural Computation,
11, 1999.

[13] E. Zorita, V. Kharin, and H. von Storch. The atmo-
spheric circulation and sea surface temperature in the
north atlantic area in winter: Their interaction and rel-
evance for iberian precipitation. Journal of Climate,
5:1097–1108, 1992.

448

On Periodicity Detection and Structural Periodic Similarity

Michail Vlachos Philip Yu Vittorio Castelli

IBM. T.J. Watson Research Center
19 Skyline Dr, Hawthorne, NY

Abstract

This work motivates the need for more flexible structural

similarity measures between time-series sequences, which

are based on the extraction of important periodic features.

Specifically, we present non-parametric methods for accurate

periodicity detection and we introduce new periodic distance

measures for time-series sequences. The goal of these tools

and techniques are to assist in detecting, monitoring and

visualizing structural periodic changes. It is our belief that

these methods can be directly applicable in the manufacturing

industry for preventive maintenance and in the medical sci-

ences for accurate classification and anomaly detection.

1 Introduction

In spite of the fact that in the past decade we have
experienced a profusion of time-series distance measures
and representations [9], the majority of them attempt
to characterize the similarity between sequences based
solely on shape. However, it is becoming increasingly
apparent that structural similarities can provide more
intuitive sequence characterizations that adhere more
tightly to human perception of similarity.

While shape-based similarity methods seek to iden-
tify homomorphic sequences using the original raw data,
structure-based methodologies are designed to find la-
tent similarities, possibly by transforming the sequences
into a new domain, where the resemblance can be more
apparent. For example, in [6] the authors use change-
point-detection signatures for identifying sequences that
exhibit similar structural changes. In [7] Kalpakis, et
al., use the cepstrum for clustering sequences that share
a similar underlying ARIMA generative process. Keogh,
et al. [10], employ a compression-based dissimilarity
measure that is effectively used for clustering and anom-
aly detection. Finally, Vlachos, et al. [15] consider
structural similarities that are based on burst features
of time-series sequences.

In this work we consider methods for efficiently cap-
turing and characterizing the periodicity and periodic
similarity of time-series. Such techniques can be ap-
plicable in a variety of disciplines, such as manufactur-
ing, natural sciences and medicine, which acquire and

record large amounts of periodic data. For the analysis
of such data, first there is a need for accurate periodic-
ity estimation, which can be utilized either for anomaly
detection or for prediction purposes. Then, a structural
distance measure should be deployed that can effectively
incorporate the periodicity for quantifying the degree of
similarity between sequences. A periodic measure can
allow for more meaningful and accurate clustering and
classification, and can also be used for interactive explo-
ration (and visualization) of massive periodic datasets.
Let us consider areas where periodic measures can be
applicable:

In natural sciences, many processes manifest
strong or weak periodic behavior, such as tidal pat-
terns (oceanography), sunspots (astronomy), tempera-
ture changes (meteorology), etc. Periodic analysis and
periodicity estimation is an important aspect in these
disciplines, because they can suggest potential anom-
alies or help understand the causal relationship between
different processes. For example, it is well established
that solar variability greatly affects the climate change.
In fact the solar cycle (sunspot numbers) presents strik-
ing resemblance to the northern hemisphere land tem-
peratures [4].

In medicine, where many biometric measures
(e.g., heartbeats) exhibit strong periodicities, there
is a great interest in detecting periodic anomalies.
Disturbances of similar periodic patterns can be noted
in many degenerative diseases; for example, it has
been noted that Tourette’s syndrome patients exhibit
elevated eyeblink rate [14], while people affected by
Parkison’s disease show symptoms of gait disturbances
[1]. The tools that we provide here, can significantly
enhance the early detection of such changes.

Finally, periodic analysis is an indispensable tool
in automotive, aviation and manufacturing industries
for machine monitoring and diagnostics [12]. Predic-
tive maintenance can be possible by examination of the
vibration spectrum caused by its rotating parts. There-
fore, a change in the periodic structure of machine vi-
brations can be a good indicator of machine wear and/or
of an incipient failure.

449

This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):

X(fk/N) = 1
√

N

N−1P
n=0

x(n)e−
j2πkn

N , k = 0, 1 . . . N − 1

where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N

√
N

. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1
√

N

N−1P
n=0

X(fk/N)e
j2πkn

N , k = 0, 1 . . . N − 1

Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.

Signal & Reconstruction

f
1

Fourier Coefficients

f
2

f
3

f
4

f
0

Figure 1: Reconstruction of a signal from its first 5
Fourier coefficients

2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N) = ‖X(fk/N)‖2
k = 0, 1 . . . ⌈

N−1
2

⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data

is periodic, proper windowing of the data might be necessary for

achieving a more accurate harmonic analysis. In this work we will

sidestep this issue, since it goes beyond the scope of this paper.

However, the interested reader is directed to [5] for an excellent

review of data windowing techniques.

450

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N) corresponds to periods [N

k
. . . N

k−1). It is easy
to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1
N

N−1P
n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F
−1

< X, X
∗

>

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).

50 100 150 200 250 300 350

0

0.1

0.2

Sequence

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

P
ow

er

Periodogram

P1= 7
P2= 30.3333

20 40 60 80 100 120 140 160 180

5

6

7

x 10
6 Circular Autocorrelation

7 day

Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the

3

451

Method Easy to threshold Accurate short periods Accurate large periods Complexity

Periodogram yes yes no O(NlogN)
Autocorrelation no yes yes O(NlogN)
Combination yes yes yes O(NlogN)

Table 1: Concise comparison of approaches for periodicity detection.

Sequence
 Autocorrelation

hill

valley

Periodogram
 Refine Period

Candidate

Periods

False Alarm

Dismiss

Period

Figure 3: Diagram of our methodology (AUTOPERIOD method)

MSN query request logs and represents the aggregate
demand for the query ‘Easter’ for 1000 days after the
beginning of 2002. The demand for the specific query
peaks during Easter time and we can observe one
yearly peak. Our intuition is that periodicity should be
approximately 365 (although not exactly, since Easter
is not celebrated at the same date every year). Indeed
the most dominant periodogram estimate is 333.33 =
(1000/3), which is located on a hill of the ACF, with a
peak at 357 (the correct periodicity -at least for this
3 year span). The remaining periodic hints can be
discarded upon verification with the autocorrelation.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

MSN Query: "Easter"

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

P
ow

er

Periodogram

P1= 333.3333

P2= 166.6667
P3= 90.9091

50 100 150 200 250 300 350 400 450

0

0.2

0.4

0.6

0.8

Days

Circular Autocorrelation

Hill: Candidate Period

Valley: False Alarms

357: correct period

Figure 4: Visual demonstration of our method. Candi-
date periods from the periodogram are verified against
the autocorrelation. Valid periods are further refined
utilizing the autocorrelation information.

Essentially, we have leveraged the information of
both metrics for providing an accurate periodicity de-
tector. In addition, our method is computationally effi-

cient, because both the periodogram and the ACF can
be directly computed through the Fast Fourier Trans-
form of the examined sequence in O(N log N) time.

3.1 Discussion. First, we need to clarify succinctly
that the use of the combined periodogram and auto-
correlation does not carry additional information than
each metric separately. This perhaps surprising state-
ment can be verified by noting that:

< X, X
∗

>= ‖X‖
2

Therefore, the autocorrelation is the inverse Fourier
transform of the periodogram, which means that the
ACF can be considered as the dual of the periodogram,
from the time into the frequency domain. In essence,
our intention is to solve each problem in its proper
domain; (i) the period significance in the frequency
domain, and (ii) the identification of the exact period
in the time domain.

Another issue that we would like to clarify is the
reason that we are not considering a (seemingly) simpler
approach for accurate periodicity estimation.

Looking at the problem from a signal processing
perspective, one could argue that the inability to dis-
cover the correct period is due to the ‘coarse’ sampling
of the series. If we would like to increase the resolution
of the DFT, we could ‘sample’ our dataset at a finer res-
olution (upsampling). Higher sampling rate essentially
translates into padding the time-series with zeros, and
calculating the DFT of the longer time-series. Indeed, if
we increase the size of the example sequence from 1000
to 16000, we will be able to discover the correct period-
icity which is 357 (instead of the incorrect 333, given in
the original estimate).

However, upsampling also imposes a significant
performance overhead. If we are interested in obtaining
online periodicity estimates from a data stream, this
alternative method may result in a serious system

452

bottleneck. We can see this analytically; the time
required to compute the FFT of a sequence with length
2x is in the order of 2xlog2x = x2x. Now let’s assume
that we pad the sequence with zeros increasing its length
16 times (just like in our working example). The FFT
now requires time in the order of (x + 4)2x+4, which
after algebraic calculations translates into 2 orders of
magnitude additional time.

Using our methodology, we do not require higher
sampling rates for the FFT calculation, hence keeping
a low computational profile.

3.2 Discovery of Candidate Periods. For extract-
ing a set of candidate periodicities from the peri-
odogram, one needs to determine an appropriate power
threshold that should distinguish only the dominant fre-
quencies (or inversely the dominant periods). If none of
the sequence frequencies exceeds the specific threshold
(i.e., the set of periodicity ‘hints’ is empty), then we can
regard the sequence as non-periodic.

In order to specify which periods are important, we
first need to identify how much of the signal energy is
attributed to random mechanisms, that is, everything
that could not have been attributed to a random process
should be of interest.

Let us assume that we examine a sequence x. The
outcome of a permutation on the elements of x is a
sequence x̃. The new sequence will retain the first order
statistics of the original sequence, but will not exhibit
any pattern or periodicities, because of the ’scrambling’
process (even though such characteristics may have
existed in sequence x). Anything that has the structure
of x̃ is not interesting and should be discarded, therefore
at this step we can record the maximum power (pmax)
that x̃ exhibits, at any frequency f .

pmax = arg max
f

‖X̃(f)‖2

Only if a frequency of x has more power than pmax can
be considered interesting. If we would like to provide
a 99% confidence interval on what frequencies are
important, we should repeat the above experiment 100
times and record for each one the maximum power of the
permuted sequence x̃. The 99th largest value of these
100 experiments, will provide a sufficient estimator of
the power threshold pT that we are seeking. Periods
(in the original sequence periodogram) whose power is
more than the derived threshold will be considered:

phint = {N/k : P(fk/N) > pT }

Finally, an additional period ‘trimming’ should be per-
formed for discarding periods that are either too large
or too small and therefore cannot be considered reli-

able. In this phase any periodic hint greater than N/2
or smaller than 2 is removed.

Figure 5 captures a pseudo-code of the algorithm
for identifying periodic hints.

1 periods = getPeriodHints(Q)

2 {
3 k = 100; // number of permutations

4 maxPower = {}; // empty set

5 periods = {};

6
7 for i = 1 to k
8 {
9 Qp = permute(Q);

10 P = getPeriodogram(Qp);

11
12 power = max(P.power);

13 maxPower.add(power);

14 }
15
16 percentile = 99;

17 maxPower.sort; // ascending

18 P_threshold = maxPower(maxPower.length*(percentile/100));

19
20 P = getPeriodogram(Qp);

21
22 for i = 1 to P.length

23 {
24 if (P[i].power > P_threshold)

25 periods.add(P); // new candidate period

26 }
27
28 // period trimming

29 N = Q.length;

30 for i = 1 to periods.length

31 {
32 if (periods[i].hint >= N/2 || periods[i].hint <= 2)

33 periods[i].erase();

34 }
35
36 return periods;

37 }

Figure 5: Algorithm getPeriodHints

In [15] another algorithm for detection of impor-
tant periods was proposed, which follows a different
concept for estimating the periodogram threshold. The
assumption there was that the periodogram of non-
periodic time-series will follow an exponential distribu-
tion, which returned very intuitive period estimates for
real world datasets. In our experiments, we have found
the two algorithms to return very comparable thresh-
old values. However, because the new method does not
make any assumptions about the underlying distribu-
tion, we expect it to be applicable for a wider variety of
time-series processes.

Examples: We use sequences from the MSN query logs
(yearly span) to demonstrate the usefulness of the dis-
covered periodic hints. In Figure 6(a) we present the
demand of the query ‘stock market’, where we can dis-
tinguish a strong weekly component in the periodogram.
Figure 6(b) depicts the query ‘weekend’ which does
not contain any obvious periodicities. Our method can
set the threshold high enough, therefore avoiding false

5

453

alarms.

MSN: Query ’Stock Market’

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Periodogram

P1= 7.0385

P2= 3.5192

(a)
MSN: Query ’weekend’

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Periodogram

No important periods

(b)

Figure 6: (a) Query ’stock market’ (2002): Weekly
periodic hint is identified. (b) Query ’weekend’ (2002):
No significant periodicities are spotted.

3.3 Verification of Candidate Periods. After the
periodogram peaks have been identified, we have ob-
tained a candidate set of periodicities for the examined
sequence. The validity of these periods will be verified
against the autocorrelation. An indication that a period
is important, can be the fact that the corresponding pe-
riod lies on a hill of the autocorrelation. If the period
resides on a valley then it can be considered spurious
and therefore safely discarded.

After we discover that a periodicity ‘hint’ resides on
a hill of the autocorrelation, we can refine it even further
by identifying the closest peak (i.e., local maximum).
This is a necessary step, because the correct periodicity
(i.e., peak of the hill) might not have been discovered
by the periodogram, if it was derived from a ‘wide’ DFT
bin. This is generally true for larger periods, where the
resolution of the DFT bins drops significantly. We will
explicate further, how to address the above issues:

3.3.1 Validity of Periodicity Hint. The signifi-
cance of a candidate period ideally can be determined
by examining the curvature of the ACF around the can-
didate period p. The autocorrelation is concave down-
ward, if the second derivative is negative in an open
interval (a . . . b):

∂2ACF (x)
∂x2 < 0, for all x ∈ (a . . . b), a < p < b

Nevertheless, small perturbations of the ACF due to
the existence of noise, may invalidate the above require-
ment. Will will seek a more robust estimator of the
curvature by approximating the ACF in the proxim-
ity of the candidate period with two linear segments.
Then it is sufficient to examine if the approximating
segments exhibit an upward-downward trend, for iden-
tifying a concave downward pattern (i.e., a hill).

The segmentation of a sequence of length N into
k linear segments can be computed optimally using a
dynamic programming algorithm in O(N2k) time, while
a greedy merge algorithm achieves results very close
to optimal in O(N log N) time [8]. For this problem
instance, however, one can employ a simpler algorithm,
because we require only a two segment approximation
for a specific portion of the ACF.

Let Ŝb
a be the linear regression of a sequence x

between the positions [a . . . b] and ǫ(Ŝb
a) be the error

introduced by the approximating segment. The best
split position tsplit is derived from the configuration that
minimizes the total approximation error:

tsplit = arg min
t

ǫ(Ŝt
1) + ǫ(Ŝn

t+1)

10 20 30 40 50 60

P1=17 P2=35

Figure 7: Segmentation of two autocorrelation intervals
into two linear segments. The left region indicates a
concave upward trend (‘valley’) while the right part
consists of a concave downward trend (’hill’). Only the
candidate period 35 can be considered valid, since it is
located on a hill.

There is still the issue of the width of the search
interval on the ACF, that is how much should we extend
our search for a hill around the candidate period. Since
the periodicity hint might have leaked from adjacent
DFT bins (if it was located near the margin of the
bin) we also examine half of the adjacent bins as well.
Therefore, for a hint at period N/k, we examine the
range RN/k of the ACF for the existence of a hill:

454

RN/k = [1
2
(N

k+1
+ N

k
) − 1, . . . ,

1
2
(N

k
+ N

k−1
) + 1]

3.3.2 Identification of closest Peak. After we
have ascertained that a candidate period belongs on a
hill and not on a valley of the ACF, we need to discover
the closest peak which will return a more accurate es-
timate of the periodicity hint (particularly for larger
periods). We can proceed in two ways; the first one
would be to perform any hill-climbing technique, such
as gradient ascent, for discovering the local maximum.
In this manner the local search will be directed toward
the positive direction of the first derivative. Alterna-
tively, we could derive the peak position directly from
the linear segmentation of the ACF, which is already
computed in the hill detection phase. The peak should
be located either at the end of the first segment or at
the beginning of the second segment.

We have implemented both methods for the pur-
poses of our experiments and we found both of them to
report accurate results.

4 Extension for Streaming Data.

Even though we have presented the AUTOPERIOD algo-
rithm for static time-series, it can be easily extended for
a streaming scenario, by adapting an incremental cal-
culation of the Fourier Transform. Incremental Fourier
computation has been a topic of interest since the late
70s and it was introduced by Papoulis [13] under the
term ‘Momentary Fourier Transform’ (MFT). MFT cov-
ered the aggregate (or growing) window case, however
recent implementations also deal with the sliding win-
dow case, such as in [16, 11]. Incremental AUTOPERIOD
requires only constant update time per DFT coefficient,
and linear space for recording the window data.

5 Accuracy of Results

We use several sequences from the MSN query logs to
perform convincing experiments regarding the accuracy
of our 2-tier methodology. The specific dataset is ideal
for our purposes because we can detect a number of
different periodicities according to the demand pattern
of each query.

The examples in Figure 8 demonstrate a variety
of situations that might occur when using both the
periodogram and autocorrelation.

Query ‘Easter’(MSN): Examining the demand for
a period of 1000 days, we can discover several periodic
hints above the power threshold in the periodogram.
In this example, the autocorrelation information refines
the original periodogram hint (from 333 → 357). Ad-
ditional hints are rejected because they reside on ACF
valleys (in the figure only the top 3 candidate periods
are displayed for reasons of clarity).

Query ‘Harry Potter’(MSN): For the specific
query although there are no observed periodicities (du-
ration 365 days), the periodogram returns 3 periodic
hints, which are mostly attributed to the burst pattern
during November when the movie was released. The
hints are classified as spurious upon verification with
ACF.

Query ‘Fourier’(MSN): This is an example where
the periodogram threshold effectively does not return
candidate periods. Notice that if we had utilized only
the autocorrelation information, it would have been
more troublesome to discover which (if any) periods
were important. This represents another validation that
our choice to perform the period thresholding in the
frequency space was correct.

Economic Index (Stock Market): Finally, this last
sequence from a stock market index illustrates a case
where both the periodogram and autocorrelation infor-
mation concur on the single (albeit weak) periodicity.

Through this experimental testbed we have demon-
strated that AUTOPERIOD can provide very accurate pe-
riodicity estimates without upsampling the original se-
quence. In the sections that follow, we will show how
it can be used in conjunction with periodic similarity
measures, for interactive exploration of sequence data-
bases.

6 Structure-Based Similarity and Periodic

Measures

We introduce structural measures that are based on
periodic features extracted from sequences. Periodic
distance measures can be used for providing more
meaningful structural clustering and visualization of
sequences (whether they are periodic or not). After
sequences are grouped in ‘periodic’ clusters, using a
‘drill-down’ process the user can selectively apply the
AUTOPERIOD method for periodicity estimation on the
sequences or clusters of interest. In the experimental
section we provide examples of this methodology using
hierarchical clustering trees.

Let us consider first the utility of periodic distance
measures with an example. Suppose that one is examin-
ing the similarity between the two time-series of Figure
9. When sequence A exhibits an upward trend, sequence
B displays a downward drift. Obviously, the Euclidean
distance (or inner product) between sequences A and
B, will characterize them as very different. However, if
we exploit the frequency content of the sequences and
evaluate their periodogram, we will discover that it is
almost identical. In this new space, the Euclidean dis-
tance can easily identify the sequence similarities. Even
though this specific example could have been addressed
in the original space using the Dynamic Time Warping

7

455

100 200 300 400 500 600 700 800 900 1000

MSN: Easter (2000−2002).dat*

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

PeriodogramP1= 333.3333

P2= 166.6667
P3= 90.9091

50 100 150 200 250 300 350 400 450

Circular Autocorrelation

Hill, P=357
ValleyValley

(a)

50 100 150 200 250 300 350

MSN: Harry Potter (2002)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

PeriodogramP1= 121.6667

P2= 91.25

P3= 73

20 40 60 80 100 120 140 160 180

Circular Autocorrelation

ValleyValleyValley

(b)

50 100 150 200 250 300 350

MSN: Fourier (2002)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Periodogram

20 40 60 80 100 120 140 160 180

Circular Autocorrelation

No candidate Periods

(c)

20 40 60 80 100 120

Economic Index

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Periodogram

P1= 32.75

10 20 30 40 50 60

Circular Autocorrelation

Hill, P=33

(d)

Figure 8: Periodicity detection results of the AUTOPERIOD method.

(DTW) distance, we have to note that our method is
significantly more efficient (in terms of both time and
space) than DTW. Additionally, periodic measures can
address more subtle similarities that DTW cannot cap-
ture, such as different patterns/shapes occurring at pe-
riodic (possibly non-aligned) intervals. We will examine
cases where the DTW fails in the sections that follow.

20 40 60 80

Sequence A

0.1 0.2 0.3 0.4 0.5

Periodogram

20 40 60 80

Sequence B

0.1 0.2 0.3 0.4 0.5

Periodogram

Figure 9: Sequences A and B are very distant in a
Euclidean sense in the time domain. A transforma-
tion in the frequency domain (using a view of the peri-
odogram) reveals the structural similarities.

The new measure of structural similarity that we

present, exploits the power content of only the most
dominant periods/frequencies. By considering the most
powerful frequencies, our method concentrates on the
most important structural characteristics, effectively fil-
tering out the negative influence of noise, and eventually
allowing for expedited distance computation. Addition-
ally, the omission of the phase information renders the
new similarity measure shift invariant in the time do-
main. We can therefore discover time-series with simi-
lar patterns, which may occur at different chronological
instants.

6.1 Power Distance (pDist). For comparing the
periodic structure of two sequences, we need to examine
how different is their harmonic content. We achieve
this by utilizing the periodogram and specifically the
frequencies with the highest energy.

Suppose that X is the Fourier transform of a
sequence x with length n. We can discover the k
largest coefficients of X by computing its periodogram
P(X) and recording the position of the k frequencies
with the highest power content (parameter k depends

456

on the desired compression factor). Let us denote the
vector holding the positions of the coefficients with the
largest power p+ (so p+ ⊂ [1 . . . n]). To compare x

with any other sequence q, one needs to examine how
similar energies they carry in the dominant periods of
x. Therefore, we evaluate P(Q(p+)), that describes
a sequence holding the equivalent coefficients as the
vector P(X(p+)). The distance pDist between these
two vectors captures the periodic similarity between
sequences x and q:

pDist = ‖P(Q(p+)) − P(X(p+))‖

Example: Let x and q be two sequences and let their
respective Fourier Transforms be X = {(1 + 2i), (2 +
2i), (1+ i), (5+ i)} and Q = {(2+2i), (1+ i), (3+ i), (1+
2i)}. The periodogram vector of X is: P(X) = ‖X‖2 =
(5, 8, 2, 26). The vector holding the positions of X with
highest energy is p+ = (2, 4) and therefore P(X(p+)) =
(0, 8, 0, 26). Finally, since P(Q) = (8, 2, 10, 5) we have
that: P(Q(p+)) = (0, 2, 0, 5) 2.

In order to meaningfully compare the power content
of two sequences we need to normalize them, so that
they contain the same amount of total energy. We can
assign to any sequence x(n) unit power, by performing
the following normalization:

x̂(n) =
x(n)− 1

N

NP
i=1

x(i)s
NP

i=1
(x(n)− 1

N

NP
i=1

x(i))2

, n = 1, . . . , N

The above transformation will lead to zero mean value
and sum of squared values equal to 1. Parseval’s
theorem dictates that the energy in the time domain
equals the energy in the frequency domain, therefore
the total energy in the frequency domain should also be
unit:

‖x̂‖
2 = ‖F(x̂)‖2 = 1

After this normalization, we can more meaningfully
compare the periodogram energies.

Indexability: Although in this work we are not going
to discuss now to index the pDist, we would like to note
that this is possible. The representation that we are
proposing, utilizes a different set of coefficients for every
sequence. While indexing might appear problematic
using space partitioning indices such as R-trees (because
they operate on a fixed set of dimensions/coefficients),
such representations can be easily indexed using metric
tree structures, such as VP-Tree or M-Tree (more details
can be found in [15]).

2The zeros are placed in the vectors for clarity reasons. In the

actual calculations they can be omitted.

7 Periodic Measure Results

We present extensive experiments that show the use-
fulness of the new periodic measures and we compare
them with widely used shape based measures or newly
introduced structural distance measures.

7.1 MSN query logs. Using 16 sequences which
record the yearly demand of several keywords at the
MSN search engine, we perform the hierarchical clus-
tering which is shown in Figure 10. In the dendro-
gram derived using the pDist as the distance func-
tion, we can notice a distinct separation of the se-
quences/keywords into 3 classes. The first class con-
tains no clear periodicities (no specific pattern in the
demand of the query), while the second one exhibits
only bursty seasonal trends (e.g., during Christmas).
The final category of queries are requested with high
frequency (weekly period) and here we can find key-
words such as ‘cinema’, ‘bank’, ‘Bush’ etc.

We utilize an extended portion of the same dataset
for exploring the visualization power of periodic dis-
tance measures. Using the pairwise distance matrix be-
tween a set of MSN keyword demand sequences (365
values, year 2002), we evaluate a 2D mapping of the
keywords using Multidimensional Scaling (Figure 11).
The derived mapping shows the high discriminatory ef-
ficacy of the pDist measure; seasonal trends (low fre-
quencies) are disjoint from periodic patterns (high fre-
quencies), allowing for a more structural sequence ex-
ploration. Keywords like ‘fall’, ‘Christmas’, ‘lord of

the rings’, ‘Elvis’, etc, manifest mainly seasonal bursts,
which need not be aligned in the time axis. On the con-
trary, queries like ‘dry cleaners’ or ‘Friday’ indicate a
natural weekly repeated demand. Finally, some queries
do not exhibit any obvious periodicities within a year’s
time (e.g., ‘icdm’, ‘kdd’, etc).

bank

cinema

amazon

berlin

ballet

bush

bach

atari

amd

christmas

casino

bargains

bestbuy

ati

athens 2004

coburn

no period

seasonal

(low fre
q)

periodic

(high fre
q)

Figure 10: Dendrogram based on periodic features

9

457

acapulco mexico

acapulco
amazon

amd

arcadearisatari

athens 2004
ati

bach

ballet
bank

bargains berlin
bestbuy

bin ladenbond

bonds
brazil

bush

carmike

casino

catch me if you can
christmas

cinema

couch
coupons

cyprus

deadline

dry cleaners

dudley moore

easter

elvis

england

fall
florida

flowers forecasting

fourier
fractals

friday

full moon

germanygift
gloves

greece

grolier

guitarharry potter
hawaii

hearthelloween

hollywood

icdm

intelinternet

iraq

james coburnkdd

las vegas

lazboy

london
lord of the ringsmatrix reloaded

matrixmexico

Seasonal (low frequencies)

Periodic (high frequencies)

Non−periodic

more periodic

more seasonal

Figure 11: Mapping on 2D of pairwise distances between several sequences. The similarity measure utilized was
the power based similarity. We can clearly distinguish a separation between periodic and seasonal trends.

7.2 Structured + Random Mixture. For our sec-
ond experiment we use a combination of periodic time-
series that are collected from natural sciences, medicine
and manufacturing, augmented by pairs of random noise
and random walk data.

All datasets come in pairs, hence, when performing
a hierarchical clustering algorithm on this dataset, we
expect to find a direct linkage of each sequence pair at
the lower level of the dendrogram. If this happens we
consider the clustering correct. The dataset consists of
12 pairs, therefore a measure of the clustering accuracy
can be the number of correct pair linkages, over twelve,
the number of total pairs.

Figure 12 displays the resulting dendrogram for
the pDist measure, which achieves a perfect cluster-
ing. We can also observe that pairs derived from the
same source/process are clustered together as well, in
the higher dendrogram level (Power Demand, ECG, Mo-
torCurrent etc). After the clustering, we can execute
the AUTOPERIOD method and annotate the dendrogram
with the important periods of every sequence. Some se-
quences, like the random walk or the random data, do
not contain any periodicities, which we indicate with an
empty set {}. When both sequences at the lower level
display the same periodicity, a single set is displayed on
the bifurcation for clarity.

For many datasets that came into 2 pairs (power
demand, video surveillance, motor current), all 4 in-
stances instances demonstrated the same basic period
(as suggested by the AUTOPERIOD). However, the pe-
riodic measure can effectively separate them into two
pairs, because the power content of the respective fre-
quencies was different.

For example, in the video surveillance dataset, both
actors display a periodic movement every 30 units

(drawing a gun from a holster). However, because the
male person performs the movement with wider ‘arches’
(because of different body structure), the periodic mea-
sure can distinguish his movement, due to the higher
energy content. The above example indicates that anal-
ogous periodic measures could be effectively used for
biometric characterization, since every individual tends
to have a distinct intrinsic rhythm (e.g., when typing
on the keyboard, performing repetitive moves, speak-
ing, etc).

On the sunspot sequence set the AUTOPERIOD esti-
mates of 89 and 84 units may appear erroneous at first
glance, because of our knowledge that the solar cycles
range from 10 to 12 years. However, this is not the case
because the 1000 sequence points record sunspot mea-
surements of approximately 120 years. After the proper
rescaling the estimates of 89 and 84 yield periodicities
close to 11 and 10 years respectively.

Euclidean DTW Cepstrum CDM pDist

0.16 0.66 0.75 1 1

Table 2: Clustering accuracy for the dataset of fig. 12

On the same dataset the accuracy results for Euclid-
ean, DTW, Cepstrum and CDM compression based
measure [10] are given in table 2. CDM is the only
one that also achieves perfect clustering. However, it
should be noted that while all other methods operate
on the original dimensional space (using 1000 points),
pDist works on a very lower dimensional space, using
only 50 numbers to describe each sequence, after a 20x
compression of the data.

7.3 ECG datasets. Our last experiment is per-
formed on the MIT-BIH Arrhythmia dataset. We use

458

MotorCurrent: broken bars 1

MotorCurrent: broken bars 2

MotorCurrent: healthy 1

MotorCurrent: healthy 2

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Video Surveillance: Ann, gun

Video Surveillance: Ann, no gun

Video Surveillance: Eamonn, gun

Video Surveillance: Eamonn, no gun

Random

Random

Power Demand: Jan−March (Italian)

Power Demand: April−June (Italian)

Power Demand: Jan−March (Dutch)

Power Demand: April−June (Dutch)

Great Lakes (Erie)

Great Lakes (Ontario)

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

Random Walk

Random Walk
 {}

 {89}

{84}
{12}

{10,67}

{10,67}

{}

{30}

{30}

{23,46}

{46,23}

{37}

{100}

{100}

Figure 12: The pDist measure produces an accurate dendrogram based on the periodic structural characteristics
of a dataset. The lower dendrogram levels are also annotated by the periods discovered as important, by a
subsequent run of the AUTOPERIOD method.

two sets of sequences; one with 2 classes of heartbeats
and another one with three (figures 13, 14). We present
the dendrogram of the pDist measure and the DTW,
which represents possibly one of the best shape based
distance measures. To tune the single parameter of the
DTW (corresponding to the maximum warping length)
we probed several values and here we report the one
that returned the best clustering.

For both dataset instances, pDist again returns
an accurate clustering, while DTW seems to perform
badly on the high level dendrogram aggregations, hence
not leading to perfect class separation. The Euclidean
distance reported worse results. The CDM measure is
accurate on the 2 class separation test but does not
provide a perfect separation for the 3 class problem (see
the original paper [10] for respective results).

7.4 Distance Measures Overview. The experi-
ments have testified to the utility of periodic measures
for exploration of sequence databases. The only real
contender to the pDist measure is the compression-
based CDM measure. However, compared to CDM our
approach presents some favorable advantages: (i) it does
not require any discretization phase (we operate on the
original data), (ii) it is meaningful for both long and
short sequences (CDM performs better on longer se-
quences) (iii) it can be easily extended for streaming

sequences, using incremental Fourier Transform compu-
tation (iv) it provides additional sequence information
in the form of periodic estimates.

8 Conclusion

We have presented methods for accurate periodicity es-
timation and for characterization of structural periodic
similarity between sequences. It is our belief that these
methods will find many applications for interactive ex-
ploration of time-series databases and for classification
or anomaly detection of periodic sequences (e.g., in auto
manufacturing, biometrics and medical diagnosis).

Acknowledgements: We are thankful to MSN and
Microsoft for letting us use a portion of the MSN
query logs. We also wish to thank Eamonn Keogh
for numerous suggestions and for kindly donating his
dendrogram code.

References

[1] G. Ebersbach, M. Sojer, F. Valldeoriola, J. Wissel,
J. Müller, E. Tolosa, and W. Poewe. Comparative
analysis of gait in parkinson’s disease, cerebellar ataxia
and subcortical arteriosclerotic encephalopathy. In
Brain, Vol. 122, No. 7, 1349-1355, July 1999.

[2] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid.

11

459

1

8

10

4

5

7

9

3

2

6

11

19

13

12

14

20

15

17

18

16

pDist

1

4

10

2

6

5

7

8

9

3

11

15

19

12

14

16

13

17

20

18

Incorrect
Grouping

Dynamic Time Warping

Figure 13: 2 class ECG problem: DTW provides incorrect grouping

1
4
6
10
3
9
5
11
7
2
8
12
13
21
15
14
16
22
24
17
19
20
23
18
25
29
31
30
34
32
26
27
28
33
35
36

pDist

1
5
8
12
4
10
2
3
6
9
7
11
14
16
18
15
19
22
20
23
13
17
21
24
25
29
32
28
31
36
26
27
35
30
33
34

Dynamic Time Warping

Incorrect
Grouping

Figure 14: 3 class ECG problem: only pDist provides correct clustering into 3 groups

Using Convolution to Mine Obscure Periodic Patterns
in One Pass. In Proc. of EDBT, 2004.

[3] F. Ergün, S. Muthukrishnan, and S. C. Sahinalp.
Sublinear methods for detecting periodic trends in data
streams. In LATIN, 2004.

[4] E. Friss-Cristensen and K. Lassen. Length of solar
cycle - An Indicator of solar-activity closely related
with climate. In Science, 254, pages 698–700, 1991.

[5] F. J. Harris. On the Use of Windows for Harmonic
Analysis with the Discrete Fourier Transform. In Proc.

of the IEEE, Vol. 66, No 1, 1978.
[6] T. Idé and K. Inoue. Knowledge Discovery from Time-

Series Data using Nonlinear Transformations. In Proc.

of the 4th Data Mining Workshop (Japan Soc. for

Software Science and Technology, 2004.
[7] K. Kalpakis, D. Gada, and V. Puttagunta. Distance

Measures for Effective Clustering of ARIMA Time-
Series. In Proc. of ICDM, 2001.

[8] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An
online algorithm for segmenting time series. In Proc.

of ICDM, 2001.
[9] E. Keogh and S. Kasetty. On the need for time

series data mining benchmarks: A survey and empirical
demonstration. In Proc. of SIGKDD, 2002.

[10] E. Keogh, S. Lonardi, and A. Ratanamahatana.
Towards parameter-free data mining. In Proc. of

SIGKDD, 2004.
[11] M. Kontaki and A. Papadopoulos. Efficient similarity

search in streaming time sequences. In SSDBM, 2004.
[12] J. S. Mitchell. An introduction to machinery analysis

and monitoring. PennWell Publ. Co., 1993.
[13] A. Papoulis. Signal Analysis. McGraw-Hill, 1977.
[14] J. Tulena, M. Azzolini, J. de Vriesa, W. H. Groeneveld,

J. Passchier, and B. van de Wetering. Quantitative
study of spontaneous eye blinks and eye tics in Gilles
de la Tourette’s syndrome. In Journal of Neurol.

Neurosurg. Psychiatry 1999,67:800-802.
[15] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.

Identification of Similarities, Periodicities & Bursts for
Online Search Queries. In Proc. of SIGMOD, 2004.

[16] Y. Zhu and D. Shasha. Statstream: Statistical mon-
itoring of thousands of data streams in real time. In
VLDB, 2002.

460

Cross Table Cubing: Mining Iceberg Cubes from Data Warehouses∗

Moonjung Cho
State University of New York at Buffalo, U.S.A.

mcho@cse.buffalo.edu

Jian Pei
Simon Fraser University, Canada

jpei@cs.sfu.ca

David W. Cheung
The University of Hong Kong, China

dcheung@csis.hku.hk

Abstract
All of the existing (iceberg) cube computation algorithms as-
sume that the data is stored in a single base table, however, in
practice, a data warehouse is often organized in a schema of
multiple tables, such as star schema and snowflake schema.
In terms of both computation time and space, materializing
a universal base table by joining multiple tables is often very
expensive or even unaffordable in real data warehouses. In
this paper, we investigate the problem of computing iceberg
cubes from data warehouses. Surprisingly, our study shows
that computing iceberg cube from multiple tables directly
can be even more efficient in both space and runtime than
computing from a materialized universal base table. We de-
velop an efficient algorithm, CTC (for Cross Table Cubing)
to tackle the problem. An extensive performance study on
synthetic data sets demonstrates that our new approach is ef-
ficient and scalable for large data warehouses.

1 Introduction
Given a base tableB(D1, . . . , Dn, M) and an aggregate
function, whereD1, . . . , Dn aren dimensions andM is a
measure, a data cube consists of the complete set of group-
bys on any subsets of dimensions and their aggregates using
the aggregate function. A data cube in practice is often huge
due to the very large number of possible dimension value
combinations. Since many detailed aggregate cells whose
aggregate values are too small may be trivial in data analysis,
instead of computing a complete cube, an iceberg cube can
be computed, which consists of only the set of group-bys
whose aggregates are no less than a user-specified aggregate
threshold.

In the previous studies, several efficient algorithms have
been proposed to compute (iceberg) cubes efficiently from a
single base table, with simple or complex measures, such
as BUC [1] and H-Cubing [4]. All of them assume that
the data is stored in a single base table. However, a data
warehouse in practice is often organized in a schema of
multiple tables, such as star schema or snowflake schema.
Although mining iceberg cube from single table becomes
more and more efficient, such algorithms cannot be applied
directly to real data warehouses in many applications.

∗This research is supported in part by NSF Grant IIS-0308001, a
President’s Research Grant, an Endowed Research Fellowship Award and a
startup grant in Simon Fraser University. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

K A1 · · · An M

k a1,1 · · · a1,n m1

· · · · · · · · · · · · · · ·
k al,1 · · · Al,n ml

K B1 · · · Bm

k b1 · · · bm

TableF TableD

A1 · · · An K B1 · · · Bm M

a1,1 · · · a1,n k b1 · · · bm m1

· ·
al,1 · · · al,n k b1 · · · bm ml

Universal base tableB = F 1 D

Figure 1: A simple case of computing iceberg cube from two
tables.

EXAMPLE 1. (INTUITION) Consider computing the iceberg
cube from tablesF andD in Figure 1. Suppose attributeM
is the measure. A rudimentary method may first compute a
universal base tableB = F 1 D, as also shown in the figure,
and then compute the iceberg cube fromB. However, such a
rudimentary method may suffer from two non-trivial costs.

Space cost.As shown in the figure, the tuple in tableD
is replicatedl times in the universal base tableB, wherel
is the number of tuples in the fact table. Moreover, every
attribute in the tables appears in the universal base table.
Thus, the universal base table is wider than any table in the
original database. In real applications, there can be a large
number of tuples in the fact table, and hundreds of attributes
in the database. Then, the dimension information may be
replicated many times, and the universal base table may be
very wide – containing hundreds of attributes.

Time cost.The large base table may have to be scanned
many times and many combinations of attributes may have
to be checked. As the universal base table can be much wider
and larger than the original tables, the computation time can
be dramatic.

Can we compute iceberg cubes directly fromF and
D without materializing the universal base tableB? The
following two observations help.

First, for any combination of attributes in tableD, the
aggregate value ism = aggr({m1, . . . , ml}). Therefore,
if m satisfies the iceberg condition, then every combination
of attributes inD is an iceberg cell. Here, we compute these
iceberg cells using tableD only, which contains only1 tuple.
In the rudimentary method, we have to use many tuples in
tableB to compute these iceberg cells.

Second, for any iceberg cell involving attributes in table
F , the aggregate value can be computed from tableF only.
In order words, if we find an iceberg cell inF , we can

461

enumerate a whole bunch of iceberg cells by inserting more
attributes inD and the aggregate value retains. Please note
that we only useF , which has only(n + 1) attributes, to
compute these iceberg cells. In the rudimentary method,
we have to compute these iceberg cells using a much wider
universal base tableB.

Although the observations here are based on an over-
simplified case, as shown in the rest of the paper, the obser-
vations can be generalized.

In this paper, we make the following contributions.
First, we address the problem of mining iceberg cubes from
data warehouses of multiple tables. We use star schema
as an example. Our approach can be easily extended to
handle other schemas in data warehouses, such as snowflake
schema.

Second,we develop an efficient algorithm, CTC (for
Cross Table Cubing), to compute iceberg cubes. Our method
does not need to materialize the universal base table. Instead,
CTC works in three steps. First, CTC propagates the
information of keys and measure to each dimension table.
Second, the local iceberg cube in each table is computed.
Last, the global iceberg cube is derived from the local ones.
We show that CTC is more efficient in both space and
runtime than computing iceberg cube from a materialized
universal base table.

Last, we conduct an extensive performance study on
synthetic data sets to examine the efficiency and the scala-
bility of our approach. The experimental results show that
CTC is efficient and scalable for large data warehouses.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate the problem and review related work.
Algorithm CTC is developed in Section 3 by examples. A
performance study is briefly reported in Section 4.

2 Problem Definition and Related Work
Without loss of generality, we assume that the domains of the
attributes in the tables are exclusive, except for the foreign
keysKi in the fact tableF referencing to the primary keys
Ki in dimension tableDi.

EXAMPLE 2. (STAR SCHEMA) Consider the data ware-
houseDW in Figure 2. We will use this data warehouse
as the running example in the rest of the paper.

The star schema is shown in Figure 2(a). In data ware-
houseDW , the fact tableFact has3 dimensions, namelyA,
B andE. The measure isM . DimensionsB andE refer-
ence to dimension tablesD1 andD2, respectively. In data
warehouseDW , the universal base tableTbase = Fact 1
D1 1 D2 is shown in Figure 3.

Let B = (A1, . . . , Am,M) be a universal base table,
where A1, . . . , Am are either dimensions or attributes in
dimension tables. A cellc = (a1, . . . , am) is called an
aggregate cell, whereai ∈ Ai or ai = ∗ (1 ≤ i ≤ m).
Thecoverof c is the set of tuples inB that match all non-∗
ai’s, i.e.,cov(c) = {t ∈ B|∀ai 6= ∗, t.Ai = ai}.

For an aggregate functionaggr() on the domain ofM ,
aggr(c) = aggr(cov(c)).

Fact

M
E
B
A

D2

H
G
F
ED1

D
C
B

A B E M

a1 b1 e1 1
a2 b2 e2 3
a3 b3 e3 2
a1 b1 e2 4
a2 b4 e4 2

(a) The star schema (b) Fact tableFact

B C D

b1 c1 d1

b2 c1 d2

b3 c1 d3

b4 c2 d1

E F G H

e1 f1 g1 h1

e2 f1 g2 h2

e3 f1 g1 h2

e4 f2 g1 h1

(c) Dimension tableD1 (d) Dimension tableD2

Figure 2: Data warehouseDW as the running example.

A B C D E F G H M

a1 b1 c1 d1 e1 f1 g1 h1 1
a2 b2 c1 d2 e2 f1 g2 h2 3
a3 b3 c1 d3 e3 f1 g1 h2 2
a1 b1 c1 d1 e2 f1 g2 h2 4
a2 b4 c2 d1 e4 f2 g1 h1 2

Figure 3: The universal base tableTbase.

For an iceberg conditionC, whereC is defined using
some aggregate functions, a cellc is called aniceberg cellif
c satisfiesC. An iceberg cubeis the complete set of iceberg
cells.

EXAMPLE 3. (ICEBERG CUBE) In base tableTbase (Fig-
ure 3), for aggregate cellc = (∗, b1, ∗, d1, ∗, f1, ∗, ∗), cov(c)
contains2 tuples, the first and the fourth tuples inTbase,
since they matchc in dimensionsB, D and F . We have
COUNT(cov(c)) = 2.

Consider iceberg conditionC ≡ (COUNT(c) ≥ 2).
Aggregate cellc satisfies the condition and thus is in the
iceberg cube.

Problem definition. Theproblem of computing iceberg cube
from data warehouseis that, given a data warehouse and an
iceberg condition, compute the iceberg cube. Limited by
space, we only discuss data warehouses in star schema in
this paper.

For aggregate cellsc = (a1, . . . , am) and c′ =
(a′1, . . . , a

′
m), c is called anancestorof c′ andc′ a descen-

dantof c if for any ai 6= ∗, a′i = ai (1 ≤ i ≤ m), denoted by
c′ v c. An iceberg conditionC is calledmonotonicif for any
aggregate cellc, if C holds forc, thenC also holds for every
ancestor ofc. In this paper, we only consider monotonic
iceberg conditions, such asCOUNT(c) ≥ v, MAX(c) ≥ v,
MIN(c) ≤ v, SUM(c) ≥ v (if the domain of the measure
consists of only non-negative numbers).

Many approaches have been proposed to compute data
cubes efficiently from scratch (e.g., [6, 1]). In general, they
speed up the cube computation by sharing partitions, sorts,
or partial sorts for group-bys with common dimensions.

Fang et al. [2] proposed the concept of iceberg queries
and developed some sampling algorithms to answer such

462

queries. Beyer and Ramakrishnan [1] introduced the prob-
lem of iceberg cube computation in the spirit of [2] and de-
veloped algorithm BUC. BUC conducts bottom-up computa-
tion and can use the monotonic iceberg conditions to prune.

H-cubing [4] uses a hyper-tree data structure called H-
tree to compress the base table. The H-tree can be traversed
bottom-up to compute iceberg cubes. It also can prune
unpromising branches of search using monotonic iceberg
conditions. Moreover, a strategy was developed in [4]
to use weakened but monotonic conditions to approximate
non-monotonic conditions to compute iceberg cubes. The
strategies of pushing non-monotonic conditions into bottom-
up iceberg cube computation were further improved by
Wang et al. [5]. A new strategy, divide-and-approximate,
was developed.

All of the previous studies on computing (iceberg) cubes
assume thata universal base table is materialized. However,
many real data warehouses are stored in tens or hundreds of
tables. It is often unaffordable to compute and materialize
a universal base table for iceberg cube computation. This
observation motivates the study in this paper.

3 CTC: A Cross Table Cubing Algorithm
For an iceberg cellc with respect to a monotonic iceberg
condition, its projections on the fact table and the dimension
tables must also be local iceberg cells. Instead of directly
computing the iceberg cube from a universal base table, we
can compute local iceberg cubes from the fact table and the
dimension tables, respectively. Then, we can try to derive
the global iceberg cube from the local ones.

Based on the above observation, algorithm CTC works
in three steps. First, the aggregate information is propagated
from the fact table to each dimension tables. Then, the
iceberg cubes in the propagated dimension tables as well
as in the fact table (i.e., thelocal iceberg cubes) are mined
independently using the same iceberg cube condition. Last,
the iceberg cells involving attributes in multiple dimension
tables are derived from the local iceberg cubes.

3.1 Propagation Across Tables

EXAMPLE 4. (PROPAGATING AGGREGATE INFORMATION)
Consider our running example data warehouse (Figure 2)
again. To propagate the aggregate information from the
fact table Fact to the dimension tablesD1 and D2, we
create a new attributeCount in every dimension table. By
scanning the fact table once, the number of occurrences
of each foreign key value in the fact table can be counted.
Such information is registered in the column ofCount in
the dimension tables, as shown in Figure 4. Hereafter, the
propagated dimension tables are denoted asPD1 andPD2,
respectively, to distinguish from the original dimension
tables.

In the rest of the computation, we only use the fact table
and the propagated dimension tablesPD1 and PD2. We
will show that the iceberg cube computed from these three
tables is the same as the one computed from the universal
base table.

B C D Count

b1 c1 d1 2
b2 c1 d2 1
b3 c1 d3 1
b4 c2 d1 1

E F G H Count

e1 f1 g1 h1 1
e2 f1 g2 h2 2
e3 f1 g1 h2 1
e4 f2 g1 h1 1

(a) PropagatedPD1 (b) PropagatedPD2

Figure 4: The propagated dimension tables.

This computation of the aggregates on the keys is imple-
mented as group-by aggregate queries on the key attributes
in the fact table. Only the fact table is needed to conduct
such queries. The aggregate information is appended to the
records in the dimension tables after the aggregates are com-
puted. In general, we extend every dimension table to in-
clude a measure column.

CTC never really joins multiple tables. Instead, it
only conducts group-by queries on each key attribute and
propagates the aggregates to the corresponding dimension
table. When there are multiple dimension tables, propagating
the aggregates is much more cheaper than joining multiple
tables and materializing a universal base table. We notice
that there are efficient indexing techniques to join tables in
star schema fast. Most of those techniques can also be used
to propagate the aggregates to dimension tables efficiently.

3.2 Computation of Local Iceberg CubesLocal iceberg
cubes on propagated dimension tables can be computed us-
ing an adaption of any algorithms for iceberg cube computa-
tion. For each iceberg cellc, we maintain the histogram of
primary key values that the tuples incov(c) carry.

EXAMPLE 5. (COMPUTING LOCAL ICEBERG CUBE)
We can compute the iceberg cube on propagated dimen-
sion tablePD2 (Figure 4(b)) with respect to condition
C ≡COUNT(c) ≥ 2 using algorithm BUC [1]. One advan-
tage of computing iceberg cubes on propagated dimension
tables is thatone tuple in the propagated dimension table
may summarize multiple tuples in the corresponding projec-
tion of the universal base table. Thus, we reduce the number
of tuples in the computation.

For each iceberg cell, we record the histogram of pri-
mary key values that the tuples in the cell carry. For exam-
ple, for iceberg cell(∗, f1, ∗, ∗) with count4, we record the
set of primary key values{e1, e2, e3} that the tuples having
f1 carry. This is called thesignatureof the iceberg cell. It
will be used in the future to derive global iceberg cells. To
maintain the signature, we can use a vector ofm bits for
every iceberg cell, wherem is the number of distinct values
appearing in attributeE (the primary key attribute) in table
PD2.

Let D be a dimension table andK be a primary key
attribute such thatK is used in the fact table as the foreign
key referencing toD. For an iceberg cellc in D, the
signatureof c, denoted asc.sig, is the set of primary key
values (i.e., values inK) that appear in the tuples incov(c)
in D. Clearly, to maintain the signatures inD, we only need
m bits, wherem is the number of distinct values inK that

463

appear in the fact table.m is at most the number of tuples in
D, and no more than the cardinality ofK.

3.3 Computation of Global Iceberg CubesThe set of
global iceberg cells can be divided into two exclusive sub-
sets: the ones having some non-∗ values on the dimension
attributes in the fact table, and the ones whose projections on
the fact table are(∗, . . . , ∗). We handle them separately.

EXAMPLE 6. (ICEBERG CELL INVOLVING FACT TABLE)
Now, we consider the iceberg cells that contain some non-∗
values in the dimension attributes in fact tableFact. To find
such iceberg cells, we first apply an iceberg cube computing
algorithm, such as BUC [1], to the fact table.

For example, we find(a1, ∗, ∗) : 2 is an iceberg
cell in the fact table. In the cover of(a1, ∗, ∗) (i.e.,
the first and the fourth tuples in Figure 2(b)),b1 appears
in attribute B, which references to dimension tableD1.
Thus, for any local iceberg cellc in PD1 whose signa-
ture containsb1, such as(b1, ∗, ∗), (∗, c1, ∗), and(∗, c1, d1),
the join1 of (a1, ∗, ∗) and c, such as(a1, b1, ∗, ∗, ∗, ∗, ∗),
(a1, ∗, c1, ∗, ∗, ∗, ∗, ∗) and (a1, ∗, c1, d1, ∗, ∗, ∗, ∗), must be
a global iceberg cell of count 2 (yielding to the measure of
the iceberg cell in the fact table). As another example, ice-
berg cell(a1, ∗, c1, ∗, ∗, ∗, ∗, ∗), e1 ande2 appear in attribute
E, which reference to dimension tableD2. Thus, for any lo-
cal iceberg cellc in PD2 whose signature containse1 or e2,
such as(∗, f1, ∗, ∗), can be a global iceberg cell, if the over-
lap of the signatures can lead to an aggregate value satisfying
the iceberg condition. Then, we can further join them to get
iceberg cell(a1, ∗, c1, ∗, ∗, f1, ∗, ∗).

In such a recursive way, we can find all the global
iceberg cells that contain some values in the attributes in fact
tableFact. Limited by space, we omit the details here.

We never need to join the fact table with any dimension
tables to generate a global iceberg cell. Instead, we join the
local iceberg cells based on the signatures. Recall that we
maintain the signatures using bitmap vectors, the matching
of signatures is efficient. To facilitate matching, we also
index the iceberg cells in the dimension tables by their
signatures. Another advantage of the algorithm is that, a
local iceberg cell is found only once but is used many times
to join with other local iceberg cells to form global ones.
If we compute the global iceberg cells from the universal
base table, we may have to search the same portion of the
universal base table for the (local) iceberg cell many times
for different global iceberg cells. The cross table algorithm
eliminates the redundancy in the computation.

EXAMPLE 7. (JOINING LOCAL ICEBERG CELLS) We con-
sider how to compute the global iceberg cells in data ware-
houseDW (Figure 2) that do not contain any non-∗ value in

1Let c1 andc2 be aggregate cells on tablesT1 andT2, respectively, such
that if T1 andT2 have any common attribute thenc1 andc2 have the same
value in every such common attribute. Thejoin of c1 andc2, denoted as
c1 1 c2, is the tuplec such that (1) for any attributeA thatc1 has a non-∗
value,c has the same value asc1 onA; (2) for any attributeB thatc2 has a
non-∗ value,c has the same value asc2 onB; (3) c has value∗ in all other
attributes.

root

e4:1

b4:1

e3:1

b3:1

e2:1

b2:1b1:2

e2:1e1:1

Figure 5: The H-tree for foreign key attribute values.
Runtime Main memory usage

 10

 100

 1000

 10000

 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

of Dimension Tables

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

of Dimension Tables

BUC
CTC

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

R
un

 T
im

e
(s

ec
on

ds
)

Cardinality

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

M
em

or
y

U
sa

ge
 (

M
)

Cardinality

BUC
CTC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3

R
un

 T
im

e
(s

ec
on

ds
)

Zipf Factor

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3

M
em

or
y

U
sa

ge
 (

M
)

Zipf Factor

BUC
CTC

Figure 6: Experimental results – Part 1.

attributes in the fact table. Those global iceberg cells can be
divided into two subsets: (1) the descendants of some local
iceberg cells inPD1, and (2) the descendants of some local
iceberg cells inPD2 but not descendant of any local iceberg
cells inPD1. In both cases, we only consider the cells that
do not contain any non-∗ value in the key attributes.

To find the first subset, we consider the local iceberg
cells inPD1 one by one. For example,(∗, c1, ∗) is a local
iceberg cell inPD1 with signature{b1, b2, b3}. To find the
local iceberg cells inPD2 that can be joined with(∗, c1, ∗)
to form a global iceberg cell, we should collect all the tuples
in the fact table that contain eitherb1, b2 or b3, and find their
signature on attributeE.

Clearly, to derive the signature on attributeE for a local
iceberg cell in tablePD1 by collecting the tuples in the fact
table is inefficient, since we have to scan the fact table once
for each local iceberg cell. To tackle the problem, we build
an H-tree [4] using only the foreign key attributes in the fact
table, as shown in Figure 5.

With the H-tree, for a given signature on attributeB, it is
efficient to retrieve the corresponding signature on attribute
E. For example, for(∗, c1, ∗), its signature (onB) is
{b1, b2, b3}. From the H-tree, we can retrieve its signature
on E is {e1, e2, e3}, i.e., the union of the nodes at levelE
that are descendants ofb1, b2 or b3.

Then, we can search the iceberg cells in dimension table
PD2. For example, iceberg cell(∗, ∗, g1∗) in dimension

464

Runtime Main memory usage

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12

R
un

 T
im

e
(s

ec
on

ds
)

of Non-Foreign Key Dimensions

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

M
em

or
y

U
sa

ge
 (

M
)

of Non-Foreign Key Dimensions

BUC
CTC

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(s

ec
on

ds
)

Iceberg Condition Threshold (%)

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 (

M
)

Iceberg Condition Threshold (%)

BUC
CTC

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

Figure 7: Experimental results – Part 2.

table PD2 has signature{e1, e3, e4}. The intersection of
the two signatures is{e1, e3}. From the H-tree, we know
that the total aggregate of tuples havinge1 or e3 andb1, b2

or b3 is 2 (the sum of the first and the fourth leaf nodes in
the H-tree). Thus, the two iceberg cells can be joined and
(∗, ∗, c1, ∗, ∗, ∗, g1, ∗) is a global iceberg cell.

Moreover, if we have more than2 foreign key attributes,
once all the global iceberg cells that are descendants of local
iceberg cells in dimension tablePD1 are computed, the
level of attributeB in the H-tree can be removed and the
remaining sub-trees can be collapsed according to the next
attribute,E. That will further reduce the tree size and search
cost.

The second subset of global iceberg cells, i.e., the ones
that are descendants of some local iceberg cells inPD2, but
not of PD1, are exactly(∗, ∗, ∗,) 1 c, wherec is a local
iceberg cell inPD2.

The space complexity of the H-tree in CTC isO(kn),
where k is the number of dimension tables andn is the
number of tuples in the fact table. In many cases, the H-
tree is smaller than the fact table and much smaller than the
universal base table. The signatures of local iceberg cells can
be stored on disk and do not have to be maintained in main
memory.

4 Experimental Results
In this section, we briefly report an extensive performance
study on computing iceberg cubes from data warehouses in
star schema, using synthetic data sets. All the experiments
are conducted on a Dell Latitude C640 laptop computer with
a 2.0 GHz Pentium 4 processor, 20 G hard drive, and 512 MB
main memory, running Microsoft Windows XP operating

system. We compare two algorithms: BUC [1] and CTC.
Both algorithms are implemented in C++.

We generate synthetic data sets following the Zipf distri-
bution. By default, the fact table has5 dimensions,1 million
tuples and the cardinality of each dimension is set to10; we
set3 dimension tables, and each dimension table has3 at-
tributes; the Zipf factor is set to1.0.

In a data warehouse generated by the above data gener-
ator, if there aren dimensions in the fact table andk dimen-
sion tables(n ≥ k), and there arel attributes in each dimen-
sion table, then the universal base table has(l · k + (n− k))
dimensions. Thus, by default, a data warehouse has11 di-
mensions. In all our experiments, we use aggregate function
count (). Therefore, the domain, cardinality and distribu-
tion on the measure attribute have no effect on the experi-
mental results. By default, we set the iceberg condition to
“COUNT(∗) ≥ number of tuples in fact table×5%”.

In all our experiments, the runtime of CTC is the
elapsing time that CTC computes iceberg cube from multiple
tables, including the CPU time and I/O time. However, the
runtime of BUC is only the time thatBUC computes iceberg
cube from the universal base table, including the CPU time
and I/O time. That is,the time of deriving the universal table
is not counted in the BUC runtime. We believe that such a
setting does not bias towards CTC.

To simplify the comparison, we assume that the univer-
sal base table can be held into main memory in our exper-
iments. When the universal base table cannot be held into
main memory, the performance of BUC will be degraded
substantially. CTC does not need to store all the tables in
main memory. Instead, it loads tables one by one. The lo-
cal iceberg cells can be indexed and stored on disk. One
major consumption of main memory in CTC is to store the
H-tree for the fact table. As shown before, the H-tree is often
smaller than the fact table and much smaller than the univer-
sal base table. When the H-tree is too large to fit into main
memory, the disk management techniques as discussed in [4]
and also the techniques for disk-based BUC can be applied.

The experimental results are shown in Figures 6 and 7,
while the curves are self-explained. By the extensive per-
formance study using synthetic data sets, we show that CTC
is consistently more efficient and more scalable than BUC.
The performance of BUC in our experiments is consistent in
trend with the results reported in [1].

References

[1] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. InSIGMOD’99.

[2] M. Fang et al. Computing iceberg queries efficiently. In
VLDB’98.

[3] J. Gray et al. Data cube: A relational operator generalizing
group-by, cross-tab and sub-totals. InICDE’96.

[4] J. Han et al. Efficient computation of iceberg cubes with
complex measures. InSIGMOD’01.

[5] K. Wang et al. Pushing aggregate constraints by divide-and-
approximate. InICDE’03.

[6] Y. Zhao et al. An array-based algorithm for simultaneous
multidimensional aggregates. InSIGMOD’97.

465

Decision Tree Induction in High Dimensional,

Hierarchically Distributed Databases

Amir Bar-Or, Assaf Schuster, Ran Wolff Daniel Keren

Faculty of Computer Science Department of Computer Science

Technion, Israel Haifa University, Israel

{abaror, assaf, ranw}@cs.technion.ac.il dkeren@cs.haifa.ac.il

Abstract

Classification based on decision trees is one of the impor-

tant problems in data mining and has applications in many

fields. In recent years, database systems have become highly

distributed, and distributed system paradigms such as fed-

erated and peer-to-peer databases are being adopted. In

this paper, we consider the problem of inducing decision

trees in a large distributed network of high dimensional

databases. Our work is motivated by the existence of dis-

tributed databases in healthcare and in bioinformatics, and

by the vision that these database are soon to contain large

amounts of genomic data, characterized by its high dimen-

sionality. Current decision tree algorithms would require

high communication bandwidth when executed on such data,

which is not likely to exist in large-scale distributed systems.

We present an algorithm that sharply reduces the communi-

cation overhead by sending just a fraction of the statistical

data. A fraction which is nevertheless sufficient to derive

the exact same decision tree learned by a sequential learner

on all the data in the network. Extensive experiments us-

ing standard synthetic SNP data show that the algorithm

utilizes the high dependency among attributes, typical to

genomic data, to reduce communication overhead by up to

99%. Scalability tests show that the algorithm scales well

with both the size of the dataset, the dimensionality of the

data, and the size of the distributed system.

Keywords: data mining, distributed algorithms,
decision trees, classification, high dimension data.

1 Introduction

The analysis of large databases requires automation.
Data mining tools have been shown to be useful for
this task, in a variety of domains and architectures.
It has recently been shown that data mining tools are
extremely useful for the analysis of genomic data as
well [12]. Since the number of genomic databases and
the amount of data in them increases rapidly, there is a
dire need for data mining tools designed specifically to

target genomic data specifically.
Classification, the separation of data records into

distinct classes, is apparently the most common data
mining task, and decision tree classifiers are perhaps
the most popular classification technique. Some recent
works have shown that classification can be used to an-
alyze the effect of genomic, clinical, environmental, and
demographic factors on diseases, response to treatment,
and the risk of side effects [9]. Providing efficient deci-
sion tree induction algorithms suitable for genomic data
is therefore an important goal.

One interesting aspect of genomic databases is that
they are often distributed over many locations. The
main reason for this is that they are produced by a vari-
ety of independent institutions. While these institutions
often allow a second party to browse their databases,
they will rarely allow this party to copy them. There
could be a number of reasons for this: the need to retain
the privacy of personal data recorded in the database,
through questions regarding its ownership, or even be-
cause the sheer size of the data makes copying non-
permissively costly in CPU, disk I/O or network band-
width.

Our lead example in this paper is the task of
mining genomically enriched electronic medical records
(EMRs). Within a few years it is expected that each
patient’s medical record will contain a genomic finger-
print. This fingerprint will be used mainly to optimize
treatment and predict side effects. Existing genomic fin-
gerprinting techniques, such as single nucleotide poly-
morphisms (SNPs) and Gene Expression Microarrays,
yield records with tens of thousands of entries that are
usually interpreted as binary (normal/abnormal allele
or active/inactive gen, respectively). It is common per-
ception that an illness or treatment side effect can many
times relate to just single SNPs or to the expression of
few genes.

Data mining of genomically enriched EMRs would
be needed for the identification of unknown correlations

466

and for the development of new drugs. It would best be
performed on a national scale, using EMRs gathered
by many different health maintenance organizations
(HMOs). This would naturally extend the functionality
of systems such as RODS and NRDM [13] which already
collect and analyze health data at a regional (RODS)
and national (NRDM) scale. RODS, for example,
accesses the database of tens of hospitals using the HL7
protocol to retrieve statistical information and detect
disease outbreaks. Nevertheless, it is unlikely that an
HMO would allow systems such as RODS to download
its entire database. Hence, the need for distributed
algorithms.

A distributed decision tree induction algorithm is
one that executes on several computers, each with its
own database partition. The outcome of the distributed
algorithm is a decision tree which is the same as, or at
least comparable with, a tree that would be induced
were the different partitions collected to a central place
and processed using a sequential decision tree induction
algorithm. Since decision tree induction poses modest
CPU requirements, the performance of the algorithm
would usually be dictated by its communication require-
ments.

Previous work on distributed decision tree induction
usually focused on tight clusters of computers, or even
on shared memory machines [4–6, 10, 11]. When a
wide area distributed scenario was considered, all these
algorithms become impractical because they use too
much communication and synchronization. A kind of
decision tree induction algorithm which is more efficient
in a wide area system employs meta-learning. However,
these produce a heuristic approximation rather than the
optimal result produced by the former algorithms and,
thus, are not considered in this paper. Because genomic
databases contain many (thousands) attributes for each
data instance and can be expected to be distributed over
many distant locations, current distributed decision tree
induction algorithms are ill-fit for them.

In this paper we describe a new distributed decision
tree algorithm, Distributed Hierarchical Decision Tree
(DHDT). DHDT is executed by a collection of agents
which correlate with the natural hierarchy of a national
virtual organization. For instance, the leaf level agents
may correspond to different HMOs (or clinics within an
HMO) while upper levels correspond to regional, state
and national levels of the organization. DHDT focuses
on reducing the volume of data sent from each level to
the next while preserving perfect accuracy (i.e., the re-
sulting decision tree is not an approximation). When
tested on genomic SNP data with one thousand SNPs
in each data record, DHDT usually collects data about
only about a dozen of the SNPs – a 99% decrease in

bandwidth requirements. The algorithm is suitable for
any high dimention data, provided that the correlations
in it are sparse as they are in genomic data. Both the hi-
erarchic organization and the communication efficiency
of DHDT give it excellent scalability at no decrease in
accuracy.

2 Sequential Decision Tree Induction

The decision tree model was first introduced by Hunt et
al. [3], and the first sequential algorithm was presented
by Quinlan [7]. This basic algorithm used by most of
the existing decision tree algorithms is given here.

Given a training set of examples, each tagged with
a class label, the goal of an induction algorithm is to
build a decision tree model that can predict with high
accuracy the class label of future unlabeled examples.
A decision tree is composed of nodes, where each node
contains a test on an attribute, each branch from a node
corresponds to a possible outcome of the test, and each
leaf contains a class prediction. Attributes can be either
numerical or categorical. In this paper, we deal only
with categorical attributes. Numerical attributes can
be discretisized and treated as categorical attributes;
however, the discretization process is outside the scope
of this paper.

A decision tree is usually built in two phases: A
growth phase and a pruning phase. The tree is grown by
recursively replacing the leaves by test nodes, starting at
the root. The attribute to be tested at a node is chosen
by comparing all the available attributes and greedily
selecting the attribute that maximizes some heuristic
measure, denoted as the gain function. The minimal
and sufficient information for computing most of the
gain functions is usually contained in a two-dimensional
matrix called the crosstable of attribute i. The [v, c]
entry of the crosstable contains the number of examples
for which the value of the attribute is v and the value
of the class attribute is c.

The decision tree built in the growth phase can
”overfit” the learning data. As the goal of classification
is to accurately predict new cases, the pruning phase
generalizes the tree by removing sub-trees correspond-
ing to statistical noise or variation that may be particu-
lar only to the training data. This phase requires much
less statistical information than the growth phase; thus
it is by far less expensive. Our algorithm integrates a
tree generalization technique suggested in PUBLIC [8],
which combines the growing and pruning stages while
providing the same accuracy as the post-pruning phase.
In this paper, we focus on the costly growth phase.

2.1 Gain Functions The most popular gain func-
tions are information gain [7], which is used by Quin-

467

lan’s ID3 algorithm, and the Gini Index, which is used
by Brieman’s Cart algorithm, among others.

Consider a set of examples S that is partitioned
into M disjoint subsets (classes) C1, C2, ..., CM such

that S =
⋃M

i=1 Ci and Ci

⋂
Cj = ∅ for every i 6=

j. The estimated probability that a randomly chosen

instance s ∈ S belongs to class Cj is pj =
|Cj |

|S|
, where

|X | denotes the cardinality of the set X . With this
estimated probability, two measures of impurity are
defined: entropy(S) = −

∑
j pj logpj , and Gini(S) =∑

j p2
j .

Given one of the impurity measures defined above,
the gain function measures the reduction in the impurity
of the set S when it is partitioned by an attribute A as

follows: GainA(S) =
∑

v∈V alues(A)
|Sv|

|S|
Imp(Sv), where

V alues(A) is the set of all possible values for attribute
A, Sv is the subset of S for which attribute A has the
value v, and Imp(S) can be entropy(S) or Gini(S).

3 Bounds on the Gain Functions

The bounds given in this section bound the gain func-
tion of a population that is the union of several dis-
joint subpopulations on which only partial information
is available. By using them we can avoid collecting the
crosstables of many of the attributes whose gain, as indi-
cated by the bounds, cannot be large enough to change
the result.

3.1 Notations The bounds given below are defined
for a single attribute of a single decision tree leaf
node. Therefore, we simplify the notations by removing
references to the attribute and the decision tree node.
Let P be a population of size n and let {P1, P2}
be a partition of P into two subpopulations of sizes
n1, n2 respectively. Let the crosstables of populations
P1, P2, P be defined as:

−→
P1(value, class) =

(
a11 a12

a21 a22

)
,

−→
P2(value, class) =

(
b11 b12

b21 b22

)
,

−→
P (value, class) =

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
respec-

tively.
Here, ai,j and bi,j denote the number of learning

examples with value i and class j in
−→
P1 and

−→
P2,

respectively.
In the algorithm described here we rely on the

following two bounds, the proof of which is omitted due
to space considerations:

Theorem 3.1. Let P be a population of size n, and
{P1, P2, ..., Pk} a partition of P into k subpopulations

of sizes n1, n2, ..., nk respectively. Let G() denote the
gain function (information gain or Gini index). Then
an upper bound on G(P) is given by:

G(P) ≤

Pk
i=1

niG(Pi)
Pk

i=1
ni

.

Theorem 3.2. Let P be a population of size n, and
{P1, P2} a partition of P into two subpopulations of
sizes n1, n2 respectively. Assume that the candidate split
divides P1 into two subsets, P left

1 and P right
1 , with sizes

nleft
1 and nright

1 respectively. Let G() denote the gain
function (information gain or Gini index). Then, lower
bounds on G(P) is given by:

G(P) ≥
G(P1)[

1 + n2

n1

] [
1 + n2

min{nleft
1 ,n

right
1 }

]

4 Distributed Hierarchical Decision Tree

The distributed hierarchical decision tree (DHDT) algo-
rithm runs on a group of computers, connected through
a wide-area network such as the Internet. Each com-
puter has its own local database. The goal of DHDT
is to derive exactly the same decision tree learned by
a sequential decision tree learner on the collection of
all data in the network. We assume a homogeneous
database schema for all databases, which can be pro-
vided transparently, if required, by ordinary federated
system services. The algorithm relies on a (possibly
overlay) communication tree that spans all computers
in the group. The communication tree can be main-
tained by a spanning tree algorithm or can utilize the
natural hierarchy of the network. For reasons of local-
ity, communication between nodes in the lower levels of
the spanning tree is often cheaper than communication
between nodes in the upper levels. Thus, a ”good” algo-
rithm will use more communication at the bottom than
at the top of the tree. We further assume that during
the growth phase of the decision tree, the databases and
the communication tree remain static.

Every computer in the group employs an entity
called Agent that is in charge of computing the required
statistics from the local database and participates in the
distributed algorithm. Agents collect statistical data
from their children agents and from the local database
and send it to their parent agent at its request.

The root agent is responsible for developing the
decision tree and making the split decisions for the
new decision tree leaves. First, the root agent decides
whether a decision tree leaf has to be split according to
one or more stopping conditions (e.g., if the dominance
of the majority class has already reached a certain
threshold) or according to the PUBLIC method [8],
which avoids splitting a leaf once it knows it may
be pruned eventually. The class distribution vector,

468

which holds the number of examples that belong to
each distinct class in the population, is sufficient for
computing these functions, and thus it is aggregated
by the agents over the communication tree to the root
agent.

Definitions

D1. border= maximal lower bound of all attributes which
were not sent to the parent
D2. borderAttribute= the attribute whose lower bound
defines the border
D3. If agent is root then
D4. ExtraCondition = There is only a single attribute
Ai where UpperBound(Ai) ≥ border or
. maxi(UpperBound(Ai)) = border

D5. Else
D6. ExtraCondition = Gi

u < border for all children
Algorithm

Phase 1: Starts when a new leaf is born

01. Receive information from all children
02. While (not (border defines a clear separation and
ExtraCondition)) do
03. If (Gi

u > border) then
04. request childi to lower its border and send new
information
05. Else if (border does not define a clear separation and
. crosstable of borderAttribute has only partial
information)
06. request information for borderAttribute from
children who did not send complete information
07. Else
08. request information for all attributes that cross
the border

09. End if
10. Receive information from all children
11. End while
12. Return attributes Ai where LowerBound(Ai) ≥ border

Phase 2: Starts when an agent receives a request for

more information from its parent

01. If (parent requires more information for attribute attri)
then
02. If (crosstable of attri was not sent to parent) then
03. Send parent the crosstable of attri

04. Else
05. request information for attri from children who
sent partial information regarding attri

06. Else (the case where parent requests that the border be
lowered)
07. Update border and borderAttribute and start phase
1.
08. Endif

Algorithm 1: DESAR Algorithm

Recall that if a decision tree leaf has to be split, the
split must be done by the attribute with the highest gain
in the combined database of the entire network. All that
is required to decide on the splitting attribute is thus an

agreement as to which attribute has the maximal gain;
the actual gain of each attribute does not need to be
computed. To reach agreement, the agents participate
in a distributed algorithm called DESAR (Distributed
Efficient Splitting Attribute Resolver). For each new
leaf that has to be developed, DHDT starts a new
instance of DESAR to find the best splitting attribute.
We proceed to describe the DESAR algorithm.

4.1 Distributed Efficient Splitting Attribute
Resolver To find the best splitting attribute while
minimizing communication complexity, DESAR aggre-
gates only a subset of the attribute crosstables over the
communication tree to the root agent. The algorithm
starts when the agents receive a message that is broad-
cast down the communication tree (initiated by the root
and transmitted by each agent to all its children), ask-
ing for the development of a new leaf in the decision
tree. Then, each agent waits for messages from its chil-
dren. When messages are received from all children, the
agent combines the received crosstables with its own lo-
cal crosstables, picks the most promising attributes on
the basis of its aggregated data, and sends the corre-
sponding crosstables to its parent agent.

Algorithm 1 describes DESAR pseudocode, uni-
formly executed by all agents. For space considerations,
we only provide pseudo-code here.

5 Experimental Evaluation

The DHDT algorithm is designed to run on datasets
with a large number of attributes, such as the genomi-
cally enriched EMR. However, such data is not yet avail-
able for large-scale data mining. Therefore, we adopted
an approach common in bioinformatics studies on the
association of phenotype with SNP data. In this ap-
proach, synthetic SNP data is generated by a theoreti-
cal model, and then one SNP serves as the phenotype
we wish to classify. Since some diseases are correlated
strongly with a single SNP variation, learning a model
which predicts an SNP’s allele is equivalent to learning
a model which predicts one of these diseases. We syn-
thesized the SNP data using two data generators ([1,2])
with typical parameters to generate two datasets, where
each of the generators uses a different theoretical model.

Each dataset contains 250,000 examples describing
a single population. A single SNP is described by a
binary attribute where ’0’ denotes the most common
allele. An example is composed of 1000 SNPs. An
arbitrary SNP is designated the class attribute. The
experiments were performed on a simulation of a com-
munication tree that spans all agents in the system. At
the beginning of each experiment, each agent builds its
local database by sampling a small fraction of the simu-

469

lated dataset, thus emulating a specific subpopulation.
Unless otherwise stated, experiments have been run

assuming a spanning communication tree of degree three
and height six, totaling in 1093 Agents. Each agent
has a database (population) of 5000 samples and 1000
attributes (alleles) per sample. The average resulting
decision tree had 25 nodes and a misclassification rate
of 3%.

5.1 Experiments Our first experiment measures the
average communication overhead of a single split de-
cision (i.e., a single run of the DESAR algorithm) in
terms of the number of messages and the number of
sent crosstables. These results are compared with pre-
vious distributed decision tree algorithms which collect
and aggregate the crosstables of all attributes.

Our algorithm demonstrates an average reduction
of more than 99% in the number of transmitted bytes,
with only a small increase in the average number of sent
messages (1.2 per Agent per decision tree node). These
results are summarized in Fig. 1.

Additional experiments have proved the algorithm
is scalable with respect to the size of the network, the
number of total attributes, and the size of the local
databases. For space considerations, we only present
results for network size scalability (Fig. 2).

Figure 1: Average communication overhead, comparing
to [11] which sends 1000 attributes in a single message

References

[1] G. Greenspan and D. Geiger. Model-based inference of
haplotype block variation. RECOMB, pages 131–137,
2003.

[2] R. R. Hudson. Generating samples under a Wright-
Fisher neutral model of genetic variation. Bioinfor-

matics, 18:337–338, 2002.
[3] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in

Induction. Academic Press, 1966.

Figure 2: Scalability in network size. The above fig-
ure show the distribution of the average communication
overhead over the network tree levels for different net-
work sizes (Gini index).

[4] R. Jin and G. Agrawal. Communication and memory
efficient parallel decision tree construction. In Proc. of

the 3rd (SDM), 2003.
[5] M. V. Joshi, G. Karypis, and V. Kumar. A new

scalable and efficient parallel classification algorithm
for mining large datasets. In Proc. of International

Parallel Processing Symposium, 1998.
[6] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast

scalable classifier for data mining. In Proc. of the Fifth

Int’l Conference on Extending Database Technology,

Avignon, France, 1996.
[7] J. R. Quinlan. Induction of decision trees. Machine

Learning, 1:81–106, 1986.
[8] Rajeev Rastogi and Kyuseok Shim. PUBLIC: A deci-

sion tree classifier that integrates building and pruning.
Data Mining and Knowledge Discovery, 4(4):315–344,
2000.

[9] N. J. Risch. Searching for genetic determinants in the
new millennium. In Nature 405, pages 847–856, 2000.

[10] J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In Proc. of

the 22nd VLDB Conf., 1996.
[11] A. Srivastava, E.-H. (S.) Han, V. Kumar, and V. Singh.

Parallel formulations of decision-tree classification al-
gorithms. Data Mining and Knowledge Discovery: An

International Journal, 3:237–261, 1999.
[12] W. Sthlinger, O. Hogl, H. Stoyan, and M. Muller. In-

telligent data mining for medical quality management.
In the Fifth Workshop on Intelligent Data Analysis in

Medicine and Pharmacology (IDAMAP-2000), Work-

shop Notes of the 14th European Conference on Artifi-

cial Intelligence (ECAI-2000), pp. 55-67, 2000.
[13] M. M. Wagner, J. M. Robinson, F.-C. Tsui, J. U.

Espino, and W. R. Hogan. Design of a national retail
data monitor for public health surveillance. Journal of

the American Medical Informatics Association JAMIA,
10(5):409–418, Sep/Oct 2003.

470

Slope One Predictors for Online Rating-Based Collaborative Filtering

Daniel Lemire∗ Anna Maclachlan†

January 9, 2005

Abstract

Rating-based collaborative filtering is the process of predict-
ing how a user would rate a given item from other user
ratings. We propose three related slope one schemes with
predictors of the formf (x) = x+ b, which precompute the
average difference between the ratings of one item and an-
other for users who rated both. Slope one algorithms are
easy to implement, efficient to query, reasonably accurate,
and they support both online queries and dynamic updates,
which makes them good candidates for real-world systems.
The basicSLOPE ONEscheme is suggested as a new ref-
erence scheme for collaborative filtering. By factoring in
items that a user liked separately from items that a user dis-
liked, we achieve results competitive with slower memory-
based schemes over the standard benchmark EachMovie and
Movielens data sets while better fulfilling the desiderata of
CF applications.

Keywords: Collaborative Filtering, Recommender, e-
Commerce, Data Mining, Knowledge Discovery

1 Introduction

An online rating-based Collaborative Filtering CF query
consists of an array of (item, rating) pairs from a single user.
The response to that query is an array of predicted (item,
rating) pairs for those items the user has not yet rated. We
aim to provide robust CF schemes that are:

1. easy to implement and maintain: all aggregated data
should be easily interpreted by the average engineer and
algorithms should be easy to implement and test;

2. updateable on the fly: the addition of a new rating
should change all predictions instantaneously;

3. efficient at query time: queries should be fast, possibly
at the expense of storage;

4. expect little from first visitors: a user with few ratings
should receive valid recommendations;

∗Université du Québec
†Idilia Inc.

5. accurate within reason: the schemes should be compet-
itive with the most accurate schemes, but a minor gain
in accuracy is not always worth a major sacrifice in sim-
plicity or scalability.

Our goal in this paper is not to compare the accuracy
of a wide range of CF algorithms but rather to demonstrate
that the Slope One schemes simultaneously fulfill all five
goals. In spite of the fact that our schemes are simple,
updateable, computationally efficient, and scalable, they are
comparable in accuracy to schemes that forego some of the
other advantages.

Our Slope One algorithms work on the intuitive prin-
ciple of a “popularity differential” between items for users.
In a pairwise fashion, we determine how much better one
item is liked than another. One way to measure this differen-
tial is simply to subtract the average rating of the two items.
In turn, this difference can be used to predict another user’s
rating of one of those items, given their rating of the other.
Consider two usersA andB, two itemsI andJ and Fig. 1.
UserA gave itemI a rating of 1, whereas userB gave it a
rating of 2, while userA gave itemJ a rating of 1.5. We ob-
serve that itemJ is rated more than itemI by 1.5−1 = 0.5
points, thus we could predict that userB will give item J a
rating of 2+0.5= 2.5. We call userB the predictee user and
item J the predictee item. Many such differentials exist in a
training set for each unknown rating and we take an average
of these differentials. The family of slope one schemes pre-
sented here arise from the three ways we select the relevant
differentials to arrive at a single prediction.

The main contribution of this paper is to present slope
one CF predictors and demonstrate that they are competitive
with memory-based schemes having almost identical accu-
racy, while being more amenable to the CF task.

2 Related Work

2.1 Memory-Based and Model-Based Schemes
Memory-based collaborative filtering uses a similarity
measure between pairs of users to build a prediction,
typically through a weighted average [2, 12, 13, 18]. The
chosen similarity measure determines the accuracy of the
prediction and numerous alternatives have been studied [8].
Some potential drawbacks of memory-based CF include

471

2 ? User B

Item J
? = 2 + (1.5 − 1) = 2.5

1 1.5

Item I

User A

1.5 − 1 = 0.5

Figure 1: Basis of SLOPE ONE schemes: User A’s ratings
of two items and User B’s rating of a common item is used
to predict User B’s unknown rating.

scalability and sensitivity to data sparseness. In general,
schemes that rely on similarities across users cannot be
precomputed for fast online queries. Another critical issue
is that memory-based schemes must compute a similarity
measure between users and often this requires that some
minimum number of users (say, at least 100 users) have
entered some minimum number of ratings (say, at least
20 ratings) including the current user. We will contrast
our scheme with a well-known memory-based scheme, the
Pearson scheme.

There are many model-based approaches to CF. Some
are based on linear algebra (SVD, PCA, or Eigenvectors) [3,
6, 7, 10, 15, 16]; or on techniques borrowed more directly
from Artificial Intelligence such as Bayes methods, Latent
Classes, and Neural Networks [1, 2, 9]; or on clustering [4,
5]. In comparison to memory-based schemes, model-based
CF algorithms are typically faster at query time though they
might have expensive learning or updating phases. Model-
based schemes can be preferable to memory-based schemes
when query speed is crucial.

We can compare our predictors with certain types of pre-
dictors described in the literature in the following algebraic
terms. Our predictors are of the formf (x) = x+ b, hence
the name “slope one”, whereb is a constant andx is a vari-
able representing rating values. For any pair of items, we
attempt to find the best functionf that predicts one item’s
ratings from the other item’s ratings. This function could be
different for each pair of items. A CF scheme will weight
the many predictions generated by the predictors. In [14],
the authors considered the correlation across pairs of items
and then derived weighted averages of the user’s ratings as
predictors. In the simple version of their algorithm, their pre-
dictors were of the formf (x) = x. In the regression-based
version of their algorithm, their predictors were of the form
f (x) = ax+b. In [17], the authors also employ predictors of
the form f (x) = ax+ b. A natural extension of the work in
these two papers would be to consider predictors of the form
f (x) = ax2 +bx+c. Instead, in this paper, we use naïve pre-

dictors of the formf (x) = x+b. We also use naïve weight-
ing. It was observed in [14] that even their regression-based
f (x) = ax+ b algorithm didn’t lead to large improvements
over memory-based algorithms. It is therefore a significant
result to demonstrate that a predictor of the formf (x) = x+b
can be competitive with memory-based schemes.

3 CF Algorithms

We propose three new CF schemes, and contrast our pro-
posed schemes with four reference schemes: PER USER

AVERAGE, BIAS FROM MEAN, ADJUSTEDCOSINE ITEM-
BASED, which is a model-based scheme, and the PEARSON

scheme, which is representative of memory-based schemes.

3.1 Notation We use the following notation in describing
schemes. The ratings from a given user, called anevaluation,
is represented as an incomplete arrayu, whereui is the rating
of this user gives to itemi. The subset of the set of items
consisting of all those items which are rated inu is S(u). The
set of all evaluations in the training set isχ. The number
of elements in a setS is card(S). The average of ratings in
an evaluationu is denoted ¯u. The setSi(χ) is the set of all
evaluationsu ∈ χ such that they contain itemi (i ∈ S(u)).
Given two evaluationsu,v, we define the scalar product
〈u,v〉 as∑i∈S(u)∩S(v) uivi . Predictions, which we writeP(u),
represent a vector where each component is the prediction
corresponding to one item: predictions depend implicitly on
the training setχ.

3.2 Baseline SchemesOne of the most basic prediction
algorithms is the PER USER AVERAGE scheme given by
the equationP(u) = ū. That is, we predict that a user
will rate everything according to that user’s average rating.
Another simple scheme is known as BIAS FROM MEAN (or
sometimes NON PERSONALIZED [8]). It is given by

P(u)i = ū+
1

card(Si(χ)) ∑
v∈Si(χ)

vi − v̄.

That is, the prediction is based on the user’s average plus the
average deviation from the user mean for the item in question
across all users in the training set. We also compare to the
item-based approach that is reported to work best [14], which
uses the following adjusted cosine similarity measure, given
two itemsi and j:

simi, j =
∑u∈Si, j (χ)(ui − ū)(u j − ū)

∑u∈Si, j (χ)(ui − ū)2 ∑u∈Si, j (χ)(u j − ū)2

The prediction is obtained as a weighted sum of these
measures thus:

P(u)i =
∑ j∈S(u) |simi, j |(αi, ju j +βi, j)

∑ j∈S(u) |simi, j |

472

where the regression coefficientsαi, j ,βi, j are chosen so as to
minimize∑u∈Si, j (u)(αi, ju jβi, j −ui)2 with i and j fixed.

3.3 The PEARSON Reference SchemeSince we
wish to demonstrate that our schemes are comparable in
predictive power to memory-based schemes, we choose to
implement one such scheme as representative of the class,
acknowledging that there are many documented schemes of
this type. Among the most popular and accurate memory-
based schemes is the PEARSON scheme [13]. It takes the
form of a weighted sum over all users inχ

P(u)i = ū+
∑v∈Si(χ) γ(u,v)(vi − v̄)

∑v∈Si(χ) |γ(u,v)|

where γ is a similarity measure computed from Pearson’s
correlation:

Corr(u,w) =
〈u−u,w− w̄〉√

∑i∈S(u)∩S(w)(ui −u)2 ∑i∈S(u)∩S(w)(wi −w)2
.

Following [2, 8], we set

γ(u,w) = Corr(u,w) |Corr(u,w)|ρ−1

with ρ = 2.5, whereρ is the Case Amplification power. Case
Amplification reduces noise in the data: if the correlation is
high, sayCorr = 0.9, then it remains high (0.92.5 ∼= 0.8) after
Case Amplification whereas if it is low, sayCorr = 0.1, then
it becomes negligible (0.12.5 ∼= 0.003). Pearson’s correlation
together with Case Amplification is shown to be a reasonably
accurate memory-based scheme for CF in [2] though more
accurate schemes exist.

3.4 TheSLOPE ONE SchemeThe slope one schemes
take into account both information from other users who
rated the same item (like the ADJUSTED COSINE ITEM-
BASED) and from the other items rated by the same user
(like the PER USER AVERAGE). However, the schemes also
rely on data points that fall neither in the user array nor in
the item array (e.g. userA’s rating of itemI in Fig. 1), but
are nevertheless important information for rating prediction.
Much of the strength of the approach comes from data that
is not factored in. Specifically, only those ratings by users
who have rated some common item with the predictee user
and only those ratings of items that the predictee user has
also rated enter into the prediction of ratings under slope one
schemes.

Formally, given two evaluation arraysvi andwi with i =
1, . . . ,n, we search for the best predictor of the formf (x) =
x+ b to predictw from v by minimizing ∑i(vi + b−wi)2.
Deriving with respect tob and setting the derivative to zero,
we getb = ∑i wi−vi

n . In other words, the constantb must be
chosen to be the average difference between the two arrays.
This result motivates the following scheme.

Given a training setχ, and any two itemsj and i with
ratings u j and ui respectively in some user evaluationu
(annotated asu∈Sj,i(χ)), we consider the average deviation
of item i with respect to itemj as:

devj,i = ∑
u∈Sj,i(χ)

u j −ui

card(Sj,i(χ))
.

Note that any user evaluationu not containing bothu j and
ui is not included in the summation. The symmetric matrix
defined by devj,i can be computed once and updated quickly
when new data is entered.

Given that devj,i + ui is a prediction foru j given ui ,
a reasonable predictor might be the average of all such
predictions

P(u) j =
1

card(Rj)
∑

i∈Rj

(devj,i +ui)

whereRj = {i|i ∈ S(u), i 6= j,card(Sj,i(χ)) > 0} is the set
of all relevant items. There is an approximation that can
simplify the calculation of this prediction. For a dense
enough data set where almost all pairs of items have ratings,
that is, wherecard(Sj,i(χ)) > 0 for almost all i, j, most
of the time Rj = S(u) for j /∈ S(u) and Rj = S(u)− { j}
when j ∈ S(u). Sinceū = ∑i∈S(u)

ui
card(S(u)) ' ∑i∈Rj

ui
card(Rj)

for most j, we can simplify the prediction formula for the
SLOPE ONE scheme to

PS1(u) j = ū+
1

card(Rj)
∑

i∈Rj

devj,i .

It is interesting to note that our implementation of
SLOPE ONE doesn’t depend on how the user rated individual
items, but only on the user’s average rating and crucially on
which items the user has rated.

3.5 The WEIGHTED SLOPE ONE SchemeOne
of the drawbacks of SLOPE ONE is that the number of
ratings observed is not taken into consideration. Intuitively,
to predict userA’s rating of itemL given userA’s rating of
itemsJ andK, if 2000 users rated the pair of itemsJ and
L whereas only 20 users rated the pair of itemsK and L,
then userA’s rating of item J is likely to be a far better
predictor for itemL than userA’s rating of itemK is. Thus,
we define the WEIGHTED SLOPE ONE prediction as the
following weighted average

PwS1(u) j =
∑i∈S(u)−{ j}(devj,i +ui)c j,i

∑i∈S(u)−{ j} c j,i

wherec j,i = card(Sj,i(χ)).

3.6 The BI -POLAR SLOPE ONE SchemeWhile
weighting served to favor frequently occurring rating pat-
terns over infrequent rating patterns, we will now consider

473

favoring another kind of especially relevant rating pattern.
We accomplish this by splitting the prediction into two parts.
Using the WEIGHTED SLOPE ONE algorithm, we derive one
prediction from items users liked and another prediction us-
ing items that users disliked.

Given a rating scale, say from 0 to 10, it might seem
reasonable to use the middle of the scale, 5, as the threshold
and to say that items rated above 5 are liked and those rated
below 5 are not. This would work well if a user’s ratings are
distributed evenly. However, more than 70% of all ratings
in the EachMovie data are above the middle of the scale.
Because we want to support all types of users including
balanced, optimistic, pessimistic, and bimodal users, we
apply the user’s average as a threshold between the users
liked and disliked items. For example, optimistic users, who
like every item they rate, are assumed to dislike the items
rated below their average rating. This threshold ensures that
our algorithm has a reasonable number of liked and disliked
items for each user.

Referring again to Fig. 1, as usual we base our prediction
for item J by userB on deviation from itemI of users (like
userA) who rated both itemsI andJ. The BI-POLAR SLOPE

ONE scheme restricts further than this the set of ratings
that are predictive. First in terms of items, only deviations
between two liked items or deviations between two disliked
items are taken into account. Second in terms of users, only
deviations from pairs of users who rated both itemI andJ
and who share a like or dislike of itemI are used to predict
ratings for itemJ.

The splitting of each user into user likes and user dis-
likes effectively doubles the number of users. Observe, how-
ever, that the bi-polar restrictions just outlined necessarily
reduce the overall number of ratings in the calculation of
the predictions. Although any improvement in accuracy in
light of such reduction may seem counter-intuitive where
data sparseness is a problem, failing to filter out ratings that
are irrelevant may prove even more problematic. Crucially,
the BI-POLAR SLOPE ONE scheme predicts nothing from
the fact that userA likes itemK and userB dislikes this same
itemK.

Formally, we split each evaluation inu into two sets of
rated items:Slike(u) = {i ∈ S(u)|ui > ū} and Sdislike(u) =
{i ∈ S(u)|ui < ū}. And for each pair of itemsi, j, split the
set of all evaluationsχ into Slike

i, j = {u∈ χ|i, j ∈ Slike(u)} and

Sdislike
i, j = {u∈ χ|i, j ∈ Sdislike(u)}. Using these two sets, we

compute the following deviation matrix for liked items as
well as the derivation matrixdevdislike

j,i .

devlike
j,i = ∑

u∈Slike
j,i (χ)

u j −ui

card(Slike
j,i (χ))

,

The prediction for rating of itemj based on rating of itemi is
eitherplike

j,i = devlike
j,i +ui or pdislike

j,i = devdislike
j,i +ui depending

on whetheri belongs toSlike(u) or Sdislike(u) respectively.
The BI-POLAR SLOPE ONE scheme is given by

PbpS1(u) j =

∑i∈Slike(u)−{ j} plike
j,i clike

j,i

+∑i∈Sdislike(u)−{ j} pdislike
j,i cdislike

j,i

∑i∈Slike(u)−{ j} clike
j,i +∑i∈Sdislike(u)−{ j} cdislike

j,i

where the weightsclike
j,i = card(Slike

j,i) and cdislike
j,i =

card(Sdislike
j,i) are similar to the ones in the WEIGHTED

SLOPE ONE scheme.

4 Experimental Results

The effectiveness of a given CF algorithm can be measured
precisely. To do so, we have used the All But One Mean
Average Error (MAE) [2]. In computing MAE, we succes-
sively hide ratings one at a time from all evaluations in the
test set while predicting the hidden rating, computing the av-
erage error we make in the prediction. Given a predictorP
and an evaluationu from a user, the error rate ofP over a set
of evaluationsχ′, is given by

MAE =
1

card(χ′) ∑
u∈χ′

1
card(S(u)) ∑

i∈S(u)
|P(u(i))−ui |

whereu(i) is user evaluationu with that user’s rating of the
ith item,ui , hidden.

We test our schemes over the EachMovie data set made
available by Compaq Research and over the Movielens data
set from the Grouplens Research Group at the University of
Minnesota. The data is collected from movie rating web sites
where ratings range from 0.0 to 1.0 in increments of 0.2 for
EachMovie and from 1 to 5 in increments of 1 for Movielens.
Following [8, 11], we used enough evaluations to have a total
of 50,000 ratings as a training set (χ) and an additional set of
evaluations with a total of at least 100,000 ratings as the test
set (χ′). When predictions fall outside the range of allowed
ratings for the given data set, they are corrected accordingly:
a prediction of 1.2 on a scale from 0 to 1 for EachMovie is
interpreted as a prediction of 1. Since Movielens has a rating
scale 4 times larger than EachMovie, MAEs from Movielens
were divided by 4 to make the results directly comparable.

The results for the various schemes using the same
error measure and over the same data set are summarized
in Table 1. Various subresults are highlighted in the Figures
that follow.

Consider the results of testing various baseline schemes.
As expected, we found that BIAS FROM MEAN performed
the best of the three reference baseline schemes described in
section 3.2. Interestingly, however, the basic SLOPE ONE

scheme described in section 3.4 had a higher accuracy than
BIAS FROM MEAN.

The augmentations to the basic SLOPE ONE described
in sections 3.5 and 3.6 do improve accuracy over Each-
Movie. There is a small difference between SLOPE ONE and

474

Scheme EachMovie Movielens

BI-POLAR SLOPE ONE 0.194 0.188
WEIGHTED SLOPE ONE 0.198 0.188

SLOPE ONE 0.200 0.188

BIAS FROM MEAN 0.203 0.191
ADJUSTEDCOSINE ITEM-BASED 0.209 0.198

PER USERAVERAGE 0.231 0.208

PEARSON 0.194 0.190

Table 1: All Schemes Compared: All But One Mean Aver-
age Error Rates for the EachMovie and Movielens data sets,
lower is better.

WEIGHTED SLOPE ONE (about 1%). Splitting dislike and
like ratings improves the results 1.5–2%.

Finally, compare the memory-based PEARSON scheme
on the one hand and the three slope one schemes on the other.
The slope one schemes achieve an accuracy comparable to
that of the PEARSON scheme. This result is sufficient to
support our claim that slope one schemes are reasonably
accurate despite their simplicity and their other desirable
characteristics.

5 Conclusion

This paper shows that an easy to implement CF model based
on average rating differential can compete against more
expensive memory-based schemes. In contrast to currently
used schemes, we are able to meet 5 adversarial goals with
our approach. Slope One schemes are easy to implement,
dynamically updateable, efficient at query time, and expect
little from first visitors while having a comparable accuracy
(e.g. 1.90 vs. 1.88 MAE for MovieLens) to other commonly
reported schemes. This is remarkable given the relative
complexity of the memory-based scheme under comparison.
A further innovation of our approach are that splitting ratings
into dislike and like subsets can be an effective technique
for improving accuracy. It is hoped that the generic slope
one predictors presented here will prove useful to the CF
community as a reference scheme.

Note that as of November 2004, the
WEIGHTED SLOPE ONE is the collaborative filtering
algorithm used by the Bell/MSN Web site inDiscover.net.

References

[1] D. Billsus and M. Pazzani. Learning collaborative informa-
tion filterings. InAAAI Workshop on Recommender Systems,
1998.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. InFour-
teenth Conference on Uncertainty in AI. Morgan Kaufmann,
July 1998.

[3] J. Canny. Collaborative filtering with privacy via factor
analysis. InSIGIR 2002, 2002.

[4] S. H. S. Chee. Rectree: A linear collaborative filtering algo-
rithm. Master’s thesis, Simon Fraser University, November
2000.

[5] S. H. S.g Chee, J. H., and K. Wang. Rectree: An efficient
collaborative filtering method.Lecture Notes in Computer
Science, 2114, 2001.

[6] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan.
Competitive recommendation systems. InProc. of the thiry-
fourth annual ACM symposium on Theory of computing,
pages 82–90. ACM Press, 2002.

[7] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: A constant time collaborative filtering algorithm.In-
formation Retrieval, 4(2):133–151, 2001.

[8] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algo-
rithmic framework for performing collaborative filtering. In
Proc. of Research and Development in Information Retrieval,
1999.

[9] T. Hofmann and J. Puzicha. Latent class models for collabo-
rative filtering. InInternational Joint Conference in Artificial
Intelligence, 1999.

[10] K. Honda, N. Sugiura, H. Ichihashi, and S. Araki. Col-
laborative filtering using principal component analysis and
fuzzy clustering. InWeb Intelligence, number 2198 in Lec-
ture Notes in Artificial Intelligence, pages 394–402. Springer,
2001.

[11] Daniel Lemire. Scale and translation invariant collaborative
filtering systems.Information Retrieval, 8(1):129–150, Jan-
uary 2005.

[12] D. M. Pennock and E. Horvitz. Collaborative filtering by
personality diagnosis: A hybrid memory- and model-based
approach. InIJCAI-99, 1999.

[13] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. InProc. ACM Computer Supported Co-
operative Work, pages 175–186, 1994.

[14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-
based collaborative filtering recommender algorithms. In
WWW10, 2001.

[15] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Ap-
plication of dimensionality reduction in recommender system
- a case study. InWEBKDD ’00, pages 82–90, 2000.

[16] B.M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremen-
tal svd-based algorithms for highly scaleable recommender
systems. InICCIT’02, 2002.

[17] S. Vucetic and Z. Obradovic. A regression-based ap-
proach for scaling-up personalized recommender systems in
e-commerce. InWEBKDD ’00, 2000.

[18] S.M. Weiss and N. Indurkhya. Lightweight collaborative
filtering method for binary encoded data. InPKDD ’01, 2001.

475

Sparse Fisher Discriminant Analysis for Computer Aided Detection

M. Murat Dundar∗

Glenn Fung*
Jinbo Bi*

Sandilya Sathyakama*
Bharat Rao*

Abstract

We describe a method for sparse feature selection for a class

of problems motivated by our work in Computer-Aided De-

tection (CAD) systems for identifying structures of interest

in medical images. We propose a sparse formulation for

Fisher Linear Discriminant (FLD) that scales well to large

datasets; our method inherits all the desirable properties

of FLD, while improving on handling large numbers of

irrelevant and redundant features. We demonstrate that our

sparse FLD formulation outperforms conventional FLD and

two other methods for feature selection from the literature

on both an artificial dataset and a real-world Colon CAD

dataset.

Keywords: fisher linear discriminant, sparse formu-

lation, feature selection

1 Problem Specification.

Over the last decade, Computer-Aided Detection
(CAD) systems have moved from the sole realm of aca-
demic publications, to robust commercial systems that
are used by physicians in their clinical practice to help
detect early cancer from medical images. The growth
has been fueled by the Food and Drug Administration’s
(FDA) decision to grant approval in 1998 for a CAD sys-
tem that detected breast cancer lesions from mammo-
grams (scanned x-ray images) [1]. Since then a number
of CAD systems have received FDA approval. Virtually
all these commercial CAD systems, focus on detection
(or more recently diagnosis [2]) of breast cancer lesions
for mammography.

Typically, CAD systems are used as ”second read-
ers” – the physician views the image to identify po-
tential cancers (the ”first read”), and then reviews the
CAD marks to determine if any additional cancers can
be found. In order to receive clinical acceptance and
to actually be used in the daily practice of a physician,

∗Computer Aided Diagnosis and Therapy, Siemens Medical

Solutions Inc,USA

it is immediately obvious that CAD systems must be
efficient (for instance, completing the detections in the
minutes taken by the physician during the ”first read”)
and have very high sensitivity (the whole point of CAD
is to boost the physician’s sensitivity, which is already
fairly high – 80%-90% for colon cancer – to the high
90’s).

Physicians detect cancers by visually extracting
shape and texture based features, that are often qualita-
tive rather than quantitative from the images (hereafter,
”image” and ”volume” are used interchangably in this
document). However, there are usually no definitive
image-processing algorithms that exactly correspond
to the precise, often subtle, features used intuitively
by physicians. To achieve high sensitivity and speci-
ficity, CAD researchers must necessarily consider a very
large number of experimental image processing features.
Therefore, a typical training dataset for a CAD classifier
is extremely unbalanced (significantly less than 1% of
the candidates are positive), contains a very large num-
ber of candidates (several thousand), each described by
many features (100+), most of which are redundant and
irrelevant.

A large number of features provides more control
over the discriminant function. However, even with our
”large” training sample, the high-dimensional feature
space is mostly empty [3]. This allows us to find many
classifiers that perform well on the training data, but
it is well-known that few of these will generalize well.
This is particularly true of nonlinear classifiers that
represent more complex discriminant functions. Fur-
thermore, many computationally expensive nonlinear
classification algorithms (e.g. nonlinear SVM, neural
networks, kernel-based algorithms) do not scale well to
large datasets. When the potential pitfalls of designing
a classifier and the characteristics of the data are con-
sidered, it appears safer to train a CAD system with a
linear classifier. This is empirically demonstrated in our
previous study [4] where we compare the generalization
capability of some linear and nonlinear classification al-

476

gorithms on a CAD dataset.
Fisher Linear Discriminant (FLD) [5] is a well-

known classification method that projects high-
dimensional data onto a line and performs classification
in this one dimensional space. This projection is ob-
tained by maximizing the ratio of between and within
class scatter matrices – the so called Rayleigh quotient.
As a linear classifier it is rather robust against feature
redundancy and noise and has an order of complex-
ity O

(

ld2
)

(l is the number of training samples in the
dataset and d is the number of features in the feature
set).

In this study we propose a sparse formulation of
FLD where we seek to eliminate the irrelevant and
redundant features from the original dataset within a
wrapper framework [6]. To achieve sparseness, earlier
studies focused on direct optimization of an objective
function consisting of two terms: the goodness of
fit and the regularization term. In order to avoid
overfitting by excessively maximizing the goodness of
fit, a regularization term commonly expressed as `0 −
norm [7], [8] or `1 − norm [9], [10] of the discriminant
vector is added to the objective function. Optimization
of this objective function generates sparse solutions, i.e.
a solution that depends only on a subset of the features.

Our approach achieve sparseness by introducing
regularity constraints into the problem of finding FLD.
Since we maintain the original formulation of FLD as we
introduce the regularization constraints, the proposed
technique can scale to very large datasets (on the order
of hundred thousand samples). Casting this problem as
a biconvex programming problem provides us a more
direct way of controlling the size of the feature subset
selected. This problem is iteratively solved and once
the algorithm stops the nonzero elements of the solution
indicates features that are relevant to classification task
at hand, and their value quantifies the degree of this
relevancy. The proposed algorithm inherits all desirable
characteristics of FLD while improving on handling
large number of redundant and irrelevant features.
This makes the algorithm numerically more stable and
improve its prediction performance.

The rest of this paper is organized as follows. In
the next section, we discuss the need for a linear classi-
fier and briefly review the Fisher Linear Discriminant
(FLD). We also introduce our notion of spare FLD,
where we seek to eliminate the redundant and irrele-
vant features from the original training set using a wrap-
per approach. In Section 3 we review the concept and
formulation of FLD. In Section 4 we modify the con-
ventional FLD problem so as to achieve sparseness and
propose an iterative feature selection algorithm based on
our the sparse formulation. Finally we present experi-

mental results on an artificial dataset and a ColonCAD
dataset, and compare our approach with conventional
FLD and also with two well-known methods from the
literature for feature selection.

2 Fisher’s Linear Discriminant

Let Xi ∈ Rd×l be a matrix containing the l training
data points on d-dimensional space and li the number
of labeled samples for class wi, i ∈ {±}. FLD is the
projection α, which maximizes,

J (α) =
αT SBα

αT SW α
(2.1)

where

SB = (m+ − m−) (m+ − m−)
T

SW =
∑

i∈{±}

1

li

(

Xi − mie
T
li

) (

Xi − mie
T
li

)T

are the between and within class scatter matrices re-
spectively and

mi =
1

li
Xieli

is the mean of class wi and eli is an li dimensional vector
of ones.

Transforming the above problem into a convex
quadratic programming problem provides us some algo-
rithmic advantages. First notice that if α is a solution
to (2.1), then so is any scalar multiple of it. Therefore to
avoid multiplicity of solutions, we impose the constraint
αT SBα = b2, which is equivalent to αT (m+ − m−) = b

where b is some arbitrary positive scalar. Then the op-
timization problem of (2.1) becomes,

Problem 1 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

For binary classification problems the solution of

this problem is α∗ =
bS

−1

W
(m+−m

−
)

(m+−m
−

)T S
−1

W
(m+−m

−
)
. In what

follows we propose a sparse formulation of FLD. The
proposed approach incorporates a regularization con-
straint on the conventional algorithm and seeks to elim-
inate those features with limited impact on the objective
function.

3 Sparse Fisher Discriminant Analysis

If we require α to be nonnegative, the 1-norm of α can be
calculated as αT el. With the new constraints Problem
1 can be updated as follows,

477

Problem 2 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

αT el ≤ γ, α ≥ 0

We denote the feasible set associated with
Problem 1 by Ω1 =

{

α ∈ Rd, αT (m+ − m−) = b
}

and that associated with Problem 2 by Ω2 =
{

α ∈ Rd, αT (m+ − m−) = b, αT el ≤ γ, α ≥ 0
}

and observe that Ω2 ⊂ Ω1. Then we define δmax =
maxi

b
(m+−m

−
)
i

and δmin = mini
b

(m+−m
−

)
i

where

i = {1, . . . , d}. The set Ω2 is empty whenever δmax < 0
or δmin > γ. In addition to the feasibility constraints
γ < δmax should hold in order to achieve a sparse
solution. In what follows we introduce a linear trans-
formation which will ensure δmax > 0 and standardize
the sparsity constraint.

We define a linear transformation such that x 7→
Dx. With this transformation Problem 2 takes the
following form,

Problem 3 : minα∈Rd αT DSW Dα

s.t. αT D (m+ − m−) = b

αT el ≤ γ, α ≥ 0

Note that both δ̄min and δ̄max are nonnegative
and hence both feasibility constraints are satisfied when
γ > δ̄min. For γ > d the globally optimum solution α∗

to Problem 3 is α∗ = [1, . . . , 1]
T
, i.e nonsparse solution.

For γ < d sparse solutions can be obtained. Unlike
Problem 2 where the upper bound on γ depends on
mean vectors here the upper bound is d, i.e. the number
of features.

The above sparse formulation is indeed a biconvex
programming problem.

Problem 4 : minα, a∈Rd αT
(

SW ∗
(

aaT
))

α

s.t. αT
(

(m+ − m−) ∗ aT
)

= b

αT el ≤ γ, α ≥ 0

where ∗ is an element-wise product. We first
initialize α = [1, . . . , 1]

T
and solve for a∗, i.e. the

solution to Problem 1, then we fix a∗ and solve for α∗,
i.e. the solution to Problem 3.

4 The Iterative Feature Selection Algorithm

Successive feature elimination can be obtained by iter-
atively solving the above biconvex programming prob-
lem.

(0) Set α0 = en, d0 = d, γ << d

For each iteration i do the following:

(i) Select the di features with αi
j values greater than

ε, di ≤ di−1.

(ii) Calculate the class scatter matrices and means in
the di − dimensional feature space.

(iii) Solve Problem 4 to obtain ai.

(iv) Fix a to ai and update the class scatter matrices
and means.

(v) Solve Problem 4 to obtain αi.

Stop when all αi
j , for j = 1, 2, . . . , di are greater

than ε = 1e − 16.
Since at each iteration we truncate α the above

algorithm is not guaranteed to converge. However
at any iteration i when di ≤ γ no sparseness would
be achieved and hence all αi

j would be equal to one.
Therefore the algorithm is guaranteed to stop at the
latest when di ≤ γ.

5 Experimental Results and Discussion

5.1 A Toy Example This experiment is adapted
from [11]. The probability of y = 1 or y = −1 is
equal. The first three features x1, x2, x3 are drawn as
xi = yN (i, 5). Note that only one of these features is
relevant for discriminating one class from the other, the
other two are redundant. The rest of the features are
drawn as xi = N (0, 20). Note that these features are
noise. The noise features are added to the feature set
one by one allowing us to observe the gradual change in
the prediction capability of both approaches.

We initialize d = 3, i.e. start with the first
three features and proceed as follows. We generate
200 samples for training and 1000 samples for testing.
Then we train and test both approaches and record the
corresponding prediction errors. Next we increase d
by one and repeat the above procedure until we reach
d = 20. For the proposed approach we select the best
two features. The error bars in Figure 1 are obtained
by repeating the above process 100 times for each d each
time using a different training and testing set.

Looking at the results, as d gets larger and noise
features are added to the feature set the performance of
the conventional FLD deteriorates significantly whereas
the average prediction error for the proposed formula-
tion remains around its initial level with some increase
in the standard deviation. Also 90% of the time the
proposed formulation selects feature two and three to-
gether. These are the two most powerful features in the
set.

5.2 Example 2: Colon Cancer

478

2 4 6 8 10 12 14 16 18 20 22
−10

0

10

20

30

40

50

of features (d)

P
re

di
ct

io
n

er
ro

r
(%

)

Figure 1: Testing Error vs l for the Artificial Data. Full
dimensionality and two-dimensional feature subset com-
pared. The dotted curve corresponds to Conventional
FLD, the solid curve corresponds to proposed sparse
appraoch

5.2.1 Data Sources and Domain Description

The database of high-resolution CT images used in
this study were obtained from NYU Medical Center,
Cleveland Clinic Foundation, and two EU sites in
Vienna and Belgium. The 163 patients were randomly
partitioned into two groups: training (n=96) and test
(n=67). The test group was sequestered and only used
to evaluate the performance of the final system.

Training Data Patient and Polyp Info: There were
96 patients with 187 volumes. A total of 76 polyps
were identified in this set with a total number of 9830
candidates.

Testing Data Patient and Polyp Info: There were
67 patients with 133 volumes. A total of 53 polyps
were identified in this set with a total number of 6616
candidates. A combined total of 207 features are
extracted for each candidate by three imaging scientists.

5.2.2 Feature Selection and Classification: In
this experiment we consider three feature selection al-
gorithms in a wrapper framework and compare their
prediction performance on the Colon Dataset. These
techniques are namely, the sparse formulation proposed
in this study (SFLD), the sparse formulation introduced
in [9] for Kernel Fisher Discriminant with linear loss
and linear regularizer (SKFD) and a greedy sequential
forward-backward feature selection algorithm [12] im-
plemented with FLD (GFLD).

5.3 Results and Discussion: Even though we
choose the computationally least expensive model for
SKFD this approach failed to run with the original
training set. Thus we were forced to run SKFD on a
smaller subset of the training dataset where we included
all the positive candidates and a random subset of size
1000 of the negative candidates. The 5 algorithms we
ran were

1. SFLD on the original training set.

2. GFLD on the original training set.

3. Conventional on the original training set.

4. SKFD on the subset training set.

5. SFLK on the subset training set (denoted as SFLD-
sub).

The ROC curves in Figure 2 demonstrates the
LOPO performance of the each algorithm and those in
Figure 3 show the performance on the test data set.
Table 1 shows the number of features selected (d), the
area of the ROC curve scaled by 100 (Area) and the
sensitivity corresponding to 90% specificity (Sens) for
all algorithms considered in this study.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

specificity (%)

se
ns

iti
vi

ty
 (

%
) FLD

SFLD
GFLD
SFLD−sub
SKFD

Figure 2: ROC curves for Training Results (LOPO
results)

These results show that Sparse (SFLD) and SFLD-
sub clearly outperform the greedy and conventional
FLD and SKFD both on the training and testing
datasets. Although SFLD-sub performs better than
SFLD on the training data, SFLD generalizes slightly
better on the testing data. This is not surprising be-
cause SFLD-sub uses a subset of the original training

479

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

specificity (%)

se
ns

iti
vi

ty
 (

%
)

FLD
SFLD
GFLD
SFLD−sub
SKFD

Figure 3: ROC curves for Testing Results

Table 1: The number of features selected (d), the area of
the ROC curve scaled by 100 (Area) and the sensitivity
corresponding to 90% specificity (Sens) is shown for
all algorithms considered in this study. The values
in parenthesis show the corresponding values for the
testing results.

Algorithm d Area Sens (%)

SFLD 25 94.8 (94.9) 89 (87)
SFLD-sub 17 94.7 (94.1) 92 (85)
GFLD 17 94.3 (94.7) 85 (83)
SKFD 18 88.0 (82.0) 65 (60)
FLD 207 80.3 (89.1) 63 (77)

data. GFLD performs almost equally well with SFLD-
sub and SFLD algorithms but the difference is hidden
in the computational cost required to select the features
in GFLD. The computational cost of GFLD is propor-
tional to d3 whereas that of SFLD is proportional to
d2.

6 Conclusions

In this study we proposed a sparse formulation of
famous Fisher Linear Discriminant and applied this
technique to a Colon dataset. Experimental results
favor the proposed algorithm over two other feature
selection/regularization techniques implemented in the
FLD framework both in terms of prediction accuracy
and the computational cost for large data sets. Future
study will focus on obtaining sparse solutions in an
iterative scheme without truncating the discriminant
vector which will in turn guarantee convergence.

References

[1] J. Roehrig, The Promise of CAD in Digital Mam-

mography, European Journal of Radiology, 31 (1999),
pp. 35-39.

[2] S. Buchbinder, I. Leichter, R. Lederman, B. No-
vak, P. Bamberger, M. Sklair-Levy, G. Yarmish, and
S. Fields Computer-aided Classification of BI-RADS

Category 3 Breast Lesions1, Radiology, 230 (2004),
pp. 820-823.

[3] C. Lee and D. Landgrebe Analyzing High Dimensional

Multispectral Data, IEEE Transactions on Geoscience
and Remote Sensing, 31 (1993), pp 792–800.

[4] M. Dundar, G. Fung, L. Bogoni, M. Macari, A. Meg-
ibow, B. Rao A Methodology for Training and Vali-

dating a CAD System and Potential Pitfalls, In Proc.
CARS, (2004), pp. 1010–1014.

[5] K. Fukunaga, Introduction to Statistical Pattern Recog-

nition, Academic Progress, San Diego, CA, 1990.
[6] G. John, R. Kohavi, K. Pfleger, Irrelevant Features and

the Subset Selection Problem, In Proc. of ICML, (1994).
[7] J. Weston, A. Elisseeff, B. Scholkopf, M. Tipping

Use of the Zero-Norm with Linear Models and Kernel

Methods, Journal of Machine Learning Research, 3
(2003), pp. 1439–1461.

[8] P. Bradley and O. Mangasarian Feature Selection via

Concave Minimization and Support Vector Machines,
Proc. of 15th International Conference on Machine
Learning, (1998), pp. 82–90.

[9] S. Mika, G. Ratsch, K. Muller A Mathematical Pro-

gramming Approach to the Kernel Fisher Algorithm,
Proc. NIPS 13, (2001), pp. 591-597.

[10] J. Bi, K. Bennett, M. Embrechts, C. Breneman,
M. Song Dimensionality Reduction via Sparse Support

Vector Machines, Journal of Machine Learning Re-
search, 3 (2003), pp. 1229–1243.

[11] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil,
T. Poggio and V. Vapnik, Feature Selection for SVMs,
Advances in Neural Information Processing Systems.,
13, pp. 668–674.

[12] J. Kittler, Feature Set Search Algorithms, Pattern
Recognition and Signal Processing, Sijhoff and Noord-
hoff, the Netherlands, 1978.

480

Expanding the Training Data Space Using Emerging Patterns and Genetic
Methods

Hamad Alhammady and Kotagiri Ramamohanarao

Department of Computer Science and Software Engineering
The University of Melbourne

Parkville, Victoria 3010, Australia
Email: {hhammady, rao}@cs.mu.oz.au

Abstract. Classification is a major problem in machine
learning. Many classifiers have been developed re-
cently. However, the performance of these classifiers is
proportional to the knowledge obtained from the train-
ing data. As a result, traditional classifiers can not per-
form very well when the training data space is very lim-
ited. In this paper, we propose a new approach to
expand the training data space (ETDS) using emerging
patterns (EPs) [4] and genetic methods (GMs) [7]. EPs
are those itemsets whose supports in one class are sig-
nificantly higher than their supports in the other classes.
GMs are evolutionary methods that incorporate compu-
tational techniques inspired by biology [8]. We com-
bine the power of EPs and GMs to expand the training
data space before applying standard classifiers. The ex-
pansion process is performed by generating more train-
ing instances using four techniques. An extensive ex-
perimental evaluation carried out on a number of
datasets shows that our approach has a great impact on
the performance of many traditional classifiers.
Keywords: emerging patterns, genetic methods

1 Introduction

The problem of classification is one of the most impor-
tant research topics in KDD (Knowledge Discovery in
Databases). Different classifiers have been proposed
recently to solve this problem. These classifiers are
based on one general idea; they obtain knowledge from
the training dataset, and then they use this knowledge in
a certain way to classify a test instance. Generally, tra-
ditional classifiers differ on the way they use the knowl-
edge obtained from the training dataset. They have no
control over the amount of knowledge which has a great
impact on the classification performance, and which
depends on the number of available instances in the
training dataset.

In this paper, we employ emerging patterns (EPs) [4]
and genetic methods (GMs) [7] to expand the data
space of the training sets. EPs are a new kind of pat-
terns introduced recently [4]. EPs can be used in many
applications such as rare-class classification [1] [2].

They are defined as itemsets whose supports increase
significantly from one class to another. The discrimi-
nating power of EPs can be measured by their growth
rates. The growth rate of an EP is the ratio of its sup-
port in a certain class over that in another class. Usu-
ally the discriminating power of an EP is proportional
to its growth rate.

2 Emerging Patterns and Classification

Let obj = {a1, a2, a3, ... an} is a data object following the
schema {A1, A2, A3, ... An}. A1, A2, A3.... An are called at-
tributes, and a1, a2, a3, ... an are values related to these
attributes. We call each pair (attribute, value) an item.

Let I denote the set of all items in an encoding data-
set D. Itemsets are subsets of I. We say an instance Y
contains an itemset X, if X ⊆ Y.

Definition 2.1. Given a dataset D, and an itemset X, the
support of X in D, sD(X), is defined as

||
)()(

D
XcountXs D

D =

(1)

where countD(X) is the number of instances in D con-
taining X.

Definition 2.2. Given two different classes of datasets
D1 and D2. Let si(X) donates the support of the itemset
X in the dataset Di. The growth rate of an itemset X
from D1 to D2,)(

21
XGR DD → , is defined as













≠=∞
==

=→

 otherwise ,
)(
)(

0)(,0)(if ,
0)(,0)(if ,0

)(

1

2

21

21

21

Xs
Xs

XsXs
XsXs

XGR DD

(2)

Definition 2.3. Given a growth rate threshold p>1, an
itemset X is said to be a p-emerging pattern (p-EP or
simply EP) from D1 to D2 if pXGR DD ≥→)(

21
.

481

Let C = {c1, … cm} is a set of class labels. A train-

ing dataset is a set of data objects such that, for each
object obj, there exists a class label cobj ∈ C associated
with it. A classifier is a function from attributes {A1, A2,
A3, ... An} to class labels {c1, … cm}, that assigns class
labels to unseen examples.

3 Expanding the Training Data Space

3.1 Overview

We propose a new approach to improve the classifica-
tion performance. The key idea is to expand the train-
ing data space by generating more training instances.
We present four methods to generate additional training
instances. These methods involve using emerging pat-
terns (EPs) and genetic methods (GMs). We use an ex-
isting algorithm [3] to mine EPs. The generation meth-
ods are presented in subsections 3.2, 3.3, 3.4, and 3.5.

3.2 Method 1: Generation by Superimposing EPs

This method was first introduced in our earlier work
[2]. The main difference is that our work in [2] is dedi-
cated to deal with rare-class datasets. Hence the gen-
eration is performed for the rare class only. In this pa-
per we deal with balanced datasets, and the generation
is performed for all classes. Given a training dataset and
a set of mined EPs, the following steps are repeated for
every class in the dataset:
• The attribute values (considered as itemsets con-

sisting of one attribute) that have the highest
growth rates in the current class are found.

• The set of EPs related to current class is divided
into a number of groups such that EPs in each
group have attribute values for most of the ele-
ments in the attribute set.

• The new instances are generated by combining the
EPs in each group. If a value for an attribute is
missing from a group, it is substituted by the
value that has the highest growth rate for the same
attribute (found in step 1).
Figure 1 shows an example of this process. Suppose

we have a dataset consisting of 7 attributes {A1, A2, A3,
A4, A5, A6, A7}. The values that have the highest
growth rate for these attributes in the current class are
{v1, v2, v3, v4, v5, v6, v7}. Table a in figure 1 represents
a group of three EPs. These EPs are
e1{(A1=1),(A2=x1)}, e2{(A5=y1),(A6=2),(A7=3)}, and
e3{(A2=x2),(A3=4),(A5=y2)}. Notice that none of these
EPs has a value for attribute A4. As a result, the value

that has the highest growth rate for attribute A4, v4, will
be used as described earlier. The three EPs and the
value chosen for attribute A4 are combined to generate
four new instances for the current class. The inter-
sected values (x1 and x2 for attribute A2, and y1 and y2
for attribute A5) are used one after the other to generate
the new instances. The four generated instances are
shown in table b in figure 1.

Figure 1: Example of generation by superimposing EPs

3.3 Method 2: Generation by Crossover

Consider two instances and a randomly chosen breaking
point. The values of these instances are switched be-
fore the breaking point. Figure 2 shows an example of
this process. Suppose that we have two instances I1 {a1,
a2, a3, a4, a5, a6, a7} and I2 {b1, b2, b3, b4, b5, b6, b7}, and
the breaking point is randomly chosen to be between
the third and fourth attributes. Then the two generated
instances are I3 {b1, b2, b3, a4, a5, a6, a7} and I4 {a1, a2,
a3, b4, b5, b6, b7}.

Figure 2: Example of generation by crossover

3.4 Method 3: Generation by Mutation

In this method, we mutate an instance with the highest-
growth-rate values. The first step is to find the attribute
values that have the highest growth rates in the current

I1 a1 a2 a3 a4 a5 a6 a7
I2 b1 b2 b3 b4 b5 b6 b7

I3 b1 b2 b3 a4 a5 a6 a7
I4 a1 a2 a3 b4 b5 b6 b7

Random breaking point

 A1 A2 A3 A4 A5 A6 A7

e1 1 x1

e2 y1 2 3

e3 x2 4 y2

(a)

A1 A2 A3 A4 A5 A6 A7
1 x1 4 v4 y1 2 3
1 x1 4 v4 y2 2 3
1 x2 4 v4 y1 2 3
1 x3 4 v4 y2 2 3

(b)

482

class. A random binary number is chosen and over-
lapped over the instance. All attribute values in the in-
stance that match 1’s in the random binary number are
replaced by the values that have the highest growth
rates. Figure 3 shows an example of this method. Sup-
pose that we have an instance I1 {a1, a2, a3, a4, a5, a6,
a7}. The highest-growth-rate values are {v1, v2, v3, v4,
v5, v6, v7}. The random binary number is (1001011).
The values in I1 that match 1’s in the random binary
number (namely, the first, fourth, sixth, and seventh at-
tributes) are replaced with the highest-growth-rate val-
ues that they match.

Figure 3: Example of generation by mutation

3.5 Method 4: Generation by Mutation and EPs

In this method, we mutate an instance with an EP. All
values in the instance are replaced with their matched
values in the EP. Figure 4 shows and example of this
method. Suppose that we have an instance I1 {a1, a2, a3,
a4, a5, a6, a7}. We want to mutate this instance with an
EP e {e2, e3, e6}. We replace the values in I1 (namely,
the second, third, and sixth values) with their matched
values in e.

Figure 4: Example of generation by mutation and EPs

3.6 Generation Constraints and Fitness Function

Using the generation methods explained in subsections
3.2, 3.3, 3.4, and 3.5, a large number of training in-
stances can be generated. Our aim is to generate a rea-
sonable number of high-quality training instances. We
propose four constraints to achieve this aim. These
constraints are:
1. Instead of using the whole range of EPs, we use a

certain percentage (α) of the best-quality EPs in
method 1 (generation by superimposing EPs) and
method 4 (generation using mutation and EPs).

2. Instead of using the whole range of the training
data, we use a certain percentage (β) of the best-
quality instances in method 2 (generation using
crossover), method3 (generation using mutation),
and method 4 (generation using mutation and
EPs).

3. Adding the best-quality generated instances to the
training dataset, and discarding the bad-quality
generated instances.

4. Stopping the generating process when the training
dataset is increased by a certain percentage (χ).

The quality of EPs and instances (constraints 1, 2,

and 3) can be measured by their fitness functions. A
fitness function is defined as a measure to evaluate the
elements (EPs or data). For the EPs (constraint 1), the
fitness function can be measured by the growth rate.
The growth rate of an EP is proportional to its discrimi-
nating power. Hence, it indicates how good this EP is.
The fitness function of an EP (growth rate) is defined
by equation 2.

The fitness function of a data instance can be meas-
ured by the average support of the attribute values in
this instance. Suppose that we have an instance I {a1,
a2, a3, ... an). We first find the supports of all the attrib-
ute values (from a1 to an). Then we average these sup-
ports to obtain a measure that tells how good the in-
stance is. This fitness function is defined by equation 3.

n

as
IFitness

n

i
i∑

== 1
)(

)((3)

We use this function to choose the best-quality in-

stances to be used in the generating process (constraint
2). Moreover, we use it to evaluate (keep or discard)
the instances generated by our proposed methods (con-
straint 3).

4 Experimental Evaluation

In order to investigate the performance of our proposed
system, we carry out a number of experiments. We use
30 datasets from UCI repository of machine learning
databases [5]. We also use C4.5, boosting (C4.5), and
SVM [6] as base learners. The testing method is strati-
fied 10-cross-validation. Each experiment is carried out
as follows:
• Run a base learner {M}.
• Apply method 1 (generation by superimposing

EPs) and run the base learner {M1}.

I1 a1 a2 a3 a4 a5 a6 a7
e e2 e3 e4

I2 a1 e2 e3 a4 a5 e4 a7

I1 a1 a2 a3 a4 a5 a6 A7

Random binary
number 1 0 0 1 0 1 1

Highest-growth-
rate values v1 v2 v3 v4 v5 v6 v7

I2 v1 a2 a3 v4 a5 v6 v7

483

• Apply method 2 (generation by crossover) and run
the base learner {M2}.

• Apply method 3 (generation by mutation) and run
the base learner {M3}.

• Apply method 4 (generation by mutation and EPs)
and run the base learner {M4}.

• Apply the union of the four methods and run the
base learner {M*}.
The last method (M*) is explained as follows. We

use our four methods (presented in section 3) to gener-
ate more training instances. We use the fitness func-
tion (presented in subsection 3.6) to evaluate the gener-
ated instances and choose the best instances resulted
from the four methods.

The results of our experiments are shown in tables 2,
3, and 4. Taking into consideration that no classifica-
tion method can outperforms all others in all datasets,
and that different classifiers deal differently with a
dataset, we can draw some interesting points from re-
sults as follows:
• Using C4.5, M3 wins on 8 datasets, M* wins on

7 datasets, M1 wins on 6 datasets, M4 wins on 4
datasets, M2 wins on 3 datasets, and M wins on 2
datasets.

• Using boosting (C4.5), M1 wins on 8 datasets, M*
wins on 6 datasets. M3 wins on 5 datasets, both
M2 and M4 win on 4 datasets, and M wins on 3
datasets.

• Using SVM, M* wins on 8 datasets, Both M1 and
M3 win on 6 datasets, M2 wins on 5 datasets, M4
wins on 3 datasets, and M wins on 2 datasets.

• Considering the three classifiers, M*, M1, and M3
are the most powerful methods as they win on 21,
20, and 19 cases, respectively. M2 wins on 12
cases, M4 wins on 11 cases, and M wins on 7
cases.

• Our approach as a whole (considering the winning
method for each dataset) outperforms the base
learner in 28 datasets out of the 30 datasets used
in our experiments. This significant result is
achieved in the three sets of experiments (C4.5
experiments, boosting experiments, and SVM ex-
periments).

• In terms of the average accuracy, M* outperforms
all other methods using the three classifiers.

• Our proposed methods increase the accuracy sig-
nificantly in some cases. For example, the in-
crease in C4.5 experiments is up to 5.6% (Hayes-
roth dataset). In boosting experiments, the in-
crease is up to 5% (Pima dataset). In SVM ex-
periments, the increase is up to 4.1% (Iono data-
set).

5 Conclusions

In this paper, we propose a new approach to expand the
training data space. Our approach, called ETDS,
introduces the idea of generating new training instances
using emerging patterns (EPs) and genetic methods
(GMs). It uses the advantage of EPs, which have a
strong discriminating power, and GMs, which have a
great reproduction ability, to expand the training data
space by generating new instances for the training set.
We introduce four methods to acheive this aim. We ex-
perimentally demonstrate that our approach has a great
impact on improving the results of other classification
methods such as C4.5, boosting, and SVM. Further-
more, our approach can be thought of as an avenue to
extend the applications of EPs and GMs to cover a wide
range of problems in data mining.

Table 2: Results of C4.5 experiments
C4.5 Dataset M M1 M2 M3 M4 M*

Adult 86.1 88.3 87.2 87.7 86.4 87.8
Australian 84.3 84.9 85.7 84.4 83.9 86.9

Breast 94.6 96.3 94.6 95.1 95.9 95.9
Cleve 73.8 72.6 73.2 74.9 74.6 74.8

Credit card 85.3 86.4 85.2 86.7 87.2 86.9
Crx 85.3 85.8 85.1 83.7 84.6 85.5

Diabetes 73.4 71.6 71.8 72.8 72.2 74.7
Flags 57.5 59.3 59.7 57.9 57.1 59.3

German 69.6 69.9 70.2 71.3 70.6 72.6
Glass 64.7 66.2 64.9 64.1 65.3 66.1

Hayes-roth 70.2 70.7 72.5 75.3 75.8 75.5
Heart 80.6 81.1 80.4 81.3 80.9 81.1

Hepatitis 81.8 80.9 80.2 81.7 82.6 82.4
Horse 85.2 85.4 85.4 85.9 85.7 85.6
Hypo 99.3 97.2 98.1 96.8 98.4 99.4
Iono 89.4 88.6 89.5 89.1 89.8 91.1

Labor 76.9 76.2 77.3 77.8 76.9 77.5
Liver 58.1 59.3 59.8 58.5 61.3 60.6

Machine 87 87.5 89.5 89.2 88.4 89.2
Pima 74 76.2 74 73.4 74.7 76.1

Segment 93.5 93.6 92.7 94.8 94.1 94.4
Sick 98.7 97.5 97.7 98.9 98.1 98.6

Sonar 75.3 76.8 76.3 77.6 75.4 77.4
Staimage 85.2 84.7 85.5 86.1 84.9 85.8

Tic-tac-toe 84.2 86.5 88.1 84.6 87.1 87.8
Vehicle 71.2 72.8 69.5 70.2 70.7 72.9
Votes 77.8 78.9 77.4 78.5 78.1 78.8
Wine 84.2 85.6 83.1 84.8 85.2 85.9
Yeast 49.9 48.1 48.5 49.4 48.6 49.7
Zoo 93 91 89 91 90 92

Average 79.67 79.99 79.73 80.11 80.15 82.50

484

Table 3: Results of boosting experiments

Boosting(C4.5) Dataset M M1 M2 M3 M4 M*
Adult 86.6 88.7 86.9 86.1 87.3 88.6

Australian 82.3 83.4 81.9 84.1 83.1 83.8
Breast 95.9 97.1 96.3 95.7 96.3 96.9
Cleve 80.8 79.9 81.2 79.2 83.1 82.7

Credit card 84.9 86.4 84.4 85.6 85.1 85.7
Crx 82.8 83.2 83.7 82.8 82.4 83.5

Diabetes 72 72 72.8 72.3 72.2 72.4
Flags 54.9 57.8 55.1 55.3 57.2 57.7

German 71.8 73.1 71.2 73.3 72.4 72.8
Glass 74.1 74.9 76.5 74.3 75.2 76.4

Hayes-roth 78.3 79.5 78.5 78.5 78.1 79.7
Heart 76.2 77.4 76.5 79.2 77.2 78.9

Hepatitis 79.2 79.7 80.5 81.3 80.1 82.4
Horse 82.2 82 81.9 82.2 84.3 84.1
Hypo 98.9 98.1 98.5 98.1 97.3 98.8
Iono 92 89.8 91.5 87.7 89.2 92.7

Labor 82 82.6 84.1 84.8 82 84.6
Liver 61 61.5 60.7 60.4 61.3 61.4

Machine 90.2 92.6 90.9 90 90.9 92.4
Pima 71.5 75.2 73.3 75 73.7 76.5

Segment 94.8 94.2 95.2 94.9 96.3 97.7
Sick 98.7 98.6 98.1 98.9 98.4 98.7

Sonar 78.2 78.7 79.2 78.1 79.5 79.4
Staimage 85.9 86.2 86.5 85.4 86.7 86.5

Tic-tac-toe 95.4 97.8 94.9 94.4 95.3 97.5
Vehicle 73 73.5 74.2 73.5 73.7 75.3
Votes 77.9 79.1 76.8 78.6 78.2 78.8
Wine 91.5 90.1 92.7 91.8 91.8 92.6
Yeast 50.2 49.3 48.6 48.3 48.2 48.9
Zoo 98 95 95 91 93 97

Average 81.37 81.91 81.58 81.36 81.65 82.81

Table 4: Results of SVM experiments
SVM Dataset M M1 M2 M3 M4 M*

Adult 87.1 86.7 85.3 86.2 85.3 87.5
Australian 85.1 86.8 84.6 85.9 86.2 86.6

Breast 95.9 94.6 95.5 95.1 94.3 95.7
Cleve 84.4 86.3 85.1 85.8 84.2 86.7

Credit card 84.6 85.1 84.3 85.9 85.1 85.8
Crx 84.7 85.2 84.2 84.9 84.9 84.9

Diabetes 72.8 73.6 72.8 72.9 73.2 73.3
Flags 60.6 59.2 60.1 59.2 57.7 59.9

German 74.6 74.7 74.1 75.9 75.1 75.7
Glass 75.7 76.1 75.1 75.8 76.9 77.8

Hayes-roth 84.7 84.1 85.6 86.1 85.2 86.9
Heart 85.1 86.7 84.3 84.6 84.3 86.5

Hepatitis 83.3 82.9 85.2 82.9 83.7 84.8
Horse 86.9 86.4 86.3 87.7 87.5 87.5
Hypo 98.9 97.7 98.9 98.9 99.2 98.9
Iono 88.5 89.3 91.1 89.5 88.7 92.6

Labor 97.4 97.6 97.1 97.9 96.4 97.6
Liver 66.8 67.1 66.5 66.5 65.8 66.8

Machine 93.7 93.5 93.1 92.8 92.4 93.8
Pima 73.6 74.2 75.8 74.5 73.9 75.7

Segment 95.5 95.9 97.1 95.9 95.6 96.9
Sick 93.9 95.4 94.3 94.3 93.2 96.6

Sonar 77.7 78.3 78.2 78.9 77.3 78.6
Staimage 86.7 87.3 88.8 87.7 86.7 88.2

Tic-tac-toe 98.3 98.8 98.3 98.1 97.4 98.7
Vehicle 68.5 68.8 69.9 68.8 66.1 69.8
Votes 64.7 64.1 64.7 65.6 65.4 65.9
Wine 95.4 94.2 95.1 97.1 95.9 96.9
Yeast 52.7 51.5 52.1 52.7 52.9 52.7
Zoo 97 93 92 92 98 97

Average 83.16 83.17 83.18 83.33 82.95 84.21

References

[1] H. Alhammady, and K. Ramamohanarao. The
Application of Emerging Patterns for Improving
the Quality of Rare-class Classification. In Pro-
ceedings of 2004 Pacific-Asia Conference on
Knowledge Discovery and Data Mining
(PAKDD '04), Sydney, Australia.

[2] H. Alhammady, and K. Ramamohanarao. Using
Emerging Patterns and Decision Trees in Rare-
class Classification. In Proceedings of the Fourth
IEEE International Conference on Data Mining
(ICDM ’04), Brighton, UK.

[3] H. Fan, and K. Ramamohanarao. An Efficient
Single-Scan Algorithm For Mining Essential
Jumping Emerging Patterns for Classification. In
Proceedings of 2002 Pacific-Asia Conference on
Knowledge Discovery and Data Mining
(PAKDD '02), Taipei, Taiwan.

[4] G. Dong, and J. Li. Efficient Mining of Emerg-
ing Patterns: Discovering Trends and Differ-
ences. In Proceedings of 1999 International Con-
ference on Knowledge Discovery and Data
Mining (KDD '99), San Diego, CA, USA.

[5] C. Blake, E. Keogh, and C. J. Merz. UCI reposi-
tory of machine learning databases. Department
of Information and Computer Science, University
of California at Irvine, CA, 1999.
http://www.ics.uci.edu/~mlearn/MLReposito
ry.html.

[6] I. H. Witten, E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, San
Mateo, CA., 1999.

[7] Z. Michalewicz. Genetic Algorithms + Data
Structure = Evolution Programs. Springer-
Verlag, Berlin, 1996.

[8] M. Obitko, and P. Slavik. Visualization of Ge-
netic Algorithms in a Learning Environment. In
Proceedings of 1999 Spring Conference on Com-
puter Graphics, (SCCG '99). Bratislava, Slovakia.

485

Making Data Mining Models Useful

to Model Non-Paying Customers of Exchange Carriers

Wei Fan1 Janak Mathuria2 Chang-tien Lu2

1 IBM T.J.Watson Research Center, Hawthorne, NY 10532

weifan@us.ibm.com

2 Virgia Tech Northen Virginia Center, Computer Science, Church Falls, VA 20043

{janakm, ctlu}@vt.edu

Abstract

Due to both limitations of technologies and the nature
of the problems, data mining may not be able to solve a
problem completely in a way as one wishes. When this
happens, we need to first understand the actual need
of business, characteristic of available partial solution,
and then make compromises between the technology so-
lution and business needs. A majority of the papers
published in data mining conferences and journals seem
to concentrate only on the success side of the story. In
this paper, we discuss our experiences and the complete
process from near failure to success when applying in-
ductive learning techniques to predict non-paying cus-
tomers of competitive local exchange carriers (CLEC’s),
currently at 20%. Experiments with a number of state-
of-the-art methods and algorithms found that most cus-
tomers were labeled as paying on time. Cost-sensitive
learning is not possible since the target company can-
not define a cost-model. Finally, after discussing with
the billing department, a compromised but still useful
solution is to predict the probability that someone will
default. The billing team can use the predicted score
to prioritize collection efforts as well as to predict cash
flow. We have found that two randomized decision tree
ensemble methods (Fan’s random decision tree and a
probabilistic extension of Breiman’s random forest) are
consistently more accurate in posterior probability esti-
mation than single decision tree based probability cal-
ibration methods. The software, both Fan’s RDT and
probabilistic extension of random forest, as well as a
longer version of this paper will be made available by
the contacting author.

1 Introduction

The enactment of the US Telecommunication Act of
1996 has separated infrastructure provider and service
provider in order to break up monopoly and create
more competitive market for consumers. With this act,

a service provider to consumer is not necessarily the
owner of the physical infrastructure, and an infrastruc-
ture provider can lease their lines to multiple service
providers. A consumer can choose among many com-
peting serve providers without knowing about the un-
derlying infrastructure. After this act was implemented,
two kinds of telecommunication companies were cre-
ated: ILEC and CLEC. ILEC is short for Incumbent Lo-
cal Exchange Carrier. An ILEC is a telephone company
that owns the infrastructure (phone lines, switches, etc)
and may also provide local service to end users. An
example of ILEC is Verizon. CLEC is short for Com-
petitive Local Exchange Carrier, a telephone company
that does not own any infrastructure but rents the in-
frastructure from an incumbent local exchange carrier
(ILEC) and provides services. An incomplete list of
CLEC’s include Paetec, CBeyond, Alligance, X0, Level
3, and Cypress Communications. There has been an
explosion in the number of CLEC’s since 1996. As com-
pared to Incumbent Local Exchange Carriers (ILEC’s),
CLEC’s have always been more susceptible to the risk
of a very high level of Days Sales Outstanding (DSO)
and customer non-payment (at approximately 20%).

We were approached by one CLEC company to
build a model to predict which customer will default.
It is important to distinguish between two important
concepts: “late in payment” and “default”. Assume
that the closing date of a CLEC company is always on
the 1st of the month and the due date is always on
the 21st of the same month, and someone does not have
any previous balance. The customer receives his current
month’s statement with the closing date of March 1st.
The current amount due is the total charge incurred
during the previous billing period from Feb 2nd to
March 1st. If he pays this due amount by the 21st,
the account is considered “current”. However, if the
due amount is not paid in full by March 21st but before
the next due date of April 21st, the account is marked

486

as late in payment. If by the next due date of April
21st, the due amount by March 21st is still not paid in
full, the account will be labelled as “default”. Besides
possibly reporting to a credit agency, there is almost
nothing a CLEC company can do to a late customer
(but not default) since the customer is granted a grace
period of 30 days before being labelled as defaulted.
Even a customer is defaulted, CLEC companies are
required under law to send letters out and wait for the
customers to remain defaulted for 3 full months before
the company are legally allowed to cut off service and
submit the case to a third party collection agency.

2 Problem Description and Modeling

The back office database of the target company collects
call detail history as well as billing and payment history
of each customer. The task is simply stated as to
“predict if a customer will default in 60 days on the
current month’s due solely based on the available billing
and calling history”. Ideally, all available history for a
particular customer could be used to train the predictive
model. However, this may be not be necessary and
practical for the billing department. When a customer
does not pay for the due amount for three consecutive
months, by law, the company can cut off the service and
refer the case to a collection agency. Different customers
have been with the company for different amount of
time, hence there is different amount of information
to mine for each customer. In the same time, the
target company only has limited database capability
and cannot afford large number of sophisticated queries.
In the end, the billing department agrees that four
months of data is feasible for them and useful under
“legal terms”. Assuming that it is currently in March,
we use the history data from Dec to March to predict
if someone will default in May (or in 60 days from
March). We define the following 16 features for each
of the four months queried from the database. It is very
important to point out that one of these features (the
amount outstanding in the >60 days aging bucket) is to
label which customer defaults and cannot be used for
training.

• Billing Balance Related Features

1. The amount outstanding in the past 0-30 days.
2. The amount outstanding in the 31-60 days.
3. The amount outstanding > 60 days.

• Call Profile Related Features

4. The non-usage revenue for this month.
5. The total number of local calls.
6. The total number of long distance (LD) calls. Long

distance calls includes regional toll, inter-state calls
and international calls. Long distance calls are gener-
ally more expensive than local calls.

7. The revenue from local calls.
8. The revenue from LD calls.
9. The number of local calls to the 5 most called local

numbers
10. The number of LD calls to the 5 most called LD

numbers
11. The total amount of local revenue from the calls to

the top 5 local numbers.
12. The total amount of LD revenue from the calls to the

top 5 LD numbers.
13. The number of after hours local calls. After hour calls

are defined as calls originating on weekends or between

6 PM to 8 AM on weekdays.
14. The number of after hours LD calls.
15. The revenue from after hours local calls.
16. The revenue from after hours LD calls.

3 Initial Trial, Error, and Failure Experiences

At the start of the project, the billing department aims
to catch as many default customers as possible without
incurring a large number of false positives. Since
the dataset is not skewed at all (approximately 20%
non-paying customers), we experimented with decision
trees (both commercial C5.0 and free C4.5), naive
Bayes, Ripper, Bagging on C4.5, numerical version of
AdaBoost on C4.5, and Random Forest (with subset
ratio of 0.5). We used the first half of the data
(from early months) as training and the remaining half
of the data (belonging to later months) for testing.
Unfortunately, all these methods nearly predict every
customer as “paying on time”. Detailed results can
be found in the long version of this paper available
upon request from the contacting author. As a twist
to the traditional solutions that minimize traditional
0-1 loss, a different approach is to use “probability
output” instead of class label output. Probability is
a rather continuous output and we may be able to
choose a decision threshold with reasonable true and
false positive rates. For decision trees, assuming that nc

is the number of examples with class c in a node, and n

is the total number of examples in the same node, then
the probability that x is a member of class c is simply

P (c|x) =
nc

n
(3.1)

Figure 1: Complete ROC of Single Decision Tree that
outputs probabilities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve

False Positive

single+

487

Assuming that t is a decision threshold to predict x as
class c, i.e., P (c|x) ≥ t. Since there are limited number
of nodes in a decision tree and each node can output
just one probability value for any examples classified
by this node, the probability output by decision trees
is not completely continuous, and the resultant ROC
plot is not continuous either. We draw a complete ROC
plot to study if the use of probability will improve the
performance. To draw a complete ROC plot, we track
all unique probability output of a model and use these
values as the decision threshold t. However, as shown in
Figure 1, the single tree’s performance is only slightly
better than that of random guessing.

Re-evaluate the Empirical Need We experi-
mented with feature selection and a few other variations
of feature vector, none of them seemed to help. We re-
alized that these results may just be the fact of this par-
ticular problem. Some problems are simply stochastic,
or the true model will produce different labels for the
same data item at different times. When this happens,
we will never be able to have 100% accurate model.
The best we can do is to predict the label that happens
the most often under traditional 0-1 loss, or the label
that minimizes a given loss function under cost-sensitive
loss. In order to make the model useful, we spoke to the
billing department and were told that the cost model
would be very difficult to develop and will probably be
over simplified. However, a reliable score that predicts
the true probability that someone will default in two
months will help both the billing department and the
Chief Financial Officer. For the billing department, if
the probability output of a model is a reliable estimate
of the true probability, it will help the collection team to
better prioritize on which customers to expend their ef-
forts when the predicted default customers become late
in payment. As mentioned above, CLECs only have
limited staff and resources for their collection efforts.
Often, when presented with a large list of customers
who are late in making their payments, the collection
team has very little way of knowing which customers
to contact first and very little hope of reaching each
and every customer. Focusing on the customers most
likely to fall substantially behind on paying their dues
would help in preventing outright default in many cases
or in cases when this is inevitable, would at least help
the company minimizing losses by discontinuing services
at the earliest. For the CFO, the estimated probabil-
ity can be used to compute expected cash flows in two
months. If an account has an outstanding balance of
$100 and a 30% chance to default, the expected pay-
ment from this account in two months will be $100 ×
0.7 = $70. We sum up over all the outstanding balances
and will have a good estimate of actually payment in two

months. We experimented with three methods to esti-
mate the posterior probability, including Fan’s random
decision tree [Fan et al., 2003], a variation of Breiman’s
random forest [Breiman, 2001], the set of calibrated sin-
gle decision tree probability methods by Zadrozny and
Elkan [Zadrozny and Elkan, 2001].

4 Estimating Posterior Probabilities

We have considered the following methods to estimate
posterior probability.

Fan’s Random Decision Tree Random Deci-
sion Trees or RDT was originally proposed by Fan
in [Fan et al., 2003]. The idea of RDT exhibits signifi-
cant difference from the way conventional decision trees
are constructed. RDT constructs multiple decision trees
randomly. When constructing one particular tree, con-
trary to the use of purity check functions by traditional
algorithms, e.g., information gain, gini index and oth-
ers, RDT chooses a remaining feature randomly. A dis-
crete feature can be chosen only once in a decision path
starting from the root of the tree to the current node.
A continuous feature can be chosen multiple times in
the same decision path, but each time, a different de-
cision threshold is chosen. The tree stops growing if
either the current node becomes empty or the depth of
the tree exceeds some predefined limit. Since both fea-
ture and decision threshold for continuous features are
chosen randomly, random decision trees constructed at
different times are very likely to be different. If either
every features is categorical or continuous features are
discretized, the number of different random trees are
bounded. When there are continuous features and ran-
dom decision threshold is picked, the number of different
random trees is potentially unlimited. The depth of the
tree is limited to be up to the number of features in or-
der to give each feature equal opportunity to be chosen
in any decision path.

During classification, each random tree computes a
posterior probability from the leaf node as shown in Eq
3.1. The posterior probability outputs from multiple
decision trees are averaged as the final probability
estimation. In order to make a decision, a well-defined
loss function is needed. For example, if the loss function
is 0-1 loss or traditional accuracy, the class label with
the highest posterior probability will be predicted. As
stated in [Fan et al., 2003], typically 30 random trees
should give satisfactory results and more trees may
not be necessary. However, experimental studies have
shown 10 random trees produce results that sufficiently
close to that of 30 random trees. Although quite
different from well-accepted methods that employ purity
check functions to construct decision trees, random
trees have been shown to have accuracy comparable

488

to or higher than bagging and random forest but at a
fraction of the training cost, and has been independently
implemented and confirmed separately by Ian Davidson
and his student, Tony Fei Liu and Kai Ming Ting, Ed
Greengrass, Xinwei Li and Aijun An.

Probabilistic Extension of Breiman’s Ran-

dom Forest Random forest [Breiman, 2001] introduces
randomness into decision tree by i) training multiple
trees from boostraps and ii) randomly sampling a subset
of remaining features (those not chosen yet by a deci-
sion path) and then choosing the best splitting criteria
from this feature subset. The chosen size of the sub-
set is provided by the user of random forests. Random
forests performance simple voting on the final prediction
the same way as bagged decision trees. In this paper,
we propose a probabilistic variation of random forest.
Instead of training from bootstraps and predicting class
label as in Breiman’s random forest, each tree in our
version is trained from the original dataset, and out-
puts posterior probability. Similar to random decision
trees, the probabilities from all trees in the forest are
averaged as the final probability output. Our variation
is called Random Forest+.

Zadrozny and Elkan’s Calibrated Probabil-

ities for Decision Trees Raw probability or origi-
nal probability of decision trees is defined in Eq 3.1.
Smoothed probability considers the base probability
in the data and is defined as: P (c|x) = nc+m·b

n+m
,

where b is the base rate of positive examples in
the training set (i.e., 20% for our data) and m

is chosen to be 100 (suggested by Zadrozny and
Elkan [Zadrozny and Elkan, 2001]). Curtailment stops
searching down the tree if the current node has less
than v examples and uses the current node to com-
pute probabilities. As discussed and suggested in
[Zadrozny and Elkan, 2001], the exact value v is not
critical if v is chosen small enough. We have used
v = 100 in our experiments. Curtailment plus smooth-
ing is a combination of curtailment and smoothing.

5 Experiments

Since the problem is time-sensitive in nature, the train-
ing set ought to be taken from earlier months while
the testing set ought to be taken from remaining later
months. Traditional CV is not entirely applicable for
this situation. Instead, we use different amount of train-
ing and testing data: 50% training- 50% testing, 15%
training - 85% testing, as well as 85% training - 15%
testing. This will not only give us an idea of the perfor-
mance on different datasets as well as different amount
of data.

Figures 2 to 4 show the “reliability plot” of
ensemble-based methods and calibrated decision tree

Figure 2: 50% Training and 50% Testing

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Random Tree (b) Random Forest+

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Raw Probability
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Raw Probability (b) Curtailment

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(c) Laplace Smoothing (d) Curtailment + Smoothing

methods under three combinations of training and test-
ing data sets. “Reliability plot” shows how reliable the
“score” of a model is in estimating the empirical prob-
ability of an example x to be a member of a class y. To
draw a reliability plot, for each unique score value pre-
dicted by the model, we count the number of examples
(N) in the data having this same score, and the number
(n) among them having class label y. Then the empir-
ical class membership probability is simply n

N
. Most

practical datasets are limited in size; some scores may
just cover a few number of examples and the empirical
class membership probability can be extremely over or
under estimated. To avoid this problem, we normally
divide the range of the score into continuous bins and
compute the empirical probability for examples falling
into each bin. In Figures 2 to 4, the percentage of fea-
tures sampled by Random Forest+ is 50%, In the ex-
tended version of this paper, we have results to sample
different percentage of features and 50% appears to be
the most accurate.

Comparing different methods for different combina-
tions of training and testing data size, random decision
tree and random forest+ are the most reliable and sta-
ble methods, as shown in the top two plots of Figures 2
to 4. Their probability estimation is insensitive to the
amount of training data, i.e., 15%, 50% or 85%. The
four calibrated decision tree methods (the bottom four

489

Figure 3: 15% Training and 85% Testing

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Random Tree (b) Random Forest+

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Raw Probability (b) Curtailment

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(c) Laplace Smoothing (d) Curtailment + Smoothing

plots in Figures 2 to 4) appear to be very sensitive to
the amount of training data. When the training data
size is small, 15% in our experiment or approximately
670 data items, all other method except for random de-
cision tree and random forest appears random and do
not a clear pattern patterns. However, when the train-
ing data increases to 85%, every tested method appear
to have a pattern that is well correlated with the perfect
line.

6 Conclusions

In this paper, we formulated the problem to mine de-
faulted customers for competitive local exchange carri-
ers or CLEC. We discussed the empirical importance,
i.e., managing collection efforts as well as projecting
cash flow, of this effort for the survival of these com-
panies. We detailed the complete feature construction
process to model the calling, billing and payment his-
tory from back office raw data. We also addressed the
important problem of how to make a data mining model
useful for a business based on the nature of the problem
and the actual performance of a mined model. We eval-
uated many methods and found that the most success-
ful method is to use random decision and random forest
plus to estimate the true probability that a customer
will default. The probability estimation by both meth-
ods have been found to be reliable under two different

Figure 4: 85% Training and 15% Testing

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Random Tree (b) Random Forest+

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(a) Raw Probability (b) Curtailment

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

Reliability Plot
Perfect line

(c) Laplace Smoothing (d) Curtailment + Smoothing

customer groups and very different amount of training
data. This solution helps the CLEC in two important
ways. The predicted score prioritizes the collection ef-
fort by the billing company. The product of the due
amount by the probability of default gives a good esti-
mate of the cash flow in the future. In the algorithm
part of this paper, we find that both random decision
tree and random forest plus are reliable and stable in es-
timating probabilities even when the amount of data is
extremely small. However, single decision trees are ex-
tremely sensitive to the amount of training data. When
the data is small, their probability output are close to
random, which prohibits the application of Zadrozny
and Elkan’s calibration methods.

References

[Breiman, 2001] Breiman, L. (2001). Random forests. Ma-
chine Learning, 45(1):5–32.

[Fan et al., 2003] Fan, W., Wang, H., Yu, P. S., and Ma,
S. (Nov 2003). Is random model better? on its accu-
racy and efficiency. In Proceedings of Third IEEE In-
ternational Conference on Data Mining (ICDM-2003),
Melbourne, FL.

[Zadrozny and Elkan, 2001] Zadrozny, B. and Elkan, C.
(2001). Obtaining calibrated probability estimates
from decision trees and naive bayesian classifiers. In
Proceedings of Eighteenth International Conference on
Machine Learning (ICML’2001).

490

������ ���	�����
��
�� ���	������
� ��� ��� ���������� ��	 ������� ���������

������ !� " # $�� %�&� '
()*&+�,)�� -. /-,*��)+ �0�)�0) " 1��2)+3��4 -. 5)���064"

7)8 �� �-� " 59 :;<;=>;;:= " 1�?

@ABCDEFC
GHIJKLKHI IMNOPQ HR S N SLQKT KU SI KNVHQLSIL N PSUMQP KI
IMNPQKWSX SISXYUKU SIJ XKIPSQ SXZPOQS [\]P ZPIPQSX SVVQHSW]
LH HOLSKI KIZ KL KU L]QHMZ] JKQPWL WHNVMLSLKHI HQ PULKN SLKHI [
\]P LKN P SIJ NPNHQY WHUL HR UMW] SVVQHSW]PU SQP ^PQY]KZ] _
PUV PWKSXXY RHQ XSQZP UK`P N SLQKWPU [aP VQHVHUP S LHLSXXY JKbPQc
PIL SVVQHSW] LH PULKN SLKIZ L]P WHIJKLKHI IMNOPQ HR S UVSQUP
N SLQKT [\]SL KU _ SRLPQ WHNVMLKIZ L]P RPSLMQPU HR S N SLQKT _ dP
MUP UMVVHQL ^PWLHQ QPZQPUUKHI efgh i LH VQPJKWL KLU WHIJKLKHI
IMNOPQ [aP SXUH MUP RPSLMQP UPXPWLKHI ULQSLPZKPU LH RMQL]PQ
QPJMWP L]P QPUVHIUP LKN P SIJ KNVQH^P SWWMQSWY[aP JPc
UKZI S RPSLMQP UPXPWLKHI WQKLPQKHI d]KW] WHNOKIPU L]P dPKZ]LU
RQHN fgh d KL] L]P dPKZ]LU RQHN WHNVSQKUHI HR N SLQKWPU d KL]
L]PKQ VQPWHIJKLKHIPJ WHMILPQVSQLU [jMQ VQPXKN KISQY PTVPQKc
N PILU U]Hd L]SL L]P QPUM XLU SQP PIWHMQSZKIZ [
klm nopqr s WHIJKLKHI IMNOPQ _ UMVVHQL ^PWLHQ N SW]KIP _
RPSLMQP UPXPWLKHI _ VQPWHIJKLKHIKIZ

t uvCDwxyFCzwv
{|} ~�������� ����}� � �� � �� � ����������� � �����
� � ��| �}��}~� �� � ������ ���� �� ���� ���� �}��}�
�� ��� �� � ��� �� ��� �� �| �� ���}� � �} ���� ���}�� �� �|}
~�������� ����}� ~���}�������� �� ������ �� �� � � ��
� �� � �� �}�����}�� �� ��� � �|}� �|} � ����� � �� ~���}� �
 ¡¢ ¢£¤¥¦§¨©¨¥¦ ¡§ ª «©¬¨­ � ��� �� � �� � �� ����} � �|}� � ��
�� ¨¢ ¢£¤¥¦§¨©¨¥¦¡§ ª «©¬¨­ � ®�������� ����}� �� � � ��}��
��}� ������ �}����} �� � ��� ��}�� � ��~| �� �� ���}��~��
�������� ��� ���}�� ���}��� � {|}�} ��} �}�}��� ���� ��
������ �|} ~�������� ����}� �� � ������ � {|} ���}~�
�}�|�� �� �� ~�����} � �� ���� ��� �|}� �������� ���
���� � ��| �|} ���� �� � � ¯��}�}� � ~�������� � �� �

°±²³ ´³µ³¶´·² ¸¹´º ¹» ¼ ½ ¾¿ ¸¶µ µ¿ÀÀ¹´Á³Â ÃÄ Å¼Æ ¿ÇÈ
Â³´ É´¶ÇÁ ÊËÌÈÍÎÏÐÎÑÍ ½ ÒÈÓ ¶ÔÕ Ö µ×¿ÎØ¿ºÄ½³Â¿ Ù ÚÌÛ Ö
²ÁÁÀ ÖÜÜ¸¸¸ ½·µ´ ½¿ºÄ½³Â¿ÜÝµ×¿Î ½ÞË¹´´³µÀ¹ÇÂ³ÇÁ ½ ±²³ ´³µ³¶´·² ¸¹´º ¹» ß ½ à²¶ÇÉ ¸¶µ µ¿ÀÀ¹´Á³Â
ÔÇ À¶´Á ÃÄ Å¼Æ ¿ÇÂ³´ É´¶ÇÁµ ËËÌÈÍÍáÎâÏÎ ¶ÇÂ ÊËÌÈÍÎÍÎáÏÐ Ù
ÃÄ ãäÒ ¿ÇÂ³´ É´¶ÇÁ ãÒÈÆåÍÎÈÍÎÒÌÐâáæ çÙ ¶ÇÂ ÃÄ Á²³ ÚÇÔè³´È
µÔÁÄ ¹» é³ÇÁ¿·ºÄ Æ¶·¿ÕÁÄ Ì³µ³¶´·² ¼¿ÀÀ¹´Á ê´¹É´¶Ó ½ ÒÈÓ ¶ÔÕ Ö
ë ì²¶ÇÉØ·µ ½¿ºÄ½³Â¿ Ù ÚÌÛ Ö ²ÁÁÀ ÖÜÜ¸¸¸ ½·µ ½¿ºÄ½³Â¿ÜÝë ì²¶ÇÉ ½

��� }�}� �|} �����}�� � ����� ���� � �� �|�}} ��� }� ��
}��}����} �� ������� �í î ï �� �|} ���� ���~} � ð���|}�
� }�|�� �� ����� � �}�� }��}����} �������|� �� }���� ��}
�|} ~�������� ����}� � {|}�} ��} ��� } }���� �����
�������|� � �� ���}�����} ñòó � ô�� }�����} � õðöð®÷ ��}�
���������} øùú®ûü �� ~�����} �|} ~�������� ����}� �
��� ��� } ~��� �� ý �þÿ � }���� �}���� �|} ý �þ � � ~��� ��
������� �í î ï � �|}�} þ �� �|} ��� }����� �� � � �� �|}
���} �� �|} � ����� �� �}�����}�� ����} �} �� �� þ � ò����� �
�|} � }���� � ��� � } �}��}�}� �}���} �|} ~���������� ��
~����}�}� �� ��� ø��� ���} ��� ���� �������� � �� ����
~��}� � �|} }���� ��}� ~�������� ����}� �� � ��|�� � ��~���
�� �� �� �|} ���} ~�������� ����}� � ��� �|}�} }���� ��� }
~����}��}�����}� � ��| ����} }���� ����� }����� �

�} ������} � �}� ������~| �� }���� ����� �|} ~���
������ ����}� �� � �	 «¬�¡ � ����� � ��}��~���� ~��������
����}� ���� ������ �}����}� ����� ���� � �� ��� �}~|�
� �
�}� � {|} ��}��~��� ��}� �� ø�� �}��}����� �ø�
 �
ñ� � ��ó � �} ���� ����� ��� } �}����} �}�}~���� � }�|���
ñ�� �ó �� ����|}� �}��~} �|} ��� } ~��� ��� ������} ��}�
~����� � {|} � }�|�� ������}� �� }�� }~����� �� �����} ���
�������� �� �����} ~�������� ����}�
�}�� ����}� � {|}
����� ��� �� ø�
 ~�� �} ���} �� ��~������� � �|�� �|} �}�
�����} ��� } ���� ��~���}� �|} ��� } �� ~�����} � �����
�}����}� ��� ��}��~� �|} �}���� �|����| �����}� ���}� �
�|�~| �� ��~| ����}� �|�� ����� �|} ����������� � }�|���
� }�����}� ����} �

� ��� ���D�BBzwv
ø�� �}��}����� �� �� ������~| �� ��}��~���� �}�������}�
������� � �� ��ø� �}��}����� ñ��ó � �|} ���� �� �� ��� �
���~���� � �í � �|�� |�� �� ���� � �}������� ���� �|}
�~������ ������}� ����}�� �� ��� ��� �|} �������� ���� � ���
�� �|} ��� } ��� } �� �� ��� �� �������} ñ� ó � {|} �����}�
~�� �} ���������}� �� �|} ������ ��� ~���}� ����� �������
�����}� �

� ���� ��} �
ò � � �ÿ ! "#�$ �

�%� % &� � '

491

��� � }~� ��
����
���
��� � � ' í � � �ï � � %� '� � ' í � � ï � �� � � % &� '%� ' % &� � � '! � � '

�|}�} ! �}�}�� ��}� �|} ����}��� �}��}}� �|} ����}�� ��
� �í � ��� �|} ������ �� �� �|�~| �}������� ����}� �|�� �
�� ���}���}� � %� ��� % &� ��} ���~� �������}� �~~������� ���
}����� � ÷}��}� ���~����� ��} �����}� �� � �� ����� ���~}
���� ��� } �}����} ���~} � {|} ~������� ��}� �}��}�
���~����� ��} � ö������ ��� �}��}� � 	 �í ' í � � î �� í ' í � �

�� '
�ô �}��}� � 	 �í ' í � � î ��

����

���� ' ��� ü}����
ü}����� �}��}� � 	 �í ' í � � î ���| �� � í ' í � � � � �
� � ECDz� ��ECyD� ��CDEFCzwv
{|} �}����}� �� � ������ ��}� ��} ���}~��� �}���}� �� �|}
��}~����� �� �|} ��}��~���� ����}� � �} � ��� ~�����} �|}
�}����}� �� � � ����� ���� ��� �|}� ��} ��~| ������ �����
�� ��}��~� ��� ~�������� ����}� � �} |��} }����~�}�
����� �� �}����}� ��~| �� ����~���} � ����} � ����� ���|
��� �������� �}���}� ��������~� � �}� �|}�} ��� �} ���}
��}��� �}����}� �|�� �} ~�� }����~� �� �|} �����} ���
��� �|}� ���� �|} �}����} ���~} � ô�� ���} �}����}�
�}�~������� �� �|} � ����� �}����}� � ��}��} �}} ñ��ó �

� ��ECyD� �� ��FCzwv
û�� }��}��� }��� �|�� �|�� �|} �~~���~� �� �|} ~�����
���� ����}� ��}��~�}� ���}� �� ��� �|} �}����}� �}}� �
�� �} ���� � ��� ��~| �}����}� � �� ~������ ��� } �}�
������� ������ ����� � �} ����� �|�}} �}����} �}�}~����
�}�|��� �� �}���} ��~| �}������~�� ô}����} �}�}~����
��� ���� ����� ��|}� �}�}��� ñ�� � � �ó � �}��~} �|} ~�� �
�������� ��� } � ���} � }���� ���~} � �}���} ����} ���
������ �� ����� ��} �|} ��}��~���� �~~���~�� ô�� �� ���
���} ~�������� ����}� ��}��~���� ����}� � �� �� ~��~��� ��
���}� �|} �}�����} ��� } ��� ������} ��}~����� �

� �t wDD� �ECzwv ®���}������ �� ��} �� �|} �����}��
�}����} �}�}~���� � }�|��� � �� ~�����}� �|} ~���}������
�� �|} ����� �}~��� í � ��� �|} ����}� �}~��� � �� �� ���� � �

! !" � î #$%$ � �í % &� � 'í � � ��% � '� �(#$%$ � �í % &� � 'í � �ÿ #$%$ � ��% � '� �ÿ '
�|}�} �|} ��� ������ ��� �� ��}���} ��}� �|} ���}� � �
®���}������ ~���}��� ~�� ���� �}�}~� ���}�� �}�}��}�~�}�
�}��}}� ������ �}� ��� ����}� ñ�ó �

� ��)� z�*CB +Dw, ��� {|}�} |��} �}}� ���}
�}����} �}�}~���� �}�|��� ���}� �� �|} �}��|�� ���� �|}
ø�� ~������~����� ���}� ñ� � �ó � - ���� �|} �}��|�� ����
ø� ��}��}����� ���� � �� �|} ���} ���� õ��} �� �}����

�}������ � �|} ������ ��}��~���� �� �� �|} ���� �
. "�/0
1 �í � î 2 �#3 � 3 í3 ï� '

�|}�} 2 �í � �� �� �~�������� ���~���� � ð �}����} 4 ���|
� ����}� �}��|� � 3 |�� ���} }�}~� �� �|} ��}��~����
�|�� �|} �}����} � ��| � �� ���}� �}��|� ñ� ó � ø|�| ¡© «¢5������}� �� ñ6ó �|�� �|} �}����}� � ��| |��|}� �}��|�� ��}
���} ����}����� �� �}�}�� ����� �|} � ���| �� �|} � ����� �
{|�� ��� ��ÿ �� � �� �����} ~���}���� ��� �}����} �}�}~���� �

� �� w,AzvECzwvE � , �C*wx �� �� ����� �|�� �
���� ��}~��������}� ~�� ������} �|} ~�������� ����}�
�� � � ����� � �} ~�����} �|} ~�������� ����}� �� �}��
�� �|} � ����� �}����}� �� �|} �������� � ����� ��� �|}
��}~��������}� � ����� �� ��� ��� �|�~| �}����}� ~���
������} ���} �� �|} ������}�}�� �� �|} ~�������� ��� �
�}� � ø�~| �}����}� |��} ����}� ����}�~} �� �|} ~��������
����}� ��� �|���� �} �}�� �� �}����} �}�}~���� � ð ���� }
�} |��} 7 ������ }�����}� � ��� �8 �}��}�}��� �|} ~���
������ ����}� �}~��� ��� ��� �|} �������� � ����~}� � �|��}
�9 �}��}�}��� �|} ~�������� ����}� �}~��� ��� ��� �|}
��}~��������}� � ����~}� � :8� �� �|} �}~��� �� �}����}� ���
�|} 0�| �������� � ����� � ���}� ��} � :9� �� �|} �}~��� �� �}��
���}� ��� �|} 0�| ��}~��������}� � ����� � {|}� �} ~��
������ �|} �}��|� �}~��� � ;$< �� ���� �|} �}����}� �

� ;$< î "#�$ � =��8� � �9� � > �:8� � :9� �? ��@ ���
� ;$< �}}� � �� �} � �}�������} ~���}���� ��� �}����}
�}�}~���� � |��}�}� � �� �} ~����� ��~~}���� ��� ~������~� �
��}��� ��}~��������}� ��� ��� �|} �}�}��� � ����~}� � � ;$<�� ����}� ������� �|} �}����}� �� �|} � ����~}� �|�� ~��
�} ��}~��������}� � {� �}� }�� �|�� �����}� � �} ������}
�� ��} �|} �}��|� � ;A$ B � �|�~| ~�����}� � ;$< ��� �|}
�}��|� ���� ø�� �}��}����� � C D 9 � ��

� ;A$ B î �� � �� ;$< � �� � �� C D 9 � '�@ �ò�
�|}�} �|} ���~���� �� � �í � ���� ����}� �}~��� í � {|��
� ;A$ B �� �|} ��� �� �|} ���� ����}� � ;$< ��� � C D 9 �

E ��F �Dz, �vCB Evx ��By �CB
�� �|�� �}~���� � �} �}���� ��� }��}��� }��� �� �|}
�~~���~� ��� �}�����} ��� } �� �|} ~�������� ����}�
��}��~���� � }�|��� � �} ��} G H I J �K LM ñ@ó ��� ø��
�}��}����� � {|}�} ��} ò�� �����~}� ���� � ����� � ���}�
ñ�ó �}��}� �� �|} }��}��� }��� � �} ��} �����}�|}� ��
������ �}����}� � {|} }��}��� }��� ��} ~����}� ��� ��
� ø��� ���} ��� ���� ������� �
E �t @FFyDEFN ô���� � �} �}�� |�� �~~����} �|} ��}�
��~�}� ~�������� ����}�� ��} � ~�����}� � ��| �|} ���
�}~��� ~�����}� ~�������� ����}�� � {|} �~~���~� ��

492

������}� ����� ������ ~���� ���������� � {|} �}����} �}�
�}~���� ~���}��� ��}� ��} ~���}������ � � C D 9 � � ;$< � ���� ;A$ B � �} ~�����} �|}� ���}�|}� � ��| �|} ø�
 ���|�
��� �}����} �}�}~���� �� �|�}} �}��}�� � ���}�� �}��}� �
������� ��� �}��}� ���
�ô �}��}� � ¯}�} ��� �|} �}��
���} �}�}~���� � }�|��� ~|���} ��� �� �|} �}����}� �

RBF Kernel

40

45

50

55

60

65

70

75

80

85

90

<10^1 <10^2 <10^3 <10^4

Diff erence

P
e
rc

e
n

ta
g

e SVM

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} � � ®��������� �� �~~���~� � ��| �
�ô �}��}� �
ô ����} � �|�� � �|} �~~���~� ~��������� ����� �

�ô �}��}� �� î � ��� � {|} ����} ���������}� �|} �}��
~}����} �� ��� � ����~}� ��� �|�~| �|} �}�����} ���}�}�~}�
�}��}}� �|} ~�����}� ����}� ��� �|} ��}��~�}� ����}�
�� �|} ~�������� ����}� ��} � ��| �� �� � ��ÿ � ��� � ��� �
�}�� }~���}��� ô�� �|}
�ô �}��}� � � ;$< ��}� ��� ����
�}�� � ��� �~~���~� �� �|} ���}�� � ô�� ��� �|} ��|}� � }�|�
��� � �} ~�� ���}�� ��� �|�� ���} �|�� ��� �� �|} � �����
~}� |��} �}�����} ���}�}�~}� �� ���}� �|�� ��ÿ � ð����
�|}� � �}����} �}�}~���� � ��| � ;A$ B ���� � � }�� ��� ��� �|}���}�}�~} �~��}� }�~}�� �|} ���� ��} � - ���� �}����} �}�
�}~���� � ��| � ;A$ B � �� �ò� �� �|} � ����~}� |��} �}�����}
���}�}�~}� �� ���}� �|�� ��ÿ � �� |�� �}��}� �~~���~� �|��
����� ø�
 ����} � ���|���| �� �� �� ��}� |��� �� �|} �}��
���}� � û�|}� �}����} �}�}~���� �}�|��� ~�� ���� ������
��� ���� �~~���~� �� �|�� ������}� ���� ø�
 ���|���
�}����} �}�}~���� �

Linear Kernel

40

45

50

55

60

65

70

75

80

85

90

<10^1 <10^2 <10^3 <10^4

Diff erence

P
e
rc

e
n

ta
g

e SVM

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} ò � ®��������� �� �~~���~� � ��| � ���}�� �}��}� �
ô ����} ò �������� �|} �~~���~� ~��������� ����� �

���}�� �}��}� � ¯}�} ���| �}����} �}�}~���� ~���}��� � ;A$ B��� � CD 9 ���� �}�� � {|}�� �~~���~� ��} |��|}� �|��

����� ø�
 ����} ��� ��� �|} ���}�}�~} �~��}� � ô�� �|}
���� ��� ���}�}�~} �~��}� � � C D 9 �� �}��}� �|�� � ;A$ B ��|��} ��� �|} ���� ��� � � ;A$ B }�~}}�� � CD 9 � ®���}������
~���}���� �}����� � ����� ��� �|} ���}�� �}��}� �

Polynomial Kernel

30

40

50

60

70

80

90

<10^1 <10^2 <10^3 <10^4

Diff erence

P
e
rc

e
n

ta
g

e SVM

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} � � ®��������� �� �~~���~� � ��| � ������� ���
�}��}� �

{|} �~~���~� ������}� ����� � ������� ��� �}��}�
�/ î ò� �� �}��~�}� �� ô����} � � �� �|�� ����} �
��� �|} �}����} �}�}~���� � }�|��� ������ ��~| �}��}�
�~~���~� �|�� � ��|��� �}����} �}�}~���� � ¯}�} � C D 9��� � ;A$ B �}����� ��� ������� ���| ��} �}��}� �|�� �|}
��|}� � }�|��� �

ö�� �|}�} � ����}� ���}�|}� � �} ~�� �}} �|�� �|}
� }�� �~~���~� �� ������}� ����� �|}
�ô �}��}� � �|}�
�|} ���}�� �}��}� � ��� �|} ������� ��� �}��}� ��}� ���
�}}� �� �� ��� �|�� ��� � ô�� �|}
�ô �}��}� ø�

���|��� �}����} �}�}~���� ���� � ���|}� �}�� � �|�� �|}
��������} �� �|} �}����} �}�}~���� � }�|��� ��}� �� ��
� ��� � ¯��}�}� � ��� �|} ������� ��� �}��}� � �|}� ø�

���|��� �}����} �}�}~���� �}����� � ������� � ���� �}����}
�}�}~���� �}�|��� ~�� �}� ������� ������} �~~���~��
ð���� �|} �}����} �}�}~���� � }�|��� � �|} � }�������~}
�� �|} ~���}��� ����� � ;A$ B �� � C D 9 ��} ~������}����
���� �

RBF Kernel

60

65

70

75

80

25% 50% 75% 100%

Features Selected

P
e
rc

e
n

ta
g

e

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} @ � ®��������� �� �~~���~� � ��| �
�ô �}��}�
� ��| ���}�}�� �}�~}����} �� �}����}� �}�}~�}� �

ü}�� � �} ~�����} �|} � }����� ��~} �� �|} �}����}
�}�}~���� � }�|��� � ��| ���}�}�� ������ �� �}����}� �}�
�}~�}� � �} �}�� �|} �~~���~� ����� ò�� � ��� � ��� ��
�|} �}����}� �}��}~���}��� ��� � ��} ~��������� � ��| ���

493

��� ���� �� �|} �}����}� � �|�� �� � ������� ø�� ���|���
�}����} �}�}~���� � ¯}�} �} ~|���} �|} � }�~}����} �� � ��
���~}� � ��| �}�����} ~�������� ����}� ���}�}�~}� �����}�
�|�� ��ÿ �� �~~���~�� ô ����} @ ���������}� �|} �}�����
������}� � ��| �
�ô �}��}� �� î � ��� � û��� �}����}
�}�}~���� � ��| ~���}������ |�� �|} ����}��� �|�� � ��|
���} �}����}� ��}� �|} ����}� �}~�� }� ���} �~~����} �
ô�� �}����} �}�}~���� ����� � ;A$ B ��� � CD 9 � ~|������
��� �� �|} �}����}� �}}� � �� � } ����� �� � � ��| �|�~|
�|}� ���� �|} |��|}�� �~~���~�� ô�� �}����} �}�}~����
����� � ;$< �� �� �� �������} ������ ~|������ ��� �� �|}
�}����}� ��}��� �|} ����� �}����� �

Linear Kernel

55

60

65

70

75

25% 50% 75% 100%

Features Selected

P
e
rc

e
n

ta
g

e

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} � � ®��������� �� �~~���~� � ��| � ���}�� �}��}�
� ��| ���}�}�� � }�~}����} �� �}����}� �}�}~�}� �

ô�� ���}�� �}��}� � ��� �}����} �}�}~���� ~���}��� }�~}��
� ;$< �}}� �� ��� �|}�� ����� ��}� �}����} �}�� � ��| ���
�� �|} �}����}� � {|}� �}� �|} �}�� �~~���~� � ��| ���
�� �|} �}����}� � � ;$< � ���} �����
�ô �}��}� � �}����� �
�|} ����� � ��| ��� �� �|} �}����}� ��}} ô����} �� �

Polynomial Kernel

50

55

60

65

70

75

25% 50% 75% 100%

Features Selected

P
e
rc

e
n

ta
g

e

FS-Corr

FS-Cmp

FS-SVM

FS-Comb

ô����} � � ®��������� �� �~~���~� � ��| � ������� ���
�}��}� � ��| ���}�}�� �}�~}����} �� �}����}� �}�}~�}� �

�� ô����} � � �}���� ��� �|} �}����} �}�}~���� ~���}���
�}� �|}�� � }�� �~~���~� � ��| ò�� �� �|} �}����}� � ú�}�
� ��| �|} ���� }�~}����� � C D 9 � �|} �~~���~� ������}�
� ��| ò�� �� �|} �}����}� �� �}�� ~���} �� ��� �}�� �~~���~�
������}� � ��| ��� �� �|} �}����}� � ô ����} � }�������
�|� ������� ��� �}��}� �/ î ò� ��}� ��� ���� �� �}�� ��

�ô �}��}� ��� ���}�� �}��}� �� ô����}� � � � � �� �|}�}� ����}� � ��� �� �|} �}����}� ��} ��}� � {|�� ������
��� �|} �}����} �}�}~���� �}�|��� ��� �|}�� ����� ��}�

�}����} �}�� ���
�ô �}��}� ��� ���}�� �}��}� � ��� ���
��� ������� ��� �}��}� � {|} �}����} �}�}~���� � }�|���
���� �}�� � ��| ò�� �� �|} �}����}� ��� ������� ���
�}��}� � ô ����} � ���� ����}��� �|�� ������� ��� �}��}�
�� ����|�|��} �� ���� �� �|} �}�}� �}����}� ��}� � �|} �}��
�|} �}�����} ��� } �

E �� ��BF wvB� � z, � ù��}� � � ����� � �|} ��� } ��}�
�� ������ �|} ~�������� ����}� �� �}�}��}� �� �� �}�����}
��� } � {|} �}�����} ��� } ��� �|} õðöð®÷ �}�|�� �� �|}
��� } �� ~�����} �|} ~�������� ����}� ����� õðöð®÷
������}� � {|} �}�����} ��� } ��� �|} ��}��~���� �}�|��
��~���}� �|} ��� } �� ~�����} � ����� �}����}� ��� �|}
��� } ��� ��}��~���� � ¯}�} �} ���� ~�����} �|} �}�����}
��� } ��� ��}��~���� ����� �|} �|��} � ����� �}����}� ���
����� |��� �� �|} �}����}� �}�}~�}� ���}� �� � C D 9 �

{���} � � ð�}���} �}�����} ��� } ��� �}~����� �
�J8� 8�� �< ����;M��"" �< ����;M�� C�� �ò� � ��� � ��ò

{���} � �|�� � �|} ��}���} �}�����} ��� } ��� �|}
ò�� �����~}� ��}� �� ��� �}��� � �J8� 8�� ��� �<� ���;M�}���} �|} ®ö- ��� } ��� �}~����� ��}� �� õðöð®÷
��� �|} ��}��~���� � }�|�� �}�� }~���}��� {|} ��}��~����
� }�|��� ��} �� ��� }� ����}� �|�� ����� õðöð®÷ ��
��}���} � � �}~���� �� ���� �� �~~}�����} ��� } ��� ��
�����}
�}�� ����}� � ö�}��~���� � ��| �}����} �}�}~����
�� �� �� ����|��� ����}� �|�� � ��|��� �}����} �}�}~���� �- ���� |��� �� �|} �}����}� ��}� ��� � }�� �}��~��� �|}
��� } ~��� �� |��� � �� ��� ����}� � �} ������� ~�����} �
����� �� �}����}� �� � ���~���� � {|�� �|} ��� } ~��� ���
~��~������� ��} �}����} ����� �|} ���~���� �� �|} ��� } ��
~��~������� ��� �|} �}����}� ������}� �� �|} ���~���� � �}
�}}� �� �� ~��} ����� ������� �� � ��} �}����} �}�}~����
���} �}�}� ~��� �� �}�����} ��� } �

{|} ��}��~���� � }�|�� �� }�� }~����� ��������}���
�� �}�����} ��� } ��� ����} ���} � ����~}� � ô�� }�����} �
�� {���} ò �|} ��}���} �}�����} ��� } ��� �|} �6 �����~}�
� ��| ���} ����}� �|�� ò��� �� ������ � � ����}� � �|��}
� ���� �|} ��}��~���� �}�|��� � �|} �}�����} ��� } �� ����
����� ò� �}~���� � 	
�I �1 �}���}� �|} ����}� ��
� ����~}� � ð � ����� � ��| ���} ��}��}� �|�� ���� �� ����}
�� ��� }��}��� }��� �|���| �| �� � �� ��� �} ���} ��
�}������ ð � õðöð®÷ ���� ��� ��� �� � }���� �� ���
~�����}�� � ��| �����~}� �� ���} ����}� �|�� ò���� � �}
~�� ���� �}�� � ����~}� ���}� �|�� ���} ��� ~��������� �

{���} � ���}� ��� } }�����}� �� |�� ��~| �|}
��}��~���� � }�|��� � �� }�~}}� �|} õðöð®÷ �}�|��
�� ~���������� ��� } �
�!	 J8� 8�� �}��}�}��� �|}
������}� �������|� �� ~�������� ����}� ~�����}� ��
õðöð®÷ �|��}
�!	< � ���;M �� �|} ��}��~�}� ������}�

494

{���} ò � ð�}���} �}�����} ��� } ��� ����} ���} � ����~}� ��� �}~����� �
ø��} ü��� �� �J8� 8�� �< � ���;M��"" �< ����;M�� C� ���� ��� òò� �òò �� ��� �@ ��ò� ò��� �6 �@� ��@ òò �6 � ò ����

{���} � � ö}�������~} ~��������� ��� ��� } ����} ���} � ����~}� �
ü�� } þ ü����}��� �J8� 8�� �<� ���;M��""
�!	J8� 8��
�!	 <� ���;M��""ùú�ð{ �� @�ò� �� ��6 ò�� �� ò �� 6 ����@�� 6 �����ò��

õüø ���� ���� ò�@�� ò��� �� ��@ �@ �@ ����6 �@ ����66 �
öø� �ù
 � � �@� �@� ��� ò�ò� �6 �� �6 � �6�6��� � ��������

�������|� �� ~�������� ����}� � ô�� ������~} � õðöð®÷
��}� ò��� �}~���� �� ~�����} �|} ~�������� ����}�
�� �|} � ����� õüø ���� � �|} ��}��~���� � }�|�� ����
�}}�� ��@ �}~���� � {|} �}�����} ���}�}�~} �� ~��������
����}�� ������}� �� �|}�} ��� �}�|��� �� ���� �����
��� �� � ð ��|���| �|�� ���}�}�~} � �� ��� � } }��}~�}�
��� ��� � ����~}� � �� �� }��~��� ��� ���������� ��� �����
��}��~���� �� ������ �|} ~�������� ����}�� ��� �}�}���
�����} �����~}� �

� wvF �yxzv� ��, ED�B
�� �| �� ���}� �} ������}� � �}� ������~| �� }���� ���
��� �|} ~�������� ����}� �� � � ����� � ��}��~���� �|}�
���� �|} ������ �}����}� � �} ��} ø�� �}��}����� � ��|
�}����} �}�}~���� � {|} }��}��� }��� �|�� �|�� ������
��� �� �|} � ����~}� ~�� �} ��}��~�}� � ��| � �}�����}
���}�}�~} ���� �|} ~�����}� ~�������� ����}� � ��|��
��ÿ � {|} �~~���~� �� ��� ~�����}� � ��| ���}~� ~�����
������ �� }���� ����� � ��� �� � �� �} ��� ~�}�� ��� �|��}
�}���} �|� ���� ���� �� ���� �|}�|}� �|} ������ ��
 ¡¢ ¢£¤¥¦§¨©¨¥¦ ¡§ �� ¨¢ ¢£¤¥¦§¨©¨¥¦¡§� {|} ��������} ��
�|} ��}��~���� � }�|�� �� �|�� �|} �}�����} ��� } �� �}��
��� � }��}~����� ��� ����} ���} � ����~}� � {|�� �� �� �}�
������} ��� �� �����} ~�������� ����}�
�}��� �� �� ����
���}� ��� �|} ���}����}�� ��}~��������}� �}~���}�������
����}� ��ö
ø� ����}� ñ��� �òó � �� �ö
ø � �|} ~��������
����}� �� ��}� �� ��} �� �|} � ����� �}����}� �� ��}��~�
�|} ������ ����� �� � � ����� � �|�� �� �� ~��~��� �� ������ ��
� ��| � ��� ��� } ~��� � �} ���� ���}� �}�}��� �}����} �}�}~�
���� �}�|��� � �} �}����}� � ~������������ �}����} �}�
�}~���� ~���}���� �|�~| ��}� ���| �|} �}��|�� ���� ø�

��� ���� ~��������� �� � � ����� ��� ��� ��}~��������}�
~����}����� � {|} }��}��� }���� �}����� �|�� �|�� �����
�}����} �}�}~���� �~�� �}��~} �|} ��� } ~��� ��� ������}
�� � ������� �|} �~~���~�� {|} ~������������ ��}����}
�}�}~���� ~���}���� �� ��} �� �|} � }�� � }�|��� �}��}� �

�� +�D�vF�B

��� � [MYHI _
 [� XKUUPPb [
I KILQHJMWLKHI LH ^SQKSOXP
SIJ RPSLMQP UPXPWLKHI [�
�����
� � ��� �� � ��������
�������� _ � e����i _ �� !c��"� [

��� # [$ [% KZ]SN [&HQLQSI WHJPU RHQ PULKN SLKIZ L]P HIPc
IHQN HR S QPSX HQ WHNVXPT N SLQKT _ d KL] SVVXKWSLKHIU
LH WHIJKLKHI PULKN SLKHI [' (�)���� * � �+� * ,
� + *_ �- _
�."" _ VV [�" �c�./ [

��� h [$ KI _ % [0 KM [h HOMUL RPSLMQP KIJMWLKHI RHQ UMVc
VHQL ^PWLHQ N SW]KIPU [�I 1 �
���2����
� +� � 34�+ 5� 6
+����+�
��� (
�� ������
� � ����� � �������� _ 7SIb _
GSISJS _ ���- [

�-� \ [$HSW]KN U [8 S9 KIZ XSQZPcUWSXP fg8 XPSQIKIZ VQSWc
LKWSX ['2:����� �� ; ��� �� � �+�
2� 6 ,�<<
�+ =��+
�
�������� _ 7 [fW] >HX9HVR _ G [7MQZPU SIJ
 [fN HXS ePJ [i _
8�\c?QPUU _ �... [

� �]LLV s@@NSL] [IKUL [ZH^@8 SLQKT8 SQ9PL@
�/� A [8 XSJPIK BW _ $ [7QSI9 _ 8 [QHO PXI K9 _ # [8 KXKWc

&QSY XKIZ [&PSLMQP UPXPWLKHI MUKIZ XKIPSQ WXSUUKCPQ
dPKZ]LU s KILPQSWLKHI d KL] WXSUUKCWSLKHI NHJPXU [�I 1 �
6
���2����
� ,5 D5� EFG _ f]PH PXJ _ IJ _ $MXY_ ���- [

�!� 0 [G [8 HXKIS _ 0 [7PXSIW]P _
 [# POHL [&PSLMQP UPXPWLKHI
SXZHQKL]N U s
 UMQ^PY SIJ PTVPQKN PILSX P^SXMSLKHI [�I
1 �
���2����
� 3FF3 5KKK 5�+����+�
��� (
�� ������
�
L �+� � ����� M5 (L� EF3N _ 8 SPOSU] K GKLY_ $SVSI _ ���� [

�"� 0 [f] K] _ O [G]SIZ _ $ [h PIIKP _ �+ ��* #HL LHH]HL _ IHL
LHH WHXJ s \]P 7MIJXPJcfg8 KU PMUL QKZ]L Q �I R
�S��
<

�)�T + �������� M)�T +�� 63FF3N _ fYJIPY_
MULQSXKS _
���� [

�.�
 [$ [fN HXS _ 7 [fW]HX9 >HVR [
 LMLHQKSX HI UMVVHQL ^PWLHQ
QPZQPUUKHI [U ���
(V�))�������� � �<
�+ , �����_ #G�c
\hc�.."c��� _ �.." [

���� g [# [gSVIK9 [,+�+��+���� � �������)� �
�W * $H]I a KXPY
SIJ fHIU _ # Pd OHQ9 _ �.." [

���� f [XM _ � [0PP _ $ [Y]SIZ [
I KILPQKN SISXYUKU QPVHQL HI
VQPWHIJKLKHIPQU SIJ N SLQKWPU [\PW]IKWSX hPVHQL # H [
�""c�� _ A PVSQLN PIL HR GHNVMLPQ fWKPIWP _ IIK^PQUKLY
HR J PILMW9Y_ 0PT KIZLHI _ JO _ ���� [

���� f [XM _ � [0PP _ $ [Y]SIZ [A PUKZIKIZ SIJ OMKXJKIZ SI
KILPXXKZPIL VQPWHIJKLKHIPQ QPWHNNPIJSLKHI UYULPN eS
VQHZQPUU QPVHQLi [�I 'Z�+���+�
� +� � 3FF[5�+����+�
���
(
�� ������
� 1 ���
�2�+�
����)�����\� �� �
� ���� �
,<���� � �+��T 1 �
Z��] � �� ,����+�̂ � ��2 5�2��+����
'<< ����+�
�� _ # SVS _ G
 _ ���� [

495

Cluster Validity Analysis of Alternative Results from
Multi-Objective Optimization

 Yimin Liu Tansel Özyer Reda Alhajj Ken Barker

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
{liuyi, ozyer, alhajj, barker}@cpsc.ucalgary.ca

Abstract
This paper investigates validity analysis of alternative
clustering results obtained using the algorithm named Multi-
objective K-Means Genetic Algorithm (MOKGA). The
reported results are promising. MOKGA gives the optimal
number of clusters as a solution set. The achieved clustering
results are then analyzed and validated under several cluster
validity techniques proposed in the literature. The optimal
clusters are ranked for each validity index. The approach is
tested by conducting experiments using three well-known
data sets. The obtained results for each dataset are compared
with those reported in the literature to demonstrate the
applicability and effectiveness of the proposed approach.

Keywords: clustering, gene expression data, genetic
algorithms, multi-objective optimization, validity analysis.

1. Introduction
Traditional clustering algorithms, in general, do not produce
alternative solutions, and most of them do not lead to the
optimal number of clusters in the dataset that they work on.
For example, hierarchical clustering method can get the
heuristic overview of a whole dataset, but it cannot relocate
objects that may have been 'incorrectly' grouped at an early
stage. It cannot tell the optimal number of clusters nor give
the non-dominated set. K-means needs the number of
clusters as a predefined parameter, and it may give local
optimal solutions because it is a local search from a random
initial partitioning. SOM has the same disadvantage in that it
requires the number of clusters be given a prior. Clearly, a
clustering algorithm is needed to get the global pareto
optimal solution set required to give users the best overview
of the whole dataset according to the number of clusters and
their quality. Further, it is required to get clustering results
with the optimal number of clusters.

The main contribution of this paper is a new clustering
approach that considers multiple objectives in the process
and its application for clustering microarray and other
datasets; we have tested our approach on three data sets. The
proposed approach has two components. 1) Multi-objective
K-means Genetic Algorithm (MOKGA) based clustering
approach, which delivers a pareto optimal clustering solution
set without taking weight values into account. Otherwise,
users need to consider several trials weighting with different
values until a satisfactory result is obtained. 2) Cluster
validity analysis employed to evaluate the obtained

candidate optimal number of clusters, by applying some of
the well-known cluster validity techniques, namely
Silhoutte, C index, Dunn’s index, DB index, SD index and
S-Dbw index, to the clustering results obtained from
MOKGA. It provides one or more options for the optimal
number of clusters.

The applicability and effectiveness of the proposed
clustering approach and clustering validity analysis process
are demonstrated by conducting experiments using three
datasets: namely Fig2data, cancer (NCI60), and Leukaemia
data sets available at Genomics Department of Stanford
University, UCI machine learning repository.

The balance of the paper is organized as follows.
Section 2 is devoted to the development of the new
clustering system MOKGA. Section 3 reports experimental
results to illustrate the applicability, performance and
effectiveness of the system. Section 4 discusses advantages
of the proposed approach in comparison with other existing
methods. Section 5 is summary and conclusions.

2. The Proposed Clustering Approach
The proposed clustering approach named Multi-Objective
Genetic K-means algorithm (MOKGA) has been developed
on the basis of the Fast Genetic K-means Algorithm (FGKA)
[8] and the Niched Pareto Genetic Algorithm [5].

After running the multi-objective K-means genetic
algorithm, the Pareto-optimal front giving the optimal
number of clusters as a solution set can be obtained. The
system then analyzes the clustering results found with
respect to six cluster validity techniques proposed and well
documented in the literature, namely Silhoutte, C index,
Dunn’s index, SD index, DB index, and S_Dbw index.

MOKGA uses a list of parameters to drive the
evaluation procedure as in other genetic types of algorithms:
including population size (the number of chromosomes), tdom
(the number of comparison set) representing the assumed
non-dominated set, crossover, mutation probability, and the
number of iterations for the execution of the algorithm to
obtain the result. Subgoals can be defined as fitness
functions, and instead of scalarizing them to find the goal as
the overall fitness function with the user defined weight
values, it is expected that the system can find the set of best
solutions, i.e., the Pareto-optimal front. By using the
specified formulas, at each generation, each chromosome in
the population is evaluated and assigned a value for each
fitness function.

496

Initially, the current generation is assigned to zero.
Each chromosome takes the number of clusters parameter
within the range 1 to the maximum number of clusters given
by the user. A population with the specified number of
chromosomes is created randomly by using the method
described by Rousseeuw [11], where data points are
randomly assigned to each cluster at the beginning and the
rest of the points are randomly assigned to clusters. By using
this method, we can avoid generating illegal strings, which
means some clusters do not have any pattern in the string.

Using the current population, the next population is
generated and the generation number is incremented by 1.
During the next generation, the current population performs
the Pareto domination tournament to get rid of the worst
solutions from the population. Crossover, mutation, and the
k-means operator [8] are then performed to reorganize each
object’s assigned cluster number. Finally, we will have twice
the number of individuals after the Pareto domination
tournament. The ranking mechanism used by Zitzler in [2] is
applied to satisfy the elitism and diversity preservation. This
halves the number of individuals.

The first step in the construction of the next generation
is the selection using Pareto domination tournaments. In this
step, two candidate items picked among (population size-
tdom) individuals participate in the Pareto domination
tournament against the tdom individuals for the survival of
each chromosome in the population. In the selection part,
tdom individuals are randomly picked from the population.
Two chromosome candidates are randomly selected from the
current population except those in the comparison set
(population size- tdom), and each of the candidates is
compared against each individual in the comparison set tdom.
If one candidate has larger total within-cluster variation
fitness and larger number of cluster values than all the
chromosomes in the comparison set, then it is dominated by
the comparison set and will be deleted from the population
permanently. Otherwise, it resides in the population.

After the Pareto domination tournament, the dominated
chromosome is deleted from the population. The next step is
crossover: one point crossover is used in the employed
multi-objective genetic clustering approach. An index into
the chromosome is selected and all data beyond that point in
the chromosome are swapped between the two parent
chromosomes. The resulting chromosomes are the children.

Mutation is applied to the population in the next step by
randomly changing the values in the chromosome according
to probability distribution.

The K-means operator is applied last to reanalyze each
chromosome gene’s assigned cluster value. It calculates the
cluster centre for each cluster and re-assigns each gene to the
closest cluster to each instance in the gene. Hence, K-means
operator is used to speed up the convergence process by
replacing an by an’ , for n=1 to N simultaneously, where an’
is the closest to object Xn in Euclidean distance.

After all operators have been applied, twice the number
of individuals remains. After having the Pareto dominated
tournament, we cannot give an exact number equal to the
initial population size because at each generation randomly
picked candidates are selected for the survival test leading to

the deletion of one or both, in case dominated. To half the
number of individuals, the ranking mechanism proposed by
Zitzler [2] is employed: individuals obtained after crossover,
mutation, and K-means operator are ranked; and the best
individuals are picked for population of the next generation.

The approach picks the first l individuals by considering
the elitism and diversity among 2l individuals. Pareto fronts
are ranked. Basically, we find the Pareto-optimal front and
remove individuals of the Pareto-optimal front from the 2l
set and place them in the population to run in the next
generation. In the remaining sets, we get the first Pareto-
optimal front and put it in the population and so on. Since
we try to get the first l individuals, the last Pareto-optimal
front may have more individuals required to complete the
number of individuals to l. We handle the diversity
automatically. We rank them and reduce the objective
dimension into one. We then sum the normalized value of
the objective functions for each individual. These are sorted
in increasing order and each individual’s total difference
from its individual pairs is calculated. The individuals are
placed in population based on decreasing differences, and
then we keep placing from the top as many individuals as we
need to complete the number of individuals in the population
to l. The reason for doing this is to take the crowding factor
into account automatically so that individuals occurring
closer to others are unlikely to be picked.

This method was also suggested as a solution for the
elitism and diversity for improvement in NSGA-II. For
example, in order to get 20 chromosomes from the
population, we select 10 chromosomes from the Pareto front,
delete them from the current population, then get 8
chromosomes from the Pareto front in the current
population, delete them from the population. Suppose that
we have 6 in the current population, we take 2 chromosomes
that have the largest distance to their neighbours using the
ranking method mentioned above. Finally, if the maximum
number of generations is reached, or the Pareto front
remains stable for 50 generations, then the process is
terminated; otherwise the next generation is performed.

3. Experimental Results
To evaluate the performance and efficiency of the proposed
system consisting of the MOKGA clustering approach and
conduct cluster validity analysis on the obtained alternative
results, experiments were conducted on a computer with the
following features: Pentium ®4 with 2.00 GHz CPU, 512
MB RAM and running Windows XP. The system was
implemented using MS Visual C++. The running platform is
Microsoft Visual Studio.NET 2003.

Three widely gene expression datasets, namely
Fig2data, cancer (NCI60), and Leukaemia have been used to
test the performance and accuracy of the system. Fig2data
data is used for clustering genes, while cancer (NCI60) and
Leukaemia data sets are used for group cell samples.

3.1 Fig2data Dataset
Fig2data dataset is the time course of serum stimulation of
primary human fibroblasts. It contains the expression data

497

for 517 genes of which expression changed substantially in
response to serum. Each gene has 19 expressions ranging
from 15 minutes to 24 hours [1, 6].

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

1 3 5 7 9 11 13 15 17 19 21 23
Number of cluster

T
W

C
V

1

50
100

200
500

Figure 3.1 Pareto-fronts for Fig2data dataset

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20
Number of clusters

I
n
d
e
x

v
a
lu
e

Dunn DB SD

S_Dbw Silhouette

Figure 3.2 Fig2data dataset cluster validity results using Dunn, DB,

SD, S_Dbw and Silhouette indexes

0
0.01
0.02
0.03

0.04
0.05
0.06

2 4 6 8 10 12 14 16 18 20

Number of clusters

I
n
d
e
x
 v
a
lu
e

C

Figure 3.3 Fig2data dataset cluster validity results using C index

Lu et al [8] applied the Fast Genetic K-means
Algorithm to Fig2data. They selected as their parameter
setting: mutation probability = 0.01, population size = 50,
and generation = 100. As a result, they obtained fast
clustering process.

In our tests, MOKGA has been applied to Fig2data
dataset. Experiments were conducted with the following
parameters: population size = 150, tdom (number of
comparison set = 10) and crossover = 0.8, mutation = 0.005,
gene mutation rate = 0.005, and threshold = 0.0001, which is
applied to check if the population stops evolution after 50
generations and if the process needs to be stopped. The
range of [1, 25] was picked to find the optimal number of
clusters. The corresponding experimental results are reported

in Figure 3.1. They also show how the system converges to a
Pareto optimal front.

Figure 3.2 and Figure 3.3 report validity results and
reflect comparisons with the studies described elsewhere [6,
8]. The study by Iyer et al [6] show that the optimal number
of clusters for Fig2data is 10. Consistently, results in this
paper indicate that it ranks among the best ones for C index,
and the number of 10 clusters is among the best for other
indices as well. According to Maria et al [4], SD, S_Dbw,
DB, Silhouette, and Dunn indices cannot handle properly
arbitrarily shaped clusters, so they do not always give
satisfactory results.

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1 3 5 7 9 11 13 15 17 19

Number of clusters

T
W

C
V

1
100
200
400
600
800
1000
1100

Figure 3.4 Pareto-fronts for Cancer dataset

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18

Number of clusters

I
n
d
e
x
 v
a
lu
e

Dunn SD

S_Dbw Silhouette

DB

Figure 3.5 Cancer dataset cluster validity results using Dunn, DB,

SD, S_Dbw and Silhouette indexes

0
0.05

0.1
0.15

0.2
0.25

0.3

2 4 6 8 10 12 14 16 18

Number of clusters

I
n
d
e
x

v
a
lu
e

C

Figure 3.6 Cancer dataset cluster validity results using C index

3.2 Cancer (NCI60) dataset
NCI60 is a gene expression database for the molecular
pharmacology of cancer. It contains 728 genes and 60 cell
lines derived from cancers of colorectal, renal, ovarian,
breast, prostate, lung, and central nervous system origin,
leukaemias and melanomas. Growth inhibition is assessed

498

from changes in total cellular protein after 48 hours of drug
treatment using a sulphorhodamine B assay. The patterns of
drug activity across the cell lines provide information on
mechanisms of drug action, resistance, and modulation [13].

The study by Scherf [13] uses an average-linkage
algorithm and a metric based on the growth inhibitory
activities of the 1,400 compounds for the cancer dataset. The
authors observed 15 distinct branches at an average inter-
cluster correlation coefficient of at least 0.3. In this method,
the correlation parameter was used to control the clustering
results. It might be hard to decide if it is an unsupervised
clustering task.

In our tests, MOKGA has been run for the Cancer
dataset with the following parameters: population size = 100,
tdom (number of comparison set = 10) and crossover = 0.8,
mutation = 0.005, gene mutation rate = 0.005, and threshold
= 0.0001, which is used to check if the population stops
evolution for 50 generations and if the process needs to be
stopped. The range of [1, 20] was picked to find the optimal
number of clusters.

Changes in the Pareto-optimal front after running the
algorithm are displayed in Figure 3.4. It demonstrates
convergence to an optimal Pareto-optimal front.

 Figures 3.5 and Figure 3.6 show the average results
obtained. For the cancer (NCI60) dataset, we have 15 in the
Pareto optimal front; this value also ranks the sixth for DB
index, fifth for SD index and the fifth for C index. These are
consistent with the results reported in [13]. Having some
indexes values not good demonstrates the fact that index
values are highly dependent on the shape of the clusters.

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1 2 3 4 5 6 7 8 9 10
Number of clusters

T
W

C
V

1

25

50

100

200

Figure 3.7. Pareto-fronts for Leukaemia dataset

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2 3 4 5 6 7 8 9 10
Number of clusters

I
n
d
e
x

v
a
lu
e

Dunn DB SD

S_Dbw Silhouette

Figure 3.8 Leukemia dataset cluster validity results using Dunn,

DB, SD, S_Dbw and Silhouette indexes

0

0.02

0.04

0.06

0.08

0.1

2 3 4 5 6 7 8 9 10
Number of clusters

I
n
d
e
x

v
a
lu
e

C

Figure 3.9 Leukemia dataset cluster validity results using C index

3.3 Leukaemia dataset
The third microarray dataset used in this paper is the
Leukemia dataset, which has 38 acute leukemia samples and
50 genes. The purposes of the testing include clustering cell
samples into groups and finding subclasses in the dataset.

The study by Golub et al [3] uses Self-Organizing Maps
(SOMs) to group the Leukemia dataset. In this approach, the
user specifies the number of clusters to be identified. SOM
finds an optimal set of centroids around which the data
points appear to aggregate. It then partitions the data set with
each centroid defining a cluster consisting of the data points
nearest to it. Golub [3] got two clusters acute myeloid
leukemia (AML) and acute lymphoblastic leukaemia (ALL),
as well as the distinction between B-cell and T-cell ALL,
which means that the optimal number of clusters is 2 or 3
(with subclasses).

The proposed genetic algorithm-based approach has
been run for the Leukemia dataset with the following
parameters: population size = 100, tdom (number of
comparison set = 10) and crossover = 0.8, mutation = 0.005,
gene mutation rate = 0.005, and threshold = 0.01, which is
used to check if the population stops evolution for 50
generations and if the process needs to be stopped. The
range of [1, 10] was picked for finding the optimal number
of clusters. Changes in the Pareto-optimal front are
displayed in Figure 3.7. It demonstrates how the system
converges to an optimal Pareto-optimal front.

The Leukaemia dataset clustering results shown in
Figure 3.8 and Figure 3.9 indicate the same conclusions
reported in [3] by Golub et al. They also indicate that 2
(AML and ALL) is the best number of clusters after the
validity analysis with Dunn index, DB index, SD index, and
Silhouette and 3 (AML, B-cell ALL and T-cell ALL) is the
second best. C index shows that 2 is the best cluster number
and 3 is the second. It can be seen from Figure 3.8 that
S_Dbw is an exception. SD index gives good values, but
S_Dbw does not. This indicates that the inter-cluster density
for number of clusters taken 2 and 3 is not high for the 38
samples. Experimental results in this paper also indicate that
S_Dbw index is not suitable to test small datasets with fewer
than 40 instances.

4. General Evaluation and Comparison
In this section, the MOKGA system is compared with other
methods on basis of the results obtained for the same
datasets. For instance, according to [6], Fig2data has 10

499

clusters. The proposed approach gave the same result using
C index clustering validity method. Cancer data has 15
clusters according to the result in [13]. MOKGA produces
the same result using the DB index. The optimal number of
clusters of Leukemia dataset is 2 or 3. MOKGA reported the
same results using Dunn, DB, SD, and Silhouette indexes.

Since MOKGA has been developed on the basis of Fast
Genetic K-mean Algorithm (FGKA) [8] and Niched Pareto
Genetic Algorithm (NPGA), MOKGA and FGKA share
many features: both are evolutionary algorithms; they have
the same mutation and K-mean operators; and they both use
the Total Within-Cluster Variation (TWCV) for the fitness
value evaluation.

According to the results, MOKGA and FGKA got
similar TWCV values, MOKGA obviously need more
generations to get the stable state, this might be because
MOKGA is optimizing chromosomes with different number
of clusters altogether.

MOKGA has some advantages over FGKA and GKA: it
can find the Pareto optimal front, which allows us to get an
overview of the entire clustering possibilities and to get the
optimal clustering results in one run; it does not need the
number of clusters as a parameter, which is very important
because clustering is an unsupervised task, and we usually
do not have any idea about the number of clusters before the
clustering of gene expression data. These two issues are real
concerns for FGKA, GKA and most of the other clustering
algorithms.

Both MOKGA and K-means Algorithm minimize the
overall within-cluster dispersion by iterative reallocation of
cluster members. MOKGA has some advantages over K-
means algorithm: it can find the Pareto optimal front; it does
not need the number of clusters as a parameter; MOKGA
can find global optimal solutions using mutation and
crossover operators. MOKGA combines both the advantages
of genetic algorithm and advantages of the K-means
algorithm: by using GA operators it can get global optimal
solutions, and by using K-means operators MOKGA can get
solutions much faster.

5. Summary and Conclusions
The MOKGA approach proposed in this paper has been
developed on the basis of the Niched Pareto optimal and fast
K-means genetic algorithm. By using MOKGA, it is aimed
at finding the Pareto-optimal front sought to help the user to
obtain several alternative solutions at once. Then, cluster
validity index values are evaluated for each Pareto-optimal
front value, which is considered the optimal number of
clusters value. MOKGA overcomes the difficulty of
determining the weight of each objective function taking
part in the fitness when dealing with this multiple objectives
problem. Otherwise, the user would have been expected to
do many trials with different weighting of objectives as in
traditional genetic algorithms. This method also gives the
users an overview of different numbers of clusters, which
may help them in finding subclasses and optimal number of
clusters in a single run, whereas traditional methods like
SOM, K-means, Hieratical clustering algorithms and GCA
can not find optimal number of clusters, or need it as a

prespecified parameter. MOKGA is less susceptible to the
shape or continuity of the Pareto front. It can easily deal
with discontinuous or concave Pareto fronts. These two
issues are real concerns for mathematical programming
techniques, like model-based approaches such as Bayesian
method and mixed model-based clustering algorithms.

References
[1] K. Chen, L. Liu, “Validating and Refining Clusters via

Visual Rendering Gene Expression Data of the
Genomic Resources,” Proc. of IEEE International
Conference on Data Mining, pp.501-504, 2003.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective
optimization: Methods and applications,” Doctoral
Thesis ETH NO. 13398, Zurich: Swiss Federal
Institute of Technology, 1999.

[3] T. R. Golub, et al, “Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring,” Science , 286, pp.531-537, 1999.

[4] M. Halkidi, Y. Batistakis and M. Vazirgiannis,
“Clustering Validity Checking Methods: Part II,”
SIGMOD Record, Vol.31, No.3, pp.19-27, 2002.

[5] J. Horn, N. Nafpliotis and D. E. Goldberg, “A Niched
Pareto Genetic Algorithm for Multiobjective
Optimization,” Proc. of IEEE CEC, Vol.1, pp.82-87,
Piscataway, NJ. 1994.

[6] V.R. Iyer, et al, “The transcriptional program in the
response of human fibroblasts to serum,” Science,
283(5398), pp.83-7, 1999.

[7] Y. Liu, T. Özyer, R. Alhajj and K. Barker, “Multi-
objective Genetic Algorithm based Clustering
Approach and Its Application to Gene Expression
Data,” Proc. of ADVIS, Springer-Verlag, Oct. 2004.

[8] Y. Lu, et al, “FGKA: A Fast Genetic K-means
Clustering Algorithm,” Proc. of ACM Symposium on
Applied Computing, Cyprus, pp.162-163, 2004.

[9] U. Möller, D. Radke, F. Thies, Testing the significance
of clusters found in gene expression data. Proc. of
European Conference on Computational Biology,
Paris, pp.26,-30, 2003.

[10] T. Özyer, Y. Liu, R. Alhajj and K. Barker, “Validity
Analysis of Clustering Obtained Using Multi-
Objective Genetic Algorithm,” Proc. of ISDA,
Springer-Verlag, Hungary, Aug. 2004.

[11] P.J. Rousseeuw, Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis,
Journal of Comp App. Math, Vol.20, pp.53-65, 1987.

[12] E. H. Ruspini, “Numerical methods for fuzzy
clustering,” Inform. Science, vol.2, pp.319–350. 1970.

[13] U. Scherf, et al, “A Gene Expression Database for the
Molecular Pharmacology of Cancer,” Nat Genet,
Vol.24, pp.236-44, 2000.

[14] B. Stein, S. Meyer and F. Wissbrock, “On Cluster
Validity and the Information Need of Users,” Proc. of
the International Conference on Artificial Intelligence
and Applications, Spain, Sep. 2003.

[15] W. Shannon, R. Culverhouse J. Duncan, “Analyzing
microarray data using cluster analysis,”
Pharmacogenomics, Vol.4, No.1, pp.41-52, 2003.

500

ClosedPROWL: Efficient Mining of Closed Frequent Continuities by

Projected Window List Technology

Kuo-Yu Huang, Chia-Hui Chang and Kuo-Zui Lin∗

Abstract

Mining frequent patterns in databases is a fundamental and

essential problem in data mining research. A continuity is

a kind of causal relationship which describes a definite tem-

poral factor with exact position between the records. Since

continuities break the boundaries of records, the number of

potential patterns will increase drastically. An alternative

approach is to mine closed frequent continuities. Mining

closed frequent patterns has the same power as mining the

complete set of frequent patterns, while substantially reduc-

ing redundant rules to be generated and increasing the ef-

fectiveness of mining. In this paper, we propose a method

called projected window list technology for the mining of

frequent continuities. We present a closed frequent continu-

ity mining algorithm, ClosedPROWL. Experimental result

shows that our algorithm is more efficient than previously

proposed algorithms.

Temporal databases, association rules, Min-
ing methods and algorithms

1 Introduction

Mining frequent patterns in databases is a fundamental
and essential problem in data mining. Over the past
few years, a considerable number of studies have been
made in frequent pattern mining. There are various di-
rections in pattern mining, such as frequent itemsets,
sequential patterns, frequent episodes [4], periodic pat-
terns [3], frequent continuities [2, 5], etc. The funda-
mental paradigm of association rule mining (e.g. fre-
quent itemsets) identifies correlations between objects
in transaction databases (market baskets) without tak-
ing any ordering of the objects into account. Such rules
can be useful for decisions concerning product pricing,
promotions, store layout and many others.

In addition to the mining tasks on transaction
databases, there are also works on temporal association
mining, which concerns the occurrences of events along
time, e.g. frequent episodes, periodic patterns, frequent

∗The authors are with the department of Comupter Science
and Information Engineering, National Central University, Tai-
wan. Email: want@db.csie.ncu.edu.tw, chia@csie.ncu.edu.tw,
kuozui@db.csie.ncu.edu.tw

continuities, etc. To distinguish these two kinds of
mining tasks, prior researches [5] use the term intra-
transaction associations for the former mining tasks and
inter-transaction association for the latter ones. As
suggested in [5], inter-transaction associations are better
for trend prediction than intra-transaction associations.
For instance, the investors may be more interested in
a rule like “When the price of stock TSMC goes up
for two consecutive days, the price of stock UMC will
go up with 60% probability on the third day.” This
kind of the temporal association with definite temporal
relationships between stocks can be envisioned as a
tool for describing and forecasting of the behavior of
temporal databases.

The above rule can be generated from frequent con-
tinuities [2], an inter-transaction association which cor-
relates the definite time with each object. The problem
is first introduced by Tung et al in [5], where an algo-
rithm called FITI (First Intra Then Inter) is proposed
for mining frequent continuities. FITI is a three-phase
algorithm. The first phase discovers intra-transaction
itemsets. The second phase transforms the original
database into another database to facilitate the min-
ing of inter-transaction associations. The third phase
follows the Apriori principle to perform a level-wise
mining. In order to make search quickly, FITI is de-
vised with serval hashing structures for pattern search-
ing and generation. Similar to Apriori-like algorithms,
FITI could generate a huge number of candidates and
require several scans over the whole database to check
which candidates are frequent. Therefore, Huang et al.
introduce a projected window list (PROWL) technique
[2] which enumerates new frequent continuities by con-
catenating frequent items in the time lists of the fol-
lowing time slots (called the projected window list) of
an existent frequent continuity. PROWL utilizes mem-
ory for storing both vertical and horizontal formats of
the database, therefore it discovers frequent continuities
without candidate generation. Note that PROWL was
designed to mining frequent continuity from a sequence
of events instead of a sequence of eventsets.

Since inter-transaction associations break the
boundaries of transactions, the number of potential con-

501

tinuities and the number of rules will increase drasti-
cally. This reduces not only efficiency but also effective-
ness since users have to sift through a large number of
mined rules to find useful ones. Although compressed
continuity (and the corresponding algorithm COCOA)
[1] reduces the number of continuities, they are not
the minimum set that can represent all continuities.
They are simply continuities that are composed of closed
frequent itemsets. Therefore, we focus on discovering
closed frequent continuities which have no proper
super-continuity with the same support in databases.

What are super-continuity and sub-continuity?
Given two continuities P = [p1, p2, . . . , pu] and P ′ =
[p′1, p

′
2, . . . , p

′
v], we say that P is a super-continuity of

P ′ (i.e., P ′ is a sub-continuity of P) if and only if,
for each non-* pattern p′j (1 ≤ j ≤ w), p′j ⊆ pj+o is
true for some integer o. The integer o is also called the
offset of P . For example, continuity P = [AC,E,BD] is
a super-continuity of continuity P ′ =[E, B,*], since the
pattern E (B, resp.) is a subset of the (BD, resp.) with
offset 1. On the contrary, continuity P ′′ =[E,B,AC] is
not a sub-continuity of P , since P ′′ can not map to P
with a fixed offset. It is worth mentioning that if we
don’t consider the offset in the continuity matching, the
continuity P ′ will not be a sub-continuity of continuity
P .

The problem of closed frequent continuity mining
is similar to frequent continuity mining [2], except for
the closed constraint. Mining closed frequent continu-
ities has the same power as mining the complete set of
frequent continuities, while substantially reduce redun-
dant rules to be generated and increase the effective-
ness of mining. Therefore, the problem is formulated
as follows: given a minimum support level minsup and
a maximum time window bound maxwin, our task is
to mine all closed frequent continuities from temporal
database with support greater than minsup and win-
dow bound less than maxwin.

2 The ClosedPROWL Algorithm

Similar to FITI [5] and COCOA [1], the ClosedPROWL
algorithm also consists of three phases. The first phase
involves the mining of closed frequent intra-transaction
itemsets. The idea is based on the observation that a
closed continuity is composed of only closed itemsets
and don’t care characters (see Theorem4.3). Since the
third phase of the algorithm requires the time lists of
each intra-transaction itemset, this phase is mined using
a vertical mining algorithm, CHARM [6], for closed
frequent itemsets mining.

The second phase is database transformation, where
it encodes each closed frequent itemset (abbreviated
C.F.I.) with a unique ID. Next, based on the time

lists of the C.F.I together with the encoding table, we
construct a recovered horizontal database.

In the third phase, we discover all closed frequent
continuities from the recovered horizontal database by
concatenating a frequent continuity with its closed
frequent itemsets using depth first enumeration. For
ease exposition, we first define the projected window
list below.

Definition 2.1. Given the time list of a continuity
P , P.timelist = {t1, t2, . . . , tk} in the database D, the
projected window list (PWL) of P with offset d is
defined as P.PWLd = {w1, w2, . . . , wk} , wi = ti +d for
1 ≤ i ≤ k. Note that a time slot wi is removed from the
projected list if wi is greater than |D|, i.e. wi ≤ |D| for
all i.

For each frequent 1-continuity P , or equivalently
closed frequent itemset (C.F.I.), the mining steps are as
follows:

1. Calculate the projected window list (PWL) with
offset 1 from P.timelist. Find all frequent C.F.I.
in P.PWL1 by examining the recovered horizontal
database.

2. Then apply subitemset-pruning strategy to remove
unnecessary extensions.

3. For each remaining C.F.I. x, generate a new fre-
quent continuity P · [x]. Step 1 to 3 are applied re-
cursively to find all frequent continuities until the
size of (P · [x]).PWL1 becomes less than the re-
quired counts specified by minsup or the window
of a continuity is greater than maxwin.

4. Finally, we apply subcontinuity-checking to remove
non-closed frequent continuities.

Starting from any 1-continuity P , all frequent con-
tinuities having prefix P can be generated by concate-
nating P with a closed frequent eventset in P.PWL or
the don’t care character without candidate generation.
As with the PROWL algorithm [2] and COCOA [1],
the timelists (vertical format) record the locations of
a continuity, while the recovered database (horizontal
format) is used for fast access to see what itemsets are
frequent enough to extend current frequent continuity.
What makes ClosePROWL different is Step 2 and 4,
where we incorporate the property of closed continuities
to reduce the search space.

Sub-itemset pruning: For two C.F.I. x and y in
the project window list of a continuity P , if Sup(P ·
[x]) = Sup(P · [y]), the sub-itemset pruning works as
following properties:

502

Mining Task Phase I Phase III Algorithm

Continuity Frequent Itemset FITI-3 FITI
PROWL PROWL+

Compressed FITI-3 ComFITI
Closed Frequent Itemset PROWL COCOA

Closed PROWL+Pruning ClosedPROWL

Table 1: Comparison of various mining tasks

1. If x ⊂ y, then remove x since all extensions of P ·[x]
must not be closed.

2. If x ⊃ y, then remove y since all extensions of P · [y]
must not be closed.

3. If x.timelist = y.timelist and neither x ⊂ y
nor x ⊃ y, then remove both x and y, since all
extensions of P · [x] and P · [y] must not be closed.

In order to make the pruning efficient, we devise
a hash structure, PHTab (prune header table) with
PHsize buckets. All C.F.I.s with the same support
counts are hashed into the same bucket. Each entry in
the same bucket records a frequent ID x of the current
continuity P , the time list of P · [x], and the support
count of P · [x]. The comparison of two frequent C.F.I.
x and y in the projected window lists of a continuity
P is restricted to the frequent IDs in the same buckets
with the same support.

The sub-itemset pruning technique removes the
non-closed sub-continuity of closed frequent continuities
with zero offset since the pruning is invoked within a
local search of a continuity. For those sub-continuities
of closed frequent continuities with non-zero offset, they
can still be generated in the mining process. Therefore,
we need a checking step (Step 4) to remove non-closed
continuities. Again, a hash structure, FCTab (frequent
continuity table), is devised to facilitate efficient sub-
continuity checking using the following as the hashing
function:

bkNum = Sup(P)%BucketSize.(2.1)

The correctness of the pruning technique and the
overall algorithm can be proven by the theorems in
Appendix A and B respectively.

3 Experiments

In this section, we report the performance study of the
proposed algorithm on synthetic data. Since the three
phases of the proposed algorithms have good correspon-
dence with three phases of the FITI algorithm, it is pos-
sible to mine various continuities by combining various
Phase Is with Phase IIIs of FITI (called FITI-3) and

PROWL. We already know the mining process of FITI.
Combining frequent itemset mining with Phase III of
ClosedProwl without pruning produces the same result
with FITI. If we mine closed frequent itemsets at Phase
I and apply FITI-3 or PROWL, we will get compressed
frequent continuities. We call the algorithms ComFITI
and COCOA, respectively. Finally, the closed frequent
itemset mining at Phase I combined with PROWL and
the pruning strategies at Phase III results the mining
of ClosedPROWL for frequent closed continuities. The
combinations are shown in Table 1. We compare the
five algorithms using synthetic data.

The synthetic data sets which we used for our ex-
periments were generated using the generator described
in [1]. We start by looking at the performance of
ClosedPROWL with default parameter minsup = 0.6%
and maxwin = 5. Figure 1(a) shows the scalability
of the algorithms with varying database size. Closed-
PROWL is faster than FITI (by a magnitude of 5 for
|D| = 500K). The scaling with database size was lin-
ear. Therefore, the scalability of the projected window
lists technique is proved. Another remarkable result is
that COCOA performs better than ComFITI for the
same mining task (compressed frequent continuity min-
ing). The reason for the considerable execution time
of FITI and ComFITI is that they must count the sup-
ports of all candidate continuities. The memory require-
ment of the algorithms with varying database size is
shown in Figure 1(b). In this case, the number of fre-
quent continuities and closed frequent continuities are
13867 and 1183 respectively. The compression rate (#
of closed frequent continuities /# of frequent continu-
ities) is about 9%. As the data size increases, the mem-
ory requirement of ClosedPROWL, COCOA and FITI
increases as well. However the memory usages of FITI
and ClosedPROWL are about the same at |D| = 100K
and the difference is only 18MB at |D| = 500K, with an
original database of 12.2 MB. Since ClosedPROWL re-
quires additional memory to maintain frequent continu-
ities (FCTab), we modify the algorithm to disk-resident
ClosedPROWL (labelled ClosedPROWL(Disk)). As il-
lustrated in Figure 1(b), the memory requirement of the
ClosedPROWL(Disk) is thus less than FITI but more

503

446

885

1328

1757

2249

303

586

920
1096

1370

169
340

492
665

981

77 151
252 328 386

0

500

1000

1500

2000

2500

100 200 300 400 500
Data Size(k)

E
xe

cu
tio

n
T

im
e(

se
c)

FITI
ComFITI(III)
COCOA(III)
ClosedPROWL

79

131

176

79

98

118

138

158

40

65

93

117

142
153

0

30

60

90

120

150

180

100 200 300 400 500
Data Size(k)

M
em

or
y

U
sa

ge
(M

B
)

ClosedPROWL

FITI

ClosedPROWL(Disk)

COCOA

(a) Execution Time v.s. Data Size (b) Memory Usage v.s. Data Size

770

487
430 432 459

414
365

450

271 259 294 300 275 261294

181 169 162 188 163 137141
71 83 78 74 72 47

0

200

400

600

800

1000

0.4 0.6 0.8 1 1.2 1.4 1.6
Minimum Support(%)

E
xe

cu
tio

n
T

im
e(

se
c)

FITI
ComFITI(III)
COCOA(III)
ClosedPROWL

130

79 78 78 78 77 75

43 40 40 39 40 41 36

94

0

30

60

90

120

150

0.4 0.6 0.8 1 1.2 1.4 1.6
Minimum Support(%)

M
em

or
y

U
sa

ge
(M

B
)

FITI
ClosedPROWL
COCOA
ClosedPROWL(Disk)

(c) Execution Time v.s. minsup (d) Memory Usage v.s. minsup

Figure 1: Performance comparison I

than COCOA for subitemset pruning (PHTab).
The runtime and memory usage of FITI and Closed-

PROWL on the default data set with varying mini-
mum support threshold, minsup, from 0.4% to 1.6%
are shown in Figures 1(c) and (d). Clearly, Closed-
PROWL is faster and more scalable than both FITI
and ComFITI with the same memory requirements (by
a magnitude of 5 and 3 for minsup = 0.4% respec-
tively), since the number of frequent continuities grows
rapidly as the minsup diminishs. ClosedPROWL and
ClosedPROWL(Disk) require 129MB and 94MB at the
minsup = 0.4%, respectively. Thus maintaining closed
frequent continuities (FCTab) in ClosedPROWL needs
35MB main memory approximately. Meanwhile, we can
observe that the pruning strategies of ClosedPROWL
increase the efficiency considerably (by a magnitude of
2) through the comparison between ClosedPROWL and
COCOA in Figure 1(c). In summary, projected win-
dow list technique is more efficient and more scalable
than Apriori-like, FITI and ComFITI, especially when
the number of frequent continuities becomes really very
large.

4 Conclusion

In this paper, we propose an algorithms for the mining
of closed frequent continuities. We show that the three-
phase design lets the projected window list technique,
which was designed for sequences of events, also appli-
cable to general temporal databases. The proposed al-
gorithm uses both vertical and horizontal database for-
mats to reduce the searching time in the mining process.
Therefore, there is no candidate generation and multi-
pass database scans. The main reason that projected
window list technique outperforms FITI/ComFITI is
that it utilizes memory for fast computation. This the
same reason that later algorithms for association rule
mining outperform Apriori. Even so, we have demon-
strated that the memory usage of our algorithms are
actually more compact than the FITI/ComFITI algo-
rithm. Furthermore, with subitemset pruning and sub-
continuity checking, ClosedPROWL successfully discov-
ered efficiently all closed continuities. For future work,
maintaining and reusing old patterns for incremental
mining is an emerging and important research. Fur-
thermore, using continuities in prediction is also an in-
teresting issue.

504

Acknowledgements This work is sponsored by Na-
tional Science Council, Taiwan under grant NSC93-
2213-E-008-023.

References

[1] K. Y. Huang, C. H. Chang, and K.-Z. Lin. Cocoa:
An efficient algorithm for mining inter-transaction as-
sociations for temporal database. In Proceedings of

8th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD’04), vol-
ume 3202 of Lecture Notes in Computer Science, pages
509–511. Springer, 2004.

[2] K. Y. Huang, C. H. Chang, and K.-Z. Lin. Prowl: An
efficient frequent continuity mining algorithm on event
sequences. In Proceedings of 6th International Confer-

ence on Data Warehousing and Knowledge Discovery

(DaWak’04), volume 3181 of Lecture Notes in Com-

puter Science, pages 351–360. Springer, 2004.
[3] K. Y. Huang and C. H. Chang. Smca: A general model

for mining synchronous periodic pattern in temporal
database. IEEE Transaction on Knowledge and Data

Engineering (TKDE), 2005. To Appear.
[4] H. Mannila, H. Toivonen, and A. I. Verkamo. Discov-

ering frequent episodes in event sequences. Data Min-

ing and Knowledge Discovery (DMKD), 1(3):259–289,
1997.

[5] A. K. H. Tung, H. Lu, J. Han, and L. Feng. Ef-
ficient mining of intertransaction association rules.
IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 15(1):43–56, 2003.
[6] M. J. Zaki and C. J. Hsiao. Charm: An efficient

algorithm for closed itemset mining. In Proceedings of

2nd SIAM International Conference on Data Mining

(SIAM 02), pages 457–473, 2002.

Appendix A

Lemma 4.1. Let P = [p1, p2, . . . , pw] and
Q = [q1, q2, . . . , qw] be two frequent continuities
and P.timelist = Q.timelist. For any frequent conti-
nuity U , if P ·U is frequent, then Q ·U is also frequent,
vice versa.

Theorem 4.1. Let P = [p1, p2, . . . , pw, pw+1] and Q =
[p1, p2, . . . , pw, p′w+1] be two continuities. If pw+1 ⊂
p′w+1 and Sup(P) = Sup(Q), then all extensions of P
must not be closed.

Proof. Since pw+1 is a subset of p′w+1, wherever
p′w+1 occurs, pw+1 occurs. Therefore, P.timelist ⊇
Q.timelist. Since Sup(P) = Sup(Q), the equal
sign holds, i.e. P.timelist = Q.timelist. For any
extension P · U of P , there exists Q · U (Lemma
4.1), such that Q · U is a super-continuity of P ·
U , and (P · U).timelist = P.PWL|U |

⋂
U.timelist=

Q.PWL|U |
⋂

U.timelist = (Q · U).timelist. Therefore,
P · U is not a closed continuity.

Theorem 4.2. Let P = [p1, p2, . . . , pw, pw+1] and Q =
[p1, p2, . . . , pw, p′w+1] be two continuities. If pw+1 ⊂
p′w+1 and Sup(P) = Sup(Q), then all extensions of P
must not be closed.

Proof. Consider the continuity U = [p1, p2,
. . . , pw, pw+1∪ p′w+1]. U.timelist=P.timelist

⋂
Q.timelist. Since P.timelist = Q.timelist, we have
U.timelist=P.timelist=Q.timelist. Using Theorem
4.2, all extensions of P and Q can not be closed be-
cause Sup(U) = Sup(P) = Sup(Q).

Appendix B

We also prove the correctness of the ClosedPROWL
algorithm below.

Lemma 4.2. The time list of a continuity P =
[p1, p2,, pw] is P.timelist =

⋂w
i=1 pi.PWLw−i.

We define the closure of an itemset p, denoted c(p),
as the smallest closed set that contains p. If p is closed,
then c(p) = p. By definition, Sup(p) = Sup(c(p)) and
p.timelist = c(p).timelist.

Theorem 4.3. A closed continuity is composed of only
closed itemsets and don’t care characters.

Proof. Assume P = [p1, p2, . . . , pW] is a closed
continuity, and some of the pis are composed
of non-closed itemsets. Consider the continu-
ity CP = [c(p1), c(p2), . . . , c(pW)], CP.timelist =⋂w

i=1 c(pi).PWLw−i =
⋂w

i=1 pi.PWLw−i = P.timelist.
Therefore, P is not a closed continuity. We thus have
a contradiction to the original assumption that P is
a closed continuity and thus conclude that “all closed
continuities P = [p1, p2, . . . , pW] are composed of only
closed itemsets and the don’t-care characters”.

Theorem 4.4. The ClosedPROWL algorithm gener-
ates all closed frequent continuities.

Proof. First of all, the anti-monotone property “if a con-
tinuity is not frequent, all its super-continuities must be
infrequent” is sustained for closed frequent continuities.
According to Theorem 4.3, the search space composed
of only closed frequent itemset covers all closed frequent
continuities. ClosedPROWL’s search is based on a com-
plete set enumeration space. The only branches that
are pruned as those that do not have sufficient support.
The sub-itemet pruning only removed non-closed conti-
nuities (Theorem 4.2). Therefore, ClosedPROWL cor-
rectly identifies all closed frequent continuities. On the
other hand, sub-continuity checking remove non-closed
frequent continuities. Therefore, the ClosedPROWL al-
gorithm generates all and only closed frequent continu-
ities.

505

Three Myths about Dynamic Time Warping Data Mining
Chotirat Ann Ratanamahatana Eamonn Keogh

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521
{ ratana, eamonn }@cs.ucr.edu

Abstract

The Dynamic Time Warping (DTW) distance measure is a
technique that has long been known in speech recognition
community. It allows a non-linear mapping of one signal to
another by minimizing the distance between the two. A
decade ago, DTW was introduced into Data Mining
community as a utility for various tasks for time series
problems including classification, clustering, and anomaly
detection. The technique has flourished, particularly in the
last three years, and has been applied to a variety of
problems in various disciplines.

In spite of DTW’s great success, there are still several
persistent “myths” about it. These myths have caused
confusion and led to much wasted research effort. In this
work, we will dispel these myths with the most
comprehensive set of time series experiments ever
conducted.

Keywords
Dynamic Time Warping, Data Mining, Experimentation.

1 Introduction
In recent years, classification, clustering, and indexing of
time series data have become a topic of great interest within
the database/data mining community. The Euclidean
distance metric has been widely used [9], in spite of its
known weakness of sensitivity to distortion in time axis [6].
A decade ago, the Dynamic Time Warping (DTW) distance
measure was introduced to the data mining community as a
solution to this particular weakness of Euclidean distance
metric [2]. This method’s flexibility allows two time series
that are similar but locally out of phase to align in a non-
linear manner. In spite of its O(n2) time complexity, DTW
is the best solution known for time series problems in a
variety of domains, including bioinformatics [1], medicine
[4], engineering, entertainment [22], etc.

The steady flow of research papers on data mining with
DTW became a torrent after it was shown that a simple
lower bound allowed DTW to be indexed with no false
dismissals [6]. The lower bound requires that the two
sequences being compared are of the same length, and that

the amount of warping is constrained. This work allowed
practical applications of DTW, including real-time query-
by-humming systems [22], indexing of historical
handwriting archives [17], and indexing of motion capture
data [5].

In spite of the great success of DTW in a variety of
domains, there still are several persistent myths about it.
These myths have caused great confusion in the literature,
and led to the publication of papers that solve apparent
problems that do not actually exist. The three major myths
are:

Myth 1: The ability of DTW to handle sequences of
different lengths is a great advantage, and therefore the
simple lower bound that requires different-length sequences
to be reinterpolated to equal length is of limited utility
[10][19][21]. In fact, as we will show, there is no evidence
in the literature to suggest this, and extensive empirical
evidence presented here suggests that comparing sequences
of different lengths and reinterpolating them to equal length
produce no statistically significant difference in accuracy or
precision/recall.

Myth 2: Constraining the warping paths is a necessary evil
that we inherited from the speech processing community to
make DTW tractable, and that we should find ways to
speed up DTW with no (or larger) constraints[19]. In fact,
the opposite is true. As we will show, the 10% constraint
on warping inherited blindly from the speech processing
community is actually too large for real world data mining.

Myth 3: There is a need (and room) for improvements in
the speed of DTW for data mining applications. In fact, as
we will show here, if we use a simple lower bounding
technique, DTW is essentially O(n) for data mining
applications. At least for CPU time, we are almost certainly
at the asymptotic limit for speeding up DTW.

In this paper, we dispel these DTW myths above by
empirically demonstrate our findings with a comprehensive
set of experiments. This work is part of an effort to redress
these mistakes. In terms of number of objective datasets
and size of datasets, our experiments are orders of
magnitude greater than anything else in the literature. In

506

particular, our experiments required more than 8 billion
DTW comparisons.

The rest of the paper is organized as follows. The next
three sections consider each of the three myths above with
a comprehensive set of experiments, testing on a wide
range of both real and synthetic datasets. Section 5 gives
conclusions and directions for future work. Due to space
limitations, we decided to omit the datasets details and
background/review of DTW (which can be found in [16]).
However, their full details and actual datasets have been
publicly available for free download at [8].

2 Does Comparing Sequences of Different
Lengths Help or Hurt?

Many recent papers suggest that the ability of classic DTW
to deal directly with sequences of different length is a great
advantage; some paper titles even contain the phrase “…of
different lengths” [3][13] showing their great concerns in
solving this issue. These claims are surprising in that they
are not supported by any empirical results in the papers in
question. Furthermore, an extensive literature search
through more than 500 papers dating back to the 1960’s
failed to produce any theoretical or empirical results to
suggest that simply making the sequences to be of the same
length has any detrimental effect.

To test our claimed hypothesis that there is no significant
difference in accuracies between using variable-length time
series and equal-length time series in DTW calculation, we
carry out an experiment as follows.

For all variable-length time series datasets (Face, Leaf,
Trace, and Wordspotting – See [8] for dataset details), we
compute 1-nearest-neightbor classification accuracies
(leaving-one-out) using DTW for all warping window sizes
(1% to 100%) in two different ways:- (1) The 4S way; we
simply reinterpolated the sequences to have the same
length, and (2) By comparing the sequences directly using
their original lengths.

To give the benefit of the doubt to different-length case, for
each individual warping window size, we do all four
possible normalizations above, and the best performing of
the four options is recorded as the accuracy for the
variable-length DTW calculation.

For completeness, we test over every possible warping
constraint size. Note that we start the warping window size
of 1% instead of 0% since 0% size is Euclidean distance
metric, which is undefined when the time series are not of
the same length. Also, when measuring the DTW distance
between two time series of different lengths, the percentage
of warping window applied is based on the length of the
longer time series to ensure that we allow adequate amount
of warping for each pair and deliver a fair comparison.

The variable-length datasets are then linearly reinterpolated
to have the same length of the longest time series within
each dataset. Then, we simply compute the classification
accuracies using DTW for all warping window sizes (1% to
100%) for each dataset. The results are shown in Figure 1.

Figure 1. A comparison of the classification accuracies
between variable-length (dotted lines) and the (reinterpolated)
equal-length datasets (solid lines) for each warping window
size (1-100%). The two options produce such similar results
that in many places the lines overlap.

Note that the experiments do strongly suggest that changing
the amount of warping allowed does affect the accuracy (an
issue that will be discussed in depth in the next section), but
over the entire range on possible warping widths, the two
approaches are nearly indistinguishable. Furthermore, a
two-tailed test using a significance level of 0.05 between
each variable-length and equal-length pair indicates that
there is no statistically significant difference between the
accuracy of the two sets of experiments. An even more
telling result is the following. In spite of extensive
experience with DTW and an extensive effort, we were
unable to create an artificial problem where reinterpolating
made a significant difference in accuracy. To further
reinforce our claim, we also reinterpolate the datasets to
have the equal length of the shortest and averaged length of
all time series within the dataset. We still achieve similar
findings.

These results strongly suggest that work allowing DTW to
support similarity search that does require reinterpolation,
is simply solving a problem that does not exist. The often-
quoted utility of DTW, such as “(DTW is useful) to
measure similarity between sequences of different lengths”
[21], for being able to support the comparison of sequences
of different lengths is simply a myth.

3 Are Narrow Constraints Bad?
Apart from (slightly) speeding up the computation, warping
window constraints were originally applied mainly to
prevent pathological warping (where a relatively small
section of one sequence maps to a much larger section of
another). The vast majority of the data mining researchers
have used a Sakoe-Chiba Band with a 10% width for the

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
75

80

85

90

95

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

99.5

Face

Trace

Leaf

Wordspotting

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
75

80

85

90

95

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

99.5

Face

Trace

Leaf

Wordspotting

507

global constraint [1][14][18]. This setting seems to be the
result of historical inertia, inherited from the speech
processing community, rather than some remarkable
property of this particular constraint.
Some researchers believe that having wider warping window
contributes to improvement in accuracy [22]. Or without
realizing the great effect of the warping window size on
accuracies, some applied DTW with no warping window
constraints [12], or did not report the window size used in
the experiments [11] (the latter case makes it particularly
difficult for others to reproduce the experiment results). In
[19], the authors bemoan the fact that “(4S) cannot be
applied when the warping path is not constrained” and use
this fact to justify introducing an alterative approach that
works for the unconstrained case.

To test the effect of the warping window size to the
classification accuracies, we performed an empirical
experiment on all seven classification datasets. We vary
the warping window size from 0% (Euclidean) to 100% (no
constraint/full calculation) and record the accuracies.

Since we have shown in Section 2 that reinterpolation of
time series into the same length is at least as good as (or
better than) using the original variable-length time series,
we linearly interpolate all variable-length datasets to have
the same length of the longest time series within the dataset
and measure the accuracy using the 1-nearest-neighbor
with leaving-one-out classification method. The results are
shown in Figure 2. As we hypothesized, wider warping
constraints do not always improve the accuracy, as
commonly believed [22]. More often, the accuracy peaks
very early at much smaller window size (average = 4%).
We also did an additional experiment, where half of the
objects in the databases were randomly removed from the
database iteratively. We measure the classification
accuracies for each database size; as the database size
decreases, the classification accuracy also declines and the
peak appears at larger warping window size.

This finding suggests that warping window size adjustment
does affect accuracy, and that the effect also depends on the
database size. This in turn suggests that we should find the
best warping window size on realistic (for the task at hand)
database sizes, and not try to generalize from toy problems.

To summarize, there is no evidence to support the idea that
we need to be able to support wider constraints. While it is
possible that there exist some datasets somewhere that
could benefit from wider constraints, we found no evidence
for this in a survey of more than 500 papers on the topic.
More tellingly, in spite of extensive efforts, we could not
even create a large synthetic dataset for classification that
needs more than 10% warping.

In fairness, we should note that it is only in the
database/data mining community that this misconception
exists. Researchers that work on real problems have long
ago noted that constraining the warping helps. For
example, Tomasi et al. who work with chromatographic
data noted “Unconstrained dynamic time warping was
found to be too flexible for this chromatographic data set,
resulting in a overcompensation of the observed shifts”
[20], or Rath & Manmatha have carefully optimized the
constraints for the task of indexing historical archives [17].

Figure 2. The classification accuracies for all warping window
sizes (0% to 100%). All accuracies peak at very small window
sizes.

All the evidence suggests that narrow constraints are
necessary for accurate DTW, and the “need” to support
wide (or no) constraints is just a myth.

4 Can DTW be further Speeded up?
Smaller warping windows speed up the DTW calculations
simply because there is less area of the warping matrix to
be searched. Prior to the introduction of lower bounding,
the amount of speedup was directly proportional to the
width of the warping window. For example, a nearest
neighbor search with a 10% warping constraint was almost
exactly twice as fast as a search done with a 20% window.
However, it is important to note that with the introduction
of lower bounding based on warping constraints (i.e. 4S),
the speedup is now highly nonlinear in the size of the
warping window. For example, a nearest neighbor search
with a 10% warping constraint may be many times faster
than twice a search done with a 20% window.

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
91

92

93

94

95

96

97

98

99

0 20 40 60 80 100
91

92

93

94

95

96

97

98

99

0 20 40 60 80 100
65

70

75

80

85

90

95

100

0 20 40 60 80 100
65

70

75

80

85

90

95

100

0 20 40 60 80 100
92

93

94

95

96

97

98

99

100

0 20 40 60 80 100
92

93

94

95

96

97

98

99

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

Face Gun

Leaf Control Chart

Trace Two-Pattern

Wordspotting

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
93.5

94

94.5

95

95.5

96

96.5

0 20 40 60 80 100
91

92

93

94

95

96

97

98

99

0 20 40 60 80 100
91

92

93

94

95

96

97

98

99

0 20 40 60 80 100
65

70

75

80

85

90

95

100

0 20 40 60 80 100
65

70

75

80

85

90

95

100

0 20 40 60 80 100
92

93

94

95

96

97

98

99

100

0 20 40 60 80 100
92

93

94

95

96

97

98

99

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0 20 40 60 80 100

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

0 20 40 60 80 100
96

96.5

97

97.5

98

98.5

99

Face Gun

Leaf Control Chart

Trace Two-Pattern

Wordspotting

508

In spite of this, many recent papers still claim that there is a
need and room for further improvement in speeding up
DTW. Surprisingly, as we will show, the amortized CPU
cost of DTW is essentially O(n), using trivial 4S technique.

To really understand what is going on, we will avoid
measuring the efficiency of DTW when using index
structures. The use of such index structures opens the
possibility of implementation bias [9]; it is simply difficult
to know if the claimed speedup truly reflects a clever
algorithm, or simply care in choice of buffer size, caching
policy, etc.

Instead, we measure the computation time of DTW for each
pair of time series in terms of the amortized percentage of
the warping matrix that needs to be visited for each pair of
sequences in our database. This number depends only on
the data itself and the usefulness of the lower bound. As a
concrete example, if we are doing a one nearest neighbor
search on 120 objects with a 10% warping window size,
and the 4S algorithm only needs to examine 14 sequences
(pruning the rest), then the amortized cost for this
calculation would be (w * 14) / 120 = 0.12*w, where w is
the area (in percentage) inside the warping window
constraint along the diagonal (Sakoe-Chiba band). Note
that 10% warping window size does not always occupy
10% of the warping matrix; it mainly depends on the length
of the sequence as well (longer sequences give smaller w).
In contrast, if 4S was able to prune all but 3 objects, the
amortized cost would be (w * 3) / 120 = 0.03*w.

The amount of pruning we should actually expect depends
on the lower bounds. For example, if we used a trivial
lower bound hard-coded to zero (pointless, but perfectly
legal), then line 4 of Table 1 would always be true, and we
would have to do DTW for every pair of sequences in our
dataset. In this case, amortized percentage of the warping
matrix that needs to be accessed for each sequence in our
database would exactly be the area inside the warping
window. If, on the other hand, we had a “magic” lower
bound that returned the true DTW distance minus some
tiny epsilon, then line 4 of the Table 1 would rarely be true,
and we would have to do the full DTW calculation only
rarely. In this case, the amortized percentage of the warping
matrix that needs to be accessed would be very close to
zero. We measured the amortized cost for all our datasets,
and for every possible warping window size. The results
(and its 0-10% warping zoom-in) are shown in Figure 3.
The results are surprising. For reasonably large datasets,
simply using a good lower bound insures that we rarely
have to use the full DTW calculation. In essence, we can
say that DTW is effectively O(n), and not O(n2), when
searching large datasets.

For example, in the Gun, Trace, and 2-Pattern problems (all
maximum accuracy at 3% warping), we only need to do

much less than half a percent of the O(n2) work that we
would have been forced to do without lower bounding. For
some of the other datasets, it may appear that we need to do
a significant percentage of the CPU work. However, as we
will see below, these results are pessimistic in that they
reflect the small size of these datasets.

Figure 3. (left)The amortized percentage of warping matrix
that needs to be accessed during the DTW calculation for each
warping window size. The use of a lower bound helps prune
off numerous unnecessary calculations. (right) Zoom-in of the
warping range 0-10%

If the amortized cost of DTW is linear, where does the
claimed improvement from recent papers come from? It is
true that these approaches typically use indices, rather than
sequential search, but an index must do costly random
access rather than the optimized linear scans of sequential
search. In order to break even in terms of disk access time,
they must avoid looking at more than 10% of the data [7],
but for time series where even the reduced dimensionality
(i.e. the Fourier or wavelet coefficients) is usually greater
than 20 [9], it is not obvious that this is possible.

Some recent papers that claim speedups credit the
improved lower bounds, for example “…we present
progressively tighter lower bounds… that allow our method
to outperform (4S) ” [19]. Indeed, it might be imagined that
speedup could be obtained by having tighter lower bounds.
Surprisingly, this is not true! We can see this with our
simple experiment. Let us imagine that we have a
wonderful lower bound, which always returns a value that
is within 1% of the correct value (more concretely, a value
uniformly distributed between 99% and 100% of the true
DTW value). We will call this idealized lower bound
LB_Magic. In contrast, the current best-known lower
bounds typically return a value between 40% and 60% of
the true value [6].

We can compare the speedup obtained by LB_Magic with
the current best lower bound, LB_Keogh [6], on 1-nearest
neighbor search. Note that we have to cheat for LB_Magic
by doing the full DTW calculation then assigning it a value
up to 1% smaller. We will use a warping constraint of 5%,
which is about the mean value for the best accuracy (cf.
Sect. 3). As before, we measured the amortized percentage
of the warping matrix that needs to be accessed for each
sequence in our database. Here, we use a randomwalk data

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n2) c

al
cu

la
tio

n
re

qu
ire

d

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

Face
Gun
Leaf
CtrlChrt
Trace
2-Pattern
WordSpotting

509

of length 128 data points, and vary the database size from
10 objects to 40,960 objects. Figure 4 shows the results.

Once again, the results are very surprising. The idealized
LB_Magic allows a very impressive speedup; for the
largest size database, it eliminates 99.997% of the CPU
effort. However, the very simple lower bounding technique
that has been in the literature for several years is able to
eliminate 99.369% of the CPU effort! The difference is not
quite so dramatic for very small datasets, say less than 160
objects. But here we can do unoptimized search in much
less than a hundredth of a second. Note that we obtain
similar results for other datasets.

Figure 4. Amortized percentage of the warping matrix that
needs to be accessed. As the size of the database increases, the
amortized percentage of the warping matrix accessed becomes
closer to zero.

To summarize, for problems involving a few thousand
sequences or more, each with a few hundred data points,
the “significant CPU cost of DTW” is simply non-issue (as
for problems involving less than a few thousand sequences,
we can do them in less than a second anyway).

The lesson for the data mining community from this
experiment is the following; it is almost certainly pointless
to attempt to speed up the CPU time for DTW by
producing tighter lower bounds. Even if you could produce
a magical lower bound, the difference it would make would
be tiny, and completely dwarfed by minor implementation
choices.

5 Conclusions and Future Work
In this work, we have pointed out and investigated some of
the myths in Dynamic Time Warping measure. We
empirically validated our three claims. We hope that our
results will help researchers focus on more useful
problems. For example, while there have been dozens of
papers on speeding up DTW in the last decade, there has
only been one on making it more accurate [15]. Likewise,
we feel that the speed and accuracy of DTW that we have
demonstrated in this work may encourage researchers to
apply DTW to a wealth of new problems/domains.

6 References
[1] Aach, J. & Church, G. (2001). Aligning gene expression time

series with time warping algs. Bioinformatics(17), 495-508.
[2] Berndt, D. & Clifford, J. (1994). Using dynamic time warping to

find patterns in time series. AAAI Workshop on Knowledge
Discovery in Databases, pp. 229-248.

[3] Bozkaya, T, Yazdatani, Z, & Ozsoyoglu, Z.M. (1997). Mat-
ching and Indexing Sequences of Different Lengths. CIKM

[4] Caiani, E.G., Porta, A., Baselli, G., Turiel, M., Muzzupappa, S.,
Pieruzzi, F., Crema, C., Malliani, A., & Cerutti, S. (1998).
Warped-average template technique to track on a cycle-by-cycle
basis the cardiac filling phases on left ventricular volume. IEEE
Computers in Cardiology, pp. 73-76.

[5] Cardle, M. (2003). Music-Driven Animation. Ph.D. Thesis,
Cambridge University.

[6] Keogh, E. (2002). Exact indexing of dynamic time warping. In
28th VLDB. Hong Kong. pp. 406-417.

[7] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S.
(2001). Locally adaptive dimensionality reduction for indexing
large time series databases. SIGMOD, pp. 151-162.

[8] Keogh, E. & Folias, T. (2002) The UCR Time Series Data
Mining Archive. [http://www.cs.ucr.edu/ ~eamonn/TSDMA]

[9] Keogh, E. & Kasetty, S. (2002). On the Need for Time Seires
Data Mining Benchmarks: A Survey and Empirical
Demonstration. In the 8th ACM SIGKDD, pp. 102-111.

[10] Kim, S.W., Park, S., & Chu, W.W. (2004). Efficient processing
of similarity search under time warping in sequence databases:
an index-based approach. Inf. Syst. 29(5): 405-420.

[11] Kornfield, E.M, Manmatha, R., & Allan, J. (2004). Text Alig-
nment with Handwritten Documents. 1st Int’l workshop on
Document Image Analysis for Libraris (DIAL), pp. 195-209.

[12] Laaksonen, J., Hurri, J., and Oja, Erkki. (1998). Comparison of
Adaptive Strategies for On-Line Character Recognition. In
proceedings of ICANN’98, pp. 245-250.

[13] Park, S.,, Chu, W, Yoon, J., and Hsu, C (2000). Efficient
searchs for similar subsequences of different lengths in sequence
databases. In ICDE-00.

[14] Rabiner, L., Rosenberg, A. & Levinson, S. (1978).
Considerations in dynamic time warping algorithms for discrete
word recognition. IEEE Trans. Acoustics Speech, and Signal
Proc., Vol. ASSP-26, pp. 575-582.

[15] Ratanamahatana, C.A. & Keogh, E. (2004). Making Time-series
Classification More Accurate Using Learned Constraints. SDM
International conference, pp. 11-22.

[16] Ratanamahatana, C.A. & Keogh, E. (2004). Everything You
Know about Dynamic Time Warping is Wrong. SIGKDD
Workshop on Mining Temporal and Sequential Data.

[17] Rath, T. & Manmatha, R. (2003). Word image matching using
dynamic time warping. CVPR, Vol. II, pp. 521-527.

[18] Sakoe, H. & Chiba, S. (1978). Dynamic programming algorithm
optimization fro spoken word recognition. IEEE Trans.
Acoustics, Speech, & Signal Proc, ASSP-26, 43-49.

[19] Shou, Y., Mamoulis, N., and Cheung, D.W. Efficient Warping of
Segmented Time-series, HKU CSIS Tech rep, TR-2004-01

[20] Tomasi, G., van den Berg, F., & Andersson, C. (2004).
Correlation Optimized Warping and DTW as Preprocessing
Methods for Chromatographic Data. J. of Chemometrics.

[21] Wong, T.S.F & Wong, M.H. (2003). Efficient Subsequence
Matching for Sequences Databases under Time Warping.
IDEAS.

[22] Zhu, Y. & Shasha, D. (2003). Warping Indexes with Enve-lope
Transforms for Query by Humming. SIGMOD, 181-192.

10 20 40 80 160 320 640 1280 2560 5120 10240
20480

40960
10 20 40 80 160 320 640 1280 2560 5120 10240

20480
40960

0

1

2

3

4

5

6

7

8

9

10

Size of Database (Number of Objects)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e
of

 th
e

O
(n

2) c
al

cu
la

tio
ns

 re
qu

ir
ed

LB_Keogh
LB_Magic

No Lower Bound

510

PCA without eigenvalue
al
ulations: a
ase study onfa
e re
ognition�
E. Kokiopoulou and Y. SaadComp. S
i. & Eng. DeptUniversity of Minnesotafkokiopou,saadg�
s.umn.edu

Abstra
tPrin
ipal
omponent analysis (PCA) is an extensivelyused dimensionality redu
tion te
hnique, with impor-tant appli
ations in many �elds su
h as pattern re
og-nition,
omputer vision and statisti
s. It employs theeigenve
tors of the
ovarian
e matrix of the data toproje
t it on a lower dimensional subspa
e.However, the requirement of PCA eigenve
tors isa
omputational bottlene
k whi
h poses serious
hal-lenges and limits the appli
ability of PCA-based meth-ods, espe
ially for real-time
omputations. This paperproposes an alternative framework, relying on polyno-mial �ltering whi
h enables eÆ
ient implementations ofPCA. We show
ase the appli
ability of the proposeds
heme on fa
e re
ognition. In parti
ular, we
on-sider the eigenfa
es methods whi
h employ PCA. Thenumeri
al experiments reported indi
ate that the pro-posed te
hnique
ompetes with the PCA-based methodin terms of re
ognition rate, while being mu
h more ef-�
ient in terms of
omputational and storage
ost.Keywords Prin
ipal Component Analysis, Polyno-mial Filtering, Fa
e Re
ognition.1 Introdu
tionPrin
ipal
omponent analysis (PCA) [5℄ is one of themost popular dimensionality redu
tion te
hniques. Ithas numerous appli
ations in many areas su
h as pat-tern re
ognition,
omputer vision, statisti
s and dataanalysis. PCA has been su

essfully applied in auto-mated fa
e re
ognition [14℄, resulting in the so
alledmethod of eigenfa
es introdu
ed by Kirby and Sirovi
h[6℄, Sirovi
h and Kirby [12℄ and Turk and Pentland [10℄,[13℄. The eigenfa
es method is one of the most popu-lar appearan
e-based holisti
 approa
hes (see e.g., [1℄,[13℄) whi
h employs PCA on the
ovarian
e matrix C,
onstru
ted by the training data.�Work supported by the Minnesota Super
omputing Institute

Typi
al implementations of the eigenfa
es methodrely upon eigende
omposition of the
ovarian
e matrix.However, when the datasets are dynami
 and of larges
ale, the appli
ability of the above methods is limiteddue to their high
omputational
ost (whi
h is O(n3)for dense matri
es). This is even more evident in the
ase of real-time and adaptive algorithms (see e.g. [9℄).In these
ases, the eigende
omposition must be updatedfrequently and the time
onstraints are very stri
t. Tothat end, a lot of resear
h e�orts have been devotedto eÆ
ient eigenspa
e update s
hemes su
h as the oneproposed in [4℄.In this paper we propose an alternative implementa-tion s
heme whi
h approximates dire
tly the similaritys
ore without
omputing the eigende
omposition of Cor any other matrix de
omposition. Denoting by A thedata matrix in the input spa
e, the new method relieson polynomial �ltering, where a well de�ned polyno-mial of the matrix AA> or A>A is applied on thenew fa
e image and yields an approximation to the sim-ilarity s
ore that is very
lose to the one obtained usingeigende
omposition. The polynomial is
hosen appro-priately su
h that it is a good approximation of the stepfun
tion.The polynomial �ltering framework was appliedsu

essfully in [7℄ for dimensionality redu
tion in infor-mation retrieval. In this paper we show
ase the appli-
ability of this te
hnique in a di�erent
ontext, that offa
e re
ognition. We
laim that the proposed frame-work
an be applied in any method employing PCA toestimate similarities among data ve
tors. Numeri
al ex-periments indi
ate that the proposed framework is quite
lose to the PCA methods in terms of re
ognition ratewithout su�ering from their
omputational and storagelimitations.The remaining se
tions of this paper are organizedas follows: Se
tion 2 provides an overview of the eigen-fa
es method using eigenvalue de
omposition. In Se
-tion 3 the eigenfa
es method is interpreted in terms of
511

Singular Value De
omposition (SVD). Next, in Se
tion4 the implementation of fa
e re
ognition using eigen-fa
es, via polynomial �ltering is des
ribed. Finally, Se
-tion 5 provides a series of numeri
al results verifying thepra
ti
al advantages of the proposed s
heme.2 The method of eigenfa
es2.1 Constru
tion of the fa
e spa
e Suppose thata fa
e image
onsists of N pixels, so it
an be repre-sented lexi
ographi
ally by a ve
tor x of dimension N .Let fxiji = 1; : : : ;Mg be the training set of fa
e images.The mean fa
e is given by� = 1M MXi=1 xi:(2.1)The
ovarian
e matrix of the translated training data isC = 1MAA> 2 RN�N ;(2.2)where A = [~x1; :::; ~xM ℄ 2 RN�M is the matrix of thetranslated data points~xi = xi � �; i = 1; : : : ;M:(2.3)The eigenve
tors ul; l = 1; : : : ;M of the
ovarian
e ma-trix C are usually
alled \eigenfa
es", sin
e they re-semble fa
es when reshaped and illustrated in a pi
to-rial fashion. In pra
ti
e only a small number, say k,of eigenve
tors
orresponding to the largest eigenvaluesare
omputed and then used for performing Prin
ipalComponent Analysis (PCA) for fa
e identi�
ation. Thesubspa
e spanned by the eigenfa
es is
alled fa
e spa
e.2.2 Fa
e re
ognition using eigenfa
es The fa
ere
ognition pro
edure
onsists of two stages; the train-ing stage and the re
ognition stage. In the training stageea
h fa
e image xi of the known individuals is proje
tedon the fa
e spa
e and a k-dimensional ve
tor Pi is ob-tained Pi = U>k (xi � �); i = 1; : : : ;M;(2.4)where Uk = [u1; : : : ; uk℄ is the matrix with orthonormal
olumns, whi
h are the eigenve
tors asso
iated with thek largest eigenvalues.In the re
ognition stage, the new image x 2 RN tobe pro
essed, is translated and then proje
ted into thefa
e spa
e to obtain the ve
torPx = U>k (x� �):(2.5)The distan
e between Px and ea
h fa
e image is de�nedby d2i = kPx � Pik22= kPxk22 + kPik22 � 2P>x Pi; i = 1; : : : ;M;(2.6)

where k:k2 is the Eu
lidean norm. Furthermore, inorder to dis
riminate between fa
e images and non-fa
e images, the distan
e � between the original imagex and its re
onstru
ted image from the fa
e spa
e,xf = UkPx + �, is also
omputed:� = kx� xfk2:(2.7)Note in passing that� = kx� �� UkPxk2= k(x� �)� UkU>k (x� �)k2;and therefore � represents simply the distan
e betweenx�� and its orthogonal proje
tion onto spanfUkg, i.e.,�2 = k(I � UkU>k)(x� �)k22(2.8) = kx� �k22 � kPxk22:(2.9)This metri
 is used to de
ide whether or not a givenimage is a fa
e.3 Eigenfa
es in terms of the SVDIn this se
tion we interpret the above training andre
ognition stages in terms of the trun
ated singularvalue de
omposition of A. The SVD [3℄ of a re
tangularN �M matrix A of rank r, is de�ned asA = U�V >;(3.10) U>U = IN 2 RN�N ;(3.11) V >V = IM 2 RM�M ;(3.12)where U = [u1; : : : ; uN ℄ and V = [v1; : : : ; vM ℄ areunitary matri
es and � = diag(�1; �2; : : : ; �M); �1 ��2 � : : : � �r > �r+1 = : : : = �M = 0. The �i'sare the singular values of A and the ui's and vi's arerespe
tively the left and right singular ve
tors asso
iatedwith �i; i = 1; : : : ; r. We de�ne the i-th singular tripletof A as fui; �i; vig. It follows from the SVD that thematrix A
an be expressed as a sum of r rank-onematri
es, A = rXi=1 �iuiv>i :Additionally, it is well known thatminrank(B)�k kA�BkF = kA�AkkFwhere Ak = Pki=1 �iuiv>i and k:kF is the Frobeniusnorm. It is helpful for what follows to rewrite the matrixAk as Ak = Uk�kV >k ;(3.13)where Uk (resp. Vk),
onsists of the �rst k
olumns ofU (resp. V), and �k is a diagonal matrix of size k � k.
512

Thus, if we trun
ate the SVD to keep only the k largestsingular triplets we obtain the
losest (in a least-squaressense) approximation to A.Observe that the matrix Uk
ontaining the k largestleft singular ve
tors of ~A = 1pMA, is exa
tly the matrix
omputed by PCA
ontaining the largest eigenve
tors ofthe
ovarian
e matrix. This follows from the fa
t thatC = ~A ~A> = U�V >V �>U> = U��>U>;is the eigende
omposition of the
ovarian
e matrix.Using this observation, equation (2.4)
an be writtenin the formPi = U>k ~xi = U>k ~Aei= U>k [Uk UN�k℄ � �k 00 �M�k � � V >kV >M�k � ei= [Ik 0℄ � �kV >k�M�kV >M�k � ei= �kV >k ei; i = 1; : : : ;M:Denote by P = �kV >k the matrix whose
olumns arethe proje
tions Pi; i = 1; : : : ;M , of every known fa
eimage to the fa
e spa
e. Assuming that all ve
tors arenormalized, the similarity measurement (2.6) among thenew image x and all known images,
an be equivalently
omputed by the similarity ve
tor sk,sk = P>Px = Vk�>k U>k (x� �)(3.14) = ~A>k (x� �);
ontaining a similarity s
ore between the new fa
eimage and ea
h of the known images. Thus, the
omputation of the similarity ve
tor sk employs a rankk approximation of the translated matrix A. We dis
ussthe assumption of normalized proje
ted ve
tors in thefollowing se
tion.Note also that using the SVD, equation (2.8) ex-presses the metri
 � as the distan
e from x � � to thespa
e spanfUkg of the dominant left singular spa
e. Inthe sequel, we show how to approximate the similarityve
tor sk in (3.14), as well as the distan
e � in (2.8) with-out using eigende
ompositions. The proposed s
hemerelies on polynomial �ltering.4 Eigenfa
es using polynomial �lteringPolynomial �ltering allows to
losely approximate thee�e
t of redu
ed rank approximation used in PCAmodels. Denote by (A) a matrix polynomial of degreed on the matrix A, i.e., (A) = �dAd + �d�1Ad�1 + : : :+ �1A+ �0I:Assuming that A is normal (i.e., A>A = AA>) andletting A = Q�Q> be its eigende
omposition, observe

that (A) = (Q�Q>) = Q (�)Q>. Therefore, thepolynomial on A is translated to a polynomial on itseigenvalues. We are now ready to des
ribe how one
anuse polynomial �ltering to approximate the similarityve
tor dire
tly, avoiding
ompletely eigenvalue
ompu-tations.Let ~x = x � � be the translated new image. Inorder to estimate the similarity measurement, we use apolynomial of ~A> ~A su
h thats = (~A> ~A) ~A>~x= (V �>�V >)V �>U>~x= V (�>�)V >V �>U>~x= V (�>�)�>U>~x:(4.15)Compare the last expression above with (3.14). Choos-ing the polynomial (t) appropriately will allow us tointerpretate this approa
h as a
ompromise between the
orrelation [2℄ and the PCA approa
hes. Assume nowthat is not restri
ted to being a polynomial but
an beany fun
tion (even dis
ontinuous). When (t) = 1 8x,then (�>�) be
omes the identity operator and theabove s
heme would be equivalent to the
orrelationmethod. On the other hand, taking to be the stepfun
tion (t) = � 0; 0 � t � �2k1; �2k � t � �21(4.16)results in (�>�) = � Ik 00 0 � where Ik is the identitymatrix of size k and 0 is a zero matrix of an appropriatesize. Then, equation (4.15) may be re-written as:s = V (�>�)�>U>~x= � Vk Vn�k � � �>k 00 0 � � U>kU>m�k � ~x= � Vk�>k 0 � � U>kU>m�k � ~x= Vk�>k U>k ~x= ~A>k ~x(4.17)whi
h is pre
isely the rank-k approximation provided inequation (3.14).Using polynomial �ltering we
an also approximatethe \fa
eness" (i.e., whether or not a given image
ontains a fa
e) of an image as it is expressed byequation (2.8). Using the SVD, observe that (C)(x� �) = (~A ~A>)(x� �)= (U�V >V�>U>)(x� �)= U (��>)U>(x� �):(4.18)Note that if is exa
tly the step fun
tion (4.16), thenk (C)(x��)k2 = kUkU>k (x��)k2 = kPxk2 whi
h would
513

allow to obtain � from (2.8). If the polynomial is anapproximation of the step fun
tion, this will provide anestimate of the distan
e metri
 �, needed to de
ide onthe fa
eness of an image, without the availability of Uor Uk.Therefore, the approa
h of polynomial �ltering inPCA models
an give virtually the same result as eigen-de
omposition, without resorting to the
ostly eigen-value de
omposition or any other matrix de
omposi-tion. Furthermore, the need to store additional (denseor sparse) matri
es as is the
ase in PCA, is
ompletelyavoided as is the need to update these matri
es, whenthe subspa
e used for learning
hanges dynami
ally.The sele
tion of the
ut-o� point is somewhat similarto the issue of
hoosing the parameter k in the PCAmethod. However, there is a salient di�eren
e betweenthe two:
hoosing a large k in PCA may render themethod mu
h more expensive, while sele
ting a high
ut-o� in polynomial �ltering does not a�e
t
ost sig-ni�
antly.Re
all that in the
omputation of the similarityve
tor we assumed that the proje
ted ve
tors Pi haveunity norm. Here are two solutions to over
ome thisproblem. Before applying the proposed s
heme wenormalize all input data ve
tors xi. Next, we
omputethe similarity s
ore and sort the samples in des
endingorder. Then we have two options. Using the �rstk � M samples, either we
an employ PCA or we
anuse k-nearest neighbor
lassi�
ation. Observe that sin
ek � M , the
ost of exa
t PCA will be very limited,and
ertainly orders of magnitude smaller than PCA onthe original data matrix. Similarly, applying k-nearestneighbor
lassi�
ation on a very small set of data pointswill have very limited
ost. We observed empiri
allythat the �rst option yields slightly better results andthis is the option that we in
luded in our experiments(Se
tion 5) with k = 30.5 Numeri
al resultsAll experiments are implemented in MATLAB 6.5 ona Xeon�2.4GHz. We use three datasets that arepubli
ally available: YALE, ORL and a subset ofAR. The YALE database [1℄
ontains 165 images of15 individuals that in
lude variation in both fa
ialexpression and lighting. In the prepro
essing phase,ea
h fa
e image is
losely
ropped, and the size ofimages after the
ropping phase is de
reased to 112�92.The ORL (formerly Olivetti) database [11℄
ontains 40individuals and 10 di�erent images for ea
h individual.In this
ase no prepro
essing is done. Finally, the ARfa
e database [8℄
ontains 126 subje
ts with 4 di�erentfa
ial expressions for ea
h individual.In what follows, error rates are estimated using a

k = 40 ORL (%) YALE (%) AR (%)
=2 2.5 26.06 8.33
=3 3.5 25.45 8.53
=4 2.75 26.06 7.14
=5 3 26.06 6.15Table 1: Error rates of the PPF method for variousvalues of
, on all fa
e databases.

ross validation \leave-one-out" strategy. In order to
ompute the error rate with respe
t to a
ertain fa
ialexpression, the image asso
iated with it is used as a testimage. In order to re
ognize the test image, all images,ex
luding the test one, are proje
ted to the redu
edsubspa
e. Then, the test image is proje
ted as well andre
ognition is performed using a nearest neighbor rule.Denote by ei as the number of misses
ounted a
rossthe subje
ts for a given fa
ial expression i. Denote alsoby Nf the number of di�erent fa
ial expressions/posesasso
iated with ea
h individual in the database. De�nee = 1Nf PNfi=1 ei; i = 1; :::; Nf : Thus, e is the mean errorrate averaged a
ross all di�erent fa
ial expressions. Inwhat follows, denote by PCA the \eigenfa
es" methodand by PPF the polynomial �ltering method.Example 1 In the �rst example we investigate thebehavior of the PPF method with respe
t to the degreeof the polynomial . Table 1 illustrates the error rateof PPF with respe
t to
. The parameter
 a�e
tsthe degree of the polynomial approximation to the stepfun
tion. The higher the value of
 the higher the degreeof the polynomial. Observe that in most
ases the value
 = 4 seems to give the most satisfa
tory results. Tothat end, in what follows, we use
 = 4 for PPF.Example 2 We now investigate the e�e
t of thedimension k of the redu
ed spa
e on the re
ognitionperforman
e of the methods. We use MATLAB's svdbuiltin fun
tion sin
e the matrix is dense and this waywe avoid the expli
it use of the matri
es AA> or A>A.We experiment with k = 20 : 20 : 100 (in MATLABnotation) and measure the error rate (%) for all fa
edatabases.Table 2 illustrates the error rate e versus the dimen-sion k measured on the ORL, YALE and AR datasetsrespe
tively. All tables
ontain the
orresponding timemeasurements t (in se
) for ea
h method. The timingsfor PCA methods measure the time needed to
onstru
tthe subspa
e (i.e.,
omputing the eigenve
tors) and per-form the re
ognition of the test image (i.e., one step of\leave-one-out"
ross validation). The timings for PPFmethods measure the time needed to re
ognize the testdata point via polynomial �ltering.Con
erning the ORL database, observe that PPF

514

ORL PCA PPFe t e tk=20 3.5 32.74 3 2.52k=40 2.75 30.68 2.75 2.49k=60 3.25 30.93 3.25 2.48k=80 3.25 32.96 3 2.52k=100 3 32.03 3 2.49YALE PCA PPFe t e tk=20 29.70 5.93 25.45 1.15k=40 27.88 6.02 26.06 1.16k=60 27.27 6.10 25.45 1.14k=80 27.27 6.22 25.45 1.16k=100 26.06 6.33 25.45 1.15AR PCA PPFe t e tk=20 8.34 82.02 6.35 5.71k=40 6.75 82.02 7.34 5.71k=60 6.15 83.12 7.14 5.71k=80 6.15 83.67 6.75 5.70k=100 5.75 83.64 6.35 5.71Table 2: Error rates e (%) and timings t (in se
) ofboth methods for various values of k, on all the fa
edatabases.

ompetes with PCA in terms of error rate. Further-more, the PPF method is mu
h more eÆ
ient a
hievingsigni�
ant speedups over its PCA
ounterpart. On theYALE dataset, the results are quite similar with PPFoutperforming PCA not only in timings but in error rateas well. Finally, on the AR dataset, the results are sim-ilar to ORL, with the PPF methods being quite
loseto PCA in terms of error rate and being mu
h moreeÆ
ient in terms of
omputational
ost.6 Con
lusionWe have des
ribed an alternative framework for imple-menting PCA without eigenvalue
al
ulations. The pro-posed framework relies on polynomial �ltering, in or-der to render the same e�e
t as PCA, for dimension-ality redu
tion. We illustrated the appli
ability of theproposed te
hnique in the eigenfa
es method for fa
ere
ognition. The numeri
al experiments indi
ated thatthe new s
heme has very
lose performan
e to the PCAmethod, while being mu
h more eÆ
ient in terms of
omputational
ost and storage.

7 A
knowledgmentsWe would like to thank prof. N. Papanikolopoulos forhis valuable advi
e
on
erning fa
e re
ognition issues.Referen
es[1℄ P. Belhumeur, J. Hespanha, and D. Kriegman. Eigen-fa
es vs. Fisherfa
es: Re
ognition Using Class Spe
i�
Linear Proje
tion. IEEE Trans. Pattern Analysis andMa
hine Intelligen
e, Spe
ial Issue on Fa
e Re
ogni-tion, 19(7):711|20, July 1997.[2℄ R. Brunelli and T. Poggio. Fa
e re
ognition: Featuresvs Templates. IEEE Trans. Patt. Anal. Ma
h. Intell.,15(10):1042{1053, 1993.[3℄ G. H. Golub and C. Van Loan. Matrix Computations,3rd edn. The John Hopkins University Press, Balti-more, 1996.[4℄ L. Hoegaerts, L. De Lathauwer, J.A.K. Suykens, andJ. Vanderwalle. EÆ
iently updating and tra
kingthe dominant kernel eigenspa
e. 16th InternationalSymposium on Mathemati
al Theory of Networks andSystems, July 5-9 2004. Belgium.[5℄ I.T. Jolli�e. Prin
ipal Component Analysis. SpringerVerlag, New York, 1986.[6℄ M. Kirby and L. Sirovi
h. Appli
ation of theKarhunen-Loeve Pro
edure for the Chara
terization ofHuman Fa
es. IEEE Trans. Patt. Anal. Ma
h. Intell.,12, 1990.[7℄ E. Kokiopoulou and Y. Saad. Polynomial Filtering inLatent Semanti
 Indexing for Information Retrieval. InACM-SIGIR Conferen
e on resear
h and developmentin information retrieval, SheÆeld, UK, July 25th-29th2004.[8℄ A.M. Martinez and R. Benavente. The AR Fa
eDatabase. Te
hni
al report, CVC no. 24, 1998.[9℄ S.K. Nayar, S.A. Nene, and H. Murase. Sub-spa
e Methods for Robot Vision. IEEE Transa
tionson Roboti
s and Automation, 12(5):750{758, O
tober1996.[10℄ A. Pentland, B. Moghaddam, and T. Starner. View-based and Modular Eigenspa
es for Fa
e Re
ognition.In IEEE Conferen
e on Computer Vision and PatternRe
ognition, 1994.[11℄ F. Samaria and A. Harter. Parameterisation of aSto
hasti
 Model for Human Fa
e Identi�
ation. In2nd IEEE Workshop on Appli
ations of ComputerVision, Sarasota FL, De
ember 1994.[12℄ L. Sirovi
h and M. Kirby. Low-dimensional Pro
edurefor the Chara
terization of Human Fa
es. J. Opti
alSo
. Am. A (JOSA A), 4(3):519{524, Mar
h 1987.[13℄ M. Turk and A. Pentland. Fa
e Re
ognition usingEigenfa
es. In Int. Conf. on Patt. Re
og., pages 586{591, 1991.[14℄ W. Zhao, R. Chellapa, P. Phillips, and A. Rosenfeld.Fa
e Re
ognition: a Literature Survey. ACM Comput-ing Surveys, 35(4):399{458, De
ember 2003.
515

Mining Top-
�

Itemsets over a Sliding Window Based on Zipfian Distribution

Raymond Chi-Wing Wong, Ada Wai-Chee Fu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
cwwong,adafu@cse.cuhk.edu.hk

Abstract

Frequent pattern discovery in data streams can be very
useful in different applications. In time critical applica-
tions, a sliding window model is needed to discount stale
data. In this paper, we adopt this model to mine the �
most interesting itemsets, or to estimate the � most fre-
quent itemsets of different sizes in a data stream. In our
method, the sliding window is partitioned into buckets. We
maintain the statistics of the frequency counts of the item-
sets for the transactions in each bucket. We prove that our
algorithm guarantees no false negatives for any data distri-
butions. We also show that the number of false positives re-
turned is typically small according to Zipfian Distribution.
Our experiments on synthetic data show that the memory
used by our method is tens of times smaller than that of a
naive approach, and the false positives are negligible.

1 Introduction
Data mining processing is typically time-consuming.

However, there are some recent demands on real-time data
mining for unbounded data stream arriving at high speed.
Examples include financial data monitoring and network
monitoring. The mining process becomes much more dif-
ficult because it requires not only the handling of massive
unbounded data stream but also the ability to return the re-
sults within a short time.

With limited memory storage, it is natural to devise
methods to store some kinds of statistics or summary of
the data stream. Until now, most research work consider
all data read so far. However, in many applications, old data
are less important or not relevant, compared with more re-
cent data. There are two common approaches to deal with
this issue. The first one is aging [11, 5], where each data is
assigned a weight, with more weight for more recent data
(e.g. exponential-decay model). Another approach is to use
a sliding window [2, 4, 8, 3, 9], so that only the most recent�

data elements in the data stream is considered, where
�

is the width of a sliding window. In this paper, we adopt the
second approach.

For association rule mining, the difficult subproblem of
frequent itemset discovery has been the focus of research
for some time. Many motivating examples are given in [12]
for the mining of frequent itemsets in data streams. A major
issue with mining frequent itemsets is that user has to define
a support or frequency threshold � on the resulting itemsets,
and without any guidance, this is typically a wild guess. In
some previous study [6, 7], it is found that, in different data
sets, or even with different subsets of the same data set, the
proper values of � can differ by an order of magnitude. In
most previous work of data stream mining a major concern
is to minimize the error of the false positive to a small frac-
tion of � . However, if the threshold � is not appropriate in
the first place, such a guarantee is quite pointless.

Therefore, it is of interest to replace the requirement of
a frequency threshold to that of the simpler threshold on
the amount of results. It is much easier for users to specify
that say the 20 most frequent patterns should be returned.
Some previous work assumed that such a threshold can be
applied to itemsets of all sizes. However, there is a major
pitfall with such an assumption. It is that it implies a uni-
form frequency threshold for itemsets of all sizes. It is ob-
vious that small size itemsets have an intrinsic tendency to
appear more often than large size itemsets. The result from
this assumption is that smaller size itemsets can dominate
and hide some interesting large size itemsets. The mining
of closed patterns does not help much. For example, an in-
teresting closed itemsets � of size 4 may have a frequency
of 0.01, while many smaller size closed itemsets have fre-
quencies above 0.l, and hence � cannot hope to reach the
top � frequency. Therefore, some previous work has pro-
posed to mine the � most frequent itemsets of size � , for
each � that is within a range of sizes specified by user. We
shall focus on this mining problem for data streams.

Let us call an itemset of size � an � -itemset. Our problem
is about mining ��� -itemsets with the greatest frequencies
(supports) for each � up to a certain � . We shall tackle this
problem for a data stream with a sliding window of size� (contains � transctions). In our approach, the sliding
window is divided into 	�
 partitions, called buckets. Each

516

bucket corresponds to a set of transactions and we maintain
the statistics for the transactions in each bucket separately.
The window is slided forward one bucket at a time. When
the window is advanced, the oldest bucket is discarded and
a newly generated bucket is appended to the sliding win-
dow. At the same time, the candidate top � interesting
itemsets are adjusted. Our method have some guarantees
for the results. It gives no false negatives for any data dis-
tribution. Given a Zipfian data distribution with Zipfian pa-
rameter � and an error parameter
���� , it outputs no more
than ����������
������! #"$�&% false positives. The memory usage

of our algorithm is bounded by '(�*) +-,/.10324 5 +6032879 +6032 � . From our
experiment, we found that error in frequency of false pos-
itives is very small, and the proposed method can achieve
memory usage that is many times less than a more naive
approach.

2 Problem Definitions and Terminologies
In this section we introduce the problem definition and

also other terminologies.
Problem Definition: The data stream is considered a

sequence of :<;<=?>3�@>3AB:*C data buckets with �<
 transactions
each. The most recent 	
 full buckets in the data stream
is considered as the sliding window. Given two positive
integers � and � . For each � , where �EDF� , and let the� -th highest frequency among all � -itemsets in the sliding
window be GH�I�6� , find all � -itemsets with frequencies greater
than or equal to GH�I�6� in the sliding window. These are
called the top �J� -itemsets.

Note that in the above definition, at any time, there will
be a most recent bucket K , which may or may not be full.
A bucket is full when it contains �<
 transactions. When a
transaction L arrives at the data stream, it will be inserted
into K if it is not full; otherwise, a new bucket contain-
ing only L will be created and becomes the most recent
bucket K . Let �NM 	
$O �
 . Hence the size of the sliding
window is � (number of transactions). The sliding win-
dow contains buckets K � , KQP , ..., K) 4 , in chronological or-
der, where bucket K) 4 represents the most recently created
bucket.

In our algorithm we need to process itemsets of sizes � ,�RDS�#DT� . Without loss of generality let us consider size� itemsets, for a certain � . We are going to find the top �� -itemsets.
Let � -itemset denote itemset of size � . Each bucket KVU

stores a list of entries �I:BW8GX� , where : is one of the top �ZYUI[\^]�_� -itemsets and G is the frequency of : in the bucket. 1

We use G UI[` to denote the frequency of : in bucket K U . We
say that GaUI[` is recorded if : is among the top �ZYUb[\ itemsets.

1Note that cedfhg i can be different for different j and will be determined
by our algorithm automatically.

Therefore, each bucket stores information about the top �kYUb[\
frequent itemsets.

Let GaUb[5 U) be the frequency of the �ZYUb[\ -th frequent � -
itemset in bucket K U . For entry : in bucket K U , G UI[`]G UI[5 U) . We define � >1	l�I:a� and �nm/o �I:a� . � >1	l�I:a� Mp
Xqsr)stXu qbv wUyx{z!`}|3~�z t ` t

G UI[` and �nmBo �-:<� M p
Xqsr)st�u qhv wUyx{z!`}|3~�z t ` t
G UI[` �p
 q r)stXu qbv wUyx) ~}�&z!`}|3~�z t ` t

�-G�Ub[5 U) "��*� .
When we sum up all recorded frequencies G Ub[` of itemset: in different buckets K U , this value should be the least pos-

sible frequency of itemset : . However, in some buckets K U ,
there may be no recorded frequencies. The itemset : may
appear in those buckets. To estimate the maximum possible
frequency, we assume the maximum possible frequency for
itemsets : with no recorded frequency, and this frequency
is GaUI[5 U) "�� for buckets KeU . Therefore � >1	l�I:a� is the mini-
mum possible frequency of itemset : in the sliding window
while ��mBo �I:a� is the maximum possible frequency of item-
set : in the sliding window. Let Gs` be the frequency of : in
the sliding window. Thus, � >6	l�-:a��D�G ` D ��mBo �I:a� .

We define G�� �}� M �nm/o `*� � >1	l�I:a�!� , which is the
greatest value of � >1	l�-:<� among all : . We de-
fine � \ M � >6	
 q � G UI[5 U) � , which is the minimum
value of G UI[5 U) among all buckets. We also define� 5 r���[\ M p
Xq G Ub[5 U) "�� \ .
3 Algorithm

Let the size of the sliding window be � (there are �
transactions). There are 	�
 buckets in the sliding window.
So, the bucket size �<
 is � ��� 	�
H� . For each full bucket we
store a list of entries (:BW!G). The 2 major steps of our algo-
rithm will be introduced in this section. At the beginning
of the algorithm, we process the first full bucket containing
the transactions at the beginning of the data stream in Step
1. For each new bucket, we need to accumulate �
 trans-
actions in the memory temporarily. After receiving the �

transactions, we process the transactions with Step 2. Every
time a bucket leaves the sliding window, the bucket and its
entries will be removed.

There are two major parameters in our algorithm - (1) �
and (2)
 . (1) � is a Zipfian parameter in a Zipfian distribu-
tion. The greater the value of � , the greater the skewness of
the distribution. The Zipfian parameter �] � is commonly
used in the Zipfian distribution in previous research on data
streams[12, 10]. In [12], � M �s���s� ; and [10] sets � to be
1.0, 1.25 and 1.5. In our real data set, we found that the
distribution is quite skew, which also corresponds to �] � .
(2)
 is an error parameter. The smaller the value of
 is,
the more accurate the algorithm is. However, with a small
value of
 , the memory consumption will be great. So,
 is a
user input parameter of our algorithm. It can determine the
storage and the accuracy of our algorithm. The the accuracy
bound and storage bound can be found in Corollaries 1 and

517

2, respectively in Section 4.
The major steps of our algorithm are described as fol-

lows.

1. After receiving the first bucket of transactions at the
beginning of the data stream, we do the following. Let�&�QM � 	
 �b	
 "V�*�&� �P 7 2 � ���^��� 9 � �) 4�� �5 � � �!%b���! , 2 where� is the Zipfian parameter and
 is an error parameter.
If �@� is greater than the number of possible itemsets, �<�
is assigned to be the number of possible itemsets.

(a) find top � � itemsets of size �
For this task, we can use an existing algorithm
for mining top � itemsets (e.g. [7]).

(b) store the entries �I:BW8�<� of the itemsets found

2. After the first bucket, we can process other buckets KVU
in the following way. We define �nm/o Y6�I:a� with the
same definition of ��mBo �I:a� but �nm/o Y1�I:a� is evaluated
with the scope of all buckets in the current sliding win-
dow except for the bucket K U .

(a) find the � -th largest value of � >1	l�I:a� of itemset: of size � , � 5 U) [\ , within the current bucket K�U
and all previous buckets in the sliding window

(b) Determine the rank � UI[` of each : in bucket K U .
Find the greatest rank � Ub[` , say �� U , in order that�nmBo Y1�I:a����G UI[`] � 5 U) [\ and � Ub[` D �&� . Store
all entries of itemsets : of size � with � UI[`QDT�� U .
Again we can make use of the existing algorithm
in [7].

(c) calculate �� 5 r��s[\ M u�� +I�P 7 2 � �}�^��� 9 � . If
� 5 r���[\ ��� 5 r��s[\ , then store the additional next top fre-

quent itemsets in the bucket (if any) until� 5 r��s[\�D �� 5 r��s[\ . 3

3. We continue our process in Step 2. Whenever a bucket
leaves the sliding window, we can remove the entries
in that bucket and the bucket itself.

4. We output the result on demand. We find the � -th
largest value of � >1	l�I:a� of itemset : of size � , say� 5 U) [\ , for all buckets in the sliding window. Then,
we output all itemsets : of size � with ��mBo �-:a� greater
than or equal to � 5 U) [\ .

Theorem 1 For any data distribution, the proposed algo-
rithm gives no false negatives.

2We shall see in Section 4 that �8� is a bound on the ranks of itemsets
that we keep in all buckets.

3Storing more top frequent itemsets can lead to a smaller value of fbg ¡¢f�£ and thus ¤ ¡¢¥�¦*g i .

Proof: In the algorithm, the � -th largest value of � >1	l�I:a�
(i.e. � 5 U) [\) is found. In this step, we make sure that we
have found ��� -itemsets : where � >1	l�-:<�] � 5 U) [\ . Also
these are at least � itemsets found in the algorithm, which
have the chance to become the top � itemsets.

The possible values of frequency of an itemset : are in
the range between � >1	l�I:a� and ��mBo �I:a� . Hence the only
other itemsets : which have the chance to become the top� itemsets are those with �nmBo �-:<�] � 5 U) [\ . Thus, the
entries with �nmBo �I:a�] � 5 U) [\ are in the output. This
ensures that no top �J� -itemset will be missed, for all � .

The above theorem shows the correctness. It is quite easy
to understand all steps in our algorithm except for Step 2b
and Step 2c. The purpose of Step 2b is to store as few entries
as possible. Meanwhile, the accuracy can be maintained.
We prune all entries : with � Ub[`Q�§�� U even though the entries
satisfy ��mBo �-:a�] � 5 U) [\ . After pruning those entries, we
can save a lot of space and can still maintain the accuracy.
Step 2c is to maintain the inequality

� 5 r��s[\ D �� 5 r��s[\
by making

� 5 r���[\ smaller and smaller. When
� 5 r��s[\ is

smaller, G Ub[5 U) is also made to be smaller at the same time.
This implicitly means that more itemsets are stored and a
smaller value of ��mBo �-:a� which depends on G Ub[5 U) is cal-
culated. When ��mBo �-:a� is smaller, the number of possible
frequencies of each itemset in the range between � >1	l�I:a�
and �nmBo �I:a� is smaller, leading to a higher accuracy of our
algorithm. Thus, the number of false positves in the output
can be reduced.

4 Analysis
In this section, we are going to analyze our algorithm,

and show some useful properties.
We first consider the number of false positives. From our

analysis, we have the following theorem.

Theorem 2 The frequency difference between any � -itemset
which is a false positive returned by the algorithm and the� -th frequent � -itemset is at most � �� 5 r��s[\ .

Recall that �� 5 r��s[\ M u�� +I�P 7 2 � �}�¢��� 9 � . The following table

shows �� 5 r��s[\ for some particular values of G¨� ��� , � and
 .
In the following table, we observe that �� 5 r��s[\ is small rel-
ative to GB� �}� . By Theorem 2, The frequency difference be-
tween any � -itemset which is a false positive returned by the
algorithm and the � -th frequent � -itemset is small, which
can be shown in Table 1 (a).

In the remaining discussion of this section we assume
that the � -itemsets in the sliding window follow the Zipfian
distribution. We have derived the following theorem and
corollary.

Theorem 3 Our algorithm outputs the itemsets of ranks �

518

© � +I� ª « � ¬�­�®�¯ v °
1,000 20 0.5 8.33
1,000 20 1 12.50
1,000 10 1 25.00
10,000 20 1 125.00

(a)

2 « Max. No. of False Positives
1 1 ª
1 0.5 ±}² ³µ´ ª
2 1 ±�² ¶ + ´ ª

0.5 1 ·?´ ª
(b)

ª ¸ 4 « 2 ­ Max. No. of Entries
20 10 0.5 1 500,000 107,767
20 10 1 1 500,000 71,896
20 10 1 2 500,000 3,741
20 20 1 1 500,000 606,157

(c)

Table 1. Some values of the theoretical bound

Table 2.1
Stream Algorithm BOMOL
Structure Recent

Bucket
Structure Sliding

Window

Ratio

1 810K 400K 8M 40M 39.66
3 2665K 400K 8M 40M 15.66
5 4667K 400K 8M 40M 9.47
7 6867K 400K 8M 40M 6.60

Table 2.2
Stream Algorithm BOMO¹ 4
Structure Recent

Bucket
Structure Sliding

Window

Ratio

2K 5979K 80K 1.6M 8M 1.58
4K 5799K 160K 3.2M 16M 3.22
6K 6069K 240K 4.8M 24M 4.56
8K 5744K 320K 6.4M 32M 6.33
10K 5735K 400K 8M 40M 7.82

Table 2.3
Stream Algorithm BOMOK
Structure Recent

Bucket
Structure Sliding

Window

Ratio

1 4595K 400K 8M 40M 10.01
10 5680K 400K 8M 40M 7.89
20 5735K 400K 8M 40M 7.82
50 5769K 400K 8M 40M 7.78
100 5780K 400K 8M 40M 7.77

Table 2. Synthetic Data Set: Memory Usage (Default
 M � , � M�º , � M ��� , �
 = 10K and 	
 = 100)

within the sliding window with the following bound.� D����}�»�¼
!�8���!
Corollary 1 The number of false positives returned by our
algorithm is no more than �������»��
�� ���! "��½% .

Table 1 (b) gives the bound of false positives for some
values of � and
 .

Next, we are going to analyze the storage capacity in
each bucket and in the whole sliding window. Additionally,
we have proved that there is a bound of the entries stored in
buckets in the following theorem and corollary.

Theorem 4 Each bucket stores entries of ranks smaller
than or equal to � , where� D¾� 	�
Q�b	�
�"��*�&� �P 7 2 � �}�^��� 9 � �) 4�� �5 � � �8%I���!

Note that �&� = � 	
 �b	
 "¿�*�½� �P 7 2 � ���^��� 9 � �) 4 � �5 � � ��%b���! .
Corollary 2 Our algorithm stores at most 	^
Q� 	�
Q�b	�
T"�*�½� �P 7 2 � ���^��� 9 � �) 4 � �5 � � ��%I���! entries in all buckets. The

memory required is '(�) +-,s.30324 5 +-0}2�79 +6032 � .
Proof: By Theorem 4, each bucket should store at
most � 	
 �b	
 "À�*�½� �P 7 2 � ���^��� 9 � �) 4�� �5 � � �!%I���! entries.
As there are 	�
 buckets, the total storage is at most	�
Á� 	�
Á�b	�
Â"¾�*�&� �P 7 2 � �}�^��� 9 � �) 4�� �5 � � �!%I���! entries. The

memory requirement is thus '(�*) +-,s.30324 5 +-0}2�79 +6032 � .
The above theorem shows that the memory usage of our

algorithm is very small. Table 1 (c) shows the number of
entries for some particular values of 	�
ÁW�
 and � . We ob-
serve that more buckets, a smaller value of
 and a smaller
value of � require more storage space.

Theorem 5 The memory usage used in our algorithm is
bounded by'SÃ&	
 � 	
 �b	
 "��*�&� �P 7 2 � �}�^��� 9 � �) 4�� �5 � � �8%I���! @Ä +
memory for the transactions stored in the most recent
bucket

5 Empirical Study
The experiment was conducted with a Pentium IV

1.5GHz PC with 512MB memory on the Linux platform.
We compare our algorithm with BOMO. BOMO mines the
top � itemsets of at most size � in all transactions of in the
sliding window. Thus, BOMO has to store all such trans-
actions. Our algorithm and the BOMO algorithm are im-
plemented in C/C++. The code of the BOMO algorithm
is provided by [7]. We make use of the BOMO algorithm
in our algorithm to obtain top �ZY itemsets in the bucket.
Synthetic data sets are tested. We have conducted some ex-
periments to study the memory usage, the amount of false
positives and the execution time, by varying three factors in
our algorithm - (1) � , the largest size of the itemsets to be
mined and (2) Bucket Size.

We adopt the IBM synthetic data set[1]. The data set is
generated with the following parameters (same as the pa-
rameters of [9]): 1,000 items, Å O �@�BÆ transactions, 10 items
per transaction on average, and 4 items per frequent item-
set on average. We apply the same methodology as [9] to
scramble the item-number mapping, in order to simulate the
seasonal variations. For every five buckets, we permutate
200 items. In all experiments, we set � M � . In most previ-
ous work, � was set greater than 1. However, from the anal-
ysis of our algorithm, the worst case for the false positives
and memory usage occurs when � is the smallest. Hence
we choose a small value for the experiments. For each mea-
surement, we have repeated the experiments 5 times and
taken the average.

The experimental results of memory usage with the study
of the factors of � , bucket size �a
 and � are shown in Table
2. The ratio measured is the ratio of the memory usage
of BOMO over that of our algorithm. The ratio shows our
algorithm uses much less memory.

The experimental results of the number of false positives
over the number of itemsets returned are shown in Table 3.
For the number of false positives found in the experiment,
we observe that the numbers in the above tables are smaller
than �¼�Ç�}�{�(
�� +2 "R�&% as predicted in Theorem 3. That means

519

Table 3.1
L È ° 1 2 3 4 5 6 7

1 0.00
3 0.00 0.00 0.38
5 0.00 0.00 0.38 0.35 0.74
7 0.00 0.00 0.38 0.35 0.74 0.33 0.71

Table 3.2¹ 4 È ° 1 2 3 4 5 6
10K 0.00 0.00 0.31 0.29 0.67 0.23
20K 0.00 0.00 0.26 0.33 0.69 0.33
30K 0.00 0.00 0.29 0.33 0.73 0.29
40K 0.00 0.00 0.38 0.30 0.71 0.29
50K 0.00 0.00 0.38 0.35 0.74 0.33

Table 3.3
K È ° 1 2 3 4 5 6

1 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.09 0.09 0.33 0.23 0.63
20 0.00 0.00 0.38 0.35 0.74 0.33
50 0.00 0.00 0.35 0.38 0.39 0.82

100 0.00 0.00 0.27 0.45 0.84 0.64

Table 3. Synthetic Data Set: Fraction of False Positives (Default
 M � , � M§º , � M ��� , �
 = 10K and	
 = 100)

Figure 1. Graph of Execution Time of Algorithms against L

(e=1, s_B=10K, K=20 and n_B=100)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8

L

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

Figure 2. Graph of Execution Time of Algorithms against Bucket

Size (e=1, L=6 K=20 and n_B=100)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000

Bucket Size

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

Figure 3. Graph of Execution Time of Algorithms against K (e=1,

L=6, s_B=10K and n_B=100)

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

K

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

the experimental results give a verification of our analysis.
The experimental results of the execution time are shown

in Figures 1, 2 and 3. We observe that our Data Stream algo-
rithm runs much faster than BOMO algorithm. This is be-
cause the process of finding top K itemsets in our algorithm
is more efficient due to a smaller data set in each bucket. Be-
sides, the overhead of the combination of different results in
different buckets is small. One more reason is that for every
bucket to be processed, our data stream algorithm needs to
manipulate one bucket only but BOMO requires to handle
all buckets in the sliding window. Thus, our algorithm runs
much faster.

Let us take a closer look at the false positives in our ex-
periments. When we examine the frequencies of the false
positives, they have actually a very small differences from
the � -th frequent itemset in all cases. For example, in the
experiment by varying � (the largest size of the itemsets to
be mined), if � M ��� , the actual count of the � -th frequent
4-itemset is 1733. Although there are 11 false positives in
the output in Table 3, all their frequencies are greater than
1730, which means that the frequency difference is at most
3. The small frequency difference holds for all cases. The
bound in Theorem 2 is only a worst-case upper bound. In
practice, the count difference did not reach this bound.

6 Conclusion
In this paper, we address the problem of mining the �

most frequent itemsets in a sliding window in a data stream.
We propose an algorithm to estimate these � itemsets in
the data stream. We prove that our algorithm gives no
false negatives for any data distribution. It outputs at most�¼�}�É�¼
��8���! top frequent itemsets and stores a small num-
ber of entries for the Zipfian data distribution. We have con-
ducted experiments to show that our algorithm can manipu-
late the data stream efficiently and both the memory usage

and the execution time are many times smaller compared
with a naive approach.

Acknowledgements We thank Y.L Cheung for providing us the coding of

BOMO. This research was supported by the RGC Earmarked Research Grant of

HKSAR CUHK 4179/01E, and the Innovation and Technology Fund (ITF) in the

HKSAR [ITS/069/03].

References

[1] R. Agrawal. Ibm synthetic data generator,
http://www.almaden.ibm.com/cs/quest/syndata.html.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In PODS, 2002.

[3] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining
variance and k-medians over data stream windows. In SIGMOD,
2003.

[4] C.-R. Lin C.-H. Lee and M.-S. Chen. Sliding-window filtering: An
efficient algorithm for incremental mining. In Intl. Conf. on Informa-
tion and Knowledge Management, 2001.

[5] J. H. Chang and W. S. Lee. Finding recent frequent itemsets adap-
tively over online data streams. In SIGKDD, 2003.

[6] Y.-L. Cheung and A. W.-C. Fu. An fp-tree approach for mining n-
most interesting itemsets. In SPIE Conference on Data Mining, 2002.

[7] Y.-L. Cheung and A. W.-C. Fu. Mining frequent itemsets without
support threshold: With and without item constraints. In IEEE Trans.
on Knowledge and Data Engineering, to appear 2004.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. ”maintaining stream
statistics over sliding windows”. In SIAM Journal on Computing,
2002.

[9] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining frequent
patterns in data streams at multiple time granularities. In Next Gen-
eration Data Mining, 2003.

[10] P. B. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. In SIGMOD, 1998.

[11] A. Gilbert, Y. Kotidis, and S. Muthukrishnan. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In
VLDB, 2001.

[12] G. S. Manku and R. Motwani. Approximate frequency counts over
data streams. In VLDB, 2002.

520

Hierarchical Document Classification Using AutomaticallyGenerated Hierarchy

Tao Li∗ Shenghuo Zhu†

Abstract
Automated text categorization has witnessed a booming interest
with the exponential growth of information and the ever-increasing
needs for organizations. The underlying hierarchical structure iden-
tifies the relationships of dependence between different categories
and provides valuable sources of information for categorization.
Although considerable research has been conducted in the field of
hierarchical document categorization, little has been done on au-
tomatic generation of topic hierarchies. In this paper, we propose
the method of using linear discriminant projection to generate more
meaningful intermediate levels of hierarchies in large flatsets of
classes. The linear discriminant projection approach firsttrans-
forms all documents onto a low-dimensional space and then clusters
the categories into hierarchies accordingly. The paper also investi-
gates the effect of using generated hierarchical structurefor text
classification. Our experiments show that generated hierarchies im-
prove classification performance in most cases. A preliminary short
version of the paper has appeared in [8].

1 Introduction

Many studies in document classification focus onflat classi-
fication, in which the predefined categories are treated indi-
vidually and equally so that no structures exist to define rela-
tionships among them [10, 1]. Limitations to the flat classifi-
cation approach exists in the fact that, as the Internet grows,
the number of possible categories increases and the border-
lines between document classes are blurred. To resolve this
issue, recently several researchers have studied the use of
hierarchies for text classification and obtained promisingre-
sults [6, 1, 9]. However, the previous studies were mostly
conducted on corpora with predefined hierarchical structures
and little has been done on automatic generation of topic hi-
erarchies.

This motivates us to address the issue of automatically
building hierarchies of documents. Such studies are mean-
ingful for the following reasons: First, manual building of
hierarchies is an expensive task since the process requires
domain experts to evaluate the relevance of documents to
the topics. Second, there may exist document domains in
which there are no natural hierarchies and even domain ex-
perts have difficulties in evaluating the semantics. Third,au-
tomatic hierarchy generation based upon document statistics
may generate hierarchies that provide better statistical corre-
lations among categories. Once such a statistically more sig-
nificant hierarchy has been build, the hierarchy can be incor-

∗School of Computer Science, Florida International University,
taoli@cs.fiu.edu .

†NEC Labs America, Inc., zsh@sv.nec-labs.com. Major work was
completed when the author was in University of Rochester.

porated into various classification methods to help achieve
better performance.

2 Linear Discriminant Projection Approach

The first step in hierarchy generation is to define the sim-
ilarity measure between categories upon which hierarchies
are built. In this section, we present the linear discrimi-
nant projection approach for inferring class relationships. Its
core idea is to compare the class representatives in a low-
dimensional space so that the comparison is more “mean-
ingful”. More specifically, after finding the transformation,
the similarity between classes is defined to be the distance
between their centroids in the transformed spaces. The no-
tations used through the discussion of this paper are listedin
the Table 1.

Notations Descriptions
A document-term matrix
n number of data points, i.e., documents
N number of the dimensions, i.e, terms
k number of class
Si covariance matrix of thei-th class
Sb between-class scatter matrix
Sw within-class scatter matrix
G reduction transformation
mi centroid of thei-th class
m global centroid of the training set

Table 1: Notations

2.1 Finding the Transformation Given a document-term
matrix A = (aij) ∈ Rn×N , where each row corresponds
to a document and each column corresponds to a particular
term, we consider finding a linear transformationG ∈ RN×ℓ

(ℓ < N) that maps each rowai (1 ≤ i ≤ n) of A in theN -
dimensional space to a rowyi in the ℓ-dimensional space.
The resulting data matrixAL = AG ∈ Rn×ℓ contains
ℓ columns, i.e. there areℓ features for each document in
the reduced (transformed) space. It is also clear that the
features in the reduced space are linear combinations of
the features in the original high dimensional space, where
the coefficients of the linear combinations depend on the
transformationG. Linear discriminant projection tries to
compute the optimal transformation matrixG such that the

521

class structure is preserved. More details are given below.
Assume there arek classes in the data set. Supposemi,

Si, Pi are the mean vector, covariance matrix, and a prior
probability of thei-th class, respectively, andm is the total
mean. For the covariance matrixSi for the ith class, we
can decompose it asSi = XiX

T
i , whereXi has the same

number of columns as the number of data points in thei-th
class. Define the matrices

Hb = [
√

P1(m1 − m), · · · ,
√

Pk(mk − m)] ∈ RN×k,

Hw = [
√

P1X1, · · · ,
√

PkXk] ∈ RN×n.

Then the between-class scatter matrixSb, the within-class
scatter matrixSw, and the total scatter matrixSt are defined
as follows [3]:

Sb =
k∑

i=1

Pi(mi − m)(mi − m)T = HbH
T
b ,

Sw =
k∑

i=1

PiSi = HwHT
w .

In the lower-dimensional space resulting from the linear
transformationG, the within-cluster and between-cluster
matrices become

SL
w = (GT Hw)(GT Hw)T = GT SwG,

SL
b = (GT Hb)(GT Hb)T = GT SbG.

An optimal transformation G would maximize
Trace(SL

b) and minimize Trace(SL
w). A common optimiza-

tion for computing optimalG is

G∗ = arg max
G

Trace
((

GT SwG
)−1

GT SbG
)

.

The solution can be readily obtained by solving a eigenvalue
decomposition problem onS−1

w Sb, provided that the within-
class scatter matrixSw is nonsingular. Since the rank of the
between-class scatter matrix is bounded above byk−1, there
are at mostk − 1 discriminant vectors.

2.2 Extension on General CasesIn general, the within-
class scatter matrixSw may be singular especially for
document-term matrix where the dimension is very high. A
common way to deal with it is to use generalized eigenvalue
decomposition [4, 7]

Let K = [Hb Hw]T , which is ak + n by N matrix.
By the generalized singular value decomposition, there exist
orthogonal matricesU ∈ Rk×k, V ∈ Rn×n, and a
nonsingular matrixX ∈ RN×N , such that

(2.1)

[
UT 0
0 V T

]
KX =




Σ1 0
0 0
Σ2 0
0 0


 ,

where

Σ1 = diag(

r︷ ︸︸ ︷
1, · · · , 1, α1, · · · , αs

t−r−s︷ ︸︸ ︷
0, · · · , 0),

Σ2 = diag(

r︷ ︸︸ ︷
0, · · · , 0, β1, · · · , βs,

t−r−s︷ ︸︸ ︷
1, · · · , 1),

t = rank(K), r = t − rank(HT
w),

s = rank(Hb) + rank(Hw) − t,

satisfying
1 > α1 ≥, · · · ,≥ αs > 0,

0 < β1 ≤, · · · ,≤ βs < 1,

and α2
i + β2

i = 1 for i = 1, · · · , s.

¿From Eq. (2.1), we have

(XT Hb)(XT Hb)T =
[

ΣT
1 Σ1 0

0 0

]
,

(XT Hw)(XT Hw)T =
[

ΣT
2 Σ2 0

0 0

]
.

Hence a natural extension of the proposed linear dis-
criminant projection in Section 2.1 is to choose the first
q = r + s columns of the matrixX in Eq. (2.1) as the
transformation matrixG∗.

(a) Discriminant Proj. (b) LSI

Figure 1: Document similarity. Each block represents
the similarity between the corresponding row and column
documents. The darker the contrast, the more similar the
documents. For perfect class structure preserving, we expect
three consecutive dark squares along the main diagonal.

2.3 Defining the Similarity After finding the transforma-
tion G, we define the similarity between classes to be the
distance between their centroids in the transformed spaces.
In other words, two categories are similar if they are “close”
to each other in the transformed space. The linear discrim-
inant projection finds the transformation that preserves the
class structure by minimizing the sum of squared within-
class scatter while maximizing the sum of squared between-
class scatter and hence the distances in the transformed space
should be able to reflect the inherent structure of the dataset.

522

To make it more clear on the linear discriminant projec-
tion approach, we compare the method with the well-known
Latent Semantic Indexing (LSI) [2] and give a concrete ex-
ample. LSI projects a document onto the latent semantic
space. Although LSI has been proven to be extremely use-
ful in various information retrieval tasks, it is not an opti-
mal transformation for text categorization since LSI is com-
pletely unsupervised. In other words, LSI aims at optimal
transformation of the original data into the lower dimen-
sional space in terms of mean squared error but it pays no at-
tention to the underlying class structure. Linear discriminant
projection explicitly utilizes the intra-class and inter-class
covariance matrices and tends to preserve the class structure.

We consider a dataset consisting of nine sentences from
three different topics: user interaction, graph theory and
distributed systems:

1(1) Human interface for user response
2(1) A survey of user opinion of

computer system response time
3(1) Relation of user-perceived response

time to error measurement
4(2) The generation of random, binary,

unordered trees
5(2) The intersection graph of paths in trees
6(2) Graph Minors IV: Widths of trees

and well-quasi-ordering
7(3) A survey of distributed shared

memory system
8(3) RADAR: A multi-user distributed system
9(3) Management interface tools for

distributed computer system

By removing words/terms that occur only once, we
obtain the document-term matrix. Suppose that the first and
second sentences in each class are used for training data.
Then the transformation shown in Figure 1(a) is obtained and
the plot of the LSI algorithm in Figure 1(b). The example
shows that linear discriminant projection has discrimination
power and is able to reflect the inherent similarity structure
of the classes. Hence the distance between the centroids is a
good measure for the similarity between categories.

3 Hierarchy Generation

After obtaining the similarities/distances between classes,
we use the Hierarchical Agglomerative Clustering (HAC) al-
gorithm of [5] to generate automatic topic hierarchies from
a given set of flat classes. The result of hierarchical cluster-
ing is a dendrogram where similar classes are organized into
hierarchies. We choose UPGMA (Unweighted Pair-Groups
Method Average method), which is known to be simple, ef-
ficient and stable [5]. In UPGMA, the average distance be-
tween clusters is calculated from the distance between each
point in a cluster and all other points in another cluster. The
two clusters with the lowest average distance are joined to-
gether to form the new cluster.

4 Experiments on hierarchy Generation

We use a wide range of datasets in our experiments and an-
ticipate that these data sets would provide us enough insights
on automatic hierarchy generation. The datasets and their
characteristics are summarized in Table 2.20Newsgroups

Datasets # documents # classes
20Newsgroups 20,000 20

WebKB 8,280 7
Industry Sector 9,637 105
Reuters-top 10 2,900 10

Reuters-2 8,000 42
K-dataset 2,340 20

Table 2: Data Sets Descriptions
dataset1 contains about 20,000 articles evenly divided among
20 Usenet newsgroups.WebKB dataset contains web-
pages gathered from university computer science depart-
ments. There are about 8300 documents and they are di-
vided into seven categories: student, faculty, staff, course,
project, department and other.Industry Sector dataset con-
sists of company homepages classified in a hierarchy of in-
dustry sectors2. Reuters: The Reuters-21578 Text Catego-
rization Test collection contains documents collected from
the Reuters newswire in 1987. It is a standard text catego-
rization benchmark and contains 135 categories. In our ex-
periments, we used two subsets of the data collection. The
first one includes the ten most frequent categories among the
135 topics, which we call Reuters-top10. The second one
contains the documents that have unique topics (documents
that have multiple class assignments are ignored), which we
call Reuters-2.K-dataset3 contains 2340 documents con-
sisting news articles from Reuters news service via the Web
in October 1997.

4.1 Data PreprocessingTo preprocess the datasets, we
remove the stop words using a standard stop list and perform
the stemming operations with a Porter stemmer. All HTML
tags and all header fields except subject and organization
are ignored. In all our experiments, we first randomly
choose70% for hierarchy building (and later training in
categorization), the remaining30% is then used for testing.
The70% training set is further preprocessed by selecting the
top 1000 words by information gain. The feature selection
is done with the rainbow package4. All of our experiments
are performed on a P4 2GHz machine with 512M memory
running Linux 2.4.9-31.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-20/www/data/news20.html .

2http://www.cs.cmu.edu/˜TextLearning/
datasets.html .

3ftp://ftp.cs.umn.edu/dept/users/boley/
PDDPdata/ .

4http://www.cs.cmu.edu/˜mccalum/bow .

523

4.2 Experimental ResultsFigure 2 shows the hierarchies
of WebKB, 20Newsgroups and Reuters-top10 built via linear
discriminant projection5 The block in the graphs represents
the similarity between the corresponding row and column
document categories and the darker the more similar.

(a) WebKB

(b) Reuters

Figure 2: Hierarchies of WebKB, 20Newsgroups and
Reuters-top 10 using linear discriminant projection.

We can observe from the dendrogram the semantic sim-
ilarity of classes. For example, on WebKB,faculty, staffand
studentare close to each other. Note thatfaculty, staff and
studentare people and they are different from other datasets.
Hence the linear discriminant projection approach tends to
group them together. We can observe similar phenomena
on 20Newsgroup and Reuters-top10. On 20Newsgroups,
talk.politics.gunsandtalk.politics.miscare grouped together.
On Reuters-top10, for example, the close pairs of classes us-
ing linear discriminant projection are: (ship, crude), (money-
fx,interest), (grain,wheat) and (earn,acq).

5 Exploiting the Generated Hierarchy for Classification

In this section, we investigate the effects of exploiting the
automatically generated hierarchy for classification and use

5Due to the space limit, we do not include the hierarchies on K-dataset,
Reuters-2 and Industry sector.

classification accuracy as the evaluation measure.
An obvious approach to utilization of the hierarchy is

a top-down level-based approach that arranges the clusters
in a two-level tree hierarchy and trains a classifier at each
internal node. We analyze the generated dendrogram to
determine the clusters that provide maximum inter-class
separation and find the best grouping of classes at the top
level. The dendrogram is scanned in a bottom-up fashion to
find the distances at which successive clusters get merged.
We clip the dendrogram at the point where the cluster merge
distances begin increasing sharply. In our experiments, we
clip the dendrogram when the current merge distance is at
least two times larger than previous one. For example, on
20Newsgroups dataset with linear discriminant projection
approach, we have 8 top-level groups as shown in Table 3.
The experimental results reported here are obtained via two-
level classification.

groups members
1 alt.atheism, talk.region.misc, talk.politics.guns,

talk.politics.misc, talk.politics.mideas
2 sci.space, sci.med sci.electronic
3 comp.os.mswindows.misc, comp.sys.ibm.pc.hardware,

comp.graphs, comp.sys.mac.hardware, comp.windows.x
4 rec.sport.baseball, rec.sport.hockey, rec.motorcycles
5 misc.forsale
6 soc.religion.christian
7 rec.autos
8 sci.crypt

Table 3: Top level groups for 20Newsgroups via linear
projection.

LIBSVM6 is used as our classifier. LIBSVM is a
library for support vector classification and regression and
supports multi-class classification. In addition, we use linear
kernel in all our experiments as it gives best results on our
experiments.

We first build a top-level classifier (L1 classifier) to dis-
criminate among the top-level clusters of labels. At the sec-
ond level (L2) we build classifiers within each cluster of
classes. Each L2 classifier can concentrate on a smaller set of
classes that confuse with each other. In practice, each clas-
sifier has to deal with a more easily separable problem, and
can use an independently optimized feature set; this should
lead to slight improvements in accuracy apart from the gain
in training and testing speed. Table 4 gives the performance
comparisons of flat classification with hierarchical classifica-
tion. We observe the improved performance on all datasets.

¿From Table 4, we observe that Reuters-top10 has the
most significant gain in accuracy using hierarchy. Figure 3
presents the accuracy comparison for each class of Reuters-
top10. Shown in Figure 3, each class’ accuracy is improved
by using the generated hierarchy except the accuracy of

6http://www.csie.ntu.edu.tw/˜cjlin/libsvm .

524

Linear Projection Linear Projection

Datasets Flat Level One Overall
20Newsgroups 0.952 0.985 0.963

WebKB 0.791 0.860 0.804
Industry Sector 0.691 0.739 0.727
Reuters-top 10 0.826 0.963 0.921

Reuters-2 0.923 0.938 0.927
K-dataset 0.915 0.961 0.921

Table 4: Accuracy Table. The flat column gives the accuracy
of flat classification, the “Level One” column shows the
level one accuracy while the “Overall” column represent the
overall accuracy.

trade stays unchanged. The accuracy ofcorn is improved
significantly from about7% to 60%. In flat classification,
almost all the documents incorn class are misclassified to
grain and wheatclasses. Using hierarchical classification,
by groupingcorn, grain andwheattogether, A second-level
classifier using an independently optimized feature set can
then be designed to focus on separation of the three similar
classes. The performance improvement is thus obtained.

Figure 3:Accuracy comparison on each class of Reuters-top10

6 Manually-Built Hierarchy vs Generated Hierarchy

Once we have the automatic approach for hierarchy genera-
tion, it is natural to compare the generated hierarchy with the
manually-built one. In this section, we illustrate their differ-
ence via three experiments on 20Newsgroups, WebKB and
Reuters-top10.

Due to space limit, we only present the human-built
(two-level) hierarchies for the 20Newsgroups as shown in
Table 5. The manual hierarchy is generated by the authors
to group the categories with strong confidence. To fur-
ther understand the differences between two kinds of hierar-
chies, we also compare their hierarchical categorization per-
formances, as listed in Table 6. For comparison purposes,
the experimental results are based on two-level classifiers.

As you can observe from the comparisons, human-
built hierarchy is purely based on “human semantics”, but
not necessarily optimized for classification purpose. In all
the three datasets, using the automatic generated hierarchy,
the classification accuracies are slightly higher than those
using human-built hierarchy. Hence, an important research

direction is to combine the automatic and manual approaches
for generating both statistically significant and intuitively
meaningful hierarchies.

groups members
1 talk.region.misc, talk.politics.guns,

talk.politics.misc, talk.politics.mideas
2 sci.electronic,comp.sys.ibm.pc.hardware,

comp.sys.mac.hardware
3 comp.os.mswindows.misc,sci.crypt

comp.graphs, comp.windows.x
4 rec.sport.baseball, rec.sport.hockey
5 misc.forsale
6 alt.atheism,soc.religion.christian
7 rec.autos,rec.motorcycles
8 sci.space, sci.med

Table 5: Human-generated 8 top-level groups for 20News-
groups.

Datasets Human-generated Automatic Generated
20Newsgroups (0.956, 0.954) (0.985,0.963)

WebKB (0.811,0.795) (0.860,0.804)
Reuters-top 10 (0.928,0,9475) (0.963,0.901)

Table 6: Performance comparisons of human-generated hi-
erarchy with automatic generated hierarchy. The entries are
in the format of (level one, flat). The accuracy of automatic
generated hierarchy was taken from the linear projection ap-
proach.

References

[1] D’Alessio, S., Murray, K., Schiaffino, R., & Kershenbaum,
A. (2000). The effect of using hierarchical classifiers in text
categorization.RIAO-00.

[2] Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., & Harshman, R. A. (1990). Indexing by latent seman-
tic analysis.Journal of the American Society of Information
Science, 41, 391–407.

[3] Fukunaga, K. (1990). Introduction to statistical pattern
recognition. New York: Academic Press. 2nd edition.

[4] Howland, P., & Park, H. (2004). Generalizing discriminant
analysis using the generalized singular value decomposition.
IEEE PAMI, 26, 995–1006.

[5] Jain, A. K., & Dubes, R. C. (1988).Algorithms for clustering
data. Prentice Hall.

[6] Koller, D., & Sahami, M. (1997). Hierarchically classifying
documents using very few words.ICML.

[7] Li, T., Zhu, S., & Ogihara, M. (2003a). Efficient multi-
way text categorization via generalized discriminant analysis.
ACM CIKM (pp. 317–324).

[8] Li, T., Zhu, S., & Ogihara, M. (2003b). Topic hierarchy
generation via linear discriminant projection.ACM SIGIR
(pp. 421–422).

[9] Sun, A., & Lim, E.-P. (2001). Hierarchical text classification
and evaluation.ICDM (pp. 521–528).

[10] Yang, Y., & Liu, X. (1999). A re-examination of text
categorization methods.SIGIR.

525

On Clustering Binary Data

Tao Li∗ Shenghuo Zhu†

Abstract

Clustering is the problem of identifying the distribution of patterns
and intrinsic correlations in large data sets by partitioning the data
points into similarity classes. This paper studies the problem of
clustering binary data. This is the case for market basket datasets
where the transactions contain items and for document datasets
where the documents contain “bag of words”. The contribution of
the paper is two-fold. First a new clustering model is presented. The
model treats the data and features equally, based on their symmetric
association relations, and explicitly describes the data assignments
as well as feature assignments. An iterative alternating least-
squares procedure is used for optimization. Second, a unified view
of binary data clustering is presented by examining the connections
among various clustering criteria.

1 Introduction

The problem of clustering data arises in many disciplines and
has a wide range of applications. Intuitively, clustering is
the problem of partitioning a finite set of points in a multi-
dimensional space into classes (called clusters) so that (i) the
points belonging to the same class aresimilar and (ii) the
points belonging to different classes aredissimilar.

In this paper, we focus our attention on binary datasets.
Binary data have been occupying a special place in the
domain of data analysis. Typical applications for binary
data clustering include market basket data clustering and
document clustering. For market basket data, each data
transaction can be represented as a binary vector where each
element indicates whether or not any of the corresponding
item/product was purchased. For document clustering, each
document can be represented as a binary vector where each
element indicates whether a given word/term was present or
not.

The first contribution of the paper is the introduction of
a new clustering model along with a clustering algorithm.
A distinctive characteristic of the binary data is that the fea-
tures (attributes) they include have the same nature as the
data they intend to account for: both are binary. This charac-
teristic implies the symmetric association relations between
data and features: if the set of data points is associated to

∗School of Computer Science, Florida International University,
taoli@cs.fiu.edu .

†NEC Labs America, Inc., zsh@sv.nec-labs.com. Major work was
completed when the author was in University of Rochester.

the set of features, then the set of attributes is associatedto
the set of data points and vice versa. The association relation
suggests a new clustering model where the data and features
are treated equally. Our new clustering model,BMD (Binary
Matrix Decomposition), explicitly describes the data assign-
ments (assigning data points into clusters) as well as feature
assignments (assigning features into clusters). The cluster-
ing problem is then presented as binary matrix decomposi-
tion, which is solved via an iterative alternating least-squares
optimization procedure. The procedure simultaneously per-
forms two tasks: data reduction (assigning data points into
clusters) and feature identification (identifying features as-
sociated with each cluster). By explicitly feature assign-
ments,BMD produces interpretable descriptions of the re-
sulting clusters. In addition, by iterative feature identifica-
tion, BMD performs an implicit adaptive feature selection at
each iteration and flexibly measures the distances between
data points. Therefore it works well for high-dimensional
data.

The second contribution of this paper is the presentation
of a unified view for binary data clustering by examining the
connections among various clustering criteria. In particular,
we show the equivalence among the matrix decomposition,
dissimilarity coefficients, minimum description length and
entropy-based approach.

2 BMD Clustering

In this section, we describe the new clustering algorithm.
Section 2.1 introduces the cluster model. Section 2.2 and
Section 2.3 present the optimization procedure and the refin-
ing methods, respectively. Section 2.4 gives an example to
illustrate the algorithm.

2.1 The Clustering Model Suppose the datasetX hasn
instances, havingr features each. ThenX can be viewed as a
subset ofRr as well as a member ofRn×r . The cluster model
is determined by two matrices: the data matrixDn×K = (dik)
and the feature matrixFr×K = (f jk), whereK is the number
of clusters.

dik =
{

1 Data pointi belongs to clusterk
0 Otherwise

f jk =
{

1 Attribute j belongs to clusterk
0 Otherwise

526

The data (respectively, feature) matrix specifies the cluster
memberships for the corresponding data (respectively, fea-
tures).

For clustering, it is customary to assume that each
data point is assigned to one and only one cluster, i.e.,
∑K

k=1dik = 1 holds for j = 1, · · · ,n. Given representation
(D,F), basically,D denotes the cluster assignments of data
points andF indicates the feature representations of clusters.
The i j -th entry of DFT is the dot product of thei-th row
of D and the j-th row of F , and indicates whether thej-th
feature will be present in thei-instance. Hence,DFT can be
interpreted as the approximation of the original dataX. Our
goal is then to find a(D,F) that minimizes the squared error
betweenX and its approximationDFT .

(2.1) argmin
D,F

O =
1
2
||X−DFT ||2F ,

where‖X‖F is the Frobenius norm of the matrixX, i.e.,
√

∑i, j x
2
i j . With the formulation, we transform the data

clustering problem into the computation ofD and F that
minimizes the criterionO.

2.2 Optimization Procedure The objective criterion can
be expressed as

OD,F =
1
2
||X−DFT ||2F

=
1
2

n

∑
i=1

m

∑
j=1

(

xi j −
K

∑
k=1

dik fk j

)2

=
1
2

n

∑
i=1

K

∑
k=1

dik

m

∑
j=1

(xi j − fk j)2

=
1
2

n

∑
i=1

K

∑
k=1

dik

m

∑
j=1

(xi j −yk j)2

+
1
2

K

∑
k=1

nk

m

∑
j=1

(yk j − fk j)2,

(2.2)

whereyk j = 1
nk

∑n
i=1dikxi j andnk = ∑n

i=1dik (note that we use

fk j to denote the entry ofFT .). The objective function can
be minimized via an alternating least-squares procedure by
alternatively optimizing one ofD or F while fixing the other.

Given an estimate ofF , new least-squares estimates of
the entries ofD can be determined by assigning each data
point to the closest cluster as follows:

(2.3) d̂ik =







1 if ∑m
j=1(xi j − fk j)2 < ∑m

j=1(xi j − fl j)2

for l = 1, · · · ,K, l 6= k
0 Otherwise

WhenD is fixed,OD,F can be minimized with respect toF
by minimizing the second part of Equation (2.2):

O′(F) =
1
2

K

∑
k=1

nk

m

∑
j=1

(yk j − fk j)2.

Note thatyk j can be thought of as the probability that
the j-th feature is present in thek-th cluster. Since eachfk j

is binary1, i.e., either 0 or 1,O′(F) is minimized by:

(2.4) f̂k j =
{

1 if yk j > 1/2
0 Otherwise

In practice, if a feature has similar association to all
clusters, then it is viewed as an outlier at the current stage.

The optimization procedure for minimizing Equa-
tion (2.2) alternates between updatingD based on Equa-
tion (2.3) and assigning features using Equation (2.4). After
each iteration, we compute the value of the objective crite-
rion O(D,F). If the value is decreased, we then repeat the
process; otherwise, the process has arrived at a local min-
imum. Since theBMD procedure monotonically decreases
the objective criterion, it converges to a local optimum. The
clustering procedure is shown in Algorithm 1.

Algorithm 1 BMD: clustering procedure

Input: (data points:Xn×r , # of classes:K)
Output:D: cluster assignment;

F : feature assignment;
begin
1. Initialization:
1.1 InitializeD
1.2 ComputeF based on Equation (2.4)
1.3 ComputeO0 = O(D,F)
2. Iteration:

begin
2.1 UpdateD givenF (via Equation (2.3))
2.2 ComputeF givenD (via Equation (2.4))
2.3 Compute the value ofO1 = O(D,F);
2.4 if O1 < O0

2.4.1 O0 = O1

2.4.2 Repeat from 2.1
2.5 else
2.5.1 break; (Converges)

end
3. Return D,F;
end

2.3 Refining Methods Clustering results are sensitive to
initial seed points. The initialization step sets the initial
values for D and F . Since D is a binary matrix and
has at most one occurrence of 1 in each row, it is very
sensitive to initial assignments. To overcome the sensitivity
of initialization, we refine the procedure. Its idea is to use
mutual information to measure the similarity between a pair

1If the entries of F are arbitrary, then the optimization herecan be
performed via singular value decomposition.

527

of clustering results. In addition, clustering a large data
set may be time-consuming. To speed up the algorithm, a
small set of data points, for example, 1% of the entire data
set, may be selected as abootstrapdata set. The clustering
algorithm is first executed on the bootstrap data set. Then,
the algorithm is run on the entire data set using the data
assignments obtained from the bootstrap data set (instead of
using random seed points).

2.4 An Example To illustrate howBMD works, we show
an artificial example, a dataset consisting of six sentences
from two clusters: user interaction and distributed systems,
as shown in Figure 1.
1(1) An system for user response
2(1) A survey of user interaction

on computer response
3(1) Response for interaction
4(2) A multi-user distributed system
5(2) A survey of distributed computer system
6(2) distributed systems

Figure 1: The six example sentences. The numbers within
the parentheses are the clusters: 1=user interaction, 2=dis-
tributed system.

After preprocessing, we get the dataset as in Table 1. In
this example,D is a 6× 2 matrix andF is a 7× 2 matrix.
Initially, the data points 2 and 5 are chosen as seed points,
where the data point 2 is in class 1 and the data point 5
is in class 2. Initialization is then performed on the seed
points to get the initial feature assignments. AfterStep
1.2, featuresa, b andc are positive in class 1,e and f are
positive in class 2, andd andg are outliers. In other words,
F(a,1) = F(b,1) = F(c,1) = 1, F(e,2) = F(f ,2) = 1, and
all the other entries2 of F are 0. ThenStep 2.1assigns data
points 1, 2 and 3 to class 1 and data points 4, 5 and 6 to
class 2. thenStep 2.2assertsa, b andc are positive in class
1, d, e and f are positive in class 2, andg is an outlier. In
the next iteration, the objective criterion does not change. At
this point the algorithm stops. The resulting clusters are:For
data points, class 1 contains 1, 2, and 3 and class 2 contains
4, 5, and 6. For features,a, b andc are positive in class 1,d,
eand f are positive in class 2 whileg is an outlier.

We have conducted experiments on real datasets to eval-
uate the performance of ourBMD algorithm and compare
it with other standard clustering algorithms. Experimental
results on suggest thatBMD is a viable and competitive bi-
nary clustering algorithm. Due to space limit, we omitted the
experiment details.

3 Binary Data Clustering

In this section, a unified view on binary data clustering is
presented by examining the relations among various binary

2We usea,b,c,d,e, f ,g to denote the rows of F.

feature
data point a b c d e f g

1 1 1 0 0 1 0 0
2 1 1 1 1 0 0 1
3 1 0 1 0 0 0 0
4 0 1 0 0 1 1 0
5 0 0 0 1 1 1 1
6 0 0 0 1 0 1 0

Table 1: A bag-of-word representation of the sentences.a,
b, c, d, e, f, g,correspond to the presence ofresponse,
user, interaction, computer, system, distributed and survey,
respectively.

clustering approaches. Section 3.1 sets down the notation,
Section 3.2, Section 3.3 and Section 3.4 discuss the binary
dissimilarity coefficients, minimum description length, and
the entropy-based approach respectively. The unified view
on binary clustering is summarized in Figure 2. Note that the
relations of maximum likelihood principle with the entropy-
based criterion and with minimum description length (MDL)
are known in machine learning literature [8].

Binary Matrix Decomposition

Encoding D and F

Minimum Description Length(MDL)

Code Length

Entropy Criterion

Maximum Likelihood

Bernoulli Mixture

Likelihood and Encoding

Disimilarity Coefficients

Generalized Entropy

Distance Definition

Figure 2: A Unified View on Binary Clustering. The thick
lines are relations first shown in this paper, the dotted lines
are well-known facts, and the thin line is first discussed
in [7].

3.1 Notation We first set down some notation. Suppose
that a set ofn r-dimensional binary data vectors,X, repre-
sented as ann× r matrix, (xi j), is partitioned intoK classes
C = (C1, . . . ,CK) and we want the points within each class
aresimilar to each other. We viewC as a partition of the
indices{1, . . . ,n}. So, for alli, 1≤ i ≤ n, andk, 1≤ k≤ K,
we write i ∈ Ck to mean that thei-th vector belongs to the
k-th class. LetN = nr. For eachk, 1≤ k≤ K, let nk = ‖Ck‖,
Nk = nkr, and for eachj, 1 ≤ j ≤ r, let Nj ,k,1 = ∑i∈Ck

xi j

and Nj ,k,0 = nk − Nj ,k,1. Also, for each j, 1 ≤ j ≤ r, let

528

Nj ,1 = ∑n
i=1xi j and Nj ,0 = n− Nj ,1. We usexi as a point

variable.

3.2 Binary Dissimilarity Coefficients A popular
partition-based criterion (within-cluster) for clustering is to
minimize the summation of distances/dissimilarities inside
the cluster. The within-cluster criterion can be describedas
minimizing

(3.5) S(C) =
K

∑
k=1

1
nk

∑
i,i′∈Ck

δ(xi ,xi′),

or 3

(3.6) S(C) =
K

∑
k=1

∑
i,i′∈Ck

δ(xi ,xi′),

whereδ(xi ,xi′) is the distance measure betweenxi andxi′ .
For binary clustering, the dissimilarity coefficients are popu-
lar measures of the distances.

3.2.1 Various CoefficientsGiven two binary data points,
w andw′, there are four fundamental quantities that can be
used to define similarity between the two [1]:a = ‖{ j |
wj = w′

j = 1}‖, b = ‖{ j | wj = 1∧ w′
j = 0}‖, c = ‖{ j |

wj = 0∧w′
j = 1}‖, andd = ‖{ j | wj = w′

j = 0}‖, where
1≤ j ≤ r. It has been shown in [1] that the presence/absence
based dissimilarity measure can be generally4 written as
D(a,b,c,d) = b+c

αa+b+c+βd , whereα > 0 andβ ≥ 0. Dissimi-
larity measures can be transformed into a similarity function
by simple transformations such as adding 1 and inverting,
dividing by 2 and subtracting from 1, etc. [6]. If the joint
absence of the attribute is ignored, i.e.,β is set to 0, then
the binary dissimilarity measure can be generally written as
D(a,b,c,d) = b+c

αa+b+c, whereα > 0.
In cluster applications, the rankings based on a dissim-

ilarity coefficient is often of more interest than the actual
value of the dissimilarity coefficient. It has been shown
that [1], if the paired absences are ignored in the calcula-
tion of dissimilarity values, then there is only one single dis-
similarity coefficient modulo the global order equivalence:

b+c
a+b+c. Thus our following discussion is based on the single
dissimilarity coefficient.

3.2.2 BMD and Dissimilarity Coefficients Given repre-
sentation(D,F), basically,D denotes the assignments of
data points associated into clusters andF indicates the fea-

3Equation (3.5) computes the weighted sum using the cluster sizes.
4Basically, the presence/absence based dissimilarity measure satisfies

a set of axioms such as non-negative, range in[0,1], rationality whose
numerator and denominator are linear and symmetric, etc. [1].

ture representations of clusters. Observe that

O(D,F) =
1
2
||X−DFT ||2F

=
1
2 ∑

i, j
(xi j − (DFT)i j)2

=
1
2

K

∑
k=1

∑
i∈Ck

∑
j
|xi j −ek j|

2

=
1
2

K

∑
k=1

∑
i∈Ck

d(xi ,ek),

(3.7)

whereek = (fk1, · · · , fkr), i = 1, · · · ,K is the cluster “repre-
sentative” of clusterCi . Thus minimizing Equation (3.7) is
the same as minimizing Equation (3.6) where the distance
is defined asd(xi ,ek) = ∑ j |xi j − (ek)i j |

2 = ∑ j |xi j − (ek)i j |
(the last equation holds sincexi j and (ek)i j are all binary.)
In fact, given two binary vectorsX andY, ∑i |Xi −Yi| calcu-
lates their mismatches (the numerator of their dissimilarity
coefficients).

3.3 Minimum Description Length Minimum Descrip-
tion length(MDL) aims at searching for a model that pro-
vides the most compact encoding for data transmission [10]
and is conceptually similar to minimum message length
(MML) [9, 2] and stochastic complexity minimization [11].
In fact, the MDL approach is a Bayesian method: the code
lengths and the code structure in the coding model are equiv-
alent to the negative log probabilities and probability struc-
ture assumptions in the Bayesian approach.

As described in Section 2, inBMD clustering, the
original matrixX can be approximated by the matrix product
of DFT . Instead of encoding the elements ofX alone, we
then encode the model,D,F , and the data given the model,
(X|DFT). The overall code length is thus expressed as

L(X,D,F) = L(D)+L(F)+L(X|DFT).

In the Bayesian framework,L(D) andL(F) are negative log
priors forD andF andL(X|DFT) is a negative log likelihood
of W givenD andF . If we assume that the prior probabilities
of all the elements ofD andF are uniform (i.e.,12), thenL(D)
andL(F) are fixed given the datasetX. In other words, we
need to use one bit to represent each element ofD and F
irrespective of the number of 1’s and 0’s. Hence, minimizing
L(X,D,F) reduces to minimizingL(X|DFT).

UseX̂ to denote the generated data matrix byD andF .
For all i, 1≤ i ≤ n, j, 1≤ j ≤ p, b∈ {0,1}, andc∈ {0,1},
we considerp(xi j = b | x̂i j (D,F) = c), the probability of the
original dataWi j = b conditioned upon the generated data
(x̂)i j , via DFT , is c. Note that

p(xi j = b | X̂i j (D,F) = c) =
Nbc

N.c
.

529

HereNbc is the number of elements ofX which have value
b where the corresponding value forX̂ is c, andN.c is the
number of elements of̂X which have valuec. Then the code
length forL(X,D,F) is

L(X,D,F) = −∑
b,c

Nbc logP(xi j = b | x̂i j (D,F) = c)

= −np∑
b,c

Nbc

np
log

Nbc

N.c

= npH(X|X̂(D,F))

So minimizing the coding length is equivalent to mini-
mizing the conditional entropy. Denotepbc = p(xi j = b |
x̂i j (D,F) = c). We wish to find the probability vectors
p = (p00, p01, p10, p11) that minimize

(3.8) H(X|X̂(D,F)) = − ∑
i, j∈{0,1}

pi j logpi j

Since−pi j logpi j ≥ 0, with the equality holding atpi j = 0
or 1, the only possible probability vectors which minimize
H(X|X̂(D,F)) are those withpi j = 1 for somei, j andpi1 j1 =
0,(i1, j1) 6= (i, j). SinceX̂ is an approximation ofX, it is
natural to require thatp00 and p11 be close to 1 andp01

and p10 be close to 0. This is equivalent to minimizing the
mismatches betweenX and X̂, i.e., minimizingO(D,F) =
1
2||X−DFT ||2F .

3.4 Entropy-Based Approach

3.4.1 Classical Entropy Criterion The classical cluster-
ing criteria [3, 4] search for a partitionC that maximizes the
following quantityO(C):

O(C) =
K

∑
k=1

r

∑
j=1

1

∑
t=0

Nj ,k,t

N
log

NNj ,k,t

NkNj ,t

=
K

∑
k=1

r

∑
j=1

1

∑
t=0

Nj ,k,t

N

(

log
Nj ,k,t

nk
− log

Nj ,t

n

)

=
1
r

(

Ĥ(X)−
1
n

K

∑
k=1

nkĤ(Ck)

)

.

(3.9)

Observe that1n ∑K
k=1nkĤ(Ck) is the entropy measure of

the partition, i.e., the weighted sum of each cluster’s entropy.
This leads to the following criterion: Given a dataset, fix
Ĥ(X), then maximizingO(C) is equivalent to minimizing
the expected entropy of the partition:

(3.10)
1
n

K

∑
k=1

nkĤ(Ck)

3.4.2 Entropy and Dissimilarity Coefficients Now ex-
amine the within-cluster criterion in Equation (3.5). We

have:

S(C) =
K

∑
k=1

1
nk

∑
i,i′∈Ck

δ(xi ,xi′)

=
K

∑
k=1

1
nk

∑
i,i′∈Ck

1
r

r

∑
j=1

|xi, j −xi′, j |

=
1
r

K

∑
k=1

r

∑
j=1

nkρ(j)
k (1−ρ(j)

k).

Here for eachk, 1≤ k≤ K, and for eachj, 1≤ j ≤ r, ρ(j)
k is

the probability that thej-th attribute is 1 inCk.
Using the generalized entropy5 defined in [5],H2(Q) =

−2
(

∑n
i=1q2

i −1
)

, we have

1
n

K

∑
k=1

nkĤ(Ck)

= −
1
2n

K

∑
k=1

r

∑
j=1

nk

(

(ρ(j)
k)2 +(1−ρ(j)

k)2−1
)

=
1
n

K

∑
k=1

r

∑
j=1

nkρ(j)
k (1−ρ(j)

k) =
r
n

S(C).

References

[1] F. B. Baulieu. Two variant axiom systems for pres-
ence/absence based dissimilarity coefficients.Journal of
Classification, 14(1):159–170, 1997.

[2] R. A. Baxter and J. J. Oliver. MDL and MML: similarities
and differences. TR 207, Monash University, 1994.

[3] H.-H. Bock. Probabilistic aspects in cluster analysis.In
Conceptual and Numerical Analysis of Data, pages 12–44,
1989.

[4] G. Celeux and G. Govaert. Clustering criteria for discrete data
and latent class models.Journal of Classification, 8(2):157–
176, 1991.

[5] J. Havrda and F. Charvat. Quantification method of classifica-
tion processes: Concept of structural a-entropy.Kybernetika,
3:30–35, 1967.

[6] N. Jardine and R. Sibson.Mathematical Taxonomy. John
Wiley & Sons, 1971.

[7] T. Li, S. Ma, and M. Ogihara. Entropy-based criterion in
categorical clustering. In ICML, 2004. 536-543.

[8] T. M. Mitchell. Machine Learning. The McGraw-Hill
Companies,Inc., 1997.

[9] J. J. Oliver and R. A. Baxter. MML and Bayesianism:
similarities and differences. TR 206, Monash University,
1994.

[10] J. Rissanen. Modeling by shortest data description.Automat-
ica, 14:465–471, 1978.

[11] J. Rissanen. Stochastic Complexity in Statistical Inquiry.
World Scientific Press, Singapore, 1989.

5Note thatHs(Q) = (2(1−s) −1)−1 (∑n
i=1 qs

i −1).

530

Time-series Bitmaps: a Practical Visualization Tool for Working with Large
Time Series Databases

Nitin Kumar Venkata Nishanth Lolla Eamonn Keogh Stefano Lonardi Chotirat Ann Ratanamahatana Li Wei
University of California - Riverside

Department of Computer Science & Engineering
Riverside, CA 92521, USA

{nkumar, vlolla, eamonn, stelo, ratana, wli}@cs.ucr.edu

Abstract
The increasing interest in time series data mining in the last
decade has resulted in the introduction of a variety of similarity
measures, representations, and algorithms. Surprisingly, this
massive research effort has had little impact on real world
applications. Real world practitioners who work with time series
on a daily basis rarely take advantage of the wealth of tools that
the data mining community has made available. In this work, we
attempt to address this problem by introducing a simple
parameter-light tool that allows users to efficiently navigate
through large collections of time series. Our system has the
unique advantage that it can be embedded directly into any
standard graphical user interfaces, such as Microsoft Windows,
thus making deployment easier. Our approach extracts features
from a time series of arbitrary length and uses information
about the relative frequency of its features to color a bitmap in a
principled way. By visualizing the similarities and differences
within a collection of bitmaps, a user can quickly discover
clusters, anomalies, and other regularities within their data
collection. We demonstrate the utility of our approach with a set
of comprehensive experiments on real datasets from a variety of
domains.
Keywords: Time Series, Chaos Game, Visualization.

1 Introduction
The increasing interest in time series data mining in the
last decade has resulted the introduction of a variety of
similarity measures/ representations/ definitions/ indexing
techniques and algorithms (see, e.g., [1][2][3][4]
[9][13][14]). Surprisingly, this massive research effort has
had little impact on real world applications. Examples of
implemented systems are rare exceptions [17].
Cardiologists, engineers, technicians, and others who
work with time series on a daily basis rarely take
advantage of the wealth of tools that the data mining
community has made available. While it is difficult to
firmly establish the reasons for the discrepancy between
tool availability and practical adoption, the following
reasons suggested themselves after an informal survey.
• Time series data mining tools often come with a

bewildering number of parameters. It is not obvious
to the practitioner how these should be set [15].

• Research tools often require (relatively) specialized
hardware and/or software, rather than the ubiquitous
desktop PC/Windows environment that prevails.

• Many tools have a steep learning curve, requiring the
user to spend many unproductive hours learning the
system before any possibility of useful work.

In this work, we attempt to address this problem by
introducing a simple parameter-light tool that allows users
to efficiently navigate through large collections of time
series. Our approach extracts features from a time series
of arbitrary length, and uses information about the relative
frequency of these features to color a bitmap in a
principled way. By visualizing the similarities and
differences within a collection of these bitmaps, a user
can quickly discover clusters, anomalies, and other
regularities within their data collection.

While our system can be used as an interactive tool, it
also has the unique advantage that it can be embedded
directly into any standard graphical user interfaces, such
as Windows, Aqua, X-windows, etc. Since users navigate
through files by looking at their icons, we decided to
employ the bitmap representation as the icon
corresponding to each time series. Simply by glancing at
the icons contained in a folder of time series files, a user
can quickly identify files that require further
investigation. In Figure 1, we have illustrated a simple
example.

Figure 1. Four time series files represented as time series
thumbnails. While they are all examples of congestive heart failure,
eeg6.dat is from a different person to all the rest. This fact is
immediately apparent from a casual inspection of the thumbnail
representation.

The utility of the idea shown in Figure 1 can be further
enhanced by arranging the icons within the folder by
pattern similarity, rather than the typical choices of
arranging them by size, name, date, etc. This can be
achieved by using a simple multidimensional scaling or a
self-organizing map algorithm to arrange the icons.

531

Unlike most visualization tools which can only be
evaluated subjectively, we will perform objective
evaluations on the amount of useful information contained
within a time series bitmap. More precisely, we will
analyze the loss of accuracy of classification
/clustering/anomaly detection algorithms when the input
is based solely on the information contained in the
bitmap. As we will show, the experiments strongly
confirm the utility of our approach.

2 Chaos Game Representations
Our visualization technique is partly inspired by an
algorithm to draw fractals called the Chaos game [3]. The
method can produce a representation of DNA sequences,
in which both local and global patterns are displayed. For
example, a biologist can recognize that a particular
substring, say in a bacterial genome, is rarely used. This
would suggest the possibility that the bacteria have
evolved to avoid a particular restriction enzyme site,
which means that he/she might not be easily attacked by a
specific bacterio-phage.

From our point of view, the crucial observation is that the
CGR representation of a sequence allows the investigation
of the patterns in sequences, giving the human eye a
possibility to recognize hidden structures.

Figure 2. The quad-tree representation of a sequence over the
alphabet {A,C,G,T} at different levels of resolution

We can get a hint of the potential utility of the approach
if, for example, we take the first 16,000 symbols of the
mitochondrial DNA sequences of four familiar species
and use them to create their own file icons. Figure 3
below illustrates this. Even if we did not know these
particular animals, we would have no problem
recognizing that there are two pairs of highly related
species being considered.

With respect to the non-genetic sequences, Joel Jeffrey
noted, “The CGR algorithm produces a CGR for any
sequence of letters”[9]. However, it is only defined for
discrete sequences, and most time series are real valued.

This encouraged us to try a similar technique on time
series data and investigate the utility of such
representation on the classic data mining tasks of
clustering, classification, and visualization.

Figure 3. The gene sequences of mitochondrial DNA of four
animals, used to create their own file icons using a chaos game
representation. Note that Pan troglodytes is the familiar
Chimpanzee, and Loxodonta africana and Elephas maximus are the
African and Indian Elephants, respectively. The file icons show that
humans and chimpanzees have similar genomes, as do the African
and Indian elephants.

Since CGR involves treating a data input as an abstract
string of symbols, a discretization method is necessary to
transform continuous time series data into discrete
domain. For this purpose, we used the Symbolic
Aggregate approXimation (SAX) [18]. While there are at
least 200 techniques in the literature for converting real
valued time series into discrete symbols [7], the SAX
technique of Lin et. al. [18] is unique and ideally suited
for data mining. SAX is the only symbolic representation
that allows the lower bounding of the distances in the
original space. The ability to efficiently lower bound
distances is at the heart of hundreds of indexing
algorithms and data mining techniques
[2][6][12][14][18][19].

The SAX representation is created by taking a real valued
signal and dividing it into equal sized sections. The mean
value of each section is then calculated. By substituting
each section with its mean, a reduced dimensionality
piecewise constant approximation of the data is obtained.
This representation is then discretized in such a manner as
to produce a word with approximately equi-probable
symbols. Figure 4 shows a short time series being
converted into the SAX word baabccbc.

Figure 4. A real valued time series can be converted to the SAX
word baabccbc. Note that all three possible symbols are
approximately equally frequent.

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

532

The time and space complexity to convert a sequence to
its SAX representation is linear in the length of the
sequence. The SAX representation has been successfully
used by various groups of researchers for indexing,
classification, clustering [18], motif discovery [5][6][21],
rule discovery, [20], visualization [17], and anomaly
detection [15].

3 Time Series Bitmaps

At this point, the connection between the two
“ingredients” for the time series bitmaps should be
evident. We have seen in Section 2.3 that the Chaos game
[3] bitmaps can be used to visualize discrete sequences,
and we have seen in Section 2.4 that the SAX
representation is a discrete time series representation that
has demonstrated great utility for data mining. It is natural
to consider combining these ideas.

The Chaos game bitmaps are defined for sequences with
an alphabet size of four. It is fortuitous that DNA strings
have this cardinality. SAX can produce strings on any
alphabet sizes. As it happens, a cardinality of four (or
three) has been reported by many authors as an excellent
choice for diverse datasets on assorted problems
[5][6][15][17][18] [20][21].

We need to define an initial ordering for the four SAX
symbols a, b, c, and d. We use simple alphabetical
ordering as shown in Figure 5.

Figure 5. Top) The four possible SAX symbols are mapped to four
quadrants of a square, and pairs, triplets, etc are recursively mapped
to finer grids. Middle) We can extract counts of symbols from a
SAX representation and record them in the grids. Bottom) The
recorded values can be linearly mapped to colors, thus creating a
square bitmap.

After converting the original raw time series into the SAX
representation, we can count the frequencies of SAX
“subwords” of length L, where L is the desired level of
recursion. Level-1 frequencies are simply the raw counts
of the four symbols. For level 2, we count pairs of
subwords of size 2 (aa, ab, ac, etc). Note that we only
count subwords taken from individual SAX words. For
example, in the SAX representation in Figure 5 middle
right, the last symbol of the first line is a, and the first
symbol of the second word is b. However, we do not
count this as an occurrence of ab.

Once the raw counts of all subwords of the desired length
have been obtained and recorded in the corresponding
pixel of the grid, a final step is required. Since the time
series in a data collection may be of various lengths, we
normalize the frequencies by dividing it by the largest
value. The pixel values thus range from 0 to 1. The final
step is to map these values to colors. In the example
above, we mapped to grayscale, with 0 = white, 1 = black.
However, it is generally recognized that grayscale is not
perceptually uniform [22]. A color space is said to be
perceptually uniform if small changes to a pixel value are
approximately equally perceptible across the range of that
value. For all images produced in this paper we use
Matlab’s “jet” color space, which is a linearization of a
large fraction of all possible colors and which is designed
to be perceptually uniform.

Note that unlike the arbitrarily long, and arbitrarily shaped
time series from which they where derived, for a fixed L,
the bitmaps have a constant space and structure.

We do not suggest any utility in viewing a single time
series bitmap. The representation is abstract, and we do
not expect a user to be able to imagine the structure of
time series given the bitmap. The utility of the bitmaps
comes from the ability to efficiently compare and contrast
them.

4 Time Series Thumbnails
A unique advantage of the time series bitmap
representation is the fact that we can transparently
integrate it into the user graphical interface of most
standard operating systems. Since most operating systems
use the ubiquitous square icon to represent a file, we can
arrange for the icons for time series files to appear as their
bitmap representations. Simply by glancing at the
contents of a folder of time series files, a user may spot
files that require further investigation, or note natural
clusters in the data.

The largest possible icon size varies by operating system.
All modern versions of Microsoft Windows support 32 by
32 pixels, which is large enough to support a bitmap of
level 5. As we will see, level 2 or 3 seems adequate for
most tasks/datasets. To augment the utility of the time
series bitmaps, we can arrange for their placement on

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

abcdba
bdbadb
cbabca

3

7

Level 1 Level 2 Level 3

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

aa ab ba bbaa ab ba bb

ac ad bc bdac ad bc bd

ca cb da dbca cb da db

cc cd dc ddcc cd dc dd

a b

c d

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

0 2 3 00 2 3 0

0 1 2 10 1 2 1

1 1 0 31 1 0 3

0 1 0 00 1 0 0

5 7

3 3

5 7

3 3

abcdba
bdbadb
cbabca

3

7

Level 1 Level 2 Level 3

533

screen to reflect their structure. Normally, file icons are
arranged by one of a handful of common criteria, such as
name, date, size, etc.

We have created a simple modification of the standard
Microsoft Windows (98 or later) file browser by
introducing the concept of Cluster View. If Cluster View
is chosen by the user, the time series thumbnails arrange
themselves by similarly. This is achieved by performing
Multi-Dimensional Scaling (MDS) of the bitmaps, and
projecting them into a 2 dimensional space. For aesthetic
reasons, we “snap” the icons to the closest grid point.

Figure 6 displays an example of Cluster View in
Microsoft Windows XP Operating System. In this
example, the Cluster View is obtained for five MIT-BIH
Arrhythmia Database files. It is evident in the figure that
eeg1.dat, eeg2.dat, and eeg3.dat belong to one cluster
whereas eeg6.dat and eeg7.dat belong to another. In this
case, the grouping correctly reflects the fact that latter two
files come from a different patient to first three.

Figure 6. A snapshot of a folder containing cardiograms when its
files are arranged by “Cluster” option. Five cardiograms have been
grouped into two different clusters based on their similarity.

 5 Experimental Evaluation
We have tested our proposed approach with a
comprehensive set of experiments; most of these were
omitted for the sake of brevity. We urge the interested
reader to consult the full version of this paper or URL
[11] for large-scale color reproductions and additional
details.
We examined the UCR Time Series Archive for datasets
that come in pairs. For example, in the Buoy Sensor
dataset, there are two time series, North Salinity and East
Salinity, and in the Exchange Rate dataset, there are two
time series, German Marc and Swiss Franc. We were able
to identify fifteen such pairs, from a diverse collection of
time series covering the domains of finance, science,
medicine, industry, etc. Although our method is able to
deal with time series of different lengths, we truncated all
time series to length 1,000 for visual clarity.

While the correct hierarchical clustering at the top of the
tree is somewhat subjective, at the lower level of the tree,
we would hope to find a single bifurcation separating each
pair in the dataset. Our metric, Q, for the quality of
clustering is therefore the number of such correct
bifurcations divided by fifteen, the number of datasets.
For a perfect clustering, Q = 1. Figure 7 shows the
resulting dendrogram for our approach. The dendrograms
for the other approaches are omitted here for brevity, but
may be viewed at [11].

Figure 7. The clustering obtained by the time series
thumbnail approach on a heterogeneous data collection.
Bold lines denote incorrect subtrees. A key of the data
appears in Appendix A of the full paper.

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

534

We compared to two well-known and highly referenced
techniques, Markov models [8] and ARIMA models
[10][22]. For each technique, we spent one hour searching
over parameter choice and reported only the best
performing result. To mitigate the problem of overfitting,
we set the parameters on a different, but similar dataset.
The results for the three approaches are given in Table 1.

Table 1. The quality of clustering obtained by
the three algorithms under consideration.

Algorithm Q

Thumbnails 0.93

Markov Model 0.46

ARMA models 0.40

6 Conclusions and Future Work.
In this work, we have introduced a new framework for
visualization of time series. Our approach is unique in that
it can be directly embedded into any standard GUI
operating system. We demonstrated the effectiveness of
our approach on a variety of tasks and domains. Future
work includes an extensive user study, and investigating
techniques to automatically set the system parameters.

This research was partly funded by the National Science
Foundation under grant IIS-0237918.
Reproducible Results Statement: In the interests of
competitive scientific inquiry, all datasets used in this
work are available at the following URL [11].

References
[1] Aach, J., & Church, G. (2001). Aligning gene expression

time series with time warping algorithms. Bioinformatics,
Volume 17, pp. 495-508.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.
(1995). Fast similarity search in the presence of noise,
scaling, and translation in times-series databases. In
Proceedings of twenty-first International Conference on
Very Large Databases, pp. 490-501.

[3] Barnsley, M.F., & Rising, H. (1993). Fractals Everywhere,
second edition, Academic Press.

[4] Berndt, D., & Clifford, J. (1994). Using dynamic time
warping to find patterns in time series, AAAI Workshop on
Knowledge Discovery in Databases, pp. 229-248.

[5] Celly, B. & Zordan, V. B. (2004). Animated People
Textures. In proceedings of the 17th International
Conference on Computer Animation and Social Agents.
Geneva, Switzerland.

[6] Chiu, B., Keogh, E., & Lonardi, S. (2003). Probabilistic
Discovery of Time Series Motifs. In the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 493-498.

[7] Daw, C. S., Finney, C.E.A., & Tracy, E.R.(2001). Symbolic
Analysis of Experimental Data. Review of Scientific
Instruments. (2002-07-22).

[8] Ge, X., & Smyth, P. (2000). Deformable Markov model
templates for time-series pattern matching. In proceedings
of the sixth ACM SIGKDD, pp. 81-90.

[9] Jeffrey, H.J. (1992). Chaos Game Visualization of
Sequences. Comput. & Graphics 16, pp. 25-33.

[10] Kalpakis, K., Gada, D., & Puttagunta, V. (2001). Distance
Measures for Effective Clustering of ARIMA Time-Series.
In the Proceedings of the 2001 IEEE International
Conference on Data Mining, pp. 273-280.

[11] Keogh, E. www.cs.ucr.edu/~nkumar/SDM05.html
[12] Keogh, E. (2002). Exact indexing of dynamic time

warping. In Proceedings of the twenty-eighth International
Conference on Very Large Data Bases, pp. 406-417.

[13] Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra
(2001). Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings of
ACM SIGMOD Conference on Management of Data, pp.
151-162.

[14] Keogh, E. & Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. In the eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.
102-111.

[15] Keogh, E., Lonardi, S., & Ratanamahatana, C. (2004).
Towards Parameter-Free Data Mining. In proceedings of
the tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[16] Korn, F., Jagadish, H., & Faloutsos, C. (1997). Efficiently
supporting ad hoc queries in large datasets of time
sequences. In Proceedings of SIGMOD, pp. 289-300.

[17] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P. & Nystrom,
D.M. (2004). Visually Mining and Monitoring Massive
Time Series. In proceedings of the tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining..

[18] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A
Symbolic Representation of Time Series, with Implications
for Streaming Algorithms. In proceedings of the eighth
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery.

[19] Ratanamahatana, C.A., & Keogh, E. (2004). Everything
you know about Dynamic Time Warping is Wrong. 3rd
Workshop on Mining Temporal and Sequential Data, in
conjunction with the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[20] Silvent, A. S., Carbay, C., Carry, P. Y. & Dojat, M. (2003).
Data, Information and Knowledge for Medical Scenario
Construction. In proceedings of the Intelligent Data
Analysis In Medicine and Pharmacology Workshop.

[21] Tanaka, Y. & Uehara, K. (2004). Motif Discovery
Algorithm from Motion Data. In proceedings of the 18th
Annual Conference of the Japanese Society for Artificial
Intelligence (JSAI).

[22] Wyszecki, G. (1982). Color science: Concepts and
methods, quantitative data and formulae, 2nd edition.

535

Pushing Feature Selection ahead of Join

Rong She, Ke Wang, Yabo Xu

School of Computing Science, Simon Fraser University

rshe, wangk, yxu@cs.sfu.ca

Philip S. Yu

IBM T.J. Watson Research Center

psyu@us.ibm.com

ABSTRACT1

Current approaches for feature selection on multiple

data sources need to join all data in order to evaluate

features against the class label, thus are not scalable and

involve unnecessary information leakage. In this paper,

we present a way of performing feature selection

through class propagation, eliminating the need of join

before feature selection. We propagate a very compact

data structure that provides enough information for

selecting features to each data source, thus allowing

features to be evaluated locally without looking at any

other information. Our experiments confirmed that our

algorithm is highly scalable while effectively preserving

the data privacy.

Keywords

feature selection, class propagation, scalability, data

privacy, classification

1. INTRODUCTION

In scientific collaborations and business initiatives, data

often reside in multiple data sources in different formats.

Classification on such data is challenging, as the

presence of many irrelevant features causes problems

on both scalability and accuracy. Additionally, as data

may be collected from different data providers, if

irrelevant features are not removed before data

integration, unnecessary details will be revealed to other

data sources, causing problems on data privacy.

To address these concerns, feature selection is needed

as it effectively reduces the data size and filters out

noises, while limiting the information shared among

different data sources. However, with data scattered

among multiple sources and the class label exists in

only one of the data sources (“class table”), current

approaches for feature selection have to perform join

before features can be evaluated against the class label.

Example 1.1 Consider a toy example in Figure 1.

1 This work is supported in part by a grant from Networks of Centers

of Excellence/Institute for Robotics and Intelligent Systems, a grant

from Institute for Robotics and Intelligent Systems/Precarn, and a

grant from Natural Sciences and Engineering Research Council of

Canada.

Given “Credit Card” table and “Transaction” table,

suppose we want to select features that are relevant to

determine whether certain credit card is in good

standing or not. A straight-forward method would join

these tables on the common feature “Account No”,

resulting in a joined table with 8 records and 9 attributes.

Each feature can then be examined against the class

attribute in the joined table. ■

Several problems arise with this approach. Firstly, as

the join operation is expensive and there is blow-up in

the data size, it is a waste in both time and space as

many features will be removed by subsequent feature

selection. Secondly, unnecessary details are revealed

which violates the data privacy constraint, thus is

undesirable. In addition, there are cases where learning

is done on some query results defined with each user

specification, e.g., to study personal behaviors, user

may want to join the two example tables on persons’

names. It is thus impossible to materialize the joined

result once and use it for all subsequent learning.

In this paper, we propose a way to perform feature

selection without join. We observe that a feature

selection algorithm is essentially a computational

solution that measures the class relevance of all features.

For typical relevance measures, all information required

in the computation is the class distribution associated

with each feature. If the class information can be

propagated to all data sources, it is easy to evaluate all

features locally. Thus, instead of evaluating all features

in a central table, we push the class labels into each

individual data source. In other words, we push the

process of feature selection ahead of the join operation.

2. Related Works

In multi-relational learning such as [1,10,13], the target

entity is an “object”, which is one entry in the target

table. Features in all non-target tables are properties of

the target object. However, the problem we are dealing

with is conceptually different. We regard each entry in

the final joined table as our target entity, i.e.,

classification is defined on joined instances.

A number of surveys on feature selection methods are

available [3,8]. In general, it’s a process that chooses an

optimal subset of features according to certain criterion

536

Credit

Card

Acc. No Card

Holder

Class

C1 A1 Mary Good

C2 A1 Michael Good

C3 A2 Helen Bad

C4 A2 John Good

Credit Card Table

Trans.

No

Acc.

No
Date Customer Type Amount

1 A1 02/12’02 Michael transfer 100.00

2 A1 03/03’03 Michael withdraw 200.00

3 A2 05/20’02 John deposit 390.98

4 A2 11/01’03 Helen transfer 34.00

Transaction Table

Figure 1. Example Database with Many-to-Many Relationship

[7]. Previous works on feature selection focused on

developing evaluation criteria and search strategies,

given one flat table with a set of features. Not much

work is done when it comes to feature selection across

multiple relations, other than the intuitive join approach.

Sampling is another technique that is often used for

scalability. However, as it only operates on a portion of

the original data, the results are only approximations.

Also, it does not address the data privacy issue at all. As

one work that is close to ours, the VFREL algorithm

proposed in [5] made use of feature selection to reduce

the dataset size before passing the flattened (joined)

data to a propositional learner. At each iteration, a small

sample of the flattened database is used to eliminate

features that are most likely to be irrelevant. That is,

they still perform join on a portion of data at each step

in order to select features.

Our work differs as we eliminated the need of join

before feature selection. In addition, we also address the

data privacy problem while there is no such concern in

their context.

The idea of information propagation across multiple

relations has been explored [13]. However, they

propagated IDs of target records, which may be of

arbitrarily large size. And they need to do propagation

in each iteration of building the classifier. We propagate

class labels with a size equal to the number of classes

(typically very small in classification). Once the class

label is propagated to each table, all evaluation is done

locally and there’s never need to propagate again.

3. Algorithm Overview

Figure 2 compares our approach with the existing

approach. With our framework, feature selection is done

through class propagation where class distribution

information is propagated from the class table to other

tables without join. By pushing feature selection ahead,

we only need to join a much smaller subset of features

at a later stage, thus the algorithm is more scalable and

data privacy is protected.

In order to measure the relevance of features, typical

measures such as information gain [9] and gini index [2]

are defined based on the relative frequency of each class.

Everything that is needed for calculating these measures

is contained in the projection of the examined feature

values and their class distribution. Such projection has

been referred to as “AVC (Attribute-Value-Class label)

set” in [4]. The size of such AVC set is proportional to

the number of distinct values in each attribute. To

obtain such AVC values, the only data structure that

needs to be propagated is the class distribution

information. This observation leads to the first and the

core part of our algorithm, class propagation.

The operations after class propagation are rather

standard, including feature selection, join and

classification. As our focus is to study the effect of class

propagation, we simply made use of some commonly-

used existing methods. We do not intend to introduce a

new feature selection or classification algorithm. Rather,

we provide a method to perform feature selection

directly on multiple data sources. Since we measure the

relevance of features in the same way as it is done on

the joined table, it is guaranteed the resulted feature set

is exactly the same as would be produced by joining the

databases. In the next section, we will focus on details

of class propagation.

4. Class Propagation

To propagate class information, we maintain a data

structure at each data source, named “ClsDis” (class

Figure 2. Work Flow Overview

Simple Approach Our Approach

Join (all features)

Feature Selection

Classification

Class Propagation

Feature Selection

Join

(with subset of features)

Classification

537

John

Helen

Michael

Mary

Card

Holder

<1,0>A2C4

<0,1>A2C3

<1,0>A1C2

<1,0>A1C1

ClsDis

<good, bad>

Acc.

No

Credit

Card

Credit Card Table

Transaction Table

Helen

John

Michael

Michael

Customer

<1,1>34.00transfer11/01’03A24

<1,1>390.98deposit05/20’02A23

<2,0>200.00withdraw03/03’03A12

<2,0>100.00transfer02/12’02A11

ClsDis

<good, bad>AmountTypeDate
Acc.

No

Trans.

No

Step 3:

propagate backward

Step 2: propagate forward

Total: <6,2>

Total: <3,1> Total: <6,2>

Figure 3. Class Propagation on the Example Database with 2 tables

John

Helen

Michael

Mary

Card

Holder

<2,0>A2C4

<0,2>A2C3

<2,0>A1C2

<2,0>A1C1

ClsDis

<good, bad>

Acc.

No

Credit

Card

Credit Card Table

distribution vectors), in the form of “<count1, count2, …

countn>” where n is the total number of classes. Each

count in the vector represents the number of instances

of the corresponding class in the joined table.

Operations on such class vectors are performed on each

corresponding pair of class counts. For some operator

‘⊗’ and two vectors V: <C1,C2,…,Cn> and V’:

<C1’,C2’,…,Cn’>, V ⊗ V’=<C1 ⊗ C1’, C2 ⊗ C2’, …, Cn

⊗ Cn’>. (e.g., <1,2>*<3,4>=<1*3, 2*4>=<3, 8>)

4.1 An example with a 2-table database

Consider our toy example database in Figure 1. Credit

Card table contains the class label (credit standing

“good” or “bad”). We consider the query where we

need to join the tables on “Acc. No” for classification.

Step 1. Initialization

In the class table, if a tuple has class i, its class vector is

initialized such that counti=1 and countj=0 where j≠ i.

For non-class tables, all counts of the class vectors are

initialized to 0s.

Step 2. Forward Propagation

Class propagation starts from the class table. Since we

are joining on the attribute AccNo, for each tuple in

Transaction table with AccNo = Ai, its “ClsDis” is the

aggregation of class counts in Credit Card table with

the same AccNo.

This results in the Transaction table with propagated

“ClsDis” as shown after step 2 in Figure 3. Note the

total class count in Transaction table have reflected the

effect of join on both tables.

Step 3. Backward Propagation

Then we need to propagate back from Transaction table

to Credit Card table, as the class counts in Credit Card

table have not reflected the join. Consider a tuple T with

AccNo=Ai in Credit Card table. T will join with all the

tuples in Transaction having this account number. Let V

be the aggregated class counts for such tuples in

Transaction. V is also the aggregated class counts over

all tuples in Credit Card with this AccNo. T is one of

such tuples. We need to redistribute V among such

tuples in Credit Card according to their shares of class

counts in Credit Card table.

As an example, the third tuple in Credit Card table has

“AccNo=A2” and gets the new “ClsDis” <0,2> as a

result of <2,2>*(<0,1>/<1,1>), since the aggregated

“ClsDis” with “AccNo=A2” is <2,2> in Transaction

table, the original class vector is <0,1> in this entry of

Credit Card table, and the aggregated class vector with

this account number in Credit Card table is <1,1>. The

final results are shown after step 3 in Figure 3.

After propagation, all tables contain the same

aggregated class count, which is the same as if we have

joined the tables. This is also why we need to propagate

in a backward direction, so that the effect of join is

reflected in all tables. (We omit the formal proof due to

the space limit.)

4.2 General Scenarios

In general, we can deal with datasets with acyclic

relationships among tables, i.e., if each table is a node

and related tables (share join predicate) are connected

538

by edges, the resulted graph should be acyclic.

Under this assumption, for cases with more than two

tables and complex schemas, class vectors are

propagated in the depth-first order from the class table.

This process may include both forward (when

propagating from table at a higher level downward) and

backward (from a lower table upward) propagations.

The last table contains class information aggregated

from all tables. To ensure all other tables contain the

same information, class vectors are then propagated

back in one pass.

5. EXPERIMENTAL RESULTS

5.1 Experiment Settings
We compared the performance of feature selection on

multiple tables through class propagation (CP algorithm)

with feature selection on joined table (Join algorithm).

Since they both return the same set of features, we only

need to compare their running time. We also examined

the effect of feature selection on classification.

We rank features according to information gain, as it is

one of the most often used evaluation criteria. Then we

select a top percentage of features. When join is needed,

it is done as a standard database operation by using

Microsoft SQL Server. As this software has a limit on

the number of attributes in any single table (1024),

when the dataset exceeds this limit, we wrote an

alternative join program which is a simple

implementation of the nested loop join [11]. For

classification, we implemented RainForest [4] to build

a decision tree classifier, since decision trees are

reasonably good in performance and easy to

comprehend [2,9]. RainForest has been shown to be a

fast classifier on large scale data, where the traditional

decision tree classifier C4.5 [9] can not be used when

data is very large or has very high dimensions.

All implementations are written in C++. Experiments

were carried out on a PC with 2GHz CPU and 500M

main memory running Windows XP.

5.2 Datasets

Mondial dataset is a geographic database that contains

data from multiple geographical web data sources. We

obtained it in the relational format online [12]. Our

classification task is to predict the religion of a country

based on related information contained in multiple

tables. We consider all religions which are close to

Christian
2
 as positive class and all other religions as

negative class. We ignored tables that only consist of

2 Armenian Orthodox, Bulgarian Orthodox, Christian, Christian

Orthodox, Eastern Orthodox, Orthodox, Russian Orthodox

geographic information. Finally we have 12 tables, the

number of attributes ranges from 1 to 5 and all tables

have less than 150 records with two exceptions (one

table has 1757 records and another has 680 records).

About 69% of data is negative and 31% is positive. 10

fold cross validation is used on this dataset.

Yeast Gene Regulation dataset was deduced from KDD

Cup 2002 task 2 [6]. We obtained 11 tables that contain

information about genes (detailed descriptions are

omitted due to space limit). The biggest table contains

keywords produced from abstracts that discuss related

genes by using standard text processing techniques

(removing stopwords, word stemming). It has 16959

records with 6043 attributes. The class table has 3018

records with the class label, which represents the effect

of gene on the activity level of some hidden system in

yeast (“has changes”(1%), “has controlled

changes”(2%), “no changes”(97%)). Separated training

and testing samples are used as provided in KDD Cup.

5.3 Experiment Results
Table 1 shows the running time on each stage of both

algorithms and classification results on both datasets.

Note that the step for building the classifier is exactly

the same for both approaches, since we have the same

joined data at this stage. Also, when 100% features are

selected, i.e., there is no feature selection, both

algorithms degrade to the same method.

It can be seen that our CP algorithm runs much faster

than the join approach. The breakdown of the running

time shows that the major gain is on the time needed for

joining the data. As explained earlier, the join approach

has to join a much larger dataset, taking a long time,

whereas we only need a fraction of that time joining

much less features. The experiments also show that our

class propagation process is very fast and efficient,

giving us the benefit of doing feature selection before

join at very little cost.

For Mondial dataset, the accuracy difference is

significant between 40% and 50% feature subsets,

suggesting that some attributes are very helpful in

identifying the class label, although they may not be

ranked very high. In general, when more of data privacy

is preserved (with less features revealed to other parties),

classification accuracy starts to decrease. However, if

the user has very strict privacy requirements, then we

can only select less features to satisfy such constraint.

For Yeast Gene dataset, a small number of features

provide very accurate classification and all other

features are irrelevant. It is shown by the perfect

accuracy starting from 5% feature subset. When more

features are selected, it simply prolongs the running

time without changing accuracy. On the other hand, the

539

total running time of the Join approach without feature

selection is less than the total time with 10% or more

feature selection. This is because the effect of feature

selection on classification time is offset by the time

spent for feature selection itself. However, this is not

the case for our CP algorithm, as the time of our feature

selection is much shorter and the total running time

always benefits from feature selection.

Mondial Dataset Yeast Gene Dataset

Features selected (%) Features selected (%) Running Time (seconds)

20 30 40 50 100 5 10 20 50 100

Join 137 137 137 137 137 1099 1099 1099 1099 1099

Feature Selection 9.1 10.6 11.7 14.7 0 1265 1587 1879 2549 0

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739
Join

Total 178.2 188.8 198.8 205.2 256 2414 2862 3348 4649 2838

Class Propagation 1.2 1.2 1.2 1.2 0 9 9 9 9 0

Feature Selection 0.4 0.5 0.5 0.5 0 130 144 158 228 0

Join 1 1 1 1 137 67 118 226 589 1099

Building Classifier 32.1 41.2 50.1 53.5 119 50 176 370 1001 1739

CP

Total 34.7 43.9 52.8 56.2 256 256 447 763 1827 2838

Accuracy (%) 71.5 72.1 69.2 98.1 98.5 100 100 100 100 100

Table 1. Comparison of Running Time / Accuracy

6. DISCUSSION

In this paper, we present a way of selecting features in

multiple data sources without join. With a clever

propagation of class vectors, each local data source

receives the same class distribution information as

produced by a join approach. Features can then be

evaluated locally. Thus the resulted feature selection

scheme is highly scalable, while limiting the amount of

information disclosed to other data sources.

The idea of class propagation can be used to develop

more complex feature selection solutions. For example,

we can incorporate the privacy constraints directly into

feature evaluation by defining privacy score (from 0 to

1) for each feature. Features with higher privacy scores

should have less chance to be selected. Since such score

is available at each local data source, we can design

some complex measure to evaluate the features based

on not only the relevance to the class label, but also

such privacy constraints.

7. REFERENCES

[1] A. Atramentov, H. Leiva and V. Honavar, A Multi-

Relational Decision Tree Learning Algorithm –

Implementation and Experiments. ILP 2003.

[2] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,

Classification and Regression Trees. Wadsworth:

Belmont, 1984.

[3] M. Dash and H. Liu, Feature Selection for classification.

Intelligent Data Analysis – An International Journal,

Elsevier, 1(3), 1997.

[4] J. Gehrke, R. Ramakrishnan and V. Ganti, RainForest: a

Framework for Fast Decision Tree Construction of

Large Datasets. The 24th VLDB conference, 1998.

[5] G. Hulten, P. Domingos and Y. Abe, Mining Massive

Relational Databases, 18th International Joint

Conference on AI - Workshop on Learning Statistical

Models from Relational Data, Acapulco, Mexico, 2003.

[6] KDD Cup 2002,
http://www.biostat.wisc.edu/~craven/kddcup/train.html

[7] H. Liu and H. Motoda, Feature selection for knowledge

discovery and data mining. Kluwer Academic Publishers,

1998.

[8] L. C. Molina, L. Belanche and A. Nebot, Feature

Selection Algorithms: A Survey and Experimental

Evaluation. ICDM 2002.

[9] J.R. Quinlan, C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993

[10] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A

midterm report. In Proc. 1993 European Conf. Machine

Learning, Vienna, Austria, 1993.

[11] R. Ramakrishnan and J. Gehrke, Database Management

Systems. McGraw-Hill, 2003.

[12] The Mondial Database, http://dbis.informatik.uni-

goettingen.de/Mondial/#Oracle

[13] X. Yi, J. Han, J. Yang, and P. Yu. Crossmine: efficient

classification across multiple database relations. ICDE

2004.

540

Discarding Insignificant Rules during Impact Rule Discovery in Large, Dense
Databases

Shiying Huang
CSSE, Monash University

Shiying.Huang@infotech.monash.edu.au

Geoffrey I. Webb
CSSE, Monash University

Geoff.Webb@infotech.monash.edu.au

Abstract
Considerable progress has been made on how to reduce the
number of spurious exploratory rules with quantitative at-
tributes. However, little has been done for rules with undis-
cretized quantitative attributes. It is argued that proposi-
tional rules can not effectively describe the interactions be-
tween quantitative and qualitative attributes. Aumann and
Lindell proposed quantitative association rules to provide a
better description of such relationship, together with a rule
pruning techniques . Since their technique is based on the
frequent itemset framework, it is not suitable for rule discov-
ery in large, dense databases. In this paper, an efficient tech-
nique for automatically discarding insignificant rules during
rule discovery is proposed, based on the OPUS search al-
gorithm. Experiments demonstrate that the algorithm we
propose can efficiently remove potentially uninteresting rules
even in very large, dense databases.

Keywords

Rule discovery, impact rule, rule insignificance.

1 Introduction

It has been recognized that mining multiple models may
lead to unmanageable numbers of rules. In some cases,
the vast majority of the resulting rules are spurious or
uninteresting. Summarization of existing rule pruning
approach can be found in related works [4].

Although techniques for discovering rules from qual-
itative data are highly developed, there has been limited
research into how best to discover rules from quantita-
tive data. Srikant et al. [5] discretized the quantitative
variables and mapped them into qualitative ones. Nev-
ertheless, qualitative data have a lower level of measure-
ment scale than quantitative data. Simply applying de-
scretization may lead to information loss. [2] proposed
a variant of association rule whose consequent is quan-
titative, and is described by its distribution instead of
being discretized. They call these rules quantitative as-
sociation rules (QAR). We follow Webb [7] by calling
these rules impact rules instead, to distinguish them
from quantitative rules as defined by Srikant et al [5].

Aumman and Lindell [2] proposed a technique for
QAR pruning. However, their technique is inefficient
for very dense databases. In this paper, we focus on

further developing their technique so that insignificant
rules can be discarded during rule discovery in large,
dense databases.

The rest of this paper is organized as follows. In
section 2, we briefly describe the impact rule discovery
problem settings we use throughout this paper. Sec-
tion 3 presents the algorithm OPUS IR Filter which in-
corporates filtering spurious rules during rule discov-
ery. Section 4 presents techniques for filtering insignif-
icant impact rules. An anti-monotonic triviality filter
is also proposed for improving the insignificance filter
efficiency. We present and summarize our experiments
in section 5, followed by conclusions in section 6.

2 Impact Rule Discovery

Exploratory rule discovery [9] seeks all models that sat-
isfy some set of constraints. Examples include associ-
ation rule discovery [1], contrast set discovery [3] and
QAR discovery. For some of these techniques, both the
antecedent and the consequent of the resulting rules are
conjunctions of Boolean conditions. We use the term
propositional exploratory rule discovery to encompass
these techniques. However, Boolean conditions cannot
effectively describe interactions between quantitative
and qualitative variables and others. We introduce the
distributional-consequent rule (DCR) discovery, which
is designed specially to accommodate the need of dis-
covering relations regarding quantitative variables. The
influence of the antecedent on the target variable is de-
scribed by distributional statistics. It is argued that
DCR can present more useful interactions with quanti-
tative data than can propositional rules [7, 2].

We characterize some impact rule discovery related
terms as follows:

1. A, which is a conjunction of Boolean conditions,
covers a records r, iff r satisfies all conditions in
A. Coverset(A) is the set of records covered by A.

2. An impact rule is a rule in form of A → target,
where the antecedent A is a conjunction of one or
more Boolean conditions and the target, which is
also referred to as the consequent, is the variable

541

(or combination of variables) in which we are in-
terested. The status of the rule is the influence on
the target of selecting the itemset records covered
by antecedent A, which is described by the statis-
tics of the target of coverser(A).

3. An k-optimal impact rule discovery task is a 7-
tuple: KOIRD(D, C, T ,M, λ, I, k).

D: is a nonempty set of records, which is called
the database. A record is a pair < c, v >
, c ⊆ C and v is a set of values for T . D is
an available sample from the population D.

C: is a nonempty set of available Boolean con-
ditions for impact rule antecedents, which is
generated from the given data in D.

T : is a nonempty set of the variables in whose
distribution we are interested.

M: is a set of constraints. There are two types
of constraints prunable and non-prunable con-
straints. Prunable constraints are constraints
that you can derive useful bounds for search
space pruning and still ensures the complete-
ness of information. Other constraints are
non-prunable constraints

λ: {X → Y } × {D} → R is a function from
rules and databases to values and defines a
interestingness metric such that the greater
the value of λ(X → Y,D) the greater the
interestingness of this rule given the database.

I: is the set of resulting impact rules satisfying
all the constraints in M, whose antecedents
are conjunctions of conditions in C. The rule
consequent is the target variable T .

k: is a user specified integer number denoting the
number of rules in the ultimate set of solutions
for this rule discovery task.

How the k-optimal constraint is enforced in rule
discovery to facilitate better search space pruning is
explained by Webb [7].

3 Algorithm

Aumann and Lindell [2] adopted the frequent itemset
framework for AQR discovery. However, when there
are numerous large itemsets, the overheads of itemset
maintenance and the manipulation for frequent item-
set techniques can be unwieldy. The separation of rule
discovery process into two phases leads to loss of some
opportunities for using filtering to improve the efficiency
[6]. Impact rule discovery is based on the OPUS algo-
rithm, and can successfully overcome these problems by
performing efficient search space pruning and perform
rule discovery in one phase.

OPUS IR Filter systematically searches through

Algorithm: OPUS IR Filter(Current, Available, M)

1. SoFar := ∅

2. FOR EACH P in Available

2.1 New := Current ∪ P

2.2 IF New satisfies all the prunable constraints in M
except the nontrivial constraint THEN

2.2.1 IF any direct subset of New has the same
coverage as New THEN

New → relevant stats is a trivial rule

Any superset of New is trivial, so do not
access any children of this node, go to
step 2.

2.2.2 ELSE IF the mean of New → relevant stats is
significantly higher than all its direct parents
THEN

IF the rule satisfies all the other
non-prunable constraints in M

THEN record Rule to the ordered
rule list

2.2.3 OPUS IR(New, SoFar, M)

2.2.4 SoFar := SoFar ∪ P

2.2.5 END IF

2.3 END IF

3. END FOR

Table 1: OPUS IR Filter

the condition combinations that may appear in the an-
tecedent of an impact rule and prune the search space
according to the requirements of a particular search.
Depth-first search and the branch and bound [6] pruning
technique is used for pruning the search space. Based
on this structure, the memory requirement is moderate
without the need to store all the frequent itemsets dur-
ing the rule generation process, making it efficient for
rule discovery in very large, dense databases.

Table 1 lists the pseudo code of OPUS IR Filter.
Current is the antecedent of the rule currently being
explored, available is the set of conditions that may
be added to the antecedents of rules. M is the set
of constraints specified by the users. Rule list stores
the top-k optimal rules encountered. The filtering of
insignificant impact rules is done at step 2.2.

4 Filtering Insignificant Rules

In order to make our demonstration easier, we contrived
a fictitious database. It contains 4 attributes among
which target is the quantitative variable in whose dis-
tribution we are interested and num is a numeric vari-
able which is discretized into two ranges: greater than
10 and smaller than or equal to 10.

OPUS IR Filter finds 15 rules out of the fictitious
database without using any filters, when searches with
minimum coverage 0.3. However, by applying the filters
the number of resulting rules can be greatly reduced.

542

tid target cat1 num cat2
1 5.3 A 13 C
2 3 B 12 D
3 2 B 10 C
4 8.2 A 4 C
5 6 A 15 C
6 6.3 A 11 C
7 6.3 B 7 C
8 4.8 B 11 D
9 0 B 11 D

10 10 A 3 C

Table 2: Database: mean=5.19, variance=8.59878

4.1 Insignificant Impact Rules Aumann and Lin-
dell defined a rule with a significantly different mean
from all its parents as significant (desired). Using Au-
mann and Lindell’s definition, many rules whose perfor-
mance isn’t significantly improved in comparison with
their parents are found, which should be discarded for
some discovery tasks. Some of the conditions in such
rules may be negatively correlated to the consequent
given the others [4].

Definition 4.1. An impact rule A → target is signifi-
cant if the distribution of its target is improved at a given
significance lever, in comparison with any of the target
distribution of the rule A′ → target, where A′ ⊂ A and
|A′| = |A| − 1.

significant(A → target) =
∀x ∈ A, dist(A → target) � dist(A− x → target)

A rule is insignificant if it is not significant.

The most important issue of implementing the in-
significance filter is how exactly the term significantly
improved is defined. We assume a context where the
users seek impact rules that maximize a measure of in-
terestingness, such as the mean. Equivalent techniques
for minimization can be derived from our technique in a
straightforward manner. In this paper, we regard that
if a distribution dista has a mean which is significantly
more desirable than that of distb at a specified signif-
icance level, then dista is said to be significantly im-
proved in comparison to distb. The most general impact
rule is the rule ∅ → target.

4.1.1 Statistical Tests The χ2 [4, 3] and Fisher ex-
act test [9] that are both adopted to assess propositional
rules significance, are not applicable for distributional-
consequent rules. The standard z test is adopted by
Aumman and Lindell for identifying QAR significance,
which is inappropriate for small samples. To address
this problem, we choose the t test instead. Furthermore,
as the degree of freedom increases, the t test approaches
the standard z test.

Using statistical tests to automatically discard the
insignificant rules is inherently statistically unsound.

There are high risks of type-1 errors of accepting spuri-
ous or uninteresting rules, as well as type-2 errors of re-
jecting rules that are not spurious. However, this is not
a problem of concern in our paper. Statistical sound-
ness of such techniques can be achieve by applying the
technique proposed by Webb [9] using a holdout set.

After applying the insignificance filter, only two
impact rules remained as significant. The number of
resulting rules goes through a decrease of near 90%.

4.2 Trivial Impact Rules Although applying a sig-
nificance test during rule discovery enables successful
removal of potentially uninteresting rules, this approach
requires an additional pass through the database so as to
obtain necessary statistics for each rule. Trivial propo-
sitional rules were defined by Webb [8]. We further de-
velop their definition and present trivial impact rules,
which are special cases of an insignificant impact rules.
The property of triviality can speed up the identification
of insignificant rules.

Definition 4.2. An impact rule A → target is trivial
iff there is a rule A′ → target where A′ ⊂ A, and
coverage(A′) = coverage(A).

trivial(A → target) = ∃A′ ⊂ A,
coverage(A) = coverage(A′)

Theorem 4.1. “An impact rule is not trivial” is an
anti-monotone constraint: if a rule A&B → target is
trivial wrt its parent rule A → target, then all the rules,
whose antecedent is a superset of A&B, are also trivial.

Proof. According to definition 4.2,
coverset(A) = coverset(A&B).(4.1)

For any record r′ ∈ D, if
r′ 6∈ coverset(A&B&C)

⇒ r′ 6∈ coverset(A&B) ∨ r′ 6∈ coverset(C)(4.2)

Consider equation 4.1
⇒ r′ 6∈ coverset(A) ∨ r′ 6∈ coversetC

⇒ r′ 6∈ coverset(A&C)

So
∀r 6∈ coverset(A&B&C) → r 6∈ coverset(A&C)

coverset(A&C) ⊆ coverset(A&B&C)(4.3)

Since A&C is a subset of A&B&C,
coverset(A&B&C) ⊆ coverset(A&C)(4.4)

It can be concluded from 4.3 and 4.4 that
coverset(A&B&C) = coverset(A&C)

The rule A&B&C → target is trivial w.r.t. its
parent A&C → target. The theorem is proved.

It can be easily derived from theorem 4.1 that if a
rule A → target is trivial, there must be a condition
x ∈ A where coverage(A) = coverage(A − x). The

543

{}

{cat1 = A}
{cat1 = B}
{Num <= 10}

{Num > 10}
{Cat1 = A, Num > 10}
{Cat1 = B, Num > 10}

{Cat2 = C}
×
×

{Num > 10, Cat2 = C} ×

{Cat2 = D} ×
× ×

Figure 1: Pruned search space at step 2.2.1

database rec- attri- condi- Target
ords butes tions

Abalone 4117 9 24 ShuckedWeight
Heart 270 13 40 MaxHeartRate
Housing 506 14 49 MEDV
German credit 1000 20 77 CreditAmount
Ipums.la.97 70187 61 1693 TotalIncome
Ipums.la.98 74954 61 1610 TotalIncome
Ipums.la.99 88443 61 1889 TotalIncome
Ticdata2000 5822 86 771 AveIncome
Census income 199523 42 522 Wage/Hour
Covtype* 581012 55 131 Evaluation

Table 3: Basic information of the databases we used

distribution of these two rules are exactly the same,
since they cover the same set of records. The triviality
of rules is more powerful in its effect, since it is anti-
monotone enables more effective search space pruning
during rule discovery. Theorem 4.1 justifies our pruning
at step 2.2.1.

Figure 1 shows the effect of pruning according
to triviality in OPUS IR Filter search space for the
fictitious database. As an example, node {Num>10,
Cat2=D} is trivial, so the whole branch under this node
should be pruned, according to theorem 4.1. After
applying the triviality filter of impact rules, 6 out of
the 15 rules found without using filters are removed.

5 Experimental Evaluation

We evaluate our algorithm by applying OPUS IR Filter
to 10 databases selected from UCI repository and KDD
archive , which are described in table 3. We applied
3-bin equal-frequency descretization to map all the
quantitative attributes, other than the target variable,
into qualitative ones. The significance level for the
insignificance filter is 0.05. The program was run on
a computer with PIII 933MHz processor, 1.5G memory
and 4G of virtual memory, with minimum coverage and
maximum number of conditions that may appear on the
antecedents respectively set to 0.01 and 5 (except for
covtype, which is set to 4).

First, we ran our program by using no filters, to
find the top 1000 impact rules with highest impact.
Second, the insignificance filter is applied to discover
the top 1000 significant impact rules. The two sets
of resulting rules were compared to find the number

Sig Nontri Sig rules
Database rules rules in

in all in all nontri
Abalone 173(173) 998 173
Heart 52(100) 923 54
Housing 83(288) 935 84
German credit 31(295) 738 43
Ipums.la.97 31(1000) 31 1000
Ipums.la.98 133(1000) 138 803
Ipums.la.99 297(1000) 578 507
Ticdata2000 1(1000) 564 1
Census income 30(1000) 466 42
Covtype* 316(1000) 386 866

Table 4: Comparison in number of rules

Database impact trivial sig rules
rules Filter Insig Both

abalone 0.29 0.57 0.75 0.74
heart 0.05 0.08 1.16 1.2
housing 0.06 0.16 1.62 1.47
german-credit 0.47 0.85 30.35 29.14
ipums.la.97 7.25 471.56 7365.23 623.52
ipums.la.98 1382.66 1551.8 1871.35 1860.31
ipums.la.99 874.2 1006.9 1886.07 1414.88
ticdata2000 1996.57 2082.1 10933.98 10808.03
census-income 873.74 1396.2 3960.84 3781.6
Covtype* 8927.16 9164.55 9640.63 9451.2

Table 5: Running time for discovering rules (in seconds)

of significant rules in the top 1000 impact rules. The
triviality filter was then applied to find the top 1000
nontrivial impact rules, followed by comparisons to find
the number of nontrivial rules in top 1000 impact rules
and the number of significant rules in the top 1000
nontrivial rules. Finally, we applied both filters to find
the top 1000 significant rules, and how incorporating the
triviality filter can improve the efficiency is exhibited.
Experimental results are in table 4 and table 5.

5.1 Result Analysis The second column of table 4
shows the number of significant rules in the top 1000
impact rules. Most databases go through a dramatic
change in the resulting rules after the significance filter
is applied. The number of resulting significant impact
rules for abalone, heart, housing and German credit is
less than 1000. The parenthesized numbers are the
actual numbers of resulting significant impact rules
discovered in these databases.

From column 3 and column 4 of table 4, it can be
concluded that although the triviality filter can not au-
tomatically discard as many spurious impact rules as
those by the significance filter, the decrease is also con-
siderable. Notably for ipums.la.97 only 31 rules among
the top 1000 impact rules found without using any fil-
ter is nontrivial, while all the nontrivial impact rules
are accepted as significant! For databases ipums.la.98,
ipums.la.99, covtype, ticdata2000 and census-income,
more than 40% of the resulting impact rules are dis-
carded as trivial.

The results justifies our argument about the effi-
ciency of triviality filter: Applying only the triviality fil-

544

Database Frequent Itemsets CPU time(sec)
abalone 11131 0.07
heart 91213 0.11

housing 129843 0.2
german-credit 2721279 4.16
ipums.la.97 - stop after 18462.20
ipums.la.98 - stop after 17668.01
ipums.la.99 - stop after 10542.40
ticdata2000 - stop after 103.17

census-income 314908607 7448.52
covtype* 3810921 1496.76

Table 6: Results for Apriori

ter requires less CPU time, and the efficiency of insignif-
icance filter improves when combined with the triviality
filter. The triviality filter is an efficient complement for
the insignificance filter.

5.2 Comparisons As is mentioned before, Aumann
and Lindell’s algorithm for removing insignificant AQR
uses the frequent itemset framework, which is limited in
its capacity to analyze dense data by the requirement of
vast amount of memory to store all the frequent itemsets
and the computation to maintain those frequent item-
sets during the generation procedure. It is after this
stage that the significance test is performed on the set
of resulting rules.

Since we failed to find QAR implementation, we
compile and run Christian Borgelt’s Apriori implemen-
tation using exactly the same environment and param-
eter settings as for OPUS IR Filter. Target attributes
are deleted from the databases, so that the frequent
itemsets found by Christian Borgelt’s Apriori program
are the antecedents of QAR discovered by Aumann and
Lindell’s approach. The running time and the num-
bers of frequent itemsets discovered in each of the 10
databases are listed in table 6. By comparing the
experimental results, Apriori cannot successfully work
on databases with huge number of conditions, exam-
ples are ipums.la.97, ipums.la.98, ipums.la.99 and tic-
data1000, whose number of conditions all exceed 700.
Apriori stops because of insufficient memory for these
databases. However, OPUS IR Filter can be applied to
the above databases successfully and efficiently. The
time spent on looking for all the frequent itemsets in
german-credit and census-income are much longer than
that for OPUS IR Filter. Although for abalone and cov-
type the running time seems better than our approach,
it should be noted that Apriori is only searching for
the frequent itemsets, without performing the expen-
sive computations and data accesses associated with cal-
culating the statistics for the target attribute for each
itemset. However, it is known to all that going through
the data is one of the most disaster for efficiency. Situ-
ation gets worse as the size of database increases. Even
if we do not take the time spent on itemset discovery

into account, to do significance test over all the result-
ing frequent itemset is inefficient, since the number of
itemsets found in some of the databases exceeds 106.
It is safe to conclude that OPUS IR Filter is efficient
for deriving rules from very large dense databases, for
which Aumann and Lindell’s approach cannot.

6 Conclusions

Observing that there is a lack in research on
distributional-consequent rule pruning, Aumann and
Lindell proposed a technique for identifying potentially
uninteresting rules after rule discovery. Their tech-
nique is based on the frequent itemset mechanism and
is therefore inefficient for large, dense databases. Fur-
thermore, the standard z test, which they use is not
suitable for small samples. We proposed an efficient
technique for removing insignificant impact rules using
the student’s t test, which is a better approximation for
small samples. Our algorithm is based on the OPUS
framework, which enables efficient removal of insignifi-
cant rules even for large dense databases. By utilizing
the anti-monotonicity of trivial rules, which is a subset
of insignificant ones, more efficient search space prun-
ing can be facilitated. The triviality filter for is provided
both as an alternative and a complement to the insignif-
icance filter. Experimental result showed that our algo-
rithm can successfully remove potentially uninteresting
impact rules, especially in very large, dense databases
for which the frequent itemset approaches fail to.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data.

[2] Y. Aumann and Y. Lindell. A statistical theory for
quantitative association rules. In Knowledge Discovery
and Data Mining, pages 261–270, 1999.

[3] S.D. Bay and M.J. Pazzani. Detecting group differ-
ences: Mining contrast sets. In Data Mining and
Knowledge Discovery, pages 213–246, 2001.

[4] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing
the discovered associations. In Knowledge Discovery
and Data Mining, pages 125–134, 1999.

[5] R. Srikant and R. Agrawal. Mining quantitative asso-
ciation rules in large relational tables. In Proceedings
of the 1996 ACM SIGMOD International Conference
on Management of Data.

[6] G. I. Webb. OPUS: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence
Research, 3:431–465, 1995.

[7] G. I. Webb. Discovering associations with numeric
variables. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 383–388. ACM Press, 2001.

[8] G. I. Webb and Songmao Zhang. Efficient techniques
for removing trivial associations in association rule
discovery. In in the proceedings of ICAIS2000, 2002.

[9] G.I. Webb. Statistically sound exploratory rule discov-
ery, 2004.

545

���������
	���
�������������������� ����!#"%$�����"'&(��)*�+���������-,.�/�0�1�+)*2*!3����4-������!#"5� ��67�98'��:;)*:
�<"'=>!#�?:(� ����!."A@B�#��"DC�!.)*"*2
�E�1F%�G!#��"H�I�

J+KMLONQP�RTSVU�PIWYX Z\[]LO[]^?P0_`[badc`PIafe

gihkj>ldmfn?o<l
p#qsr�t�uwv�xwqzy|{>xwqz}T~Oqzr�xw��vi��uw}�t�v�r�r`}d��t�}T~<�fv�u�xwqs~���xw��vit�}d~<xwqz~<��}d��r
{�x�x�uwqz����xwv�r\}>�*xw��v���{>x-{>��{dr�v�qz~�xw}���qzr�t�uwv�xwvG}d~�v�riqz~�}>u-��v�uixw}
{>�����z�\r�}d�*v't��s{dr�r�q���t�{>xwqz}T~�{>�s�d}duwq�xw���*r����k��qzr�qzr�{d~�qz�*�1}du�x-{d~�x
��uw}T���sv���qz~3��v��fv��z}d��qz~����Tv�~�v�u-{d�z����{d�����zqzt|{d���sv��*v�xw��}<��r�qz~
�
{>t���qz~�v��zv|{�uw~�qz~���{d~�����{�x-{��*qz~�qz~�� �¡}>uGt��s{dr�r�q���t|{�xwqz}T~B{d~��
��uwv|��qzt�xwqz}d~��*�k��qzr���{d�1v�u¢qz~�xw}du-����t�v�r¢{£~�v�¤¥xwv�t���~�qs¦���v��¡}du���qsrY§
t�uwv�xwqzy|{>xwqz}T~i��{dr�v|�¨}d~¨r���t�t�v�r�r�qz�fv���r�v�����}*��v��sv�xwqs}d~©}d��qz~�rYx-{>~�t�v�r
xw} uwv|����t�v�xw��v�t�}T~�ª�qzt�xwqz~��Oqz~�rYx-{d~�t�v�r�«�q¬� vT�z«
�<��uwv|����t�xwqz}T~�}d�
~�}Tqzr�v
qz~­xw��v*��{>x-{>��{dr�vd�i®���t���r���t�t�v�r�r�qz�fv
��r�v�����}©��v��zv�xwqz}T~�r�qz~
xw��v.��{>x-{d��{dr�v¢{�uwv.�1v�u��¡}>uw�*v|�
�<�
qz~�x�uw}<����t�qz~���xw��uwv�r���}T�s���1}dqz~<xwr
}d~¯�
{>°�qz�����±qz~��²}duw�
{>xwqz}d~¯�f{dqz~;�1}T��~���{>u��³�1}Tqz~�xwrO}>��xw��v
t�}T~�xwqz~���}T��r�{�x�x�uwqs����xwv�r���´#��u�v��*��q�uwqzt|{>��v�°��1v�uwqz�*v�~�xwrµr���}|¤�xw��{>x
xw��v£rYx-{�xwv`}>�#xw��v£{>u�x*{d�z�T}>uwqzxw���*r'�¡}>u*�zv|{>uw~�qs~���«�r���t-��{>r
¶�·H¸�«
¶�¹�� º<«E·.{dqz�fv�§]»�{|�fv�r�{d~���¼E½Y®�¾¿�Tqz�fv©qz�*��uw}��fv��*v�~<x'qs~��1v�u��¡}>u�§
�
{>~�t�v�r.¤9qzxw��xw��v
��qzr�t�uwv�xwqsy�v|�­}T��xw����xH�²uw}T�;}d��u¢�*v�xw��}<�\xw��{>~
}d��xw����xwrM¤9q�xw�'}dxw��v�u�rYx-{>xwvQ}>�1xw��vQ{�u�x���qzr�t�uwv�xwqzy|{>xwqz}d~£{>�z�T}duwq�xw���*r��

À�ÁdÂ�ÃEÄ�Å�Æ1Ç|ÈQÉ*Ê�Ë]ÌfÍ�ÎfÏ9Ð�Ï-Ê�Ñ]ÎfÍ�ÎTÒfÓ�ÔMÕ|Î>ÖbÍ�Îd×TÕ|×fØkÊ�ÖÙÖ]ÑbÍ�Úf×TÖbÏ|Ó�ÛkÊ�ÖYÊ
Ü Ñ]Ï�Ý Ü ÑbÕdËwÏwØ]ØbÍ�ÎfÒfÓ�Û�Í�ØbËwÑ]Ï�Ö]Í�Þ-Ê�ÖbÍ�Õ|Î�Ó�ÔMßzÊ�Ø]ØbÍ à�Ë-Ê�Ö]Í�Õ|Î�Ê�Îfá�â�Ñ]ÏwáfÍ�Ë�ÖbÍ�Õ|Î�ã
ä å�æ ldm�ç�è+é�o<lTêÙç æ ë
ì�í<î�ï0í<ð²ñ�ò�ó�ôöõ�÷�ø©ù�ú�û>ü�ûdðöò�ý�ûTú0ôöîþø©í�ÿ�÷�ô²î�ûið²ûdí�ó�î�ô²î�ñ��kú?í�õ�í
ø`ô²î�ô²î�ñ í<î�ú��?î?ÿ�ûdó-õ�í<ô²î�ó�ûdí�ù-ò�î�ô²î�ñGõ�í�ù��1ù©ÿ>í<î�î�ò�õi÷?í<î�ú1ðöû
ÿ�ò�î�õ�ôöî���ò��?ù	� ûTí�õ��?ó�ûTù�

������
 �������+ò��?ù�û
õ�÷�û>ø ò�î�ó�ûdí�ð����Eò�ó�ð¡ú
ú�í�õ�í�ù�û�õ�ù��<ÿ�ò�î�õ�ô²î��?ò��?ù�í�õ�õ�ó�ô
� ��õ�ûdù�ø!�?ùwõ#"?ó�ùwõ$��û.ú1ô¡ù�ÿ>ó�û>õ�ô&%>ûTú
ôöî�õ�ò�ù-ø©í�ðöð�î���ø'�Iû>ó�ò���ú�ô²ù-õ�ô²î?ÿ|õkó�í<î�ñ�ûdù��)(¢ð¡ù-ò�ú1ô¡ù�ÿ>ó�û>õ�ô&%dí�õ�ôöò�î
ý�ó�ò�ü�ô¡ú1ûdù�í*��ôöî?ú3ò���ô²î?ù-ô²ñ�÷�õ¥ô²î�õ�ò/ÿ>ó�ôöõ�ô¡ÿ>í�ð�ü�í<ð&��ûdù�ô²î3í
ÿ�ò�î�õ�ôöî���ò��?ù�í<õ-õ�ó�ô&� �1õ�û��,+ ��ó�õ�÷�ûdó�ø¨ò�ó�û��kõ�÷�û­ó�ûTù-ýIò�î�ù-û©õ�ôöø¨û
ò��
ø©í<î�ï¥ÿ�ð¡í�ù�ù-ô
"?ûdó\ô²î?ú-�?ÿ>ôöî�ñ�í<ð²ñ�ò�ó�ôöõ�÷?ø¨ù��¢ù��?ÿ�÷�í�ù/.	021-3

 45����ô²î?ÿ�ó�ûdí�ù-û'ô
�+õ�÷�û
ú�í<õ�í`ô²ùHÿ>ò�î�õ�ô²î���ò���ù6�

ì7�?ÿ�÷7�#ò�ó8��÷?í�ù9�Iû>ûdî�ú1ò�î�û
ô²î�ú1ô¡ù�ÿ>ó�û>õ�ô&%dí<õ�ô²ò�î�ò��9ÿ>ò�î-�
õ�ô²î��?ò��?ù üfí�ð
�?ûdúií<õ-õ�ó�ô&� �1õ�ûTù:
 ;5���<
 =5���<
���������û>õ�ÿ��$0�î>
@?A�µí*ü�í<ð&�-�
í���ð²û�ù�ï1ùwõ�û>ø©í�õ�ô²ÿGó�ûdü�û>ô&�(ò���íOî���ø'�Iû>ó­ò��'�#ò�ó8�1ùiò�î�ú1ô¡ùB�
ÿ�ó�û�õ�ô&%dí<õ�ô²ò�î�÷?ífü�ûC�Iû>ûdî¿ÿ>í<ó�ó�ôöûTúOò��1õ��D0Yõ�÷?í�ùE�Iû>ûdîF� ò���î?ú
õ�÷�ûdó�û�õ�÷?í<õG+�ífï�ï�í�ú©í�î?úE0�ó�í<î�ô�H ùEí<ð²ñ�ò�ó�ôöõ�÷�øI�?í�ù-ûTú©ò�î�ì�ôöî?ô��
ø'��øKJ�ûdù�ÿ�ó�ôöý1õ�ôöò�î�L�ûdî�ñ<õ�÷'M9ó�ôöî�ÿ�ô²ý�ðöû9Nbì7JOL)MQPQ
 =5��í�ÿ�÷�ô²û>ü�ûTú

R Û�Ï Ü Ê�ÑÙÖ�SHÏwÎ�Ö�ÕUT\ÔMÕ�S Ü ×TÖbÏwÑ>VdËwÍ�Ï-ÎTË-ÏXWZY1ÏwËYÌfÎTÕ|ß�Õ|ÒU[>Ó�\MÏwÎfÒ�Ê�ß
] ÎfÒ|Í�ÎfÏwÏwÑ]Í�ÎfÒ/WIVdËwÍ�ÏwÎfËwÏ_^+ÎTÍ `�Ï-ÑbØ]Í Öa[�ÓbVdÌfÍ�Ú Ü ×fÑ�Ódc�Õ�e�ÑYÊ�Ì�ÝOf�g�g�g2h�iTÓj ÎTáfÍzÊTã] S¢Ê�Í�ßlknmlo p)q�r�s2mBtvu6s8tvw�xy Û�Ï Ü Ê�ÑÙÖ�SHÏwÎ�Ö�ÕUT\ÔMÕ�S Ü ×TÖbÏwÑ>VdËwÍ�Ï-ÎTË-ÏXWZY1ÏwËYÌfÎTÕ|ß�Õ|ÒU[>Ó�\MÏwÎfÒ�Ê�ß
] ÎfÒ|Í�ÎfÏwÏwÑ]Í�ÎfÒ/WIVdËwÍ�ÏwÎfËwÏ_^+ÎTÍ `�Ï-ÑbØ]Í Öa[�ÓbVdÌfÍ�Ú Ü ×fÑ�Ódc�Õ�e�ÑYÊ�Ì�ÝOf�g�g�g2h�iTÓj ÎTáfÍzÊTã] S¢Ê�Í�ßlk�z�w
{Qwv|�u}p~s�mBt�q�r�s2mBt�u�s8tvw�x

�Iûdù-õ9ò�ü�ûdó�í�ðöð�ó�ûdù���ðsõ�ù6�$�.÷�û¢ù�í<ø¨ûHù2�?ý�ûdó�ô²ò�ó�ôsõwï�ò��Iì>J:L#M�ú1ô²ù2�
ÿ>ó�û>õ�ô&%>ûdób�.í�ùb���?ó-õ�÷�û>óHûTùwõ�í���ð²ô²ù�÷�ûTú�ô²î,
 �}���

0�î�õ�÷?ô²ù��#ò�ó8���#û`ô²î�õ�ó�ò1ú-�?ÿ�û©í�ú1ô¡ù�ÿ>ó�û>õ�ô&%dí<õ�ô²ò�î�ø`û>õ�÷�ò1ú
��í�ù�ûdú�ò�î�í£î?ò�ü�û>ðµÿ>ò�î?ÿ>û>ý1õ�ÿdí<ð²ðöûTú�ù��?ÿ>ÿ>ûdù�ù-ô²ü�û�ý?ù�û6�?ú�ò¨ú�û>ð²û��
õ�ôöò�î�Na� ò�ó£î?ò�ô¡ù-û�ó�ûTú-�?ÿ|õ�ôöò�î�P
í�î?ú ù�÷�ò}�/õ�÷?í<õ`ôöõ`í�ÿ�÷�ô²û>ü�ûTù�í
�Ùífü�ò�ó�í���ð²ï�ÿ>ò�ø¨ý�û>õ�ôöõ�ô²ü�û�ý�ûdó2� ò�ó�ø©í<î�ÿ�û¢ÿ�ò�ø¨ý?í<ó�ûdú`õ�ò£ì7JOL)M
ú�ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ô²ò�î�ø¨û�õ�÷?ò�ú~�_�:�?ó*û��1ý�ûdó�ô²ø¨û>î�õ�í�ðkû>ü�í<ð&�?í�õ�ôöò�î�ô¡ù
ÿdí<ó�ó�ô²ûdú ò�îF����ú?í�õ�í�ù�û�õ�ù¨í�î?ú���ù-ô²î�ñX�b�:��
 �}���	�Q���@�X

�6�}���
��í<ô²ü�û6���.ífï�ûTù�
 ?5���<í�î?ú'.9021-3�
 4}�1í<ð²ñ�ò�ó�ôöõ�÷�ø©ù)�H÷�ô²ÿ�÷`í<ó�ûd�?ù�ûdú
� ò�ó�ÿ>ð²í�ù�ù�ô
"�ÿ>í<õ�ô²ò�îGí�î?úGý?ó�ûTú1ô²ÿ�õ�ô²ò�î~��0�î��U� �<�Eû`ý�ó�ûdù�û>î�õ�ò���ó
í�ðöñ�ò�ó�ôsõ�÷�øC�'1-M�0BJ:���v?�N�11û>ð²ûdÿ|õ�ôöü�û�M ù�û6��ú1ò�0Yõ�ûdó�í<õ�ô²ü�ûXJ�û>ð²û��
õ�ôöò�î����@?�P:��õ�÷?í<õ9�?ù-ûTù#õ�÷�û*î?û6�Vÿ>ò�î?ÿ>û>ý1õG� ý�ù-û��?ú1ò¨ú1û>ð²û�õ�ôöò�î~�
�.÷?û>î¥ô²î��8;,�#û�ô²î?ÿ�ð&�?ú1ûGú�û�õ�í�ôöð¡ùiò��*û��1ý�ûdó�ô²ø¨û>î�õ�í�ð�ú1ûTù-ô²ñ�î
� ò�ó`ÿ>ò�ø¨ý?í�ó�í<õ�ô²ü�ûiûdø`ý?ôöó�ô²ÿdí<ð.û>ü�í�ð
�?í<õ�ô²ò�î ò���ò��?ó¨í�ðöñ�ò�ó�ôsõ�÷�ø
�Hôöõ�÷ ì>J:L#MBú1ô¡ù�ÿ>ó�û>õ�ô&%>û>óA�C�¢û���õA��ô²î������#�#û©ñ�ô²ü�ûiÿ>ò�ø¨ý?í�ó2�
í<õ�ô²ü�û`ó�ûTù2�?ðsõ�ù'ò��Eò���ó
ú1ô¡ù�ÿ>ó�û>õ�ô&%dí<õ�ô²ò�î>�Hôöõ�÷�õ�÷�û©ì7J:L#M í<î?ú
í�ð²ù�ò�ôöî-��� ��ô²ðöõ�NÙðöò1ÿdí<ðaP£ú�ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ô²ò�îþø¨û�õ�÷?ò�ú?ù©ò��'ùwõ�í�õ�û�ò��
õ�÷�û�í<ó�õ�ø©í�ÿ�÷�ô²î�û\ð²ûdí�ó�î?ôöî�ñ�í<ð²ñ�ò�ó�ôöõ�÷�ø©ù����.÷�ô¡ù£ô²ù!� ò�ð²ð²ò}�EûTú
��ï��U���H÷�ûdó�û�íVú1ô¡ù�ÿ��?ù�ù-ô²ò�î�ò�îBó�û>ð¡í�õ�ûdúK�#ò�ó8�1ù7� ò�ó�ú�í<õ�í
ý?ó�û6�]ý�ó�ò1ÿ�ûTù�ù�ôöî?ñ���ï�ú1ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ôöò�î�í�î?ú�1-M�0BJ:���v?�H ùiù-õ�í�î?ú��
ô²î�ñ��Hôöõ�÷�ó�ûTù-ýIûdÿ�õ.õ�ò¨õ�÷?û>ø ô¡ù.ô²î?ÿ�ð&�?ú1ûTú<���.÷�û
ÿ�ò�î?ÿ�ð&�?ù�ôöò�î�ô¡ù
ù���ø¨ø©í<ó�ô
%dûdú�"?î?í�ðöð²ïiô²î��U4 �

� � êÙjTo<m}��ldê���n1ldêbç æ h<�F *j���é�è+ç�¡ � ��¢���ldêbç æEë
�:�?ó`í�ðöñ�ò�ó�ôsõ�÷�ø£N�1-Md0BJ¤���@?�P����?í�ù-ûTú ò�îþù��?ÿ>ÿ>ûdù�ù-ô²ü�û�ý?ù-û��?ú1ò
ú�û>ð²û�õ�ô²ò�î©í<õ9ø¨í��1ôöø!��ø�ô²î-� ò�ó�ø©í�õ�ôöò�î£ñ�í<ô²î!�Iò���î�ú�í<ó�ï�ýIò�ô²î�õ�ù
�#ò�ó8�1ù�ò�î�ôsõ�û>ó�í�õ�ô²ü�û¨î�ò�ô²ù�û©ó�ûdú-�?ÿ�õ�ô²ò�î�ò��#õ�÷�ûiú?í�õ�í��?í�ù�û���0�î
õ�÷�ûGî?û���õ�ù�� �?ù�ûdÿ�õ�ô²ò�îD�#ûG÷�ífü�û�ý�ó�ûdù�û>î�õ�ûdú�õ�÷�û�í�ðöñ�ò�ó�ôsõ�÷�ø
1 M�0BJ:���v?Q�?ù-ô²î�ñ�õ�÷�ûEø`û>õ�÷�ò1ú*ò���ù2�?ÿdÿ�ûTù�ù�ôöü�ûQý?ù�û6�?ú1ò�ú1û>ð²û�õ�ôöò�î~�

��ëÙä ¥ å6��¦+ël§ è+êbjdo�m5��lTê���n�ldêÙç æ n ¢�¨�ç�m�ê lA©#ª ë¤« û�ü�û>ô&�
õ�÷�û�ý?ó�ò���ðöûdø ò��Eú1ô¡ù�ÿ�ó�û�õ�ô&%dí<õ�ô²ò�îC� ó�ò�ø(íiî?û6��í�î�ñ�ð²û�� « ÷�û>î
õ�÷�û>ó�û©ô¡ù
î�ò�ú1ô¡ù�ÿ�ó�û�õ�ô&%dí<õ�ô²ò�î0ò��¢ÿ>ò�î�õ�ô²î���ò��?ù�í�õ-õ�ó�ô&� �1õ�ûdù���õ�÷�û
�H÷?ò�ð²û�ô²î?ù-õ�í�î?ÿ�û�õ�í���ð²û'ÿ>ò�î?ù�ô¡ùwõ�ù.ò��+÷?ôöñ�÷�ûdù-õ¢î���ø'�Iû>óHò���ÿ�ò�î-�
¬ ô²ÿ�õ�ô²î�ñOô²î?ù-õ�í<î�ÿ�ûdù��¢ô�� û��
��ôöî�ùwõ�í<î?ÿ>ûdù��Hôsõ�÷Vù�í<ø¨û�ù�û�õ�ò���í<õ2�
õ�ó�ô&� �1õ�û©ü�í<ð&��ûdù­� ��õ£ú1ô
®Iûdó�ûdî�õ�ÿ>ð²í�ù�ù�ü�í<ð&��ûTù6����î�õ�÷?û©ò<õ�÷?û>ó
û6��õ�ó�û>ø¨û���ô���í�ðöð#ÿ�ò�î�õ�ôöî���ò��?ù
í<õ-õ�ó�ô&� �1õ�ûTù�í�ó�ûiú1ô¡ù�ÿ�ó�û�õ�ô&%>ûTú�í�õ
í�ðöðµýIò�ù�ù�ô
��ð²û
ÿ�ò�î�õ�ô²î��?ò��?ù.ü�í<ð&��ûTù6�1õ�÷�û>î�õ�÷�û>ó�û
í<ó�û'ø¨ôöî�ô²ø'�?ø
î���ø!��ûdó�ò��©ÿ�ò�î ¬ ô¡ÿ|õ�ô²î�ñ¥ô²î?ù-õ�í<î�ÿ�ûdù�NÙí�ÿ�õ��?í�ðöð²ï¿î�ò¿ÿ>ò�î ¬ ô²ÿ�õ2�
ô²î�ñ­ôöî�ùwõ�í<î?ÿ>ûdù�ô��Eõ�÷�ûdó�û¨ô¡ù�î�ò�î�ò�ô¡ù-û`ô²îGõ�÷�û`õ�ó�í<ô²î�ôöî?ñ­ú�í<õ�í�P��
�:�?ó
ù2�?ÿdÿ�ûTù�ù�ôöü�û¨ý?ù-û��?ú1ò�ú1ûdðöû>õ�ô²ò�î í<ý?ý�ó�ò�í�ÿ�÷�ò��Hú1ô²ù�ÿ�ó�û�õ�ô
%Tí}�
õ�ôöò�î�ôöî�õ�ó�ò1ú-�?ÿ>ûdù#õ�÷?ó�ûTù-÷�ò�ð²ú�ýIò�ô²î�õ�ùHô²î�ú�ô�®Mû>ó�û>î�õ�ÿ�ò�î�õ�ô²î��?ò��?ù
í<õ-õ�ó�ô&� �1õ�ûdù'ò��#õ�÷?û\ú�í�õ�í��?í�ù-û`ñ�ð²ò���í<ð²ðöïGí<õ
ø©í}�1ôöø!��øAô²î-� ò�ó��

546

���������¢È�VdÏ�Ö�ÕUT�Í�ÎTØbÖ]Ê�ÎfËwÏ-Ø
	���
 e�Í Ö]Ì�Ê�ÖbÖbÑ]Í�Úf×dÖ]ÏwØ�ØbÖbÕ|Ñ]Ïwá'Í�Î¢ÖYÊ�Úfß�Ï9Ê�ÖÙÖbÚ���������	�e�ÌfÏwÑbÏ
Ï-ß�ÏBSHÏwÎ�Ö���������� ����� ����Í�ØµÖbÌfÏ�`|Ê�ß�×fÏQÕUT�ÖbÌfÏ ��!�"�Ê�ÖbÖbÑ]Í�ÚT×TÖ]Ï9Í�Î�Ö]ÌfÏ��#!�"�Í�ÎfØÙÖYÊ�ÎfËwÏ$
YÓ�Ê�Îfá�Ö]Ê�Úfß�ÏQËwßzÊ�Ø]Ø$���
	
e�ÌfÏwÑ]ÏQËwßzÊ�ØbØ%� Í ��ØbÖ]Ê�ÎfáfØ#TöÕ|ÑµÖ]ÌTÏQË-ßzÊ�ØbØ)`�Ê�ß�×fÏQÕUT1ÖbÌfÏ&� !�" Í�ÎTØbÖ]Ê�ÎfËwÏ%
Yã('+ß�Ø]Õ*)�Ó�×TØ]ÏwÑbÝ¬ØbÏ�Ö~SHÍ�ÎfÍ@S#×5S
Í�ÎfØbÖ]Ê�ÎfËwÏwØ+ËwÕ|ÎfØÙÖ]Ñ]Ê�Í�Î>Ö)e�Í Ö]ÌfÍ�Î�ÖaeµÕ.áfÍ�ØbËwÑ]Ï�Ö]Í�ÞwÏwá�Ñ]Ê�ÎfÒ|ÏwØ�ã
+ ���
���,�HÈ�Û�Í�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-á�Í�ÎfØbÖ]Ê�ÎfËwÏ9Ø]Ï�Ö�Í�Î�Ö]Ê�Úfß�Ï9Ê�ÖÙÖ]Ú��������¬ã
Ú�ÏwÒ|Í�Î

TöÕ|Ñ�Ï-Ê�ËYÌ'ËwÕ|Î>ÖbÍ�Î>×fÕ|×fØkÊ�ÖÙÖbÑ]Í�Úf×TÖbÏ9Í�Î­V
Í�ÎfØbÏ-ÑÙÖ�Ö]ÌfÑbÏwØ]ÌfÕ|ß�á Ü Õ|Í�Î�Ö+Ê�Ö�Ö]ÌfÏ9Ú<Õ|×fÎfáfÊ�Ñ�[Ü Õ|Í�Î�Ö�Ì�Ê2`dÍ�ÎfÒGS¢Ê%-dÍ@S#×ASOÍ�Î�T²Õ|Ñ�S¢Ê�Ö]Í�Õ|Î¢Ò�Ê�Í�Î/.àfÎfá Ü ØbÏw×fáfÕ áfÏwß�ÏwÖbÍ�Õ|Î ËwÕ|×fÎ�Ö*	öâMÛ] Ð ËwÕ|×fÎ>Ö0
µÚ6[¤S¢Ê%1ÙÕ|Ñ]Í Öa[`�Õ�ÖbÏ�.e�ÌfÍ�ß�Ï*	²âIÛ] Ð ËwÕ|×fÎ�Ö324 h�
�Ê�ÎTá5	²Ê�ß�ß�Ú<Õ|×fÎfá�Ê�Ñ�[Ü Õ|Í�Î�Ö]Ø�Ì�ÊB`�Ï ÎTÕ�Ö)[�Ï�Ö+Ú<Ï-ÏwÎ'ËwÕ|ÎfØbÍ�áfÏwÑ]Ïwá6
MáfÕÚ<ÏwÒ|Í�Î

TöÕ|Ñ�Ï�Ê�Ë]Ì'ËwÕ|Î>ÖbÍ�Îd×TÕ|×fØkÊ�ÖÙÖ]ÑbÍ�Úf×TÖbÏ
Ø]Ïwß�ÏwËwÖ�ÖbÌfÏQÚ<Õ|×fÎfá�Ê�Ñ�[Ü Õ|Í�Î�Ö)e�ÌfÍ�Ë]Ì�Ì�Ê�Ø)S¢Ê%-TÍ@SE×5S�Í�ÎATöÕ|Ñ�S¢Ê�ÖbÍ�Õ|Î�Ò�Ê�Í�Î�Ê�Îfá'Ë-Ê�ß�Ëw×fßzÊ�ÖbÏ9âMÛ] Ð Ñ]Ï87>á/.à�ÎTá�ÖbÌfÏ�SHÍ�Î âMÛ] Ð ÑbÏ97>á'ÊUSHÕ|ÎTÒEÖbÌfÏ Ê�Ú�Õ2`�Ï9Ø]Ïwß�ÏwËwÖbÏwá Ü Õ|Í�Î>ÖbØ$.Í T SHÍ�Î âMÛ] Ð Ñ]Ï87>á5:�âIÛ] Ð ËwÕ|×fÎ�Ö

ÖbÌfÏwÎ'Ú<ÏwÒ|Í�Î
Ê�ËwË-Ï Ü Ö+Ö]ÌTÏQØ]Ïwß�ÏwËwÖbÏwá*Ú<Õ|×fÎfá�Ê�Ñ�[Ü Õ|Í�Î�Ö+Ê�Ø�ÖbÌfÑ]ÏwØbÌfÕ|ß�á Ü Õ|Í�Î�Ö$.âMÛ] Ð ËwÕ|×fÎ>Ö<;�SHÍ�Î âIÛ] Ð ÑbÏ87dá/.
Ñ]ÏBSHÕ�`�ÏQÚ<Õ|×fÎTá�Ê�Ñ�[Ü Õ|Í�Î>Ö9	öØ�
n`TÍ�Õ|ßzÊ�ÖbÍ�ÎfÒ=)¿Õ|Î�Ú<Õ�ÖbÌ'Ø]Í�áTÏ-Ø�ÕUT?Ø]Ïwß�ÏwË�Ö]Ïwá�ÖbÌfÑbÏ-ØbÌfÕ|ß�á Ü Õ|Í�Î�Ö$.ÏwÎfá/.

Ïwß�Ø]ÏQÚ<ÏwÒ|Í�Î
T²Õ|Ñ�Ï-Ê�ËYÌ'ËwÕ|Î�Ö]Í�Î>×fÕ|×fØ�Ê�ÖbÖbÑ]Í�Úf×dÖ]Ï

Ø]Ïwß�ÏwË�Ö+ÖbÌfÏ9Ú<Õ|×fÎfá�ÊB[Ü Õ|Í�Î�Ö~e+ÌTÍ�ËYÌ�Ì�Ê�Ø)SHÍ�ÎfÍ@SE×5S0Í�ÎATöÕ|Ñ�S¢Ê�ÖbÍ�Õ|Î�Ò�Ê�Í�Î�Ê�Îfá'Ë-Ê�ß�Ëw×fßzÊ�ÖbÏ9âMÛ] Ð Ñ]Ï87>á/.à�Îfá�ÖbÌfÏ�S¢Ê%- âMÛ] Ð Ñ]Ï87>á'ÊUSHÕ|ÎfÒ Ö]ÌfÏ Ê�Ú<Õ�`�Ï9ØbÏ-ß�ÏwË�ÖbÏ-á Ü Õ|Í�Î�ÖbØ$.Í T S¢Ê%- âIÛ] Ð ÑbÏ87dá?>�âMÛ] Ð ËwÕ|×fÎ�Ö+ÖbÌfÏwÎ�ÑbÏ@1ÙÏwË�Ö+ÖbÌfÏ Ü Õ|Í�Î>Ö9	öØ�
ne+Í ÖbÌOS¢Ê%- âMÛ] Ð ÑbÏ97>á/.Ï-ß�ØbÏ
Ñ]Ï�1ÙÏwËwÖ�ÖbÌfÏ Ü Õ|Í�Î>Ö9	²Ø0
<e�Í ÖbÌOS¢Ê%- âMÛ] Ð Ñ]Ï87>á'ÊUSHÕ|ÎfÒ Ö]ÌTÏdS¢Ê%-dÍ@S#×AS�Ò�Ê�Í�Î Ü Õ|Í�Î>ÖbØ�ÕUT�Ï�Ê�Ë]Ì'ËwÕ|Î>ÖbÍ�Îd×TÕ|×fØkÊ�ÖÙÖ]ÑbÍ�Úf×TÖbÏ�.ÏwÎfá/.6A�B�ÕUT�Ïwß�ØbÏ%B�A

ÏwÎfáC.DA�BEÕUT-e�ÌfÍ�ß�Ï
B�A
Ï-ÎTá�ã

��í���ð²ûE�DE
Vdâ j ÛGFfã f#Ê�ß�Ò|Õ|Ñ]Í ÖbÌ5S'ã

ø¨í<õ�ô²ò�î`ñ�í�ôöî£ý�ò�ôöî�õ�ùkò�î�ûG��ï
ò�î�ûHù��?ÿ�÷
õ�÷?í�õQõ�÷�û.î�ò�ô¡ù�û#ô²î£õ�÷�û
ú�í�õ�í��?í�ù-û.ñ�û>õ�ù ó�ûTú-�?ÿ�ûTú��Hôsõ�÷iôöî�õ�ó�ò1ú-�?ÿ�õ�ô²ò�î¨ò��µûTí�ÿ�÷`õ�÷�ó�ûdù�÷-�
ò�ð¡ú\ýIò�ô²î�õ��

(�î�ï¨ú�ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ô²ò�îií�ðöñ�ò�ó�ôsõ�÷�ø/÷?í�ùEñ�ò�õ9õB�Eò£ý?í<ó�õ�ù�EGNB�AP
N¬õ�÷?ó�ûTù-÷�ò�ð²ú�ý�ò�ôöî�õ�P\ù�û>ð²ûdÿ�õ�ô²ò�î�ÿ>ó�ôöõ�ûdó�ô²ò�î�í�î?ú N���P�ùwõ�ò�ý�ý?ôöî�ñ
ÿ�ó�ôsõ�û>ó�ôöò�î~� �.÷?ûOõ�÷�ó�ûTù-÷?ò�ð¡ú ý�ò�ôöî�õ�ù-ûdðöûTÿ|õ�ôöò�î�ÿ�ó�ôsõ�û>ó�ôöò�î ôöî
1-M�0BJ:���v?£í<ó�û*ø¨í�ôöî?ðöï�ø¨í�ú1û'õ�ò©ó�ûdú �?ÿ�û*î�ò�ô²ù�û
í�õ�ù��?ÿdÿ�ûdù�ù�ôöü�û
ùwõ�û>ý?ù9ÿ>ò�î?ú�ôsõ�ôöò�î?í<ð�ò�î¨ôöî-� ò�ó�ø©í<õ�ô²ò�î¨ñ�í�ôöî�N ò�ó9û>î�õ�ó�ò�ý�ï P�� �.÷�û
ùwõ�ò�ý�ý�ô²î�ñ¿ÿ>ó�ôöõ�ûdó�ô²ò�î�ò��_1-M�0BJ:���v?�í<ó�û�ù-ô²ø¨ý�ð²ûDE�ûdôsõ�÷�û>ó�õ�÷�û
î�ò�ô¡ù-û£ôöî�õ�÷?û¨ú?í�õ�í��?í�ù�û`ô²ùO%>ûdó�ò�ò�ó�õ�÷?û£î�ò�ô²ù�û`ô²ù�ø¨ôöî?ôöø!��ø
ò�î
õ�÷�û#ý?í�õ�÷�õ�ó�ífü�û>ó�ù-ûTú:��ï'õ�÷�û.ñ�ó�û>ûdú�ï'í�ðöñ�ò�ó�ôsõ�÷�ø í<î?ú
õ�÷�ûdó�û
ô²ù'î�ò�ø¨ò�ó�û���ò���î?ú�í�ó�ï�ýIò�ô²î�õ�
 =}� ðöû6�¬õ*õ�òC�Iûiÿ�ò�î�ù-ô¡ú1û>ó�ûdú�í�ù
ý�ó�ò��?í��?ðöû�õ�÷�ó�ûdù�÷�ò�ð²ú�ý�ò�ôöî�õA�

�.í�ù-ûTú¿ò�îVõ�÷?û í��Iò�ü�û��:��ô²î?í<ó�ï�õ�÷�ó�ûdù�÷�ò�ð²úVý�ò�ôöî�õ�ù�í<ó�û
í�ú�ú1ûTú�õ�ò�í<ð²ðHÿ�ò�î�õ�ôöî���ò��?ù`í�õ-õ�ó�ô&� �1õ�ûdù¨í�õ`õ�÷?û�ýIò�ô²î�õ��H÷�ûdó�û
ôöî-� ò�ó�ø©í<õ�ô²ò�î¯ñ�í�ôöî ò���õ�÷�û¿ûTí�ÿ�÷;í<õ-õ�ó�ô&� �1õ�ûVô²ùOø©í}�1ôöø!��ø
í<ø¨ò�î�ñ�ôsõ�ù)�Iò���î�ú�í<ó�ï�ýIò�ô²î�õ�ù��#�.÷�ûdî�ô
�1õ�÷�ûdó�û#í<ó�û ÿ�ò�î ¬ ô¡ÿ|õ�ôöî�ñ
ôöî?ù-õ�í�î?ÿ�ûTù��#û\ú1û>õ�û>ó�ø¨ôöî?ûi÷�ò}� ø©í<î�ï�ô²î?ù-õ�í�î?ÿ�ûTù�í<ó�û¨õ�ò>��û
ú1û>ð²û�õ�ûdúFN î�ò�õ*í�ÿ|õ8�?í<ð²ðöï�ú�û>ð²û�õ�ûTú�P�õ�ò­ó�ûdú-�?ÿ>û`õ�÷�û©ÿ�ò�î ¬ ô¡ÿ|õ'ôöî
õ�÷�û
ú�í<õ�í¨ù�û�õ�í�ÿdÿ�ò�ó�ú1ô²î�ñ�õ�ò©ø©íIHwò�ó�ôöõwï©ü�ò�õ�ô²î�ñ��

(9�¬õ�ûdó©ôöî?ÿ>ò�ó�ý�ò�ó�í<õ�ô²î�ñ>�?ôöî?í�ó�ï0õ�÷�ó�ûdù�÷�ò�ð¡úOýIò�ô²î�õ�ù£õ�ò�í�ðöð
ÿ�ò�î�õ�ôöî���ò��?ù�í<õ-õ�ó�ô&� �1õ�ûTù6� ôöîOÿdí�ù�ûiõ�÷�û>ó�û�í�ó�û­ÿ�ò�î ¬ ô²ÿ�õ�ô²î�ñGô²î-�

ù-õ�í�î?ÿ�ûTù6�G�#û�ÿ�÷�ò�ò�ù�û­õ�÷�û�ø¨í��1ôöø!��ø ñ�í<ô²î�ýIò�ô²î�õ_� ò�ó\ûdí�ÿ�÷
ÿ>ò�î�õ�ô²î���ò���ù�í<õ-õ�ó�ô&� �1õ�û¨í<î�ú�õ�÷?û>î�õ�û>ø¨ýIò�ó�í<ó�ôöð²ï�ôöî�ÿ�ò�ó�ýIò�ó�í�õ�û
í£õ�÷�ó�ûTù-÷?ò�ð¡ú\ýIò�ô²î�õHõ�÷�ûdó�û��d�.÷�û>îC�#û*ÿ>í<ð¡ÿ��?ð²í<õ�û'õ�÷?û*î��?ø'�Iû>ó
ò���ô²î?ù-õ�í�î?ÿ�ûTù`õ�ò,�IûGú1û>ð²û�õ�ûdú�N ý�ù-û��?ú1ò ú1ûdðöû>õ�ô²ò�î�ó�ûKJ���ôöó�ûdú�P��
í�ÿ>ÿ>ò�ó�ú1ôöî?ñ\õ�ò�ø©íIHwò�ó�ôöõwï�ü�ò�õ�ô²î�ñ���0��#õ�÷�ûiø¨ô²î�ôöø!��ø ý?ù-û��?ú1ò
ú�û>ð²û�õ�ô²ò�î ó�û�J���ô²ó�ûdú�í<ø¨ò�î�ñ�õ�÷�ûdù�ûOù�û>ð²ûdÿ�õ�ûdú ýIò�ô²î�õ�ù�ô¡ù�ð²ûdù�ù
õ�÷?í<î õ�÷�û ý�ó�û>ü�ô²ò��?ù�ý�ù-û��?ú1ò¿ú1ûdðöû>õ�ô²ò�î ó�û�J���ô²ó�ûTú�õ�÷�û>î õ�÷�û
ýIò�ô²î�õiô²ù\í�ÿ>ÿ>û>ý1õ�ûdú�í�ù\í�õ�÷�ó�ûdù�÷�ò�ð¡ú�ý�ò�ôöî�õA����õ�÷?û>ó8�Hô²ù�û��#ô��
õ�÷�û¢ø©í}�1ô²ø'��ø ý?ù�û6��ú1ò�ú1ûdðöû>õ�ô²ò�î©ó�û�J���ô²ó�ûTú`í�ø¨ò�î�ñ*õ�÷�û¢ø¨ô²î-�
ô²ø'�?ø;ñ�í�ôöîiýIò�ô²î�õ�ù.ò���í<ð²ðµÿ�ò�î�õ�ôöî���ò��?ù#í�õ-õ�ó�ô&� �1õ�ûdù.ô¡ù#ñ�ó�ûdí�õ�û>ó
õ�÷?í<î�õ�÷�û�ý�ó�û>ü�ô²ò��?ù¨ý?ù�û6��ú1ò ú1û>ð²û�õ�ôöò�î¥ó�ûKJ���ôöó�ûdúOõ�÷?û>î�õ�÷�í�õ
N õ�÷�ò�ù-û5PE�Iò���î�ú�í<ó�ï�ý�ò�ôöî�õANbù8P��¤�H÷�ûdó�û�ý?ù�û6�?ú1ò�ú1û>ð²û�õ�ôöò�î¿ó�û��
J���ô²ó�ûdú�ô¡ù�û�J��?í�ð+õ�ò\õ�÷�û¨ø©í}�1ôöø!��øC��ô¡ù�Nbí<ó�ûAP�ó�û9Hwûdÿ�õ�ûdú~�µô�� û��&�
î?ò<õ`ÿ>ò�î?ù�ô¡ú1û>ó�ûdú í�ù��Iò���î�ú�í<ó�ï0ý�ò�ôöî�õANbù8P£í<î�ï0ø¨ò�ó�û��ML¢ò}�G�
ûdü�ûdó���ô
�.õ�÷�û©ø©í���ô²ø'�?ø ý?ù�û6�?ú�ò�ú1û>ð²û�õ�ôöò�î�ó�û�J���ô²ó�ûdú�í<ø¨ò�î�ñ
ø¨ô²î�ô²ø'��ø;ñ�í<ô²î�ýIò�ô²î�õ�ù.ô¡ù.ðöûTù�ùEõ�÷?í<î­ò�óHûKJ���í<ðIõ�ò`õ�÷?û�ý?ó�ûdü�ô
�
ò��?ù*ý?ù�û6��ú1ò�ú1û>ð²û�õ�ôöò�î�ó�ûKJ���ôöó�ûdúGõ�÷?û>î,�#ûió�û9Hwûdÿ�õ*õ�÷�ûiø©í���ô
�
ø!��ø�ý�ù-û��?ú1ò
ú1ûdðöû>õ�ô²ò�î¨ó�ûKJ���ôöó�ûdú£ýIò�ô²î�õ5NÙùUPkí<ø¨ò�î?ñ�õ�÷�ûHø©í}���
ô²ø'�?ø ñ�í<ô²î¿ýIò�ô²î�õ�ù­ò���ûTí�ÿ�÷�ÿ>ò�î�õ�ô²î���ò���ù�í<õ-õ�ó�ô&� �1õ�û�� 0��£í
�Iò��?î?ú�í<ó�ï0ý�ò�ôöî�õ©ô¡ù`í�ÿ>ÿ>û>ý1õ�ûdú�í�ù`í�õ�÷�ó�ûTù-÷?ò�ð¡ú ýIò�ô²î�õ¨õ�÷�û>î
õ�÷�û¢ý�ó�û>ü�ô²ò��?ùký�ù-û��?ú1ò�ú1ûdðöû>õ�ô²ò�î©ó�û�J���ô²ó�ûTú�ô¡ù9ó�û>ý?ð²í�ÿ�ûdú���ï
õ�÷�û
ý�ù-û��?ú1ò\ú1ûdðöû>õ�ô²ò�î�ó�û�J���ô²ó�ûTú�ÿ>í�ð²ÿ6��ð²í<õ�ûTú�í}�¬õ�ûdó�í�ÿ>ÿ�ûdý1õ�ô²î�ñ©õ�÷�û

547

Û�Ê�ÖYÊ#ØbÏ�Ö �] � ' �OÔµÐ É`ã �#ã
Ê�ÎTÎfÏ-Ê�ß#	¡Ê�ÎfÎI
 f���� ���
	Bg8F�� � [�ÏwØ
Ê�×TØbÖbÑYÊ�ß�ÍzÊ�Î/	²Ê�×fØ�
 ����h ���
	���� � ÎTÕ
ËwÑbÏ-áTÍ Ö$	öËwÑ]Ï$
 ����h ���
	���� � [�ÏwØ
áTÏ-Ñ�S¢Ê�Ö]Õ|ß�Õ|ÒU[D	öáfÏwÑ�
 i�i�h g��
	�i�i�� � [�ÏwØ
ÏwËYÌTÕdË-Ê�Ñ]áTÍ�Õ�	²ÏwËYÌ6
 g2i�� ���
	�i�� i [�ÏwØ
ÏwËwÕ|ß�Í#	öÏ-ËwÕ
 i�i�� f��
	�h�� � ÎTÕ
Ò|ßzÊ�ØbØ$	öÒ|ßzÊ�
 �Ag8F ���
	�h�� f ÎTÕ
Ì>×fÎfÒ�Ê�Ñ�[C	öÌ>×fÎ6
 ����F ���
	���� � [�ÏwØ
ÌTÏ�Ê�ÑÙÖbÝ¡ØbÖ]Ê�Ö]ß�Õ|Ò�	öØbÖ]Ê�
 ��fUh ���
	���� � ÎTÕ
Ø�e�Í Ö]ÞwÏwÑ]ßzÊ�ÎfáC	²Ø�e+Í
 g���i F��
	���� � [�ÏwØ
ÌTÕ|Ñ]Ø]Ï�Ý¬ËwÕ|ß�Í�Ë�	öÌfÕ|Ñ�
 i�h�h f��
	Bg���� � [�ÏwØ
Í@S Ü Õ|ÑÙÖ]ØÙÝ����K	²Í@S Ü
 ��hAg g����
	2g2h�� f [�ÏwØ
Í�ÑbÍ�Ø$	öÍ�Ñ]Í
 g���h F��
	�h�� i ÎTÕ
ß�Í `�ÏwÑÙÝ¬áfÍ�Ø]Õ|ÑbáfÏwÑ$	öß�Í `I
 i�F�� ���
	�h�� � ÎTÕ
S¢Ê�Ë]ÌfÍ�ÎfÏ�	&S¢Ê�Ë$
 ��h�� f��
	�h�� i�h ÎTÕ
ÎTÏBe�ÖbÌ6[dÑ]Õ|Í�áC	öÖbÌ6[�
 �Ag8F ���
	�h�� i ÎTÕ
Ü Í@S¢ÊK	 Ü Í@S�
 f���� ���
	�h�� � ÎTÕ
`�ÏwÌfÍ�Ëwß�Ï�	�`�Ï-ÌI
 ��F g����
	�h�� F ÎTÕ
e�Í�ÎfÏ�	�e�Í�Î6
 g�f�� g2i��
	�h�� i ÎTÕ
e�Í�ØbË-Õ|ÎTØ]Í�Î/	�e�Í�Ø�
 ����� ���
	�h�� � [�ÏwØ

�+í���ðöû'� EÔMÌ�Ê�Ñ]Ê�Ë�Ö]ÏwÑ]Í�ØÙÖ]Í�ËwØ�ÕUT?ÛkÊ�Ö]Ê.Ø]Ï�Ö]Ø-ã] Ý] -fÊUS Ü ß�Ï-Ø-Ó%'¨Ý6'µÖÙÖ]ÑbÍ�Úf×TÖbÏwØ�Ó>ÔMÐ.Ý�ÔMßzÊ�Ø]Ø]ÏwØ-Ó�É`ã �Eã-Ý�É'Í�ØbØ]Í�ÎfÒ��IÊ�ß�×fÏwØ�ãÔiÝ��.ÔMÕ|Î�Ö]Í�Î>×fÕ|×fØG'µÖbÖbÑ]Í�Úf×dÖ]ÏwØ�Ó�Û�Ý��#Û�Í�Ø]ËwÑbÏwÖbÏ<'µÖÙÖ]ÑbÍ�Úf×TÖbÏ-Ø-ã

ù-ûdðöûTÿ|õ�ûTúC��ò���î?ú�í�ó�ï­ýIò�ô²î�õA�¤�.÷�û
ý?ó�ò1ÿ�ûTù�ù�ô²ù�ó�ûdý�ûTí�õ�ûdúC��î�õ�ô²ð
û>ôöõ�÷�ûdó*õ�÷�û©ý�ù-û��?ú1ò�ú1ûdðöû>õ�ô²ò�î0ó�ûKJ���ôöó�ûdú��Iûdÿ�ò�ø¨ûdù�%dû>ó�ò NÙô�� û��&�
õ�÷�ûdó�û.ô¡ù+î?ò�î?ò�ô¡ù-û#ôöî£õ�÷?û¢ú�í�õ�í�ù�û�õ�P�ò�ó�õ�÷�ûdó�û.ô¡ùkî�ò­��ò���î?ú�í�ó�ï
ý�ò�ôöî�õ¢ð²û��¬õHõ�ò��Iû*û���í<ø¨ô²î�ûdú~�
1�ò�ø¨û9í���õ�÷�ò�ó�ùµð²ô&��û9

�6�}���?ù-ûTú'íHÿ�ò�î�ùwõ�ó�í�ôöî�õ�ò�î�õ�÷�û9ø¨ôöî?ôöø!��ø
î��?ø'�Iû>ó#ò���ô²î?ùwõ�í<î?ÿ>ûdùEôöî�ûdí�ÿ�÷©ò���õ�÷�û�ó�í<î?ñ�ûdù����H÷?ô²ÿ�÷iø¨ûTí<î?ù
õ�÷?í<õ í<î�ï
ñ�ô²ü�ûdî£ó�í<î?ñ�û.ø©ífï
ôöî�ÿ�ð&�?ú1û�í�ø¨ô���õ8��ó�ûHò��Mÿ>ð²í�ù�ùkü�í�ð��
��ûdù���0�î�1 M�0BJ:���v?��+õ�÷�ô¡ù
ø¨ô²î�ôöø!��ø5ôöî�ùwõ�í<î?ÿ>û�NÙùUP*ÿ>ò�î?ù-õ�ó�í<ô²î�õ
��û>õB�Eûdû>î�ó�í�î�ñ�ûTù�ô¡ù*ÿ>í�ðöð²ûdú��Dí<î?ú�ôsõ*ô¡ù*í<î �?ù�û>ó��Yù�û�õ'ü�í<ð&��û��
« ÷�û>î©í­�Iò���î?ú?í<ó�ï
ý�ò�ôöî�õ9ô¡ù9ù�û>ð²ûdÿ|õ�ûdú`í�ù9í�õ�÷�ó�ûTù-÷?ò�ð¡ú�ýIò�ô²î�õ��
ô��µõ�÷�û>ó�û�í<ó�û¢í<î�ï`ò<õ�÷�û>óQ��î?ù�û>ð²ûdÿ|õ�ûdú��Iò���î�ú�í<ó�ï£ýIò�ô²î�õANbù8P9ü�ô²ò��
ð²í<õ�ô²î�ñ�õ�÷�ûHø¨ô²î�ôöø!��ø�ô²î?ù-õ�í�î?ÿ�û�NÙùUPkÿ�ò�î�ùwõ�ó�í�ôöî�õQí�õQû>ôöõ�÷�ûdó ù�ô²ú1û
ò��Qôsõ�õ�÷�ûdî�õ�÷?û'��î?ù�û>ð²ûdÿ�õ�ûTú���ò���î?ú�í�ó�ï­ýIò�ô²î�õ5NÙùUPHô¡ù'Nbí<ó�ûAPHó�û��
Hwûdÿ|õ�ûdú<���.÷?û
ÿ�ò�ø¨ý�ð²û�õ�û*í<ð²ñ�ò�ó�ôöõ�÷�ø¯ò��$1-Md0BJ¤���@?�ô¡ùHù-÷�ò}�Hî�ôöî
�+í���ðöû����

� ����� ��m�ê�ªX� æ ldn�¢ � ��jTê�¨ æEë
��ò�û>ø¨ý�ô²ó�ô¡ÿ>í�ðöð²ï û>ü�í<ð&�?í<õ�ûþõ�÷�û�ý�ûdó2� ò�ó�ø©í�î?ÿ�ûþò��C1 M�0BJ:���v?
í<ð²ñ�ò�ó�ôöõ�÷�øC��û6��ýIû>ó�ô²ø`ûdî�õ�ù�í�ó�û�ý�ûdó2� ò�ó�ø¨ûdú�ò�î>���¨ó�ûdí�ð����Eò�ó�ð¡ú
ú�í�õ�íOù�û�õ�ù�ú1ó�í5�Hî�� ó�ò�ø õ�÷?û���î�ôöü�û>ó�ù-ôöõwï�ò����#í�ðöô
� ò�ó�î�ô¡íOí�õ
0�ó�ü�ô²î�ûGú�í<õ�í�ó�û>ýIò�ù�ôsõ�ò�ó�ï
 �A��� �.÷�û�ÿ�÷�í<ó�í�ÿ|õ�û>ó�ô²ù-õ�ô¡ÿ>ù¨ò��'õ�÷�û
ú�í�õ�í`ù�û�õ�ùHí<ó�û*ù-÷�ò}�Hî­ô²îC��í��?ðöû��-�

+?ò�ó9ûdø¨ý�ôöó�ô¡ÿ>í<ð1ûdü�í<ð&�?í�õ�ôöò�î£ò��<1-Md0BJ¤���@?¤�#ûH÷?ífü�ûHÿ�÷�ò�ù-ûdî
� ò���ó~�#û>ð²ð���î�ò}�Hî*ù-õ�í<õ�û9ò���õ�÷�û í<ó�õ+ÿ>ð²í�ù�ù�ô�"Iÿ>í�õ�ôöò�î�í�ðöñ�ò�ó�ôsõ�÷�ø©ù E
�b�:�
 �A���>�Q���@�
����}���C��í<ô²ü�û6���.ífï�ûTù�
 ?5����í<î�ú .	021-3
 4����
ì�ô²ù�ù�ôöî�ñ�üfí�ð
�?ûdù�� ò�ó��Iò<õ�÷�ì7J:L#M í<î�ú�1-M�0BJ:���v?�í<ð²ñ�ò�ó�ôöõ�÷?ø¨ù
í<ó�û�ó�û>ý�ð¡í�ÿ>ûdú���ïiø¨ò�ù-õ	� ó�ûKJ��?û>î�õHüfí�ð
�?û*ò���õ�÷�û
í�õ�õ�ó�ô
���1õ�û��

3Eí�ÿ�÷Bò��/�b�:� �E�Q��� � �!��í�ôöü�û�� �.ífï�ûdùGí<î?ú .9021-3 �.í�ù

ÛkÊ�Ö]Ê Í�ÎdÝ¬Úf×fÍ�ß Ö É*Û�Ð�â Vdâ j Û�Ffã f
VdÏ�Ö áfÍ�ØbËwÑ]Ï�Ö]Í�ÞwÏwÑ

�������� "!�� #$� ���%���� "!�� #$� �&�%���� "!�� #$�
Ê�ÎfÎ ���'� ���(F$� i�� ���'� ��i) *�'� F�F �Ag�� ��f+ *�'� ����,
Ê�×fØ �Ag�� f��(F$� fUh �Ag�� h��) Ei'� ��f �Ag�� i��) F$�@g���,
ËwÑ]Ï ���'�@g2h(F$� i�f f��'� f��) F$� �Ag ��h'� ��f+ F$� f���-
áfÏwÑ ���'� ��i(Ef&� h�� ��h'� ��i) F$� ��F ��h'� ���) F$� i�f ,
ÏwËYÌ ���'� h��) /g2i'� h�i ��h'� �Ag. /g2i'� ��� �Ag�� �Ag� �g�g�� ��i�,
ÏwËwÕ f��'� ���(/�'� ��� f��'� ��f+ *�'�@g�f fUi'� ���) *�'� �Ag�0
Ò|ßzÊ ���'�@g��(/�'� ��� ��f&� h�f+ *�'� ��� ���'�@g��) *�'� ��F ,
Ì>×fÎ ���'� �Ag1 /�'� F�� ��F$� ��h) *�'� ��f ��F$� f�g. _f&� f�� ,
ØbÖ]Ê f�f&� ���(/�'� ��� f��'� i��) *�'� �Ag f��'�@g�f+ _f&� ��� ,
Ø�e�Í i��'� i�h) /g��'� ��h i�i'� i��) /g2h'� ��F i��'� h�h
 �g2i'� ��h�2
ÌfÕ|Ñ f��'� h��(/�'�@g8F f�g�� ���) _f&� ��i f�g�� ��h) *�'� ��F ,
Í@S Ü f��'� ��h(/�'� ��F f%F$� ���) *�'� ��F f�g��@g�g� �g2h'�@g���3
Í�Ñ]Í ��i'� i�i(/�'� ��� ��F$� i��) F$� ��� ���'� ���) F$� h���4
ß�Í ` ���'� ��h(Ef&� ��� ��f&� ���) _f&� ��� ���'� ��f+ _f&� F���-
S¢Ê�Ë F�i'� F��) /g�g�� F6f i��'� ���) /g�g�� i�� F6f&� ��f(�g�g�� ���'0
ÖbÌ6[��F$� F�h(/�'� i�� ���'� ��h) F$� i�F ���'� F��) Ei'� ����,
Ü Í@S f%F$� ��h(F$� ��� f�g�� ���) *�'� fUi f��'� ���) *�'� F�� ,
`�ÏwÌ ��h'� ��h) /g�f&� i�f f��'� ���) /g��'� ��f f��'� F5g� �g��'� ��i ,
e�Í�Î ��i'� ���(/�'� �Ag ��F$� ���) *�'� ��� ���'� ���) F$� f�f 0
e�Í�Ø ��F$� ���(/�'� �Ag ��i'� f��) Ei'� h�� ��F$� ���) *�'� f�� -

��í��?ðöû�;�E
'�ËwËw×fÑYÊ�Ë [�ÔMÕ�S Ü Ê�Ñ]Í�ØbÕ|ÎfØ)^+Ø]Í�ÎTÒHÔ�5
�.Ê�ß�Ò|Õ|ÑbÍ Ö]ÌAS'ã] S Ü Í�ÑbÍ�Ë�Ê�ß76�ÏwØ]×fß ÖbØ�k�Ê�ËwË|ã 4 Ê2`�ÏwÑYÊ�Ò|Ï Ê�ËwËw×fÑYÊ�Ë [�Ê�Îfá�Ø-ã á�ã 4 ØbÖ]Ê�Îfá�Ê�Ñbá�áTÏwÝ`TÍzÊ�ÖbÍ�Õ|Î�ãVd× Ü ÏwÑ]Ø]ËwÑbÍ Ü Ö]Ø�áfÏwÎfÕ�ÖbÏ ËwÕ|ÎTà�áfÏwÎfËwÏOß�ÏB`�Ïwß�Ø�ËwÕ�S Ü Ê�Ñ]Í�ÎTÒ�É*Û�Ð�â Ê�Îfá
Vdâ j Û�Ffã f�k<g�Í�Ø.���Tã ��8�Ó&�9Í�Ø.����8�Ó�iQÍ�Ø1��fdã ��8�Ó F9Í�Ø1����8�Ó'�QÍ�Ø1��h�8�ÓdÊ�Îfá
�EÍ�Ø�Ú<Ï-ß�Õ2e���h�8�ã

ÛkÊ�Ö]Ê Í�ÎdÝ¬Úf×fÍ�ß Ö É*Û�Ð�â Vdâ j Û�Ffã f
VdÏ�Ö áfÍ�ØbËwÑ]Ï�Ö]Í�ÞwÏwÑ

�������� "!�� #$� ���%���� "!�� #$� �&�%���� "!�� #$�
Ê�ÎfÎ ��i'� ���(/�'� ��� ���'� f��) *�'� ��� ���'� ���) *�'� ����,
Ê�×fØ ��i'� ���(F$� i�h ���'� ��h) Ei'� ��� ���'� �Ag. F$� h���,
ËwÑ]Ï ���'� h�F
 F$� h�� ���'� ���) F$� ��F ���'� f��) Ei'� f�� ,
áfÏwÑ ���'�@g�g1 /�'� ��� �Ag�� ���) *�'� ��� ���'�@g�g. *�'� ��� ,
ÏwËYÌ ��F$� ���) /g2i'� i�� ���'�@g��) /g�g�� ��� ���'� ���
 �g�g�� ��F -
ÏwËwÕ �Ag�� ��F
 F$� ��� ��h'� ���) *�'�@g�g ���'� F��) *�'� h���-
Ò|ßzÊ ���'� h��(/�'�@g�� fUi'� ��f+ *�'�@g�� f��'� ��F(*�'� ��h ,
Ì>×fÎ ���'� h��(/�'� F�� ��F$� ���) *�'� ��� �Ag�� h��
 �g2h'� ����2
ØbÖ]Ê f�f&� ��h(/�'� h�F f��'� �Ag. _f&� i�i ��h'� ��F(_f&� F�� ,
Ø�e�Í i�F$� F�i) /g��'�@g�� i��'� ��F(/g��'� ��h F�h'� ���
 �g��'� �Ag�2
ÌfÕ|Ñ ��i'� f%F
 /�'� h�i ��F$�@g��) *�'� ��i ���'�@g2i) _f&�@g2i -
Í@S Ü f��'� ��f) /�'� ��f f�f&� ���) *�'� ��� f��'� ���) *�'� iAg ,
Í�Ñ]Í ���'� ���(/�'� h�� ���'� F��) *�'� F�h ���'� ���) F$� h���,
ß�Í ` ���'� fUi(/�'� ��� ���'� ���) _f&� ��f ��f&� i�f+ _f&� ��f ,
S¢Ê�Ë F��'� ��i) /g�g�� f�g F�i'� ��F(/g�g�� F�F F6f&� h��
 �g�g�� ��F�-
ÖbÌ6[��i'� F��(/�'�@g2i ��F$� ���) *�'� hAg ��F$� �Ag. F$� f���,
Ü Í@S f%F$� ���(/�'� h�� f��'� i�f+ *�'�@g2i f��'� ���) *�'� F�F�,
`�ÏwÌ ��i'� ��h) /g8F$� h�� ���'� h��) /g��'� �Ag ���'� i��
 �g��'� h�f ,
e�Í�Î ��i'� F��(/�'� ��i ���'� i��) F$� F6f ���'� i�h) F$� F6f ,
e�Í�Ø ���'� F5g1 /�'� ��� ���'� h�f+ *�'� ��� ���'� i��) *�'� f�g -

��í��?ðöû���E
'�ËwËw×fÑYÊ�Ë [�ÔMÕ�S Ü Ê�Ñ]Í�ØbÕ|ÎfØ)^+Ø]Í�ÎTÒHÔ(Ffã �.Ê�ß�Ò|Õ|Ñ]Í ÖbÌ5S'ã] S Ü Í�ÑbÍ�Ë�Ê�ß76�ÏwØ]×fß ÖbØ�k�Ê�ËwË|ã 4 Ê2`�ÏwÑYÊ�Ò|Ï Ê�ËwËw×fÑYÊ�Ë [�Ê�Îfá�Ø-ã á�ã 4 ØbÖ]Ê�Îfá�Ê�Ñbá�áTÏwÝ`TÍzÊ�ÖbÍ�Õ|Î�ãVd× Ü ÏwÑ]Ø]ËwÑbÍ Ü Ö]Ø�áfÏwÎfÕ�ÖbÏ ËwÕ|ÎTà�áfÏwÎfËwÏOß�ÏB`�Ïwß�Ø�ËwÕ�S Ü Ê�Ñ]Í�ÎTÒ�É*Û�Ð�â Ê�Îfá
Vdâ j Û�Ffã f�k<g�Í�Ø.���Tã ��8�Ó&�9Í�Ø.����8�Ó�iQÍ�Ø1��fdã ��8�Ó F9Í�Ø1����8�Ó'�QÍ�Ø1��h�8�ÓdÊ�Îfá
�EÍ�Ø�Ú<Ï-ß�Õ2e���h�8�ã

548

ÛkÊ�Ö]Ê Í�ÎTÝ¡Úf×fÍ�ß Ö É*Û�Ð�â Vdâ j ÛGFfã f
VdÏ�Ö áfÍ�Ø]ËwÑbÏwÖbÍ�ÞwÏwÑ

�&�%���� "!�� #$� ���%���� *!�� #$� ���%���� !�� #$�
Ê�ÎfÎ ��i'� ���
 /�'� ��h ���'� ���) *�'� �Ag ��i'� i��
 �i'� h�F�,
Ê�×fØ fUi'� ���
 /�'� ��� ���'� F��) Ei'� f�� ���'� F5g� �i'� ��i�,
ËwÑ]Ï f%F$� h�i
 /�'� i�� ���'� ���) Ei'� ��h ���'� ��f(�i'� ��h ,
áfÏwÑ ��f&� ���
 /�'� h�f ���'� F��) /g�� ��F ���'� F��
 �g�� ��F ,
ÏwËYÌ ��f&�@g2h) /g�g�� ��� fUi'� ���
 �g2h'� i�� f��'� F��(�g�g�� ��h�,
ÏwË-Õ ���'� F��
 /�'� h�� ��i'� ���) *�'� f�� ���'� ��F
 /�'� h��'0
Ò|ßzÊ F�h'� ��i
 /�'� ��i f%F$� fUh) *�'� ��i f��'� �Ag� Ef&� i�� ,
Ìd×TÎ ���'� ��F
 /�'� h�F ��f&� h��) *�'�@g�f ���'� iAg� /�'� �Ag ,
ØbÖ]Ê fUh'� f%F
 /�'� ��� ��i'� ���) _f&� ��� ��i'� ���
 Ef&� ��i ,
Ø�e�Í ��F$� h��) /g8F$� h�F F�i'�@g2h
 �g��'� ��� F��'� ��f) �g��'� f�� ,
ÌfÕ|Ñ f�f&� ��f(Ef&� hAg f��'� ��f+ *�'�@g2i f��'� h�f(/�'�@g�� ,
Í@S Ü fUi'� ��F
 /�'� f�� �Ag�� F6f+ _f&� ��� fUh'� ��F
 /�'� ��i'0
Í�Ñ]Í �Ag�� ��h
 /�'� i�h ��F$� ��i) F$� ��i ���'� h�f(F$� ����,
ß�Í ` ���'� h��
 Ef&� �Ag ���'� i��) _f&� f�f fUh'� i�F
 /�'� ��� 4
S¢Ê�Ë ��i'� h��
 /�'� ��F F6f&� ���
 �g�g��@g�� ��i'� ��F
 �g2h'� i��'0
Ö]Ì�[�Ag�� �Ag� /�'� �Ag ���'� f�g. F$� h�� ���'�@g8F
 �i'� h�� 0
Ü Í@S ���'� ���
 F$� i�� f�f&�@g2i) F$� F�� f�f&� ��F
 �i'� ��h ,
`�ÏwÌ F�F$� F�h) /g2i'� ��� ��f&�@g��
 �g8F$� ��i ��f&� F�h(�g2i'� ��� ,
e�Í�Î fUh'� ��h
 /�'� i�� ���'� i�i) *�'�@g�� ���'� ���
 /�'� ��i ,
e�Í�Ø ��f&� F�h
 �g�� ��� ��f&�@g8F(*�'�@g2i ��f&� ���
 /�'� h�� ,

�+í���ðöû'� E
'+ËwË-×TÑYÊ�Ë [*ÔMÕ�S Ü Ê�ÑbÍ�Ø]Õ|ÎfØ~^�Ø]Í�ÎfÒ 5�Ê�Í `�Ï�Ý�\µÊB[�Ï-Ø+Ê�ß�Ò|Õ|Ñ]Í ÖbÌ5S'ã] S Ü Í�Ñ]Í�Ë-Ê�ß76�Ï-Øb×fß ÖbØ�k�Ê�ËwË�ã 4 ÊB`�ÏwÑYÊ�Ò|Ï Ê�ËwË-×TÑYÊ�Ë ['Ê�ÎTá�Ø-ã á�ã 4 ØbÖ]Ê�Îfá�Ê�Ñbá�áfÏ�Ý`dÍzÊ�ÖbÍ�Õ|Î�ãV>× Ü Ï-ÑbØ]ËwÑ]Í Ü Ö]Ø�áfÏwÎfÕ�ÖbÏ Ë-Õ|Îdà�áfÏwÎfËwÏþß�Ï `�Ïwß�Ø�ËwÕ�S Ü Ê�Ñ]Í�ÎfÒ�É*Û�Ð�â Ê�Îfá
V>â j Û�Ffã f�k<g�Í�Ø1���Tã ��8¢Ó'�QÍ�Ø.����8�Ó�i9Í�Ø.��fdã ��8�Ó F9Í�Ø�����8�Ó&�QÍ�Ø1��h�8�ÓdÊ�Îfá
�EÍ�Ø�Ú<Ïwß�Õ�e���h�8¢ã

ÛkÊ�Ö]Ê Í�ÎTÝ¡Úf×fÍ�ß Ö É*Û�Ð�â Vdâ j ÛGFfã f
VdÏ�Ö áfÍ�Ø]ËwÑbÏwÖbÍ�ÞwÏwÑ

�&�%���� "!�� #$� ���%���� *!�� #$� ���%���� !�� #$�
Ê�ÎfÎ ���'� ��f(�g�� ��� ��i'� ��i) *�'� �Ag ��F$� f��
 /�'� i�� -
Ê�×fØ ��i'�@g2i
 F$� F�� ���'� F��) F$�@g2i ���'� F��
 �i'� f%F -
ËwÑ]Ï ��i'�@g��
 F$� i�F ���'� ��F(Ei'� f�� ��f&� hAg� �i'� F���-
áfÏwÑ ���'� ��F
 �i'� i�� ���'� i��) Ei'� ��� ���'� h�h
 �i'� ��h ,
ÏwËYÌ f�g�� h��) /g�g�� f�� f�g�� ���) *�'� ��� f��'� ���(�g2h'� i�F�,
ÏwË-Õ ��i'� ���
 /�'� �Ag ��i'� ���) F$� ��� ��i'� ���
 /�'� ��f ,
Ò|ßzÊ f��'� F��
 /�'� ��f f��'� f��) _f&� ��� f��'� f��
 Ef&� F�F ,
Ìd×TÎ ��i'� ���
 Ef&� ��i ���'� ���) *�'� f%F ��f&�@g��
 /�'� fUi ,
ØbÖ]Ê �Ag�� ���
 Ef&� ��f f��'� f%F(*�'� ��f f��'� F5g� /�'� ��� ,
Ø�e�Í i�i'� ��F(/g8F$� ��� i��'� ���
 �g��'� i�� F6f&� ��h(�g2i'� ��h 0
ÌfÕ|Ñ ��F$� fUi
 /�'� h�� ���'� F�h) *�'� ��i ��i'� F�h
 /�'� f�� ,
Í@S Ü f��'� ��h
 /�'� ��� ��i'� ���) *�'� h�i ��h'� h�f) �g2h'� h�F�-
Í�Ñ]Í ���'� h�h
 /�'�@g�� ��F$� ��f+ F$� ��� ���'� ��h
 �i'� ��i 3
ß�Í ` ���'� F��
 /�'� iAg fUh'� ���) _f&� ��� f�g�� ��f(Ef&� F�F ,
S¢Ê�Ë ��f&�@g8F(/g2h'� ��� F��'� i��
 �g2h'�@g�� ��f&� �Ag� /�'� f�f&0
Ö]Ì�[���'� ��F
 F$� ��� ���'� ���) F$� h�� ��f&� i��
 �i'� �Ag 2
Ü Í@S f��'� i��
 F$� �Ag f%F$� ��F(F$� F�F f��'� ���
 F$� ����,
`�ÏwÌ ���'� iAg. /g��'� F�h fUh'� f��
 �g��'� �Ag fUi'� ��F
 �g8F$� h�� ,
e�Í�Î ���'� f��
 F$� f�� ���'� ��f+ F$� i�f ���'� ���
 �g�� ��f 0
e�Í�Ø ���'� �Ag� �g�� ��� ���'� h��) *�'� iAg ���'� h��
 /�'� ��f�2

�+í���ðöû�4�E
'+ËwË-×TÑYÊ�Ë [*ÔMÕ�S Ü Ê�ÑbÍ�Ø]Õ|ÎfØ~^�Ø]Í�ÎfÒ 6 j V] Ê�ß�Ò|Õ|ÑbÍ Ö]Ì5S'ã] S Ü Í�Ñ]Í�Ë-Ê�ß76�Ï-Øb×fß ÖbØ�k�Ê�ËwË�ã 4 ÊB`�ÏwÑYÊ�Ò|Ï Ê�ËwË-×TÑYÊ�Ë ['Ê�ÎTá�Ø-ã á�ã 4 ØbÖ]Ê�Îfá�Ê�Ñbá�áfÏ�Ý`dÍzÊ�ÖbÍ�Õ|Î�ãV>× Ü Ï-ÑbØ]ËwÑ]Í Ü Ö]Ø�áfÏwÎfÕ�ÖbÏ Ë-Õ|Îdà�áfÏwÎfËwÏþß�Ï `�Ïwß�Ø�ËwÕ�S Ü Ê�Ñ]Í�ÎfÒ�É*Û�Ð�â Ê�Îfá
V>â j Û�Ffã f�k<g�Í�Ø1���Tã ��8¢Ó'�QÍ�Ø.����8�Ó�i9Í�Ø.��fdã ��8�Ó F9Í�Ø�����8�Ó&�QÍ�Ø1��h�8�ÓdÊ�Îfá
�EÍ�Ø�Ú<Ïwß�Õ�e���h�8¢ã

ó8��î¿ò�î¿ûdí�ÿ�÷¥ò��*õ�÷�û�ò�ó�ô²ñ�ô²î?í�ð�ú�í�õ�íOù�û�õ/�Hôsõ�÷Vÿ�ò�î�õ�ô²î��?ò��?ù
ü�í�ð
��ûTù ú1ô¡ù�ÿ�ó�û�õ�ô&%>ûTú���ï`ó�ûdù�ý�ûTÿ|õ�ô²ü�û�ôöî-��� ��ô²ðöõEð²ò�ÿdí<ðIú1ô²ù�ÿ�ó�û�õ�ô
%dû>ó
�H÷?ôöð²û�ôöî�ú-�?ÿ�ô²î�ñ ó8��ð²ûdù�����î�õ�÷�ûGò<õ�÷?û>ó�÷?í<î?ú~� õ�÷�û�ò�ó�ô²ñ�ô²î?í<ð
ú?í�õ�íþù-û>õ�ù­í<ó�û7"?ó�ù-õ­ú1ô¡ù�ÿ>ó�û>õ�ô&%>ûTúD�?ù�ôöî?ñF1-Md0BJ¤���@? í<î?ú�õ�÷�û
ú�ô²ù�ÿ�ó�û�õ�ô
%dûdú­ú�í�õ�í'�.í�ù.ó8��î/�?ù-ô²î�ñ��b�:� ���Q���@�-�-��í�ôöü�û�� �.ífï�ûdù
í�î?ú/.	021-39��11ôöø¨ô²ð²í�ó�ð²ï��-� ò�ó¢ÿ�ò�ø`ý�í<ó�ô²ù�ò�î?ù���õ�÷�û*ò�ó�ô²ñ�ô²î?í<ðµú�í<õ�í
ù�û�õ�ù�í<ó�û�ú1ô¡ù�ÿ�ó�û�õ�ô&%>ûTú �?ù�ô²î�ñ/ì>J:L#M
 =5�Gí�ðöñ�ò�ó�ôsõ�÷�ø í<î?ú
õ�÷�ûBú1ô¡ù�ÿ>ó�û>õ�ô&%>ûTú�ú�í<õ�í��#û>ó�ûVó8��î �?ù�ôöî�ñ/õ�÷�ûBù�í�ø¨û � ò���ó
í�ðöñ�ò�ó�ôsõ�÷�ø©ù6� �.÷�û�í�ÿdÿ���ó�í�ÿ>ï¥ò��£õ�÷�û�ô²î?ú-�?ÿ>ûdú�ó8��ðöûTùC�Eûdó�û
ÿdí<ð¡ÿ���ð¡í�õ�ûdú���ù-ô²î�ñ>�A�}��� ò�ð¡ú�ÿ�ó�ò�ù�ùB�Yü�í<ð²ô²ú?í�õ�ô²ò�î�ø¨û�õ�÷�ò1ú<�'1��?ÿ�÷
�A�}��� ò�ð¡ú�ÿ>ó�ò�ù�ù2�]ü�í�ðöô¡ú�í�õ�ôöò�î�û6��ýIû>ó�ô²ø`ûdî�õ�ù �#û>ó�û�ó�û>ýIûdí<õ�ûTú��
õ�ôöø¨ûTù6�

¦ � ��jTé#¢Ùldj`n æ è � ª � ê m�êbo�n ¢���ç ª � n1m�êÙjTç æ j ë
��í��?ðöûK;/ù-÷�ò}�¢ù�ûdø`ý?ôöó�ô²ÿdí<ð�ó�ûdù���ðöõ�ù�� ò�ó �b�O�³í�ðöñ�ò�ó�ôsõ�÷�ø
ó8��î�ò�î�ôöõ�ù�ôöî ��� �?ôöðöõ'ú�ô²ù�ÿ�ó�û�õ�ô
%dû>óA� �Hôöõ�÷�ú�í�õ�í\ú1ô¡ù�ÿ�ó�û�õ�ô&%>ûTú���ï
ì>J:L#M/í�î?ú�1-M�0BJ:���v?���1�ôöø¨ô²ð²í�ó�ð²ï���í���ð²û/���Q��í��?ðöû7��í<î?ú
��í��?ðöû­4£ù�÷�ò}�¢ùEû>ø¨ý�ô²ó�ô¡ÿ>í�ðMó�ûTù2��ðöõ�ùb�Hôöõ�÷7�Q���@�-�-��í�ôöü�û�� �.ífï�ûdù
í�î?ú .	021-3 í�ðöñ�ò�ó�ôsõ�÷�ø©ù'ó�ûTù-ýIûdÿ�õ�ô²ü�û>ð²ïGô²î�õ�÷�û�ù�í�ø`û�� ò�ó�ø©í<õ��
(�ðsõ�÷�ò��?ñ�÷���í���ð²ûdù!;}� 4 �Qù�÷�ò}�Hôöî?ñ�õ�÷�û�í�ÿdÿ���ó�í�ÿ>ôöûTù*ò��1õ�í<ô²î�ûdú
ô²î¥ô²î?ú1ô²ü�ô¡ú-�?í�ð�ú�í<õ�í ù�û�õ�ù6�¢í�ó�û�ô²î�õ�ûdó�ûTùwõ�ôöî�ñOôöî�õ�÷�û>ø©ù�û>ð²ü�ûdù��
ù�ò�ø¨û�ôöî�õ�û>ó�ûdù-õ�ô²î�ñ�� ûdí�õ8��ó�ûdù.ò��+õ�÷�û'ó�ûdù���ðöõ�ùHí<ó�û'ù2��ø¨ø©í<ó�ô&%>ûdú
ô²î���í��?ðöû�?����.÷�û�ó�ûTù2��ðöõ�ùEò�� �+í���ðöû�?*ÿdí<î��Iû�ôöî�õ�ûdó�ý?ó�û>õ�ûdú\í�ù
� ò�ðöð²ò}�¢ù��

� r�u�x k Y�ÌfÏ Ü ÑbÏ�Ý Ü Ñ]Õ>ËwÏwØ]Ø]Ïwá�áfÍ�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-á�á�Ê�ÖYÊCTöÑ]Õ�S Vdâ j ÛGFfã f
Ò|Ï-ÎTÏ-Ñ]Ê�Ö]ÏwØQÌfÍ�Ò|ÌTÏ-Ñ�SHÏ-Ê�Î*Ê�ËwÑbÕ|Ø]ØQÊ�ß�ß�áfÕ�S¢Ê�Í�ÎfØ)T²Õ|ÑkÊ�ß�ß�T²Õ|×fÑkÊ�ß�Ò|Õ|Ñ]Í ÖbÌ5SHØ
	¬Ô�5
�TÓ1Ô(Ffã �TÓ 5�Ê�Í `�Ï�Ý�\µÊB[�ÏwØ�Ó1Ê�ÎTá 6 j V]
�ËwÕ�S Ü Ê�ÑbÏwá
ÖbÕ�ÖbÌfÏwÍ�ÑQÍ�ÎTÝ¬ÚT×fÍ�ß Ö
	²Õ|Ñ�ß�Õ>Ë�Ê�ß�ß [�
MáfÍ�Ø]ËwÑbÏwÖbÍ�ÞwÏwá'á�Ê�Ö]Ê.Ê�Îfá*É*Û�Ð�â\áTÍ�Ø]ËwÑ]Ï�ÖbÍ�Þ�Ê�ÖbÍ�Õ|Î'Ê�ß�Ò|Õ|ÑbÍ Ö]ÌAS'ã

��� {	q�r	��

����w�x}m k<'+Î£Õ|Ú�`TÍ�Õ|×TØ9ÖbÏwØbÖ9Í�ØQØbÍ@S Ü ß [�ÖbÕ�ËwÕ�S Ü Ê�ÑbÏEÖbÌfÏÎd×5SEÚ<Ï-Ñ�ÕUT�á�Ê�Ö]Ê+Ø]Ï�ÖbØ-e+ÌTÏ-ÑbÏIáfÍ�ØbËwÑ]Ï�Ö]Í�ÞwÏwá Õ|×TÖ Ü ×TÖ?Ú6[dV>â j Û�Ffã f�Ê�ËYÌfÍ�Ï `�ÏwáÌfÍ�Ò|ÌfÏwÑ\Ê�Ë-Ëw×fÑ]Ê�Ë [�ËwÕ�S Ü Ê�ÑbÏ-á ÖbÕ�É*Û�Ð�âBÊ�ÎfáþÍ�ÎTÝ¬Úf×TÍ�ß ÖiáfÍ�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-á
Õ|×TÖ Ü ×TÖ�ã�'�Ø eMÏEË-Ê�Î*Ø]ÏwÏ�T²ÑbÕ�S�Y�Ê�Úfß�ÏbfdÓ�Í�Î'Ë-Ê�Ø]Ï#ÕUTMÔ�5
�TÓ�Í ÖbØ�Í�ÎTÝ¬ÚT×fÍ�ß Ö
áfÍ�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-Ñ Ü Ñ]Õ>áf×fËwÏwØ'Ú<Ï�ÖbÖbÏwÑ*Ê�ËwËw×fÑYÊ�ËwÍ�ÏwØOTöÕ|Ñ �¨á�Ê�Ö]Ê©Ø]Ï�Ö]Ø-Ó e�ÌfÏwÑ]Ï-Ê�ØáfÍ�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-á£Õ|×TÖ Ü ×TÖ.ÕUT#V>â j Û�Ffã f Ü ÑbÕdáT×fËwÏ-Ø Ú<Ï�ÖbÖbÏwÑ.Ê�ËwËw×fÑYÊ�ËwÍ�ÏwØQTöÕ|Ñ	g��á�Ê�ÖYÊ.ØbÏ�Ö]Ø-ã '�Ò�Ê�Í�Î�V>â j Û�Ffã f Ü ÑbÕdáT×fËwÏ-Ø+Ú<ÏwÖÙÖbÏ-ÑkÊ�Ë-Ëw×fÑ]Ê�ËwÍ�Ï-Ø#T²Õ|Ñ�g�g9á�Ê�Ö]ÊØ]Ï�Ö]Ø-Ó�e�ÌfÏwÑbÏ�Ê�Ø.É*Û�Ð�â Ü ÑbÕdáT×fËwÏ-Ø#Ú�Ï�ÖÙÖ]ÏwÑ¢Ê�ËwËw×fÑYÊ�ËwÍ�ÏwØHÍ�Î"�*á�Ê�Ö]Ê
ØbÏ�Ö]Ø-ãVdÍ@SHÍ�ßzÊ�Ñ]ß [�Ó2T²Õ|ÑIÔ(Ffã �TÓ�Vdâ j Û�Ffã f e�Í�ÎfØ?Õ�`�ÏwÑIÍ ÖbØIÍ�ÎdÝ¬Úf×fÍ�ß Ö?áfÍ�ØbË-ÑbÏ�Ö]Í�ÞwÏwÑ�Í�Î:g��
Õ|×TÖkÕUT ��hHá�Ê�Ö]Ê¢ØbÏ�Ö]Ø
	�g áfÑ]Ê2e�
�Ê�ÎTá*Õ�`�ÏwÑkÉ*Û�Ð�â­Í�Î!g�g Õ|×TÖ�ÕUT ��hTã j Î
Ë�Ê�ØbÏEÕUT 5+Ê�Í `�ÏwÝa\µÊ2[�ÏwØ�Ó�Vdâ j Û�Ffã fbe+Í�ÎTØ�Õ�`�ÏwÑ+Í Ö]Ø+Í�ÎTÝ¬Úf×fÍ�ß Ö�áfÍ�ØbËwÑ]Ï�Ö]Í�ÞwÏwÑkÍ�Î
g��.Õ|×TÖQÕUT.��h.á�Ê�ÖYÊ¢Ø]Ï�ÖbØkÊ�Îfá*Õ2`�ÏwÑQÉ*Û�Ð�â�Í�Î�g�f.Õ|×TÖkÕUT.��h 	�g9áfÑ]Ê2e�
Yã
� Õ|Ñ 6 j V] Ó�Vdâ j ÛGFfã f	e�Í�ÎfØkÕ2`�ÏwÑkÍ Ö]Ø�Í�ÎTÝ¬Úf×fÍ�ß Ö�áfÍ�Ø]ËwÑbÏwÖbÍ�ÞwÏwÑkÍ�Î�g���Õ|×dÖQÕUT
��h#á�Ê�Ö]Ê.Ø]Ï�Ö]Ø+Ê�Îfá�Õ�`�ÏwÑ�É*Û+Ð�âiÍ�Î'g��#Õ|×dÖ�ÕUT ��hTã

��w���x}w � s�u�x����Ow�x k 'iÚ<ÏwÖÙÖbÏ-Ñ�Ê�ß ÖbÏ-ÑbÎ�Ê�ÖbÍ `�Ï�ËwÕ�S Ü Ê�ÑbÏwá ÖbÕ�ÖbÌfÏ�Ê�Ú<Õ�`�ÏÍ�Ø�Ö]Õ�ËwÕ|×fÎ�Ö�Õ|Îfß [kÖbÌfÕ|Ø]Ï�á�Ê�ÖYÊ�Ø]Ï�ÖbØ�e+ÌTÏ-ÑbÏ�ÖbÌfÏIáTÍ ��ÏwÑbÏ-ÎTË-Ï�e�Ê�Ø�Ø]Í�Ò|ÎTÍ à�Ë-Ê�Î>Ö
Ê�Ö*Ê©ËwÕ|ÎTà�áfÏwÎfËwÏ©ß�Ï `�ÏwßQÕUT ����8/Õ|Ñ'ÌfÍ�Ò|ÌTÏ-Ñ5	²ØbÏ-Ï'Y�Ê�Úfß�ÏwØ�i�Ý��TÓ#e+ÌTÏ-ÑbÏ
Ø]× Ü ÏwÑ]ØbË-ÑbÍ Ü ÖbØ�ØbÌfÕ�e©ÖbÌfÏ�Ñ]ÏwØ]×Tß Ö]Ø?ÕUT�Õ|ÎfÏ�Ý¡ÖYÊ�Í�ß�Ïwá Ü Ê�Í�Ñ]Ïwá#ÖÙÝ¡Ö]ÏwØÙÖ Ü ÏwÑ�TöÕ|Ñ�SHÏwáe+Í ÖbÌ�É*Û�Ð�â�Ê�Îfá�Vdâ j Û�Ffã f�
�ãbY�ÌfÍ�ØQØbÖbÍ�ß�ß�ØbÌfÕ�e�ØQÍ@S Ü ÑbÕ�`�Ïwá
Ñ]ÏwØ]×Tß Ö]ØQÍ�ÎT¡ÊB`�Õ|Ñ�ÕUT Vdâ j Û�Ffã f#áfÍ�ØbË-ÑbÏ�Ö]Í�Þ-Ê�ÖbÍ�Õ|Î:TöÕ|Ñ�Ê�ß�ß�Ê�ß�Ò|Õ|Ñ]Í ÖbÌ5SHØµÏ�-TËwÏ Ü Ö TöÕ|Ñ+Ô(Ffã �Ê�ß�Ò|Õ|Ñ]Í ÖbÌ5S'ÓUe�ÌfÏwÑ]ÏµÖbÌfÏ�ÑbÏ-Øb×fß ÖbØ�ÕUT�É*Û�Ð�â`Ê�Îfá¤Vdâ j ÛGFfã fkÊ�Ñ]Ï�Ö]ÌfÏ�ØYÊUSHÏ|ã

�Ow�� s�
���
�x���w ��x�r �"!#��u�xA|$�ar2m�� k j Î�Õ|×fÑ�Ë�Ê�ØbÏ|ÓQÖ]ÌfÏ`Ñ]ÏwØ]×fß Ö�ÕUT#ÖbÌfÏ
Ø]Í�Ò|ÎfÏwáTÝ¬Ñ]Ê�Î&%�ÖbÏwØbÖ?Ø]× ÜTÜ Õ|ÑÙÖ1Ö]ÌfÊ�ÖnV>â j Û�Ffã f Ü Ñ]Õ>áf×fËwÏwØ�Ú<Ï�ÖÙÖ]ÏwÑ?áfÍ�Ø]ËwÑ]Ï�ÖbÍ�ÞwÏ-áÕ|×TÖ Ü ×TÖ¢Ö]Ì�Ê�Î�Ô�5
�'e�Í ÖbÌ�ËwÕ|ÎTàfáfÏwÎfËwÏ�ÕUT �Ag�� f�g�8¢ã j Î­Ë-Ê�Ø]Ï�ÕUTEÔ Ffã �TÓ
Vdâ j Û�Ffã f Ü Ñ]Õ>áf×fËwÏwØ9Ú<ÏwÖÙÖbÏ-Ñ áfÍ�ØbË-ÑbÏ�Ö]Í�Þ-Ê�ÖbÍ�Õ|Î£ËwÕ�S Ü Ê�ÑbÏ-á*ÖbÕ'É*Û�Ð�â�áfÍ�ØbÝË-ÑbÏ�Ö]Í�Þ-Ê�ÖbÍ�Õ|Î_e�Í ÖbÌ©ËwÕ|ÎTà�áfÏwÎfËwÏ�f��'� ����8 Ê�Îfá©Í�Î©Ú<Õ�ÖbÌ\Ë-Ê�ØbÏ-Ø#ÕUT 5�Ê�Í `�Ï�Ý
\µÊ2[�ÏwØ¢Ê�Îfá 6 j V] Ó<V>â j Û�Ffã f*Ò|ÏwÎfÏwÑYÊ�ÖbÏ-Ø¢Ú<Ï�ÖbÖbÏwÑ�Õ|×dÖ Ü ×dÖ]Ø	e�Í Ö]ÌiËwÕ|ÎTàfÝáfÏwÎfËwÏ ���'� ��f�8¢ã

549

ÔMÑ]Í ÖbÏwÑ]ÍzÊ Í�ÎTÝ¬Úf×fÍ�ß Ö É*Û�Ð�â Vdâ j ÛGFfã f
áTÍ�Ø]ËwÑ]Ï�ÖbÍ�Þ-ÏwÑ
'+ß�Ò|Õ|Ñ]Í ÖbÌ5S�Ô�5(�

É'Ï-Ê�Î fUi'� h�� f��'�@g2i f��'� f�f
Í�ÎTÝ¬ÚT×fÍ�ß Ö$	��\Ý Û+Ý¬Ð
 � g2h��'h���g2h g����!h�� �
É*Û�Ð�â 	��\Ý Û+Ý¡Ð
 g2h���h��Eg2h � g�g��!h�� �
VdÍ�Ò|ÎfÍ àfË�Ê�Î�Ö��­Í�Î � � F
��Í�ß�Ë-Õ9-TÕ|Î:Y1ÏwØbÖ � � ���'� f�g�8

'+ß�Ò|Õ|Ñ]Í ÖbÌ5S�Ô Ffã �
É'Ï-Ê�Î f%F$� F5g f�f&� ��f f��'� ���
Í�ÎTÝ¬ÚT×fÍ�ß Ö$	��\Ý Û+Ý¬Ð
 � g8F��!h�� � g����_g�� F
É*Û�Ð�â 	��\Ý Û+Ý¡Ð
 ���!h��_g8F � g�g��!h�� �
VdÍ�Ò|ÎfÍ àfË�Ê�Î�Ö��­Í�Î � g g
��Í�ß�Ë-Õ9-TÕ|Î:Y1ÏwØbÖ � � f��'� ����8

'�ß�Ò|Õ|ÑbÍ Ö]Ì5S 5�Ê�Í `�Ï�Ý�\µÊB[�ÏwØ
É'Ï-Ê�Î ���'� ��� f��'� ��� ��h'�@g2h
Í�ÎTÝ¬ÚT×fÍ�ß Ö$	��\Ý Û+Ý¬Ð
 � g�f��!h��'i g����!h�� F
É*Û�Ð�â 	��\Ý Û+Ý¡Ð
 i��!h��_g�f � g�f	�_g�� �
VdÍ�Ò|ÎfÍ àfË�Ê�Î�Ö��­Í�Î � g F
��Í�ß�Ë-Õ9-TÕ|Î:Y1ÏwØbÖ � � ���'� ��f�8

'�ß�Ò|Õ|ÑbÍ Ö]Ì5S 6 j V]
É'Ï-Ê�Î f��'� �Ag f��'� ��f �Ag�� ���
Í�ÎTÝ¬ÚT×fÍ�ß Ö$	��\Ý Û+Ý¬Ð
 � g����!h�� � g����!h�� F
É*Û�Ð�â 	��\Ý Û+Ý¡Ð
 ���!h��_g�� � g����!h�� �
VdÍ�Ò|ÎfÍ àfË�Ê�Î�Ö��­Í�Î � g �
��Í�ß�Ë-Õ9-TÕ|Î:Y1ÏwØbÖ � � ���'� ��f�8

�+í���ðöû!? E
V>×5S	S¢Ê�Ñ�[#ÕUT�'+ËwË-×TÑYÊ�Ë [�6�ÏwØ]×Tß Ö]Ø-ã
� 4 ��Í�Î�Ó Û 4 Û�Ñ]Ê2e9ÓQÐ 4 Ð�Õ|ØbØ�ã�
*	��\Ý Û+Ý¬Ð
�×fÎfáfÏwÑ*Ö]ÌTÏ`ËwÕ|ß�×5SHÎ
�
SHÏ-Ê�ÎfØ<e�Í�ÎTÝ¬áTÑYÊ2e�Ý¬ß�Õ|ØbØµÕUT���ËwÕ�S Ü Ê�ÑbÏwá�ÖbÕ�
EãV>Í�Ò|ÎfÍ à�Ë-Ê�ÎfËwÏnY1ÏwØbÖ�Ê�ÎTá���Í�ß�ËwÕ$-dÕ|ÎQVdÍ�Ò|ÎfÏwáTÝ�6�Ê�Î&%�Y1ÏwØbÖ1ËwÕ�S Ü Ê�ÑbÏIÉ*Û+Ð�âe�Í ÖbÌ�Vdâ j Û�Ffã fdã

� � ��¢bn1l���è���ç�m���j ë
1-M�0BJ:���v?��Qý�ó�ûdù�û>î�õ�ûdú�ô²î�õ�÷?ô²ù`ý?í�ý�ûdó��Qô¡ù¨íGù���ý�ûdó�ü�ô¡ù-ûTú í<î�ú
ñ�ð²ò��?í�ð�ø¨û�õ�÷�ò1úiò��+ú1ô¡ù�ÿ>ó�û>õ�ô&%dí�õ�ôöò�î����H÷�û>ó�ûdí�ù ì7JOL)M�
 =}��ú1ô¡ùB�
ÿ�ó�û�õ�ô&%dí<õ�ô²ò�îBô¡ù0í�ù���ýIû>ó�ü�ô¡ù�ûdú�í�î?ú ð²ò1ÿ>í<ð¨ø¨û�õ�÷�ò1úBò���ú1ô¡ùB�
ÿ�ó�û�õ�ô&%dí<õ�ô²ò�î~� �.÷�ûC�E÷?ô²ì�ûdó�ñ�û�ù�ï1ùwõ�û>ø£
��������Qô²ù`í<î�ò�õ�÷�ûdó�ð²ò��
ÿ>í<ðIø¨û�õ�÷�ò1ú©õ�÷�í�õEý?ó�ò�ü�ô¡ú1ûdùEí�ù-õ�í�õ�ô²ù-õ�ô¡ÿ>í�ðöð²ï�HB�?ù-õ�ô
"?ûdú�÷�û6�?ó�ô¡ùB�
õ�ô¡ÿ¨ø`û>õ�÷�ò1ú�� ò�ó
ù���ýIû>ó�ü�ô²ù�ûdú�ú1ô¡ù�ÿ>ó�û>õ�ô&%dí�õ�ôöò�î~�E(¢î�ò�õ�÷�ûdó
ùwõ�í}�
õ�ô¡ùwõ�ô²ÿdí<ðkú1ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ôöò�î­ø¨û>õ�÷�ò1ú��'÷?ôöò�ý?ù'
 ;5��� ��í�ù�ûdú�ò�î�ÿ�÷?ô��
ù$J��?í�ó�û�ù-õ�í<õ�ô¡ùwõ�ô²ÿdù6�µ÷�ífü�û
ó�ûdÿ>û>î�õ�ð²ïC��ûdû>îGý�� ��ð²ô²ù�÷�ûdú~���.÷�û>ó�û��
í<î û>ø¨ý�ô²ó�ô²ÿdí<ð£ÿ>ò�ø¨ý?í�ó�í<õ�ô²ü�û ù-õ��?ú1ï ò��©í¿î��?ø'�Iû>ó�ò��iú1ô¡ùB�
ÿ�ó�û�õ�ô&%dí<õ�ô²ò�î`ø¨û�õ�÷?ò�ú?ù��?í�ù�ûdú`ò�î���í<ô²ü�û6���.ífï�ûTù+í�ðöñ�ò�ó�ôsõ�÷�øBò�î
�A��ú�í<õ�í¥ù�û�õ�ù>�#í�ù�ÿ>í�ó�ó�ôöûTú�ò��1õA� 0�î õ�÷?í�õ�ù-õ���ú1ï���3
J��?í<ð
+�ó�û�J���û>î�ÿ�ïOø¨û>õ�÷�ò1ú��.í�ù©ó�í<î���ûdúþ÷�ô²ñ�÷�ûdóiõ�÷?í<î �E÷�ô¡ì�ûdó�ñ�û
í<î?ú�3
J��?í<ð « ô¡ú�õ�÷~�b�H÷�ûdó�ûTí�ù��'÷�ôöò�ý?ù`í<ð²ò�î�ñ��Hôsõ�÷�ì7JOL)M
ú1ô²ù�ÿ�ó�û�õ�ô
%dû>ó	�.í�ù.ó�í<î ��ûdú�í��Iò�ü�û�3
J��?í�ð~+�ó�û�J���û>î�ÿ�ïiø¨û�õ�÷�ò1ú<�
+�ó�ò�ø(õ�÷�û©û>ø¨ý�ô²ó�ô¡ÿ>í�ð9ùwõ8�?ú1ï�ÿ>í<ó�ó�ôöûTúGò��1õ*ôöî�õ�÷?û�����ò��Eõ�÷�ô¡ù
ý?í<ýIû>óA�9�#ûGù-ûdû�õ�÷?í�õ�1-M�0BJ:���v?0ÿ�ò�ø¨ý?í<ó�ûdù_�Ùífü�ò�ó�í��?ðöïX�Hôöõ�÷
ì7J:L#M�ú1ô²ù�ÿ�ó�û�õ�ô
%dû>óA�

� �£ç æ o�¢Ùé�jdêbç æEë
« û£÷?ífü�û
ý?ó�ûTù-ûdî�õ�ûdú�íiú�ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ô²ò�î�í�ðöñ�ò�ó�ôsõ�÷�ø �?í�ù�ûdú�ò�î
í¨î�û6� ÿ�ò�î?ÿ�ûdý1õ��­ù��?ÿdÿ�ûdù�ù�ôöü�û�ý�ù-û��?ú1òiôöõ�ûdó�í<õ�ô²ü�û
ú1ûdðöû>õ�ô²ò�î�í�õ

ø©í���ô²ø'�?øAôöî � ò�ó�ø¨í<õ�ô²ò�î0ñ�í�ôöî �Iò���î?ú?í<ó�ï�ý�ò�ôöî�õ�ù6��õ�÷?í<õ�ÿ>í<î
�Iû/�?ù-ûTú � ò�ó`ñ�ûdî�û>ó�í�õ�ôöî?ñ�ý�ó�û��Yý�ó�ò1ÿ>ûdù�ù-ûTú�ú?í�õ�í7� ò�ó¨ùwõ�í�õ�û�ò��
õ�÷�û�í<ó�õ�ø¨í�ÿ�÷�ô²î�û0ðöûTí<ó�î�ôöî?ñ�í�ðöñ�ò�ó�ôsõ�÷�ø©ù�� ò�ó�ú�í<õ�íþø`ô²î�ô²î�ñ
õ�í�ù��1ù6�73 ø`ý?ôöó�ô²ÿdí<ð9ûdü�í<ð&�?í�õ�ôöò�î�ò��¢ò��?ó£í<ð²ñ�ò�ó�ôöõ�÷?ø 1-Md0BJ¤���@?
÷�í�ù�ù-÷�ò}�Hî�õ�÷?í<õkú�ô²ù�ÿ�ó�û�õ�ô
%dûdú�ú?í�õ�í�ñ�ûdî�û>ó�í�õ�ûdú���ï*ôöõ�ô¡ù ��û>õ-õ�ûdó
õ�÷?í<î¥ù-õ�í<õ�û�ò���õ�÷�ûGí<ó�õ\ú1ô¡ù�ÿ>ó�û>õ�ô&%dí<õ�ô²ò�î¥í<ð²ñ�ò�ó�ôöõ�÷�ø ì7J:L#M$�
�H÷?ô²ÿ�÷�÷?í�ù9�Iû>ûdî�ó�í�î ��ûTú­ü�û>ó�ï­÷�ôöñ�÷�í�ù�íiú1ô¡ù�ÿ>ó�û>õ�ô&%>û>ó�í<ð²ò�î�ñ
�Hôöõ�÷
�'÷�ô²ò�ý�ù�
 ;5�+ôöî�í`ó�ûTÿ�ûdî�õ¢ù-õ��?ú�ï��

0Yõiô¡ù©í �Eûdðöð
�Yí�ÿ>ÿ>û>ý1õ�ûdúþò�ý�ô²î�ô²ò�îþõ�÷?í<õ`õ�÷�û>ó�û�ô¡ù¨î�ò0ò�î�û
ù���ýIû>ó�ôöò�ó�ú1ô¡ù�ÿ>ó�û>õ�ô&%dí<õ�ô²ò�î'ø¨û�õ�÷?ò�ú*õ�÷?í<õ#�Hô²ðöð�ñ�ô²ü�û��Iûdù-õ+ó�ûdù���ðöõ�ù
í�ÿ�ó�ò�ù�ù
í<ð²ðHú1ò�ø©í�ôöî?ù�� L¢ò}�#û>ü�û>óA��ôöõ¨÷?í�ù!��ûdû>îþò��?ù�û>ó�ü�ûTú0ôöî

���}���kõ�÷?í�õ¨ú1ô²ù�ÿ�ó�û�õ�ô
%Tí�õ�ôöò�î�ø`û>õ�÷�ò1ú�ù!�?í�ù-ûTú�ò�î ÿ>ò�î?ú1ôöõ�ô²ò�î�í<ð
ûdî�õ�ó�ò�ý�ï���ý�ûdó2� ò�ó�ø ü�û>ó�ï��Eûdðöð��Z�.÷�û�ù2��ÿ>ÿ�ûTù�ù­ò���1-Md0BJ¤���@?
ÿdí<î©ýIò�ù�ù-ô&��ð²ï���û'í�õ�õ�ó�ô
� ��õ�ûdú©õ�ò
õ�÷�û:�Ùí�ÿ|õEõ�÷?í<õ#ôöõ�ù õ�÷?ó�ûTù-÷�ò�ð²ú
ýIò�ô²î�õ¢ù-ûdðöûTÿ|õ�ô²ò�î­ÿ�ó�ôsõ�û>ó�ô²í`í<ó�û'ÿ�ò�î�ú1ôsõ�ôöò�î?í<ð�Nbù2�?ÿdÿ�ûTù�ù�ôöü�û�î?ò�ô¡ù-û
ó�ûdú �?ÿ|õ�ôöò�î ôöî�ú�í<õ�í���í�ù�ûAP*ò�îOø©í}�1ô²ø'��ø7ô²î-� ò�ó�ø©í�õ�ôöò�î ñ�í�ôöî
�Iò��?î?ú�í<ó�ï;ýIò�ô²î�õ�ù�� + �?ó-õ�÷�û>ó�ø¨ò�ó�û��>�?î�ðöô&��ûBì>J:L#M í<î?ú
�E÷?ô²ì�ûdó�ñ�û���1-M�0BJ:���v?�ô¡ùEí*ñ�ðöò��?í<ðIú1ô¡ù�ÿ>ó�û>õ�ô&%dí�õ�ôöò�îií<ð²ñ�ò�ó�ôöõ�÷�øC�
�H÷?ô²ÿ�÷�ø©ífï�÷?ífü�û¨ÿ�ò�î�õ�ó�ô
� ��õ�ûdú�õ�ò­ôöõ�ù���û>õ-õ�ûdó
ýIû>ó�� ò�ó�ø¨í�î?ÿ�û
õ�÷?í<î õ�÷�û�ò<õ�÷?û>ó�ù6� L�ò}�Eûdü�û>óA� �EûE� ûdû>ðEõ�÷?í<õ�õ�÷�û>ó�ûiô¡ù£ù�ÿ�ò�ý�û
� ò�óG����ó�õ�÷�ûdóHôöø¨ý�ó�ò�ü�ûdø`ûdî�õ.ò��$1-Md0BJ¤���@?-�

+��1õ���ó�û9�#ò�ó8��ò�î£õ�÷�ô¡ù9ý?í�ý�ûdó ô²î�ü�ò�ð²ü�ûTù�õ�ô²ø`û�ÿ�ò�ø¨ý�ð²û��1ôöõwï
í�î?í<ð²ï1ù-ô¡ù.ò��d1-Md0BJ¤���@?-�G��õ�÷�û>ó�ú1ôöó�ûdÿ�õ�ô²ò�î�ò��$���1õ8��ó�û
ó�ûTù-ûTí<ó�ÿ�÷
ô²î?ÿ>ð
�?ú�ûdù�õ�÷�û#í<ý�ý�ð²ô¡ÿ>í��?ôöð²ôsõwï'ò���1-M�0BJ:���v?#ò�î*ð¡í<ó�ñ�ûEú�í�õ�í��?í�ù-ûTù6�
+�ô²î?í<ð²ð²ï��}1-M�0BJ:���v?#ÿ>í�î���û9ø©í�ú1û ífü�í<ô²ð²í���ð²ûQò�î'ó�ûKJ���ûdù-õµõ�òHõ�÷�û
ù�ûdÿ>ò�î?ú­í���õ�÷�ò�ó��

g�o�� æ ç��E¢���è ¨���ªX� æ l
�! #"%$'&)(�)*,+�-%$.+�"0/'+�$1(�"32 -(�*�687:9� ;$.<)+�$.=;*'+�(?>	2 *,+A@ B%C#4 "DB8"DE,(�$.(�@ *'E�*12GFH$.@ I'"KJML!$1>'"D-
$'4 /'*,+�@ (N #BO$.E;P�Q�7!RS7HTH)*,-� U2 *'+VB%$.E,>�2 +�&#@ (�2 0P#@ -NWK&#-N-�@ *'E#-�*'EX(� ;@ -VY�*,+�<Z7[�!)"
$'&)(N)*'+�-H$'+?"A$'4 -�*8/,+�$.(�"32M\(�*^]\7Z9�4 $.+�<Z_;`a7#b�7ZcG&;@ E#4 $.EV$'E#P0]d7;6G*,B8@ E)/.*,-�2 *'+HB8$'<)@ E)/
(N)"0-�*,&#+�W3"0W3*)P)"D-�*.2e9�FGf;_\9�g;7 hV$.E#PSb5i�j,k�-�>#-�(�"DB8-�+?"D-NC#"DW3(N@ I,"D4 >�DI'.@ 4 $'=#4 "82 *,+e(� #@ -
Y�*,+�<Z7

� ��l���m}� æ o���j

m nKo 9H7\Q5C)(�"^$'E#P�jZ7:p5*,E)/a_�qar�s?t�u v?w u x'yes?z?{Du w |Hr�s?w {Dr?x'}:~ r?����}�s�vM{Dr�u w |AtK��w �K_\Q5P)I'$.E;W3"D-8@ E
�HE)*.Y54 "DP)/'"	6H@ -NW3*1I,"D+�>�$.E#PU6H$.(�$�R0@ E#@ E#/;_GQ5QGQ5i�]d+�"D-�-V$'E#PU(�)"	RVi?��C#+�"D-�-1_
W3 #$.C#(�"D+�f.f;_aC#C:7Zh.g nK� h'�'�#_ n �'�'�#7

m f o 9H7���7�L!4 $'<'"�$.E;P�9H7�`a7�R0"D+��,_����;��r�s �1��}Mu wM��r?|�� ~��H�KvM�Ku x#s�� s?��r?x'u x.y
tK��w �K�?��}�s?}�� �A�KvM�Ku x#s?� r�s?�KtK�K��� s�tK��w ��r�s �1��}Mu wM��r?|��3_ �M ,(�(NC�¡ ¢'¢1Y!Y!Y�7 @ WK-17 &;WK@M7 "DP;&;¢
£ B84 "D$.+�E;¢DR0��b!"DC#*,-N@ (�*,+?>#7 ,(�B%4 ¤¥6G"DC#$'+?(NBA"DE,([*12�i?E,2 *'+�B8$.(�@ *'E�$'E#P¦9�*,B8C#&#(�"D+
j)WK@ "DE;W3",_Z§GE;@ I,"D+�-N@ (?>0*.2!9�$'4 @ 2 *,+�E;@ $;_ai?+?I#@ E)",_ n �'�.�;7

m ¨1o R	7%L�*'&;4 4 ",_�©d�Ku �?�1}�ª�«�}Mw ��w u }Mw u v?�N�Ht�u }�v?r�sMw u ¬N��w u ��x­�Hs?w �.�Nt	� ~�v?��x'w u x'{'��{D}���w w r?u �M{1w s?}�_
RV$.W3 #@ E)"A��"D$.+�E#@ E#/;_:h.hV�Mf'®'®1g)¤3_:C#C�7�h ¨1� �'�;7

m g o `a7�9�"DE#P#+�*1Y5-N<1$;_Gqa¯:� °'��ª:«±xS�N� yD��r?u w �K�U~?��r�u x)t�{'v?u x'y��H��t�{1� ��rer?{1� sM}�_!i?E,(�"D+�E#$.(�@ *,E#$'4
`'*'&#+�E#$'4±2 *'+GRV$.E)JMRV$'W3 #@ E)"^j,(�&#P;@ "D-1_Zf,²^� n �'³'²'¤3_:C#C�7 ¨ g,� �,¨ ²1®;7

m h o]\759�4 $'+�<U$.E;P­b�7�L�*'-�Y�"D4 4M_G¯�{1� se� x)t�{,vMw u ��xV´;u w �S�;µ\¶1ª8}����Hser�s?v�sMx'w\u ���1r���·DsM�Hs?x.w }�_
RV$.W3 #@ E)"0�Z"D$'+�E;@ E)/a¡�]d+?*)W3"K"DP#@ E)/,-8*.2G(� #"%¸\@ 2 (N 	kd&#+�*'C;"D$.E­9�*,E,2 "D+?"DE#W3",_�L�"D+�4 @ E�_
C#C�7 n h n3�;n � ¨ _ n �'� n 7

m � o]\7,6G*,B8@ E)/'*'-1_±�#x.u ~ |3u x'y\u x'}Mw ��x#v?sM�?�?��}�s?t\��x)t\r?{1� s?�M�?��}�s�t:u x#t�{'v?w u ��x#_'RV$'WN ;@ E)"H�Z"D$'+�E;@ E)/a_
¨ � n �'�'�'¤K_�C#C:7 n1¨ � �#n �'³#7

m ² o `a7'6H*'&)/,)"D+�(?>)_)b�7'�H*' ;$DI#@M_#$'E#PAR	7;j)$' #$'B8@M_)°.{K�1s?r?·Nu }�s?td��x#td{Dx'}M{3�.sMr?·Nu }�s?t�t�u }�vMr�s?w u ¬N���
w u ��xA� ~\v?��x'w u x'{'��{D})~?s?��w {1r?s?}�_)@ EA]�+?*)W3"K"DP#@ E)/'-H*.2±(�)"���Y�"D4 2 (� 8i�E,(�"D+�E;$1(N@ *,E#$.4d9�*'E,2 "D+?J
"DE#W3"8*,EVRV$'WN ;@ E)"A��"D$'+�E#@ E)/a_:Q�7;]d+�@ "DP#@ (�@ -�$'E#PSj�7ab5&#-N-�"D4 4M_;"DP;-D7 _aR0*'+�/'$'ES�H$'&,2 J
B8$'E#E�_Zj#$.EV¸Z+�$'E#WK@ -NW3*a_ZC#C�7 n �.g � f'®.f;_ n �'�.h;7

m ³ o �e71kd4 *'B%$.$H$.E;PA`a71b!*'&;-�&�_�¹dsMx#sMr��N�D��x#tds ºVvMu s?x.w,�!{1� w u } �.� u w w u x.y\� ~ax'{D�HsMr�u v?�N�1��w w r?u �M{1w s?}�_
RV$.W3 #@ E)"A��"D$.+�E#@ E#/;_ ¨ �,¢ ¨ � n �'�'�'¤K_�C#C:7 n3� g,�#7

m � o §�7±R	7\¸a$1>)>)$.P	$.E;P��A7±Le7\i?+�$'E#@?_��e{1� w u � u x'w s?r?·D�N�Zt�u }�v?r�sMw u ¬N��w u ��x0� ~Hv?��x.w u x.{,��{D}M� ·D�N� {'s?t
��w w r?u �M{1w s?}�~?��r%v�� ��}M}Mu »�v?��w u ��xS� s?��r?x'u x.yD_�@ EX]d+?*)W3"K"DP#@ E)/,-�*.28(� #" n1¨ (N �i?E,(�"D+�E#$.(�@ *,E#$'4
`'*'@ E,(^9�*,E,2 "D+�"DE#W3"	*'EUQ5+?(N@ 2M@ WK@ $'4ei?E,(�"D4 4 @ /'"DE#W3",_!R0*'+�/'$'EU�H$'&,2 B%$.E;E�_�C;C�7 n ®.f'f �
n ®'f,²)_ n �'� ¨ 7

m n ® o `a7d¼�7�TH+?�K>#B%$.4 $1JML!&#-N-�",_�½\u }�v?r�sMw u ¬N��w u ��x�� ~Gx.{D�Hs?r?u v?�N�:��w w r?u �?{Dw s?}�_�@ E�pG$'E#P#=#*,*,<�*.2
6H$.(�$%RV@ E#@ E)/8$'E#PV�HE#*1Y54 "DP#/."�6H@ -�W3*.I,"D+?>)_)¼�7;�e4M¾*,-�/'"DEV$.E;PV`;7#R	73¿À;>)(N<'*1Y�_#"DP#-17 _
Á5Â 2 *,+�PV§GE;@ I,"D+�-N@ (?>0]�+?"D-N-D_�C#C�7af n ³ � f.f'h#_±f'®.®'f;7

m n'nKo b�7Z�H"D+�=;"D+K_5�;�Ku �AsMr yDs�ª±½\u }�v?r�sMw u ¬N��w u ��x%� ~dx.{1�HsMr?u v!��w w r?u �?{DwMsM}�_a@ EV]d+�*)W3"K"DP#@ E)/,-�*.25(�)"
�:"DE,(� 	FG$.(�@ *'E;$.459�*,E,2 "D+?"DE#W3"V*,E�Q5+?(N@ 2M@ WK@ $.4!i?E,(�"D4 4 @ /'"DE#W3",_\RVi?�Ã]�+?"D-N-D_�C#C�7 n f ¨1�
n f'³;_ n �.�'f#7

m n f o `a7;b�7�cH&#@ E;4 $'E�_\�;Ä.Å Æ1ª±qar��?y�r����!};~?��r��H�KvM�Ku x#s�� s?��r?x'u x.yD_)R^*,+?/,$'E��H$'&,2MB8$'E#E�_ n �'� ¨ 7

550

���������	��

������
���
��������������� !��"$#�

��%'&��(��")�����*
����,+.-/�0���,1��,+��2�0��"

3,4�576�8:9�;�6=< >(4�?A@B?BCD9�E�FG;�H IJ?AKL6�8NM
F0KL6�8POQ?AR

SUT�VXWZY\[N]�W
^`_badcfehgGgiadjNkflnm,oUkpehgdqXjNg
gradcfoUsut�vwvxtymQew_fz|{7gdgdtpq!eh{yadewt�_~}
jfvxo
� ew_few_fz��f}dt7�fvwo �J� sut�}({�j�gioZ}i�`kpo!��_foZk|gdo!a(��t�s2exado � gZ�Ladcfot��p��o�q�adew��oGewg�adt�qXt � �fjpa
o0{�vxv�{�g
gitpq!eh{ya
ext7_J}djfvwoZg0�Bg
{ya
ewgisul�ex_fzgijfexa
{��fvworgdjf�f�Lt�}da�{�_Nk�q!t7_p��kpoZ_Nq!o�a
cf}do�gicNt�vhkfg��	�����y�N��������l
���=mQcfoX}
oU{�_�{�g
gitpqXew{�adewt�_b}djNvxo�ehg�gd{�ewk~a
t��LoUew_NkpjNqXoZk���l
� exs*exa
g�{�_¡a
oZq!o�kpoX_¡aJ���B¢���¢w�¤£�¥*¦N�Gehg§{ngdjf�Ngdo!a§t�s*�¨mQcfewvxo
adcfo�q!t7_NgdoZ©¡jfoX_¡a§���B¢���¢w��ª�¥�¦N�*q!t7_7a�{�ew_Ng�_ft�e«a
o � grex_b��¬0^`_�N{�}dadehq!jfvh{�}���m,o�{�}
o�ew_7a
oX}
oZgiado�k­ew_®{ � jfvxadex�`g�a
oX�¯g
q!oZ_N{�}
ewtmQcfoX}
o�ex_�oZ{�q�c�giadoZ�P�°ewgGex_�q!}
o � oX_¡ado�kb��lnt7_fo�e«a
o � {�_�k
{�vwvf{�g
gitpq!eh{ya
ext7_G}
jfvwoZg=ew_NkpjNqXoZk���l(adcNoQjf�LkN{yado�k��±{�}
o�a
tr��o
q!t � �fjfadoZk²¬0³~o§�f}dt7��t¡gio§{�_~o!´�qXexoZ_7a(exadoZ}
{�adew��o§{�vwz�t�}
exadc �adcN{�a	qX{�_JoXµ��Nvxt7e«a � ew_few_fz�ex_fsut�} � {�adewt�_Jz7{�ex_NoZk�ex_¶�f}
oX��ewt�jNgg�a
oX�Ng,a
t�o!´�q!ewoX_¡advwlU{�_Ngim,oX}�gdjf�NgdoZ©¡jfoZ_¡aQ©¡jfoZ}dewoZgZ¬
· ¸X¹ WZYyº²»�¼�]�W�½uº ¹
¾¤cfo(�f}
t��fvwo � t�s�kfewg
q!ty�7oX}
ex_fz§{�g
gdt�qXew{�adewt�_�}djfvwoZg�ewg¤a
t�q!t � ��fjpado7�fz�ew��oZ_�{§gdo!a�t�s�exado � gÀ¿�ÁDÂ�Ã�Ä\ÅdÃXÆ�ÅZÇXÇXÇXÅdÃ!È�É�{�_Nk�{�gdo!aÊ t�sNad}�{�_�gd{7q�adewt�_�gËo�{�q�cGt�sNmQcfehq�c0ehg={�gijf��gioXa�t�s¡¿Q�7{�vwv�{7gdgdt��
q!eh{yadewt�_G}djfvwoZg�ew_�adcNo2sut7} � t�sfÌ ÍÏÎ���mQcfoZ}do�Ì|ÅdÎ�Ðb¿�{�_�k
Ì�Ñ¤ÎÒÁ­Óp¬�¥�oZ}do,Ì�ehg�qZ{�vwvxo�k(adcNorÔ���ÕÖ�
�������X��Õ2�ut�}�adcNo,£�¥*¦N�
t�sNa
cfoQ}
jfvxo7��mQcfewvxoQÎ®ehg�adcfoG��×y�NØX�
ÙX�N�X��Õ2�Bt�}�a
cfoQª�¥*¦N��¬7¾¤cfo
� oZ}dexaGt�s,a
cfo�}
jfvwo�Ú � ÌÛÍÜÎ � {\ln��o � o�{�gdjf}
oZk~��lnexa
gØ��\Ý7Ýp×�Þ!Õ2ß�à7á¡á��BÚ����padcNo�su}�{�q�a
ext7_�t�sËad}�{�_Ng
{�q!adewt�_Ng�q!t�_¡a�{�ew_fex_Nz
��t�adc~Ìâ{�_�knÎ�t�jpa(t�s,{�vwv�ad}�{�_Ng
{�q!adewt�_Ng*ew_ Ê �Ë{�_Nk:��×y�Zã2ä
���X�L���*å�æ�ç7è`�BÚ����7adcfoQsu}�{�q!adewt�_§t�sLad}�{�_�gd{7q�adewt�_�g=q!t�_¡a�{�ew_fex_NzrÎ
adcN{�a,{�vhgdt0q!t7_¡a
{�ew_�ÌP¬=é	gdjN{�vxvwl��¡m�o�{�}
o	ew_¡adoX}
oZgiado�k�ew_�adcft¡gio
ê ×�×Z�~Þ��pëw��Ø�adcN{�a§g
{ya
ewgisul�git � o�jNgdoX}d�ÖkpoX�N_fo�kPgijN�f��t7}ia�{�_�kq!t�_f��kpoX_�q!o�adcf}
oZgdcft7vwkfgZ�Nß�à7á¡á7ì¤í È {�_Nk�å�æ�ç7è ì¤í È)¬

¾�}�{�kpexadewt�_N{�vxvwl��î{�g
gitpq!eh{ya
ext7_ }
jfvxo$kpehgdqXty��oZ}dlïewg±qXt�_p�
kpjNq�a
oZk§ew_�{�_�×iðî����� � {�_f_foZ}Z�¡{�_Nk�a
cfo�}
jfvxo�gÀ�LoXew_fzGgdt�jfz7c¡a{�}
o ê �X�L�XÞdÔ�ë�t�_fo�gGmQexadcNt�jpa�{�_�l�q!t7_Ng�a
}
{�ex_¡aGt7_PoXexadcNoX}0adcfo{�_¡ado�q!oZkfoX_¡a�t�}�a
cfo�qXt�_NgdoZ©¡jfoZ_7a���{�}daZ¬ñ^`_òa
cfehg��N{���oZ}�m�o
g�a
jNkpl�a
cfo(�f}
t��fvwo � t�s�e«a
oX}�{yadew��o � ew_fex_Nz�mQe«a
c|q!t�_�g�a
}
{�ex_fo�k{�_¡ado�q!oZkfoX_¡a
gZ¬Ëó2{7q�c(©7jNoX}
l*t�s�t7jf}²�f}
t��Nvxo � ehgËgd��o�q!ex�NoZkrmQexadcß�à¡á7á ì,í È ��å�æZç7è ì¤í È ��{�_NkJ{§gioXa	�ôÐ~¿òt�sQÔ���ÕÖ���
���7�!�LÕ2�uÕÖ�!õ0Ø
gioZvxo�q�ado�k|��lJadcNo0jNgdoX}�¬G£Ëo!a�öPÁñ¿~÷	���Lo�adcfo�gdo!art�s���×y��ä
Ø!��ÙX�N�!�LÕ��uÕø�Xõ0Ø�¬=¾¤cfo�t��f��oZq�a
ex�7o	ehg�adt���_NkU{7gdgdtpq!eh{yadewt�_�}
jfvwoZg
���L�y�N��������l����ÀmQcNoX}
o�{�}djfvwoUÚ � ÌùÍ�Î¨ewg�gd{�ewkPadtn��o
ex_NkfjNq!o�kú��l:�Ïexs(Ìüûý��{�_NkúÎþû ö=¬D^`_­�N{�}ia
ewqXjfvw{�}Z�
m�o�{�}
o	ew_7a
oX}
oZgiado�k�ex_�{ � jfv«a
e«�`giadoX��gdqXoX_N{�}dewt�mQcfoZ}do�ew_UoZ{7q�cg�a
oX���/ewg�ex_NqX}do � oX_¡ado�kn��lnt�_fo�exado � {�_�k~{�vxv�{�g
gitpq!eh{ya
ext7_
}djfvwoZg�ew_NkpjNqXoZk:��lbadcfo¶jN�Lkf{�ado�kî�ÿ{�}
oUa
tb��o¶q!t � �fjpado�k)¬¾¤cfoX}
o!sut7}do7��e«a�ewg�q!}
e«a
ewqZ{�vpa
t(o!´�q!ewoX_¡advwl�cN{�_NkfvxoQa
cfo��f}
oX��ewt�jNg
� ew_few_fz�}
oZgdjfv«a�gQ{�g¤_foZm®{�_¡adoZqXoZkpoZ_¡a¤exado � g�{�}
orex_¡ad}
tpkpjNqXoZk)¬

���������
	������

������������������ ��������� � ��!#"%$�&('�)�*%+�,�-#. /�0�12$3.54%6�$3. /�0�798�:��
��;(��:�����<�������;����#���=����>?���@�3���=��A��CBD�%������EGF�BIH�J�KML J�NOHMP�PQLSR�T�7U PS
�VW8I7 X�7�YZ�M�������[F������2����\�:^]_�2�����2�2!3-3"%`�$a)�$("�.�bQ1�,c.5*%+�,
7d P e�e����������fP ���=��� ��;����Z��gh8i��\%:�����e�������!Ij�k b=)�*2"l.mb5bon .o4%6�$(7p8�:��q��;���:����
<�������;����r��������>?���C��������AO�tsDu(Ev;���>��2�DBD�%�����D]�]�F�LSJ�K�T�T�TxwMN�7

¾�t*sB{�q!ewvwe«a�{yado¤oX´�qXexoZ_¡a�qXt � �fjpa�{yadewt�_�t�sL{�g
gitpq!eh{ya
ext7_�}
jfvxo�g�ex_a
cfo�©¡jfoX}
l��NcN{�gdo���m�o�jNgdo�{�_­Ô7�lyXÔ����X�L�Oz�ëxÔ�ÕAÕA�B�����AgioZo|{ }�~u���
kfoX_ft�adoZkU��l�� ío�=�`ìc���%� ��a
t�giadt7}do*su}
oZ©¡jfoX_¡a¤e«a
o � gdo!a
g¤mQexadc�}
o!�gd�LoZq�a2adt�{ � ew_fe � j � gijf�N��t7}ia2�Newq��7oZk§gij�q�c0a
cN{ya2adcfo�oZ_¡adew}do{7k\�i{�qXoX_NqXl�vh{yaia
ewqXo(qX{�_��Lo�g�a
t�}
oZk�ex_�adcNo � {�ex_ � o � t7}dl7¬¦�oZ��oZ}
{�v�kfe5��oX}
oX_¡a(sut�} � grt�sQq!t7_Ng�a
}
{�ex_NoZk � ew_few_fz¶cN{\��o�LoXoZ_ kpehgdqXjNgdgdoZk±ew_ �f}
oX��ewt�jNg|vxexadoZ}
{�adjf}
o�¬�¦�}
eo�y{�_7aò�XÕ�Ôyëx¢
{ ��~UqXt�_NgdewkfoX}
oZk±a
cfoò�f}dt7�fvwo � t�s�q!t � �fjfadew_fz®{7gdgdtpq!eh{ya
ext7_}
jfvwoZgnjf_NkpoZ}�q!t�_�g�a
}
{�ex_¡a
g�adc�{ya�{�}
o��Lt¡t7vxo�{�_ oXµp�f}do�gdgdewt�_Ng
ty�7oX}(a
cfoU�N}do�gioZ_Nq!o�t7}0{��NgioZ_Nq!oUt�s�exado � gZ¬|�¤{\l7{�}
kptP�ZÕ(Ôyëx¢
{ �3~�kpoZg
q!}
ew��o�k {�_ {�vxz7t�}
e«a
c � a
cN{ya~o!µp�fvwt�exa
g�jNgioZ}i�`kpoX�N_foZk
qXt�_Ngiad}�{�ew_¡a
gút7_ gijN�f��t7}ia��Pq!t7_p��kpoZ_Nq!o7�b{�_Nk°�f}
oZkfewqZ{yadew��o
{7kp�y{�_¡a
{�z�o7¬�£Ë{#�pgic � {�_N{�_J�XÕ=Ôyëw¢c{ �r~�giadjNkpewoZk§{r}
ewq�c�qXvw{7gdg�t�s
{�_¡adex� � t�_Nt�adt7_fo2{�_Nk0gdjNqZq!ew_Nq�a=q!t7_Ng�a
}
{�ex_¡a�g²sut7}�exado � gdo!a�g={�_Nk�N}dty��ehkpoZk � ex_few_fz�{�vxz7t�}
e«a
c � g§adc�{ya�{7q�cfexoZ��o¶{�gdexz7_fe«�LqX{�_¡akfoXz�}
oXo�t�s��f}
jf_few_fz¶sut�}0adcNoZgdoUq!t7_Ng�a
}
{�ex_¡a�gX¬���oZe��ZÕrÔ�ëx¢�{��(~
giadj�kpexo�kJgioZ��oX}�{�vLa�l��LoZgQt�s�qXt�_Ngiad}�{�ew_¡a
g,adc�{ya	{�}
o(kpex´�qXjfvxa�adt
�Lo�cN{�_NkpvwoZk�jNgdex_Nz§ad}�{�kpexadewt�_N{�v)ado�q�cf_feh©¡jfoZgZ¬���t7_fz�{�_NkJ£Ëexj
{ ��~��f}
ty��ewkfoZk­{�_ño!´�qXexoZ_7a�ado�q�cf_feh©¡jfo�a
tîjfadewvxe��Xob�f}
oX��ewt�jNg
� ew_few_fz§ex_psut7} � {�adewt�_�adt�q!t � �Njpado�su}
oZ©¡jfoX_¡aQexado � gdo!a�g¤mQcfoX_a
cfo � ex_Ne � j � gdjf�f�Lt�}da�q!t�_�g�a
}
{�ex_¡aQewg¤}
oXvh{yµpo�k)¬� z�z7{�}dm¤{�v�{�_NkW�Àj�{ }�~0�f}
t��Lt7gdoZk±{�_Dt�_fvwex_No � ew_few_fza
oZq�cf_New©¡jfo,adc�{ya2qX{�_GoX´�qXexoZ_¡advwl0{�_�gim,oX}=©¡jfoX}
ewoZg�mQe«a
c�kpe5��oX}d�
oZ_¡a � ew_fe � j � gdjf�f�Lt�}da2q!t�_�g�a
}
{�ex_¡a
g�j�giew_fz({r�f}
o!�`q!t � �fjfadoZk{7k\�i{�qXoX_NqXlUvh{yadadehq!o(t�s=exado � gdo!a�gX¬¤£Ë{�adoZ} � z7z7{�}
m¤{�vÀ�XÕQÔ�ëx¢[{o��~
oXµ�adoX_�kpoZkñadcfehg�ado�q�cf_feh©¡jfo~adt � ew_few_fzò�f}
t��Nvwo~{7gdgdtpq!eh{ya
ext7_}
jfvwoZg�mQexadcú©¡jN{�_¡adexa
{�adew��oJ{yadad}
ex�fjfadoZgZ¬ò¾¤cft � {�g¶�ZÕ0Ô�ëx¢�{ ��~
giadj�kpexo�kúew_7a
oX}�{�q!adew��o|}
jfvwo � ex_few_fzîmQe«a
cñq!t7_Ng�a
}
{�ex_¡aU}
oXvh{yµ��{�adewt�_NgZ¬�^`_U{�gdoX_Ngdo��¡t�jf}�e«a
oX}�{ya
ex�7o � ew_few_fz � oXadcftpk�qXt � �fvwo!�
� oZ_7a�g�adcfo�o!µpehg�a
ex_fz�m,t�}M��g2��l��f}dty��ehkpew_fz0{ � t7}dorq!t � �fvxoXado
� o�q�cN{�_fehg � sut�}Ëe«a
oX}�{yadew��o � ew_few_fzN�\mQexadc�q!t7_Ngiad}�{�ew_7a�g)kpo!��_foZkt7_�gdjf�f�Lt�}daZ�fqXt�_p�LkpoX_NqXo��N{�_Nk�{�_¡ado�q!oZkfoX_¡a���q!t�_�gio�©7jNoX_¡aZ¬
� � Y3���u½=�b½ ¹ [pYy½S��V
£Ëo!a|�.ÁùÂ\Ã í ÅdÃ ío¡ ÅXÇXÇZÇXÅ
Ã í�¢ Éb�LoP{ògioXa|t�s�e«a
o � gX¬¤£Nt�}|{
z7ex�7oX_����À{�_�e«a
o � gioXaGÌ�ehgGqX{�vxvwoZk�{�_ñÔy�LÕø���������X��Õ��uÕø�Xõ0Ø!�ZÕ
exs¤Ì û���¬U³~o�jNgdo¦¥¨adt|kpoZ_ft�a
o§adcfo�gdo!a�t�s¤{�vxv�§�Þ
�
ÙX�N�X��Õ
Ô���ÕÖ���
���7�!�LÕ)�uÕø�Xõ0Ø!�ZÕBØ�mQexadc§gijf�N��t7}ia�g�_Nt�vwoZg
g�adcN{�_�ß�à7á¡á7ì¤í È ¬
� _�exado � gioXa@¨ñehgQqX{�vxvwoZk�{UÞ��pëx���uÕø�Xõ0Ø!�ZÕÀexsI¨b÷2�ª©Á­Ó¬«fgijNq�c
{�_ñexado � gdo!a¶jf_New©¡jfoZvxl­qXt�}
}do�gi�Lt�_NkNg�a
t:{î}djNvxo­¨±Ñ��ùÍ
¨b÷2���BmQe«a
cft�jfa	q!t�_�giehkpoX}
ew_fz0{�_¡l�gdjf�f�Lt�}daQ{�_Nk�q!t7_p��kpoZ_Nq!o
a
cf}
oZgdcft�vhkfg���ew_NkpjNqXoZk���l���¬�³~o�qZ{�vwv�¨¶Ñ�� adcfo�Ô\Ø�ØX×Z�X�BÔ�ÕÖ���
Ô���ÕÖ���
���7�!�LÕÀ�uÕÖ�!õ0ØX�XÕ,t�sh¨�¬=^`_�a
cfehgQ�N{��LoX}��fm,o({�g
gij � o�adc�{yaa
cfo�z7t7{�v=ehg(a
t�q!t � �fjpado�{�vwvÀ}djNvxo�exado � gioXa
gGqXt�}
}do�gi�Lt�_�kpex_Nza
tnz7t�t�kP}djfvwoZgJ�Bex_NqXvxj�kpex_Nz�a
cft7gdo�mQexadc:_�jfvwv¤{�_¡adoZqXoZkpoZ_¡a
g���¬
³úexadc � ew_ft7} � t�kfe«��qZ{ya
ext7_NgX�Qt7jf}U{�vxz7t�}
e«a
c � qZ{�_ú{�vhgit��Lo
j�gio�k�a
t�q!t � �fjfador}djNvxo�g¤mQe«a
c|git � ort�adcfoZ}Q�f}dt7��oZ}ia
exo�gX¬³~oîkpoX�N_foîadcfo�sut�vwvxtymQew_fz­vwo!µpehq!t7z�}�{��fcfehqbt�}�kpoZ}¯®§��Ç �
t7_ exado � g � eu�°®§�BÃM±���²³®§�BÃ ì ��sut7}P{�_�lÒÃM±µ´â�ù{�_Nk
Ã ì ´|öI«)ewe��@®§�BÃ ío¶ �t²·®§�BÃ í�¸ ��e«s2Ã ío¶ Å
Ã ío¸ ´b��{�_Nkº¹»²½¼p«

551

exewe��q®§�BÃM±��v²�®§�AÃ ì �rexs*ÃM±�ÅdÃ ì ´òö­{�_Nk�¹ ² ¼n¬n³no�gd{\l
adcN{�a¤{�_Uexado � Ã�±�ehgr×�Þd���XÞd��� � ��§!×yÞd���
Ô�§�ÕÖ�!Þ��N}do�gi�LoZq!adew��oXvwlN�=Ã��e«s ®§�BÃM±���ewgQvwoZg
g,adc�{�_�� � t�}
o�adcN{�_²�p}
oZgd��o�q�adew��oZvxlN�
®§�BÃ��¡��¬

£Nt�}À{�_¡l(exado � gioXa
¨:{�_Nk�{�_�l�Ã ì ´�ö���exs�¨���Á ¨��(Â\Ã ì É
ewg={rz7t¡tpk0}djNvxo¤exado � gdo!a2{�_Nk ®§�BÃ ì �
	 ®§�BÃM±y��sut�}À{�vwvfÃM±^´�¨(�
m�oGg
{\l�a
cN{ya^¨���ehg	{n��×��fØX��Ù!�N�X��Õ¤�
�¡ÕÖ�!�NØ��B×y�~t�s ¨(¬	³no0jNgio
����� È ��¨��*adt|kfoX_ft�ado§adcNoUgioXaGt�sQ{�vwv2qXt�_NgdoZ©¡jfoZ_7a(oXµ¡a
oX_Ngdewt�_Ng
t�sC¨�¬|³noJkpoX�N_fo~Ô���ÕÖ���
���7�!�LÕr���¡Õø�X�fØ��B×��fØ ��� È � ��¨��({�_N{�vwt��
z�t�j�givwl�¬�³no�gd{\l(a
cN{ya¤Ã ì ehg=a
cfo ê �!���!Þ
Ô�ÕA��� ê �uÕÖ�!õ�t�s�¨��N{�_�k
kpoX_ft�adoQexa2��l0Ã�� � È���¨��h��¬�³no�j�gioÀ¿�� � È²������a
tGkpoZ_ft�a
o¤adcfo	gdo!a
t�s�z7oX_foZ}
{�adew_fz�e«a
o � g�t�s�{�vwvpe«a
o � gioXa
g=ew_§{�gdo!a��®t�sLe«a
o � gdo!a
gZ¬

£Nt�},adcNo*�fjN}d�Lt7gdo*t�s�q!t � �N{�}
ewgdt�_Ë�7m,o��N}�gia¤kpo�gdqX}dew�Lo�{�_� �f}
ext7}dex�Övxe���o�t��§ew_foJ{�vwz�t7}dexadc � ���! #"%$'&)(+* ,.-0/213 #"%,n�AgioZo � v«�
z�t�}
exadc � �\���NadcN{�a*q!t � �fjpado�g	{�vxv�}djfvwo�exado � gdo!a�g�ew_NkpjNqXoZkJ��l� {7gdgdj � ex_NzGa
cN{ya¤adcNo�oZ_¡adew}dor�Òehg¤z�ew��oZ_�{�a¤t7_Nq!o7¬=¾¤cfewg¤{�v«�z�t�}
exadc � }do�q!jf}�giew��oZvxl�qX{�vxvhgh�2}dtpq!o�kpjf}
o4�! #"%$'&)(+* ,�-��65!7�8 9:,�;�-�,�9
�BgdoXov�À}
t�qXoZkpjN}doº�\���)mQcNewq�c~q!t � �fjfadoZg*sut7}r{�z�ew��oZ_|exado � gdo!a
¨®{�vwv)}djfvwoZg,a
cN{ya	{�}doroXµ¡a
oX_Ngdewt�_Ng¤t�sI¨�¬
S¦�=<LºNYy½�W%>�� · �! #"%$'&)(+* ,.-0/213 #"%,��B���
T�?A@�BDCFEHGIB�C�7
RF?)J+K�K�LMGONPBRQ�E�J+KTSHLUG)NPBWV@7
KF?�X�Y Z�[H\^]._ `:abX0c�d=e f=`�ghai`�f�LUG)N%7

� Y\ºË]#��»�¼ËY3� · �! #"%$'&)(+* ,.-��65!7�8 9:,H;�-�,�9X�%¨*�
T�?AjUk�lnm�opo�qbrPsnJ�KTS+LMGON�t^k
RF? u#j ß�à¡á7á LMGwvyx�q r�z N|{ ß�à7á¡á+}O~#� m��^t��2LMq r N|���2Lpq } NGg�������e�e

q } s�G����!�F�
KF? J K�S LMG�v�x�q r�z NiB4J+�
� � L�� S � r LUG)NTNTE.J K�K LMG�vyx�q r�z N�B�Qi7
N%? X�Y Z0[6\^]._ `babX0c�d=e f=`�ghai`�f�LUG3v�x�qbr z N%7
� ?AjUk�lnm�opo�qbrPsnJ�KTK.LUG)NPt^k
� ? u#j ß�à¡á7á LMG4v�x�q r�z N|{3�f���6x ß�à¡á7á!}O~#���Öå�æ�ç�è }O~#�n� ß�à7á¡á Lp��N z

m��^t��2Lpqbr�N����2LMq } NGgo������e�e^q } s�G����!�F�
w�? ��>�>t� ���b�c���l�)G�v�x�q r�z �������n@[7
� ? J+K�S+LMG�v�x�qbr z NiBDCFE.J�KTK.LUG�v�x�qbr z NiB�J ��� � L���K�� � LUG)N�N%7
� ? X�Y Z0[6\^]._ `babX0c�d=e f=`�ghai`�f�LUG3v�x�qbr z N%7
¦pe � ewvw{�}Ëa
t � �f}
ewt�}
e � vwz�t7}dexadc � �\sut7}�{�_¡l§�B{�_¡adoZqXoZkpoZ_¡a�t�}}djfvwo\��exado � gioXaC¨®{�_NkJ{�_�l ¨���´ ��� È � ��¨��P� ����� È �%¨*���fm�orvwo!a

adcfo§�
Ô��L���B��Ô�ÕÖ�G��×��fØX��Ù!�N�X��Õ=���7ÕÖ�X�fØ��B×y�Jë �hØ!Õ²¿ ��� ��¨����=t�s�¨�����o
adcfoQvwewgia²¿ � � È � ����� È ��¨��i��t�sL{�vwvpz�oZ_foX}�{ya
ex_Nz*exado � gÀt�s ����� È ��¨���¬³no�qXt�_Ngiad}
jNq!a�adcfo�vxehg�a�¿ ��� ��¨��h��t�sU��Ôy�L���B��Ô�Õø�bÔy�LÕø���������X��Õ
�
�¡ÕÖ�!�NØ��B×��fØ�ew_U{�gde � ewvw{�} � {�_N_foX}��7mQexadc�adcfo*o!µfq!oZ�padewt�_§a
cN{yasut�}�{�_�l�}
jfvwore«a
o � gioXaC¨��A��¿ ��� �%¨�����ewgQ{�vxm¤{\lpg,o � �pa�l�¬

�	o!µ�aZ��m,o0gdjf�f�Lt7gdo�a
cN{ya({�_¡ado�q!o�kpoX_¡a	exado � gr{�}doG{7kfkpo�kex_¡adtb�¨t�_foJ{ya�{|a
e � o7¬�£²oXa�� � ÁýÂ�Ã í Å
Ã í ¡ ÅXÇZÇXÇZÅdÃ íQ¢ ÉJ��o
adcfo�gioXa�t�s²{�_7a
oZqXoZkpoZ_7a�e«a
o � g2ew_�¦¡a
oX�����¡{�_Nk§vwo!aA � ��o	adcfovxehg�a�t�s�{�vwvÀz�t�tpk~}djfvwoZg�e«a
o � gioXa
g(ew_Nkpj�q!oZkb��l~� � ¬�^`_�¦�adoX�����¡|�\��{r_foZm:{�_7a
oZqXoZkpoZ_7a=exado � Ã�¢�ewgÀ{7kfkpo�k)�7{�_Nk0adcfoZ}doXsut�}
o����£ Ä Áñ���n��Â�Ã ¢ É¡¬

³~o��N}
gia0oXµf{ � ex_NoUoZ{7q�cP}
jfvxo�e«a
o � gdo!a§Ì¤�~Îâ�Bq!t7}d}
o!�
gi�Lt�_Nkfex_fz�adtn}djfvwoUÌÜÍ�Î0�(ew_¥ ¦�|{ys�adoZ}�Ã ¢ ��o�q!t � o�g0{�_{�_¡ado�q!oZkfoX_¡aQe«a
o � ¬À¾¤cfoX}
o({�}
o�adcf}
oXo(qX{7gio�g �
§�¨ª© ��S¬« Ã ¢ ©´JÎ3­ÀÌ®�(Î ehgÀew_¡a
{7q�aZ��{�gÀe«a¤q!t�}
}
oZgd��t7_Nkfg�adt
adcfo�gd{ � oQ}djfvwo�mQexadc�gdjf�f�Lt�}da�{�_�k�q!t�_f��kpoX_�q!oQjf_Nq�c�{�_fz7oZk)¬
§�¨ª© �°¯�« Â�Ã ¢ É­Ð¨Î�­�Ì±�PÎÏ_ftym°qXt�}
}do�gi�Lt�_NkNg§adt�{
kpeo�LoZ}doZ_7aG�B�fjpa*giadewvwv)z�t�tpk���}djNvxorÌ²�¶Â\Ã ¢ É�ÍýÎñ÷	Â�Ã ¢ É¡¬
§�¨ª© �´³�« Â\Ã�¢�É�Á�Î�­GÌµ��Î ehgr_ftJvwt�_fz7oX}({�z�t�tpk|}
jfvxo

£�ewz�jf}
o � � � q!adew��o�{�_7a
oZqXoZkpoZ_7a�exado � gioXa
g�mQe«a
cú}do�gi�LoZq!a�adtexado �·¶ ¬

e«a
o � gioXa¤{7gÀ_ftym:a
cfo*qXt�}
}do�gi�Lt�_Nkfex_fz(}
jfvwo	Ì¸��Â\Ã ¢ É*ÍÏÓ(ehg
_ft§vxt7_fz�oZ} � o�{�_few_fz�sujfvA¬¾�t0qXt�_Ngiad}
jNq�a
 ¦��£ Ä su}
t � ¦�p��m,o��N}�g�a,_foXo�k�a
t0kpoZvxoXado
{�vxv�¾2l��LoZ�­}
jfvwo(e«a
o � gdo!a
g�su}dt � ¦��¬�£fjN}ia
cfoX}��Nm,o(_foXo�k�adt
qXt � �fjpa
o0{�vxv�}djNvxo�g	ew_¶adcNoGsut7} � t�sÀÌµ�nÂ�Ã ¢ É0Í Î���mQcfoZ}do
Ì ûD���U{�_NknÎ®Ñ¶�w��£ Ä Á�Óf¬(^Ös2adcNo§qXt�}
}do�gi�Lt�_�kpex_Nz�}djNvxo
exado � gioXa�Ì¹�2Î3��Â�Ã�¢�É2ehg�_ft�aËew_� � �i�B¢��Z¢w�7}djNvxoÀÌ ÍýÎD��Â�Ã�¢�É
ehg�_ft�a�{	z�t�tpkr}djNvxo,kpewg
q!ty�7oX}
oZk�ew_0¦¡adoZ���N���\e«a=gic�{�vwv��Lo,{7kfkpoZk
ew_¡adt� � ¬�³~o�qX{�vxv�a
cfoZgdo�}
jfvxo§exado � gdo!a�g»º¬z�Ýp�D¼/�uÕÖ�XõGØX�ZÕuØ�¬
¾¤cNo�}
oZgdjfvxadew_fz�gioXa�t�s�}djNvxorexado � gdo!a�gQewg2 �.£ Äy¬¾�t���oXaia
oX}�jpa
exvwe��Xo � ew_fex_Nz�ex_psut7} � {�adewt�_Jz7{�ex_fo�kUew_J�f}
o!���ewt�jNg	g�a
oX�NgZ�fm,o � {�ew_7a�{�ew_¶{Jëx×Z��Ô�ë�Þ��pëx�G�uÕÖ�!õ0ØX�XÕ¤ÕAÞd��� Ê�½�¾F¿ � �mQcNewq�cPehg�{¶vxoXµpewqXt�z�}�{��Ncfewq�ad}
oXo��A{�qXqXt�}�kpew_fz¶adt�adcfo�vwo!µpewqXt��
z7}
{��fcfehq�t�}�kpoX}	kfo!�N_fo�kJex_Ja
cfo��f}
oX��ewt�jNgQgdoZq!adewt�_L�Q{�_NkJq!t7_p�
a�{�ew_Ng={�vwv�su}
oZ©¡jfoX_¡a2{�_7a
oZqXoZkpoZ_7a=exado � gdo!a�gÀ{�g�m,oXvwvf{�g={�vxvpz7t�t�k}
jfvwore«a
o � gioXa
gZ¬
�*{yadjN}
{�vxvwl���a
cfoX}
o(ewg	{§t�_foX�Aa
t��Öt�_fo � {��f�few_fz�Lo!a�m,oXoZ_î_Nt�kfoZg§ew_ Ê�½�¾%¿ � {�_Nkî_ftpkpoZg§ew_ � ío�=�`ìc���%� ¬ú¾¤cfoZ}do
{�}do§a�m,t¶a�l��LoZg0t�s�_ftpkpo�g�ew_ Ê�½
¾%¿ � �	Ôy��ÕÖ�����
�7�!�LÕ��L×����!Ø�{�_Nk
Þ��pëw�|��×Z�7��Ø��*qXt�}
}do�gi�Lt�_�kpex_Nzna
tî{�_7a
oZqXoZkpoZ_7a�e«a
o � gioXa
g�{�_Nk}
jfvwoUexado � gdo!a�g�}do�gi�LoZq!adew��oXvwl�¬°£ft7}0{�_¡l ¨ ´ Ê ½�¾%¿ � �Àm,oUj�gio
Ê ½�¾%¿ � �%¨*�2a
t§kfoX_ft�adoradcNo�gijf�fad}
oXort�s Ê ½
¾%¿ � }
t¡t�ado�k�{�a@¨�¬
À § �7Yr�b½ ¹ º9�uº'<L½S��V�[¹ »ÂÁ�[fWZ[¥Ã)WZY�¼Ë]�W�¼ËY���V

Ã�¼ ©)© º�Y\W.Ä�[¹ »]�º ¹ªÅ »�� ¹]#�+Ä
]7º ¹ VZWXYy[f½ ¹ ��» [¹ Ä
W���]#��»�� ¹ W/½�W(�i�bV��¡WZV £²o!aW¥n� �Lo±adcfo gdo!aút�s~su}
oZ©¡jfoX_¡a
{�_¡adoZqXoZkpoZ_¡a�e«a
o � gdo!a
g~mQexadc }do�gi�LoZq!a�adt®����¬ � _�l±Ì ´
¥n� ewg$g
{�ehk�a
t¨�LoýØ��\Ý�Ýf×yÞ!ÕAäi��×y�fØ!ÕAÞdÔy�������ÏexsDå�æ�ç�è ì¤í È Ç
ß�à¡á7áN�BÌ~�ÇÆ ß�à¡á7á ì¤í È «Òt�adcfoZ}dmQehgdo��òe«a ewg g
{�ehkÿadt°�Lo
��×��Zã��7�!�����!äi��×y�NØ!ÕBÞdÔ����L���y¬:^Öa�ewg§o�{�gdlbadt�gdoXo�adcN{�aZ�,e«s�Ì ehg
gdjf�f�Lt�}dai�`q!t7_Ngiad}�{�ew_foZk)�\a
cfoX}
o�mQewvxv���oQ_NtG¾2l��Lo�È­}
jfvwoQe«a
o � �gdo!a�ew_� ¦��£ Ä adcN{�a	ehg	{�kpo�gdqXoX_NkpoZ_¡a	t�s�ÌP¬¤¾¤cfewg�ewg	��o�qX{�j�gio
ew_n¦¡a
oX�É�¶{�}
jfvwoGexado � gdo!aq¨ {7gdgdtpq!eh{ya
oZkJmQexadc�ÌâqX{�_�t�_fvwl
�Lo	kpehg
©7j�{�vwe«�No�k|��su}
t � �LoXew_fzG{(z7t¡tpk§}
jfvwo\��kpjNo�adtGvxtymúgdjf�p��Lt�}da0{�_Nk�cfoZ_Nq!o�e«a�mQexvwv�}
o � {�ex_P{ËÊi�N{7kb}djfvwo�Ì|oX��oZ_P{ys�a
oX}a
cfo(ew_7a
}dtpkpj�q�adewt�_�t�s={�_foXm®{�_¡ado�q!o�kpoX_¡aQe«a
o � Ã�¢7¬S�]�WZ½=ÍG�Ü[¹ W��¡] ��»�� ¹ W �!Î)W�� ¹ V�½uº ¹ V � qXt�_p��kfoX_NqXo!�
qXt�_Ngiad}�{�ew_fo�k�Ì ´ ¥ � ewg�gd{�ewkîadt��LoîÔ7�XÕA�UÏ\�»Ð=�uÕiÑ:Þ
��ØÖÝf�
�ZÕ
ÕÖ×J{¶q!t7_NgdoZ©¡jfoX_¡a�exado � Ã ì e«sQÌÒ��Â\Ã ì É�ehgrsu}
oZ©¡jfoZ_7a�¬º£Nt�}
o�{�q�c�Ã ì ��m�o � {�ew_¡a
{�ex_§{�_¶Ô��ZÕB�UÏy�rÔy�LÕø���������X��Õ����¡Õø�X�fØ��B×���ë �hØ!Õ
¥ �.� � �AÃ ì �2qXt�_¡a
{�ex_Nex_fz§{�vwv)ÌÓ�|Â�Ã ì É(gij�q�cUa
cN{yaQÌ ehgQ{�q!adew��o
mQexadcJ}
oZgd��o�q�a¤adt�Ã ì ¬

� g2{r}
jf_f_few_fz(o!µf{ � �Nvxo¤a
cf}dt7jfz�cNt�jpa=a
cfo��N{���oZ}Z��m,o	{7g��gdj � oJadc�{ya�m,o�c�{\��o�¿ïÁ ÂFÔ�Å:ÕLÅZÇXÇXÇZÅ:ÖLÅ:×LÉP�uew_òadcfehg�oXµp{7q�a
vwo!µpehq!t7z�}�{��fcfehq�t�}�kpoX}!��¬ � s�a
oX}�a�m,tPgiadoX��gX�Qexado � g�Ôî{�_Nk´Õ{�}do�gd�LoZq!ex�No�k¶{�g�{�_7a
oZqXoZkpoZ_7a�exado � gX��{�_Nk�a
cfo�_foXµ¡a*e«a
o � adt�Lo�gd�LoZq!ex�No�k�{�g0{�_�{�_¡adoZqXoZkpoZ_¡a0exado � ehg ¶ �i�B¢��Z¢w�,Ã ¢ Á ¶ ��¬^`_|adcfoGsut�vwvxtymQew_fz�kpehgdqXjNg
giewt�_|{7g�m,oXvwv�{7g�ew_¶adcfoG�Nz�jN}do�gX��m�o

552

£�ewz�jN}do�} � ªQoZqXjf}
gdew��o¯{7q�a
ex�7oñ}
jfvxo±oXµ¡a
oX_Ngdewt�_Ng�sut�}ò}
jfvxo
e«a
o � gioXa(Â�Ô�� � ¶ É¡¬
jNgio0Â�Ô Ä Ô Æ ÇZÇXÇ
Ô � � � Ä � Æ ÇZÇXÇ�� � É*a
t§}doZ�f}do�gioZ_¡a¤{�_Uexado � gdo!a�q!t7}i�}do�gi�Lt�_Nkfex_fzba
tP}
jfvxoPÂ�Ô Ä Å
Ô Æ ÅXÇXÇZÇXÅ
Ô � ÉîÍ Â�� Ä Å�� Æ ÅZÇXÇZÇ!Å�� � É7¬
³no|j�gioÂÊ���Ìna
tPkpoX_ft�ado¶a
cN{ya�a
cfo�{�_7a
oZqXoZkpoZ_7a��Bt�}UqXt�_Ngdo!�
©7jNoX_¡a��U�N{�}iaJt�s0{�_ñexado � gdo!a¶ehg�o � �pa�l�¬ª£�exz7jf}do �bgicftym�g
adcN{�aGsut�}§q!t7_NgdoZ©¡jfoX_¡aGexado � ¶ �²adcNoX}
o�{�}
o�a
cf}doZo�{7q�adew��o�{�_p�adoZqXoZkpoZ_¡a¤oXµ�adoX_�giewt�_Ng � e«a
o � gdo!a
g(Â��	� ¶ Ér{�_Nk�Â�Ô�� ¶ É({�}
o�z�t�tpk}djfvwo�exado � gdo!a�gX�¡mQcfewvxo*e«a
o � gdo!a�Â�Õ�� ¶ É	kpt�oZg2_ft�a2c�{\��oQoX_Nt�jfz7cq!t�_f��kpoX_�q!o�a
t��Lo�{�z7t¡tpk¶}
jfvwo0exado � gioXa§�B�fjpa(e«a�giadewvxv�cN{7g*{gijf�N��t7}iaQ_ft�vwoZg
g,adcN{�_Jß�à¡á7á ì,í È ��¬

^Öa�ehg(e � ��t7}ia�{�_¡aradtJ_ft�a
o§adcN{�aradcfoZ}do�ehgr_ft¶{�kfkfe«a
ext7_N{�vq!t � �fjfa
{ya
ext7_ò}do�©7jNex}
oZk�adtP{7qX©¡jfew}do¶gdjNq�còex_psut7} � {�adewt�_²�¤{�gsut�}�o�{�q�cbsu}
oZ©¡jfoX_¡a0{�_¡adoZqXoZkpoZ_¡a�e«a
o � gioXa0Ì�{�_�kboZ{�q�c�qXt�_p�
gio�©7jNoX_¡a�exado � Ã ì �)m,o0_foZoZk�adt¶q�cfo�q��¶ß�à¡á7áL�uÌµ�bÂ�Ã ì Éy��ex_
t�}�kpoX},adt�kfo!adoZ} � ew_formQcfo!a
cfoX}	Ì°ÍâÂ\Ã ì Érehg�{�z�t�tpk�}djfvwo�¬

S�]�W�½UÍG��Y�¼��=�q�!Î)W(� ¹ VZ½uº ¹ V � z�t�tpk�}djfvwo2exado � gioXaI¨�{7g��
gitpq!eh{ya
oZkGmQe«a
c§{rqXt�_p��kfoX_NqXo!�`q!t�_�g�a
}
{�ex_fo�k�{�_¡a
oZq!o�kpoX_¡a=exado � �gioXa�Ìâewgrg
{�ehk¶adt��LoJÔ7�XÕA�UÏ\��Ð=�uÕiÑ|Þd��ØÖÝf���XÕ�ÕÖ×�{�qXt�_NgdoZ©¡jfoZ_¡a
e«a
o � Ã ì exsQe«aGehgfy��N� ê ���na
cN{ya�a
cfo ¨ � Áª¨ �bÂ�Ã ì É�ehgrsu}
o!�
©7jNoX_¡a��BmQe«a
cn}
oZgd��o�q�a*adt�ß�à¡á7á ì,í È �	{�_Nk|l�o!a�ewg�_ft�a�{Uz�t�tpk
}djfvwore«a
o � gdo!aZ¬=³~o�qX{�vxv�a
cfo(vwewgia	q!t7_7a�{�ew_few_fz�{�vxv�gijNq�c�¨��Ladcfo
Ô��ZÕB�UÏy��Þ��pëx���
�¡ÕÖ�!�NØ��B×���ë«�hØ�Õ=×2§
¨���{�_Nk�kfoX_ft�adoQexa2��l ���.� � ��¨���¬
£ft�}Go!µf{ � �fvwo���}
jfvxoUe«a
o � gioXaUÂFÔ
� � ¶�� É§cN{7g(a�m,t�{�q!adew��o�}
jfvxoo!µ�adoZ_Ngiewt�_�gX�)ÂFÔ�� � ¶���
 Ér{�_NknÂFÔ
� � ¶���� É¡��{7gQgicNtymQ_�ew_»£�exz7jf}do
}p¬,^Ösh¨Dewg*{�_¶{�_¡a
oZq!o�kpoX_¡a	exado � gioXa	t�}	{�}djfvwo(exado � gdo!a*{7gdgdt��q!eh{yado�k§mQe«a
cU{�gdjf�f�Lt�}dai�`q!t7_Ng�a
}
{�ex_NoZk�{�_¡ado�q!oZkfoX_¡aZ�¡e«a�g2{7q�adew��o
}djfvworo!µ�adoZ_Ngdext7_�vwewgia�ehg�kpo!��_foZk�adt§�Lo(o � �pa�l7¬³~o§gicN{�vxv�o � �fc�{�gdeo�Zo�cfoX}
o�a
cN{ya�adcNo ���.� � ��¨�� � {\lJ_ft�aq!t�_¡a�{�ew_î{�vwv@¨Ë��Â\Ã ì ÉJa
cN{ya�{�}
o�su}do�©7jNoX_¡a��Njpa�_ft�a§z�t�tpk)¬
£ft�}Go!µf{ � �fvwo���giew_NqXo�e«a
o � gdo!aUÂFÔ�� � ¶�� É�ehg�_ft�a0{¶z7t¡tpk~}
jfvxoe«a
o � gioXa®�AgioZoW£�exz7jf}
oW}7����ew_��f}
oX��ewt�jNgîg�a
oX�Ngîm,o­m�t7jfvhk
_ft�a§cN{\��oJ{yadado � �fadoZk�adt~o!µ�a
oX_NkñÂ�Ô�� � ¶�� Én�Bt�}�{�_�l�t�s	adcfokpoZg
q!oZ_Nkf{�_¡a(}
jfvxo§exado � gdo!a�grt�s�Â�Ô�� � ¶ É�t�adcNoX}radc�{�_îÂ�Ô�� � ¶�� Ée«a�gioZv«s��¶��lñexado ��� �	{7g � ehg|oZ��oZ_®_Nt�a�ew_±adcfoîqX{�_�kpewkN{yadoq!t�_�gio�©7jNoX_¡a²o!µ�adoZ_Ngdext7_(vxehg�a�t�s�Â�Ô�� � ¶�� É¡¬²¾¤cfoX}
o!sut7}do7�Zm,oÀcN{\�7o_ft��f}
ewt�}Gew_psut7} � {ya
ext7_P}
oXz7{�}
kfex_fzJa
cfoJgijf�N��t7}ia�t�s�exado � gdo!aÂ�Ô�� � ¶���� É «¡e«a � {\l�t�} � {\l�_Nt�a��Lo�{Gsu}
oZ©¡jfoZ_¡a¤exado � gioXaZ¬¥	tym�oZ��oZ}Z�Le«a(ehg�oZ{�gdlJadtJgdoXo�a
cN{ya��²exsc¨Òewgr{Uz�t�tpk|}
jfvxo
e«a
o � {�_Nk�l�o!ac¨ ��Â\Ã ì É*ehg2{(su}
oZ©¡jfoZ_¡a2�fjpa¤_ft�a¤{(z�t�tpk§}
jfvxo
e«a
o � gioXaZ��oXexadcNoX}^¨Dehg*{7q�a
ex�7o�mQe«a
c�}
oZgd��o�q�a�a
t�Ã ì ��t�}	adcfoZ}do
o!µpewgia
g*{�_�{�_Nq!o�g�a
t�}[¨�� ��t�s
¨DgdjNq�c¶a
cN{ya^¨�� ��ewg�{�q!adew��o�mQexadc
}do�gi�LoZq!a2adt�Ã ì ¬=¾¤cfewg,�f}
t��LoX}da�l§qX{�_U��o�jNgdoZk�a
tGehkpoX_¡a
e«sul�{�vxv
��t�adoX_¡a
ew{�v¡¾�l���oAÈ:}
jfvwoÀe«a
o � gdo!a
g�ew_(adcfo�oX�7oX_¡a�t�sp{�_GÃ ì ´»¨
gimQexa
q�cfew_fzQsu}
t � {�qXt�_NgdoZ©¡jfoZ_¡aËe«a
o � a
t	{�_G{�_¡adoZqXoZkpoZ_¡aËe«a
o � ¬

¾�tPsB{7q!ewvxexa
{�adon�N_Nkpew_fzîadcfo�gion}djfvwo~e«a
o � gioXa
g�ex_®{�_¯o!s���Lq!ewoX_¡a � {�_N_foX}��0m,o�}
oZqXjf}�giew��oZvxl � oZ}dz7oPa
cfoî{7q�adew��oî}djNvxooXµ�adoX_�giewt�_±vwewgia
g¶ew_¡adt­{­gdew_fz�vwo�vxehgia ����� � ¬ £ft7}�{�_�l­z7t�t�k
}
jfvwo�exado � gdo!a�¨(��m,oUkpo!��_fo�a
cfo�Þd���X�pÞ�Ø��UÏ\�JÔ��ZÕA�UÏ\��Þ��pëx�J���7ä
ÕÖ�X�fØ��B×y�­ë«�hØ�Õ � ½�.� � ��¨��0t�sq¨ï{�g�a
cfoJsut�vwvxtymQew_fz � � ½�.� � �%¨*��Á
���.� � ��¨��h�:��� �

��� Ä � ½�.� � ��¨¹��Â\ÃM± ¢ É��i��¬~¥	oX}
o ¨ ��Â\ÃM± É7Å�¨ �
Â\ÃM± ¡ É7ÅZÇXÇXÇXÅ�¨4�	Â\ÃM±��!É,{�}
o=a
cfo2su}
oZ©¡jfoZ_¡a�o!µ�a
oX_Ngdext7_Ng�t�s9¨�gijNq�c
a
cN{ya�¹ Ä ² ¹ Æ ²±ÇXÇZÇG² ¹ � ¬Q¾¤cfoX}
o!sut7}do7� � ½��� � �%¨*�Qq!t�_¡a�{�ew_Ng�{�vwv
{7q�a
ex�7o�}djNvxo�oXµ�adoX_�giewt�_Ng�t�sD¨­{�g2m�oZvxv�{�gÀadcft¡gio*t�s²}
jfvxo	e«a
o � �gdo!a�g=o!µ�a
oX_Nkpew_fzZ¨±�B��l0t7_foQt�} � jfv«a
ex�Nvxo	qXt�_NgdoZ©¡jfoZ_¡aÀe«a
o � g���¬
£�ewz�jf}
o }Qgdcftym�g²adcfo�}do�q!jf}�giew��oÀ{7q�a
ex�7oÀ}djNvxo�o!µ�adoZ_Ngiewt�_(vwehg�a�sut�}
}
jfvwo0exado � gioXa0ÂFÔ
� � ¶ É7¬ � �.� � ewg*a
cfoX_~kpo!�N_NoZk�adt���o � ½�.� � �AÓ7���mQcNewq�cJq!t7_7a�{�ew_NgQ{�vwv²{�q!adew��or}
jfvxoroXµ¡a
oX_Ngdewt�_NgZ¬
� ¸ W��7Yy[pW�½UÍG��� ½ ¹ ½ ¹ < ­ § >��|Sº�=<�º�Yy½�WF>D�
^`_òa
cfehg�gdoZq!adewt�_²�Qm,o|kpoZg
q!}
ew��o�{�_úe«a
oX}�{ya
ex�7o � ex_few_fz�{�vxz7t��}
exadc � adcN{�aPmQexvwvUjN�Lkf{�ado Ê�½�¾%¿ � oX�7oX}
lDade � oñ{D_foZm {�_p�
a
oZqXoZkpoZ_7a�exado � ewg�gd�LoZq!ex�No�k)¬ú¾¤cfoJz�t7{�v¤ewg�a
t � {�_fex�Njfvw{�adoÊ�½�¾%¿ � ex_­gdjNq�cú{�_òoX´�qXexoZ_¡a � {�_f_foZ}�adcN{�a�adcfo|adt�a�{�v	qXt � ��Njpa
{�adewt�_îade � o¶t�s*exadoZ}
{�adew��o � ex_few_fzbehg�q!vwt7gdoUa
t~adcfoJa
e � o}
oZ©¡jfew}
oZk�exs={�vwv²e«a
o � gQew_��${�}do?��_ftymQ_J{yaQt�_NqXo�¬

³~oQ�N}�g�aÀz7ex�7o,adcfo	kfoZg
q!}
ex�pa
ext7_0t�s�adcfo � {�ew_§vxt�t7��t�sLt7jf}{�vxz7t�}
e«a
c � �BgdoXo � vxz7t�}
e«a
c � }¡��¬
Sº�=<LºNYy½�W%>�� � �! #"%$'&)(+* ,�-0/�"+* #"F,7�BÃ�¢¡�
T�?2V�� ��!:B�V��Ov�x�q#" z E%@$�%�
!
B�@$��E�&
� ��!:B'&
�r7
RF?2jUk�lnm�o�o^�)('s*&|S0KTr:Lpq " N�t^k
KF? &
�%�
!
B+&
� ��!'v�x�� (=z 7
N%? ��BD�)(�, x�q " z E�J+K�K�Lp�)(UNiB4J �
� � Lp��KT� � Lp��N+v���S0K�r�LM��NTN%7
� ? u jA� (<�������e����2��>��t�
���O�(>t��;�e��I� ���b�c���l�����?u������.-����!�F�
� ? \%:��������A� (���f���C���O����\��2>��2����� ���b�c���l�27
w�? /!c�g10.]�f=`�2H]�3%4^d#`b`.Lp�)(l!%q " N�7
� ? �Fo65b�
� ? J+K�S�Lp�)(=NiBDC�7

T2JF? X�Y Z�[H\^]._ `:abX0c�d=e f=`�ghai`�f�LM� (N%7
�	t�adehq!o�a
cN{ya��fex_|¦¡a
oX������¡ �\��m,o*t7_fvxlU_foXo�kUa
t�gio�{�}�q�c

sut7}�z7t�t�k­}djfvwo~e«a
o � gioXa
gJ{�g
gdt�qXew{�ado�kúmQe«a
c¯{�_¯{�_¡a
oZq!o�kpoX_¡aÌ»�¤Á�Ì ��Â�Ã ¢ ÉUsut7}Go�{�q�cPÌ ´ ¥2�p¬�^Ös	Ì�ehg0gdjf�f�Lt�}dado�k��
qXt�_Ngiad}�{�ew_fo�k)�§adcfoZ}doúmQewvwv���oú_Nt ¾2l��Lo È }
jfvxoòexado � gdo!a�gjN_NkpoX}
_fo�{yadc�Ì�� � oZ{�_fex_Nz(adcN{�a2_ft�_NoXmòz�t�tpk§}djNvxoQexado � gdo!a�g{7gdgdtpq!eh{ya
oZk�mQe«a
c�Ì � mQexvwv��Lo�sut�jf_Nk²¬�¾¤cfoZ}doXsut�}
o���m�o2qZ{�_Ggx��ex�
a
cfo�gdjf�pad}
oXo Ê�½�¾%¿ � �uÌ»�h��t�s Ê�½�¾F¿ � }
t�t�a
oZk�{yaQÌ¬�)oZ_7a
ex}
oXvwl�¬

7Jt7}doZty��oZ}Z��sut7}	{�q!t7_p��kpoZ_Nq!oX�ÖqXt�_Ngiad}�{�ew_foZk�ÌP��m�o(_foZoZk
a
t|gio�{�}�q�c�sut7}�z�t�tpk~}djNvxo�exado � gdo!a�g�{�g
gdt�qXew{�ado�knmQexadc�Ì»�2ÁÌ²��Â�Ã�¢�É�t7_fvwlUexsÀß�à¡á7áN�BÌ¬���98­ß�à¡á¡á ì¤í È � � oZ{�_Nex_fz§a
cN{ya�Ìm¤{�g2{�q�a
ex�7oQmQe«a
c�}
oZgd��o�q�a=adt0Ã�¢*ex_§a
cfo��f}
oX��ewt�jNgÀgiadoZ�²�¡mQcfoX_
Ã�¢�m¤{�g�{¶qXt�_NgdoZ©¡jfoZ_¡a�e«a
o � ¬¶¾¤cfoX}
o!sut7}do7�Ëm,or��jNg�a�_foXo�k~adtz7t�adcf}
t�jfz7c­¥ ��� � �AÃ�¢y����{�_Nkb{7kfk~oZ{�q�cbÌ¬��´ ¥ �.� � �BÃ�¢y��ew_¡adt
¥ ��£ Äy�N{7g,ex_NkfewqZ{yado�k�ex_¶£²ew_fo;:�t�s � vwz�t7}dexadc � }p¬

� � t7_fz|a
cfoZgdoU_NoXm�{�_¡a
oZq!o�kpoX_¡aGexado � gioXa
gZ�Àgit � o�m�oZ}do_Nt�aGz7t¡tpkb}
jfvwo�e«a
o � gdo!a
gGex_Padcfo��N}doZ�¡ewt�j�gGgiadoX�Ë¬�£ft�}GoZ{�q�c
t�s*a
cfoZgdo|{�_¡a
oZq!o�kpoX_¡a�exado � gdo!a�g�Ì � �2a
t��fjfewvwk:a
cfo|gijN�pad}
oXoÊ�½�¾%¿ � �BÌ¬�h�G}
t�t�ado�k�{�a§Ì»�B��m�o¶qX{�_�t7_fvxl�jNgio»�2}dtpq!o�kpjf}
o|�
�A{�gJew_NkpehqX{�adoZk¯ew_±£Ëex_No �=<:t�s � vxz7t�}
e«a
c � }¡��{�g�adcfoZ}do�ehg
_Ntú�f}dewt�}�ex_psut7} � {�adewt�_±adtñjpadewvxe��Xo7¬Ï¾¤cfoP}
o � {�ew_few_fz­_foZm{�_¡adoZqXoZkpoZ_¡a�exado � gdo!a�g¶{�}
o|a
cfo�¾2l��Lo­�°t�_fo�gO«�adcfoZl­m�oZ}do
qXt�_���oZ}ia
oZk�su}dt � z�t�tpkG}
jfvwo¤e«a
o � gioXa
g�sut7jf_Nk�ew_0a
cfoQ�f}
oX��ewt�jNggiadoZ�²¬�£ft�}�o�{�q�c0gdjNq�c�Ì¬�A��e«a=m,t�jfvhk0��o¤m¤{�giado!sujNv�adtrq!t � �fjfado

553

adcfo�gijf�fad}
oXo Ê�½�¾%¿ � �uÌ»�h�rsu}dt � g
q!}�{ya�q�cbex_�qZ{�gdo�Ì¬��{�vw}do�{�kpl
cN{�g�gdt � o�kpo�gdqXoX_NkN{�_¡a
g�ew_ Ê�½�¾%¿ � ��{7g²a
cfoZgdo¤e«a
o � gioXa
g�gdcN{�vwv���o}doXa
{�ew_fo�k�ew_Ga
cfewg�giadoZ��«�a
cfoXlG{�}do2adcfoQ¾�l���o���t�_NoZgZ¬Ë^`_Ngiado�{�k)�
m�o§jNgdo���5�;��^(�9:,���(��	�)7U,�,��BgdoXo �À}
tpq!o�kpjf}
ov}¡�	adt|q!t � �fjpadoÊ�½
¾%¿ � �BÌ¬�����N{7g¤ex_NkfewqZ{yado�kUew_¶£²ew_foZ�Gt�s � vwz�t7}dexadc � }p¬

¾�t�exvwvxj�g�a
}
{�ado,cftym �À}
tpq!o�kpjf}
o
}	m�t7}x�pgZ��m,o,jNgio,exado � gdo!aÌ¬�0Á Â�Ô ¶ � �pÉ��BmQcfehq�cñm¤{�g¶ÂFÔ�� ¶ É|ew_­adcNo��f}
oX��ewt�jNg�g�a
oX�L�{�g|{�_®oXµf{ � �fvwo�¬ ¾¤cfo�_foXmý{�_¡ado�q!o�kpoX_¡a|exado � ¶ kfex��ehkpoZg{�vwv²q!t�_�gio�©7jNoX_¡a,exado � g¤ex_¡adt�a�m,t0z7}dt7jf�Ng(«�
�}dt7jf�¯�(qXt�_¡a
{�ex_Ng
adcft¡gio�t7}
kpoZ}do�k��Lo!sut7}do ¶ ex_~a
cfo��f}
oX��ewt�jNg(giadoZ�ò�i�B¢��Z¢w� �L�
���{�_Nk��N���y{�_Nk�
�}
t�jf�v}*qXt�_¡a
{�ex_�gËa
cft7gdo,t�}�kpoX}
oZk0{ys�adoZ} ¶ ���B¢���¢w�
� � � ��ÇXÇZÇ«�%×N��¬Z^`_(adjf}
_²��adcNo2gijN�pad}
oXo Ê ½�¾%¿ � �BÌ¬�h�)ewg�kpew�¡ehkpo�krex_¡adta�m�t|��{�}dadeh{�v=a
}doZoZg � a
cfoUvwo!s�a§�N{�}dadeh{�vÀad}
oXo���mQcfehq�c�qXt�_¡a
{�ex_Ng{�vwv7a
cfo¤e �§� oZkfew{�adoQq�cfewvwkp}
oX_J�B{7g�m�oZvxvp{�g�a
cfoXew}=kpoZg
q!oZ_Nkf{�_7a�g��adcN{�a*o!µ�a
oX_NkbÂFÔ ¶ � �fÉ���l�exado � g	ew_�
�}
t�jf� �7�L{�_NkJadcNoG}
exz7c7a
�N{�}dadeh{�v�a
}doZo��²mQcfehq�c�q!t7_7a�{�ew_Ng({�vwv=e ��� o�kpew{�ado�q�cfewvhkp}doZ_:�A{�gm�oZvxv�{�gQa
cfoXew}rkpoZg
q!oZ_Nkf{�_¡a�g���a
cN{ya�o!µ�adoZ_NkbÂFÔ ¶ � �fÉr��l�e«a
o � gex_�
�}
t�jf��}f¬2^`_JadcNo(sut�vwvxtymQew_fz��pm�oGgdcftym¯cftymña
tUq!t � �fjpadoadcfora�m,t§�N{�}dadeh{�vLad}
oXo�gX¬
� Y\ºË]#��»�¼ËY3� � �P5�;��^(�9:,���(��	�)7U,�,7��¨��pÃ ¢ �
T�?���� 0��.Z�[�����d f�Y �._ 26] 3%4^d#`b`�LUGI!!���S0K�r LMGONl!%C�N%7RF?2u j2G �������?�������2\���>������I���O>��O���!�F�
KF? � }O~#� BvJ�7
N%?A�Fo65b�
� ? q } BÓq���� � LUG)N�E�� }O~#� B! ^7
� ?AjUk�lnm�opo�qbrPs�Q � ��! ��;�\%:t��:3�M�"� }O~#�$#&%'#&(t^k
w�? u#j ß�à¡á7á LMG4v�x�q r�z N|{3�f���6x ß�à¡á7á }O~#� �Öå�æ�ç�è }O~#�n� ß�à7á¡á Lp��N z

�0�!�%�
� ? u#j�G�v�x�qbr z <�������e����2��>�� �?���O�(> ��;�e��c� ���b�c����� ��� u������'-

�0�!�%�
� ? \%:3����������:�� �3�����2������g�G�v�x�qbr z g������´G ,ªx�q " z v�x�qbr z ���

G 7
T2JF? /!c�g�0.]
f=`�2H]�3%4�d#`b`�LMG¦vyx�qbr z !Hq " N�7
T�T�? �Fo65b�
T2RF? ��>�>�Gwv�x�q r�z ���D� ���l<�\%:���e�>@��g�GI7
T2KF? J+KTK�LMG�v�x�qbr z NiB4J �
� � L���KT� � LMGON�N�E�J+KTS�LUGwv�x�qbr z NiB�C�7
T�N%? X�Y Z�[6\^]._ `babX0c.dUe f=`0gOai`bf�LMG3v�x�q rTz N%7

) ��]�º ¹ VZWXY�¼�]�WUW%>��+* ��,øW � [pY\WZ½B[¬� § Y3��� ^`_¶adcNoG�f}
o!�
�¡ewt�j�gQg�a
oX�²��m�orm,t�jfvhk�_ft�a�cN{\�7o�ad}
exo�kUa
t�o!µ�adoZ_Nk~Â�Ô�� ¶ É���l{�_�lrt�s �L���({�_Nk$�L���LoZqX{�jNgdoÀadcNoXl(m,oX}
o2t�}�kpoZ}do�kr��oXsut�}
o ¶ ¬\^`_adcfehg�giadoX�Ë�padt�qXt � �fjpa
oradcfo(vwo!s�a	��{�}dadeh{�v�ad}
oXort�s�ÂFÔ ¶ � �fÉ7��m�o�N}
gia	_foZoZkJa
t�q�cfo�q���mQcNo!adcNoX}0Â�Ô ¶ � ��É7�²Â�Ô ¶ � �LÉ7��{�_NkbÂFÔ ¶ � �LÉ{�}
o0z7t¡tpkn}djNvxo§exado � gdo!a�gO«�e«s,adcNoXln{�}do7�²m,o�_NoXoZk�adtJsujN}ia
cfoX}q!t � �fjfadoradcNo�gijf�fad}
oXoZg¤}
t�t�a
oZkU{�aQadcft¡giorexado � gdo!a�gX¬³~o � {\l��N_�kï¾�l���o°È q�cfexvhkp}
oX_ït�s:Â�Ô ¶ � �fÉ¡���Z¢ ê ¢w�Â�Ô ¶ � �LÉ7¬ �,o!sut7}do ¶ �LoZq!t � oZgG{�_P{�_¡ado�q!o�kpoX_¡aGexado � �¤ÂFÔ ¶ � �LÉm,{7g�ÂFÔ�� � ¶ É±�AgioZo £�ewz�jN}do :¡����mQcftDkpehk _Nt�aPgd{�adehg�sul adcfo
� ew_fe � j � q!t�_f��kpoX_�q!oQq!t7_Ng�a
}
{�ex_¡a�¬Ë³~o � {\l�{�vwgdt	��_Nk0¾�l���o
�¯q�cfewvhkp}doZ_|t�s¤ÂFÔ ¶ � �fÉ7����¢ ê ¢w��ÂFÔ ¶ � ��É7�fmQcNewq�c¶m¤{�g�Â�Ô�� � ¶ É(ex_adcfo0�f}doZ��ext7jNg	giadoZ�²¬*¥	tym�oZ��oX}��N{�a	adc�{ya	a
e � oUÂ�Ô�� � ¶ É�m¤{�g	{q�cfexvhk�t�s�ÂFÔ�� ��É7¬O��tymòexado � gdo!a*Â�Ô�� � ¶ É��LoZqXt � oZg�Â�Ô ¶ � ��É	{�_�kadc�jNg	gdcft7jfvwk|��o�q�cN{�_fz7oZk�adt���o�q!t � o0{�q�cfewvwk¶t�s¤Â�Ô ¶ � �fÉ(adt
� {�ex_¡a�{�ew_�adcfo�vwo!µpewqXt�z7}
{��fcfehq¤t�}�kpoX}��¡{7gÀew_NkpehqX{�adoZkUex_�£²ew_fot�
t�sD�2}dtpqXoZkpjf}
o[}p¬

£Nt�}�{�_�l:¾�l���o È¨q�cNexvhkW¨��	t�s�Â�Ô ¶ � �fÉJsut�jf_�kúex_­adcfovxoXs�aJ��{�}dadeh{�v*ad}
oXo��*m�o~jNgdop�2}dtpqXoZkpjf}
o­�ò�BgdoXob£²ew_fo �O��t�s
�À}
t�qXoZkpjN}doc}7�²adt�qXt � �fjpa
o¤adcfo�gdjf�pa
}doZo¤}dt�t�a
oZk�{ya ¨��B¬�^Ös�¨��

£�ewz�jf}
o�: � ªQo�q!jf}�giew��oZvxl�}
oZq!t7_Ngiad}
jNq�a
ex_fz	adcfo,vwo!s�a��N{�}dadeh{�v7ad}
oXosut7}�Â�Ô ¶ � �pÉ¡¬�¾¤cfo�gicN{7kpoZk~}
jfvwo�_ftpkpoZg0{�}
o§adcfoUt�_fo�gradt|�Lo
� ty�7oZk)¬
ehg2{G¾2l��Lot�ît�_fo7�7cftym,oX�7oX}���m,o�}do�q!jf}�gdex�7oXvwl0qX{�vxv9�À}
tpq!oZkfjf}do
}f��{�g�ew_NkpehqX{�ado�k0ew_�£²ew_fo?� <�t�s��À}
tpq!o�kpjf}
o�}f��git�a
cN{yaÀm,oQqX{�_
Êd}doZjNgdo�ÌGadcfo�kpo�gdqXoX_NkN{�_¡a
g,t�sh¨��²{�vw}do�{�kpl�ew_ Ê ½
¾%¿ � ¬

- Î © [¹ »ýW%>��) ½=<|>LW � [pY\WZ½u[¬� § Y3��� ¾Ët¯q!t � �fjfadoa
cfoÒ}
ewz�c¡añ�N{�}ia
ew{�v|ad}
oXoÒsut�}®{ ¾�l¡�Lo �þt�}�� e«a
o � gdo!a
¨��^�À}
tpq!o�kpjf}
o }:ex_���t ��o�gX�({�g|ex_NkfewqZ{yado�kDew_ £²ew_fo ���ra
cfo
�N}dtpq!o�kpjf}
o&.�/��10!"%$3240H7p9� 0+* ��(����)7M,�,��BgdoXoq�2}dtpqXoZkpjf}
o.:¡��¬,³~o
_Ntym kpoZg
q!}
ex�LoñcNtym �À}
t�qXoZkpjN}do :Òm�t7}x�pg��¡lôj�giew_fz a
cfo
oXµf{ � �fvwo�t�st¨ Á ÂFÔ ¶ � ��É7¬65*jf}Gz7t7{�v2ewgGadt|z7ex�7o�{|q�cN{�_Nq!oa
t~{�vxv¤a
cfoJ}djNvxo�e«a
o � gdo!a
g§jN_NkpoX}
fo�{yadc ¨�adcN{�a�cN{\��o���oZoX
kfewg
©¡jN{�vwe«��oZk§{�g�z7t¡tpk�}
jfvxoQexado � gioXa
gÀkpjNo¤adt(vwtym:qXt�_p��kfoX_NqXo��mQcNexvwo�{\��t7ewkfex_fzb}
oX��ehgiexadew_fz~adcft¡gio�t�_fo�g�mQcft�m,t�jfvhkò_foX�7oX}
�LoZqXt � orz�t�tpkU}
jfvwore«a
o � gioXa
g�kfjforadt§vwtym¯gdjf�f�Lt�}daZ¬
� Yyº²] ��»�¼ËY3� À .�/��10!"%$3240H7p9� 0+* ��(����)7M,�,���¨��47 �.� � �
T�?�u jIJ+KTK�LMGON�8�C
���!�F�
RF? u j:9 S0KTr 8�C
�0�!�F�
KF? l��.��;^l��G7
N%? G (B ��:��=<3��������\l��� ���h��;�e������O�������������[���>9�S0K�rl7
� ? G ((B ��:��I�3���������D���O>��I��g|G (7
� ? u j
G (('?8�G��0�!�%�
w�? GIBDG ((EMJ KTK LMGON�B�C�7
� ?@9 (S0K�r BDC�7
� ?
���b�c�x���fg������A9'S0KTr���e�e���\���� ���?��;�e��t���O���������������c��:��M�t���O������>�G

����>?��>�>@��:��b���������B9 (S0KTr 7T2JF?@9�KTS � B�J �
� � LC9�(S�K�r N�v2J+K�K�LMGONTE�9 � �ED B�C�7
T�T�?2jUk�lnm�o�o^q r s>9 KTS � ��;�\%:@��:3�M� % � (t^k
T2RF? u j å�æZç7è LMG v x�q rTz N { å�æZç7è })~�� LQ�Mg5���2��q#" A#��\����c��� ���

�������2\���>������I� ���b�yN��0�!�%�
T2KF? � KT� � LUG)NiB�� KT� � LMGON�v�x0Gwv�x�q r�z�z 7
T�N%? 9 � �ED B�9 � �ED v�x0G�vyx�qbr z�z 7
T � ?2jUk�lnm�o�o�G (s���KT� � LUG)N_����>�������>@AO�@���������%�M�������f� ���b� t^k
T � ? u j
G (s>9 � �ED��0�!�F�
Txw�? J+K�K�LMG (N=B�J ��� � Lp��KT� � LUG)NTNTEUJ�KTSHLUG (NiB�C�7
T � ? X�Y Z�[H\^]._ `:abX0c�d=e f=`�ghai`�f�LUG (N%7
T � ? �Fo65b�
R�JF? J+K�K�LMG (N=B�J ��� � LF9 � �ED N�7
R�T�? ��� 0��.Z�[�����d f�Y �._ 26] 3%4^d#`b`�LUG (!	9 S0KTr N�7

^`_îadcfo��f}
oX��ewt�jNg�g�a
oX�²��e«a
o � gdo!aº¨¨��adcNoX_òkpoX_ft�ado�kP��l
ÂFÔ�� � ¶ Éy�Lm¤{�g�{�vw}
oZ{�kfl*ew_ Ê�½�¾%¿ � {�_Nk(a
c¡j�g�m,o,cN{\��o2qXt � �fjpa
oZka
cfoògijf�fad}
oXo:t�sUz7t¡tpkÒ}djfvwo�exado � gioXa
gbjf_NkfoX}
_foZ{�adc ¨��§{�g
gdcftymQ_­ew_·£�ewz�jN}do }p¬ª£fjf}dadcfoZ}Z�*m�obcN{\�7o�ehkpoX_¡a
e«�No�k­sut7jf}
{7q�a
ex�7oD}djfvwo oXµ¡a
oX_Ngdewt�_Ngñex_ � ½�.� � ��¨����b_N{ � oXvwl��:Â�Ô�� � ¶�� É7�ÂFÔ�� � ¶ � �	
 É¡��{�_Nk�ÂFÔ
� � ¶��	
 É¡�pÂ�Ô�� � ¶��	� É7¬ �	tym ¶ ��o�q!t � o�g2{�_{�_¡adoZqXoZkpoZ_¡a�exado � �,{�_NkPadc�jNg§o�{�q�cPt�s	adcNoZgdo�}
jfvwo�exado � gdo!a�ggdcN{�vxv�cN{\��o�{�_¶ex_NqX}do�{�gdoZk¶qXt�_p��kfoX_NqXo�¬�¾¤cfoZ}doXsut�}
o��Nm,oGgdcN{�vwv

554

q�cfoZq��roZ{7q�c(t�sfa
cfo � a
t�gdoXo�e«s�e«a�_ftymPg
{yadehgi�NoZgËadcfo � ex_Ne � j �q!t�_f��kpoX_�q!o(q!t7_Ng�a
}
{�ex_¡a�¬
£Njf}dadcfoZ}Z��sut7}r{�_�l|¾2l��Lo �±exado � gdo!aZ¨ � ex_�adcfo�gdjf�pad}
oXo

Ê�½
¾%¿ � �%¨*���²m,o§gdcft7jfvwk|ad}
l¶adt�o!µ�a
oX_Nk­¨���exs¤oXexadcfoZ}^¨���exa
gdoXvxs
cN{�g�{�q�a
ex�7o¶}djNvxo|oXµ�adoX_�giewt�_Ë�Ag�����t�} ¨��*cN{�g�_foXm Êdl�t�jN_fz�oZ}
giew�fvwex_fz¡gX¬ Ì £ft�}¶oXµf{ � �fvwo��re«s¦¨���Á ÂFÔ ¶ � � � É¡�	m,o�gicft7jfvhkad}
lòadtòo!µ�adoZ_Nk�¨��r��l � eu�Öexado � g
 {�_Nk � ��{�g��f}
oX��ext7jNgdvxlÂ�Ô�� � ¶�� ÉQm,{7gÀ{�q!adew��oQmQexadc�}
oZgd��o�q�aÀa
t
 {�_Nk � «7{�_Nk§ewe���exado �
� �,{�g�exa�ehg�a
cfo�z7oX_foZ}
{�adew_fzbe«a
o � t�s§ÂFÔ ¶ � � � É¡�,{bl7t�jf_Nz�oX}giew�fvwex_fz¶t�st¨��A¬��B¥�oZ}do�m,oU{7gdgdj � o§adcN{�a�adcNoUq!t7_p��kpoZ_Nq!o�t�sÂ�Ô ¶ � � � É7�Àt7}dewz�ew_N{�vxvwlòÂ�Ô�� � ¶�� É7��z�}
tym�g�oX_ft7jfz�cîadt � {r�7oJe«a
{nz7t�t�k:}
jfvwo�exado � gioXaZ¬ �/¾¤cfoJad}
ehq���ehgX�,cftym,oX��oZ}Z�2adcN{�a�m�ogicft7jfvhk�{\�7t�ehkU}
oX��ehgiexadew_fz�oZ{�q�c�¨���´ Ê ½
¾%¿ � �%¨*�2a
t�gioZore«s=exa�ewg
Êio!µp�N{�_Nkf{��fvxo7� Ì�mQcfewq�c0q!t�jNvwkr�Lo,qXt7giadvwl*exs Ê�½�¾F¿ � ��¨��)qXt�_¡a
{�ex_Ng
{±vw{�}dz7oú_¡j � �LoX}�t�s¶_ftpkpoZg¯�uew_�qX{�gdoúm,o­jNgdo­}doZvw{�adew��oZvxl}doZvw{�µ�o�k�a
cf}do�gicNt�vhkfg,sut�}�gdjf�f�Lt�}da	{�_Nk�q!t7_p��kpoZ_Nq!oy��¬

^`_��À}
tpq!o�kpjf}
o :f�Àm,oJ{�kfkî{�vwv,e �§� oZkpeh{ya
oJq�cNexvhkp}
oX_�t�s
¨ ex_b{�vxehg�a�7 È ��� �AgioZo�£²ew_fo �O����¬0³~o�jNgdo�adcfo§z�oZ_foX}�{ya
ex_Nz
e«a
o � g²t�s�{�vxv�exado � gioXa
g²ew_ 7 È ��� {7g�adcfoÀqZ{�_Nkfewkf{�ado2qXt�_NgdoZ©¡jfoZ_¡ao!µ�adoZ_Ngiewt�_�g,¿ ��� ��¨��u��sut�}roZ{7q�c�o!µpehg�a
ex_Nz�q�cfewvhkp¨���t�sc¨��²{�_�k
}do�q!jf}�giew��oZvxlúqZ{�vwv?�2}dtpqXoZkpjf}
o :�adtò}
oX��ehgiexa�¨��rgitîadc�{ya¶m�o
qX{�_îo!µp�N{�_Nk�a
cfo¶gijf�fad}
oXo�}dt�t�a
oZkî{yaº¨��A¬�¾¤cfoZ}doXsut�}
o��Àexs�{
}doZ�¡ehgde«a
oZk­¨���ehg(sut�jN_Nk~adt|c�{\��o�_ft�qZ{�_Nkfewkf{�adoUqXt�_NgdoZ©¡jfoZ_¡a
o!µ�adoZ_Ngiewt�_�gX�pm,o(kpt§_ft�aQ_foZoZk�adt§}
oX��ewgdexaQ{�_�l�t�s�e«a�gQo!µpehg�a
ex_fz
q�cfexvhkp}
oX_²¬ ³~o:qZ{�_�g2��ew� Ê ½
¾%¿ � ��¨����|oX_¡a
ex}
oXvwl±e«s ¨��§kpt�oZg
ft�a­cN{\�7o {��l }
oZqXjf}�giew��oD{�q!adew��oD}
jfvwoDo!µ�adoZ_Ngiewt�_�g ���B¢���¢w�
� ½��� � �%¨ � ��ÁïÓ7��«Àt�}���m�o�z7t|kpew}do�q�advwlnadt|a
cfo��N}�giaG}do�q!jf}�gdex�7o
{�q�a
ex�7o=}djNvxo=oXµ¡a
oX_Ngdewt�_rt�s ¨����BgdoXoÀ£Ëex_fo�gI�!�2��t�si�À}
tpq!o�kpjf}
o :���¬
£ft�}¤{�_�l�¾�l¡�LoyÈ®exado � gdo!a@¨��Nsut7jf_Nk)��m,o	ew_���t#�7o@�À}
tpq!o�kpjf}
o
�¤adtGqXt � �fjpa
oQadcfo*gijf�fad}
oXo Ê�½�¾%¿ � ��¨�������{�g=ew_NkpehqX{�adoZk�ex_�£Ëex_fo
�(��t�s��À}
t�qXoZkpjN}do :f¬
� - Î © �¡Yy½=�°� ¹ WZ[¬�) ��V\¼��uWZV
¾Ët	qXt�_NkfjNq�aËoXµp��oZ}de � oX_¡a
gZ�Zm,oÀz7oX_foZ}
{�adoZk�jNgdew_fzQadcNo � o!adcNt�k�N}
gia��f}
t��Lt7gdoZkP��l � z�}�{\m,{�v,{�_Nk:¦p}de��y{�_¡a { :3~	{bgdl�_7a
cfo!a
ewq
kf{ya�{�gdo!a2¾f} <f¬ ^��f¬ Èq�=< <��úq!t�_¡a�{�ew_fex_NzZ�=< <f� < < <Qa
}
{�_Ngd{7q�a
ext7_NgX¬
³no|z7oX_foZ}
{�ado�k�jNgdew_fzP{ � ex_fe � j � gdjf�f�Lt�}da�t�s;<��o�����ý{�_
{�k\�i{7q!oX_�q!l�vw{�aiadehq!o0mQe«a
c¯� �#�f� � } <�_ftpkpoZgZ¬	³~o0qXt � �N{�}
o � v«�
z�t�}
exadc � }¶{�_�k � vwz�t�}
exadc � ��jNgdex_Nzn{¶_�j � ��oZ}Gt�s	qXt � �fe«�_N{ya
ext7_NgQt�s=gdjf�f�Lt�}da	{�_NkJq!t7_p��kpoZ_Nq!ora
cf}
oZgdcft�vhkfgZ¬ £ft7}�oZ{7q�c
q!t � �few_N{ya
ext7_²�7m,o�}
{�_ : <0kpe5��oX}
oX_¡a,ado�g�aQqX{7gio�gX��oZ{7q�c�mQexadc�{
kpewgiadew_Nq!aQgdo!aQ� t�s : < <�{�_7a
oZqXoZkpoZ_7a¤exado � gr�ut7jpaQt�s�{Gadt�a
{�vLt�s
� < < <�e«a
o � g��À}�{�_Nkpt � vxl0�fewq��7oZk)��{�_�k§}do�q!t�}�kpo�kGa
cfo	}
jf_f_Nex_fzade � o�{\�7oX}�{�z7oZk�ty�7oX},adcfo;: <�a
oZgia	qX{7gio�gX¬

£�ewz�jf}
oc�(ewvxvwjNgiad}�{yado�g�adcNo3ÊdqXt � ��oXadexadew��oQ}�{ya
ext!Ì*t�s � vwz�t��
}dexadc � }f��mQcfewq�c�ewgrkpoX�N_foZk|adt���o�adcNo0}�{ya
ext�t�s2exa
gr{\��oZ}
{�z�o
}djf_N_fex_NzQade � oÀadt�adcN{�aËt�s � vxz7t�}
e«a
c � �7¬Ë¥�oZ}doÀsut�} � vxz7t�}
e«a
c �
�Qadcfo�}
jf_f_few_fz�a
e � o*ewg,kpo!��_foZk�adtG�Lo�a
cfo�a
e � o*sut�}¤{�_Ngdm,oX}d�ex_fz�{UØ���� ê ëx�G©¡jfoZ}dl�mQexadc¶{�vxv�: < <G{�_¡adoZqXoZkpoZ_¡a¤exado � g��¡_NtymQ_
ex_P{7kp�y{�_NqXo�¬�£ft7} � vwz�t7}dexadc � }f��a
cfo�}
jf_f_few_fz¶a
e � o�ewg�adcfoadt�a�{�v�a
e � o�sut7}r�N_fehgicfew_fz : < <�©7jNoX}
exo�gX�²o�{�q�c~t�s¤mQcfehq�c~m¤{�g
��oZ}isut7} � oZk�{�s�adoZ}2t�_No	{�_¡ado�q!o�kpoX_¡a2exado � m¤{�g�{�kfkfoZk)¬�£�exz7jf}do
��gicNtym�g(adc�{yaGa
cfoU�LoX}dsut�} � {�_NqXo�t�sQt7jf}Gt7_fvxew_fo�{�vwz�t�}
exadc �ewg(�7oX}
lnqXvxt¡gio�adt|adcN{�aGt�s,adcfoUtH��ex_No�{�vwz�t�}
exadc � ¬º£Njf}dadcfoZ}Z�
sut�} � vxz7t�}
e«a
c � }p��{�_Ngdm�oZ}dew_fz�{�gdex_Nz�vwoG©¡jfoX}
l�ehg	{�v � t¡g�a	ew_p�g�a�{�_¡a
{�_foXt7jNgX¬�¾¤cfehg�kpo � t�_Ngiad}�{ya
oZg�adcNo�{�kp�y{�_¡a�{�z�o§t�s��f}
o!�

50

60

70

80

90

0.4
0.5

0.6
0.7

0.8
0.9

1

1

1.2

1.4

1.6

1.8

2

Min Conf (%)

Competitive Ratio

Min Supp (%)£�ewz�jf}
o?� � ��t � �Lo!a
e«a
ex�7o(}
{�adewtN¬
qXt � �fjpa
ex_Nz�{�_P{7k\�i{�qXoX_NqXl�vh{yaia
ewqXo�sut�} � ex_few_fz�{7gdgdtpq!eh{ya
ext7_}
jfvwoZg¤mQexadc¶q!t7_Ngiad}�{�ew_foZk�{�_¡ado�q!oZkfoX_¡a
gZ¬
	 ³0º ¹]#�A¼ËV�½uº ¹ [¹ »�
�¼ËW�¼ËY��
�ÒºNY��²V
^`_~a
cfewgG�N{��LoX}Gm�o��f}
ty��ewkfoZkb{J_fty��oZvÀ{��f�N}dt¡{�q�cnsut�}�t7_fvxew_fo
� ew_few_fz	t�sN{�g
gitpq!eh{ya
ext7_r}djfvwoZg�mQexadcGqXt�_Ngiad}�{�ew_foZk({�_¡adoZqXoZkpoZ_¡a
g{�_Nk|ew_ � jfvxadew�fvwo�g�a
oX�NgZ¬ �,l|qZ{�}
o!sujfvwvxl � {�ex_¡a
{�ex_Nex_fzJ{�ad}
oXot�sQ}djfvwoZgG{�g�m,oXvwv2{7gGgdt � o�{�jpµpewvxeh{�}
lnkN{ya
{¶giad}
jNq!adjf}
oZgZ��t7jf}{�vxz7t�}
e«a
c � �LoX}dsut�} � g�_foZ{�}dvwlî{7g�m,oXvwv	{�g�adcfo|t���ex_fo|{�vxz7t��}
exadc � �*{7g�gdcftymQ_­��lòa
cfon�N}doZvxe � ex_N{�}dlòoXµ��LoX}
e � oZ_¡a
{�v�}
o!�gdjfvxa
gZ¬ £ft7}¶sujpa
jf}do�m,t�}M�pgX�rm,ob�fvw{�_®adt­giadjNkpl®cftym adcfehg
{�vxz7t�}
e«a
c � qZ{�_b��o�oO�Lo�q�a
ex�7oXvwl~qXt � �Nex_fo�k~mQe«a
c~t�adcfoZ}�exadoX}d�{�adew��o � ew_few_fzú{�vwz�t7}dexadc � gUadtò{�_Ngdm,oX}J©7jNoX}
exo�gUmQexadc®��t�adca
exz7c¡adoX_NoZkG�y}doZvw{�µ�o�k�gdjf�f�Lt�}da�{�_�k:qXt�_p�LkpoX_NqXo|q!t7_Ng�a
}
{�ex_¡a�gX�
{7g¤m�oZvxv�{�g¤ew_Nq!}
oZ{7gio�kG�ykfoZq!}
oZ{7gio�kU{�_7a
oZqXoZkpoZ_7a�gdo!a�¬
£Njf}ia
cfoX}��
m,oJ{�}
oUew_7a
oX}
oZgiado�kPew_:giadjNkfl¡ew_fzb{�_:{�vxadoX}
_N{�adew��o�{��f�f}
t7{7q�c
a
cN{yaGkft¡o�g(_ft�a�}do�©7jNex}
o�adcfo��f}
o!�`q!t � �fjpa
{�adewt�_~t�s�{�_b{�ky�i{y�qXoX_NqXl�vh{yaia
ewqXo�¬
) � ,��¡Y3� ¹] ��V
����� å��	å����������������� "!$#%�	ß�à7ç&!'�Xç)(+*%�	ß,�.-�à�!0/�1�2435176 8�97:

;=< 3?>A@B2DCE9 ; 9�F)6 < F,GH8AG=FIG ; 1�3 < 9�FJ9KCML ; 9KNO6PGQ1�2�2=9SR < 173 < 9�F ;=T 6PG=2�!
U�VXWXY ! �EZ\[^]�_7_7]�` !¡á¡á&� �E_a�cbEd)�E_�]�e �

�]c� å��\å��7�������c���Q�� D�ZçD(B*%��ßI��-�à�!AfgFIG=h
1=L7L ; 9S1�R4>03i9j9�FD6 < FIG
8AG=FIG ; 1�3 < 9�Fk9KCl1�2�2=9SR < 173 < 9�F ;4T 6PG=2�! U�VXWXY ! �Smn[^]�_7_o��` !
á¡á&�Dp]7bSd p Z7_ �

� m��rq �������4�E���� ��ZçD(q ��ßA��sPt��ZçAuS!�/�1�243O1�6 8�9 ;=< 3?>o@B2MCE9 ; @ < F < Fo8
1�2�2�9SR < 173 < 9�F ;=T 6PG=2�!�v.w W.x�y z Z !¡á¡á�� Z7e�bEdAZ z�z �

� Z��rq � x �E{o�c�4(7æ�! q �D���D|��S�}!I�Xç)(W �,~,à7ç¡æ�á7àD æ7�E!O��9�FD243 ; 1 < F)3":
� 1�2EG�� ;4T 6PGr@ < F < Fo8 < F�6}1 ; 8AG=����G=FD2�G'��173i1 � 1�2�G=2�!%�Öå WXY�y z�z !á¡á&� �Ee7ecdD� z b �

� p � ~j�\å�æZçD�X�Xç)(x ��w�s à&!D��L�G�G���: T L < 3^G ; 173 <�� G&C ; G�� T G=F)3 < 3^G=@B2�G�3
@ < F < Fo8�h < 3?>'R49�FD243 ; 1 < F)3HR4>�1�FA8AG=2�!A�`å WXYQy _�] !yá¡á�� �S_�bEd)���EZ �

� ��� w��avj�¡ßI��w&��to���D�0�Xç)�Zç�! q � U �����a!D|a�D���Zç&!��Xç)(\����*��ZçD�a!
� L,3 < @ <P� 173 < 9�F�9�C�R49�FD243 ; 1 < FIG��\C ; G�� T G=FD3j2�G�3r� T G ;4< G=2\h < 3?>
� : � 1 ;=< 1 � 6PGjR�9�FD243 ; 1 < F)3�2�!�ßo��~X��� WBy z7z !¡á7á&� � p bSd)�E�7e �

� bc� |��I*%�Es"!�|��,���Zç�!I�ZçD(�w��)v��NßI�)wM��ta�����0�ZçD�Zç&!&� < F < Fo8�C ; G�:
� T G=FD3 < 3^G=@n2�G�3�2�h < 3?>�R�9�F � G ; 3 < � 6PG0R49�FD243 ; 1 < F)3�2�!%�Öå WXY�y _o� !á¡á&� Z7m7mcd�Z7Z�] �

� e��rq �yßo��s}t7�XçAuS!a j��vËà&!��Zç)(q �A�����4�E�Q�� i!I� < F < FA8B1�2�2=9SR < 173 < 9�F
;=T 6PG=2.h < 3?> < 3^G=@¡R�9�FD243 ; 1 < F)3�2�! VXW�WBy z b !¡á¡á�� �7bSdob�m �

� z � ßI� U �7æ7�0���r�ZçD(|ßI�)å¢�)��tA�4�S£�����u��A{A!�¤�F,R ; G=@0G=FD3i176�@ < F < Fo8
9KC�R49�FD243 ; 1 < FIG��¥1�2�2=9SR < 173 < 9�FD2�!)��s?*�å y _7_ !pá¡á��)p ZAbEd p7p e �

555

Influence in Ratings-Based Recommender Systems:

An Algorithm-Independent Approach

Al Mamunur Rashid George Karypis John Riedl∗

Abstract
Recommender systems have been shown to help users find
items of interest from among a large pool of potentially in-
teresting items. Influence is a measure of the effect of a user
on the recommendations from a recommender system. In-
fluence is a powerful tool for understanding the workings of
a recommender system. Experiments show that users have
widely varying degrees of influence in ratings-based recom-
mender systems. Proposed influence measures have been
algorithm-specific, which limits their generality and compa-
rability. We propose an algorithm-independent definition
of influence that can be applied to any ratings-based recom-
mender system. We show experimentally that influence may
be effectively estimated using simple, inexpensive metrics.

1 Introduction

Sociologists have long tried to characterize the influence
of a person in a social network of many people [1]. Iden-
tifying the influential people can bring twin advantages
to those who study group dynamics: (1) The influen-
tial people can be directly studied, yielding insight since
their choices may be predictive of group choices; or (2)
The influential people may be influenced to change the
behavior of the group. Many social networks are formed
and maintained through informal, qualitative, and un-
observed interactions. Capturing data about these in-
teractions is difficult, and the act of capturing those
data may change the social interactions themselves.

Collaborative Filtering (CF) recommender systems
[2, 3, 4] base their decisions on the opinions of users. In
contrast to other social networks, recommender systems
capture interactions that are formal, quantitative, and
observed. The social network can be analyzed directly
through data already captured in the computer system.

Past research has demonstrated that analyzing the
social network can provide leverage in influencing the
group [5]. The analysis performed in these studies
is based on a deep investigation of the characteristics
of one particular recommender algorithm, the well-
known user-user nearest neighbor algorithm [2]. Careful
analysis of this type has many advantages, but one
key disadvantage: it is tied closely to the details of
the algorithm. In principle, similar techniques could

∗Department of Computer Science & Engineering, Univer-
sity of Minnesota, Minneapolis, MN-55455, {arashid, karypis,
riedl}@cs.umn.edu

be applied to other algorithms, but doing so would
be laborious, and the resulting influence measure only
applies to algorithms that work precisely according to
the details of the analysis. Since many commercial
operators tweak the operation of the recommender in
many ways to fit the needs of their business, this
analysis may not apply in practice. Further, the
resulting measures of influence would be unlikely to
be comparable between different algorithms, since they
have been produced through very different techniques.

A key goal of the present research is to identify a
measure of influence for recommender systems that is
applicable to any ratings-based recommender system,
independent of the particulars of the algorithm. Such a
measure would allow for consistent, black-box analysis
of influence.

2 Related Work

2.1 Recommender Systems. Resnick, et al. [2] in-
troduced an automatic collaborative filtering algorithm
based on a k-nearest neighbors (kNN) algorithm among
users; this algorithm is now called user-user CF. The
user-user algorithm we use in this paper is a version
of the original kNN algorithm, tuned to achieve best
known performance. Sarwar et al. [4] proposed an al-
ternative kNN CF algorithm based on similarity among
items. This variant is often called item-item CF. Breese
et al. [3] have divided a number of CF algorithms into
two classes: memory-based algorithms and model-based
algorithms. Over the years many other algorithms
were proposed including ones based on SVD, cluster-
ing, Bayesian Networks [3]. We focus on the user-user
and item-item algorithms in this paper because they are
the most common in existing systems.

2.2 Social Networks and Influence. A Social net-
work is a form of graph delineating relationships and
interactions among individuals. Finding the important
nodes in such graphs has been an object of interest
to sociologists for a long time. One proposed measure
for importance is centrality [1]. Two examples of “cen-
trality” measures are “degree centrality”, which treats
high degree nodes as important, and “distance central-

556

ui,m
uN2,m

uN1,m

uN3,m

uN4,m

uN5,m

uN6,m

uN7,m

uNk,m

Figure 1: Showing the notion of in-links for the k closest
neighbors of ui. Here, prediction is being computed for
the (user, item) pair, (ui, m).

ity”, which treats nodes with short paths to many other
nodes as important [1] . Kleinberg’s HITS [6], and Brin
and Page’s PageRank [7] algorithms for ordering nodes
in a graph of web are based on social network principles.

Domingos et al. [5] have studied the problem of
choosing influential users for marketers who wish to
attract attention to their products. They show that
selecting the right set of users for a marketing campaign
can make a big difference. Kempe et al. [8] focus on a
collection of models widely studied in social networks,
as well as the models in [5], under the categories: Linear
Threshold Models, and Independent Cascade Models.

Our research also investigates influence in social
networks. Like Domingos et al. we focus on networks
in recommender systems. We extend their research to
general measures of influence that are independent of
the particular recommender algorithm being used.

3 Defining Influential Users in CF Systems

We first discuss the data used in this project, then an-
alyze a popular CF algorithm to understand a possible
formation process of influential users, and then try dif-
ferent ways to set the definition.

3.1 The Data. We have used a publicly available
dataset from www.grouplens.org. The dataset is a
fraction of the usage data drawn from MovieLens
(www.movielens.org), a CF-based online movie rec-
ommendation system. It contains 6,040 users, 3,593
movies, and about one million ratings on a 5-star scale.
Each user has rated at least 20 movies in the dataset.
We have partitioned this data into training and test sets
by a random 80%/20% split.

3.2 The User-User Algorithm. The most widely
cited and arguably the most commonly used CF algo-

rithm in research is a kNN-based algorithm. In this
scheme the users’ preference data is represented in a
n �m user-item matrix for a system with n users and
m items, where the (i, j)-th entry of this matrix stands
for the user ui’s rating on item j, or null, depending
on whether the user ui has rated the item j, or not,
respectively. The user-user algorithm can be thought
of working in two stages. In the first stage, similari-
ties between every pair of users are computed and are
stored as a model. Although many different formula-
tions are possible for similarity weight calculations, the
GroupLens [2] proposed mechanism is the Pearson cor-
relation coefficient. Accordingly, the similarity weight
between two users, ui, and uj is measured by equation
3.1:

Wij =

∑
k∈I(Rik − Ri)(Rjk −Rj)√∑

k∈I(Rik −Ri)2
∑

k∈I(Rjk −Rj)2
(3.1)

where I is the set of items rated by both of the users,
Rik is user ui’s rating on item k, and Ri is the average
rating of ui. Using this similarity metric, the next
step, prediction generation, is carried out as follows.
Prediction on item a for user ui is computed by picking
k nearest users who have also rated item a, and by
applying a weighted average of deviations from the
selected users’ means:

Pia = Ri +

∑k
u=1(Rua −Ru)Wiu∑k

u=1 Wiu

(3.2)

3.3 Some Plausible Influence Metrics Based on
Prior Work. We can now propose several influence
metrics. One type of metric is motivated by targeted
marketing. Another type of metric exploits connections
between users based on similarity.

3.3.1 Expected Lift in Profit: Network Values.
This approach, as outlined in [5], is based on the
goal of targeted marketing. In this scheme, users who
can yield the most expected lift in profit by making a
cascading adoption of a product happen, are considered
as influential users. Domingos et al. [5] have applied
this idea on a recommendation system dataset based on
the user-user CF algorithm described in the last section.

The probabilistic model in [5] is based on the
Markov Random Fields, which requires the neighbors be
symmetric; i.e., two users are neighbors to each other
if one of them is a neighbor to the other. The authors
mention that in a kNN-based CF system, this might not
hold. Again, ELP Network Value is tied to a particular
product; more specifically, it is specific to a set of
features of the product being marketed. Translating
this issue into the RS domain, ELP Network Values

557

are specific to particular genre vectors. Thus a user’s
ELP Network Value will differ for movies with different
genre vectors.

3.3.2 Network Structure: Similarity Links. By
closely observing the process of neighbor-selection, we
notice some network structure that could facilitate in
forming a definition for influential users. Figure 1
demonstrates a situation where the system is computing
a prediction on item m for user ui . In order to do so,
it selects top k neighbors who also have rated the item
m. Now we can imagine directed edges from ui towards
each of the k neighbors.

Equations 3.3 and 3.4 show the updated authority
and hub equations. In order to consider the fact that all
the links may not of same weight, we have incorporated
a weight term similar to [9] to the basic HITS [6]
equations. Here the conditional probability, p(i|j) refers
to the degree of user uj ’s presence indicating user ui’s
presence.

a(i) =
∑
j→i

p(i|j)h(j)Wij(3.3)

h(i) =
∑
i→j

p(j|i)a(j)Wij(3.4)

We can use this modified authority to represent
influence.

The drawback of this scheme of influence, however,
is algorithm dependence: the network structure cap-
tured here is very much algorithm-specific; and, for
other algorithms, the structure might not be as ap-
parent. In order to derive a definition that is generic
enough, yet simple, we use the Hide-one-User approach
discussed next. The fundamental concept with this ap-
proach is figuring out which user causes the largest cu-
mulative change of prediction in the system.

4 Algorithm-Independent Influence

These metrics define influence as the amount of effect
a user has over others via the predictions they receive.
One way to observe this effect is to exclude a user and
measure the net changes in predictions caused by the
removal.
The idea: Let U be the set of available users in the
system, MU be the model built with the preference
data of this set of users. We call NPDui

(Number

of Prediction-Differences) as the number of times the
following expression holds true:

|Pja(MU)− Pja(MU−{Ui})| ≥ δ, ∀j 6= i

Here, Pja(MU) is the prediction on item a for the
user uj using the model MU , δ is a threshold that can be

0

0.2

0.4

0.6

0.8

1

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

12
01

13
01

14
01

15
01

Ranks of the users by NUPD

N
or

m
al

iz
ed

N
U

P
D

(a)

0

0.04

0.08

0.12

0.16

0.2

300 301 302 303 305

#of ratings of the selected users

N
or

m
al

iz
ed

 N
U

P
D

(b)

Figure 2: (a) Distribution of influence. (b) NUPD
values of a group of 20 users who have rated almost
the same number of items.

tied with the smallest prediction change perceivable to
the users via the available user interface. As an example,
smallest prediction change a MovieLens user would
notice is 0.5 or a half-star. In essence, the expression
for NPDui

says how many times the predictions would
change beyond some threshold if we build the model
without the user ui. NPDui

is the influence level of
user ui. There is a problem with NPDui

: if the group of
users, who get affected by ui’s removal, need predictions
on many items, ui could exhibit possessing a large
NPDui

. To overcome this problem, we propose another
version of this definition and call it NUPDui

. NUPDui

counts the number of unique users whose predictions’
got changed by at least the threshold amount as we
keep the i-th user out during model-building.

As is evident from the definition of NUPDui
, it is

equally applicable to any CF algorithm, provided that
we have the historical data to compute it from.

Notice that a straightforward computation of
NUPDs can become very expensive; if we are to com-
pute NUPD online or in a regular basis, we need to find
a cheaper way. Section 6 details such an endeavor.

4.1 The Nature of Influence. Figure 2(a) shows
normalized NUPD values of the top 1500 influential
users and highlights the fact that only a handful of
the users possess high influence. This is true for
both authority and NUPD measures. The shapes
demonstrate the power-law or a Zipf-like distribution. A
similar shape is reported in [5] for ELP Network Values.

Note that the correlation between authority and
NUPD is 0.96.

5 Building a Predictive Model

As stated before, NUPD suffers from a drawback: the
computation is quite time consuming. In order to
circumvent this limitation, we seek a predictive model
that can provide users’ influence levels on the fly while

558

maintaining good accuracy.
Although the correlation coefficient between NUPD

and the number of ratings is 0.75, figure 2(b) shows
that the amount of influence can vary widely between
users who have rated approximately the same number
of movies. This suggests we look for a model that
can account for factors not captured by the number of
ratings.

In the following section we compile a list of quali-
tative factors that seem to affect influence levels.

5.1 Qualitative Factors
Number of ratings: This is the most immediate

factor one would possibly come along with. If a user
rates more items, she has a greater chance to be close
to many users. Moreover, such a user can be useful to
many users who are looking for recommendations for a
wide variety of items.

Degree of agreement with others: This measure
attempts to estimate on average how much a user agrees
to the average opinion of others: 1/k

∑k

a=1 |Ria − Ra|.
This expression computes the extent to which the user
ui’s ratings are swayed from each of the corresponding
item’s average rating.

Rarity of the rated items: This is a measure
very similar to that of the Inverse Document Fre-
quency (IDF), which penalizes frequent items, as they
are considered to have little discriminating power:
1/k

∑
j∈Iui

1/freq(j); where, Iui
is the set of items that

user ui has rated.
Standard deviation in one’s rating: This amounts

to the degree a user’s ratings deviate from her rating-
average. The implication is that a higher standard
deviation contributes a greater value through the term,
(Rik −Ri) in equation 3.1.

Degree of similarity with top neighbors: This is the
average similarity weight of the top k neighbors of a
user ui: 1/k

∑k

j=1 Wij . This factor can be associated
with two opposing implications: users having higher
values from this expression might be able to exert more
effect to be influential; whereas, a user might be easier
to replace if she is very similar to a number of other
users.

Aggregated popularity of the rated items: If the sum
of the popularities of the rated items is high enough,
the user has a greater chance to have overlapped items
with many users.

Aggregated MoviePopularity*Entropy: Entropy of a
movie simply indicates the dispersion of the ratings it
received. Multiplying this with the popularity of the
movie gives a measure that tries to balance between
popularity and variance.

5.2 The Regression Model
We chose to use SVM Regression (SVR) for our mod-
eling. SVMs follow the Structural Risk Minimization
Principle which seeks to minimize an upper bound
on the generalization error rather than the principle
used in most of the learning machines: Empirical Risk
Minimization Principle– minimizing the training error.
Hence, SVMs have been showing better generalization
in many results. Although most of the practical us-
ages for SVMs used to be in classification problems,
SVMs have been extended to solve non-linear regres-
sion problems, mostly because of the introduction of
the ε-insensitive loss function [11]; and the resulting re-
gression method called ε− SV R.

We have tried various kernel functions to perform
the non-linear mapping from the input space to the
feature space. However, the radial basis function (RBF)
produced the best regression result. In order to select
the values of the parameters, C and ε, a cross-validation
approach was carried out.

We have randomly selected 2416 users (40% of
the total) and partitioned them into training and test
sets by a 8:2 split. libsvm[10] was used to generate
regression models using the following: the seven factors
outlined before as predictors (independent variables),
an RBF kernel, ε − SV R, and the parameters, C and
ε. The model gave a squared correlation coefficient of
0.94. Figure 3 shows the prediction performance by
plotting predicted NUPDs against the corresponding
actual NUPDs taken from the test-set. A five-fold
cross validation was carried out to ensure the results’
validity. Table 1 has the regression results as well as a
few statistics of the actual NUPD values in the test set,
averaged over the five folds.

6 Influence in an Item-based Algorithm

We now turn to how the influence picture looks when
using another prediction algorithm in order to see how
algorithm-dependent our measures are.

The item-item Algorithm. The kNN based CF
algorithm proposed in [4] is different in many ways than
the user-based algorithm we have addressed so far. The
algorithm first builds the model by computing item-item
similarities. [4] proposed adjusted cosine measure for
estimating the similarity between two items i, and j:

si,j =

∑
u∈U (Ru,i −Ru)(Ru,j −Ru)√∑

u∈U (Ru,i −Ru)2
∑

u∈U (Ru,j −Ru)2

Prediction for the (user, item) pair, (u, i) is computed
as:

∑
all similar items,N (si,N ∗Ru,N)/

∑
(|si,N |).

We could not employ authority on this algorithm,
as it is not quite straightforward to establish di-

559

0

100

200

300

400

500

600

700

800

900

1000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

Test data points

N
U

P
D

 v
al

ue
s

Figure 3: Performance of SVM regression for NUPD
on user-user algorithm. The dotted line shows the
actual values; whereas, the continuous line represents
the predicted values.

rect edges between users. We could not compute
ELP Network Values on this algorithm either, since
ELP Network Values involve the notion of how neigh-
bors affect a user, and corresponding probability com-
putations based on this. However, applying NUPD by
Hide-one-User method was easy. We have estimated
NUPDs for the same set of users we have selected for
the user-based approach. Modeling with ε−SV R gave a
very good performance: squared correlation coefficient
was 0.989.

7 Conclusion

In this paper, we have continued the investigation into
influence in recommenders begun in [5]. We have shown
that how many opinions a user expresses is an important
component of influence, but not the whole story. We
have defined several plausible influence metrics and
shown that in general, they correlate strongly.

We believe our proposed metric, NUPD, is explain-
able both to researchers and operators of recommender
systems. NUPD is also algorithm independent—it ap-
plies to any recommender system algorithm that makes
predictions. NUPD is computationally inefficient. How-
ever, we have demonstrated how to build dataset- and
algorithm-specific regression models that allow for the
rapid, accurate estimation of a user’s influence.

Much remains to be done. Research is needed to
understand how the role of influence changes it. For
instance, when influence is used to help retailers sell
products it may have very different characteristics than
when it is used to encourage community members to
contribute opinions. Another rich area of research is
in interfaces for communicating influence to community

members. The interface is likely to impact both the in-
terpretation of influence and its effectiveness in chang-
ing behavior.

References

[1] S. Wasserman, K. Faust, Social Network Analy-

sis: Methods and Applications, Cambridge University
Press, (1994).

[2] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom,
and J. Riedl, Grouplens: An open architecture for

collaborative filtering of netnews, in Proceedings of
CSCW 1994, ACM SIG Computer Supported Coop-
erative Work, 1994.

[3] J. S. Breese, D. Heckerman and C. Kadie, Empirical

analysis of predictive algorithms for collaborative filter-

ing, in Proceedings of the Fourteenth Annual Confer-
ence on Uncertainty in AI, July 1998.

[4] B. M. Sarwar, G. Karypis, J. A. Konstan, and J.
Riedl, Item-based collaborative filtering recommenda-

tion algorithms, in Proceedings of the 10th Interna-
tional World Wide Web Conference (WWW10), Hong
Kong, May 2001.

[5] P. Domingos and M. Richardson, Mining the Net-

work Value of Customers, Proceedings of the Seventh
International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, 2001. ACM Press,
pp. 57–66.

[6] L. Kleinberg. Authoritative sources in a hyperlinked

environment, Journal of the ACM, 46, 1999.
[7] L. Page, S. Brin, R. Motwani, and T. Winograd.

The PageRank citation ranking: Bringing order to the

web, Technical Report, Stanford University, Stanford,
CA. 1998.

[8] D. Kempe, J. Kleinberg, and Tardos, Maximizing

the spread of influence through a social network, in
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
Washington DC, 2003, pp. 137–146.

[9] K. Wang, and M. Y. T. Su, Item Selection by “Hub-

Authority” Profit Ranking, in SIGKDD ’02, Canada.
[10] C. C. Chang, and C. J. Lin, LIBSVM : a library for

support vector machines, 2001.
[11] V. N. Vapnik, The Nature of Statistical Learning

Theory, New York, Springer-Verlag, 1995.

Table 1: Regression results on both CF algorithms
User-User Item-Item

Regression
Performance

MAE 15.26 30.6
Sq. corr. coeff. 0.94 0.99

MSE 1036 2252.6

NUPD
Statistics
in Test Set

Avg. 81.57 405.6
Min 0 0
Max 980 2487

StdDev 123.25 454.6

560

Mining Unconnected Patterns in Workflows

Gianluigi Greco∗ Antonella Guzzo† Giuseppe Manco† Domenico Saccà†

Abstract

This paper investigates the problem of mining uncon-
nected patterns in workflows and presents for its so-
lution two algorithms, both adapting the Apriori ap-
proach to the graphical structure of workflows. The
first one is a straightforward extension of the level-wise
style of Apriori whereas the second one introduces so-
phisticated graphical analysis of the frequencies of work-
flow instances. The experiments show that graphical
analysis improves the performance of pattern mining
by dramatically pruning the search space of candidate
patterns.

1 Introduction

A workflow is a partial or total automation of a busi-
ness process, in which a collection of activities must be
executed by humans or machines, according to certain
procedural rules. There is a growing body of proposals
aiming at enhancing the technology of Workflow Man-
agement Systems (WfMS) with advanced mechanisms
for monitoring and diagnosing workflow executions. In
this perspective, data mining techniques have proved to
be very effective [3, 2, 7] in helping the administrator:
Indeed, they can be exploited to look at all the previous
instantiations (collected into log files in any commer-
cial system), in order to extract unexpected and useful
knowledge about the process, and in order to take the
appropriate decisions in the executions of further com-
ing instances. In [5], we show that both a workflow and
its instances of execution have a natural representation
as a directed graph, in which nodes represent activi-
ties, and edges the relationships between such activities.
Hence, we concentrate on the problem of discovering
frequent connected patterns of execution (short: FCPD),
i.e., frequent connected subgraphs.

In this paper, we extend the approach in [5] and
study the problem of discovering correlations among
general patterns of execution in a workflow. In partic-
ular, we focus our attention on unconnected patterns,
which are arbitrary subsets of connected patterns ex-

∗Department of Mathematics, University of Calabria, Via
Bucci 30B, I87036, Rende, Italy. Email ggreco@mat.unical.it.

†ICAR-CNR, National Research Council, Via Bucci 41C,
I87036, Rende, Italy. Email {guzzo,manco,sacca}@icar.cnr.it.

hibiting no explicit dependency relationship. Thus, we
assume that a set P of frequent F -patterns is given and
we are interested in discovering whether any of the sub-
sets of P is frequent as well. This problem, called fre-

quent unconnected patterns discovery (short: FUPD), oc-
curs very often in practical scenarios and is crucial for
the identification of the critical subprocesses that lead
with high probability to (un)desired final configurations.

It is worth noting that FUPD has a trivial solution
consisting in the application of a level-wise algorithm
(in the a-priori style) which combines all the uncon-
nected patterns in P and then checks for their frequency.
However, this approach would not benefit from the pe-
culiarities of the workflow graph that can be profitably
used for pruning the search space. We show how the
structure of the workflow together with some elemen-
tary information such as the frequency of occurrences
of elementary activities suffices for pruning the search
space and for deriving an efficient and practically fast
algorithm.

2 Workflow Model and Problem Formulation

A workflow schema WS is a tuple 〈A, E, a0, AF 〉, where
A is a finite set of activities, E ⊆ (A−AF)× (A−{a0})
is an acyclic relation of precedences among activities,
a0 ∈ A is the starting activity, and AF ⊆ A is the
set of final activities. Moreover, A is partitioned into
A∨

in∪A∧
in∪A∨

out∪A∧
out∪A⊗

out. An activity in A∧
in (an and-

join node) acts as synchronizer, for it can be executed
only after all its predecessors are completed, whereas
an activity in A∨

in (an or-join node) can start as soon
as at least one of its predecessors has been completed.
Moreover, once finished, an activity a ∈ A∧

out (and-fork)
activates all its outgoing activities, a ∈ A∨

out (or-fork)
activates some of the outgoing activities, while a ∈ A⊗

out

(xor-fork) activates exactly one outgoing activity. The
tuple 〈A, E〉 is referred to as the control graph of WS.

A workflow schema has a quite natural graphical
representation, by means of a directed acyclic graph.
Figure 1 represents an example schema WS where A∧

in =
{d, c, b, f, e, n, q} and A∨

in = {a, g, l, i, h, m, o, p}, while
A⊗

out = {a, h}, A∧
out = {l, i, g, e, f, m, n, o, q}, A∨

out =
{b, c, d}, and AF = {p}.

The enactment of a workflow gives rise to an
instance, i.e., to a proper subgraph of the schema which

561

a

c

g

d i

b

h

l

o

m
p

f

e

n

q

Figure 1: An example of workflow schema.

is derived satisfying the constraints imposed by the
instances included. Formally, let WS be a workflow
schema. Any connected subgraph I = 〈AI , EI〉 of the
control flow graph is an instance of WS (denoted as
WS |= I) if the following conditions hold:

(i) a0 ∈ AI , and AI ∩ AF 6= ∅;

(ii) for each a ∈ AI , |{b | (b, a) ∈ EI}| > 0;

(iii) for each a ∈ AI ∩ A∧
in, {b | (b, a) ∈ E} ⊆ AI ;

(iv) for each a ∈ AI ∩A∧
out, {b ∈ A∨

in | (a, b) ∈ E} ⊆ AI ;

(v) for each a ∈ AI ∩ A⊗

out, |{b | (a, b) ∈ EI}| ≤ 1 and
|{b | (a, b) ∈ EI}| = 1 if {b ∈ A∨

in | (a, b) ∈ E} 6= ∅.

For example, with reference to the schema of Figure 1,
the following are example instances:

a b

f

m

p a g

n

m

p

a c g

m

n

p

a d l o p a d i o p

a d h o p a b e p

a b f p a b e p a c m p

We assume that each instance is properly stored by
the workflow management system in the log file, which
can be seen as a set F = {I1, ..., In} such that WS |= Ii,
for each 1 ≤ i ≤ n. Among the instances of F we are
interested in discovering the most frequent patterns of
execution as next defined. A graph p = 〈Ap, Ep〉 ⊆ WS
is a F-pattern (cf. F |= p) if there exists I = 〈AI , EI〉 ∈
F such that Ap ⊆ AI and p is the subgraph of I induced
by the nodes in Ap.

Let supp(p) = |{I|{I} |= p ∧ I ∈ F}|/|F|, be the
support of a F -pattern p. Then, given a real number
minSupp, we consider the following two problems on
workflows: (i) FCPD [5], i.e., finding all the connected
patterns whose support is greater than minSupp; and
(ii) FUPD, i.e., finding all the subsets of connected
patterns whose support is greater than minSupp.

As an example, let us consider the control graph of
Figure 1, the instances described above and minSupp =
0.3. Then, the patterns

a d

p1

o p

p2

are frequent connected patterns. Also, notice that none
of the nodes l, i, h is frequent, whereas the subgraph
p = p1 ∪ p2 is frequent (and hence {p1, p2} is a frequent
unconnected pattern).

3 Mining Unconnected Patterns

In this paper we shall deal with an efficient solution
for FUDP by assuming that the set C(F) of all the
frequent (w.r.t. minSupp) connected patterns in the set
of instances F has been already computed. Then, let q
be a not-necessarily connected component of WS with
frequency f(q) and p be a connected component with
frequency f(p) such that q and p are unconnected. Our
aim is to compute as efficiently as possible the number
of instances in F executing both the components p and
q, denoted by fp(q).

The problem has a straightforward solution consist-
ing in the application of a level-wise algorithm (in the
Apriori style [6]) which combines all the unconnected
patterns in P and then checks for their frequency. In-
deed, the algorithm ws-unconnected-find shown in Fig-
ure 2 implements the above solution. Given a uncon-
nected pattern p, we say that p is a starting pattern if
it contains the starting activity of the workflow schema;
otherwise, it is said a terminating pattern. Rather than
computing all the possible unconnected patterns, we
limit on starting patterns and we show how the space of
all the connected starting patterns forms a lower semi-
lattice that can be profitably explored in a bottom-up
fashion. In fact, given two starting patterns r and p
we say that r directly precedes p, denoted by r ≺ p, if
there exist a terminating pattern q such that r = p ∪ q.
It is not difficult to see that starting patterns can be
constructed by means of a chain over the ≺ relation.
Such an approach is, in fact, exploited by the algorithm
in Figure 2 that computes all the frequent starting pat-
terns, by generating at each step k the patterns made
of k distinct unconnected patterns.

The algorithm exploits the procedures
InitializeStructures and UpdateCandidateList,
which optimize candidate generation by tracking, for
each pattern p, all the patterns which have a non-null
intersection with p (and hence can be discarded when
generating candidates). Moreover, notice that each
pattern r generated at step k is also equipped with
two sets starting(r) and terminating(r), which store
the starting and terminating patterns respectively that
have been used for generating r. Finally, the function

562

Input: A workflow schema WS, a set F of instances of WS, the minimal support minSupp, the set
C(F) of frequent connected F-patterns.

Output: A set of frequent unconnected F-patterns.

Method: Perform the following steps:

1 InitializeStructures();
2 L0 := { p | p ∈ C(F), a0 ∈ p }; //***frequent connected starting patterns
3 k := 0, R := L0; C ′ := C(F) − L0;
4 repeat

5 U := UpdateCandidateList(Lk)
6 Lk+1 := ComputeFrequentPatterns(U);
7 R := R ∪ Lk+1;
8 forall r ∈ U − Lk+1 do begin

9 p := starting(r);
10 forall p′ ∈ Lk+1 s.t. p ⊂ p′ do

11 discarded(p′) := discarded(p′) ∪ {terminating(r)};
12 end

13 until Lk+1 = ∅;
14 return R;

Procedure InitializeStructures;

IS1 forall p ∈ C(F) do

IS2 discarded(p) := { q | q ∈ C(F), p ∩ q 6= ∅ };

Function ComputeFrequentPatterns(U : set of candidates): set of frequent patterns;

CFP1 return { r | r ∈ U, supp(r) > minSupp};

Function UpdateCandidateList(Lk : set of frequent patterns): set of candidate patterns;

UCL1 U := ∅
UCL2 forall p ∈ Lk do //***starting pattern
UCL3 forall q ∈ C ′ − discarded(p) do begin //***terminating pattern
UCL4 r := p ∪ q; starting(r) = p; terminating(r) = q;
UCL5 discarded(r) := discarded(p)∪ discarded(q);
UCL6 U := U ∪ {r};
UCL7 end;
UCL8 return U ;

Figure 2: Algorithm ws-unconnected-find

ComputeFrequentPatterns is invoked for filtering the
candidates which frequently occur in F .

A larger amount of pruning of the search space
identified by ws-unconnected-find can be achieved by
exploiting the peculiarities of the workflow graph. Our
idea is to exploit the structure and the information
regarding the frequency of each activity in order to
identify, before their actual testing w.r.t. the logs, those
patterns which are necessarily (un)frequent. We show
how some proper data structures and algorithms can be
used for effectively identifying a suitable lower bound
and an upper bound for fp(q), denoted by lp(q) and
up(q) respectively, without requiring access to the log.
The key of our approach is the basic situation where p
and q are patterns each one made of a single activity.

Computing Frequency Bounds for Activities.

First of all, let us denote by f : A∪E 7→ N the function
mapping either an activity a or an arc e to the number
of instances in F = {I1, ..., In} executing it. Given an
activity a ∈ A, let Ga be the subgraph of the control
flow of WS induced by all the nodes b such that there
is a path from b to a in WS. The starting point of our
approach is to approximate for each node b in Ga, the
value fa(b) by computing a lower bound la(b) and an
upper bound ua(b).

In order to derive the aforementioned bounds, we
first determine a topological sort 〈a = b1, b2, . . . , bk〉 of
the nodes in Ga of WS. Then we proceed as shown in
Figure 3. In the step 1, the lower and upper bounds

of the activity a are fixed to the known value f(a),
determined through Ga. Then, each node bi in Ga is
processed according to the topological sort. In step 4,
the set of all the activities C(bi) that can be reached
by means of an edge starting in bi and that are in Ga

is computed. Step 5 is responsible for computing the
upper bound ua(bi), whereas steps 6–10 are responsible
for computing the lower bound la(bi). Intuitively, the
upper bound ua(bi) can be computed by optimistically
assuming that each arc outgoing from bi is in some path
reaching c. This justifies the formula of step 5.

Input: A workflow schema WS, a set of instances F , and an activity a.

Output: for each node b ∈ Ga, the values la(b) and ua(b).

Method: Perform the following steps:

1 la(a) := f(a); ua(a) := f(a);
2 let 〈a = b1, b2, . . . , bk〉 be the topoplogical sort of the nodes in Ga;
3 forall i = 2..k do begin

4 C(bi) := {b | (bi, b) ∈ E ∧ b ∈ Ga};
5 ua(bi) := min(f(bi), f(a), U), with U =

∑
e=(bi,c)|c∈C(bi)

min(f(e), ua(c)).

6 if bi ∈ A∨
out ∪ A∧

out then

7 la(bi) := min(f(bi), max(L∧
1 , L∨

1)), with
L∧

1 = maxcj∈C(bi)∩A∧

in
{la(cj)}, and

L∨
1 = maxcj∈C(bi)∩A∨

in
{max(0, la(cj) −

∑
e=(d,cj)∈WS∧ d6=bi

f(e))}

8 else // case of bi ∈ A⊗
out

9 la(bi) := min(f(bi), L
∧
2 + L∨

2), with
L∧

2 =
∑

cj∈C(bi)∩A∧

in

{la(cj)}, and

L∨
2 =

∑
cj∈C(bi)∩A∨

in

{max(0, la(cj) −
∑

e=(d,cj)∈WS∧ d 6=bi
f(e))}

10 end

11 end

12 forall (b, c) ∈ Ga do begin

13 if b ∈ A∧
out and c ∈ A∨

in
then

14 la(c) := max(la(c), la(b))
15 endfor

Figure 3: The compute frequency bounds algorithm

Concerning la(bi), observe that each node cj ∈
C(bi) is executed with a by at least la(cj) instances.
Therefore, we need to know how many of the instances
executing bi contribute to la(cj). Two cases arise: either
(i) bi ∈ A∨

out ∪ A∧
out, so the nodes connected to bi

may occur simultaneously within an instance, or (ii)
bi ∈ A⊗

out, then all cj are executed exclusively from each
other. This explains why in the first alternative L∧

1

and L∨
1 are computed by maximizing the contribution

of each cj , whereas in the second alternative the single
contributions are summated. Finally, observe that when
cj ∈ A∨

in, it may be not the case that all of the la(cj)
instances execute bi, thus requiring to differentiate the
formulas for L∨

1 and L∧
1 (and, in the same way, for L∨

2

and L∧
2).

Observe that the final step in the algorithm possibly
finds tighter lower bounds by exploiting the fact that,
given two nodes b and c in Ga if (b, c) ∈ WS, b is an and-
fork node and c is an or-join node, then la(c) ≤ la(b)
the activity b is executed each time the activity c is.

As an example, let us consider the graph Gm in-
duced by node m in Figure 1. The inferred topo-
logical sort is 〈m, g, b, c, a〉. Hence, by applying
compute frequency bounds(WS,F , m) where F is the

563

set of instances described in section 2, we obtain the
following bounds:

lm(g) = 2, um(g) = 2, lm(b) = 1, um(b) = 1,
lm(c) = 1, um(c) = 2, lm(a) = 3, um(a) = 4

According to the these bounds, it is easy to see that
m ∪ a is a frequent unconnected pattern, whereas m ∪ b

is not (even though b and m are frequent patterns).
Computing Frequency Bounds for Patterns.

Let us now turn to the more general problem of ap-
proximating the value of fp(b), for any pattern p and
any activity b. To this aim we simply reuse the tech-
nique described in the previous section with some adap-
tations. Let INBORDER(p) denote the set of the activi-
ties in p having incoming arcs from WS − p. Let WS(p)
be the workflow schema derived from WS by adding a
new and-join node, say ap (corresponding to the com-
ponent p), and by adding an arc from each node b
in INBORDER(p) to ap. Next, set f(ap) = f(p), and
f(e) = f(p) for each e = (b, ap) ∈ E. Then, the func-
tion compute frequency bounds(WS,F , p) is defined as
compute frequency bounds(WS(p),F , ap).

As an example, let us consider the pattern p,
structured as shown below:

c

g

m

n

According to the workflow schema shown in Figure 1,
INBORDER(p) = {c, g} (indeed, both nodes have
incoming arcs from nodes which are not in p). In order
to compute frequency bounds for p, we connect both g

and c with a new dummy node ap. Thus, we obtain
Gap

= Gc ∪ Go and hence lower and upper bounds for
each node w.r.t. ap can be computed.

Improving ws-unconnected-find. We can now
face the more general problem. Let q be a general
component of WS with frequency f(q) and p be a
connected component with frequency f(p) such that q
and p are unconnected. A lower bound and an upper
bound of fp(q) are as follows:

• lp(q) = max(0, maxb∈q{lp(b) − (f(b) − f(q))})

• up(q) = min(f(q),
∑

b∈OUTBORDER(q) up(b)).

Here, OUTBORDER(p) refers to all the nodes in q having
outgoing arcs in WS−q. The intuition behind the above
formulas is the following. The value up(q) is obtained
by taking into account the contribution of each node b
of q from which there is a path to a node in p. However
we may exclude in the upper bound computation all
internal nodes of q (i.e., those not in OUTBORDER(p)) as
they are always executed together with at least one node
in OUTBORDER(p). Concerning the computation of lp(q),
observe that there are at least lp(b) instances executing

b ∈ q and p. Hence, as f(b) ≥ f(q), there are at least
lp(b) − (f(b) − f(q)) instances connecting q and p and
executing b. It turns out that a suitable lower bound
is provided by the node exhibiting the maximum such
value.

Generalized upper and lower bounds can be fi-
nally used for pruning the search space of the ws-
unconnected-find algorithm. In fact, if for any two
patterns p and q such that up(q) < minSupp, then
it is always the case that p and q never occur fre-
quently together. Conversely, if lp(q) ≥ minSupp then
p and q can be combined into a pattern that is fre-
quent as well. Thus, the algorithm ws-disconected-

find can be optimized by suitably adapting the proce-
dures InitializeStructures, UpdateCandidateList
and ComputeFrequentPatterns as shown in Figure 4.

Procedure InitializeStructures;

IS1 forall p ∈ C (F) do begin

IS2 discarded(p) := { q | q ∈ C (F), p ∩ q 6= ∅ };
IS3 〈lp, up〉 := compute frequency bounds(WS,F , p)
IS4 end;

Function ComputeFrequentPatterns(U : set of candidates): set of frequent patterns;

CFP1 LF := { r | r ∈ U, lterminating(r)(starting(r)) ≥ minSupp};
CFP2 LU := { r | r ∈ U, uterminating(r)(starting(r)) < minSupp};
CFP3 return LF ∪ { r | r ∈ U − (LF ∪ LU), r is frequent w.r.t. F };

Procedure UpdateCandidateList(Lk : set of frequent patterns): set of candidates

UCL1 U := 0;
UCL2 forall p ∈ Lk do

UCL3 forall q ∈ C ′ − discarded(p) do begin

UCL4 r := p ∪ q; starting(r) = p; terminating(r) = q;
UCL5 discarded(r) := discarded(p) ∪ discarded(q);
UCL6 lq(p) = max(0, maxb∈p{lq(b) − (f(b) − f(p))});
UCL7 uq(p) = min(f(p),

∑
b∈OUTBORDER(q)

up(b));

UCL8 U := U ∪ {r};
UCL9 end;
UCL10 return U ;

Figure 4: Optimizations to ws-unconnected-find

4 Experiments and Discussion

In this section we evaluate whether the computation of
upper and lower bounds avoids the generation of unnec-
essary candidate patterns to check for frequency against
the log data. In our experiments, we use synthesized
data, in which both the workflow schema and the in-
stances are artificially generated. The generation can
be tuned according to: i) the size of F , ii) the average
number d of frequent connected patterns to use in the
generation of frequent unconnected patterns, and iii)
the average number u of frequent patterns to exploit
in the generation of unfrequent unconnected patterns.
The details of data generation are described in [4].

We evaluated the ratio f = ncc/ncp between the
number ncc of candidate patterns checked against the
logs and the total number ncp of candidate patterns.
Low values of f represent a higher pruning capability.
Figure 5(a) shows the behavior of f for d = 10,
minSupp = 5% and increasing values of F and u. As

564

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|F|

f

u=2
u=4
u=6
u=8

(a) Ratio f , increasing values of |F| and u.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

minSupp

f

u=2
u=4
u=6
u=8
u=10
u=12
u=14

(b) Ratio f , increasing values of minSupp and u.

10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

U
nf

re
qu

en
t c

an
di

da
te

s

d

minSupp=5
minSupp=10
minSupp=15
minSupp=20
minSupp=25
minSupp=30
minSupp=35
minSupp=40
minSupp=45
minSupp=50

(c) Pruning by upper bound.

10 15 20 25 30 35 40
0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

18000.0

20000.0

d

F
re

qu
en

t c
an

di
da

te
s

minSupp=5
minSupp=10
minSupp=15
minSupp=20
minSupp=25
minSupp=30
minSupp=35
minSupp=40
minSupp=45
minSupp=50

(d) Pruning by lower bound.

Figure 5: Performance Graphs.

we can see, f is quite low, except when u = 8.
Figure 5(b) exhibits the ratio f for increasing values

of minSupp and u, when |F| = 1.000 and d = 15. Peaks
within the graphs are mainly due to the fact that we are
mining unconnected components: at low support values,
patterns are mined as frequent connected (i.e., the
frequency of paths connecting the components is greater
than the given threshold). As soon as support threshold
increases, frequencies of paths tend to decrease, and
hence a higher number of unconnected frequent patterns
is detected by the algorithm.

More in general, upper bounds are better in prun-
ing, whereas lower bounds are quite effective at high
values of minSupp (which guarantee several disconnec-
tions among frequent patterns). This is shown by Fig-
ures 5(c) and 5(d), where the number of pruned un-
frequent and frequent patterns is shown for increasing
values of minSupp and d, with u fixed to 2 and F to
1.000.

To conclude, the graph-theoretic approach devel-
oped in this paper exhibits a significant pruning capa-
bility which can be profitably applied to mining uncon-
nected patterns in general constrained graphs, such as
workflows. As a direction of future research, it would
be interesting to extend the proposed approach to richer
workflow models, in which complex constraints (such as
time constraints, pre/post-conditions, and rules for ex-
ception handling) can be expressed.

References

[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining
process models from workflow logs. In EDBT’98, pages
469–483, 1998.

[2] U. Dayal, M. Hsu, and R. Ladin. Business process
coordination: State of the art, trends and open issues.
In VLDB’01, pages 3–13, 2001.

[3] M. Gillmann, W. Wonner, and G. Weikum. Worklow
management with service quality guarantee. In SIG-

MOD’02, pages 228–239, 2002.
[4] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Min-

ing unconnected patterns in workflows. Technical Re-
port 5, ICAR-CNR, 2004.

[5] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining
and Reasoning on Workflows. IEEE Trans. on Data

and Knowledge Engineering, 2005. to appear.
[6] A. Inokuchi, T. Washi, and H. Motoda. An Apriori-

Based Algorithm for Mining Frequent Substructures
from Graph Data. In PKDD’00, pages 13–23, 2000.

[7] P. Koksal, S.N. Arpinar, and A. Dogac. Workflow
history management. SIGMOD Record, 27(1):67–75,
1998.

[8] W.M.P. van der Aalst, and others. Workflow mining:
A survey of issues and approaches. Data and Knowl-

edge Engineering, 47(3):237–267, 2003.

565

The Best Nurturers in Computer Science Research

Bharath Kumar M.
mbk@csa.iisc.ernet.in

Dept. of Computer Science

and Automation,

Indian Institute of Science

Y. N. Srikant
srikant@csa.iisc.ernet.in

Dept. of Computer Science

and Automation,

Indian Institute of Science

Abstract

The paper presents a heuristic for mining nurturers in temporally
organized collaboration networks: people who facilitate the growth
and success of the young ones. Specifically, this heuristic is
applied to the computer science bibliographic data to find the best
nurturers in computer science research. The measure of success is
parameterized, and the paper demonstrates experiments and results
with publication count as a success metric. Rather than just the
nurturer’s success, the heuristic captures the influence he has had
in the independent success of the relatively young in the network.
These results can hence be a useful resource to graduate students
and post-doctoral candidates. Interestingly, there is a recognizable
deviation between the rankings of the most successful researchers
and the best nurturers, which although is obvious from a social
perspective has not been statistically demonstrated.

Keywords: Social Network Analysis, Bibliometrics, Tem-
poral Data Mining.

1 Introduction

Consider a student Arjun, who has finished his under-
graduate degree in Computer Science, and is seeking a PhD
degree followed by a successful career in Computer Science
research. How does he choose his research advisor? He has
the following options with him:

1. Look up the rankings of various universities [1], and
apply to any “reasonably good” professor in any of the top
universities.

Does working with any reasonably good professor at a
top university ensure that Arjun gets the training to pursue a
successful research career?

2. Look up the web sites that present the most successful
researchers, based on the number of publications [2] or the
citations they have received [3] [4].

Arjun can then do his own analysis and find out how
many of these researchers are active at the current date. He
wants to ensure he does not work with a professor who’s past
his prime; or neglect a young and upcoming professor.

But still, does working with a top professor, who’s

known for his research, imply Arjun will learn how to do
good research and in due course have a successful research
career?

3. Get word-of-mouth information on the social aspects of
working with a particular advisor.

Arjun can talk to an advisor’s past and current students,
get their feedback, attribute a certain trust to what each one
says, and then decide. How many people will Arjun ask?
How much will he trust each individual feedback?

For Arjun, it is more important to seek a professor
who will nurture him to become a good researcher: one
who will teach him how best to do research that ends up
in good publications, one who will bootstrap him into a
good research network, where he hops onto a successful
research career path on his own. Although being with a good
researcher or in a top school does help, there is no guarantee
of being nurtured. A good researcher may not be a good
nurturer, and getting into a top school does not always ensure
a good research career.

Arjun would benefit if:

• there is a way to summarize the nurturing ability of a
researcher by mining the performance of people he nurtured,
and thereby compare one nurturer with another.

• there is a way to find out the best nurturers in a given period
of time.

• there is a way to find out researchers who have nurtured
people to publish many papers, to obtain many citations for
their papers or in a given area of research.

This paper presents aNurturer-Finderheuristic that Ar-
jun can use. When Arjun chooses to work with any of these
people, he is assured that he is not just choosing them for
their research prowess, but for the positive experiences peo-
ple like himself had in the past. It may turn out that the nur-
turers also happen to be successful researchers themselves,
as the results show.

2 The Nurturer-Finder’s Design Principles

While it may be argued that nurturing may even happen
inside the confines of a classroom, through well-written

566

books, or that a true nurturer may just stay behind the scenes
and not even be a co-author; mining among associations in
bibliographic databases remains the best context to scalably
look for nurturers in research:

• Publishing is the defacto standard for evaluating good
research.

• The art of scientific reporting is best taught “hands on”.
Senior collaborators typically give direction on the most
important aspects of the innovation, provide appropriate
feedback on its capabilities and limitations, and contrast the
innovation with other progress in the area.

• People who have contributed towards a research project
often end up as co-authors in the subsequent publication.

• Bibliographic databases are well documented, and are
already used for extensive analysis of the impact of research.

However, all publications may not have a nurturer-
nurtured pair; often, publications have “almost equals” as co-
authors. Hence, the heuristic must not stray in its analysis,
and report any co-author pair as a nurturer-nurtured pair.
In contrast, no co-author pair can be neglected, since every
collaboration can potentially be a context of nurturing.

The nurturer-finder heuristic is inspired by the concept
of gurudakshinaknown from ancient Indian traditions. After
finishing his education, a student (shishya) pays tribute to
his teacher (guru) for the knowledge he was bestowed. On
the same light, whenever a person achieves some success
(through a publication), he attributes a part of that success
to his “gurus” proportionate to their nurturing influence on
him. The gurus with the highest gurudakshina are the best
nurturers.

The design principles are elucidated as follows:

1. The effect of nurturing manifests in thepost-associative
period.

Any amount of success a person may have with his nur-
turer, it is still not indicative whether he has been success-
fully nurtured. The nurturing is true and complete, when he
tastes success “on his own” in the absence of his nurturer.
This period is hence termed as post-associative, and is used
as the context to decide the extent of the nurturing.

2. The moreself-madea person is, the less he attributes his
success to his past associates.

People who have seen success on their own, without
associating with too many people, especially early in their
career, can be termed asself-made. They are the self-
motivated people, who probably were not nurtured at all by
someone else. It is fair that these people attribute less of their
success to their past associates.

3. The success achieved by a person at any time is considered
to be influenced by all his past associates. However it is
tributed to only those who do not have a direct pay-off in
the current collaboration.

While contributing towards a publication, an author may
be acting upon the influence he’s had from many of his past
and current associates. However, all the current associates
(the co-authors) in the publication still have their own pay-
offs from it. So, the tribute for one’s success is only given
away to past associates who have helped influence him to be
successful in a current venture without a motive of their own.

4. The tribute is appropriated among the past associates
in proportion to their estimatednurturing influence on the
person.

Nurturing happens most when a person is still young in
his career - and the people who associated with him earlier
are more important (in terms of a nurturing influence) than
the ones he associates with later in his career. This can be
termed as thestrength of early association. As an aside -
while the strength of early association of a person with his
nurturer will be high, the reverse need not hold, since the
nurturer is expected to be already relatively mature in his
career.

A person need not have been nurtured equally by all
people he had good early associations with. The ones who
nurtured him more are most likely those who were termed to
have a goodnurturing abilityby other people as well.

Thus, an associate’s nurturing influence on a person is
proportional to the strength of early association with this
person and the associate’s own nurturing ability. The tribute
can then be appropriated to each past associate in accordance
to the proportion of their nurturing influence.

The above principles guide the design of the Nurturer-
Finder heuristic, which works based on the following out-
line. Publications are processed in temporal sequence, at
some granularity, either grouped by years or by months.

1. As every person publishes, his strength of early associa-
tion with his associates, and their nurturing influence on him
are tracked.

2. Every time he achieves a certain success from a publica-
tion, it is tributed to his past associates for influencing him in
his “formative” years, in accordance to their nurturing influ-
ence. The more self-made a person is, the less is his tribute.

3. Every person collects the tribute he gets from others.

4. The person with the highest tribute is the best nurturer.
People can also be sorted on the tributes they have, to arrange
them in non-increasing order of their nurturing abilities.

3 The Formulation of the Nurturer-Finder Heuristic

The heuristic is abstractly formulated, allowing for reuse in
domains outside of bibliographic databases.

A publication is an instance of a collaboration, and hap-
pens at a certain discrete instant in time. The bibliographic
database is termed as the set ofcollaborations.

A collaborationc has the following properties,

567

associatesc, the set of people involved in the collabo-
rationc.

timec, the time at which the collaboration happened.
sigc, the quantifier representing the significance of the

collaboration, which could be equal to 1, the impact factor
of the conference or journal where it was published, or the
number of citations the publication has received.

Each associatep in a collaboration gets a certain sig-
nificance measure to himself: his share of success. In the
model used here, the success is equally shared among the
associates.

sigp
c =

{ sigc

|associatesc| if p ∈ associatesc

0 if p 6∈ associatesc

Other models, for instance, can give importance to the
position of the author’s name in the list, while deciding the
significance of each associate.

The set of all collaborations that have happened till time
t, is given by,

collabst = {c ∈ collabs|timec < t}

The set of all people involved in all collaborations till
time t is represented by,

peoplet =
⋃{

associatesc : c ∈ collabst
}

The cumulative significance of each person until timet
is represented by,

cum-sigt
p =

∑
c∈collabst

sigp
c

A measure of the degree of association a personq had in
the signifiance a personp achieved during a collaborationc
is given by,

qassocc
p = sigp

c ∗
sigq

c

sigc

The sigq
c

sigc
factor is indicative ofq’s involvement inc. Higher

q’s involvement, higher is his association withp’s signifi-
cance.

The early association q had with p, until time t is
representative of the successful collaborationp had with q
early in his career.

qearly-assoct
p =

∑
c∈collabst

(qassocc
p

cum-sigtimec
p

)
A measure of how self-made a person is, is also useful -

to determine his independence on his associates for his suc-
cess. This measure also considers theearlinessof his self-
establishment. The intuition being that, a person who gets
independent success later in his career, but after collaborat-
ing with people early on, is not as self-made as a person who

was independent right from the start. It is likely that a self-
made person was not nurtured by too many people at all, and
hence he must attribute less of his success to his ‘mentors’.

self -estabt
p = pearly-assoct

p

The nurturing influence a personq has had onp, (where
p 6= q) until time t is given by

qnitp =
∑

c∈collabst

(
qassocc

p ∗
(
nshiptimec

q

)α
cum-sigtimec

p

)

The termnshipt
p, which is detailed later, is indicative of the

nurturing ability of a personp until time t.
Most people have a relatively constant research output

every year. Their cumulative significance would thus grow
linearly. However, the nurtureship of a person, which is
made up by collecting tributes from collaborators, can grow
faster that the cumulative significance. In that event, when
a personp collaborates with another personq who has a
large nurtureship a little late inp’s career, he still concedes
a large nurturing influence toq. This may sideline the
earlier nurturers ofp. To manage this effect the parameter
α is introduced, which is used to control the dominance
of nurturership over cumulative significance. For smaller
values ofα, the earliness factor dominates the nurturing
influence. Increasing the value ofα makes the people with
higher nurtureship “richer” at the cost of the others. In the
experiments reported in the paper,α was hand-engineered to
0.5, for satisfactory results.

pnitp is not defined. A person does not nurture himself.
The tribute given away to past associates everytime a

personp achieves a certain significance through a collabora-
tion c, is given by

tribp
c = sigp

c ∗

(
1 −

self -estabtimec
p

cum-sigtimec
p

)

The tribute a personp gives to an associateq, (where
p 6= q), because of achieving a certain significance through
a collaborationc is given by

qtribp
c =


tribp

c ∗ qnitimec
p if q 6∈ associatesc∑

r∈(peopletimec−p)
rnitimec

p

0 if q ∈ associatesc

The tribute is thus appropriated proportionate to the nurtur-
ing influence.

The nshipt
p of a person is the cumulative sum of the

tributes collected byp from other associates until timet.
The termnshipt′

p is used to represent the nurturing ability
of a person right after timet, inclusive of the collaborations

568

that happened in that time instant. This is incrementally
calculated.

nshipt′

p = nshipt
p +

∑
c ∈ collabs;
timec = t

∑
q∈associatesc

ptribq
c

andnship0
p = 1

Thus, the best nurturer is one who has the highest
nshipt′

p wheret is the current time.
The total tribute a personp gives to an associateq until

time t is represented by,

qtribt
p =

∑
c∈collabst

qtribp
c

This is used to present a drill down of the nurtureship
of each person, showing the extent of tribute each of their
nurtured give them.ptribt

p = 1.0 This accounts for the
default value ofnship0

p.

4 Some Experiments on the DBLP Database

The Digital Bibliography and Library Project (DBLP) [2]
provides digital information on major computer science jour-
nals and publications, and indexes more than 520000 arti-
cles. Citations are also available for a subset of the articles
indexed. The DBL-browser offers an interface to access the
compressed database containing the article information. The
Nurturer-Finder heuristic was applied on the DBLP in two
sets of experiments to find nurturers for publications count,
and for citations. For lack of space, this paper only reports
a few top results based on publication count. A more de-
tailed account of these experiments, some special handling
needed for some outliers and a method to yield nurturers in
time slices is discussed in a technical report [6].

The algorithm was implemented using Java, and used
the DBL Browser libraries [5] for accessing the publication
records. The algorithm is incremental in nature, and parses
each publication in the database exactly once. Every time
a publication is processed, all past associates of every co-
author are processed, to be assigned tributes.

α is chosen as0.5 in the following experiments. A
discussion on the choice ofα is considered in the technical
report [6].

4.1 Nurturing for Publication Count
To compute nurturers and their nurtured based on publica-

tion count, every entry in the DBLP is assigned a signifi-
cance of 1, and an author’s significance for participation is

1
|associates| . This metric in itself is not semantically very ac-
curate due to the disparity in quality among the journals and
conferences indexed by the DBLP, but acts as a good first
measure nevertheless.

The table 1 lists the top few nurturers, their nurtureship
value and the people who were ‘nurtured’ by them, and
the tribute each of them gave away to the nurturer. These
nurtured people are those who co-authored with the nuturers
early in their careers, and then went on to be prolific on
their own as authors, even in the absence of their nurturers.
Only people who gave away tributes greater than or equal to
the value 5 are listed. A person may appear as “nurtured”
by more than one nurturer, if he gave away reasonably big
tributes to all of them.

4.1.1 Interpreting the results
• The heuristic attempts to recognize the social trait of

nurturing through statistical analysis, and hence acceptance
of the validity of the findings is possible only by common
perception of readers conversant with the who’s who of the
computer science research community.

• While it is questionable whether there exists a strict
nurturer-nurtured distinction in the results, if the border is
blurred to mean a nurturing influence, which can be mutual
too at times, the results become easier to digest.

• The list of nurturers, on its own, has successful researchers.
The authors found this phenomenon most interesting be-
cause the calculation of nurtureship does not take into ac-
count any publication of the nurturer himself, and consid-
ers only post-associative success of people who co-authored
with them early in their career.

• The results also suggest the ability of these people to sight
talent: people who would later end up doing very well on
their own. Good nurturers are also good talent sighters.

5 Discussion on related work

Barabasi et. al in [7] show the existence of preferential at-
tachment during addition of new nodes into the collaboration
network.

“For a new author, that appears for the first time on a
publication, preferential attachment has a simple meaning: it
is more likely that the first paper will be co-authored with
somebody that already has a large number of co-authors
(links) than with somebody less connected. As a result “old”
authors with more links will increase their number of co-
authors at a higher rate than those with fewer links.”

Does this imply that the best nurturers are simply the
best collaborators? When Barabasi et. al. consider the
addition of new nodes, they do not track the longetivity
and success achieved by that new node in the collaboration
network. While good collaborators may be the context
for addition of newer nodes, they need not be contexts
where people who perform well in the long term may be
added. To answer this, a new set of experiments were
conducted to identify the best collaborators. Barabasi’s

569

Nurturer Val Nurturer Val Nurturer Val Nurturer Val
Nurtured Nurtured Nurtured Nurtured

1) Jeffrey D. Ullman 144 5) John E. Hopcroft 97 9) Zvi Galil 83 15) Grzegorz Rozenberg 75
Henry F. Korth 8 Jeffrey D. Ullman 24 Moti Yung 10 Dirk Vermeir 7
Yehoshua Sagiv 8 Robert Endre Tarjan 14 David Eppstein 7 Robert Meersman 6
Fereidoon Sadri 7 Richard Cole 12 Kunsoo Park 7 16) Richard J. Lipton 75
Alberto O. Mendelzon 6 Steven Fortune 5 Nimrod Megiddo 6 Dan Boneh 8
Sam Toueg 6 Joachim von zur Gathen 5 Dany Breslauer 5 Lawrence Snyder 7
Ravi Sethi 5 Gordon T. Wilfong 5 10) Christos H. Papadimitriou 81 David P. Dobkin 5
David Maier 5 6) Robert Endre Tarjan 95 Joseph S. B. Mitchell 10 17) John H. Reif 74
Joan Feigenbaum 5 Thomas Lengauer 11 Paris C. Kanellakis 6 Paul G. Spirakis 17

2) Zohar Manna 126 Haim Kaplan 6 John N. Tsitsiklis 5 Sanguthevar Rajasekaran 8
Martn Abadi 23 Jeffery Westbrook 6 Mihalis Yannakakis 5 Philip N. Klein 7
Amir Pnueli 21 Andrew V. Goldberg 6 11) Ronald L. Rivest 80 Sandeep Sen 6
Adi Shamir 15 David R. Cheriton 5 Robert E. Schapire 10 18) Adi Shamir 74
Nachum Dershowitz 11 7) Ugo Montanari 90 Avrim Blum 9 Uriel Feige 16
Shmuel Katz 6 Roberto Gorrieri 7 Benny Chor 5 Amos Fiat 9
Thomas A. Henzinger 6 Andrea Corradini 7 Jon Doyle 5 Eli Biham 8
Jean Vuillemin 5 Francesca Rossi 6 Sally A. Goldman 5 Yossi Matias 5
Luca de Alfaro 5 Vladimiro Sassone 6 12) Kurt Mehlhorn 78 Moshe Tennenholtz 5
Ashok K. Chandra 5 Alberto Martelli 6 Michael Kaufmann 11 19) Jacob A. Abraham 73

3) Albert R. Meyer 113 Pierpaolo Degano 5 Majid Sarrafzadeh 6 Prithviraj Banerjee 18
Joseph Y. Halpern 38 Giorgio Levi 5 Norbert Blum 5 Kaushik Roy 11
John C. Mitchell 11 8) C. V. Ramamoorthy 88 13) John Mylopoulos 77 Abhijit Chatterjee 7
Nancy A. Lynch 7 Benjamin W. Wah 11 James P. Delgrande 10 W. Kent Fuchs 5
David Harel 7 Vijay K. Garg 9 Hector J. Levesque 7 20) Leonidas J. Guibas 71

4) Michael Stonebraker 106 K. Mani Chandy 9 Nick Roussopoulos 6 John Hershberger 9
Marti A. Hearst 8 Jaideep Srivastava 9 Alexander Borgida 5 Jack Snoeyink 6
Michael J. Carey 7 K. H. Kim 8 14) Amir Pnueli 76 Andrew M. Odlyzko 6
Akhil Kumar 7 Shashi Shekhar 7 Dennis Shasha 9 21) Oscar H. Ibarra 69
Timos K. Sellis 6 Wei-Tek Tsai 5 David Harel 5 Tao Jiang 15
Sunita Sarawagi 5 Atul Prakash 5 Doron Peled 5 Louis E. Rosier 6
Joseph M. Hellerstein 5 Oded Maler 5 Shlomo Moran 5
Margo I. Seltzer 5 Hui Wang 5

Table 1:Publication Count: Top nurturers and their nurtured

experiments consider only the degree of a node to qualify
the best collaborators. Here, the good collaborators were
said to be those who collaborated frequently with other good
collaborators. This is similar to page rank computation [8],
although the weights were computed iteratively year by year.
It also differed from the nurturer-finder in that, there was no
consideration for earliness, and post-associative significance.

The rankings for top collaborators showed changes
when compared to the top nurturers, although the correla-
tion with top collaborators was better than the correlation
with the top authors. This suggests that the trait of nurtur-
ing is perhaps in some way related to the trait of collaborat-
ing. Looking at this the other way, it could also indicate that
young people, the new entrants in the network have a pref-
erence for good collaborators. Good collaborators typically
have good social networks which come in handy for the new.

Further, the weighted tribute graph can be analysed for
transitivity and hence discover ‘nurturing’ neighborhoods. It
is useful to mention [9], where Newman evaluates several so-
cial network measures on scientific coauthorship networks.
The connectedness of a scientist is measured based on his
reachability on a weighted collaboration graph.

The above mentioned references and [10] can be clas-
sified as means to infer different roles played by people in
collaboration networks. The current work on nurturers can
also be grouped alongside.

References

[1] USNews, http://www.usnews.com
[2] DBLP, http://www.informatik.uni-trier.de/

∼ley/db/
[3] ISIHighlyCited, http://www.isihighlycited.com
[4] Most cited authors in Computer Science, http://

citeseer.ist.psu.edu/mostcited.html
[5] DBL Browser, http://dbis.uni-trier.de/

DBL-Browser/
[6] Bharath Kumar M., Y. N. Srikant.The Best Nurturers in

Computer Science Research. CSA, IISc Technical Report,
2004, http://archive.csa.iisc.ernet.in/TR/
2004/10/

[7] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,
and T. Vicsek.Evolution of the social network of scientific
collaboration. Physica A, 311(3–4):590–614, 2002.

[8] S. Brin, L. Page, R. Motwani, and T. Winograd.The page rank
citation ranking: Bringing orer to the web. Tech. Rep. 1999-
66, Stanford Digital Libraries Working Paper, 1999,http:
//dbpubs.stanford.edu:8090/pub/1999-66 .

[9] M. E. J. Newman.Who is the best connected scientist? a
study of scientific coauthorship networks. Physics Review,
E64, 2001

[10] J. Kleinberg.Authoritative sources in a hyperlinked environ-
ment. Proc. 9th ACM-SIAM Symposium on Discrete Algo-
rithms, 1998.

570

Knowledge Discovery from Heterogeneous Dynamic Systems using
Change-Point Correlations

Tsuyoshi Idé∗ Keisuke Inoue∗

October 4, 2004

Abstract

Most of the stream mining techniques presented so far have

primary paid attention to discovering association rules by

direct comparison between time-series data sets. However,

their utility is very limited for heterogeneous systems, where

time series of various types (discrete, continuous, oscillatory,

noisy, etc.) act dynamically in a strongly correlated manner.

In this paper, we introduce a new nonlinear transformation,

singular spectrum transformation (SST), to address the

problem of knowledge discovery of causal relationships from

a set of time series. SST is a transformation that transforms

a time series into the probability density function that

represents a chance to observe some particular change. For

an automobile data set, we demonstrate that SST enables

us to discover a hidden and useful dependency between

variables.

Keywords: time-series, change-point detection,
singular-spectrum analysis, hidden dependency

1 Introduction

The frontiers of data mining research are being extended
to include knowledge discovery from nontraditional data
types such as statically [7] and dynamically [6] struc-
tured data. However, little attention has been paid to
heterogeneous dynamic systems, where time series of
various types (discrete, continuous, oscillatory, noisy,
etc.) act dynamically in a strongly correlated manner.

Generally, in strongly correlated dynamic systems,
the behavior of the whole system can often be extremely
complicated even if the mechanism of correlation be-
tween each pair of variables is relatively simple. There-
fore knowledge discovery in such systems can be far
more difficult than expected. For instance, in an au-
tomobile, the individual states of the variables such as
engine RPM (revolutions per minutes), engaged gear,
fuel flow rate, throttle position (TP) sensor, and air
intake oxygen density have almost an infinite number
of combinations depending on the environment around

∗IBM Research, Tokyo Research Laboratory. E-mail:
{goodidea, inouek}@jp.ibm.com.

the car and human actions. Therefore, it is generally
impossible to find a rule like “if variables x1, x2, ... have
a certain combination of values, then the system would
be faulty.”

In this paper, we address the issue of discovering
causal dependencies hidden deep within the heteroge-
neous time-series data. We assume that we are not pro-
vided with detailed prior knowledge of dependencies. In
addition, we assume that each variable exhibits sudden
and steep changes in a heterogeneous manner so that
traditional approaches that attempt to separate trend
and noise components are difficult to use.

Note that this problem setting is different from tra-
ditional stream mining. An implicit assumption of Das
et al. [2], which is known as a seminal work in this
field, was that subsequences of individual variables can
be clustered into one of a small numbers of patterns.
Except for parts of the data which may exhibit rela-
tively simple behaviors, the utility of their approach is
very limited in heterogeneous dynamic systems. Also,
Keogh-Lin-Truppel [9] recently pointed out that it is
theoretically questionable whether or not one can fit an
arbitrarily chosen subsequence into one of the patterns.

In this paper, we tackle this issue by introducing a
new nonlinear transformation, singular spectrum trans-
formation (SST) for a set of time series data. SST is a
transformation that converts an original time series into
a new time series based on change-point scores. The
resultant time series can be interpreted as the probabil-
ity distribution that some change occurs. Since change
points in a mechanical system are expected to be caused
by a well-defined mechanism, if the score simultaneously
has a high value at some time for two different variables,
then a causal relationship is likely between them.

The essence of our idea is illustrated in Fig. 1, where
two artificially generated heterogeneous data sets (see
Subsection 3.2 for details) and their SSTs are shown.
While it is difficult to infer any dependency between
the two original variables, SST clearly reveals a hidden
dependency between them in terms of synchronization
of their change points. Note that the results in Figs. 1
(b) and (d) were obtained using a common algorithm

571

change-point score

change-point score
apparently
different

Similar

time

time

(d)

(c)

(b)

(a)

0 100 200 300 400 500
0

0.02
0.04
0.06

0 100 200 300 400 500
0

0.02
0.04
0.06

Figure 1: Example of SST in a heterogeneous system.
Original time-series in (a) and (c) are transformed into
change-point scores in (b) and (d), so that a hidden
similarity is revealed.

and a common parameter set. Therefore, we see that,
by performing SST, the problem of data mining in het-
erogeneous systems can be reduced to mining in homo-
geneous systems without using any detailed knowledge
on the behavior of data. To the best of the authors’
knowledge, this is the first work that uses change-point
correlation in the context of knowledge discovery from
dynamic systems with strongly-correlated and hetero-
geneous natures.

2 Change-point detection

2.1 Extraction of past patterns. Consider a time
series T = {x(1), x(2), ..., x(t), ..} and its consecutive
subsequence with length w as {x(t−w), ...x(t−2), x(t−
1)}. We define a column vector corresponding to this
subsequence as

s(t− 1) = (x(t− w), ..., x(t− 1))T
,

where the superscript T represents transpose. We
construct a matrix, which is often called a Hankel
matrix, using column vectors of this kind as

H(t) = [s(t− n), ..., s(t− 2), s(t− 1)] .

We call this w × n matrix a trajectory matrix at t,
following Moskvina-Zhigljavsky [11]. By definition, the
trajectory matrix is defined over w+n−1 elements from
x(t− 1) to x(t−w−n+1). We denote w +n− 1 as W .
We illustrate the setting in Fig. 2.

The trajectory matrix H(t) can be viewed as a
record that contains various change patterns within the
range of the past W points under the length constraint

t -1

n

vectors

w
w

t +g

t

time

m

vectors

Figure 2: Summary of parameters used in SST. From
m and n subsequences at both sides of a time point (t),
representative patterns are calculated.

w. Now let us extract the representative patterns from
H(t). We write a representative pattern as u. It is
natural to suppose that this is expressed as a linear
combination of s(tj)s:

u = c

n∑

i=1

vis(t− i),

where c is a normalization constant to satisfy uT u = 1.
If we define an n-dimensional vector as v = (v1, ..., vn)T ,
this equation is simply expressed as u = cH(t)v.
We determine the representative by majority voting
among the observed patterns. In particular, we want
the direction that produces the strongest constructive
interference between ss. Mathematically, this direction
will be found as

(2.1) v(t) ≡ argmax
ṽ
||H(t)ṽ||2 ,

where we impose a constraint of vT v = 1. Introducing
a Lagrange multiplier λ, this equation is reduced to

∂

∂ṽ

[
ṽT H(t)T H(t)ṽ − λṽT ṽ

]
= 0.

From this, we immediately see that v is the normalized
solution of an eigenvalue equation

H(t)T H(t)v = λv.

Also, u is the normalized solution of the eigenvalue
equation of H(t)H(t)T , i.e.

(2.2) H(t)H(t)T u = λu.

These results show that the representative pattern u
and its coefficient vector v are the left and right singular

572

vectors of H(t), respectively. The singular value is equal
to
√

λ.
Let us denote the singular values and the left singu-

lar vectors as {(σ1,u1), (σ2,u2), ..., (σl, ul)} in descend-
ing order of the singular values. The parameter l repre-
sents the number of representative patterns under con-
sideration. The greater the singular value is, the more
dominant the corresponding pattern is. If a singular
value (≥ 0) is small, then the corresponding pattern
can be considered to be a noise component.

As described above, the method to find the dom-
inant components using singular value decomposition
(SVD) on the Hankel matrices is called singular spec-
trum analysis. 1

2.2 Extraction of the current pattern. On the
future side of the trajectory matrix, we again take a
column vector with length w as

r(t + g) = (x(t + g), ..., x(t + g + w − 1))T
.

This is the same as s(t + g + w − 1), but we introduce
this new notation to represent a symmetry between both
sides of t. We again define a Hankel matrix, which we
will call a test matrix at t, using m rs

G(t) = [r(t + g), r(t + g + 1), ..., r(t + g + m− 1)] .

As in Eq. (2.2), the present representative pattern is
given by the solution of

(2.3) G(t)G(t)T u = µu.

We call the normalized largest eigenvector the test
vector, and represent it as β(t).

2.3 Change-point score. We have obtained the
past representative patterns {ui|i = 1, .., l} and the
present representative pattern as β(t). Let us define
an anomaly metric using these patterns. If β(t) is suf-
ficiently similar to some of the frequent patterns, it
should be on the hyperplane spanned by {ui|i = 1, .., l}.
Otherwise, β(t) would be directed outside of the hyper-
plane.

To quantitatively evaluate how far β(t) is from the
hyperplane, let us define a matrix Ul as

Ul = [u1, u2, ..., ul] .

Using this matrix, the normalized projection of β(t)
onto the hyperplane is given by

α(t) ≡ UT
l β(t)∣∣∣∣UT
l β(t)

∣∣∣∣ .

1While it is called “spectrum analysis,” we should emphasize
that it has nothing to do with the classical Fourier analysis.

Now we can define the change-point score as

(2.4) z(t) ≡ 1−α(t)T β(t).

By definition, this quantity is limited to the range
from zero to 1. It is small when there is little change
compared to the past patterns and large when the
present pattern is quite different from the past patterns.

3 Singular spectrum transformation

3.1 Definition. As discussed, the change-point score
can be defined at arbitrary t by calculating representa-
tive patterns for both the trajectory and test matrices.
This can be viewed also as a transformation from an
original time-series T to a new time-series Tc, i.e.

T → Tc(w, l, g, m, n).

We define this transformation as the singular spectrum
transformation (SST). As expressed in the parenthesis,
there are five major parameters in SST. This transfor-
mation defines a nonlinear transformation in that it does
not satisfy the principle of superposition. Hereafter,
the integrated area of the transformed time-series is as-
sumed to be normalized to one. Under this condition,
the transformed time-series is interpreted as the proba-
bility density that some change occurs at time t.

The occurrence of a change-point should be inde-
pendent of any apparent variety such as discrete, con-
tinuous, noisy, oscillatory, etc. Thus, one may think
of the new time-series Tc(w, l, g, m, n) as the signs of
causality hidden behind the apparent variation of the
original time series: If the similarity between a pair of
variables is high for a set of SST series, then some depen-
dency between them is strongly suggested. SST can be
a powerful tool to discover hidden dependencies among
variables.

3.2 Example. An example of SST is shown in Fig. 1.
The time series (a) was generated using three linear
functions with slopes of 1/300, 0, and −1/200. The
other time-series (c) was generated using a sine function
x(t) = sin(2πt/λ), for λ =

√
80,

√
120, and

√
70. In (c),

we also added random fluctuations to the amplitude and
the periods of up to ±7.5% and ±0.5%, respectively, to
simulate fluctuations in realistic observations. For both
data sets, the change points are located at t = 150 and
300. The results of SST in Figs. 1 (b) and (d) was
calculated with w = −g = m = n = 20 and l = 3. In
spite of the apparent differences in the original data, we
see that SST strikingly reveals the similarities without
any ad hoc tuning for individual time series. It is evident
that existing methods such as differentiation [5] and
wavelet-based approaches [8] fail to detect the change
points if a common parameter set is used for both sets.

573

0 50 100 150 200 250 300 350 400 450 6 14 22 30 3800.050.10.150.20.25

time

w

(a)

0 50 100 150 200 250 300 350 400 450 6 14 22 30 3800.050.10.150.20.25

time

w

(b)

Figure 3: The dependence of SST on w for (a) the linear
function and for (b) the oscillatory function shown in
Fig. 1 (a) and (c), respectively.

The dependence on w is of particular interest in
SST. We calculated SST as a function of w under
w = −g = m = n and l = 3. The results are shown in
Fig. 3. It is surprising that the essential features remain
unchanged over a very wide range of w, 6 . w . 40,
while the widths of the major features become broader
as w increases. This robustness is quite suitable for
heterogeneous systems.

4 Experiment

4.1 Data set. The goal of this experiment is to
identify the pair of variables that correlates the most in
terms of causality, without using any prior knowledge
of the variables. The data set used in this section
was generated by a specialized simulator for the power
train control module of a vehicle, and was taken for one
minute with a sampling interval of 0.1 sec. It includes
fuel flow rate (x1), engaged gear (x2), vehicle speed
(x3), engine RPM (x4), and manifold absolute pressure
(x5). Figure 4 (a) shows all five of these time-series. For
visibility, the signals from x1 to x4 are shifted vertically
in the figure.

4.2 Comparison between raw and SST time-
series. SST was done with the parameters w = m =
n = −g = 25 (2.5 sec) and l=2 for the five time series.
Since SVD is not invariant with respect to translation
of the origin of the column vectors in the matrix, we

0 20 40 60 0 20 40 60

0

1

2

(a) (b)

x2

x1

x3

x4

x5

x2

x1

x3

x4

x5

time [sec] time [sec]

Figure 4: (a) Time-series data from an automobile and
(b) the resulting SST series.

standardized the time series so that each of the averages
is three times the standard deviation. The result is
shown in Fig. 4 (b).

By comparing (a) with (b), we see that each feature
in Fig. 4 (b) corresponds to a change in the original data.
Interestingly, the SST series of x2 and x4 exhibit some
similarity in terms of the synchronization of the change-
points, in spite of the fact that they seem to behave
totally differently in the original series. Similarly,
x1 and x3 seem to have some in common in Fig. 4
(b) while the original data are quite different. This
result demonstrates that SST can make the variables
of different types be comparable with each other. In
other words, SST converts a heterogeneous system into
a different “homogeneous” system.

4.3 Visualization via MDS. To compare the inter-
dependencies of the variables, we used the classical so-
lution of multidimensional scaling (MDS) [10]. For the
definition of the distance matrices, we took the L1 and
L2 distances for SST and the raw time series, respec-
tively. Each of the time series was normalized in ad-
vance so that

∫
dtx(t)2 = 1 or

∫
dtz(t) = 1 holds. To

remove the unwanted effects of noisy fluctuations of the
signals, we performed Gaussian convolution with the
standard deviation of 1.5 seconds before computing the
distance matrix for SST.

The results of MDS are shown in Fig. 5. Since the
definition of the distance metrics are not common in the
raw and SST cases, only the relative locations within
each plot are meaningful. In Fig. 5 (a), the variables
x1, x4, and x5 can be attributed to one cluster. We
see that they are actually similar in shape in Fig. 4 (a).
Similarly, the variables x2 and x3 form the other cluster
due to the similarity in their increasing trends in Fig. 4
(a).

574

On the other hand, the two clusters collapse in
Fig. 5 (b). Specifically, the closest pair is x2 and
x4. This is very interesting because they have totally
different trends in the original sequences shown in Fig. 4
(a). This result is due to the synchronizations of
the change points in both data sets. In reality, the
variables x2 and x4 are the engaged gear and the engine
RPM, respectively. The close dependency of x2 and x4

corresponds to “the value of engine RPM increased after
shifting to a lower gear.” It is worth noting that we could
discover a part of the causal relationships without using
any prior knowledge. This result demonstrates that SST
can reveal the signs of causality hidden deep inside of
the heterogeneous correlated systems.

x5
x4

x3

x2

x1

1st direction

2n
d

di
re

ct
io

n

raw (a)

-0.5 -0.25 0 0.25 0.5
-0.5

-0.25

0

0.25

0.5

x5

x4

x3

x2

x1

1st direction

2n
d

di
re

ct
io

n

SST (b)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5: Two dimensional MDS plot for (a) raw data,
and (b) SST data.

5 Related work and our contribution

The problem of change detection has been studied for
a long time, and various methods such as CUSUM (cu-
mulated summation) [1], wavelet analysis [8], inflection
point search [5], and Gaussian mixtures [13] have been
proposed. These existing methods, however, are not ap-
plicable to our task without using ad hoc tuning for in-
dividual signals. Similarly, time-series correlation meth-
ods based on these techniques in a few application do-
mains [5, 4, 12] are inapplicable to our task.

Moskvina-Zhigljavsky [11] used the singular spec-
trum analysis technique [3] for change detection, based
on SVD of the Hankel matrix. Mathematically, SVD
can be performed for almost any kind of matrix. Thus,
the method can be applicable to various sorts of time
series without any ad hoc tuning. Our contribution is to
have defined the problem of knowledge discovery from
heterogeneous dynamic systems and to have proved that
their method is one of the most suitable solutions for
this problem. Theoretically, our contribution is to have
adopted a dimensionless definition of the score, and to
have given an algorithm that is pseudo-invariant with
respect to time inversion. In other words, our algorithm
is invariant with respect to t → −t for l = 1 and m = n.

Acknowledgements

The authors thank W. Nathaniel Mills III for fruitful
discussions. T.I. thanks Akihiro Inokuchi for providing
valuable information on stream mining.

References

[1] M. Basseville and I. Nikiforov. Detection of Abrupt
Changes. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[2] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and
P. Smyth. Rule discovery from time series. In Proc.
the Fourth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1998.

[3] M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, D. Kon-
drashov, M. E. Mann, A. W. Robertson, A. Saunders,
Y. Tian, F. Varadi, and P. Yiou. Advanced spec-
tral methods for climatic time series. Reviews of Geo-
physics, 40:1–41, 2002.

[4] H. Guo, J. Crossman, Y. Murphey, and M. Coleman.
Automotive signal diagnostics using wavelets and ma-
chine learning. IEEE Trans. Vehicular Technology,
49:1650–1662, 2000.

[5] S. Hirano and S. Tsumoto. Mining similar temporal
patterns in long time-series data and its application to
medicine. In Proc. 2002 IEEE International Confer-
ence on Data Mining, pp. 219–226, 2002.

[6] T. Idé and H. Kashima. Eigenspace-based anomaly de-
tection in computer systems. In Proc. the Tenth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 440–449, 2004.

[7] A. Inokuchi, T. Washio, and H. Motoda. Complete
mining of frequent patterns from graphs: Mining graph
data. Machine Learning, 50(3):321–354, 2003.

[8] S. Kadambe and G. Boudreaux-Bartels. Application
of the wavelet transform for pitch detection of speech
signals. IEEE Trans. Information Theory, 38:917–924,
1992.

[9] E. Keogh, J. Lin, and W. Truppel. Clustering of
time series subsequences is meaningless: Implications
for previous and future research. In Proc. IEEE
International Conference on Data Mining. IEEE, 2003.

[10] K. Mardia, J. Kent, and J. Bibby. Multivariate
Analysis. Academic Press, 1980.

[11] V. Moskvina and A. Zhigljavsky. An algorithm based
on singular spectrum analysis for change-point detec-
tion. Communications in Statistics—Simulation and
Computation, 32(4):319–352, 2003.

[12] M. Thottan and C. Ji. Anomaly detection in IP
networks. IEEE Trans. Signal Processing, 51(8):2191–
2204, 2003.

[13] K. Yamanishi and J. Takeuchi. A unifying frame-
work for detecting outliers and change points from non-
stationary time series data. In Proc. the Eighth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 676–681, 2002.

575

Building Decision Trees on Records Linked through Key References

Ke Wang∗ Yabo Xu† Philip S. Yu‡ Rong She§

Abstract

We consider the classification problem where the
data is given by a collection of tables related by a hier-
archical structure of key references and class labels con-
tained in the root table. Each parent table represents a
many-to-many relationship type among its child tables.
Such data are frequently found in relational databases,
data warehouses, XML data, and biological databases.
One solution is joining all tables into a universal ta-
ble based on the recorded relationships, but it suffers
from a significant blowup caused by many-to-many re-
lationships. Another solution is treating the problem as
relational learning, at the cost of increased complexity
and degraded performance. We propose a novel method
that builds exactly the same decision tree classifier as
built from the joined table, but not the blowup required
in the traditional approach.

1 Introduction

Classification has been identified as an important
problem in data mining. A training set consists of
examples with the class label. Each example represents
a real world entity described by several attributes.
The objective is to build a classifier for determining
the class label of unclassified records. This problem
has a wide range of applications, including fraud
detection, finding buyers, medical diagnosis. Most
works focus on identically structured records stored
in a single table. However, real life data are stored
in differently structured tables that are semantically
linked via different types of relationships, as illustrated
by the following example.

Example 1.1. Suppose that we like to classify
the class label “Student satisfaction” in the table
T(teaches), where T contains many-to-many “teaches”

∗Simon Fraser University, wangk@cs.sfu.ca
†Simon Fraser University, yxu@cs.sfu.ca
‡IBM T. J. Watson Research Center, psyu@us.ibm.com
§Simon Fraser University, rshe@cs.sfu.ca

relationships among professors P (100 records), stu-
dents S (10,000 records) and courses C (100 records),
by containing their primary keys as foreign keys. Each
record in T references exactly one record from each of
P, S and C tables. This problem is conceptually equiv-
alent to the classification on the joined table by substi-
tuting foreign key references with actual records. How-
ever, the joined table suffers from a significant blowup
due to the many-to-many “teaches” relationship: if
each student takes 4 courses, the joined table would
contain 40,000 records, in which each S record is repli-
cated 4 times, and each C and P record is replicated
400 times.

In this example, the central table contains the
class labels and many-to-many relationships among
other tables through simultaneous foreign key refer-
ences to them. We call the classification problem for
such databases the star join classification. Relational
databases designed by the ER model [3] have this struc-
ture, so are the star databases widely adopted in the
OLAP environment [2], such as the TPC-H benchmark
[10]. Foreign key references are also widely used in
the DTD of XML documents in the form of nested
Element structures, and in biological databases that
cross-reference multiple sources.

The above example illustrates two points. First,
the star join classification has an equivalent single
table representation, namely, the joined table, thus, a
classic solution based on the joined table. Recognizing
this fact would enable the performance (i.e., accuracy)
guarantee of classic solutions. Second, the many-to-
many relationships cause a blowup in the joined table
and a significant overhead to the subsequent classifier
construction. Thus, obtaining a classic solution by
applying a classic method to the joined table is not
scalable.

We propose a scalable decision tree algorithm for
the star join classification. Our insight is that the
operation at each decision tree node only depends
on the class frequency of attribute values, not the
availability of the joined table. Thus, we can propagate
the class label to all tables T , and at a decision tree

576

node we split each table T individually to get exactly
the same set of records at each child node as if the
joined table was split. In this method, for each record
in T , all its occurrences in the joined table are now
represented by a single occurrence plus the class count
matrix representing the aggregated class count of those
occurrences. Therefore, we are able to compute the
same split attribute as using the joined table. The
strategy for efficiency is counting occurrences instead
of duplicating records.

In Section 2, we define the problem and review
related works. In Section 3 we present our approach.
Finally, we conclude the paper.

2 Problems and Related Works

2.1 Star join classification

A star database [2] is a rooted tree of tables. T is the
fact table (the parent) of a dimension table A (a child) if
T contains the primary key A ID of A as a foreign key.
In this paper, we consider the classification where the
class label is contained in the root table. Each example
consists of the records involved in a relationship in the
root table. In other words, each example is represented
by a record in the joined table obtained using foreign
key references. There is an one-to-one correspondence
between the records in the root table and the records
in the joined table.

Definition 2.1. (Star join classification)
Given a star database in which the root table contains
the class label, build a classification model with a cost
measured by the size of the star database (not by the
size of the joined table).

2.2 Decision tree based classification

We consider the decision tree based classification.
A classic description of decision tree construction can
be found in [1, 7]. The decision tree is built in two
phases. In the top-down construction phase, shown
in Algorithm 1, the table is recursively partitioned
until each partition consists of entirely or dominantly
examples from one class. At each node n of the decision
tree, there are two steps:

Find the split attribute (Line 4). This step se-
lects the split attribute and criterion to maximize the
skewness of class distribution. The essential informa-
tion needed is the count matrix, or termed as AVC sets
(for Attribute-Value-Class) [5]. The AVC set for an at-
tribute Att at a node n, denoted AV Cn(Att), contains
the class frequency for each distinct value v in Att. For

Algorithm 1 Top-down decision tree construction
BuildTree(n)
Input: node n
Output: decision tree rooted at node n

1: if the stopping criterion is met then
2: return;
3: end if ;
4: Crit=the split criterion at n;
5: T=the database at n;
6: create child nodes n1 and n2;
7: SPLIT (n, T,Crit);
8: BuildTree(n1);
9: BuildTree(n2);

a numerical attribute, AV Cn(Att) is sorted in the or-
der of values of Att. As in [9, 5], we consider the binary
split criterion where the table at a node n is split be-
tween two child nodes n1 and n2. The detail can be
found in [9, 5].

Partition the database (Line 7). This step splits
the table at the parent node n between the child nodes
n1 and n2 according to the split criterion. It reads
the table at n and writes the tables at n1 and n2 to
disk. In the same scan, it also collects AV Cni

(Att).
AV Cni

(Att) has a size proportional to the number of
distinct values in Att, not the number of records. For
the depth-first construction of the decision tree, the
memory is only required to hold the AVC sets for the
two child nodes being created.

In the bottom-up pruning phase, some subtrees or
branches are pruned to ensure that the model does not
over-fit the training set. This phase uses only the class
frequency at leaf nodes, not data records. Since our
algorithm produces the same class frequency as in the
decision tree built from the joined table, this phase
makes no difference to our algorithm.

2.3 Related work

CrossMine [11] presented a scalable relational learn-
ing. We consider the star join classification, which has
a classic solution based on the joined table, therefore,
the performance guarantee of the well researched de-
cision tree classification. [11] propagates the IDs of
target records along the search path to avoid expen-
sive joins. We propagate the class label, instead of
IDs of target records. The former has a size equal to
the number of distinct classes, whereas the latter does
not have a pre-determined size. We search the split at-
tribute from all tables, whereas [11] restricts the search
of predicates to “active” tables related to the rule. We
consider disk-resident databases whereas [11] considers

577

T_ID A_ID B_ID Att1 Att2 C1 C2

0 0 0 10 Blue 1 0

1 0 1 534 Red 0 1

2 1 0 43 Blue 1 0

3 2 0 62 Black 0 1

A_ID Att3 Att4 C1 C2

0 54 Large 1 1

1 23 Large 1 0

2 43 Small 0 1

B_ID Att5 Att6 Att7 C1 C2

0 X 42 L 2 1

1 Y 42 M 0 1

Fact Table T

Dimension Table A
Dimension Table B

Figure 1. The running example

in-memory databases.
Scalable decision tree construction for a single table

has been studied in the database field [5, 4, 6, 8, 9]. The
focus of these works is scaling up the construction for
databases stored on disk. These methods, no matter
how scalable, suffer from the initial blowup of the
joined table. This remark applies to the sampling
approach [4] where the full joined table needs to be
examined to build the exact decision tree. Sampling
methods that do not examine the full joined table are
not guaranteed to produce the exact decision tree.

3 Our Approach

Our algorithm, Star DT, has two main ideas that
make it scalable. Before the decision tree is con-
structed, it propagates the class label from the root
table to all tables so that no join is needed to get the
class label afterwards. At each decision tree node, it se-
lects the split attribute by evaluating attributes within
their own tables without join, and splits individual ta-
bles, instead of the joined table, to ensure that each
table contains exactly the same information over its
attributes as contained in the joined table. Below, we
explain these ideas in details.

3.1 Propagating the class label

Before constructing the decision tree, we first propa-
gate the class information to all tables. For each table,
the new columns C1, · · · , Ck, one for each class Ci, store
the class count. For the root table, Ci = 1 if the record
has the class Ci, and Ci = 0 otherwise. Recursively,

we propagate Ci from a fact table T to a dimension
table A as follows: Ci for each record A ID = j in A is
equal to SUM(Ci) over the records in T that have the
foreign key value A ID = j. The records with the all-
zero class count are removed from A. This propagation
ensures that, for each record t in a table, Ci is equal
to the sum of Ci of the records in the joined table that
agree with t on the attributes of t.

Example 3.1. (The running example) In Figure
1, A and B are dimension tables of T . A ID and
B ID are primary keys of A and B and foreign keys
in T . Att1, Att3, Att6 are numerical attributes and
others are categorical attributes. B contains the new
columns C1 and C2. For the record with the primary
key value B ID = 0, C1 = 2 and C2 = 1 because three
records in T reference this record, two having the class
C1 and one having the class C2.

Subsequently, at each decision tree node, we find
the split attribute and criterion by computing AVC
sets using the class count matrix C1, · · · , Ck in each
table, and split each table by “propagating” the split
criterion. We explain these steps below.

3.2 Finding the split attribute

Let Join(n) denote the partition at a decision tree
node n of the joined table. Note that we will not
construct Join(n). Let Star(n) denote the partition
at n of the star database. The following theorem
shows that each table T in Star(n) is a projection of
Join(n) with duplicates represented by a single record
and an aggregated class count matrix. Therefore, if we
compute the AVC sets using C1, · · · , Ck in the table
T , we have exactly the same result as computed using
Join(n). No join is needed.

Theorem 3.1. Consider a table T in Star(n). Let
Schema(T) be the set of attributes in T (excluding
the new class columns). T is equal to

SELECT Schema(T), SUM(C1), · · · , SUM(Ck)
FROM Join(n)
GROUP BY Schema(T)

The proof of Theorem 3.1 for the decision tree root
follows from our class propagation. For other nodes,
the proof follows from our splitting of Star(n) among
child nodes.

3.3 Splitting a table

Suppose that a node n is split into two child nodes
n1 and n2. We like to obtain Star(ni) by splitting

578

T_ID A_ID B_ID Att1 Att2 C1 C2

1 0 1 534 Red 0 1

3 2 0 62 Black 0 1

T_ID A_ID B_ID Att1 Att2 C1 C2

0 0 0 10 Blue 1 0

2 1 0 43 Blue 1 0

A_ID Att3 Att4 C1 C2

0 54 Large 1 0

1 23 Large 1 0

A_ID Att3 Att4 C1 C2

0 54 Large 0 1

2 43 Small 0 1

B_ID Att5 Att6 Att7 C1 C2

0 X 42 L 0 1

1 Y 42 M 0 1

B_ID Att5 Att6 Att7 C1 C2

0 X 42 L 2 0

Fact Table T

Dimension Table A

Dimension Table B

Fact Table T

Dimension Table A

Dimension Table B

Left Child Node Right Child Node

Figure 2. Splitting tables by Att1 < 52.5

every table in Star(n) between the two child nodes.
While splitting a table, the AVC sets at the child nodes
are collected in the same scan. First, we split the
“seed” table containing the split attribute as usual.
Recursively, we propagate the splitting to dimension
tables and fact tables based on foreign key references.
The propagation assumes that Star(n) is stored on
disk.

3.3.1 The fact-to-dimension propagation Sup-
pose that we know how to split a table T in Star(n).
To propagate the splitting to a dimension table A of
T , while splitting T we “index” the splitting of foreign
key values on A ID as described below.

Definition 3.1. (F2D index) Consider a decision
tree node n. Let A and T be tables in Star(n) and
A be a dimension table of T . Suppose that we know
how to split T . For each record A ID = i in A and each
child node c of n, the Fact-to-Dimension index (F2D
index) for A contains an entry denoted F2DA(i, c).
F2DA(i, c) stores the aggregated class count matrix
over all records in T that reference the record A ID = i
and split to the child node c.

To create the F2DA index, while splitting T , if
a record t splits to a child node c, we increment
F2DA(i, c) by < t[C1], · · · , t[Ck] >, where i is the
foreign key value on A ID in t. Intuitively, F2DA(i, c)
gives the portion of the class count matrix in the record
A ID = i that splits to the child node c. We use this
information to split the records in A.

Example 3.2. Consider Figure 1 again. Suppose that
T is split by the split criterion Att1 < 52.5, the
midpoint between 43 and 62. Figure 2 shows the split
T . Consider splitting the record B ID = 0 in B. In
T , the records T ID = 0 and T ID = 2 reference
the record B ID = 0 and split to the left child node.
So, the record B ID = 0 splits to the left child node
with the aggregated class count matrix of the records
T ID = 0 and T ID = 2, i.e., < 2, 0 > (for C1, C2

in that order). Similarly, the record B ID = 0 splits
to the right child node with the class count matrix
< 0, 1 >. The effect is that the record B ID = 0
splits its class count matrix < 2, 1 > between the two
child nodes.

The F2D method. Assume that F2DA is available
(thus, the fact table of A was split). We split A as
follows. For each record r in A with the primary key
value i, if F2DA(i, c) is not all-zero for a child node c:

• r splits to the child node c with the class count
matrix C1, · · ·Ck given by F2DA(i, c);

• for a (unsplit) dimension table B of A (if any),
increment F2DB(j, c) by F2DA(i, c), where j is
the foreign key value on B ID in r.

3.3.2 The dimension-to-fact propagation To
propagate the splitting from a dimension table A to
its fact table T , while splitting A we index the split-
ting of its primary key values as described below.

Definition 3.2. (D2F index) Consider a decision
tree node n. Let A be a dimension table in Star(n).

579

Suppose that we know how to split A. For each
record A ID = i in A, the Dimension-to-Fact index
(D2F index) for A contains an entry denoted D2FA(i).
D2FA(i) stores the child node to which the record
A ID = i in A splits.

To create the D2FA index, while splitting A, for each
record that has the primary key value i and splits to
a child node c, set D2FA(i) = c. Intuitively, D2FA(i)
contains the child node for all the records in the fact
table of A that contain the foreign key value A ID = i.

The D2F method. Assume that D2FA is available
(thus, A has the fact table). We split the fact table T of
A as follows. For each record t in T having the foreign
key value i on A ID and the primary key value i′, let
c be the child node given by D2FA(i):

• t splits to the child node c;

• if T has an unsplit dimension table B: increment
F2DB(j, c) by < t[C1], · · · , t[Ck] >, where j is the
foreign key value on B ID in t,

• if T has an unsplit fact table (only if T is not the
root table), set D2FT (i′) to c.

Example 3.3. Suppose that the split criterion at the
root node is Att3 < 33, i.e., the midpoint of 23 and
43 in A. First, we split A using the split criterion,
and build D2FA. Thus, the record A ID = 1 splits
to the left child node, and the records A ID = 0
and A ID = 2 split to the right child node. And,
D2FA(0) = D2FA(2) = Right and D2FA(1) = Left.

Next, we split T using the D2FA method, and
build F2DB : for each record t in T , we look up
D2FA by t[A ID] to find the child node c for t, and
increment F2DB(t[B ID], c) by < t[C1], · · · , t[Ck] >.
Thus, the third record in T splits to the left child node
because t[A ID] = 1 and the other three records in
T split to the right child node. One can verify that
F2DB(0, Left) =< 1, 0 >, F2DB(1, Left) =< 0, 0 >,
F2DB(0, Right) =< 1, 1 >, and F2DB(1, Right) =<
0, 1 >.

Finally, we split B using the F2DB method. We
omit this part because it is similar to Example 3.2.

It is worth noting that for both F2DA and D2FA,
A must be a dimension table. This implies that we
never create an index that has a size proportional to
the cardinality of the root table. Therefore, even if we
keep all indexes (at a decision tree node) in memory,
they still use less space than the hash table for joining
attribute lists in Sprint [9].

3.4 Analysis

The dominating work at each iteration is propagat-
ing the splitting among the tables T in Star(n) for
splitting the current decision tree node n. This work
essentially performs the matching as required for com-
puting Join(n). However, it does not materialize the
join result, but only computes the class count matrix
for each distinct record in the projection

∏
T (Join(n))

(Theorem 3.1). Thus, while Join(n) duplicates each
record in T as many times as it occurs in Join(n), as is
typically the case because each fact table represents a
many-to-many relationship type among its dimension
tables, Star(n) simply keeps a count for each class la-
bel to represent the duplicates. This counting strategy
speeds up the data scan at each decision tree node. Due
to the space limitation, we have to report experimental
results elsewhere.

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and regression trees. Wadsworth: Bel-
mont, 1984.

[2] S. Chaudhuri and U. Dayal. An overview of data
warehousing and olap technology. SIGMOD Record,
26(1):65–74, 1997.

[3] P. P.-S. Chen. The entity relatoinship model - towards
a unified view of data. ACM TODS, 1(1):9–36, March
1976.

[4] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y.
Loh. Boat - optimistic decision tree construction. In
SIGMOD, 1999.

[5] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainfor-
est - a framework for fast decision tree construction of
large datasets. In VLDB, 1998.

[6] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: a fast
scalable classifier for data mining. In EDBT, 1996.

[7] R. J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[8] R. Rastogi and K. Shim. Public: A decision tree
classifier that integrates building and pruning. In
VLDB, 1998.

[9] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A
scalable parallel classifier for data mining. In VLDB,
1996.

[10] TPC. Tpc benchmark h standard specification. In
http://www.tpc.org/tpch/spec/tpch2.0.0.pdf.

[11] X. Yi, J. Han, J. Yang, and P. Yu. Crossmine: efficient
classification across multiple database relations. In
ICDE, 2004.

580

Efficient Allocation of Marketing Resources using Dynamic Programming

Giuliano Tirenni∗

tir@zurich.ibm.com
Abderrahim Labbi
abl@zurich.ibm.com

André Elisseeff
ael@zurich.ibm.com

Cèsar Berrospi
ceb@zurich.ibm.com

Abstract

In this paper we address the following question: how to

estimate a Markov Decision Process modeling the dynamics

of customer relationships. Once the model is estimated,

we discuss how to efficiently allocate marketing resources

and instruments in order to maximize the long-term value

generated by customers in a given future time horizon using

dynamic programming. Our methodology allows us both

to predict and to optimize the future value generated by

customers. We show our approach using a case study

involving a major European airline.

1 Introduction

In the last years there has been an increasing interest in
the allocation of marketing resources both in the mar-
keting (e.g. [17], [6], [19]) and in the data mining (e.g.
[16], [13], [4]) communities. There is common agree-
ment that marketing initiatives should be evaluated by
measuring their impact on the customer lifetime value
[9], i.e. the long-term value generated by a relationship
with a customer.

In this paper we discuss how to model the dynamic
relationships between the customers and the company
using Markov Decision Processes [15] and how to allo-
cate efficiently the marketing budget by finding market-
ing actions that maximize the long-term value generated
by the customers.

We model the customer behavior in time taking
into account the marketing actions executed by the
company. Customers are segmented into a finite number
of states, then the transition probabilities from one
state to another and the expected rewards generated
when applying a given marketing action in a state are
estimated from the transactional data. Once all the
states, the transition probabilities, and the expected
rewards are known, it is possible to find the marketing
policy which maximizes the expected long-term value
generated by the relationship with the customers. A
marketing policy is a mapping from customer states to
marketing actions.

The use of dynamic programming techniques to

∗Computer Science Department, IBM Zurich Research Labo-
ratory, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland.

maximize customer future long-term value and the con-
cept of Markov Decision Processes itself originated from
the catalog industry in the 1950s [8]. A main issue which
has not been addressed in the literature is the estima-
tion of robust Markov Decision Processes modeling the
customer relationship and the long-term effects of mar-
keting actions. To the best of our knowledge, with the
exception of [18] where customer states are built using a
supervised clustering algorithm, all the models found in
the literature (e.g. [1], [5], [14], [3]) assume a given state
representation ad hoc, without providing any theoretical
justification. Most of the models are based on the re-
cency, the frequency, and the monetary value (RFM)
segmentation. While the RFM segmentation is very
popular in the marketing practice [11], there is not a
theoretical motivation that justifies its use in modeling
customer dynamics. As discussed in [18], the issue of es-
timating robust Markov Decision Processes is relevant
because a non-reliable model can lead to a non-optimal
policy, which in some cases could even perform worse
than the historical, i.e. the current, policy.

The remainder of the paper is organized as follows.
In section 2 we briefly review Markov Decision Pro-
cesses and dynamic programming. In sections 3 and
4 we describe how to estimate robust Markov Decision
Processes from the customer transactional data. In sec-
tion 5 we describe a case study. Finally, the conclusions
follow in section 6.

2 Markov Decision Processes

A Markov Decision Process (MDP) [15] can be defined
as a set of decision epochs T ⊂ N , a finite set of states
S, a finite set of actions A, a transition probability
pt(s′|s, a) modeling the probability of moving from state
s ∈ S to state s′ ∈ S if action a ∈ A is applied at
decision epoch t ∈ T , and a reward function rt(s, a)
modeling the expected reward obtained in state s ∈ S
if action a ∈ A is applied at decision epoch t ∈ T .

If the transition probabilities and the rewards do
not depend on the decision epoch, the process is said to
be stationary. We consider stationary Markov Decision
Processes when modeling the dynamics of customer
behavior.

581

A deterministic1 policy π defines, for each decision
epoch t ∈ T , a mapping from states to actions. The
expected value of state s at time step i, given a policy
π, and a finite horizon of length T , is defined as

(2.1) νπ
T (si) = Eπ

si
[
T−1∑
t=i

rt(st, at) + rT (sT)],

rt, st, and at are, respectively, the expected reward, the
state, and the action executed at time step t. rT (st) is
the terminal reward obtained at the last epoch T which
depends only on the state sT .

The optimal policy is defined as the policy maxi-
mizing the long-term expected value (2.1) in each state
and can be found using backward induction [15].

3 Estimation of the MDP

We assume that customers are segmented into different
states and that customer transactional data is available.
For each customer, the transactional data consists of a
sequence of events. Each event is defined by a triple
composed of a state s, an action a, and a reward r. The
next event is defined by the triple s′, a′, r′ where s′ is
the state resulting from applying a to s and so on. Each
customer has an associated sequence of events defined
as episode.

Given transactional data D, the state and action
spaces are obtained by considering respectively all the
states and all the actions that appear in D. In order to
estimate the transition probabilities we can simply use
the maximum likelihood estimator:

(3.2) p(s′|s, a) =
#(s′|s, a)
#(s, a)

where #(s′|s, a) is the total number of transitions from s
to s′ if action a is applied and #(s, a) is the total number
of actions a applied to state s. If the quantity #(s, a) is
zero, then the above equation is not defined. Moreover
if the quantity #(s′|s, a) = 0 then p(s′|s, a) = 0. As
we are estimating the transition probabilities from a
limited sample of data, we can assume that the absence
of particular transitions does not necessarily imply
that the real probabilities are undefined or null. To
address these two issues we adopt a Bayesian approach
incorporating the prior transition probability p̂s′|s,a into
equation 3.2. This leads to the following estimator [12]:

(3.3) p(s′|s, a) =
#(s′|s, a) + m1p̂s′|s,a

#(s, a) + m1
.

1Deterministic policies are a special case of stochastic policies,

which associate to each state a probability distribution on the
actions.

The quantity m1 can be interpreted as the number
of instances following the prior probability that are
injected into the data set D, m1 acts therefore as a
weight defining the relative importance of the prior
probability with respect to the probability estimated
from the data.

There are two possibilities to model the prior tran-
sition probability p̂s′|s,a: a) adopt a state-driven ap-
proach, emphasizing the role of the origin state, or b)
adopt an action-driven approach, emphasizing the role
of the action.

In the first case, the prior is modeled as follows

p̂s′|s,a = p(s′|s) =
#(s′|s) + m2p̂s′|s

#(s) + m2
,

where #(s) is the number of times state s appears in
the data set D and #(s′|s) is the number of times a
transition from state s to state s′ is observed. Finally,
the nested prior p̂s′|s is estimated as follows

p̂s′|s = p(s′) =
#(s′) + m3p̂∑
s∈S #(s) + m3

.

If we set equiprobable state probabilities, then the prior
p̂ becomes

p̂ =
1
|S|

,

where |S| is the cardinality, i.e. the number of different
states, of the set S. If we set m3 = |S|, we obtain the
Laplace estimator:

p̂s′|s = p(s′) =
#(s′) + 1∑

s∈S #(s) + |S|
,

we use this estimator to model the prior p̂s′|s.
In the action-driven approach, the prior is modeled

as follows

p̂s′|s,a = p(s′|a) =
#(s′|a) + m2p̂s′|a

#(a) + m2
,

where #(a) is the number of times action a appears in
the data set D and #(s′|a) is the number of times a
transition to state s′ is due to the execution of action a.
The nested prior is equal to p̂s′|a = p(s′).

The expected reward r(s, a) if action a is applied to
state s can be estimated as follows

(3.4) r(s, a) =

∑
(s,a)∈D r(s,a)

#(s, a)
,

where r(s,a) is the reward observed in the data when
action a is applied to state s. If the quantity #(s, a) is
zero, because action a has never been applied to state s,

582

we can estimate the expected reward considering either
a state-driven approach or an action-driven approach.
The state-driven estimate is

r(s, a) = r(s) =

∑
(s)∈D r(s,a)

#(s)
,

while the action-driven estimate is

r(s, a) = r(a) =

∑
(a)∈D r(s,a)

#(a)
.

3.1 Estimation of the historical policy We define
as historical policy the policy used by the company when
targeting customers. The knowledge of the historical
policy allows us to simulate the customer dynamics. We
learn from the available transactional data a stochastic
policy, assuming that it is stationary2, and estimate the
probability of executing action a in state s as follows:

π(a|s) =
#(a|s) + mπ̂a|s

#(s) + m
,

where #(a|s) are the number of events (i.e. transac-
tions) with state s and action a and #(s) are the num-
ber of events with state s. The quantity π̂a|s is the
prior probability of executing action a in state s. We
define the prior probability using the Laplace estimator
as follows

π̂a|s = p(a) =
#(a) + 1∑

a∈A #(a) + |A|
,

where #(a) is the total number of actions of type a in
all the events and |A| is the number of available actions.

4 Model selection

Several parameters influence the estimation of a Markov
Decision Process modeling customer relationships, such
as the segmentation used to define the customer states,
the state-driven or action-driven approach to estimate
the transition probabilities and the rewards, the length
of the time horizon in the training data, etc. The defi-
nition of the state space will probably have the highest
impact on the performance of the model because the
transition probabilities, the rewards, and the historical
policy are estimated based on the states encountered in
the training data.

Assuming there is a finite list of possible models
M1, · · · ,Mn, corresponding to different choices of the
parameters, we use cross-validation [7] to select the
model with the best accuracy in predicting the long-
term value generated by customers.

2This assumption is realistic if the company is not using any
multistage decision model to target the customer base.

Feature Description

rectrip elapsed time since last purchase
freqtrip3 number of transactions in the last 3

months
freqtrip12 number of transactions in the last 12

months
value3 value generated in the last 3 months
value3camp value generated from responding to

campaigns in the last 3 months
value12 value generated in the last 12 months
value12camp value generated from responding to

campaigns in the last 12 months
miles3 miles flown in the last 3 months
miles12 miles flown in the last 12 months
longevity number of days since first transaction

Figure 1: Customer features.

5 Case study

We apply our methodology to the customers of a major
European airline and estimate the Markov Decision
Process modeling the relationships with the company
in order to efficiently allocate the marketing resources.

5.1 Data We use transactional data of customers for
a period length of two years (2002, 2003). We do not
segment customers into a finite number of states, as
this is part of the model definition. At this stage we
represent each customer with the set of numeric features
defined in Figure 1.

After removing the outliers3, we randomly extract
10,000 customers. The customers are assigned randomly
to two independent sets of size 5,000: the validation set
used in the model selection phase and the evaluation set
used to predict the future long-term value by simulating
the historical and the optimal policy.

5.2 Defining customer states In order to build a
MDP we need to discretize the high-dimensional feature
space into a finite number of states. We propose a
list of segmentation criteria which can be divided into
two categories: a) business-based segments, and b)
statistical-based segments.

The business-based segments are obtained by us-
ing recency, frequency, and monetary value. Each seg-
mentation criterion can have several parameters. The
segments are defined as follows.

• RFM(n) Scores the customers according to re-
cency, frequency, and monetary value, then divides
the so ranked customers into n segments of equal

3We removed marketing actions which have been applied very

rarely and customers whose cumulative value is larger than the
99% percentile.

583

size.

• ABC(a, b, c) Scores the customers according to a
value feature, e.g. value3, and generates three
segments by assigning the first a% to segment A,
the next b% to segment B, and the remaining c%
to segment C.

• V D(a, b, c) The Value-Defectors (VD) segmenta-
tion performs ABC(a, b, c) segmentation both on
a value feature and on a loyalty index4, 9 segments
are then obtained (e.g. AA, AB, AC, etc.).

• RV (a, b, c) Recency-Value performs ABC(a, b, c)
segmentation both on a recency feature and on a
value feature, there are 9 possible segments.

The following statistical-based segments use all the
features defined in Figure 1.

• Trees(n) Regression Trees [2] are used for super-
vised clustering. A regression tree is trained on an
independent data set to predict the immediate re-
ward of each customer. The leaves of the tree corre-
spond to the segments. The parameter n indicates
the number of leaves in the training set obtained by
acting on the parameters of the algorithm. This is
a supervised clustering technique as the leaves are
built specifically to minimize the standard devia-
tion of the reward.

• SOM(n, m) Self-Organizing Maps [10] allow us to
map the high-dimensional feature space into a two-
dimensional rectangular n × m grid. The features
are normalized and Euclidian distance is used.

• K −means(n) K-means clustering [7] finds n clus-
ters which are the centers minimizing the total
within-cluster variance. The features are normal-
ized and Euclidian distance is used.

5.3 Model selection We perform model selection
using cross-validation. Each model defined in Figure
2 is tested in the case of state-driven and action-driven
approach using the validation set.

We compare the mean absolute errors of each model
using the state-driven and action-driven approaches. As
shown in Figure 3, the state-driven approach outper-
forms the action-driven approach for each segmentation.

Therefore we focus on the state-driven approach in
the remainder of the paper. The best model is the
regression tree with 10 leaves (#19), followed by ABC
(#10), the regression tree (#20), and ABC (#9).

4The loyalty index is a function of the frequency and the

longevity of a customers and has been used by IBM in different
CRM projects as a measure of the loyalty of customers.

Segment Used features

1 RFM (10) rectrip,freqtrip3,value3
2 RFM (20) rectrip,freqtrip3,value3
3 RFM (30) rectrip,freqtrip3,value3
4 RFM (10) rectrip,freqtrip12,value12
5 RFM (20) rectrip,freqtrip12,value12
6 RFM (30) rectrip,freqtrip12,value12
7 ABC (10,10,80) value3
8 ABC (10,20,70) value3
9 ABC (10,10,80) value12
10 ABC (10,20,70) value12
11 VD (10,10,80) value3,freqtrip3,rectrip
12 VD (10,20,70) value3,freqtrip3,rectrip
13 VD (10,10,80) value12,freqtrip12,rectrip
14 VD (10,20,70) value12,freqtrip12,rectrip
15 RV (10,10,80) value3,rectrip
16 RV (10,20,70) value3,rectrip
17 RV (10,10,80) value12,rectrip
18 RV (10,20,70) value12,rectrip
19 Trees (10) all
20 Trees (29) all
21 K-means (10) all
22 K-means (15) all
23 K-means (20) all
24 K-means (30) all
25 SOM (3× 3) all
26 SOM (3× 5) all
27 SOM (4× 5) all

Figure 2: List of the used segmentations.

5.4 Simulation and optimization of customer
dynamics We use an independent data set (evaluation
set) to train the MDP using the tree-based segmenta-
tion #19. Then we estimate the historical policy and
simulate the Markov Decision Process in order to pre-
dict the future value obtained by following the historical
policy.

In order to maximize the long-term value, we apply
backward induction [15] and find the optimal policy 5.
Figure 4 compares the expected value per state obtained
using the historical and the optimal marketing policy,
the time horizon is set to 12 months.

6 Conclusions

In this paper we provide a rigorous methodology for
the estimation of Markov Decision Processes modeling
the dynamic relationship between the customers and
the company. Although the use of Markov Decision
Processes and dynamic programming is not new in the

5For confidentiality reasons we cannot show the historical

policy and the optimal policy in terms of marketing actions
undertaken by the company.

584

Mean absolute error

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Segment #ID

M
ea

n
ab

so
lu

te
 e

rr
or

state-driven action-driven

Figure 3: Comparison of the mean absolute error based
on the prediction of the value generated in 12 months,
for action-driven and state-driven approach.

Optimal vs. historical policy

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8

state

va
lu

e
in

 1
2

m
on

th
s

historical
optimal

Figure 4: Comparison of the long-term value generated
in 12 months when using the optimal and the historical
policy.

literature, the issue of estimating robust models from
customer relationship transactional data has not been
addressed so far.

Using cross-validation for model selection, we are
able to build a reliable Markov Decision Process taking
into account the impact that the uncertainty in the pa-
rameters of the model has on the performance measure,
i.e. the mean absolute error on the long-term value pre-
diction. Our methodology enables efficient allocation of
marketing resources by optimizing the long-term return
on investment using the optimal marketing policy.

References

[1] G. R. Bitran and S. V. Mondschein. Mailing decisions

in the catalog sales industry. Management Science,
42(9):1364–1381, September 1996.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth Int. Group, California, USA, 1984.

[3] W. K. Ching, M. K. Ng, K. K. Wong, and E. Altman.
Customer lifetime value: stochastic optimization ap-
proach. Journal of the Operational Research Society,
55:860–868, 2004.

[4] J. H. Drew, D. R. Mani, A. L. Betz, and P. Datta.
Targeting customers with statistical and data-mining
techniques. Journal of Service Research, 3(3):205–219,
2001.

[5] F. Gönül and M. Z. Shi. Optimal mailing of cata-
logs: A new methodology using estimable structural
dynamic programming models. Management Science,
44(9):1249–1262, September 1998.

[6] S. Gupta, D. R. Lehmann, and J. A. Stuart. Valuing
Customers. Journal of Marketing Research, 41(1):7–
18, 2004.

[7] T. Hastie, R. Tibshirani, and J. H. Friedman. The El-
ements of Statistical Learning. Stringer-Verlag, 2001.

[8] R. A. Howard. Comments on the origin and application
of Markov Decision Processes. Operations Research,
50(1):100–102, 2002.

[9] D. Jain and S. S. Singh. Customer lifetime value
research in marketing: A review and future directions.
Journal of Interactive Marketing, 16(2):34–46, 2002.

[10] T. Kohonen. Self-Organizing Maps. Springer-Verlag,
Berlin, 2 edition, 1997.

[11] P. Kotler. Marketing Management. Prentice-Hall, 10
edition, 2000.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[13] E. Pednault, N. Abe, B. Zadrozny, H. Wang, W. Fan,
and C. Apte. Sequential cost-sensitive decision making
with reinforcement learning. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2002.

[14] P. Pfeifer and R. Carraway. Modeling customer re-
lationships as Markov Chains. Journal of Interactive
Marketing, 14(2):43–55, 2000.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
1994.

[16] S. Rosset, E. Neumann, U. Eick, N. Vatnik, and
S. Idan. Lifetime Value Models for Decision Support.
Data Mining and Knowledge Discovery Journal, 7:321–
339, 2003.

[17] R. Rust, K. Lemon, and V. Zeithalm. Return on
marketing: Using customer equity to focus marketing
strategy. Journal of Marketing, 68:109–127, 2004.

[18] D. I. Simester, P. Sun, and J. N. Tsitsiklis. Dynamic
catalog mailing policies. Submitted, March 2003;
revised May 2004.

[19] G. Tirenni. Allocation of Marketing Resources to
Optimize Customer Equity. PhD thesis, University of
St. Gallen, Switzerland, 2004.

585

Near-Neighbor Search in Pattern Distance Spaces

Haixun Wang Chang-Shing Perng Philip S. Yu
IBM Thomas J. Watson Research Center, Hawthorne, NY 10532

{haixun,perng,psyu }@us.ibm.com

Abstract

In this paper, we study the near-neighbor problem based on
pattern similarity, a new type of similarity which conven-
tional distance metrics such asLp norm cannot model effec-
tively. The problem, however, is important to many appli-
cations. For example, in DNA microarray analysis, the ex-
pression levels of two closely related genes may rise and fall
under different external conditions or at different time. Al-
though the magnitude of their expression levels may not be
close, the patterns they exhibit over the time or under differ-
ent conditions can be very similar. In this paper, we measure
the distance between two objects by pattern similarity, i.e.,
whether the two objects exhibit a synchronous pattern of rise
and fall under different conditions. We then present an ef-
ficient algorithm for near-neighbor search based on pattern
similarity, and we perform tests on several real and synthetic
data sets to show its effectiveness.

1 Introduction

The efficiency of near neighbor search to a large extent de-
pends on the distance function in use [3]. More importantly,
the distance function also determines the meaning of simi-
larity and the meaning of the near-neighbor search. In this
paper, we address a new type of similarity for near-neighbor
search.

DNA microarray analysis Finding near neighbors based
on subspace pattern similarity is important to many applica-
tions [1, 9, 7, 8]. Table 1 shows a small portion of the Yeast
expression data, where entrydij represents the expression
level of genei under conditionj (or at timej). Investiga-
tions show that more often than not, several genes contribute
to a disease, which motivates researchers to identify genes
whose expression levels rise and fall synchronously under
different conditions or over a period of time, that is, whether
they exhibit fluctuation of a similar shape when conditions
change.

As shown in Table 1, the expression levels of three
genes, VPS8, CYS3, and EFB1, rise and fall coherently
under three different external conditionst1, t3 and t5. We
can also measure the expression levels of genes at fixed time
intervals. In this case, assumet1, t2, · · ·, t5 in Table 1

t1 t2 t3 t4 t5 t6 · · ·
VPS8 401 281 120 275 298 210
SSA1 401 292 109 580 238 289
SP07 228 290 285 148 224 231
EFB1 318 280 37 277 215 99

MDM10 10 10 266 328 101 186
CYS3 322 288 41 278 219 231
DEP1 317 272 334 232 192 110
NTG1 329 296 33 274 228 129

...

Table 1: Expression data of Yeast genes

represent arbitrarily spaced points on the time axis. We find
the expression levels of three genes, SP07, MDM10, and
DEP1, manifest a coherent pattern with fixed time shift.

Given a new gene, biologists are interested in finding
every gene whose expression levels under a certain set of
conditions rise and fall coherently with those of the new
gene, as such discovery may reveal connections in gene
regulatory networks [1]. Clearly, this pattern similarity
cannot be captured by distance functions such as Euclidean
even if they are applied in the related subspaces.

In this paper, we extend the concept of near-neighbor to
the above situation. We say genes VPS8, CYS3, and EFB1
are near-neighbors in the subspace defined by conditions
{t1, t3, t5}, and the time series expression levels of genes
SP07, MDM10, and DEP1 are near-neighbors from time
t1, t2 andt3.

An even more interesting and challenging type of near-
neighbor query is the following. We are given the expression
levels of a new gene.This new gene might be related to any
gene in the database as long as both of them exhibit a pattern
in some subspace or at some time offset. The dimensionality
of the subspace, or the length of the time period, is often an
indicator of the degree of their closeness, that is, the more
columns the pattern spans, the closer the relation between
the two genes.

In this paper we focus on pattern based similarity de-
scribed above. Traditional distance functions, such as the
Euclidean norm, cannot measure pattern similarity. We pro-

586

pose an efficient method to perform near-neighbor search
by pattern similarity. Traditional spatial access methods for
nearest neighbor search cannot be used for pattern similarity
matching because they depend on metric distance functions
satisfying the triangular inequality. Experiments show our
method is effective and efficient, and it outperforms alterna-
tive algorithms (based on an adaptation of the R-Tree index)
by an order of magnitude.

2 NN Search by Subspace Pattern Similarity

In this section, we propose an index structure calledP-Index
(pattern index)to support fast pattern matching and near-
neighbor search. A similar structure was used to support
sequence matching [8].

2.1 An Overview We represent each objectu ∈ D as a
sequence of (column, value) pairs. For each suffix of the
sequence, we derive abase-column aligned suffixand insert
it into a trie.

The trie supports matching of patterns defined on a
column set composed of a continuous sequence of columns,
S = {ci, ci+1, ..., ci+k}. To find patterns in any subspace
efficiently, we create P-index on top of the trie.

The trie is employed as an intermediary structure to
facilitate the building of the P-index. It embodies a compact
index to all the distinct, non-empty, base-column aligned
objects inD. Various approaches to build tries or suffix
trees in linear time have been developed. Ukkonen [6],
for instance, developed a linear-time, on-line suffix tree
construction algorithm. We do not address the details of
building tries in this paper.

2.2 The Trie Structure We first introduce a sequential
representation of the data, and then use an example to
demonstrate the process of constructing the P-index.

Let D be a dataset in multidimensional spaceA =
{c1, c2, ..., cn}. Unless the dimensions are already in an
ordered domain (for example, time), we create an arbitrary
order among the dimensions, that is, we assumec1 ≺ c2 ≺
· · · ≺ cn is a total order. We represent each objectu ∈ D as
a sequence of (column, value) pairs, that is:

u = (c1, u1), (c2, u2), ..., (cn, un)

A suffix of u starting with columnci is denoted by:

(ci, ui), (ci+1, ui+1), ..., (cn, un)

where1 ≤ i ≤ n. Using the first column in each suffix
as itsbasecolumn, we derive abase-column aligned suffix
by subtracting the value of the base (first column) from each
column value in the suffix. We usef(u, i) to denoteu’s base-
column aligned suffix that begins with theith column:

f(u, i) = (ci, 0), (ci+1, ui+1 − ui), ..., (cn, un − ui)(2.1)

or, if the columns are numerical (e.g. time), we have:

f(u, i) = (ci+1−ci, ui+1−ui), ..., (cn−ci, un−ui)(2.2)

We then insert each base-column aligned suffixf(u, i) into a
trie.In the following, we use an example to demonstrate the
process.

EXAMPLE 1. Let databaseD be composed of the following
2 objects defined in spaceA = {c1, c2, c3, c4, c5}.

obj c1 c2 c3 c4 c5

#1 3 0 4 2 0
#2 4 1 5 3 6

We represent each object by a sequence of (col-
umn,value) pairs. For instance, object #1 inD can be rep-
resented by

(c1, 3), (c2, 0), (c3, 4), (c4, 2), (c5, 0)

We use the first column in the sequence as itsbasecolumn,
and derive abase-column aligned suffixby subtracting the
value of the base column from each value in the suffix:

(c1, 0), (c2,−3), (c3, 1), (c4,−1), (c5,−3)

We do the same to each suffix (of length≥ 2) of the object.
Table 2 shows all the base-column aligned suffices derived
from the two objects.

f(u, i), whereu ∈ {#1, #2} andi = 1, · · · , 4
(c1, 0), (c2, -3), (c3, 1), (c4, -1), (c5, -3)

(c2, 0), (c3, 4), (c4, 2), (c5, 0)
(c3, 0), (c4, -2), (c5, -4)

(c4, 0), (c5, -2)
(c1, 0), (c2, -3), (c3, 1), (c4, -1), (c5, 2)

(c2, 0), (c3, 4), (c4, 2), (c5, 5)
(c3, 0), (c4, -2), (c5, 1)

(c4, 0), (c5, 3)

Table 2: Sequences and suffixes derived fromD

We insert the base-column aligned suffixes into a trie.
Figure 1 demonstrates the insertion of sequence:

f(#1, 1) = (c1, 0), (c2,−3), (c3, 1), (c4,−1), (c5,−3)

Each leaf noden in the trie maintains anobject list, Ln. If
the insertion off(#1, 1) leads to nodex, which is under arc
(e,−3), we append 1 (object #1), to object listLx.

2.3 Building P-Index over a Trie The trie enables
us to find near-neighbors of a query objectq =
(c1, v1), ..., (cn, vn) in a given subspaceS, provided S
is defined by a set ofcontinuouscolumns, i.e.,S =

587

c1,0

c2,-3

c3,1

c4,-1

c5,-3

-3
1

distance to
base column

1

Lx:
object
list of
node x

x

y

Figure 1: Insertion of sequencef(u, 1) =
(c1, 0), (c2,−3), (c3, 1), (c4,−1), (c5,−3). The id of
the object is appended tox’s object listLx.

{ci, ci+1, ..., ci+k}. If ε = 0, all we need to do is follow-
ing path(ci, 0), (ci+1, vi+1− vi), ..., (ci+k, vi+k− vi) in the
trie, and when we reach a certain nodex at the end of the
path, we return objects in the object lists of those leaf nodes
that arex’s descendents (includingx if x is a leaf node). If
ε > 0, we may need to traverse multiple paths at each level.

Input : T : a trie built onD
S: a subspace defined by a continuous col-
umn set{ci, ci+1, ..., ck}
q = (c1, v1), · · · , (cn, vn): a query object
ε: pattern threshold

Output : near-neighbors ofq in subspaceS

n ← root ofT ;
search(n, S);

Function search(x, S)
if S = ∅ then

output the descendents ofx;

else
assumeS = {cj , cj+1, ..., ck};
for x’s child nodey under edge labeled(cj , v)
wherev ∈ [(vj − vi)− ε, (vj − vi) + ε] do

search(y, {cj+1, ..., ck});

Algorithm 1: NN Search in a given subspace defined
by acontinuouscolumn set

Algorithm 1 is a formal description of the above process.
It finds all objects whose value difference between columncj

andci is within region(vj−vi)±ε, wherej = i, i+1, ..., i+
k. Hence the correctness of the algorithm follows.

Algorithm 1, however, only finds near-neighbors in a
given subspace defined by a set of continuous columns. In
the algorithm, at each stepj, we can only go directly to
node under edge(cj+1, ·). To find a descendent node under
edge(ck, ·), wherek > j, requires us to traverse the subtree

under the current node, which is time-consuming. The P-
index, described below, allows us to ’jump’ directly to nodes
under(ck, ·), wherek > j. This enables us to efficiently find
near-neighbors in any given subspace, and furthermore, near-
neighbors in any subspace whose dimensionality is larger
than a given threshold requires additional index structures.

We use the following steps to build the P-index on top
of a trie. First, after all sequences are inserted, we assign to
each nodex a pair of labels,〈nx, sx〉, wherenx is the prefix-
order of nodex in the trie (starting from 0, which is assigned
to the root node), andsx is the number ofx’s descendent
nodes. Next, we create pattern-distance links for each
(col, dist) pair, wherecol ∈ A, dist ∈ {−ξ +1, . . . , ξ− 1},
andξ is the number of distinct column values1. The links
are constructed by a depth-first walk of the suffix trie. When
we encounter a nodex under arc(col, dist), we appendx’s
label〈nx, sx〉 to the pattern-distance link for pair(col, dist).
Thus, a pattern link is composed of nodes that have the same
distance from their base columns (root node).

The labeling scheme and the pattern-distance links have
the following property.

THEOREM 2.1. P-Index Property

1. if node x and y are labeled 〈nx, sx〉 and 〈ny, sy〉
respectively, andnx < ny ≤ nx + sx, then y is a
descendent node ofx;

2. nodes in any pattern-distance links are ordered by their
prefix-order number; and

3. for any nodex, x’s descendents in any pattern-distance
link are contiguous in that link.

Proof. 1) and 2) are due to the labeling scheme which is
based on depth-first traversal. For 3), note that if nodes
u, ..., v, ..., w are in a pattern-distance link (in that order),
andu, v are descendents ofx, we havenx < nu < nv <
nw ≤ nx + sx, which meansv is also a descendent ofx.

The above properties enable us to use range queries to
find descendents of a given node in a given pattern-distance
link.

Algorithm 2 summarizes the index construction proce-
dure. The P-Index is composed of two major parts: i) arrays
of 〈nx, sx〉 pairs for pattern-distance links; and ii) leaf nodes’
object lists.

The time complexity of building the P-index is
O(|D||A|). The Ukkonen algorithm [6] builds suffix tree in
linear time. The construction of the trie for pattern-distance
indexing is less time consuming because the length of the in-
dexed subsequences is constrained by|A|. Thus, it can be
constructed by a brute-force algorithm [4] in linear time.

1ξ is also regarded as a discretization parameter, or the number of bins
the numerical values are discretized into.

588

Input : D: objects in multi-dimensional spaceA
Output : P-Index ofD
for eachu ∈ D do

insert f(u, i), 1 ≤ i < |A| into a trie;
(Eq 2.1)

for each nodex encountered in a depth-first traver-
sal of the triedo

label nodex by 〈nx, sx〉;
let (c, d) be the arc that points tox;
append〈nx, sx〉 to pattern-distance link(c, d);

Algorithm 2: Index Construction

The space taken by the P-Index is linearly proportional
to the data size. Since each node appears once and only
once in the pattern links, the total number of entries in
Part I equals the total number of nodes in the trie, or
O(|D||A|2) in the worst case (if none of the nodes are shared
by any subsequences). On the other hand, there are exactly
|D|(|A| − 1) object ids stored in Part II. Thus, the space is
linearly proportional to the data size|D|.

2.4 Near-Neighbor Search in a Given SubspaceIn this
section, we find near-neighbors in a given subspace using the
P-index. For instance, assume we have a query objectq:

q = (a, 3), (c, 7), (e, 2)

Using the first column ofq as the base column, we get2:

(a, 0), (c, 4), (e,−1)

We start with the pattern link of(a, 0), which contains only
one node. Let us assume its label is〈20, 180〉, meaning
sequences starting with columna are indexed by nodes from
20 to 200. Next, we consult pattern-distance link(c, 4),
which contains all thec nodes that are4 units away from their
base column (root node). However, we are only interested
in those nodes that are descendents of(a, 0). According
to the property of pattern-distance links, those descendents
are contiguous in the pattern-distance link and their prefix-
order numbers are inside range[20, 200]. Since the nodes in
the buffer are organized in ascending order of their prefix-
order numbers, the search is carried out as a range query
in log time. Suppose we find three nodes,u = 〈42, 9〉,
v = 〈88, 11〉, andw = 〈102, 18〉, in that range. Then, we
consult the next pattern-distance link(e,−1) and repeat the
process for each of the three nodes. Assume nodex is a
descendent of nodeu, nodey a descendent of nodev, and no
nodes in pattern link of(e,−1) are descendents of nodew.

2If the columns are numerical, we get(c− a, 4), (e− a,−1).

We now have matched all the columns inS, and the object
lists of nodesx, y and their descendents contain offsets for
the query.

Algorithm 3 outlines the searching of near-neighbors in
a given subspace (defined by an arbitrary set of columns).
Here, we have demonstrated the purpose of having the
pattern-distance links. It enables us to ’jump’ directly to
the next relevant column in the given subspace, while in
traditional suffix trie we can only follow the tree branches.
As a result, the tree structure is not needed in the searching,
since the pattern-distance links already contain the complete
information for pattern matching.

Input : q: a query object,S: a given subspace
ε: pattern threshold

Output : q’s near-neighbors in subspaceS

let (c1, v1), · · · , (c|S|, v|S|) beq’s projection onS;
x ← the node under arc(c1, 0);
search(x, 2);

Function search(x, i)
if i ≤ |S| then

for pattern linkI of (ci, v), wherev ∈ [vi −
v1 − ε, vi − v1 + ε] do

/* perform a binary search onI */
for all noder ∈ I andnr ∈ [nx, nx + sx]
do

search(r, i + 1) ;

end
end

else
output objects inLx, x = vs, ..., vm

end

Algorithm 3: Pattern Matching

3 Experiments

We tested P-Index with both synthetic and real life data
setson a Linux machine with a 700 MHz CPU and 256 MB
main memory.

Gene Expression DataGene expression data are being
generated by DNA chips and other micro-array techniques.
The data set is presented as a matrix. Each row corresponds
to a gene and each column represents a condition under
which the gene is developed. Each entry represents the
relative abundance of the mRNA of a gene under a specific
condition. The yeast micro-array is a2, 884 × 17 matrix
(2,884 genes under 17 conditions) [5]. The mouse cDNA
array is a10, 934 × 49 matrix (10,934 genes under 49
conditions) [2] and it is pre-processed in the same way.

Synthetic Data We generate random integers from a
uniform distribution in the range of 1 toξ. Let |D| be

589

0

50

100

150

200

250

10 20 30 40 50 60 70 80

in
d
e
x

si
ze

 (
M

e
g
a
 b

yt
e
s)

dataset size (Mega bytes)

ξ=80
ξ=60
ξ=40
ξ=20
ξ=10
ξ= 5

0.1

1

10

100

1000

5 10 15 20 25 30 35 40 45 50

tim
e
 (

se
c.

)

dataset size (Mega Bytes)

R-Tree index
linear scan

PD-Index

(a) |A| = 20, ξ = 5, ..., 80 (b) Pattern matching (a) Find Near-neighbors in DNA micro-array

Figure 2: Performance.

the number of objects in the dataset and|A| the number of
dimensions. The total data size is4|D||A| bytes.

3.1 Space AnalysisThe space requirement of the pattern-
distance index is linearly proportional to the data size (Fig-
ure 2). In Figure 2(a), we fix the dimensionality of the data at
20 and changeξ, the discretization granularity, from 5 to 80.
It shows thatξ has little impact on the index size when the
data size is small. When the data size increases, the growth
of the trie slows down as each trie node is shared by more
objects (this is more obvious for smallerξ in Figure 2(a)).

3.2 Time Analysis We compare the algorithms presented
in this paper with two alternative approaches, i) brute force
linear scan, and ii) R-Tree family indices. The linear scan
approach for near-neighbor search is straightforward to im-
plement. The R-Tree, however, indexes values not patterns.
To support queries based on pattern similarity, we create an
extra dimensioncij = ci − cj for every two dimensionsci

andcj .
The query time presented in Figure 2(b) indicates that P-

Index scales much better than the two alternative approaches
for pattern matching in given subspaces. The comparisons
are carried out on synthetic datasets of dimensionality|A| =
40 and discretization levelξ = 20. Each time, a subspace is
designated by randomly selecting 4 dimensions, and random
query objects are generated in the subspace.

To further analyze the impact of different query forms
on the performance, we base our comparisons on number
of disk accesses. First, we ask random queries against
yeast and mouse DNA micro-array data in subspaces of
dimensionality ranging from 2 to 5. The selected dimensions
are evenly separated. For instance, we select dimension set
{c1, c13, c25, c37, c49} in a mouse cDNA array that has a total
of 49 conditions. Figure 2(c) shows the average number
of node accesses and disk accesses. Since P-Index offers
increased selectivity for longer queries, it is robust as the
dimensionality of the given subspace becomes larger.

4 Conclusion

We identify the need of finding near-neighbors under sub-
space pattern similarity, a new type of similarity not cap-
tured by Euclidean, Manhattan, etc., but essential to a wide
range of applications, including DNA microarray analysis.
Two objects are similar if they manifest a coherent pattern
of rise and fall in an arbitrary subspace, or over a certain
time period with time shifting.We propose P-Index, which
maps objects to sequences and index them using a tree struc-
ture. Experimental results show that P-Index achieves orders
of magnitude speedup over alternative algorithms based on
naive indexing and linear scan.

References

[1] Y. Cheng and G. Church. Biclustering of expression data. In
Proc. of 8th International Conference on Intelligent System
for Molecular Biology, 2000.

[2] R. Miki et al. Delineating developmental and metabolic
pathways in vivo by expression profiling using the riken
set of 18,816 full-length enriched mouse cDNA arrays. In
Proceedings of National Academy of Sciences, 98, pages
2199–2204, 2001.

[3] Piotr Indyk. On approximate nearest neighbors in non-
euclidean spaces. InIEEE Symposium on Foundations of
Computer Science, pages 148–155, 1998.

[4] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm. Journal of the ACM, 23(2):262–272, April
1976.

[5] S. Tavazoie, J. Hughes, M. Campbell, R. Cho,
and G. Church. Yeast micro data set. In
http://arep.med.harvard.edu/biclustering/yeast.matrix,
2000.

[6] E. Ukkonen. Constructing suffix-trees on-line in linear time.
Algorithms, Software, Architecture: Information Processing,
pages 484–92, 1992.

[7] Haixun Wang, Fang Chu, Wei Fan, Philip S. Yu, and Jian Pei.
A fast algorithm for subspace clustering by pattern similarity.
In 16th International Conference on Scientific and Statistical
Database Management (SSDBM), 2004.

[8] Haixun Wang, Chang-Shing Perng, Wei Fan, Sanghyun Park,
and Philip S. Yu. Indexing weighted sequences in large
databases. InICDE, 2003.

[9] Haixun Wang, Wei Wang, Jiong Yang, and Philip S. Yu. Clus-
tering by pattern similarity in large data sets. InSIGMOD,
2002.

590

An algorithm for latti
e-stru
tured subspa
e
lustersHaiyun Bianbianh�e
e
s.u
.eduUniversity of Cin
innati, OH 45221 Raj Bhatnagarraj�e
e
s.u
.eduUniversity of Cin
innati, OH 45221Abstra
tMost of the
urrent subspa
e
lustering methods �ndnon-overlapping
lusters of similar obje
ts. We presenta new subspa
e
lustering algorithm that has two valu-able
apabilities not available in most of the
urrentmethods. First, it �nds possibly overlapping subspa
e
lusters; and se
ond, it
an dis
over
lusters that pre-serve some user-spe
i�ed interesting properties. Ourmethods build a latti
e of these subspa
e
lusters and itfurther enables dis
overy of meaningful linkage-
hainsin terms of obje
ts or attributes among distant
lusters.Our algorithm
an be applied to graph data, so
ial net-work data, and biologi
al data to obtain a better un-derstanding of the substru
tures inherent in the dataspa
e.1 Introdu
tionClustering seeks to identify homogeneous groups of ob-je
ts based on the values of their attributes. We viewa data spa
e as a table in whi
h rows
orrespond toindividual data obje
ts and
olumns
orrespond to at-tributes. When the number of attributes (dimensions)be
omes large, similarity de�ned on the whole attribute-set be
omes low for almost any subset of obje
ts, whi
hmakes �nding full-dimensional
lusters diÆ
ult. Dimen-sion redu
tion te
hniques su
h as prin
iple
omponentanalysis make the �nal interpretation of the
lustersvery diÆ
ult. Subspa
e
lustering is a good solutionfor �nding
lusters in su
h data spa
es, by de�ningsimilarity only on a sele
ted subset of attributes (re-gional similarity) for a set of
lustered obje
ts. Ea
hsubspa
e
luster is a group of similar obje
ts within itsown subset of dimensions. Several methods have beenproposed re
ently for dis
overing interesting subspa
e-
lusters [1, 2, 3, 4, 5, 6℄.Most of the existing subspa
e
lustering methods�nd non-overlapping
lusters, that is, ea
h obje
t be-longs to at most one subspa
e
luster. However, �ndingoverlapping subspa
e
lusters is useful and ne
essary inmany appli
ations for the following reasons.Multi-domain fun
tionalityEa
h subspa
e
luster signi�es some fun
tional

a b
 d e fa 1 1 1 0 0 1b 1 1 1 0 0 0
 1 1 1 1 1 1d 0 0 1 1 1 1e 0 0 1 1 1 1f 1 0 1 1 1 1Table 1: Pairwise multi-fun
tionalitya1 a2 a3 a4 a5a 1 1 1 0 0b 1 1 1 0 0
 1 1 1 1 1d 0 0 1 1 1e 0 0 1 1 1Table 2: Obje
t-attribute multi-fun
tionalitygroup of obje
ts in the domain. It is very
ommon thatsome obje
ts parti
ipate in multiple fun
tional groupsand hen
e should belong to multiple subspa
e
lusters.For example, a parti
ular gene may play a
tive role inmultiple biologi
al pro
esses. We show two di�erentexamples situations here. The �rst is in the form ofpairwise similarity between a set of obje
ts as shown intable 1. The same set of obje
ts form the row and the
olumn labels in the table, as is the
ase for a graphin
iden
e matrix. An entry of `1' in the table indi
atesthe obje
ts of the pair are similar to ea
h other. Thetable shows two
learly de�ned
lusters, one with ob-je
ts fa; b;
g, and the other with obje
ts f
; d; e; fg.
is a multi-fun
tional obje
t in the sense that it belongsto more than one subspa
e
luster.The se
ond example is in the form of a table ofobje
t-attribute pairs as shown in table 2. Clustersin this type of data are de�ned by the shared obje
t-attribute values. The example shown in the table 2has two
lusters, one with obje
ts fa; b;
g in subspa
efa1; a2; a3g, and the other with obje
t f
; d; eg in sub-spa
e fa3; a4; a5g. Obje
t
 o

urs in both the
lusters
591

whi
h are within di�erent subspa
es, and attribute a3is
ommon between the two subspa
es.Conne
tion between distantly related obje
tsA good
riterion for
onne
tion path between twoobje
ts
an be de�ned at the
luster level instead ofthe single obje
t level. the
onne
tions among theindividual obje
ts. Consider the example in table 1, ifwe are trying to �nd a good
onne
tion between b andf , two paths satisfy the shortest path
riterion, pathb! a! f and path b!
! f . However, sin
e fa; b;
gand f
; d; e; fg are
lusters, the
onne
tion a ! f ismore likely to be a
ase of spurious
onne
tivity, andthe preferen
e should go to b !
 ! f . de�ned. Weshow in this paper that the
luster level
onne
tions arebest
aptured by the latti
e built from all the denseregions found in the data.Our Contribution We present in this paper a newsubspa
e
lustering algorithm that
an �nd overlap-ping subspa
e
lusters satisfying di�erent
onstraints.A latti
e stru
ture is built from the subspa
e
lusters,and
onne
tive relationships among the obje
ts and at-tributes of a
luster
an be revealed by the latti
e. Ouralgorithm is
apable of dealing with similarity measuresas well as some kinds of dis
repan
y as the metri
 for
lustering obje
ts together. Also, our algorithm simul-taneously
lusters on both the obje
ts spa
e and theattributes spa
e.2 Related Resear
hSubspa
e
lustering in CLIQUE [1℄ is a density-basedmethod whi
h partitions the data spa
e into non-overlapping re
tangular units. A sear
h is performed to�nd dense units within all possible subspa
es. The prun-ing strategy is based on the fa
t that \if a k-dimensionalregion is dense, then all the k-1 dimensional regions thatit
ontains must also be dense". ENCLUS [4℄ followsthe density based idea, but uses entropy as a heuristi
 toprune away uninteresting subspa
es. PROCLUS [2℄ isa variation of the k-medoid algorithm, and it returns apartition of the data points into
lusters together withthe set of dimensions on whi
h ea
h
luster is
orre-lated. Bi-
lustering algorithms [5, 6℄ are proposed tomeet the requirements in bioinformati
s �eld where weneed to �nd sets of genes showing similarity under a setof
onditions. Greedy sear
h is used in [5℄ to �nd thesubsets of genes and subsets of
onditions for whi
h ameasure
alled mean square residue s
ore is minimized,and the algorithm returns non-overlapping bi-
lusters.Work presented in FLOC[6℄ is a further improvementon the bi-
lustering idea by allowing the �nding of mul-tiple bi-
lusters simultaneously.

3 Our Approa
h3.1 Problem Des
ription A data spa
eDS is givenby a set of attributes A = fa1; a2; : : : ; ang and apopulation of obje
ts O = fo1; o2; : : : ; omg. Ea
h oihas a value for ea
h of the attributes in A. A subspa
e
luster
 of the data spa
e DS is de�ned as < Oi;Ai >,where Oi � O and Ai � A. We
all Oi and Ai theobje
t set and the attribute set of the subspa
e
lusterrespe
tively. The symbol dij denotes the jth attributeof the ith obje
t. The following de�nitions, used in ouralgorithm, are de�ned on 0/1 binary valued data spa
es.Definition 3.1. A subspa
e
luster
 =< Oi;Ai > on0/1 valued data spa
e is a dense region if oij are `1'for all oi 2 Oi and aj 2 Aj .Definition 3.2. A dense region
 =< Oi;Ai > is amaximal dense region if all regions that are propersupersets of
 are not dense.A region
i is said to be proper superset of
j ifeither Oj � Oi, or Aj � Ai, or both. That is, adense region is maximal if and only if adding any obje
t(attribute) will for
e the enlarged region to
ontain `0'entries. We have proved that our de�nition of maximaldense region is equivalent to the
on
ept's de�nitionin formal
on
ept analysis [9℄. (The proof is omitteddue to spa
e limitation.) So all the dense regions forma latti
e stru
ture based on the following order: for twodense regions
1 =< O1;A1 > and
2 =< O2;A2 >, wede�ne
2 �
1 if O2 � O1.
2 is
alled a
hild of
1,and
1 is
alled a parent of
2.
1 is
alled the
over(dire
t parent) of
2 if
2 �
1, and for all
i:
2 �
i(
i 6=
1 and
i 6=
2), we have
1 �
i;
orrespondingly,
2 is
alled the dire
t
hild of
1.The prime operator 0 is de�ned as: O0i := fa 2Ajdoa = 1 for all o 2 Oig, and A0i := fo 2 Ojdoa = 1for all a 2 Aig. Then a maximal dense region
 =<Oi;Ai > is a pair where O0i = Ai and A0i = Oi. We
allmaximal dense region as dense region in the remainingdis
ussion. The latti
e built from dense regions is
onstru
ted using the following rules:� Ea
h node in the latti
e is a dense region;� If node
1 is a
over for node
2, put
1 above
2and add an edge between them;� The latti
e top is
top =< O00;O0 >, and latti
ebottom is
bottom =< A0;A00 >.We de�ne a path in a latti
e to be a
ontiguoussequen
e of edges between nodes. Two nodes are saidto be
onne
ted if there exists a path between them.3.2 AlgorithmOutline Our method has three mainphases. Phase-0 transforms a multi-valued data spa
e toa binary data spa
e. In phase-1, dense regions are found
592

and the latti
e is built. In phase-2,
onne
tions aresear
hed through the latti
e. Algorithms for building
on
ept latti
es �nd all
on
epts without any pruningand therefore have a high
omplexity. Our de�nition ofdense region is mathemati
ally equivalent to a formal
on
ept [9℄, the semanti
s of dense regions
an beused as pruning tool to dis
over subspa
es with di�erentsemanti
s for the
lusters. That is,a
ombination ofthe binary transformation (phase-0), pruning strategy(phase-1) and sear
h strategy (phase-2) produ
e
lusterssatisfying di�erent P-property. Formally, P-
luster isde�ned as the follows:Definition 3.3. Let B(DS) denote set of all denseregions in data spa
e DS. A subspa
e
luster
 =<Oi;Ai > on data spa
e DS is
alled a P-
luster ifit satis�es some property P. Here P is de�ned as afun
tion: P: B(DS)! f0; 1g3.3 Phase-0: To Binary Data For multiple valueddata sets, a fun
tion F is applied to the original datato
onvert it into binary valued data. The following aresome example F fun
tions and are similar to the ideas ofs
ale de�ned in the formal
on
ept analysis [9℄, but herethey have di�erent semanti
s interpretations. Choi
e ofF signi�
antly determines the P property of the
lustersfound by the algorithm. For similarity-based
lusters,we de�ne F as a fun
tion that maps ea
h attribute valueoij into a 0/1 ve
tor: F : oij ! f(0j1)�gChoi
e of F from Equalityfun
tions
an �nd
lus-ters in whi
h obje
ts have same values for the attributes,and when F is from rangefun
tions we �nd
lusters inwhi
h obje
ts have values in
ertain ranges.We have used another F 0 fun
tion whi
h
an beused to �nd
lusters of obje
ts with dis
repent attributevalues. We de�ne dis
repant F 0 as fun
tions that mapea
h attribute value pair into 0/1: F 0: oij�okj ! f0; 1g.An example where this may be useful is the situationwhere negatively
orrelated genes provide insights intothe stru
tures of some bio
hemi
al pathways [10℄.We de�ne F 0(oij ; okj) = 1 if oij 6= okj or they arein di�erent ranges for real valued attributes. Clustersfound satisfy the P property that all obje
ts in every
luster are di�erent for all the attributes of the
lusters.3.4 Phase-1: Pruned Latti
es Obje
tive of thisphase is to build the latti
e of dense regions using thebinary data spa
e (from phase-0). Many exhaustivealgorithms are available to �nd all
on
epts (=
lus-ters) in formal
ontexts [8, 9℄. These algorithms havehigh
omplexity be
ause the number of possible
on-
epts in
reases exponentially with the number of ob-je
ts. Our algorithm is motivated by the
on
ept sear
halgorithms, but uses an additional Pruning feature.

We show that the proposed pruning methods
an re-stri
t the sear
h spa
e e�e
tively.3.4.1 Size Pruning We
onsider the following twotypes of size
onstraints: minimum number of obje
tsand minimum number of attributes in a
luster. Algo-rithm 1 given below �nds all dense regions that have atleast s obje
ts. It is based on the fa
t that the obje
tAlgorithm 1Let L be the list of
andidate dense regions, andinitially empty;forea
h ai 2 Aforea
h Si =< Oi;Ai >2 LO ai0 \ Oiif jOj > s and O 62 Ladd L L[< O;Ai [ai >else if jOj > n and < O;Aj >2 L< O;Aj > < O;Aj [Ai [ai >set Oi of any dense region
 must be interse
tion of all(ai)0 2 Ai, where Ai � A. It �nds all the dense regionsthat have at least s obje
ts, and the latti
e stru
ture isbuilt after the dense regions are found.3.4.2 E�e
tiveness of Size Pruning We tested thesize
onstraint on
ongressional voting data set fromthe UCI repository [11℄. This data set in
ludes votesfor 435
ongressmen on 16 issues. Ea
h attribute hasthree possible values: 'y', 'n', and '?'. Using algorithm1 without any size
onstraint, there are 227032 maximaldense regions (
on
epts) in this data. Figure 1 shows thenumber of dense regions found and pruned for di�erentsize
onstraints on the obje
t set. With the in
reasingthreshold on the number of obje
ts, the number of denseregions found de
reases signi�
antly and the numberof pruned dense regions in
reases. The most e�e
tiveregion for the size
onstraint pruning is [0,20℄.3.4.3 Semanti
 Pruning We
an also set semanti

onstraints for pruning, and only those dense regionsthat satisfy the
onstraints will be found. Dense regionsin binary valued data spa
es have simpler semanti
s:regions of all 1's or regions of all 0's. For multiplevalued data spa
es, dense regions
an have mu
h ri
hersemanti
s. All
ombinations of values of di�erentattributes
an
onstitute dense regions, while not allof them maybe semanti
ally meaningful.3.4.4 E�e
tiveness of Semanti
 Pruning Wetested the semanti

onstraints on the same data set.The 16 issues are grouped into �ve
ategories, with ea
h
ategory having 4-8 issues. The semanti
s
onstraint isset as: a dense region is interesting when all the
on-
593

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

5

minimum no. of objects in dense region

no
. o

f d
en

se
 r

eg
io

n
no. of dense region found
no of dense region pruned

Figure 1: Size Constraint pruning: number of denseregions found and prunedgressmen in this region agree with ea
h other on at least�% of the issues in any of the �ve
ategories. The resultsshow that the number of dense regions found de
reasesquadrati
ally with the in
rease of �, and the number ofpruned regions in
reases quadrati
ally.3.5 Phase-2: Sear
h for Conne
tions and Com-binations All dense regions found are not equally in-teresting. Paths among nodes of the latti
e and merg-ers of some dense regions (leading to non-dense
lusters)may have valuable semanti

ontent. We
onsider thefollowing two types of
luster shapes. The �rst type is asymmetri
 matrix, su
h as the graph in
iden
e matrix.The se
ond type is a non-symmetri
 matrix, resultingin a re
tangular shape in the dataspa
e.3.5.1 Symmetri
-re
e
tive Matrix Many of thesymmetri
-re
e
tive matri
es, su
h as graph in
iden
ematrix and pairwise similarity data, have a
ommonalitythat the obje
t set is the same as the attribute set.The latti
e of dense regions built from this type of datahas a lot of spe
ial
hara
teristi
s whi
h
an be usedto fa
ilitate the mining pro
ess. For
larity purpose,we
all graph vertex as vertex, and dense region in thelatti
e as node.Definition 3.4. A dense region
 =< Oi;Ai > is
alled square dense region if jOij = jAij.Definition 3.5. A dense region
 =< Oi;Ai > is
alled
ore if Oi = Ai.A
ore in graph data
orresponds to a
lique, animportant subgraph. They are used to de�ne
losely
onne
ted obje
ts, su
h as human
ommunities, genefun
tional groups.Observations: All square dense regions
 =< Oi;Ai >in latti
e of symmetri
 and re
e
tive matri
es data

that satisfy Oi \ Ai 6= � are
ores. The latti
e ofdense regions for symmetri
 and re
e
tive matri
es issymmetri
 w.r.t the
ores. That is, for any path in thelatti
e starting from a
ore to the latti
e top, there is a
orresponding path starting from the same
ore to thelatti
e bottom, with every node
 =< Oi;Ai > in the�rst path having a
orresponding node
 =< Ai;Oi >in the se
ond path. So, for a latti
e of symmetri
 andre
e
tive matrix data, only half of the latti
e is neededto en
ode all the
onne
tivity information. This
anhelp us design more eÆ
ient algorithms for building thelatti
es.Find dense regions of various p-properties:Definition 3.6. A region is
alled �-dense if theper
entage of 1 entries in the submatrix ex
eeds somethreshold �.Definition 3.7. For a dense region
, we de�neL
 =< OL
 ;AL
 >, where OL
 is the union of the ob-je
t sets of dire
t parents of
, and AL
 is the union ofthe attribute sets of all the dire
t parents of
.Observation For any dense region
, any two obje
tsin OL
 are at most 1-hop from ea
h other. Here, onehop means one intermediate vertex.More generally, if we go more than one level upthe dire
t-parent relationships, the maximum distan
ebetween any two obje
ts in the resulting
ombined
luster is at most (n + m � 1)-hops from ea
h other,where n and m are the number of
over operations takenat two bran
hes.It is ineÆ
ient to sear
h for �-dense regions startingfrom every node. A better way is to start from the
ores, and form larger
lusters by taking the union of theobje
t sets of the
overs of the
ores and the resultant�-dense
lusters have an upper bound on the maximumhops between any pair of obje
ts within ea
h
luster,and also density maximality.Conne
tion between
ores: The latti
e stru
turereveals important information about
onne
tions be-tween
ores. We
onsider the following three types ofrelationships for a pair of
ores, assuming the latti
e top
top =< O; � >.Type I: If all paths between two
ores pass the latti
etop, then these
ores are dis
onne
ted.Type II: If two
ores have at least one
ommon parent,there is at least one multi-fun
tional obje
t for thetwo
ores.Type III: If two
ores are
onne
ted by at leastone path, but share no parent ex
ept
top, thenthere are some obje
ts outside both the
ores thatprovide the
onne
tion between the
ores. These
594

obje
ts
an be easily identi�ed by following the
over and dire
t
hild links.3.5.2 Non-symmetri
 Matrix Most of the
lustersin obje
t-attribute datasets are non-symmetri
, that is,they are re
tangular shaped submatri
es of the dataspa
e. So
ores do not exist but the square dense regionsstill exist. A size
onstraint on both the obje
t spa
eand the attribute spa
e will turn in a mu
h smaller setof dense regions that may a
t as the
ores, whi
h we
all q-
ores. After the q-
ores are identi�ed, similarstrategies
an be used to �nd �-dense regions betweenthe q-
ores. Conne
tions between the q-
ores
an alsobe
ategorized into similar three types but the sear
hneeds to be performed within both halves of the latti
e.4 Algorithm EvaluationWe have designed a syntheti
 data generator whi
his an updated version of the one presented in [7℄ byallowing one obje
t to be in multiple
lusters. Our�rst test used the number of obje
ts as the
ontrolvariable. Ea
h attribute has a real value in [0, 100℄interval and is transformed into a binary equivalentby using a range fun
tion (the F fun
tion in phase-0) into ten equal length intervals. For a data set with20 dimensions and �ve non-overlapping dense regions of�ve dimensions ea
h, the running time in
reases linearlywith the number of obje
ts. Addition of 10% obje
ts asrandom noise still dis
overs all the dense regions withthe same time
omplexity. The same test was repeatedwith overlapping dense regions. Subspa
es overlappedin both, the obje
ts and the attributes. There werefour dense regions with two overlapping pairs, ea
h pairsharing two attributes and 40% obje
ts. The runningtime is larger than that for the non-overlapping denseregions but still in
reases only linearly.We tested the s
alability of the algorithm as thenumber of attributes is in
reased from 20 to 100. Allthe datasets had 10,000 obje
ts and two overlappingdense regions in 5-dimensional subspa
es. The resultsshow that the algorithm time grows quadrati
ally withthe number of attributes. We also tested the e�e
t ofsize
onstraint on the running time of the algorithm. Asintuitively expe
ted, the smaller the size
onstraint, thekarger is the number of
lusters found and more time istaken by the algorithm.5 Con
lusionsWe have presented a new subspa
e
lustering algorithmthat
an �nd possibly overlapping subspa
e
lustersin the data. A latti
e is built from all the denseregions found, from whi
h other
lusters of interestingproperties
an be
onstru
ted and paths among
lusters

an be identi�ed. Our algorithm provides a very goodinterpretation of the relationships among overlappingsubspa
e
lusters. It is the �rst attempt that de�nessubspa
e
lusters as
ombinations of
ores in a latti
ea

ording to some partial ordering. This providestremendous amount of
ontrol and information aboutthe stru
tural properties of the subspa
es that may be
onstru
ted with the latti
e of subspa
e
ores. Manyextensions of this resear
h are possible. Algorithmsto �nd dense regions that satisfy both the obje
t setsize
onstraint and attribute set size
onstraint
an bedesigned, whi
h may help in making the algorithm inphase-1 more eÆ
ient.Referen
es[1℄ Rakesh Agrawal and Johannes Gehrke and DimitriosGunopulos and Prabhakar Raghavan, Automati
 sub-spa
e
lustering of high dimensional data for data min-ing appli
ations, ACM SIGMOD Pro
eedings, 1998,pp. 94{105.[2℄ Charu C. Aggarwal and Joel L. Wolf and Philip S. Yuand Ce
ilia Pro
opiu
 and Jong Soo Park, Fast algo-rithms for proje
ted
lustering, SIGMOD Conferen
ePro
eedings, 1999, pp. 61{72.[3℄ C. Aggarwal and C. Pro
opiu
 and J. Wolf and P. Yuand J. Park, A Framework for Finding Proje
ted Clus-ters in High Dimensional Spa
es, ACM SIGMOD In-ternational Conferen
e on Management of Data Pro-
eedings, 1999.[4℄ Chun Hung Cheng and Ada Wai-Chee Fu and YiZhang, Entropy-based Subspa
e Clustering for MiningNumeri
al Data, Knowledge Dis
overy and Data Min-ing, 1999, pp. 84{93.[5℄ Yizong Cheng and George M. Chur
h, Bi
lustering ofExpression Data, ISMB Pro
eedings, 2000, pp. 93{103[6℄ Jiong Yang and Wei Wang and Haixun Wang andPhilip S. Yu, delta-
luster: Capturing Subspa
e Cor-relation in a Large Data Set, ICDE Pro
eedings, 2002.[7℄ Mphamed Zait and Hammou Messatfa, A
omparativestudy of
lustering methods, Future Generation Com-puter Systems, 13 (1997), pp. 149{159.[8℄ Christian Lindig, Fast
on
ept analysis, Working withCon
eptual Stru
tures - Contributions to ICCS, 2000.[9℄ B. Ganter and R. Wille, Formal
on
ept analysis:mathemati
al foundations, Springer, Heidelberg, 1999.[10℄ Dhillon IS, Mar
otte EM, Roshan U, Diametri
al
lustering for identifying anti-
orrelated gene
lusters,Bioinformati
s, 19(2003), pp. 1612-1619.[11℄ C.L. Blake and C.J. Merz, = UCIRepository of ma
hine learning databaseshttp://www.i
s.u
i.edu/�mlearn/MLRepository.html,University of California, Irvine, Department of ICS,1998.
595

 CBS: A New Classification Method by
Using Sequential Patterns

Vincent S. M. Tseng Chao-Hui Lee

Dept. Computer Science and Information Engineering

National Cheng Kung University
Tainan, Taiwan, R.O.C.

Email: tsengsm@mail.ncku.edu.tw

Abstract - Data classification is an important topic in
data mining field due to the wide applications. A number
of related methods have been proposed based on the well-
known learning models like decision tree or neural
network. However, these kinds of classification methods
may not perform well in mining time sequence datasets
like time-series gene expression data. In this paper, we
propose a new data mining method, namely Classify-By-
Sequence (CBS), for classifying large time-series datasets.
The main methodology of CBS method is to integrate the
sequential pattern mining with the probabilistic induction
such that the inherent sequential patterns can be extracted
efficiently and the classification task be done more
accurately. Meanwhile, CBS method has the merit of
simplicity in implementation. Through experimental
evaluation, the CBS method is shown to outperform other
methods greatly in the classification accuracy.

Keywords: Classification, Sequential Pattern, Time-series
data, Data Mining.

1. Introduction

In recent years, many data mining techniques emerged
in various research topics like association rules, sequential
patterns, clustering and classification [1, 2, 4, 11, 12].
These techniques are also widely used in different
application fields. Most of the existing data mining
methods are designed for solving some specific problem
independently. In the other hand, some few compound
methods integrate two or more kinds of data mining
techniques to solve complex problems. For example,
Classification By Association rules (CBA) [8] and other
integrated methods like the SPF Classifier in [7] are of this
kind. These compound methods can effectively utilize the
advantages of each individual mining technique to
improve the overall performance in data mining tasks. For
example, the CBA [8] method was reported to deliver
higher accuracy than traditional classification method like
C4.5 [11]. Hence, it is a promising direction to integrate
different kinds of data mining methods to form a new
methodology for solving complex data mining problems.

Among the rich data mining problems, classification
modeling and prediction is an important one due to the
wide applications. Numerous classification methods have
been proposed [3] [4] [5] [6] [8] [9] [11], including the
most popular ones like decision tree, neural network and
support vector machine. The goal of a classification
method is to build up a model that can relate the label
(class) to the values of attributes for the data instances.
Hence, the label of a new data instance can be predicted
correctly by using the built model. However, few studies
explore the issue of using integrated data mining methods
to classify datasets with time sequences, e.g., the time-
series gene expression datasets.

One of the few related work is the one by Lesh et al.
[7], which combined the sequential patterns mining and
tradition classification method like C4.5 to classify
sequence datasets. In this paper, we present a new method
named Classify-By-Sequence (CBS), which integrates the
sequential pattern mining with the probabilistic induction
such that the inherent sequential patterns can be extracted
and used for classification efficiently. The experimental
results show that the CBS method achieves higher
accuracy in classification than other methods.

2. Problem Definition

Consider a large database that stores numerous data
records. Each data record is consisted of a data sequence
and associated with a class label. The main problem is to
build a classifier based on the information in the database
such that the class of a new data instance can be predicted
correctly. Let Di represents all time-series data instances
belonging to class i. So, the database is represented as D =
{D1, D2, D3, D4, … DN} assuming there are totally N
classes in the database. For each class, data set Di consists
of time-series data instances in the form of {a1, a2, a3….,
an}, where an represents the value at nth time point. To
simplify this study, it is assumed that the value at each
time point is discretized and transformed into categorical
values in advance.

Our goal is to discover the Classifiable Sequential
Patterns (CSP) rules that can be used as the classification
rules for the classifier. The CSP rule is in the form of
SPi Cm , where SPi is a sequence like a2 a3 a7…, and

596

Cm is some class m. We will describe in details how to
discover these CSP rules in next section.

3. The CBS Method

With the basic idea of CBS as described previously, we
propose two variations of CBS methods, namely
CBS_ALL and CBS_CLASS, for discovering the CSP
rules. After the CSP rules are discovered, it is easy to do
the class prediction by using the induction approach.
Hence, we will focus on the procedures of mining the CSP
rules in the following.

3.1 CBS_ALL Method

The concept of this method is similar to the sequential
patterns mining with the add-in of probabilistic induction.
First, we extract all classifiable sequences from the
database by using some sequential patterns mining. In
addition to finding the frequent sequences, we further give
the classify-score for these sequences. CBS_ALL
algorithm considers the class support and transaction
support at the same time. We adopt an Apriori-like
procedure for implementing the support counting task.
Figure 1 shows the CBS_ALL algorithm in details. Thus,
we can get a number of CSP rules. Each CSP rule contains
the classification information and we use all CSP rules to
establish a classifier. Figure 2 illustrates the policy of the
classifier in using all CSP rules to classify a time-series
data correctly.

Notice that this algorithm deals with the categorical
tmie-series data only since it is assumed that all original
datum are transformed into categorical values as
mentioned in Section 2. In CBS_ALL algorithm, we
extract large-1 items as CSP1, which are further used to
generate SP2 (candidate large-2 Sequential Patterns). In
counting the support, if SP is a subsequence of a
transaction sequence data, SP.seq_sup (i.e., support of the
sequence) will be incremented. Another important
procedure for producing classify-score of a sequences is
counting the support of each class. In our design, both SP
and CSP are given a class_sup array, respectively. In
counting sequence support, the class support is counted at
the same time. If the SP is with the class label Cx, then
SP.class_sup[x] will also be incremented. After the whole
dataset has been counted for SP, we prune SP into CSP
with their seq_sup and class_sup[]. In performing the
pruning, a rule is reserved if at least one class support is
larger than the minimum rule support; otherwise it is
eliminated since the sequential pattern distributes in too
many classes and is unqualified as a rule. Then, the
procedure loops back to the candidate generation
procedure. The algorithm generates all CSP iteratively

until no more SP meets the requirements of min_seq_sup
and min_class_sup thresholds.

Figure 1. CBS_ALL algorithm
}

end
up}min_rule_ssupsp. /]sup[let and
pmin_seq_susup{

end
end

][sup
sup

doeachfor
)subseq(

dodataeach for
)(_

do)2for(
items}-1 {large

{
up)min_rule_s p,min_seq_su D,(Dataset _

1

1

ii

ii

s

is

i-i

i

CSPCSP

seq_wsp.class_w
, sp.seq_SPsp|spCSP

;d.classsp.class_

;sp.seq_
 SP sp

;dSPSP
 D d

;CSPPcandidateSgenSP
 ;i;CSPi

CSP

ALLCBS

U

I

=

≥∃
≥∈=

++
++

∈
=

∈
=

++≠=
=

φ

For the classification part, we use a scoring method to

determine the class label for a newly given data instance
with the data sequence by utilizing the CSP rules as
described above. If the subsequence of a sequence x equals
to the SP of CSP y, we call that the sequence x matches
CSP y. Figure 2 shows the procedure in details.

First, we find out all CSP with sequences matching the
subsequences of the sequence in the new data instance. We
use the class support and sequence support to calculate the
score for each selected CSP. In this way, we obtain the
scores for each class by their induced probability. Finally,
the new data instance is assigned with the class of the
highest score. Although this classification task is done
through a simple score counting process, the algorithm
takes into account two important factors – the length of
CSP and the subsequence patterns for the matched CSP.
As an easy example, assume a CSP A is the subsequence
of CSP B. Consequently, if a new sequence contains CSP
B, it must also contain CSP A. This means that we may
incur the problem of repeated counts in calculating some
scores. To resolve this problem, it seems that we should
remove all matched sequences like CSP A. However, this
problem is eliminated by considering another factor,
namely the size of the matched CSP. By our scoring policy,
the CSP is weighted according to their sequence length. In
this way, for example, the CSP with length 5 get higher
weights than the CSP with length 1. In fact, we have tried
other measures for the weighting, like the product of
length and the original score, but they did not produce
better results. Hence, we use the subsequence relation as
weight for the CSP.

597

Figure 2. CBS_ALL classifier

Figure 3. CBS_CLASS algorithm

3.2 CBS_CLASS Method

This method separates the database into groups by
class labels. Different from CBS_ALL, the classifiable
sequences are extracted from each class group,
respectively, rather than from the whole dataset. Similarly,
the classifier is built by using the extracted sequences. The
concept of this method is to focus on the features of each
class group in generating the classification rules. Figure 3
shows the detail of the CBS_CLASS algorithm.

Different from CBS_ALL algorithm, only one
parameter, the minimum support, is needed in
CBS_CLASS. The procedure FindSP in Figure 3 adopts
an Apriori-like approach for mining sequential patterns.
After the sequential patterns are extracted from each class,
we can use these sequential patterns to classify a new
sequence data instance directly. Figure 4 shows the
classifier algorithm for CBS_CLASS, which also uses the

scoring approach to classify new data instance, but there
are no for sequence support score and class support score
in CBS_CLASS. The procedure of classifier is similar to
that of CBS_ALL, with some differences in the score
counting for each CSP. In CBS_CLASS classifier
algorithm, we take the sequence length as the CSP score.
Then, we normalize the total scores of each class into the
same value base such that the maximum score for a new
sequence in each class is 1.

}
k;return

array[]});Max{score_(indexofk
end

end
[n];.class_supcspsupport / .csp

 y[n]score_arra
do)(_ceach for

do Mcspeach for
ount];s_set(D).carray[clas newy[]score_arra

end
);M.add(csp

)(.csp if
do cspeach for

;M
{

) (__

mm

n

m

i

i

i

=

=+
∈
∈
=

∈
∈

=

Dsetclass

xsubseqsp
CSP

xsequencesequenceofClass

φ

Intuitively, the CBS-CLASS method is more effective
on sequence feature mining. It not only eliminates the
factor of data quantity imbalance between classes but also
extracts the real sequential patterns for each class sequence
data. In contrast, the CSPs of CBS_ALL are frequent
sequences in terms of the whole dataset. Hence, they may
not be deterministic features for classification.

Figure 4. CBS_CLASS classifier
}

return
end

min_sup}sp.sup,sp|{sp
end

end
;sp.sup

do speach for
subseq(d);

do Dd dataeach for
);ateSP(gen_candid

do);2;for(
items}-1 {large

{
min_sup)D,aset FindSP(Dat

}
)supmin FindSP(

);,(_
do)class_set(each for

{
min_sup) ,Dataset CBS_CLASS(

i

1

1

1

U

I

i

si

s

is

i-i

i-

ii

ii

i

SP

SPSP

SP
SP_CSP

SPSP_C
iSPi

SP

_,DCSP
cDdatasetclassD

Dc

D

≥∈=

++
∈

=
∈

=
++≠=

=

=
=

∈

φ

}
return

rray[]});ax{score_aindex_of(Mk
end

if end
end

core[m]; / total_s.sp.length
y[m]score_arra

)ss_set(belong_claeach for
subseq(x) if

do each for
];s_count(D)array[clas newy[]score_arra

end
;.sp.lengthcsp.class]csptal_score[to

do CSPcspeach for
];s_count(D)array[clas new score[] total_

{
 x)quenceequence(seclass_of_s

ii

i

k

i

im

i

i

c

csp

cspc
csp

CSPcsp

=

=+
∈

∈
∈
=

=+
∈
=

4. Experimental Evaluation

In the following, we describe the experimental results
in evaluating the performance of CBS-ALL, CBS-CLASS
and other method by using the simulated time-series
datasets.

4.1 Synthetic Data Generator

We design a synthetic data generator that can generate
time-series datasets with different properties based on the
parameters as listed in Table 1. The default value for each
parameter in the following experiments is also given in
Table 1.

4.2 Comparisons of CBS_ALL and CBS_CLASS

Figure 5 shows the result of the first experimental, in
which the parameter pattern_len is varied from 3 to 7 with
other parameters as set in Table 1. Both of the inner test

598

and outer test results are given for the CBS_ALL and
CBS_CLASS algorithms. We can see CBS_CLASS
performs much better than CBS_ALL in classification
accuracy. This result is due to the fact that CBS_CLASS
can extract more precise sequential patterns than
CBS_ALL for performing the classification.

Figure 6 shows the result of the second experiment in
which the parameter pattern_count is varied from 3 to 7. It
is observed that the accuracy of both algorithms goes
down when the number of hidden pattern is increased.
This is because that, with more hidden patterns, the time-
series data in each class becomes more diverse and hard to
extract. This result matches our inference. We also get the
similar observation that CBS_CLASS achieves much
higher accuracy than CBS_ALL. This indicates that
CBS_CLASS is more stable than CBS_ALL when the
dataset is more complex in terms of the hidden patterns.

The above observations support our intuitive
induction that CBS_CLASS is better than CBS_ALL
method for sequence classification due to its property in
isolating each class data during the mining of CSP rules.
From algorithm viewpoint, the CBS_CLASS method
makes the data mining procedure more stable and powerful
by processing each class data set separately.

Table1. Parameters for the synthetic data generator.

Parameter Description Value

seq_len Number of items in each time sequence 10

pattern_len Length of hidden sequential patterns 5

value_level The discretized level of value 100

seq_count Number of time sequences 5000

class_count Number of classes 10

pattern_count Number of hidden sequential pattern 5

skew_ratio The degree of skew in quantity of classes 0

4.3 Comparisons with SPF Classifier

In this experiment, we compare the performance of
CBS_CLASS with the SPF-classifier (Sequential Pattern
Feature classifier) proposed in [7]. We define the
improvement ratio P(l) and average improvement ratio
AVG(P) as follows:

))((
))(())(_()(

lSPFAccuracy
lSPFAccuracylCLASSCBSAccuracylP −

=

lenpatternl _:

n

lP
PAVG

np

pl
∑
== 0

)(
)(

Figure 7 shows the result of the first experiment.
CBS_CLASS presents about 25% improvement over SPF-
classifier in average under different settings of pattern_len
as shown in Table 2. Figure 8 shows the performance of

both methods by varying pattern_count. SPF-classifier
delivers stable accuracy over different pattern_count,
while CBS_CLASS presents lower accuracy with
pattern_count increased. But CBS_CLASS outperform
SPF in accuracy with about 24% of improvement in
average for the outer test results.

Finally, we investigate the impact of varying
parameter skew_ratio, which controls the degree of skew
in distribution of sequence classes. Figure 9 shows that
both algorithms perform stable and even slightly better
with skew_ratio increased. This shows that CBS_CLASS
and SPF are insensitive to the distribution of sequence
classes.

From the above experimental results, it is concluded
that CBS_CLASS delivers much better accuracy than SPF.
Hence, the CBS_CLASS method is verified to be
promising in resolving the time-series data classification
problem.

Table 2. improvement ratio for Figure 7.

 3 4 5 6 7 AVG
improvement

ratio(%) 2.63 23.92 28.74 38.68 33.07 25.41

5. Concluding Remarks

We have presented a new method named CBS with two
variations for classifying large time-series datasets.
Through experimental evaluation, it is shown that CBS can
classify time-series data with good accuracy by utilizing
sequential patterns hidden in the datasets. It is shown that
CBS_CLASS always outperforms CBS_ALL since the
former builds up the classification model separately for
each class. In comparisons with SPF-Classifier,
CBS_CLASS presents much higher accuracy under varied
kinds of datasets although it is not as stable as SPF-
Classifier. Meanwhile, CBS has the advantage that it is
easy to implement with excellent execution performance.
Hence, we believe CBS is a promising method for
classifying time-series data in large scale.

In the future, we will extend the CBS method such that
it can handle the time-series dataset with numerical values.
Meanwhile, we will consider the problem of skewed data
distribution and missing values. Another important
research issue will be the effective pruning of produced
CSP rules with the aim to improve the efficiency in the
process of class prediction.

References

[1] R. Agrawal and R. Srikant, Fast Algorithms for Mining
Association Rules, Proc. of the 20th Int'l Conference on
Very Large Databases, Santiago, Chile, September 1994.

599

[2] R. Agrawal and R. Srikant, Mining Sequential Patterns,
Proc. of the 11th Int'l Conference on Data Engineering,
Taiwan, March 1995.
[3] K. Ali, S. Manganaris, R. Srikant, Partial Classification
using Association Rules, Proc. of the 3rd Int'l Conference
on Knowledge Discovery in Databases and Data Mining,
Newport Beach, California, August, 1997.
[4] R. J. Bayardo Jr. Brute-Force Mining of High-
Confidence Classification Rules. Proc. of the Third
International Conference on Knowledge Discovery and
Data Mining, pp. 123-126, 1997.
[5] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone,
Classification and Regression Trees, Wadsworth Int.
Group, Belmont, California, USA, 1984
[6] U. M. Fayyad and K. B. Irani, Multi-interval
discretization of continuous valued attributes for
classification learning. In R. Bajcsy (Ed.), Proc. of the 13
International Joint Conference on Artificial Intelligence,
pp. 1022-1027, Morgan Kaufmann, 1993.
[7] N. Lesh, M. J. Zaki, M. Ogihara, Mining features for
Sequence Classification, 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining
(KDD), pp. 342-246, San Diego, CA, August 1999.
[8] B. Liu, W. Hsu, Y. Ma, Integrating Classification and
Association Rule Mining, Proc. of the Fourth
International Conference on Knowledge Discovery and
Data Mining (KDD-98, full paper), New York, USA, 1998.
[9] B. Liu, W. Hsu and S. Chen, Using General
Impressions to Analyze Discovered Classification Rules,
Proc. of the Third International Conference on Knowledge
Discovery and Data Mining (KDD-97, full paper), pp. 31-
36, August 14-17, Newport Beach, California, USA, 1997.
[10] M. Mehta, R. Agrawal and J. Rissanen, SLIQ: A Fast
Scalable Classifier for Data Mining, Proc. of the Fifth Int'l
Conference on Extending Database Technulogy, Avignon,
France, March 1996.
[11] J. R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufman, 1992.
[12] M. J. Zaki, Efficient Enumeration of Frequent
Sequences, 7th International Conference on Information
and Knowledge Management, pp. 68-75, Washington DC,
November 1998.

40

50

60

70

80

90

100

3 4 5 6 7

Pattern Length

A
cc

ur
ac

y

CBS_ALL inner
CBS_ALL outer
CBS_CLASS inner
CBS_CLASS outer

Figure 5. Comparative results by varying pattern_len.

40

50

60

70

80

90

100

3 4 5 6 7

Pattern count

A
cc

ur
ac

y CBS_ALL inner test
CBS_ALL outer test
CBS_CLASS inner test
CBS_CLASS outer test

Figure 6. Comparative results by varying pattern_count.

40

50

60

70

80

90

100

3 4 5 6 7

Pattern length

A
cc

ur
ac

y CBS_CLASS inner test
CBS_CLASS outer test
SPF-classifier inner test"
SPF-classifier outer test

Figure 7. Comparative results by varying pattern_len.

40

50

60

70

80

90

100

3 4 5 6 7

Pattern count

A
cc

ur
ac

y CBS_CLASS inner test
CBS_CLASS outer test
SPF-classifier innter test
SPF-classfier outer test

Figure 8. Comparative results by varying pattern_count.

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8

Skew_rate

A
cc

ur
ac

y CBS_CLASS inner test
CBS_CLASS outer test
SPF-classifier inner test
SPF-classifier outer test

Figure 9. Comparative results by varying data_skew

600

SeqIndex: Indexing Sequences by Sequential Pattern Analysis∗

Hong Cheng Xifeng Yan Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

{hcheng3, xyan, hanj}@cs.uiuc.edu

Abstract

In this paper, we study the issues related to the de-
sign and construction of high-performance sequence in-
dex structures in large sequence databases. To build
effective indices, a novel method, called SeqIndex, is
proposed, in which the selection of indices is based on
the analysis of discriminative, frequent sequential pat-
terns mined from large sequence databases. Such an
analysis leads to the construction of compact and ef-
fective indexing structures. Furthermore, we eliminate
the requirement of setting an optimal support thresh-
old beforehand, which is difficult for users to provide
in practice. The discriminative, frequent pattern based
indexing method is proven very effective based on our
performance study.

1 Introduction

Sequential pattern mining is an important and active
research theme in data mining [3, 9, 11, 4], with broad
applications. However, with the diversity of searching
and mining requests and daunting size of datasets, it
is often too slow to perform mining on-the-fly but it
is impossible to mine and store all the possible results
beforehand.

A powerful but long-lasting alternative to this min-
ing dilemma is to build a good sequence index structure
which may serve as a performance booster for a large
variety of search and mining requests. A sequence in-
dexing structure will not only make data mining more
flexible and efficient but also facilitate search and query
processing in sequence databases.

Given a sequence database, there are in general two
kinds of indexing structures that can be constructed
for subsequence search: consecutive vs. non-consecutive
subsequence indices. There are a number of consec-

∗ The work was supported in part by the U.S. National Science
Foundation IIS-02-09199, IIS-03-08215. Any opinions, findings,
and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of
the funding agencies.

utive sequence indexing methods developed for time-
series data [1, 2, 5, 7, 12] and DNA sequences [8, 6].
Euclidean distance, dynamic time warping (DTW) and
discrete fourier transform (DFT) are commonly used
tools for indexing and similarity search in time-series
data. DNAs is another kind of consecutive sequence.
Since it is consecutive, suffix-tree and multi-resolution
string (MSR) are developed for DNA indexing.

To the best of our knowledge, there is no non-
consecutive sequence indexing method studied before.
Nonconsecutive sequence mining and matching is im-
portant in many applications, such as customer transac-
tion analysis, various event logs, sensor data flows, and
video data. Indexing non-consecutive sequence poses
great challenges to research. First, there exist an explo-
sive number of subsequences due to the combination of
gaps and symbols. Second, such an indexing mechanism
cannot be built on top of the existing consecutive se-
quence indexing mechanisms. For example, models like
suffix-tree or those based on time-series transformation,
such as DFT and DTW, are no longer valid because se-
quences under our examination are not consecutive any
more.

In this paper, we propose a new indexing method-
ology, called discriminative, frequent sequential pattern-
based (DFP) indexing, which selects the best indexing
features, based on frequent sequential pattern mining
and discriminative feature selection, for effective index-
ing of sequential data. The study extends the recent
work on graph indexing by Yan et al. [10] and examines
the applicability of DFP in sequence databases.

Although the general framework of using frequent
patterns as indexing features has been exposed in graph
indexing [10], it is not obvious whether this framework
can be successfully applied to sequences. In fact, there
exists an inverted index based method to do sequence
indexing. For each item, there is an id list associated
with it. To process a query, just intersect the id lists.
We call this algorithm ItemIndex. In this work, we
compare ItemIndex and SeqIndex from multiple angles
to explore the boundaries of these two algorithms.

601

The remainder of the paper is organized as follows.
Section 2 introduces the basic concepts related to se-
quence indexing and some notations used throughout
the paper. Section 3 presents the algorithm to deter-
mine the size-increasing support function. Section 4
formulates the SeqIndex algorithm. We report and an-
alyze our performance study in Section 5 and conclude
our study in Section 6.

2 Preliminary Concepts

Let I = {i1, i2, . . . , ik} be a set of all items. A
sequence s = 〈ij1 , ij2 , . . . , ijn〉 (ij ∈ I) is an ordered
list. We adopt this sequence definition to simplify the
description of our indexing model. A sequence α =
〈a1, a2, . . . , am〉 is a sub-sequence of another sequence
β = 〈b1, b2, . . . , bn〉, denoted as α v β (if α 6= β,
written as α @ β), if and only if ∃j1, j2, . . . , jm, such
that 1 6 j1 < j2 < . . . < jm 6 n and a1 = bj1 , a2 =
bj2 , . . . , and am = bjm

. We also call β a super-sequence
of α, and β contains α.

A sequence database, D = {s1, s2, . . . , sn}, is a set
of sequences. The support of a sequence α in a sequence
database D is the number of sequences in D which
contain α, support(α) = |{s|s ∈ D and α v s}|. Given
a minimum support threshold, min sup, a sequence is
frequent if its support is no less than min sup. The set
of frequent sequential pattern, FS, includes all the
frequent sequences.

Definition 2.1. (Subsequence Search) Given a se-
quence database D = {s1, ..., sn} and a query sequence
q, it returns the answer set Dq = {si|si ∈ D, q v si}.

In sequence query processing, the major concern is
query response time, which is composed of the time of
searching, the time of fetching the candidate set from
the disk and the cost to check the candidates. We want
to minimize the search time since a query could have
a lot of subsequences in the index. If searching in the
index structure is very inefficient, a large amount of time
would be wasted on intersecting some id lists which do
not shrink the candidate answer set a lot. So we need
an efficient algorithm to search in the “right” direction.
In addition, the I/O part also plays an important role.

3 Determine the Size-increasing Support
Function

The first step is to mine frequent patterns from se-
quence database. As pointed out in [10], the purpose of
size-increasing support constraint is to make the min-
ing tractable. Meanwhile, the overall index quality may
be optimized. This constraint is effective in keeping
a compact index size while providing high-quality in-
dices. An interesting question is how to determine the

size-increasing support function in a systematic way?
Instead of using heuristic functions, a novel solution is
to use the discriminative ratio as a guide to select the
appropriate threshold. It becomes a data mining prob-
lem. In this setting, we not only need to mine frequent
sequential patterns with min sup but also have to de-
cide what min sup is.

Let ψ(l) be the size-increasing support function.
The automated setting of ψ(l) is as follows. Given a
discriminative threshold γmin and a sequence database
D, we first set the support of all length-1 patterns
to be 1. Then we determine ψ(l) in a level wise
manner. When we decide for length k ≥ 2, we set
ψ(k) = ψ(k − 1). Under this support, we mine a set of
frequent length-k patterns. For every length-k pattern
x , we calculate its discriminative ratio with respect to
patterns that have already been selected,

(3.1) γ =
|⋂ϕi:fϕi

@x Dfϕi
|

|Dx|
If γ ≥ γmin, we say this pattern is discriminative.

Let Sk be the set of length-k frequent patterns. Suppose
the lowest support and the highest support in Sk is t0
and th respectively. For every possible support value t,
t0 ≤ t ≤ th, we may calculate the number of patterns
in Sk whose support is above t and of these patterns,
how many of them have discriminative ratio great than
γmin.

Eventually we get a cut point t∗ where p percentage
of discriminative patterns are retained. ψ(k) is then set
at t∗. Using the above process, a user need not set the
optimal support threshold any more.

We call the algorithm, shown in Figure 1, Auto-
Support. AutoSupport only needs two parameters set
by users, a discriminative ratio and a percentage cut-
off. It will automatically adjust the support function
according to the data distribution and the percentage
cutoff. AutoSupport increases the support function to
the extent where p percentage of discriminative patterns
remain. This can reduce the number of patterns, espe-
cially those non-discriminative patterns substantially.

4 SeqIndex: A Sequence Indexing Algorithm

In this section, we present the SeqIndex algorithm.
The algorithm can be divided into four steps: (1)
discriminative feature selection, (2) index construction,
(3) search, and (4) verification.

We first mine the frequent patterns, and use a dis-
criminative ratio γmin to filter out those redundant pat-
terns. The output is a set of discriminative sequential
patterns that will be used as indexing features. After
that, we construct an index tree T , which is a prefix
tree, to store and retrieve those features.

602

Algorithm AutoSupport
Input: A sequence database D,

discriminative threshold γmin,
a percentage cutoff p,
maximum subsequence length L.

Output: ψ(k), size-increasing support function.

1: ψ(1) = 1;
2: for length k from 2 to L
3: ψ(k) = ψ(k − 1) ;
4: do
5: Mine the frequent length-k patterns

with ψ(k);
6: for each length-k pattern, calculate γ;
7: Calculate pattern distribution under

different support t;
8: Find a support t∗ that p% of all

discriminative patterns remain;
9: ψ(k) = t∗;
10: end for
11: return ψ(k);

Figure 1: Determine Size-increasing Support Function

The most important part is the search algorithm,
since an efficient search algorithm can improve the query
processing time substantially. We discuss it in the
following.

4.1 Search. Given a query q, SeqIndex enumerates
all its subsequences within the maximum subsequence
length L and searches them in the index tree. For those
subsequences found in the index tree, SeqIndex inter-
sects their id lists to get a set of candidate sequences.

There could be a large number of subsequences
contained in a given query q. To optimize the search
process, we should try to reduce the number of subse-
quences that need to be checked.

Two optimization techniques [10] are studied exten-
sively in SeqIndex to reduce the search space. One is
Apriori pruning and the other is maximum discrimina-
tive sequential patterns. With these two optimization
techniques in consideration, we propose an efficient al-
gorithm for searching the index tree efficiently. We tra-
verse the index tree in a depth first search manner. At
each node p, we check the sequence from the root to
p and label it as a candidate if it is a subsequence of
query q. Then we visit its child nodes recursively. The
reason we just label it but not intersect its id list im-
mediately is that we want to check whether there is a
maximum discriminative sequential pattern. If there is,
it is unnecessary to intersect the id list of node p. On

Algorithm DFS Search
Input: A sequence database D,

Index tree T , Query q,
maximum subsequence length L.

Output: Candidate set Cq.

1: Let Cq = D;
2: DFS Traverse index tree T {
3: Check the sequence from the root to node p
4: if (it is a subsequence of q)
5: Label it and visit its child node;
6: else
7: Skip p and its subtree;
8: Once arriving at a leaf node OR

before skipping a subtree, do
9: Find the deepest labelled node p′

along this path;
10: Cq = Cq ∩Dp′ ;
11: if (|Cq| < minCanSize)
12: Early termination;}
13: return Cq;

Figure 2: DFS Search and Candidate Set Computation

the other hand, if the sequence from the root to node
p is not a subsequence of q, node p and its subtree can
be pruned according to Apriori pruning. Once reach-
ing a leaf node, or before skipping a node, we need to
find out the deepest labelled node, which is the maxi-
mum discriminative sequential pattern along this path.
Only its id list should be intersected with Cq while other
“smaller” subsequences on this path can be skipped.
The algorithm using the DFS search is shown in Figure
2.

Further optimization can be explored by the fol-
lowing intuition. When more and more intersections
are executed, the candidate answer set becomes smaller
and smaller. At some point of the traversal, we may
find that Cq is already small enough compared with a
user-specified threshold minCandSize. We can decide
at this point to stop traversing the index tree. The can-
didate set C ′q so obtained is a superset of the optimal
candidate set Cq which can be obtained by searching
the whole tree. If the tree is large, C ′q may be accept-
able since the savings in traversing the remaining part of
the tree would outweigh the reduction of Cq by further
intersections. We call this technique early termination.

Besides the DFS search method introduced above,
we developed an alternative search algorithm that per-
forms better for dense datasets. Instead of traversing
the index tree in a depth-first search manner, at each
level, we visit the node that has the smallest id list.

603

Since we choose a highly selective node to follow, the
size of Cq will be reduced very quickly. After traversing
a path, we can start over from the root, pick the second
smallest child node and perform the same operation un-
til we get an answer set with acceptable size. We call
this search method MaxSel since we always greedily se-
lect the path with the highest selectivity.

The reason that two search algorithms are proposed
is that we expect that their performance is correlated
with data distribution. If the dataset has a small num-
ber of distinct items, the tree becomes very “thin” with
a small branching factor and each node is associated
with a long id list. In this case, MaxSel algorithm can
easily find the most selective path and reduce the size
of Cq quickly by skipping those nodes with a long list.
On the other hand, if the dataset has a large number
of distinct items, the tree becomes very “wide” with a
large branching factor and each node is associated with
only a small id list. In this case, MaxSel will spend a
lot of time at each level searching for the node with the
smallest id list. Thus, DFS search with early termina-
tion will perform better. We will compare these two
algorithms to verify our reasoning in the experiments.

5 Experimental Results

In this section, we report our experimental results that
validate the effectiveness and efficiency of SeqIndex. We
compare SeqIndex with ItemIndex.

5.1 ItemIndex Algorithm ItemIndex builds index
for each single item in the sequence database. For
an item i, keep every occurrence of i in the sequence
database with a tuple 〈seq id, position〉. Therefore, the
index of an item i contains a list of such tuples.

Given a query q = i0i1...in, ItemIndex will compute
the intersection of all pairs of adjacent items in the
query q. When intersecting the index list of ij and ij+1,
if a pair of tuples from the two lists match in the seq id
part, we will further check if position in ij list is smaller
than position in ij+1 list. If so, we know that ij and
ij+1 occur in the same sequence and ij precedes ij+1 in
that sequence.

We compare the performance of SeqIndex and Ite-
mIndex in terms of CPU time and I/O costs. The data
is generated by a synthetic data generator provided by
IBM1. More details are referred to [3].

5.2 SeqIndex vs. ItemIndex We compare SeqIn-
dex and ItemIndex in terms of CPU time and I/O costs.
Since we proposed two search algorithms – DFS Search
and Maximum Selectivity Search, we will test SeqIndex

1http://www.almaden.ibm.com/cs/quest

with these two alternatives. In the following figures,
we use DFS to denote SeqIndex with DFS search and
MaxSel to denote SeqIndex with maximum selectivity
search.

We first test how the execution time of SeqIndex
and ItemIndex changes when we vary the number of
distinct items in the sequence database. The sequence
database has 10,000 sequences with an average of 30
items in each sequence. The number of distinct items is
varied from 10 to 1000. The result is shown in Figure
3(a).

When the number of distinct items is very small,
e.g. 10, MaxSel is the fastest, DFS stands in the middle
while ItemIndex is the slowest. This is because the data
distribution is very dense with a small number of items.
MaxSel is effective by picking the most selective path,
as we analyzed in the previous section.

As the number of items increases, CPU time of
ItemIndex decreases dramatically and that of DFS also
decreases but more slowly. When the number of items is
500, both DFS and ItemIndex run faster while MaxSel
starts to slow down. This is due to sparser data and
shorter id lists. On the other hand, the index tree
of MaxSel turns to be bulky with lots of nodes at
each level. Searching the most selective path involves
visiting many nodes, thus becomes very inefficient. In
this case, DFS turns out to be very efficient. This
also gives us a hint – when the data is very dense, we
can employ SeqIndex with maximum selectivity search;
when the data is very sparse, we can switch to SeqIndex
with DFS search. The “hybrid” SeqIndex will perform
uniformly well while ItemIndex is quite sensitive to the
data distribution.

The second experiment is to test the performance of
SeqIndex and ItemIndex with varied size of queries. We
test a database with 10,000 sequences. Each sequence
has 30 items on average. The number of distinct items
is 10. We vary the query length from 5 to 50. The result
is shown in Figure 3(b).

Figure 3(b) shows that MaxSel performs very well
as the query length increases. MaxSel first searches the
index tree and produces a candidate set. Then it verifies
those candidate sequences. When the query length
is small, e.g. 5, there are more candidate sequences
since it is usually easier to satisfy a short query. As
the query length increases, the size of candidate set
decreases since it is harder to satisfy a long query. That
is why the performance of MaxSel improves as the query
length increases. On the other hand, the performance
of ItemIndex degrades as the query length increases.
Since the number of intersections executed in ItemIndex
is proportional to the query length, the execution time
increases roughly linearly as the query length increases.

604

�

�

��

��

��

��

�� �� �� ��� ��� ����

����������	

�
�
�

��
�
��
��

���	
�

�
	

��
����
�

(a) varying item number

�

�

��

��

��

��

� �� �� �� �� ��

���������	
�

�

�
��
��
�
��
��

��	
��

�

��������	

(b) varying query length

�

��

��

��

���

���

���

���

���� ���� ����� ����� ������

�����������	
��

�

�
��
�	
�
��
��

���	
�

�
	

��
����
�

(c) varying sequence number

Figure 3: Performance study

We also test the performance of SeqIndex and
ItemIndex with varied database size. We vary the
number of sequences in the sequence database from
1,000 to 100,000 (number of distinct items is 50 and
the query length is 20). The result is shown in Figure
3(c). As we increase the number of sequences in the
database. MaxSel has the best scalability, DFS stands
in between and ItemIndex shows poor scalability.

We finally test how effective our algorithm Auto-
Support is. Experimental results show that the index
is more compact using AutoSupport in comparison with
the uniform-support method. The mining time of Auto-
Support also outperforms the uniform-support method
significantly. The figure is omitted due to space limit.

6 Conclusions

In this paper, we broaden the scope of sequential pat-
tern mining beyond the “narrowly defined” spectrum of
knowledge discovery. Our study is focused on the design
and construction of high-performance nonconsecutive
sequence index structures in large sequence databases.
A novel method, SeqIndex, is proposed, in which the
selection of indices is based on the analysis of discrim-
inative, frequent sequential patterns mined from large
sequence databases. Such an analysis leads to the con-
struction of compact and effective indexing structures.
The effectiveness of the approach has been verified by
our performance study.

References

[1] R. Agrawal, C. Faloutsos, and A.N. Swami. Efficient
Similarity Search In Sequence Databases. In Proceed-
ings of the 4th International Conference of Foundations
of Data Organization and Algorithms (FODO), pages
69–84, Chicago, Illinois, 1993.

[2] R. Agrawal, K.I. Lin, H.S. Sawhney, and K. Shim. Fast
similarity search in the presence of noise, scaling, and

translation in time-series databases. In Proc. 1995 Int.
Conf. on Very Large Databases, pages 490–501, 1995.

[3] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. 1995 Int. Conf. Data Engineering (ICDE’95),
pages 3–14, March 1995.

[4] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick.
Sequential pattern mining using bitmaps. In Proc.
2002 ACM SIGKDD Int. Conf. Knowledge Discovery
in Databases (KDD’02), July 2002.

[5] K. Chan and A.W. Fu. Efficient time-series matching
by wavelets. In Proc. 15th IEEE Int. Conf. on Data
Engineering, pages 126–133, 1999.

[6] T. Kahveci and A.K. Singh. Efficient index structures
for string databases. In The VLDB Journal, pages 351–
360, 2001.

[7] E. Keogh. Exact indexing of dynamic time warp-
ing. In Proc. 2002 Int. Conf. Very Large Data Bases
(VLDB’02), Aug 2002.

[8] C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online
and accurate technique for local-alignment searches on
biological sequences. In Proc. 2003 Int. Conf. Very
Large Data Bases (VLDB’03), Sept 2003.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining se-
quential patterns efficiently by prefix-projected pattern
growth. In Proc. 2001 Int. Conf. Data Engineering
(ICDE’01), pages 215–224, April 2001.

[10] X. Yan, P.S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In Proc. 2004 Int.
Conf. on Management of Data (SIGMOD’04), pages
253–264, 2004.

[11] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60, 2001.

[12] Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. In Proc. 2003 Int.
Conf. on Management of Data (SIGMOD’03), pages
181–192, 2003.

605

On the Equivalence of Nonnegative Matrix Factorization and
Spectral Clustering

Chris Ding∗ Xiaofeng He∗ Horst D. Simon∗

Abstract

Current nonnegative matrix factorization (NMF) deals
with X = FGT type. We provide a systematic analysis
and extensions of NMF to the symmetric W = HHT ,
and the weighted W = HSHT . We show that (1)
W = HHT is equivalent to Kernel K-means cluster-
ing and the Laplacian-based spectral clustering. (2)
X = FGT is equivalent to simultaneous clustering of
rows and columns of a bipartite graph. Algorithms are
given for computing these symmetric NMFs.

1 Introduction

Standard factorization of a data matrix uses singular
value decomposition (SVD) as widely used in principal
component analysis (PCA). However, for many dataset
such as images and text, the original data matrices
are nonnegative. A factorization such as SVD contain
negative entries and thus has difficulty for interpreta-
tion. Nonnegative matrix factorization (NMF) [7, 8] has
many advantages over standard PCA/SVD based fac-
torizations. In contrast to cancellations due to negative
entries in matrix factors in SVD based factorizations,
the nonnegativity in NMF ensures factors contain co-
herent parts of the original data (images).

Let X = (x1, . . . ,xn) ∈ �p×n
+ be the data matrix of

nonnegative elements. In image processing, each col-
umn is a 2D gray level of the pixels. In text mining,
each column is a document.

The NMF factorizes X into two nonnegative matrices,

X ≈ FGT, (1)

where F = (f1, · · · , fk) ∈ �p×k
+ and G = (g1, · · · ,gk) ∈

�
n×k
+ . k is a pre-specified parameter. The factoriza-

tions are obtained by the least square minimization. A
number of researches on further developing NMF com-
putational methodologies [12, 11, 10], and applications
on text mining [9, 14, 11].

Here we study NMF in the direction of data cluster-
ing. The relationship between NMF and vector quan-
tization, especially the difference, are discussed by Lee

∗Lawrence Berkeley National Laboratory, University of Cali-
fornia, Berkeley, CA 94720. {chqding, xhe, hdsimon}@lbl.gov

and Seung [7] as a motivation for NMF. The clustering
aspect of NMF is also studied in [14, 10].

In this paper, we provide a systematic analysis and ex-
tensions of NMF and show that NMF is equivalent to
Kernel K-means clustering and Laplacian-based spec-
tral clustering.
(1) We study the symmetric NMF of

W ≈ HHT (2)

where W contains the pairwise similarities or the Ker-
nals. We show that this is equivalent to K-means type
clustering and the Laplacian based spectral clustering.
(2) We generalize this to bipartite graph clustering i.e.,
simultaneously clustering rows and columns of the rect-
angular data matrix. The result is the standard NMF.
(3) We extend NMFs to weighted NMF:

W ≈ HSHT. (3)

(4) We derive the algorithms for computing these fac-
torizations.

Overall, our study provides a comprehensive look at
the nonnegative matrix fractorization and spectral clus-
tering.

2 Kernel K-means clustering and
Symmetric NMF

K-means clustering is one of most widely used clus-
tering method. Here we first briefly introduce the K-
means using spectral relaxation [15, 3]. This provides
the necessary background information, notations and
paves the way to the nonnegative matrix factorization
approach in §2.1.

K-means uses K prototypes, the centroids of clusters,
to characterize the data. The objective function is to
minimize the sum of squared errors,

JK =
K
∑

k=1

∑

i∈Ck

||xi −mk||2 = c2 −
∑

k

1
nk

∑

i,j∈Ck

xT

i xj ,

(4)
where X = (x1, · · · ,xn) is the data matrix, mk =
∑

i∈Ck
xi/nk is the centroid of cluster Ck of nk points,

606

and c2 =
∑

i ||xi||2. The solution of the clustering is
represented by K non-negative indicator vectors:

H = (h1, · · · ,hK), hT

kh� = δk�. (5)

where

hk = (0, · · · , 0,

nk
︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T/n
1/2
k (6)

Now Eq.(4) becomes JK = Tr(XTX) − Tr(HTXTXH).
The first term is a constant. Let W = XTX. Thus
min JK becomes

max
HTH=I, H≥0

JW(H) = Tr(HT WH). (7)

The pairwise similarity matrix W = XTX is the stan-
dard inner-product linear Kernel matrix. It can be ex-
tended to any other kernels. This is done using a non-
linear transformation (a mapping) to the higher dimen-
sional space

xi → φ(xi)

The clustering objective function under this mapping,
with the help of Eq.(4), can be written as

min JK(φ) =
∑

i

||φ(xi)||2 −
∑

k

1
nk

∑

i,j∈Ck

φ(xi)Tφ(xj).

(8)
The first term is a constant for a given mapping function
φ(·) and can be ignored. Let the kernel matrix Wij =
φ(xi)Tφ(xj). Using the cluster indicators H , the kernel
K-means clustering is reduced to Eq.(7).

The objective function in Eq.(7). can be symbolically
written as

JW =
∑

k

1
nk

∑

i,j∈Ck

wij = Tr(HT WH). (9)

Kernel K-means aims at maximizing within-cluster sim-
ilarities. The advantage of Kernel K-means is that it
can describe data distributions more complicated than
Gaussion distributions.

2.1 Nonnegative relaxation of
Kernel K-means

We show the spectral relaxation of Eq.(7) can be solved
by the matrix factorization

W ≈ HHT , H ≥ 0. (10)

Casting this in an optimization framework, an appro-
priate objective function is

min
H≥0

J1 = ||W −HHT ||2, (11)

where the matrix norm ||A||2 =
∑

ij a2
ij , the Frobeneus

norm.
Theorem 1. NMF of W = HHT is equivalent to Ker-
nel K-means clustering with the the strict orthogonality
relation Eq.(5) relaxed.
Proof. The maximization of Eq.(7) can be written as

H = arg min
HTH=I, H≥0

−2Tr(HT WH)

= arg min
HTH=I, H≥0

−2Tr(HT WH) + ||HT H ||2

= arg min
HTH=I, H≥0

(||W ||2−2Tr(HT WH)+||HT H ||2)

= arg min
HTH=I, H≥0

||W −HHT ||2. (12)

Relaxing the orthogonality HTH = I completes the
proof. �–

A question immediately arises. Will the orthogonality
HTH = I get lost?
Theorem 2. NMF of W = HHT retains near-orthogonality
of HTH = I.
proof. One can see min J1 is equivalent to

max
H≥0

Tr(HT WH), (13)

min
H≥0
||HT H ||2. (14)

The first objective recovers the original optimization
objective Eq.(7). We concentrate on 2nd term. Note

||HT H ||2 =
∑

�k

(HT H)2�k =
∑

� �=k

(hT

�hk)2 +
∑

k

(hT

khk)2.

Minimizing the first term is equivalent to enforcing the
orthogonality among h�: hT

�hk ≈ 0. Minimizing the
second term is equivalent to

min ||h1||4 + · · ·+ ‖hK‖4. (15)

However, H cannot be all zero, otherwise we would have
Tr(HT WH) = 0. More precisely, since W ≈ HHT , we
have
∑

ij

wij ≈
∑

ij

(HHT)ij =
∑

kij

hikhjk =
∑

k

|hk|2, (16)

where |h| = ∑i |hi| =
∑

i hi is the L1 of vector h. This
means ||h�|| > 0. Therefore, optimization of Eq.(14)
with consideration of Eq.(13) implies H has near or-
thogonal columns, i.e.,

hT

�hk ≈
{

0 if l �= k,
‖hk‖2 > 0 if l = k.

(17)

Furthermore, given that ||h�|| > 0, minimization of
Eq.(15) will naturely lead to the column equalization
condition

||h1|| = · · · = ||hk||. (18)

607

�–
The near-orthogonality of columns of H is important

for data clustering. An exact orthogonality implies that
each row of H can have only one nonzero element, which
implies that each data object belongs only to 1 cluster.
This is hard clustering, such as in K-means . The near-
orthogonality condition relaxes this a bit, i.e., each data
object could belong fractionally to more than 1 cluster.
This is soft clustering. A completely non-orthogonality
among columns of H does not have a clear clustering
interpretation.

3 Bipartite graph K-means clustering
and NMF

A large number of datasets in today’s applications are
in the form of rectangular nonnegative matrix, such as
the word-document association matrix in text mining
or the DNA gene expression profiles. These types of
datasets can be conveniently represented by a bipartitie
graph where the graph adjacency matrix B contains the
association among row and column objects, which is the
input data matrix B = X .

The above kernel K-means approach can be easily
extended to bipartitie graph. Let fk be the indicator
for the k-th row cluster. fk has the same form of hk

as in Eq.(6). Put them together we have the indicator
matrix F = (f1, · · · , fk). Analogously, we define the
indicator matrix G = (g1, · · · ,gk) for column-clusters.

We combine the row and column nodes together as

W =
(

0 B
BT 0

)

, hk =
1√
2

(

fk
gk

)

, H =
1√
2

(

F
G

)

(19)
where the factor 1/

√
2 allows the simultaneous normal-

izations hT

khk = 1, fT

k fk = 1, and gT

kgk = 1. The Kernel
K-means type clustering objective function becomes

max
F,G

JB
K =

1
2
Tr
(

F
G

)T (0 B
BT 0

)(

F
G

)

(20)

Following the Kernel K-means clustering optimiza-
tion of Eq.(11), F, G are obtained by minimizing

JB
1 =

∥

∥

∥

∥

∥

(

0 B
BT 0

)

−
(

F
G

)(

F
G

)T
∥

∥

∥

∥

∥

2

(21)

Note that

JB
1 = 2||B − FGT ||2 + ||FT F ||2 + ||GT G||2.

Minimization of the second and third terms, following
the analysis of Eqs.(14, 17), is equivalent to enforcing

the orthogonality contraints

fT

� fk ≈ 0, gT

�gk ≈ 0, � �= k. (22)

Thus minJB
1 becomes

min
F,G

J2 = ||B − FGT ||2 (23)

subject to the orthogonality constraints in Eq.(22). This
is the form of NMF proposed by Lee and Seung. There-
fore, we have shown that the bipartite graph kernel K-
means clustering leads to NMF for nonnegative rectan-
gular matrix.

The orthogonality constraints play an important role.
If the orthogonality holds vigourously, we can show di-
rectly that NMF of ||B−FGT ||2 is equivalent to simul-
taneously K-means clustering of rows and columns of
B.

To show this, we first prove it for clustering of columns
of B = (b1, · · · ,bn) = (bij), under the normalization

p
∑

i=1

bij = 1,

k
∑

r=1

gir = 1,

p
∑

j=1

fjk = 1. (24)

For any given data, normalization of X is first applied.
The second normalization indicates that the i-th row
of G are the posterior probabilities for bi belonging to
k clusters; they should add up to 1. The 3rd normal-
ization

∑

j(fk)j is a standard length normalize of the
vector fk. Since we approximate B ≈ FGT , the normal-
ization of FGT should be consistent with the normaliza-
tion of B. Indeed,

∑p
i=1(FGT)ij =

∑p
i=1

∑k
r=1 FirGjr =

1, consistent with
∑

i Bij = 1.
With this self-consistent normalization and imposing

strict orthogonalilty on G: gT

�gk = 0, � �= k, we call the
resulting factorizaton as Orthogonal NMF.
Theorem 3. Orthogonal NMF is identical to K-means
clustering.
Proof. We have

J2 = ‖B − FGT‖2 =
n
∑

i=1

∥

∥

∥

∥

∥

bi −
κ
∑

k=1

gikfT

k

∥

∥

∥

∥

∥

2

, (25)

because the Frobenious norm of a matrix is equivalent
to sum of column norms. Now due to the normalization
of G, we have

J2 =

∥

∥

∥

∥

∥

κ
∑

k=1

gik(bi − fk)

∥

∥

∥

∥

∥

2

=
κ
∑

k=1

g2
ik||bi − fk||2

=
κ
∑

k=1

gik||bi − fk||2 =
κ
∑

k=1

∑

i∈Ck

‖bi − fk‖2

The 2nd equality is due to the orthogonality condition
of G which implies that on each row of G, only one

608

element is nonzero. This also implies gik = 0, 1. Thus
g2

ik = gik, giving the 3rd equality. Thus the final result
is the standard K-means clustering of {bi}ni=1. fk is the
cluster centroid. �

In NMF of optimizing min ‖B − FGT‖, rows and
columns are treated in equal footing, since we could
equally write J2 = ‖BT − GFT‖. Thus clustering of
columns of B is happening simultaneously as the clus-
tering the rows of B.

4 Spectral clustering and NMF

In recent years spectral clustering using the Laplacian
of the graph emerges as solid approach for data cluster-
ing. Here we focus on the clustering objective functions.
There are three clustering objective functions. the Ra-
tio Cut [6], the Normalized Cut [13], and the MinMax
Cut [4]. We are interested in the multi-way clustering
objective functions,

J =
∑

1≤p<q≤K

s(Cp, Cq)
ρ(Cp)

+
s(Cp, Cq)

ρ(Cq)
=

K
∑

k=1

s(Ck, C̄k)
ρ(Ck)

(26)

ρ(Ck) =







|Ck| for Ratio Cut
∑

i∈Ck
di for Normalized Cut

s(Ck, Ck) for MinMax Cut
(27)

where C̄k is the complement of subset Ck in graph G.
Here we show that the minimization of these objective

functions can be equivalently carried out via the non-
negative matrix factorizations. The proof follows the
multi-way spectral relaxation of Ratio Cut clustering
objective function[1], and Normalized Cut and MinMax
Cut clustering objective functions[5].

For concreteness and simplicity, here we outline the
proof for the case of Normalized Cut. Let hk be the
cluster indicators as in Eq.(6). One can easily see that

s(Ck, C̄k) =
∑

i∈Ck

∑

j∈C̄k

wij = hT

� (D −W)h� (28)

and
∑

i∈Ck
di = hT

�Dh�. Define the scaled cluster in-
dicator vector z� = D1/2h�/||D1/2h�||, which obey the
orthonormal condition zT

�zk = δ�k, or ZT Z = I, where
Z = (z1, · · · , zK). Substituting into the Normalized Cut
objective function, we have

JNC =
K
∑

�=1

hT

� (D −W)h�

hT

�Dh�
=

K
∑

�=1

zT

� (I −˜W)z�

where
˜W = D−1/2WD−1/2. (29)

The first term is a constant. Thus the minimization
problem becomes

max
ZTZ=I, Z≥0

Tr(ZT
˜WZ) (30)

Now if we remove the restriction that Z takes the dis-
crete values, and allow Z to be any continuous value,
this is the multi-way spectral relaxation of the Normal-
ized Cut[5]. The solution of the maximization problem
is given by the k principal eigenvectors of the matrix
˜W .

The point of departure from spectral relaxation of
Normalized Cut is to recognize that the maximization
problem of Eq.(30) is identical to the maximization
problem of Eq.(7) with the same orthogonality con-
straints. Following the same discussions there, the max-
imization problem of Eq.(30) is equivalent to

min
Z≥0

J3 = ||˜W − ZZT ||2, (31)

Once the solution ̂Z for min J3(Z) is obtained, we can
recover H by optimizing

min
H≥0

∑

�

∥

∥

∥

∥

ẑ� − D1/2h�

||D1/2h�||
∥

∥

∥

∥

2

, (32)

The solution can be easily shown to be hk = D−1/2ẑk.
This gives the solution to Normalized Cut via the NMF
approach. This can be extended to RatioCut and Min-
MaxCut. Summarizing, we have proved that
Theorem 4. NMF is equivalent to spectral clustering.

5 Weighted Nonnegative W = HSHT

In both Kernel K-means and spectral clustering, we as-
sume the pairwise similarity matrix W are semi positive
definite. For kernel matrices, this is true. But a large
number of similarity matrices is nonnegative, but not
s.p.d. This motivates us to propose the following more
general NMF:

min
H

J5 = ||W −HSHT ||2, (33)

When the similarity matrix W is indefinite, W has
negative eigenvalues. HHT will not provide a good
approximation, because HHT can not obsorb the sub-
space associated with negative eigenvalues. However,
HSHT can obsorb subspaces associated with both pos-
itive and negative eigenvalues, i.e., the indefiniteness of
W is passed on to S. This distinction is well-known in
linear algebra where matrix factorizations have Cholesky
factorization A = LLT if matrix A is s.p.d. Otherwise,
one does A = LDLT factorization, where the diagonal
matrix D takes care of the negeative eigenvalues.

609

The second reason for nonnegative W = HSHT is
that the extra degrees of freedom provided by S allow
H to be more closer to the form of cluster indicators.
This benefits occur for both s.p.d. W and indefinite W .

The third reason for nonnegative W = HSHT is that
S provides a good characterization of the quality of the
clustering. Generally speaking, given a fixed W and
number of clusters K, the residue of the matrix approxi-
mation J

opt
5 = min ||W−HSHT ||2 will be smaller than

J
opt
1 = min ||W − HHT ||2. Futhermore, the K-by-K

matrix S has a special meaning. To see this, let us as-
sume H are vigorous cluster indicators, i.e., HT H = I.
Setting the derivative ∂J5/∂S = 0, we obtain

S = HT WH, or S�k = hT

�Whk =

∑

i∈C�

∑

j∈Ck
wij√

n�nk

(34)
S represents properly normalized within-cluster sum of
weights (� = k) and between-cluster sum of weights
(� �= k). For this reason, we call this type of NMF
as weighted NMF. The usefulness of weighted NMF is
that if the clusters are well-separated, we would see the
off-diagonal elemens of S are much smaller than the
diagonal elements of S.

The fourth reason is the consistency between stan-
dard W = HHT and B = FGT . Since we can de-
fine a kernel as W = BTB. Thus the factorization
W ≈ BTB ≈ (FGT)T(FGT) = G(FTF)GT. Let
S = FTF , we obtain the weighted NMF.

6 Algorithms for computing symmetric
NMF

We briefly outline the algorithms for computing sym-
metric factorizations W = HHT and W = HSHT. For
W = HHT , the updating rule is

Hik ← Hik

(

1− β + β
(WH)ik

(HHTH)ik

)

. (35)

where 0 < β ≤ 1. In practice, we find β = 1/2 is a good
choice. A faster algorithm1

H ← max
(

WH(HT H)−1, 0
)

. (36)

can be used in the first stage of the iteration. Algorith-
mic issues of symmtric NMF is also studied in [2].

For weighted NMF W = HSHT , the update rules are

Sik ← Sik
(HTWH)ik

(HTHSHTH)ik
. (37)

1For the nonsymmetric NMF of Eq.(1), the algorithm is F ←
max

�
BG(GT G)−1, 0

�
, G ← max

�
BT F (F T F)−1, 0

�
. Without

nonnegative constraints, these algorithms converge respectively
to global optimal solutions of J1 in Eq.(11) and J2 in Eq.(23).

Hik ← Hik

(

1− β + β
(WHS)ik

(HSHTHS)ik

)

. (38)

Acknowledgement. This work is supported partially
by U.S. Department of Energy, Office of Science, under
contract DE-AC03-76SF00098 through a LBNL LDRD
grant.

References

[1] P.K. Chan, M.Schlag, and J.Y. Zien. Spectral k-way
ratio-cut partitioning and clustering. IEEE Trans.
CAD-Integrated Circuits and Systems, 13:1088–1096,
1994.

[2] M. Catral, L. Han, M. Neumann, and R.J. Plemmons.
On reduced rank nonnegative matrix factorizations for
symmetric matrices. Linear Algebra and Its Applica-
tions, to appear.

[3] C. Ding and X. He. K-means clustering and principal
component analysis. LBNL-52983. Int’l Conf. Machine
Learning (ICML2004), 2004.

[4] C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A
min-max cut algorithm for graph partitioning and data
clustering. Proc. IEEE Int’l Conf. Data Mining, 2001.

[5] M. Gu, H. Zha, C. Ding, X. He, and H. Simon. Spec-
tral relaxation models and structure analysis for k-way
graph clustering and bi-clustering. Penn State Univ
Tech Report CSE-01-007, 2001.

[6] L. Hagen and A.B. Kahng. New spectral methods for
ratio cut partitioning and clustering. IEEE. Trans. on
Computed Aided Desgin, 11:1074–1085, 1992.

[7] D.D. Lee and H.S. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–
791, 1999.

[8] D.D. Lee and H.S. Seung. Algorithms for non-negatvie
matrix factorization. Advances in Neural Information
Processing Systems, 13. 2001.

[9] S.Z. Li, X. Hou, H. Zhang, Q. Cheng. Learning spatially
localized, parts-based representation. In Proc. IEEE
Computer Vision and Pattern Recognition, pp:207–212,
Hawaii, 2001.

[10] T. Li and S. Ma. IFD: Iterative feature and data clus-
tering. In Proc SIAM Int’l conf. on Data Mining (SDM
2004), pages 472–476, 2004.

[11] V. P. Pauca, F. Shahnaz, M.W. Berry, and R. J. Plem-
mons. Text mining using non-negative matrix factor-
ization. In Proc SIAM Int’l conf. Data Mining (SDM
2004), pages 452–456, 2004.

[12] F. Sha, L.K. Saul, and D.D. Lee. Multiplicative updates
for nonnegative quadratic programming in support vec-
tor machines. Advances in Neural Information Process-
ing Systems 15, pp:1041–1048. MIT Press, Cambridge,
MA, 2003.

[13] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE. Trans. on Pattern Analysis and Ma-
chine Intelligence, 22:888–905, 2000.

[14] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In Proc.
SIGIR pp.267–273, 2003.

[15] H. Zha, C. Ding, M. Gu, X. He, and H.D. Simon. Spec-
tral relaxation for K-means clustering. Advances in
Neural Information Processing Systems 14 (NIPS’01),
pages 1057–1064, 2002.

610

Kronecker Factorization for Speeding up Kernel Machines

Gang Wu, Zhihua Zhang, and Edward Chang
Electrical and Computer Engineering, UCSB

{gwu@engineering, zzhang@mmdb.ece, echang@ece}.ucsb.edu

Abstract
In kernel machines, such as kernel principal component
analysis (KPCA), Gaussian Processes (GPs), and Sup-
port Vector Machines (SVMs), the computational com-
plexity of finding a solution is O(n3), where n is the
number of training instances. To reduce this expensive
computational complexity, we propose using Kronecker
factorization, which approximates a positive definite ker-
nel matrix by the Kronecker product of two smaller pos-
itive definite matrices. This approximation can speed
up the calculation of the kernel-matrix inverse or eigen-
decomposition involved in kernel machines. When the
two factorized matrices have about the same dimensions,
the computational complexity is improved from O(n3) to
O(n2). We propose two methods to carry out Kronecker
factorization and apply them to speed up KPCA. In Ex-
periments show that our methods can drastically reduce
the computation time of kernel machines without any sig-
nificant degradation in their effectiveness.

1 Introduction
The kernel matrix, such as the Gram matrix in Kernel
PCA (KPCA) [5] and SVMs, and the covariance matrix
in Gaussian Processes (GPs), plays an important role
in kernel machines. In general, these machines are re-
quired to calculate the inverse of the kernel matrix or
to make the eigendecomposition on it. Both operations
take O(n3) where n denotes the number of training in-
stances. Specifically, KPCA requires an eigendecomposi-
tion on an n × n Gram matrix, SVMs need to resolve a
quadratic programming problem that involves an n × n
Gram matrix, and GPs need to invert an n×n covariance
matrix. Several methods have been proposed to address
this problem of high computational cost, such as ran-
domized techniques [1], sparse greedy approximation [6],
and the Nyström method [8], etc. All these methods are
based on sampling techniques. In this paper, we tackle
the same computational challenge by a different route,
using the Kronecker product of the matrices.

Suppose that two matrices B = [bij] and C = [cij]
are m1 × n1 and m2 × n2, respectively. The Kronecker
product of B and C (denoted by B⊗C) is an m1m2×n1n2

matrix, defined as the following block matrix

B⊗C =

2664 b11C · · · b1n1C
..
.

. . .
..
.

bm11C · · · bm1n1C

3775 .

Conversely, let A be an m×n matrix with m = m1m2 and
n = n1n2. Our current problem is to find two matrices B
(m1×n1) and C (m2×n2) so that B⊗C approximates A.
We denote this problem as the Kronecker factorization
of the matrix A. A generic structure of the Kronecker
factorization and its applications are detailed in [7]. In
this paper, we focus on a special case in that the matrices
A, B and, C are all symmetric positive definite.

1.1 Related Work
The topic of speeding up kernel machines has been an
important and actively research one. However, the scala-
bility of kernel machines is still a serious problem if they
are to be used for large-scale problems. Many sampling
based methods have been proposed to reduce the O(n3)
computational time of kernel machines. Take SVMs as an
example. (Since SVMs involve solving a quadratic pro-
gramming optimization problem, its computational com-
plexity is O(n3).) Sampling based algorithms such as Os-
una’s Decomposition algorithm [3] and SMO [4] are able
to reduce the training time to O(n2). Other sampling
based algorithms for KPCA and GPs such as [1, 4, 6, 8]
(details are presented shortly) can also achieve speedup of
an order of magnitude. However, large-scale applications
demand even faster algorithms. The Kronecker factor-
ization enjoys two advantages over the sampling based
methods. First, the factorization can be recursively ap-
plied to a large matrix. Second, this divide-and-conquer
approach can be parallelized and take advantage of the
new generation multi-core processor architecture (multi-
ple processors included on one chip). On the contrary,
traditional iterative methods (e.g., SMO) can hardly be
parallelized because of strong data dependencies between
iterations.

Due to the space limitations, we will leave GPs and
SVMs to a future, comprehensive treatment. In this
paper, we focus on speeding up Kernel methods that
require an eigendecomposition on kernel matrix such as

611

KPCA and KICA. For this purpose, Williams et al [8]
propose to use the Nyström method to approximate the
eigendecomposition of the Gram matrix K. Specifically,
the authors use a reduced-rank kernel matrix generated
from a set of randomly sampled training data of size
m < n. Then, the Nyström method is applied on
the eigenspectrum (eigenvalues and eigenvectors) of the
reduced-rank kernel matrix to recover the corresponding
eigenspectrum of the large-size K.

Smola et al [6] propose a sparse greedy approximation
technique to construct a lower-rank representation of
the Gram matrix K. It turns out that the form of the
Nyström approximation is almost identical to the sparse
greedy matrix approximation [8]. The only difference
comes from how to sample a set of training data so
as to form a reduced-rank approximation of the Gram
matrix. The Nyström method randomly samples training
data, but the sparse greedy matrix method searches
over the column or basis function space incrementally
until a selection rule is satisfied. In [6], the authors
defined three selection rules. For example, one rule
could be the Forbenius norm of the difference between
the approximated K̃ and the original K, ‖K − K̃‖2F .
However, as argued by the authors, there exits a tradeoff
between the quality of the selection and the amount of
computational resources needed to compute the best set
of columns or basis functions. For a given m (the number
of selected training data), the sparse greedy method has a
better approximation to K, but with more computational
cost than the Nyström approximation. Considering both
issues, in this paper, we use the Nyström method as
a baseline to compare with our proposed Kronecker
factorization method on speeding up KPCA.

One more method for speeding up KPCA is proposed
by Achlioptas et al [1]. Similar with the Nyström and
sparse greedy matrix method, this one is also based on
sampling techniques. The basic idea is to randomly
sample the kernel matrix K according to some pre-
defined probability so as to form a sparse kernel matrix.
Such a sparse K is then employed to accelerate the
eigendecomposition in KPCA.

1.2 Contribution Summary
In summary, almost all traditional methods attempt to
find a lower-rank matrix to approximate the kernel ma-
trix by sampling the training dataset. The difference of
these methods mainly lies in the way sampling is done.
In this paper, we propose speeding up kernel machines
by factorizing a large-size kernel matrix K into multi-
ple smaller ones and approximate the original K using
their Kronecker product. Since both eigendecomposition
and inverse of K can be recovered from the correspond-
ing operations on multiple factorized smaller matrices,
the computation of kernel machines can be parallelized.

Considering that the multi-core architecture is the trend
of future processors, we believe that the Kronecker factor-
ization approach is a viable one to allow kernel machines
to scale. Our experiments show that our methods can
reduce the computation time of kernel machines without
significant degradation in their effectiveness.

2 Mathematical Background
Given a positive definite (p.d.) matrix A ∈ Rn×n with
n = n1n2, we have the following factorization problem

A , B⊗C,

where B ∈ Rn1×n1 and C ∈ Rn2×n2 are both positive
definite. In other words, we factorize a large-size p.d.
matrix into two small-size p.d. matrices with the Kro-
necker product. We call this formulation the Kronecker
factorization of the positive definite matrix. Some theo-
retical properties of the Kronecker products [2] are listed
below, which provide the foundation to apply the Kro-
necker factorization in our paper. For more details, such
as the Kronecker products on multiple matrices, please
refer to [2].

Theorem 2.1. If B and C are n1 × n1 and n2 × n2
respectively, then
(a) (B⊗C)′ = B′ ⊗C′;
(b) tr(B⊗C) = tr(B)tr(C);

(c) |B⊗C| = |B|n2 · |C|n1 ; and

(d) If B and C are nonsingular, then (B⊗C)−1 = B−1 ⊗C−1.

Theorem 2.2. Let σ(B), σ(C) and σ(B⊗C) be the spec-
trums (or set of eigenvalues) of B, C, and B ⊗ C, re-
spectively. If λ ∈ σ(B) and b is the corresponding eigen-
vector of B; and if µ ∈ σ(C) and c is the correspond-
ing eigenvector of C, then λµ ∈ σ(B ⊗C) and b ⊗ c is
the corresponding eigenvector of B⊗C. Furthermore, if
σ(B) = {λ1, . . . , λn1} and σ(C) = {µ1, . . . , µn2}, then
σ(B⊗C) = {λiµj : i = 1, . . . , n1, j = 1, . . . , n2}.

For an n×n matrix A, the computational complexity
is O(n3) to invert it or to make its eigendecomposition.
The memory usage is O(n2). By means of the Kronecker
factorization, the complexity of the same operations is
reduced to O(n3

1)+O(n3
2), following the above theorems.

Moreover, the memory usuage is reduced to O(n2
1) +

O(n2
2). Thus, the Kronecker factorization can effectively

reduce the computational complexity. Especially when
n1 ≈ n2, the computation complexity of kernel machines
is greatly reduced to O(n

3
2). Please note that this O(n

3
2)

does not consider the factorization cost. When that cost
is added, as we will show in Section 3, the computation
complexity is O(n2).

3 Kronecker Factorization and KPCA
Given A, our problem is to estimate B = [bij] and
C = [cij]. To achieve this goal, we propose two

612

iterative methods based on two different criteria, i.e., the
least-squares (LS) error and the Kullback-Leibler (KL)
divergence. At the end of this section, we show how these
methods are applied to speed up KPCA. Because of the
space limitation, we refer the reader to [9] for detailed
derivations.

Partition A into the block matrices, where Aij ’s
(i, j = 1, . . . , n1) are all n2 × n2 and Âij ’s (i, j =
1, . . . , n2) are all n1 × n1. Since A is symmetric positive
definite, it is clear that AT

ji = Aij and ÂT
ji = Âij .

Moreover, Aii’s and Âii’s are positive definite.

3.1 Least-Squares Method
The first method is derived from minimizing the least-
squares error defined in [7], which is expressed as follows:

eA(B,C) = ‖A−B⊗C‖2F
= tr

�
(A−B⊗C)′(A−B⊗C)

�
,(3.1)

We attempt to find a p.d. B (n1 × n1) and a p.d. C
(n2 × n2), which minimize eA(B,C). Practically, we use
a separable least squares framework , which consists of
two successive parts, to solve this minimization problem.
The computational cost of this LS-based factorization
algorithm is O(n2

1n
2
2)+O(n2

2n
2
1) ≈ O(n2) and the memory

usage O(n2
1 + n2

2).

3.2 Kullback-Leibler Divergence Method
The second method is derived from minimizing the KL
divergence between A and B ⊗ C, which is defined as
follows:

dA(B,C) = tr(A(B⊗C)−1)− log
��A(B⊗C)−1

��− n

= tr(A(B−1 ⊗C−1))− log |A|
−n2 log |B−1| − n1 log |C−1| − n.(3.2)

Similar to eA(B,C) in Equation 3.1, dA(B,C) arrives
at its minimum 0 iff A = B ⊗ C. We attempt to find
positive definite B and C that minimize dA(B,C).

To solve the optimization problem of minimizing
dA(B,C) with respect to B and C, we also use a
separable framework and devise an iterative algorithm.
Both B and C are positive definitive. For the proof
and the detail of the algorithm, please consult [9]. The
computational cost of this method is O(n3

2 + n2
1n

2
2) +

O(n3
1 + n2

2n
2
1) ≈ O(n2) and the memory usage is O(n2

1 +
n2

2). Compared with that of the LS-based method
presented in Section 3.1, the computational cost of our
proposed method is slightly higher.

3.3 Speeding up KPCA
According to Theorem 2.2, the eigen-spectrum of a large-
size matrix can be calculated from the eigen-spectrums
of its factorized small-size matrices. This enables us to
apply the Kronecker factorization in KPCA for reducing
its computational complexity. Figure 1 illustrates the

Input: original kernel matrix K (n × n), the number of
principle components to be extracted m.
Output: dataset X̃ with only extracted principle components
after KPCA.

1. Run Kronecker factorization algorithm on K to factorize
two small-size matrices B and C.

2. Run KPCA on B and C to generate the corresponding
eigen-spectrum σ(B) and σ(C), respectively.

3. Choose m largest λµ, where λ ∈ σ(B) and µ ∈ σ(C), and
calculate a set of eigenvectors Ueig via x ⊗ y, where x
and y are eigenvectors whose corresponding eigenvalues
are λ and µ, respectively.

4. Calculate the new dataset X̃ after KPCA by K ∗
[u1, u2, . . . , um], where ui is one eigenvector from the
set Ueig with the i-th largest eigenvalue λµ.

Figure 1: Kronecker Factorization for KPCA

detailed algorithm. Note that in general, KPCA works
with a centerized kernel matrix. In this case, the center-
ized kernel matrix becomes singular, so theoretically we
are not allowed to implement the Kronecker factorization
on the matrix. However, they can still work in practice,
since the two factorization algorithms involve the trace
operations of only sub-block matrices of the original ma-
trix. Another alternative way is to first implement the
Kronecker factorization on the original kernel matrix and
then to centerize the two factorized matrices. In the ex-
periments of this paper, we choose the latter method.

4 Experiments
We used both artificial and real-world datasets to exam-
ine our proposed Kronecker factorization algorithms and
compare them with one representative sampling-based
method, the Nyström method, for speeding up KPCA.

The datasets used in our experiments are eight toy
datasets (TOY), the USPS handwritten digit dataset,
and the ABALONE dataset from the UCI Repository
Each of eight toy datasets has binary classes and ten
features. The first feature was generated according
to the Gaussian distribution N(1, 1) for one class and
N(−1, 1) for the other class. The other nine features
were generated according to N(0, 3) so as to make the
datasets noisy. Eight toy datasets are of size 100, 400,
900, 1600, 2500, 3600, 4900, and 6400, respectively. For
each toy dataset, we randomly extracted about 67%
as training data and the rest 33% as test data. The
USPS dataset has 7291 training instances and 2007 test
instances, each of which has 256 features. This dataset
has 10 classes, corresponding to the digits 0, ..., 9. The
ABALONE dataset has 3000 training instances and 1177
test instances, each of which has 8 dimensions. ABALONE
has 29 classes. In the experiments, we set its first 10
classes to be positive and the remaining 19 classes to be
negative so as to form a binary dataset.

To achieve the maximum performance of our algo-

613

rithms, we chose the sizes of two factorized matrices close
to
√

n. When n couldn’t be factorized, we simply re-
moved some training instances. Our experiments showed
that for a large-size dataset, doing so had almost no influ-
ence on the performance of KPCA and GPs. Following
the experimental setup in [6, 8], we used the Gaussian
kernel, k(x,y) = exp

(
−‖x−y‖2

σ2

)
. For TOY datasets, we

chose σ = 10.0. For USPS and ABALONE, we followed
the parameter settings in [6, 8] and then chose σ2 = 0.5d,
where d is the dimensionality of the data. In our experi-
ments, we initialize C(0) = I and chose 5 as the running
iterations in our algorithms. This heuristic number of it-
erations came from our observations in the experiments
that the Kronecker factorization algorithms became con-
vergent after about 5 iterations.

For a better illustration of comparison, we used a
modified measurement for each algorithm to report the
experimental results. Instead of just using eA(B,C) in
Eqn. 3.1 and dA(B,C) in Eqn. 3.2, we used the average
least-square error defined as eA(B,C)

n2 for the factorization
method based on least-square error, and used the deci-
mal logarithm log10 dA(B,C) for the method based on
Kullback-Leibler divergence,

4.1 Experiments on KPCA
In this experiment, we examined the effectiveness and
efficiency of our proposed Kronecker factorization on
KPCA. We compared with the regular KPCA without
any speedup and the Nyström method, which is one
representative sampling-based method for speeding up
KPCA and GPs. Moreover, besides examining Kronecker
factorization applied at one level, we also examined the
factorization applied at two levels, which was to run
factorization one more time on the factorized B and C so
that B = B1⊗B2 and C = C1⊗C2. From Theorem 2.2,
the eigen-spectrum σ(B1⊗B2⊗C1⊗C2) can be exactly
recovered from the eigen-spectrum of the smaller-size
matrices, which can be conducted in parallel1.

Since running KPCA on the whole USPS can be very
time-consuming on our hardware platform2, we followed
the setting reported in [5] by randomly sampling 5, 000
out of 7291 instances as training data, and 1400 out of
2, 007 as test data. We set the size of matrices B and
C to be 80, and the sizes of B1, B2, C1, and C2 to
be 8, 10, 8, and 10, respectively. For ABALONE, to
make the Kronecker factorization feasible, we removed

1Since we do not have a hardware platform to conduct the
parallelized experiments, we just sequentially conducted the KPCA
on each small matrix, which could not show the benefits of two-level
factorization.

2All experiments were done on a PIII 900MHZ Workstation with
1GB memory.

m=4 m=8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
KPCA+LSVM on ABALONE, σ=1.4

#Principle Components

A
cc

ur
ac

y

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(a) LSVMs accuracy on
ABALONE

m=4 m=8
0

0.5

1

1.5

2

2.5

3

3.5

4
Factorization + KPCA on ABALONE, σ=1.4

#Principle Components

lo
g 10

 C
P

U
 T

im
e

(S
ec

on
ds

)

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(b) CPU time on
ABALONE

m=64 m=128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KPCA+LSVM on USPS, σ=8.0

#Principle Components

A
cc

ur
ac

y

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(c) LSVMs accuracy on
USPS

m=64 m=128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Factorization + KPCA on USPS, σ=8.0

#Principle Components

lo
g 10

 C
P

U
 T

im
e

(S
ec

on
ds

)

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(d) CPU time on USPS

Figure 2: Comparison of Speeding Up KPCA: For each
figure, x-axis denotes the number of principle compo-
nents which is pre-defined before running KPCA, y-axis
denotes the accuracy of running LSVMs after KPCA in
(a) and (c), or the CPU time (in the decimal logarithm)
of running factorization (if possible) and KPCA together.
In each figure, from left to right, the six bars represent the
results by running regular KPCA (denoted as Regular in
the legend), KPCA after a one-level factorization based
on least square error (LS (one-level)), KPCA after a two-
level factorization based on least square error (LS (two-
level)), KPCA after a one-level factorization based on KL
divergence (KL (one-level)), KPCA after a two-level fac-
torization based on KL divergence (KL (two-level)), and
KPCA approximated by the Nyström method (Nystrom).

one instance3 from the training dataset so as to form two
feasible small matrices, a 58× 58 matrix B and a 72× 72
matrix C (58× 72 = 4176). Then, we set the sizes of B1,
B2, C1, and C2 to be 2, 29, 8, and 9, respectively. As for
the Nyström method, we selected the number of sampled
instances to be 80 for USPS and 60 for ABALONE so that
its computational cost could be almost the same or even
less than that of our algorithms.

In order to quantitatively evaluate the performance
of each approximate method for KPCA, we ran linear
SVMs (LSVMs) on the dimensionality-reduced dataset

3To achieve the maximum performance of our algorithms, we
choose the sizes of two factorized matrices to

√
n. When n cannot

be factorized, we simply remove some training instances. Our
experiments show that doing so does not impact the performance
of KPCA and GPs.

614

via KPCA following the setting in [5]. Figures 2(a) and
(c) give the classification accuracy on ABALONE and
USPS, respectively. Figures 2(b) and (d) show the cor-
responding running time of KPCA (in log-scale), which
includes the time of running the factorization for our
method and of running the approximation for the Nystöm
method. From the figures, we make three observations.
First, compared to the regular KPCA using the full ker-
nel matrix, all our methods, one-level and two-level fac-
torization based on LS or KL, can reduce the wall-clock
time of running KPCA by hundreds of times while main-
taining the same level of accuracy. (Again, Figures 2(b)
and (d) are plotted in the log scale.) Second, the Nyström
method, which we intentionally forced to have almost the
same computational time as our methods, did not approx-
imate well to the regular KPCA, especially for ABALONE.
This means that more instances need to be sampled
for Nyström, which will increase its computational time.
Third, compared to one-level factorization, two-level fac-
torization indeed helps speeding up the KPCA, and still
enjoys a good approximation to the regular KPCA. For
our experiment, we also found that the factorization part
took up about 70% of the total running time, including
the time for conducting factorization and running kernel
machines. We thus believe that running KPCA on mul-
tiple smaller matrices in parallel can further reduce the
30% part of computational time (which is not reflected
in the figures).

5 Concluding Remarks
In this paper, we have presented the idea of Kronecker
factorization of the positive definite matrix to speed up
kernel machines. Specifically, we factorize a large-size
matrix A into two considerably smaller matrices B and
C, and we approximate A with the Kronecker product
of B and C. Our empirical studies showed that the
proposed method can substantially speed up KPCA while
maintaining high class-prediction accuracy. Please refer
to [9] for detailed mathematical derivations and also
the success of applying Kronecker factorization to GPs.
Our future research plans to parallelize our proposed
algorithms and apply the factorization recursively when
the matrix dimension is very large.

References

[1] D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling
techniques for kernel methods. Advances in Neural
Information Processing Systems 14, 2002.

[2] R. A. Horn and C. R. Johnson. Topics in Matrix
Analysis. Cambridge University Press, UK, 1991.

[3] E. Osuna and F. Girosi. Reducing runtime complexity
of svms. Technical Report Proceedings of the 14th

International COnference on Pattern Recognition, 1998.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Gaussian Processes Classification (σ = 1.4)

ABALONE

A
cc

ur
ac

y

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(a) GPs accuracy on
ABALONE

0

20

40

60

80

100

120

140

160

180

200
Factorization + GPs on ABALONE

ABALONE

C
P

U
 T

im
e

(S
ec

on
ds

)

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(b) CPU time on
ABALONE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gaussian Processes Classification (σ = 8.0)

USPS

A
cc

ur
ac

y

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(c) GPs accuracy on
USPS

0

500

1000

1500

2000

2500

3000
Factorization + GPs on ABALONE

USPS

C
P

U
 T

im
e

(S
ec

on
ds

)

Regular
LS (one−level)
LS (two−level)
KL (one−level)
KL (two−level)
Nystrom

(d) CPU time on USPS

Figure 3: Comparison of Speeding Up GPs. (a) and (c)
illustrate the test accuracy on Gaussian processes with
different approximate methods. (b) and (d) then illus-
trate the corresponding cpu time (in seconds) of running
factorization and GPs together. In each figure, from the
left to the right, the six bars represent the results by
running regular GPs (denoted as Regular in the legend),
GPs after a one-level factorization based on least square
error (LS (one-level)), GPs after a two-level factorization
based on least square error (LS (two-level)), GPs after a
one-level factorization based on KL divergence (KL (one-
level)), GPs after a two-level factorization based on KL
divergence (KL (two-level)), and GPs approximated by
the Nyström method (Nystrom).

[4] J. Platt. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Technical
Report MSR-TR-98-14, Microsoft Research, 1998.

[5] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319, 1998.

[6] A. J. Smola and B. Schölkopf. Sparse greedy matrix
approximation for machine learning. In The 17th Inter-
national Conference on Machine Learning, 2000.

[7] C. F. Van Loan and N. Pitslanis. Approximation with
kronecker products. In M. Moonen, G. Golub, and
B. de Moor, editors, Linear Algebra for Large Scale
and Real-Time Applications, pages 293–314. Kluwer
Academic Publisher, Dordrecht, 1993.

[8] C. K. I. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Advances in
Neural Information Processing Systems 13, 2001.

[9] G. Wu, Z. Zhang, and E. Chang. Kronecker factorization
for speeding up kernel machines (extended version).
UCSB Technical Report, June 2004.

615

Symmetric Statistical Translation Models for Automatic Image Annotation

Feng Kang and Rong Jin∗

Abstract

Automatic image annotation provides means for users to

search image collections on the semantic level using natural

language queries. In the past, statistical machine translation

models have been successfully applied to automatic image

annotation. A problem with this approach is that, due to the

skewed distribution of term frequency for annotation words,

common words have been overly favored, which leaves little

room for uncommon words to be used in auto-annotations.

In contrast, studies on information retrieval have revealed

that uncommon words are at least as important as com-

mon words since they are also often used in users’ queries.

Unlike the previous studies where a single type of statis-

tical translation model is considered for automatic image

annotation, in this paper, we studied two types of statisti-

cal translation models: a forward translation model, which

translates visual information into textual words, and a back-

ward model, which translates textual words into visual im-

ages. In particular, we propose a new statistical transla-

tion model, named regularization-based symmetric statisti-

cal translation model, which combines strength of forward

and backward models to alleviate the problem of overly fa-

voring common words. Our empirical studies with the Corel

dataset have shown that the proposed model performs con-

siderably better than the existing translation model and a

state-of-the-art approach for automatic image annotation.

1 Introduction.

Efficient access to image databases requires the ability
to search and organize images effectively. While images
could be retrieved based on their features such as color,
texture, it is usually more natural and desirable for users
to search image databases using textual queries. One
important reason is that textual queries allow users to
express their information needs on the semantic level
instead of the level of preliminary image features.

A key to image retrieval using textual queries is
image annotation. Given annotated words for images,
the problem of image retrieval becomes a problem of
textual retrieval. Many well-developed textual retrieval
algorithms, such as language modeling approaches [11,

∗Department of Computer Science and Engineering, Michi-
gan State University, East Lansing MI 48824. {kangfeng,
rongjin}@cse.msu.edu

12, 18, 19], can be applied to find images that are
relevant to textual queries. Since manual annotation is
usually expensive and subjective, many methods have
been developed to annotate images automatically [1-3,
5, 6, 8, 10, 13-17].

A statistical machine translation model for auto-
matic image annotation [8] views the process of anno-
tating images as a process of translating information
from a ‘visual language’ to textual words. Images are
first segmented into different regions, which are further
grouped into a number of clusters, or image blobs as in
[8]. Then, correspondence between image blobs and an-
notated words is learned through a statistical machine
translation model [4].

One difficulty with translation models for automatic
image annotation arises from the skewed distribution of
word frequency. According to [4], a key for translation
models to disambiguate the alignment between image
regions and annotated words is the co-occurrence sta-
tistics. If an image blob co-occurs more frequently with
a word ‘A’ than with any other words, it will be more
likely for the image blob to be associated with ‘A’. Ac-
cording to [16], the term frequency of annotation words
follows the Zipf’s law, namely a small number of words
appear very often and most words are used only by a
few images. As a result, a common word can acciden-
tally co-occur with a blob that in fact is more associated
with an uncommon word. The problem with the co-
occurrence statistics is further complicated by the fact
that massive number of image regions are first clustered
into a small number of blobs. Very often, image regions
for different annotation words have similar distributions
over the space of image features and thus are clustered
into the same group (i.e., image blob). As a result, an
image region related to a rare word could be grouped
with other image regions related with common words,
which leads to more errors in co-occurrence statistics.

To correct the potential errors in the co-occurrence
statistics, we examine two types of translation mod-
els. Most previous studies on translation models for
automatic image annotation focus on the model that
translates image regions/blobs into textual words, which
is called forward translation model in this paper. Ap-
parently, we can apply the translation model in a re-
verse way, namely translating textual words into im-

616

w1 w2
b1 100 50
b2 200 35

Forward translation model p(w|b)
w1 w2

b1 0.67 0.33
b2 0.85 0.15

Backward translation model p(b|w)
w1 w2

b1 0.33 0.58
b2 0.67 0.42

Table 1: An example of forward and backward trans-
lation models for two image blobs(b1 and b2), and two
words (w1 and w2).

age blobs, which we call a backward translation model.
These two kinds of translation models make different as-
sumptions between blobs and words. The forward trans-
lation model assumes that each image blob is translated
into a single word, while each word can be translated
into multiple blobs. The backward translation model is
based on the assumption that each word is translated
into a single image blob.

In order to better illustrate the difference between
these two types of translation models, consider a simple
example of co-occurrence statistics shown in Table1.
On one hand, for the forward translation model, the
translation probabilities for word ‘w1’ are dominative
for both image blobs. It is unlikely for word ‘w2’ to
be used in any auto-annotations. On the other hand,
for the backward translation model, we do find that
image blob ‘b1’ is strongly associated with word ‘w2’
and the chance for image blob ‘b2’ to be associated with
word ‘w2’ is also high. The difference motivates us to
propose a symmetric model, which combines the two
models together.

The rest of this paper is arranged as follows: Section
2 describes the background knowledge; Section 3 de-
scribes the proposed symmetric translation model that
combines the forward and backward translation models;
The empirical studies are described in Section 4; Section
5 draws the conclusions.

2 Related Work.

In this section, we describe the overview of statistical
methods for automatic image annotation with the focus
on translation model approaches.

2.1 Automatic Image Annotation. The key to
automatic image annotation is to learn the annotation

models that automatically predict annotation words
given extracted image features. A variety of machine
learning methods have been applied to automatic im-
age annotation, including machine translation model
[8], co-occurrence model [17], latent space approaches
[1, 16], graphic models [3], classification approaches [5,
6, 14], and relevance language models [10, 13]. The co-
occurrence model [17] collects the co-occurrence counts
between words and image features and uses them to
predict annotated words for images. Duygulu et al.
[8] improved the co-occurrence model by utilizing ma-
chine translation models. Another way of capturing co-
occurrence information is to introduce latent variables
that link image features with words. Methods in this
category include latent semantic analysis (LSA), proba-
bilistic latent semantic analysis (PLSA) [16], hierarchi-
cal aspect model [1], Gaussian Mixture Model (GMM),
Latent Dirichlet Allocator (LDA), and correspondence
LDA [3]. The classification approaches for automatic
image annotation treat each annotated word as an inde-
pendent class and create a different image classification
model for every word. Work such as linguistic indexing
of pictures [14], image annotation using SVM [6] and
Bayes point machine [5] fall into this category. More re-
cently, relevance language models have been applied to
automatic image annotation [10, 13]. Empirical studies
[10, 13] have shown that relevance language models for
image annotation are better than translation models.

2.2 Machine Translation Models for Auto-
matic Image Annotation. Using the IBM transla-
tion model I [4, 8], the probability of annotating im-
age blobs −→

bi = {bi,1, bi,2..., bi,m} with words −→wi =
{wi,1, wi,2..., wi,n},i.e.,p(−→wi|−→bi), is expressed as follows:

p(−→wi|−→bi) =
n∏

j=1

p(wi,j |−→bi)

∝
∏

{j|wi,j=1}

m∑

k=1

tj,kbi,k(2.1)

where ti,j stands for the probability of translating the
k-th blob into the j-th word. In order to annotate an
image I = {b1, b2, ...bm}, (2.1) is applied to find the set
of words −→w that maximizes p(−→w |−→b). The translation
probabilities {tj,k} can be obtained by maximizing the
log-likelihood of training images, i.e.,

log l(T) =
|T |∑

i=1

p(−→wi|−→bi)

=
|T |∑

i=1

n∑

j=1

wi,j log(
m∑

k=1

tj,kbi,k)(2.2)

617

Expectation-Maximization (EM) algorithm [7] is ap-
plied to find the optimal solution for (2.2) and updating
equation is:

tnew
j,k =

1
Zk

∑

i

wi,jbj,ktold
j,k∑

k′ wj,k′ t
old
j,k′

(2.3)

Zk is a normalization factor that ensures
∑

j tnew
j,k = 1,

namely each blob has to be translated into a single an-
notation word. Detailed EM algorithm is described in
[4]. The above translation model takes the direction of
translating image blobs into words, which we call for-
ward translation model. We can take another direction
of translation, i.e., translating words into blobs, which
we call backward translation model. In backward trans-
lation model, the translation probability from annota-
tion words to image blobs is written as:

p(−→bi |−→wi) =
m∏

j=1

p(bi,j |−→wi)

∝
m∏

j=1

{
m∑

k=1

uj,kwi,k}bi,j(2.4)

Similarly, EM is used to find the set of translation
probabilities and the updating equation is written as:

unew
j,k =

1
Zk

∑

i

wi,jbi,kuold
j,k∑

k′ wi,k′u
old
j,k′

(2.5)

where uj,k stands for the probability of translating the
k-th word into the j-th blob. Zk is a normalization factor
that ensures

∑
j unew

j,k = 1, namely each word has to be
translated into a single image blob.

In next section, we propose a new translation model,
which combines the forward and backward translation
models to enhance the quality of automatic image
annotations.

3 Regularization-based Symmetric Translation
Model: Combining the Forward and
Backward Translation Models.

The main idea of the proposed model,a regularization-
based symmetric translation model (RSTM), is
first to examine the discrepancy between the forward
and backward models, and then to correct them by
utilizing the information across the two models. We
first introduce a symmetric KL divergence term that
measures the discrepancy between the forward and
backward models:

KL =
∑

j

∑

k

p(wj , bk; f) log(
p(wj , bk; f)
p(wj , bk; b)

)

+
∑

j

∑

k

p(wj , bk; b) log(
p(wj , bk; b)
p(wj , bk; f)

)(3.6)

According to the property of KL divergence, the above
expression becomes zero iff p(wj , bk; f) = p(wj , bk; b)
for any j ∈ [1...n] and k ∈ [1...m] . Then, we add the
KL divergence term into the objective function as the
regularization term to ensure the consistency between
the forward and backward translation models:

ΩRSTM = {
|T |∑

i=1

∑

{wi,j=1}
log(

m∑

k=1

tj,kbi,k)(3.7)

+
|T |∑

i=1

∑

{bi,k=1}
log(

n∑

j=1

uk,jwi,j)}
︸ ︷︷ ︸

translation

−λ{
∑

j

∑

k

p(wj , bk; f) log(
p(wj , bk; f)
p(wj , bk; b)

)

+
∑

j

∑

k

p(wj , bk; b) log(
p(wj , bk; b)
p(wj , bk; f)

)}
︸ ︷︷ ︸

regularization

where λ is to determine the degree of consistency
between the two models. Efficiently finding the optimal
solution to (3.7) is more complicated than the EM
algorithm for standard translation model. Here, we list
the updating equations for the forward and backward
translation models, and leave out the detailed derivation
for brevity.

tnew
j,k =

2Cj,k

Bj,k +
√

B2
j,k + 4Aj,kCj,k

(3.8)

Aj,k = 2λ
p(bk)
told
j,k

Bj,k = λp(bk) log(told
j,k)− λp(bk) log(uk,jp(wj)) + αk

Cj,k =
|T |∑

i=1

told
j,kbi,k∑m

k′=1 told
j,k′

bi,k′
+ λp(wj)uk,j

where αk is the normalization factor that ensures∑
j tnew

j,k = 1.

unew
k,j =

2Fk,j

Ek,j +
√

E2
k,j + 4Dk,jFk,j

(3.9)

Dk,j = 2λ
p(wj)
uold

k,j

Ek,j = λp(wj) log(uold
k,j)− λp(wj) log(tj,kp(bk)) + βj

Fk,j =
|T |∑

i=1

uold
k,jwi,j∑n

j′=1 uold
k,j′

wi,j′
+ λp(bk)tj,k

618

where βj is the normalization factor that ensures∑
k unew

k,j = 1.
Probabilities p(w) and p(b) are used for joint prob-

ability p(w, b). One natural choice for p(w) and p(b) is
to use the empirical values that are estimated from the
training corpus. However, one problem is that, the em-
pirical distribution for term frequency follows a skewed
distribution (Zipf’s law). As a result, if the empirical
p(w) is used directly, the regularization term will mainly
focus on the consistency checking for common words.
For rare words, since its empirical p(w) is very small,
its impact in the regularization term is almost ignor-
able. To put equal emphasis on both common words
and uncommon words, we decide to use a uniform dis-
tribution for both p(w) and p(b), which turns out to
have better performance in our empirical studies.

4 Experiments.

In the following experiments, we compare the effective-
ness of the proposed model to the existing translation
model and a state-of-art statistical model for automatic
image annotation.

4.1 Experiment Data. The same subset of Corel
data used in [8] is used in this experiment. It con-
sists of 5000 annotated images, among which 4500 of
them are used for training and selection of parameters
and the rest 500 images used for testing. 371 different
words are used for annotating both training and testing
images. Similar to the previous studies on automatic
image annotation, the quality of automatic image an-
notation is measured by the performance of retrieving
auto-annotated images regarding to single-word queries.
For each single-word query, precision and recall are
computed using the retrieved lists that are based on the
true annotations and the auto-annotations. Let Ij be
a test image, tj be its true annotation, and gj be its
auto-annotation. For a given query word w, precision
and recall are defined respectively as:

precision(w) =
|{Ij |w ∈ tj ∧ w ∈ gj}|

|{Ij |w ∈ gj}|
recall(w) =

|{Ij |w ∈ tj ∧ w ∈ gj}|
|{Ij |w ∈ tj}|

The precision(w) measures the accuracy in annotating
images with word w and the recall(w) measures the
completeness in annotating images with word w. The
average precision and recall over different single-word
queries are used to measure the overall quality of
automatically generated annotations. The third metric,
#Ret Query, is the number of single-word queries for

TM RM RSTM
#Ret Query 63 76 86
Average recall 0.2106 0.2656 0.3373
Average precision 0.1836 0.2299 0.2141

Table 2: Performance comparison of different models:
the Translation Model(TM), the Relevance Model(RM),
and the Regularization-based Symmetric Translation
Model(RSTM).

which at least one relevant image can be retrieved:

#Ret Query = |{w|precision(w) > 0 ∧ recall(w) > 0}|
This metric compensates the metrics of average preci-
sion and average recall by providing information about
how wide is the range of words that contribute to the
average precision and recall.

4.2 RSTM VS. Original Translation Model.
In this section, we compare the performance of the
proposed translation model to the original one. First,
we employ the cross-validation approach to decide the
best value for λ. In particular, the training data is
divided into two parts: 70% of data is used for training
the model, and 30% of data is used for cross validating
the value of λ. We find λ = 50, 000 is a good choice for
the RSTM.

The comparison result is listed in Table 2. The
RSTM performs substantially better than the original
translation model in all three metrics. The most
noticeable difference between them is in the metric of
#Ret Query and average recall, which is 86 and 33.73%
for the RSTM, and is only 63 and 21.06% for the original
translation model. A few examples of the annotation
words are listed in Table 3. We can see that, the
RSTM is able to come up with more specific words for
annotation than the original translation model. For
instance, consider the first example in Table 3, the
original translation model is only able to come up with a
general/common term ‘buildings’ to describe the object
in the image, while the RSTM is able to identify the
building as ‘lighthouse’.

4.3 Comparison to Other Annotation Models.
We also compare RSTM to the relevance language
model for automatic image annotation, which has shown
good performance in recent studies [10, 13]. The
result is listed in Table 2. Compared to the RSTM,
the relevance language model achieves slightly better
performance in terms of average precision. However, its
#Ret Query and average recall are substantially worse
than the RSTM, with 76 and 26.56% versus 86 and
33.73% for the RSTM.

619

Image TM RSTM Manual
sky sky water
water water hills
tree rocks coast
buildings booby lighthouse
rocks lighthouse
sky water tree
water tree snow
tree snow forest
buildings forest coyote
snow zebra
sky sky rocks
water rocks fox
tree fox kit
grass giraffe baby
rocks tusks
water tree field
tree field horses
people horses mare
grass albatross foals
buildings foals

Table 3: Examples of annotations generated by the
Translation Model (TM), the Regularization-based
Symmetric Translation Model (RSTM). The manual an-
notations are included in the last column.

5 Conclusion.

In this paper, we propose a regularization-based sym-
metric translation model(RSTM) to explore the correla-
tion between the forward and the backward translation
models. In particular, it introduces a soft regulariza-
tion term, based on the KL divergence, to enforce the
consistency between two translation models. Empirical
studies have shown that the model is able to effectively
enhance the quality of automatic image annotations.

References

[1] K. Barnard, P. Duygulu and D. Forsyth, Clustering
Art. in Proceedings of the IEEE Computer Society
Conference on Pattern Recognition. 2001.

[2] K. Barnard, P. Duygulu, N. d. Freitas, D. Forsyth, D.
Blei and M. I. Jordan, Matching Words and Pictures.
Journal of Machine Learning Research, 2003. 3: p.
1107-1135.

[3] D. Blei and M. Jordan, Modeling annotated data.
in Proceedings of 26th International Conference on
Research and Development in Information Retrieval
(SIGIR). 2003.

[4] P. Brown, S. D. Pietra, V. D. Pietra and R. Mercer,
The Mathematics of Statistical Machine Translation.
Computational Linguistics, 1993. 19(2): p. 263-311.

[5] E. Chang, K. Goh, G. Sychay and G. Wu, CBSA:
content-based soft annotation for multimodal image re-
trieval using bayes point machines. CirSysVideo, 2003.
13(1): p. 26-38.

[6] C. Cusano, G. Ciocca and R. Schettini, Image anno-
tation using SVM. in Proceedings of Internet imaging
IV, Vol. SPIE 5304. 2004.

[7] A. P. Dempster, N. M. Laird and D.B. Rubin, Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of Royal Statistical Society, 1977. 39(1):
p. 1-38.

[8] P. Duygulu, K. Barnard, N. d. Freitas and D. A.
Forsyth, Object recognition as machine translation:
learning a lexicon for a fixed image vocabulary. in
Proceedings of 7th European Conference on Computer
Vision. 2002.

[9] S. F. Chen, and J. Goodman, An empirical study of
smoothing techniques for language modeling. in Annual
Meeting of the ACL Proceedings of the 34th conference
on Association for Computational Linguistics. 1996.
Santa Cruz, California.

[10] J. Jeon, V. Lavrenko and R. Manmatha, Automatic
Image Annotation and Retrieval using Cross-Media
Relevance Models. in Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in information retrieval. 2003.

[11] R. Jin, C. X. Zhai and A. G. Hauptmann, Title Lan-
guage Model for Information Retrieval. in Proceedings
of the 25th Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval. 2002.

[12] V. Lavrenko and B. Croft, Relevance-based langauge
models. in The 24th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval. 2001.

[13] V. Lavrenko, R. Manmatha and J. Jeon, A Model for
Learning the Semantics of Pictures. in Proceedings of
Advance in Neutral Information Processing. 2003.

[14] J. Li and J. Z. Wang, Automatic linguistic indexing
of pictures by a statistical modeling approach. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
2003. 25(19): p. 1075-1088.

[15] O. Maron, Learning from Ambiguity. 1998, MIT.
[16] F. Monay and D. Gatica-Perez, On Image Auto-

Annotation with Latent Space Models. in Proc. ACM
International Conference on Multimedia. 2003.

[17] Y. Mori, H. TAKAHASHI and R. Oka, Image-to-Word
Transformation Based on Dividing and Vector Quan-
tizing Images With Words. in MISRM’99 First Inter-
national Workshop on Multimedia Intelligent Storage
and Retrieval Management. 1999.

[18] J. Ponte, A Language Modeling Approach to Informa-
tion Retrieval. in Department of Computer Science.
1998, Univ. of Massachusetts at Amherst.

[19] Zhai, C. X. and J. Lafferty. Model-based feedback in
the KL-divergence retrieval model. in Proceedings of
the Tenth International Conference on Information and
Knowledge Management (CIKM). 2001.

620

Correcting Sampling Bias in Structural Genomics through Iterative Selection of

Underrepresented Targets

Kang Peng∗ Slobodan Vucetic∗ Zoran Obradovic∗

Abstract
In this study we proposed an iterative procedure for correct-

ing sampling bias in labeled datasets for supervised learning

applications. Given a much larger and unbiased unlabeled

dataset, our approach relies on training contrast classifiers

to iteratively select unlabeled examples most highly under-

represented in the labeled dataset. Once labeled, these ex-

amples could greatly reduce the sampling bias present in the

labeled dataset. Unlike active learning methods, the actual

labeling is not necessary in order to determine the most ap-

propriate sampling schedule. The proposed procedure was

applied on an important bioinformatics problem of priori-

tizing protein targets for structural genomics projects. We

show that the procedure is capable of identifying protein

targets that are underrepresented in current protein struc-

ture database, the Protein Data Bank (PDB). We argue that

these proteins should be given higher priorities for experi-

mental structural characterization to achieve faster sampling

bias reduction in current PDB and make it more represen-

tative of the protein space.

1 Introduction.
In data mining and machine learning it is commonly
assumed that the training, or labeled, dataset is unbi-
ased, i.e., a random sample from the same underlying
distribution as the data on which the learned model
will be applied. In real-life applications, however, this
assumption is often violated due to the sampling bias
or sample selection bias problem [4], and the labeled
dataset is no longer a representative of the whole popu-
lation. Consequently, a predictor model learned on such
data may be suboptimal and will not generalize well on
out-of-sample examples. Thus, it is crucial to be able
to detect and correct such bias, and bias detection and
correction should be considered an integral part of the
learning process.

The sampling bias can be quantified by the sample
selection probability p(s=1|x, y) [11], where x is feature
vector, y is target variable (label) and s is a binary
random variable. If s = 1, an example (x, y) is selected

∗Information Science and Technology Center, Temple Univer-
sity, 303 Wachman Hall, 1805 N. Broad St., Philadelphia, PA
19122, USA.

into the labeled dataset, while if s = 0, it is not selected.
Thus, if p(s=1|x, y) is constant for all (x, y), the
labeled dataset is unbiased; otherwise, it is biased. In
numerous real-life scenarios, a reasonable and realistic
assumption is that s is dependent on x but conditionally
independent of y given x, i.e. p(s=1|x, y) = p(s=1|x).

A suitable tool for detecting and characterizing the
sampling bias are contrast classifiers [9] that measure
the distributional difference between the labeled dataset
and an unlabeled dataset, which is a large, unbiased
sample from the underlying distribution. The contrast
classifier is a 2-class classifier trained to discriminate
between examples of labeled and unlabeled datasets.
Its output is directly related to the sample selection
probability p(s=1|x) and thus could be a useful measure
of sampling bias, as illustrated on a synthetic dataset as
well as in real-life bioinformatics applications [8, 9].

This study was motivated by an important bioin-
formatics problem that is directly related to sampling
bias. It is well-known that three dimensional (3-D)
structure of a protein is a crucial determinant of its
biological function and biochemical properties. How-
ever, only a small fraction of known proteins has exper-
imentally determined 3-D structure; currently, there are
about 25,000 protein structures deposited in the main
protein structure database, Protein Data Bank (PDB)
[1], as compared to more than 1.5 million known pro-
teins. Furthermore, current content of PDB is highly
biased in the sense that it does not adequately sample
the protein sequence space, due to various issues related
to experimental structure determination [8].

The ongoing structural genomics projects [2] try
to address this problem by experimentally determining
structures of a carefully selected set of representative
protein targets which, along with those already in PDB,
could achieve maximal coverage of the protein sequence
space. However, most of the existing target selection
strategies [5] rely on sequence comparison methods
and, as a result, produce long lists of representative
proteins without structurally characterized homologues
(i.e. proteins evolved from the same ancestor that
typically have similar sequence and structure). It
is evident that, using the available technology, the

621

progress of these projects is likely to be slow. Thus, in
order to rapidly achieve a good coverage of the protein
space, novel computational methods for prioritization of
protein targets should be developed.

In such application, labeled examples are proteins
with experimentally determined 3-D structures. A
protein is also considered as labeled if at least one of its
homologues has known structure. Unlabeled examples
are defined as all known proteins. Thus stated, our
specific goal is developing methodologies to select the
most informative unlabeled proteins for labeling, i.e.
experimental structure characterization, as to rapidly
reduce the sampling bias existing in the labeled proteins
in PDB.

In this study we propose an iterative procedure
for the prioritization based on the contrast classifier
framework. Starting from a biased labeled dataset and
an unbiased unlabeled dataset, the procedure iteratively
builds contrast classifiers to (a) determine if sampling
bias in current labeled dataset is significant, and (b)
select a certain number of underrepresented unlabeled
examples based on the contrast classifier output. The
selected examples are then assumed as labeled and
added into the current labeled data, thus reducing the
sampling bias.

The proposed procedure was applied on a com-
plete genome whose protein sequences are currently
used as structural genomics targets. We argue that
the proposed approach is highly suitable for prioritiz-
ing structural genomics protein targets since it empha-
sizes importance of the most underrepresented protein
sequences. Revealing structural properties of such pro-
teins is likely to produce highly significant biological
results.

2 Methodology.
2.1 Problem formulation. Given two datasets
sampled from the same unknown distribution, where DL

is labeled and biased, while DU is unlabeled and unbi-
ased, our objective is to identify a set of G most infor-
mative examples from DU which, once labeled, would
maximally reduce the labeled data bias. Here G is a
user-specified parameter that depends on total labeling
cost. We assume that labeling cost is uniform for all
examples.

2.2 Contrast classifier for detecting sampling
bias. As shown in [9] the contrast classifier is a 2-
class classifier trained to learn the distributional differ-
ence between labeled and unlabeled datasets. When
using classification algorithms that estimate poste-
rior conditional class probability and balanced train-
ing data, the contrast classifier output cc(x) approxi-

mates u(x)/(u(x)+l(x)), or, equivalently, l(x)/u(x) =
(1-cc(x))/cc(x), where l(x) and u(x) are probability
density functions (pdfs) for DL and DU respectively.

It is straightforward to show the connection be-
tween cc(x) and the sample selection probability
p(s=1|x) [11], where s is a binary random variable in-
dicating whether x is sampled into the labeled dataset
DL. If p(s=1|x) is constant for all x, there is no sam-
pling bias; otherwise, the labeled dataset is biased. Fol-
lowing Bayes theorem, p(s=1|x) = p(s=1)p(x|s=1)/
p(x), where p(x|s=1) and p(x) can be approximated
by l(x) and u(x), respectively. Thus, p(s=1|x) =
p(s=1)l(x)/u(x) = p(s=1)(1-cc(x))/cc(x).

The contrast classifier output could therefore be a
useful measure of sampling bias. If cc(x) < 0.5, then
l(x) > u(x) and x is overrepresented in DL. If cc(x) >
0.5, then l(x) < u(x) and x is underrepresented in DL.
Otherwise, l(x) = u(x) and x is equally represented
in DL and DU . Thus, the cc(x) distribution for DU

could reveal the overall level of sampling bias: the bias is
negligible if it is concentrated around 0.5, otherwise the
bias is significant. Alternatively, the difference between
the two cc(x) distributions for DL and DU could also
be used to measure the overall bias.

2.3 An iterative procedure for correcting sam-
pling bias. Based on the discussion above, we propose
to use contrast classifier output as criterion to select
underrepresented examples for labeling to correct sam-
pling bias. A one-step approach for this purpose would
be building a single contrast classifier from the initial
DL and DU and selecting G underrepresented examples
from DU . An open question is what G underrepresented
examples would be the most suitable for selection. A
one-step approach for selection may be too aggressive
and fail to properly correct the bias. Therefore, a chal-
lenging problem is how to determine an appropriate se-
lection schedule that would minimize bias of the result-
ing labeled dataset.

We propose a procedure (Figure 1) that iteratively
builds contrast classifiers and incrementally selects un-
derrepresented examples. At each iteration, a contrast
classifier is built from current DL and DU and then
applied to DU . If the cc(x) distribution for DU indi-
cates the overall bias is significant, a set of B underrep-
resented examples will be selected and added into DL

for building the contrast classifier at the next iteration.
Details about how to select the B examples will be dis-
cussed in the next section. The whole procedure iterates
until the required G examples have been selected or the
sampling bias becomes negligible.

It should be noted that the actual labeling is not
really necessary during the procedure since the label

622

Figure 1: The proposed iterative procedure.

information is not used. It can be done after the
procedure stops for all selected examples (DS), which is
the differential set between the final and initial DL. This
is one of the major differences between the proposed
procedure and active learning methods [3].

2.4 Selection of underrepresented examples.
After a contrast classifier is built and significant bias
is detected, potentially underrepresented examples can
be selected from DU . A straightforward method (named
Top-B) is to select B examples with the highest cc(x)
from DU . However, this approach might not be efficient
in reducing sampling bias, since these examples may be
redundant. They may come from a same underrepre-
sented region that produces similarly high cc(x) values.

An alternative method (named Random-B) first
determines a threshold θp such that only 100p% of
labeled examples have cc(x) values higher than it, where
p is a small constant in (0, 1). Then, all unlabeled
examples that satisfy cc(x) > θp are considered as
underrepresented, i.e. Up = {x | cc(x) > θp ∧ x ∈ DU}.
Finally, B examples are randomly drawn from Up

according to the uniform distribution. In this way
the selected examples could cover the underrepresented
regions more evenly.

2.5 Quantitative measure of overall bias. As dis-
cussed in § 2.2, the sampling bias can be assessed qual-
itatively by visual inspection of the cc(x) distributions
for DL and DU , i.e. whether the distribution for DU is
concentrated around 0.5, or whether the two distribu-
tions are largely overlapped. We also defined a quanti-
tative measure of overall bias ∆ = sqrt(

∑|DU |
i=1 (cc(xi)−

0.5)2/ |DU |), where cc(xi) is contrast classifier output
for the i-th example in DU . The value of ∆ will ap-
proach 0 when bias is negligible since all cc(xi) should
be close to 0.5. It will be large if the bias is significant

and many cc(xi) are far away from 0.5. In the extreme
case when all cc(x) = 1, ∆ = 0.5.

3 Bioinformatics Application in Structural
Genomics.

In this section we applied the proposed procedure to
prioritizing structural genomics targets from a model
organism. We show that the proposed iterative proce-
dure is more effective than simple random sampling and
a one-step approach discussed in § 2.3.

3.1 Datasets. We limited our study to the 28,334
protein sequences (40 amino acids or longer) from
a model organism called Arabidopsis thaliana ex-
tensively studied in plant biology. It is also a
major source of structural genomics targets for
the Center for Eukaryotic Structural Genomics
(CESG, http://www.uwstructuralgenomics.org/). By
now CESG has selected about 4,000 target proteins from
this genome and finished structure determination for 19
of them.

The amino acid sequences were obtained from web-
site of the Arabidopsis Information Resource (TAIR,
http://www.arabidopsis.org/). As in a previous study
[8], a non-redundant representative subset of 14,988 se-
quences was selected, with no two sequences having
pairwise identity higher than 40%. Out of these se-
quences 838 were identified to have known structures
and thus formed DL, while all of the 14,988 proteins
were assigned to DU . We assume that at most 500 pro-
teins, i.e. G = 500, can be selected from DU for labeling
due to available resources for experimental structure de-
termination.

3.2 Knowledge representation and contrast
classifier training. A similar knowledge representa-
tion was adopted as in the previous study [8], i.e. con-
structing one example per sequence position instead of
one example per sequence. Each example consisted of
30 attributes and a class label of 0 or 1 indicating if it
was from DL or DU . In addition to the 25 attributes
used in the previous study [8], 3 transmembrane helix
predictions by PHDHtm predictor [10], 1 disorder pre-
diction by VL3 predictor [7] and 1 coiled-coils prediction
by COILS predictor [6] were also included.

The contrast classifiers were built as an ensemble
of 20 neural networks each having 10 hidden neurons
and 1 output neuron with sigmoid activation function.
A two-stage sampling procedure [8] was employed to
construct balanced training sets (12,000 examples) for
training component networks. The contrast classifiers
were applied to each sequence s in DU to obtain
cc(x) for each sequence position. These per-position

623

Figure 2: Application of the proposed procedure on structural genomics data. Upper row - plots of ∆ vs. Number
of examples selected for (a) Top-B, (b) Random-B and (c) Comparison to Simple-Random. Lower row - cc(s)
distributions for DL and DU (d) at the beginning, after 500 proteins selected using (e) Top-B(B = 50), and (f)
Simple-Random. The distributions for Random-B are similar to those of Top-B and thus not shown.

predictions were then averaged over the sequence as the
per-sequence prediction cc(s), which was used to select
underrepresented sequences.

3.3 Application of the proposed procedure. We
examined different values of B = {50, 100, 250, 500} for
the proposed procedure. Note that B = 500 corre-
sponds to the one-step approach of selecting all 500 pro-
teins at one time (§ 2.3). The two methods Top-B and
Random-B (p = 0.05) for selecting underrepresented ex-
amples were compared. The performance was assessed
using the ∆ measure of overall bias (§ 2.5) calculated in
each iteration. A successful bias correction procedure
should result in a rapid decrease in ∆ measure as more
proteins are selected. In Figure 2a and 2b we show the
plots of ∆ measure vs. number of selected proteins for
the two methods.

As evident from the plots, the proposed iterative
procedure (B = 50) performed better than the one-
step approach (B = 500) in the sense that it achieved
much lower ∆ value, or lower level of overall bias, after
selected 500 proteins. However, the difference is smaller

for Random-B than for Top-B. It is worth noting that
smaller B typically leads to better bias reduction but
with larger computational efforts. However, the small
difference between the plots for B = 50 and B = 100
indicates that the gain of using even smaller B may be
marginal.

In addition to the proposed procedure, we also
examined the simple approach (Simple-Random) of
randomly selecting M unlabeled proteins in a single
step. For each M = {50, 100, 150, . . . , 500}, a contrast
classifier was built to calculate the ∆ measure of overall
level of bias after the M proteins were added into
DL. The plot of ∆ measure vs. number (M) of
selected proteins is shown in Figure 2c, along with those
for the proposed procedure (B = 50). As expected,
the Simple-Random method was less effective in bias
reduction, with the final ∆ = 0.0243, as compared to
0.0060 for Top-B and 0.0067 for Random-B. This is
further confirmed by the cc(s) distributions in Figure 2.
The two resulting distributions are almost completely
overlapped for Top-B with B = 50 (Figure 2e), but still
clearly separated for Simple-Random (Figure 2f), after

624

500 proteins were selected. The distributions for initial
DL and DU are shown in Figure 2d.

Out of the 500 proteins selected using Top-B
(Random-B) method, only 68 (79) are currently selected
as structural genomics targets by the Center for Eukary-
otic Structural Genomics and none of them have been
solved. We argue that the remaining 432 (421) proteins
should also be selected as structural genomics targets
and should be given higher priorities. Along with pro-
teins with known structures, these proteins should be
very helpful in achieving maximal coverage of the pro-
tein space for Arabidopsis thaliana genome.

4 Conclusions.
In this study we proposed an iterative procedure for cor-
recting sampling bias in labeled data. This approach is
applicable if an unbiased unlabeled dataset is available.
It iteratively builds contrast classifiers to detect sam-
pling bias and selects underrepresented examples which,
once labeled, can be very effective in correcting the sam-
pling bias in labeled data. As illustrated on an impor-
tant bioinformatics problem of prioritizing protein tar-
gets for structural genomics projects, the proposed pro-
cedure is more effective than randomly choosing unla-
beled proteins for labeling in reducing sampling bias,
and can rapidly achieve a good coverage of the protein
space.

The ultimate solution for correcting sampling bias
is to add new labeled examples. A simple approach
is to randomly select examples for labeling. As more
examples are labeled, the bias in the resulting labeled
dataset would be gradually reduced. This is especially
good if the total number of new labeled examples could
be relatively large. However, in real-life problems like
protein structure determination it is often the case that
the costs for labeling even a single example could be
very high. Consequently, only a small number of exam-
ples can be allowed and thus the selected ones should
be the most informative. In such scenarios, our proce-
dure could be very appropriate since it emphasizes the
underrepresented examples based on contrast classifier
output directly related to the sample selection proba-
bility p(s=1|x).

More work is needed to fully characterize the pro-
posed procedure. An improved performance measure is
needed since the ∆ measure may depend on the learn-
ing algorithms used in learning contrast classifiers. As
shown in § 3.3, smaller B might be desirable for better
bias reduction but would require more computational
efforts. Thus, additional analytical and experimental
work needs to be done to determine the optimal trade-
off between the computational effort and the level of
bias reduction, given a fixed total number G of allowed

examples for labeling. Finally, if G is very small, it is
likely that more elaborate procedure would be needed
than the proposed Top-B and Random-B procedures.
These issues are the subjects of our ongoing research.

Acknowledgements. We thank A. K. Dunker, di-
rector of Center for Computational Biology and Bioin-
formatics at Indiana University School of Medicine, for
pointing us to structural targets prioritization in Ara-
bidopsis thaliana genome as a potentially high impact
application domain for our sampling bias correction
method. We are also grateful to J. L. Markley, direc-
tor of the Center for Eukaryotic Structural Genomics at
University of Wisconsin-Madison, for providing us ac-
cess to CESG structural genomics target database for
a more detailed biological relevance validation of our
method (results not included in this report).

References

[1] H. M. Berman, T. N. Bhat, P. Bourne, Z. Feng,
G. Gilliand and H. Weissig, The Protein Data Bank
and the challenge of structural genomics, Nat. Struct.
Biol., 7 (2000), pp. 957–959.

[2] S. E. Brenner, A tour of structural genomics, Nat. Rev.
Genet., 2 (2001), pp. 801–809.

[3] D. Cohn, L. Atlas and R. Ladner, Improved generaliza-
tion with active learning, Mach. Learning, 15 (1994),
pp. 201–221.

[4] J. Heckman, Sample selection bias as a specification
error, Econometrica, 47 (1979), pp. 153–161.

[5] M. Linial and G. Yona, Methodologies for target selec-
tion in structural genomics, Prog. Biophys. Mol. Biol.,
73 (2000), pp. 297–320.

[6] A. Lupas, M. Van Dyke and J. Stock, Predicting
coiled coils from protein sequences, Science, 252 (1991),
pp. 1162–1164.

[7] Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, C. J.
Brown and A. K. Dunker, Predicting intrinsic disorder
from amino acid sequence, Proteins, 53 Suppl 6 (2003),
pp. 566–572.

[8] K. Peng, Z. Obradovic and S. Vucetic, Exploring bias in
the Protein Data Bank using contrast classifiers, Pacific
Symposium on Biocomputing, Hawaii, (2004), pp. 435–
446.

[9] K. Peng, S. Vucetic, B. Han, H. Xie and Z. Obradovic,
Exploiting unlabeled data for improving accuracy of
predictive data mining, 3rd IEEE Int’l Conf. on Data
Mining, Melbourne, FL, (2003), pp. 267–274.

[10] B. Rost, R. Casadio, P. Fariselli and C. Sander, Pre-
diction of helical transmembrane segments at 95% ac-
curacy, Protein Sci., 4 (1995), pp. 521–533.

[11] B. Zadrozny, Learning and evaluating classifiers under
sample selection bias, in C. E. Brodley, ed., 21st Int’l
Conf. Machine Learning, ACM Press, Banff, Alberta,
Canada, (2004).

625

Statistical Models for Unequally Spaced Time Series

Emre Erdogan ∗ Sheng Ma † Alina Beygelzimer † Irina Rish †

January 16, 2005

Abstract

Irregularly observed time series and their analysis are fun-

damental for any application in which data are collected

in a distributed or asynchronous manor. We propose a

theoretical framework for analyzing both stationary and

non-stationary irregularly spaced time series. Our mod-

els can be viewed as extensions of the well known auto-

regression (AR) model. We provide experiments suggest-

ing that, in practice, the proposed approach performs well

in computing the basic statistics and doing prediction.

We also develop a resampling strategy that uses the pro-

posed models to reduce irregular time series to regular

time series. This enables us to take advantage of the

vast number of approaches developed for analyzing regu-

lar time series.

1 Introduction

Unevenly sampled time series are common in many
real-life applications when measurements are con-
strained by practical conditions. The irregularity of
observations can have several fundamental reasons.
First, any event-driven collection process (in which
observations are recorded only when some event oc-
curs) is inherently irregular. Second, in such appli-
cations as sensor networks, or any distributed mon-
itoring infrastructure, data collection is distributed,
and collection agents cannot easily synchronize with
one another. In addition, their sampling intervals
and policies may be different. Finally, in many ap-
plications, measurements cannot be made regularly
or have to be interrupted due to some events (either
foreseen or not).

Time series analysis has a long history. The
vast majority of methods, however, can only handle
regular time series and do not easily extend to
unevenly sampled data. Continuous time series
models can be directly applied for the problem (e.g.,
[5]), but they tend to be complicated (mostly due
to the difficulty of estimating and evaluating them

∗Columbia University, New York, NY, ee168@columbia.edu
†IBM T. J. Watson Research Center, Hawthorne, NY,

{shengma,beygel,rish}@us.ibm.com

from discretely sampled data) and do not provide a
satisfying solution in practice.

In data analysis practice, irregularity is a rec-
ognized data characteristic, and practitioners dealt
with it heuristically. It is a common practice to ig-
nore the times and treat the data as if it were regular.
This can clearly introduce a significant bias leading
to incorrect predictions. Consider, for example, the
return of a slowly, but consistently changing stock,
recorded first very frequently and then significantly
less frequently. If we ignore the times, it would ap-
pear as if the stock became more rapidly changing,
thus riskier, while in fact the statistical properties of
the stock did not change.

Many basic questions that are well understood
for regular time series, are not dealt with for un-
equally spaced time series. The goal of this paper
is to provide such a theoretical foundation. At the
very least, we would like to be able to compute the
basic statistics of a given time series (e.g., its mean,
variance, autocorrelation), and predict its future val-
ues.

Our contributions can be summarized as follows:

• We propose two statistical models for handling
irregularly sampled time series. The first model
assumes stationarity, and can be viewed as a
natural extension of the classical AR(1) model
for regular time seres. The second model relaxes
the stationarity assumption by allowing a more
general dependence on the current time, time
difference, and the state of the process at a given
time.

• We show how to efficiently estimate the param-
eters of both models using the maximum likeli-
hood method.

• We propose and give solutions for two strategies
based on the proposed models. The first strategy
is to compute the basic statistics (e.g., auto-
correlation function) and do prediction directly
from the models. This approach does not easily
extend to non-linear time series and multiple

626

irregular time series. The second strategy avoids
these problems by using the model to convert
irregular time series to regular time series by
resampling. The reduction reduces the problem
to a problem that has already been thoroughly
analyzed and for which many approaches are
available. The resampling approach can be
found in the full version of the paper [4].

Related work A vast amount of techniques
were developed for analyzing regularly sampled time
series. Unfortunately, most of these techniques do
not take into account sampling times, and cannot be
easily generalized to irregularly sampled time series.

As a simple heuristic, we can ignore the times and
treat the values as regularly sampled. Obviously, if
there is enough structure and irregularity in sampling
times, we lose a lot of information about the dynamics
of the system.

Many techniques have been proposed to handle
time series with missing data, which in the limit can
be viewed as irregularly sampled [8]. One approach
is to interpolate the data to equally spaced sampling
times. A survey of such interpolation techniques can
be found in [1]. While this is a reasonable heuristic for
dealing with missing values, the interpolation process
typically results in a significant bias (e.g., smooths
the data) changing the dynamics of the process, thus
these models can not be applied if the data is truly
unequally spaced. Another problem is that there
is little understanding of which which interpolation
method does best on a given dataset.

A number of authors suggested to use continuous
time diffusion processes for the problem. Jones [6]
proposed a state-space representation,and showed
that for Gaussian inputs and errors, the likelihood
of data can be calculated exactly using Kalman fil-
ters. A nonlinear (non-convex) optimization can
then be used to obtain maximum likelihood estimates
of the parameters. Brockwell [2] improved on this
model and suggested a continuous time ARMA pro-
cess driven by the Lévy process. His models, how-
ever, assume stationarity, and parameter estimation
is done via non-convex optimization using Kalman
filtering limiting the practical use of these models.

2 Background: Basic Definitions

A time series X(t) is an ordered sequence of obser-
vations of a variable X sampled at different points t
over time. Let the sampling times be t0, t1, · · · ,
tn satisfying 0 ≤ t0 < t1 < . . . < tn. If the time
points are equally spaced (i.e., ti+1 − ti = ∆ for all
i = 0, ..., n − 1, where ∆ > 0 is some constant), we
call the time series regularly sampled. Otherwise, the

sequence of pairs {X(ti), ti} is called an irregularly
sampled time series.

Definition 1. (Autocovariance [3]) For a pro-
cess {X(t), t ∈ T} with var(X(t)) < ∞ for each t ∈
T , the auto-covariance function covX(X(t), X(s)),
for t, s ∈ T , is given by

E [(X(t)−E[X(t)])(X(s)−E[X(s)])] .

Definition 2. (Stationarity [3]) A time series
{X(t), t ∈ T} is said to be stationary if

• E[|X(t)2|] < ∞, E[X(t)] = c, for all t ∈ T ,

• covX(X(t), X(s)) = covX(X(t + h), X(s + h)))
for all t, s, h ∈ T .

In other words, a stationary process is a process
whose statistical properties do not vary with time.

Definition 3. (AR(1) process [3]) A regularly
sampled process {X(t), t = 0, 1, 2, . . .} is said to be
an AR(1) process if {X(t)} is stationary and if for
every t,

X(t) = θX(t− 1) + σεt,

where {εt} is a series of random variables with
E(εt) = 0, var(εt) = 1, and cov(εt, εs) = 0 for every
t 6= s. Notice that by recursive substitution, we can
write X(t + h) for any positive integer h in terms of
X(t) as

X(t + h) = θhX(t) + σ
h−1∑
j=0

θjεt+1+j .

The process {εt} is also called “white noise”. We will
assume that εt ∼ N(0, 1) for all t.

3 Overview of our Approach

Suppose that our irregularly sampled time series Y (t)
can be decomposed as

(3.1) Y (t) = a(t) + X(t),

where a(t) is a slowly changing deterministic func-
tion called the “trend component” and X(t) is the
“random noise component”.

In general, one can observe only the values Y (t).
Therefore, our first goal is to estimate the determin-
istic part a(t), and extract the random noise compo-
nent X(t) = Y (t)− a(t). Our second goal is to find a
satisfactory probabilistic model for the process X(t),
analyze its properties, and use it together with a(t)
to predict Y (t).

Let {y(ti), ti}, i = 0, 1, . . . , n be a sample of Y (t).
We assume that a(t) is a polynomial of degree p in t,

(3.2) ap(t) = ρ0 + ρ1t + ρ2t
2+, ... + ρpt

p,

627

where p is a nonnegative integer and ρ =
[ρ0; ρ1; ...; ρp] is a vector of coefficients. A more gen-
eral structure can also be used. The vector ρ can be
estimated using the least squares method, by choos-
ing the vector minimizing

∑n
i=0(y(ti)− a(ti))2. This

is straightforward, and we will turn to developing a
statistical model for X(t).

We propose two parametric statistical models for
analyzing X(t). The first model, described in the
next section, is a direct extension of the classical
AR(1) model given in Definition 3 and assumes that
X(t) is stationary. The second model, presented in
Section 5, relaxes the stationarity assumption and
allows a more general dependence of X(t + ∆) on
t, ∆, and X(t).

4 A Statistical Model for Stationary X(t)
Suppose that X(t) obtained from Y (t) after removing
the trend component ap(t) is a stationary process.
We define an irregularly sampled stationary AR(1)
process as follows.

Definition 4. (IS-AR(1) process) A time series
X(t) is an irregularly sampled stationary AR(1) pro-
cess if it is stationary and if for every t and ∆ ≥ 0,

X(t + ∆) = θ∆X(t) + σ∆εt+∆,(4.3)

where εt ∼ N(0, 1) and cov(εt, εs) = 0 for every t 6= s

and σ2
∆ = σ2(1−θ2∆

1−θ2) for some σ > 0.

If the times are regularly spaced, IS-AR(1) can be
reduced to the original AR(1) process by observing
that σ

∑h−1
j=0 θjεt+1+j ∼ N(0, σ2(1−θ2h

1−θ2)) and com-
paring with Equation 4.3.

4.1 Parameter estimation In this section, we
show how to estimate parameters θ and σ, given a
set of observations {x(t0), x(t1), . . . , x(tn)} of X(t).

Define ∆i = ti+1 − ti for all i = 0, . . . , n− 1. We
can assume that all ∆i ≥ 1; otherwise, we can rescale
each ∆i by mini{∆i}.

Since E[εt] = 0 and cov(εt, εs) = 0 for all t 6= s,
we can estimate θ by the least squares method. We
need to find θ̂ ∈ (−1, 1) minimizing

∑n−1
i=0 (X(ti+1)−

θ∆iX(ti))2. Since ∆i ≥ 1 for all i, this sum is a
convex function of θ that can be efficiently minimized
using convex optimization.

To estimate σ, we set zi = x(ti+1) − (θ̂)∆ix(ti).
By Definition 4, we have zi ∼ N(0, σ2

∆i
) where

σ2
∆i

= σ2(1−(θ̂)2∆i

1−(θ̂)2
). We can thus estimate σ by

maximizing the Gaussian likelihood of the residuals
z(t0), . . . , z(tn−1) at times t0, t1, . . . , tn−1. The max-

imum likelihood estimator of σ is given by

(4.4) σ̂ =

√√√√ 1
n

n−1∑
i=0

(x(ti+1)− (θ̂)∆ix(ti))2

ρi
,

where ρi = (1−θ̂2∆

1−θ̂2) for all i. The derivation is
omitted due to page limit (see [4]).

4.2 Prediction using the IS-AR(1) model We
first establish conditions for X(t0) under which X(t)
is a stationary process. Then assuming the station-
arity of X(t), we derive equations for one-step pre-
diction and the auto-covariance function. We can as-
sume without loss of generality that t0 = 0.

Using Equation 4.3, independence of εt and X(0),
and the fact that E[εt] = 0 for all t, we can express
E[X(t)],var[X(t)], and cov[X(t), X(t+∆)] in terms
of X(0) as follows.

E[X(t)] = θtE[X(0)](4.5)

var[X(t)] = θ2t var[X(0)] + σ2 1− θ2t

1− θ2
(4.6)

cov[X(t), X(t + ∆)] = θ∆ var[X(0)](4.7)

Proposition 4.1. Assume that E[X(t)2] < ∞ and
E[X(0)] = 0. Then X(t) in Definition 4 is a sta-
tionary process if var[X(0)] = σ2

1−θ2 and covX(∆) =

cov[X(t), X(t + ∆)] = θ∆ σ2

1−θ2 .

Proof. For var[X(0)] = σ2

1−θ2 , Equation 4.6 gives

var[X(t)] = θ2t σ2

1− θ2
+ σ2 1− θ2t

1− θ2
=

σ2

1− θ2
,

yielding

cov[X(t), X(t + ∆)] = θ∆ var[X(t)] = θ∆ σ2

1− θ2
.

Since cov[X(t), X(t+∆)] does not depend on t, X(t)
is stationary.

A one-step predictor of X(t + ∆) given X(t) for any
∆ > 0 is given by the conditional expectation of
X(t + ∆) (using Equation 4.5):

X̂(t + ∆) = E[X(t + ∆)|X(t)] = θ∆X(t).

4.3 Analyzing Y (t) with a Stationary Com-
ponent X(t): The following procedure can be used
for estimating the auto-covariance function covY (∆)
of irregularly sampled time series Y (t) and for pre-
dicting Y (t + ∆) given Y (t). First, we fit a poly-
nomial ap(t) to Y (t) as described before, and set
X(t) = Y (t) − ap(t). We then estimate θ as θ̂ =

628

arg minθ

∑n−1
i=0 (X(ti+1)− θ∆iX(ti))2, and σ using σ̂

in Equation (4.4). Since ap(t) is deterministic, set
covY (∆) = covX(∆) = θ∆ σ2

1−θ2 . Finally, prediction
is given by

Ŷ (t + ∆) = ap(t + ∆) + X̂(t + ∆)
= ap(t + ∆) + E[X(t + ∆)|X(t)]

= ap(t + ∆) + θ∆X(t).

5 A model for non-stationary X(t)
The model introduced in the previous section assumes
that X(t) is stationary. Mean and variance of a
stationary process are time independent, and the
covariance between any two observations depends
only on their time difference. This allowed us to
derive a simple expression for the auto-covariance
function. In practice, however, one may not have
stationarity – statistical properties of X(t) may vary
with time. Thus it is natural to focus on estimating
these properties in the near future instead of trying
to obtain some global, time-independent values. To
achieve this goal, we model X(t+∆) as a function of
t, ∆, and X(t), plus a random noise whose variance
also depends on t, ∆, and X(t). As before, after
fitting a polynomial of degree p to Y (t) we get X(t) =
Y (t)− ap(t).

5.1 General IN-AR(1) Process Let θ ∈ Rm be
an m-dimensional drift parameter vector and σ ∈ R
be a scalar variance parameter. Let α(∆, t, X(t)) :
[0,∞)×[0,∞)×R → Rm and β(∆, t,X(t)) : [0,∞)×
[0,∞)×R → R be functions of ∆, t, and X(t).

Definition 5. (IN-AR(1) process) An irregularly
sampled non-stationary IN-AR(1) process is defined
as

X(t + ∆) = X(t) + θT α(∆, t, X(t))
+ σβ(∆, t,X(t))εt+∆,

where εt+∆ ∼ N(0, 1), cov(εt, εs) = 0 for all t 6= s,
θ is the vector of drift parameters, α(∆, t,X(t)) is
the drift function, σ is the variance parameter, and
β(∆, t, X(t)) is the variance function. In addition, if
∆ = 0 then the functions α and β satisfy

α(0, t,X(t)) = 0 and β(0, t,X(t)) = 0.

Since the above condition is the only assumption on
the structure of α and β, the model covers a wide
range of irregularly sampled time series.

5.2 Parameter Estimation Since εt and εs are
independent for all t 6= s, the distribution of
X(ti+1) given X(ti) is normal with mean X(ti) +

θT α(∆i, ti, X(ti)) and variance β2(∆i, ti, X(ti))σ2.
Therefore, θ and σ can be estimated by max-
imizing the Gaussian likelihood of observations
x(t1), . . . , x(tn) at times t1, ..., tn.

Proposition 5.1. The maximum likelihood estima-
tors of θ and σ are given by

θ̂ =

(
n∑

i=1

α(∆i, ti, x(ti))α
T (∆i, ti, x(ti))

β2(∆i, ti, x(ti))

)−1

·
n∑

i=1

(x(ti+1) − x(ti))α(∆i, ti, x(ti))

β2(∆i, ti, x(ti))
,

σ̂ =

√√√√ 1

n

n∑
i=1

(x(ti+1) − x(ti) − θ̂
T
α(∆i, ti, x(ti)))2

β2(∆i, ti, x(ti))
.

Proof. See the full version of the paper [4].

The functions α(∆, t,X(t)) and β(∆, t, X(t)) can be
chosen by first selecting a set of candidate functions
(which can be based on data generation process, some
preliminary analysis, or interaction with domain ex-
perts). Proposition 5.1 can then be used to estimate
the parameters for each pair of candidate functions,
choosing the pair that gives the best fit to the data.
One can also use various greedy search-based meth-
ods in more general families of candidate functions.

5.3 Prediction using the general IN-AR(1)
model Since ap(t) is deterministic, we only need to
predict X(t + ∆). We have

Ŷ (t + ∆) = E[Y (t + ∆)|Y (t)]
= ap(t + ∆) + E[X(t + ∆)|X(t)],

var[Y (t+∆)|Y (t)] = var[X(t + ∆)|X(t)],
cov[Y (t+∆1 + ∆2), Y (t + ∆1)|Y (t)]

= cov[X(t + ∆1 + ∆2), X(t + ∆1)|X(t)].

Since we did not assume that X(t) is stationary, we
might not have a time independent expression for the
mean, variance, and the auto-covariance function.

Using Definition 5, the independence of εt+∆ and
X(t), and the assumption that E[εt] = 0 for all t, we
can write the conditional expectation of X(t + ∆)
given X(t) and conditional variance as

E[X(t + ∆)|X(t)] = X(t) + θT α(∆, t, X(t))+

σβ(∆, t,X(t))E[εt+∆] = X(t) + θ̂
T
α(∆, t,X(t))

var[X(t + ∆)|X(t)] = E
[
(X(t + ∆)−

−E[X(t + ∆)|X(t)])2|X(t)
]

= σ2β2(∆, t, X(t))

629

Let ∆1,∆2 > 0. The conditional covariance between
X(t + ∆1 + ∆2) and X(t + ∆1) given X(t) is

cov[X(t + ∆1 + ∆2), X(t + ∆1)|X(t)] = σ2β2(∆, t, X(t))

+ E[θT α(∆2, t + ∆1, X(t + ∆1))X(t + ∆1)|X(t)]

−
(
X(t) + θ̂

T
α(∆, t, X(t))

)
·

· E[θT α(∆2, t + ∆1, X(t + ∆1))|X(t)]

It can be further simplified using the structure of
α. The expressions inside the expectation operators
are functions of εt+∆1 , and thus are independent
of X(t), so the operators can be removed. Finally,
cov[X(t+∆1 +∆2), X(t+∆1)|X(t)] is a function of
α,β,θ, σ and X(t). Since X(t) is given, if we replace
θ and σ by their estimators θ̂ and σ̂, we can estimate
cov[X(t + ∆1 + ∆2), X(t + ∆1)|X(t)].

A one-step predictor of X(t + ∆) given X(t) for
any ∆ > 0 is given by:

X̂(t + ∆) = E[X(t + ∆)|X(t)] = X(t) + θ̂
T
α(∆, t, X(t)).

5.4 Analyzing Y (t) with a non-stationary
X(t): To predict Y (t + δ) given Y (t), we first fit a
polynomial ap(t) to Y (t) as in Section 4.3, and esti-
mate θ̂ and σ̂ using Proposition 5.1. Then a predictor
Ŷ (t + δ) is given by

Ŷ (t + δ) = ap(t + δ) + X̂(t + δ)

= ap(t + δ) + X(t) + θ̂
T
α(δ, t, X(t)).

Similarly, we can estimate the variance and auto-
covariance functions of Y (t) for given δ1 and δ2:

var[Y (t + δ)|Y (t)] = σ̂2β2(δ, t, X(t)),

cov[Y (t + δ1 + δ2), Y (t + δ1)|Y (t)] =

cov[X(t + δ1 + δ2), X(t + δ1)|X(t)].

6 Computational Experiments

We tested prediction abilities of our IN-AR(1) model
on several real datasets. Figure 1 shows a dataset
containing a historical isotopic temperature record
from the Vostok ice core (about 1K irregularly sam-
pled points), due to Petit et al. [7]. Figure 1(a) over-
lays the dataset with a 10-point prediction given by
the model trained on 100 points. For comparison, we
did a similar prediction using a vanilla algorithm that
always predicts the last value it sees (Figure 1(b)).
The vanilla algorithm produces a step function with
a good overall fit to the data, but with no attempt to
give accurate short-term predictions. The curve pro-
duced by the IN-AR(1) model provides a smoother,
much more accurate fit to the data. See the full ver-
sion of the paper for more experiments [4].

(a) -9

-8

-7

-6

-5

-4

-3

-2

-1

 2 4 6 8 10 12

vanilla algorithm

(b) -9

-8

-7

-6

-5

-4

-3

-2

-1

 2 4 6 8 10 12

IN-AR(1)

Figure 1: 10-step prediction (a) vanilla, (b) IS-AR(1)

7 Conclusion

We proposed two AR(1)-type models for analyzing
irregularly sampled time series. The first model is
based on the assumption of stationarity, the second
model relaxes this assumption. Both models are ex-
tremely simple and can be efficiently fit to the data.
The presented approach can be extended to higher
order auto-regression processes AR(p), moving aver-
age MA(q) and autoregressive moving average pro-
cesses ARMA(p,q). An interesting research question
is to develop a model for analyzing irregularly sam-
pled time series with a non-Gaussian noise.

References

[1] H. M. Adorf. Interpolation of irregularly sampled
data series. In R. Shaw, H. Payne, and J. Hayes,
editors, Astronomical Data Analysis Software and
Systems IV, APS Series 77, 460–463, 1995.

[2] P. J. Brockwell. Lévy driven carma processes.
Ann.Inst.Statist.Math., 53(1):113–124, 2001.

[3] P. J. Brockwell and R. A. Davis. Time series:
Theory and Methods. Springer Verlag, 1991.

[4] E. Erdogan, S. Ma, A. Beygelzimer, and I. Rish.
Technical Report, IBM T. J. Watson Center, 2005.

[5] R. H. Jones and P. V. Tryon. Continuous time
series models for unequally spaced data applied
to modeling atomic clocks. SIAM J. Sci. Stat.
Comput., 4(1):71–81, January 1987.

[6] R. H. Jones. Time series analysis with unequally
spaced data. In E. Hannan, P. Krishnaiah, and
M. Rao, editors, Handbook of statistics, 5, 157–178,
North Holland, Amsterdam, 1985.

[7] J. R. Petit, et al. Climate and atmospheric history
of the past 420,000 years from the vostok ice core,
antarctica. Nature, 399:429–436, 1999.

[8] D. B. Rubin. Statistical Analysis With Missing
Data. Wiley, New York, 2002.

630

CLSI: A Flexible Approximation Scheme from Clustered
Term-Document Matrices¤†

Dimitrios Zeimpekis ‡ Efstratios Gallopoulos‡

Abstract
We investigate a methodology for matrix approximation and
IR. A central feature of these techniques is an initial clus-
tering phase on the columns of the term-document matrix,
followed by partial SVD on the columns constituting each
cluster. The extracted information is used to build effective
low rank approximations to the original matrix as well as for
IR. The algorithms can be expressed by means of rank reduc-
tion formulas. Experiments indicate that these methods can
achieve good overall performance for matrix approximation
and IR and compete well with existing schemes.
Keywords: Low rank approximations, Clustering, LSI.

1 Introduction and motivation
The purpose of this paper is to outline aspects of a frame-
work for matrix approximation and its application in LSI1.
This framework is designed in the context of the vector space
model [18], where a collection of n documents is repre-
sented by a term-document matrix (abbreviated as tdm) of
n columns and m rows, where m is the number of terms (or
phrases) used to index the collection. Each element ®ij of
the tdm “measures the importance” of term i w.r.t. the doc-
ument and the entire collection. One of the most successful
VSM based models is LSI, whose effective implementation
requires the singular value decomposition (SVD) and other
matrix operations. Well known disadvantages of LSI are the
cost of the kernel SVD, the difficulty of a priori selection of
the approximation rank and the handling of updates. Such
topics continue to challenge researchers. Interesting propos-
als to address these issues include special decompositions
(e.g. [14, 13, 22, 19, 3, 5, 15]) and randomized techniques
(cf. [1, 8, 7, 9]). This note outlines methods for matrix
approximation and IR that are based on a combination of
clustering, partial SVD on cluster blocks and recombination
to achieve fast and accurate matrix approximation. Our ap-
proach can be viewed as a generalization of LSI (hence our

¤This work was conducted in the context of and supported in part by
a University of Patras KARATHEODORI grant. The first author was also
supported in part by a Bodossaki Foundation graduate fellowship.

†E-mails: [dsz,stratis]@hpclab.ceid.upatras.gr
‡Computer Engineering & Informatics Dept., Univ. of Patras, Greece.
1See http://scgroup.hpclab.ceid.upatras.gr for more detailed treatment

and more complete references.

term Clustered LSI or CLSI for short) and is shown, exper-
imentally, to achieve good performance compared to SVD
and other matrix approximation methods as well as in terms
of precision vs. LSI.

2 Low rank matrix approximations
The central idea here is to obtain, after preprocessing, a ma-
trix of reduced dimension from the original data matrix sub-
sequently used a) to approximate the underlying matrix; b)
to enable information retrieval that is competitive with exist-
ing methods; c) to enable the use of computing resources that
offer large scale, large grain parallelism. This latter item is
not elaborated further as it is under current investigation. We
first address issue (a). The method relies on the following
sequence of steps:
[tdm clustering] →

(partial svd on blocks) →
(projected approximation)

Methods that employ clustering for approximation and
have motivated us include [6, 17]. We also use the Guttman
formula (see [11], [5, 16, 12] and references therein).

Approximation with partial SVD Denote by Aj the
set of columns of A that were found to belong to cluster
j, that is write [A1, ..., Ak] = AT , where T is a permuta-
tion matrix that achieves the ordering corresponding to the
output of the clustering algorithm. The next step of the
algorithms in [6, 17] is to construct the “centroid matrix”
C = [c(1), ..., c(k)] ∈ Rm×k, so called because each col-
umn c(j) is the centroid of the jth cluster. The final, crucial
step of the centroid algorithm is to compute the closest ap-
proximation of A of the form CY where Y ∈ Rk×n, that
is solve minY ∈Rk×n ‖A − CY ‖F . This is done by comput-
ing the orthogonal projection of A on the subspace generated
by the columns of C. Instead of this approach, we approx-
imate the “topic” subspace by computing the left singular
vector corresponding to the maximum singular value (let’s
call it maximum left singular vector) for each one of the sub-
matrices Aj ∈ Rm×nj containing the data columns corre-
sponding to cluster j for j = 1,, k so that

∑k

j=1 nj = n.

Let now u
(j)
1 be the maximum left singular vector of Aj and

U = [u
(j)
1 . . . u

(k)
1]. Then we can seek an approximation of

631

the data matrix A by UX where

X = arg min
Y ∈Rm×k

‖A− UY ‖F .(2.1)

As in the Centroids Method ([16]), we can find the solution
as Ã = U(U>U)¡1U>A. The columns of U are not orthog-
onal, in general, though G = U>U is oblique. We generalize
the above idea and consider, for better approximation, using
more leading left singular vectors from each cluster block
Aj . Let the number of cluster blocks be l < k. We solve
(2.1), where matrix U becomes

U = [u
(1)
1 , ..., u

(1)
k1

, u
(2)
1 , ..., u

(2)
k2

, ..., u
(l)
1 , ..., u

(l)
kl

](2.2)

= [U
(1)
k1

, ..., U
(l)
kl

], U
(j)
kj
∈ Rm×kj ,

and {u(j)
1 , ..., u

(j)
kj
} are the kj leading left singular vectors

of Aj . We reserved k for the total number of columns of
U rather than for the number of clusters. To fully specify
the algorithm we need a strategy for selecting the kj’s. We
would like to select these values so that A is not too far from
the subspace spanned by the columns of U . More precisely,
we want to estimate the number of singular triplets that
are necessary for each submatrix so as to have similar (and
small) approximation error for all submatrices. Because of
the relation between the Frobenius norm and singular values,
‖A‖2F =

∑l
i=1 ‖Ai‖

2
F =

∑l
i=1

∑ri

j=1(¾
(i)
j)2 we use the

ratio

f(‖Ai‖F) =
‖Ai‖F

‖A‖F

.(2.3)

as gauge for the number of singular vectors to use from
each submatrix. It is worth noting that a strategy based on
the ratio of the Frobenius norms of the columns of A vs.
Ai was key to the implementation of a recent randomized
SVD algorithm [7]. Note that the described heuristic is
one of many possibilities. Related ideas are used in Image
Processing and Compression. In particular, ki is selected to
be the minimum of the integer nearest to kf(‖Ai‖F) and the
number of columns of Ai. We would be calling the special
case of the above algorithm, when kj = 1 for j = 1, ..., l
and l = k, as Algorithm 1 and the more general case we just
described Algorithm 2; see Table 1.

Rank reduction framework The general result we use
is the following:

THEOREM 2.1. (GUTTMAN) Let A ∈ Rm×n, X ∈
Rn×k, Y ∈ Rm×k.Then:

rank(A−AXΩ¡1Y >A) = rank(A)− k

if and only if Ω = Y >AX is nonsingular.

If we set P = I −AXΩ¡1Y >, it is straightforward to show
that P2 = P though, in general P 6= P>. Therefore, P is
an oblique projector and since

A−AXΩ¡1Y >A = PA,

Input: m× n tdm A, number of clusters l, integer k
Output: Matrices X ∈ Rm×k, Y ∈ Rk×n

I. Run selected clustering algorithm for l clusters;
Reorder the tdm A =

£
A1 A2 . . . Al

¤
;

II. Let ki = min(round(kf(‖Ai‖F)), ni);
Compute leading left singular vectors for each Ai:
U = [u

(1)
1 , ..., u

(1)
k1

, u
(2)
1 , ..., u

(2)
k2

, ..., u
(l)
1 , ..., u

(l)
kl

]

III: Solve minY ‖A− UY ‖F : Y = (U>U)¡1(U)>A;
Compute Ã = U(U>U)¡1U>A;

Table 1: Algorithm 2.

rank reduction follows by the oblique projection of the
columns of A. Algorithms 1-2 can be expressed in this
framework. We do this here for the former. Let

S = diag([¾
(1)
1 , ..., ¾

(k)
1] ∈ Rk×k,(2.4)

and V ∈ Rn×k the block diagonal matrix where each
diagonal “block” is the vector v

(j)
1 , j = 1, ..., k. U is not

orthogonal in general, hence the decomposition is not an
SVD. Therefore

E = A− Ã = A−AVS(U>AVS)¡1U>A.

This is the same as the rank reduction formula shown in
Theorem 2.1 above with X = VS and Y = U . The above
can be extended to Algorithm 2.

Clustered LSI (CLSI). CLSI can be viewed as a block
version of LSI. Whereas LSI achieves dimensional reduc-
tion by projecting on a number of the leading left singular
vectors of A, say k, in CLSI we use k orthogonal vectors for
the subspace spanned by a total of k vectors selected from
the leading singular vectors of the l cluster blocks; in partic-
ular, the algorithm uses kj leading vectors from each block
j = 1, ..., l. Irrespective of the strategy employed to compute
the kj’s, we enforce k =

∑l

j=1 kj . Actually, CLSI is a fam-
ily of methods; e.g. when kj = 1, CLSI corresponds to Alg.
1, and when l = 1, k1 = k (in which case clustering phase
I is redundant) it corresponds to LSI. CLSI represents docu-
ments by means of the columns of (U>U)¡1U>A ∈ Rk×n.
In practice, it is sufficient to construct an orthogonal basis
QU for U . Assuming that QURU = U , where RU ∈ Rk×k,
it immediately follows that documents are equivalently rep-
resented by RU (R>URU)¡1R>UQ>UA = Q>UA. Similarly, any
query q is projected by means of its coefficients with respect
to the basis QU , that is by Q>U q. To save space we do not
list CLSI but note that it is similar to Algorithm 2. The dif-
ferences are in phase II, where the scheme for selecting the
parameters ki is not specified but left to the user and in phase
III, where we explicitly construct an orthogonal basis QU for
range(U) and set X = QU , Y = Q>UA.

632

CLSI adds the extra clustering overhead of phase I,
which, according to our experience with the method, is
small. On the other hand, the necessary SVD’s are applied
on l matrix blocks of size m× nj , j = 1, ..., l each, whereas
LSI would require the leading k singular vectors of the full,
m × n, matrix. This can lead to significant reductions in
runtime, especially when l is close to k. We assume, of
course, that the SVD is computed by means of some iterative
algorithm; cf. [2]. The gain in runtime is expected to
be larger for Algorithm 1 and the approximation better for
Algorithm 2. Further time gains are possible in Algorithm
2 and CLSI, with block methods to compute consecutive
singular triplets. We defer discussion of updating strategies
for a full version of this paper.

Reference [21] addresses the following important issue.
If we possess truncated SVD approximations for blocks of A,
how does this information help us to approximate A? This is
directly related to our methodology, since it uses the leading
left singular vectors of each block. Let each cluster block Aj

be approximated using the optimal rank-1 matrix. Note now
that the matrix [¾

(1)
1 u

(1)
1 (v

(1)
1)>, ..., ¾

(k)
1 u

(k)
1 (v

(k)
1)>], whose

columns are the best rank-1 approximations of each block
Aj , can be rewritten as B := [best1(A1), ...,best1(Ak)] =
USV>, where best1(Aj) is the optimal rank 1 approxi-
mation of Aj and U ,S,V are as discussed in formula 2.4
above. Consider next using B or a lower rank approxima-
tion of it to approximate A. The error is ‖A − B‖F =
‖A − USV>‖F in the former case. How does this compare
with the approximation offered by Algorithm 1? There we
use minY ∈Rk×m ‖A − UY ‖F , and thus search the space of
k×n matrices to minimize the Frobenius norm; instead, with
the former approach, B is used directly and no minimization
is performed. It immediately follows, therefore, that

min
Y ∈Rk×m

‖A− UY ‖F ≤ ‖A− B‖F(2.5)

The above argument can easily be extended to the case where
each cluster block is optimally approximated with respect to
the Frobenius norm by matrices of rank-1 or higher, except
that this time B := [bestk1

(A1), ...,bestkl
(Al)] so that B =

USV>, where U is as in (2.3) and S,V modified accordingly
(cf. formula 2.4). Proceeding as above we can show that for
the above U and B, an inequality as (2.5) holds, except that
Y ∈ RK×m, where K =

∑k

j=1 kj and K ≥ k. We will call
an algorithm based on approximation B and will denote the
method based on this approach by BSVD and will use it in
our experiments. We will assume that the clustering phase
results in the same groups as Algorithm 2 and use as rank of
the partial SVD approximation of each cluster Ai the value
ki, obtained in Algorithm 2.

A related approach to CLSI is CSVD ([4]) that, like
ours, has strong connections with methods that attempt to
find local structure in data space. CSVD uses clustering

and then obtains the principal components of each block
ÂiÂ

>
i , where Âi = Ai − Aiee

>/ni and e is the vector
of all 1’s. All mk eigenvalues of these matrices are sorted
and components are selected for the reconstruction. For the
size of problems we are considering here, a disadvantage
of this well-designed method is cost. For related work see
also [10], where clustering is first used and LSI is applied
independently on each cluster though there is no discussion
of low rank approximations of tdm. Of great interest are
also the probabilistic techniques in [9]; we plan to study
them in light of CLSI. Here we evaluate our methods vs.
the powerful algorithms of [19] and further expanded upon
together with MATLAB codes in [3]: these are SPQR (sparse
pivoted QR approximation) and SCRA (sparse column-row
approximation), that construct approximations of the form
A ∼= XTY >, where X,Y are sparse and T is small.

3 Numerical experiments
We next explore the performance of our approach using
MATLAB 6.5 running on a 2.4 GHz Pentium IV PC with 512
MB of RAM. We examine runtimes, approximation error
and IR precision. The SVD and QR decompositions are
computed via MATLAB’s functions svds and (“economy
size”) qr. Our data sets were built using TMG2, a MATLAB
tool for the construction of tdm’s from text collections [20].
Here we only present experiments with tdm cran lec.
This was produced from the CRANFIELD data set using
the best term weighting and normalization combinations
according to results in [20]. Runtimes are in seconds and
include clustering, though we refer to the extended paper
for further analysis. The methods considered are: Centroids
([16]); Algorithms 1 and 2 (Table 1); CLSI (Section 2);
SPQR and SCRA (Section 2); BSVD (Section 2). The
baseline method is the truncated SVD method (when it
is clear from the context we simply call it SVD). We
first evaluate the matrix approximation algorithms3. The
preprocessing algorithm used was Spherical k-means (S-
kmeans) [6]. We record the approximation error ‖A −
Ã‖F and compare it with ‖A − UkSkV >k ‖F from partial
SVD using ranks k = 10 : 10 : 150. Algorithm 2
employed l = 2, 3, k. Because of the nondeterminism
in the clustering, we ran 5 experiments and recorded the
mean approximation error. Fig. 1 depicts errors (top) and
runtimes (bottom) for truncated SVD, SPQR, SCRA, BSVD,
Centroids and Algorithms 1 and 2. For Algorithm 2 we
depict the errors obtained when l = 2, 3, k. Centroids
appears to provide reasonable approximations at low cost
compared to truncated SVD. Algorithms 1 and 2 appear
to return better approximations with the latter being more

2See http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/.
3Due to space limitations we only present results with cran lec and

defer analysis of the effect of clustering.

633

0 50 100 150
26

28

30

32

34

36

38

Number of factors

A
pp

ro
xi

m
at

io
n

er
ro

r

TDM cran_lec

SVD
SPQR
SCRA
BSVD
CM
ALG.1
ALG.2, l=k
ALG.2, l=2
ALG.2, l=3

0 50 100 150
0

10

20

30

40

50

60

Number of factors

Ti
m

e
(s

ec
)

TDM cran_lec

SVD
SPQR
SCRA
BSVD
CM
ALG.1
ALG.2, l=k
ALG.2, l=2
ALG.2, l=3

Figure 1: Approximation errors (top) and runtimes (bottom)
for methods under review (l = 2, 3, k)

accurate. Algorithm 2 provides the best approximations
than all other methods, with the approximations becoming
better as l drops from k to 2. This is not surprising, as the
l = 1 corresponds to the optimal (Eckard-Young) rank-k
approximation. Fig. 1 (bottom) shows that runtimes increase
as l decreases; in particular they are halved between l = 2
and l = 1, underlying the linearity of the expected runtime
of (iterative) SVD algorithms with respect to the number of
columns. The experiments indicate that Algorithms 1 and
2 can be economical effective alternatives to the classical
rank-k approximation. Centroids also returns good overall
performance; faster than Algorithms 1 and 2 with accuracy
close to that returned by the former.

We next comment on SPQR, SCRA and BSVD. The
compressed representation of A in Algorithms 1 and 2 re-
quires U (needing mk words) and Y (another nk words).
SPQR and SCRA, on the other hand, need much less stor-
age, namely (n + 1)k and (k + 2)k words, respectively,
as well as some rows and columns of the tdm. From Fig.
1(top), for our datasets, Algorithms 1 and 2 return better ap-
proximations than SPQR, SCRA and BSVD. On the other
hand, Centroids and SPQR are faster. Table 2 shows the run-
times that SPQR, SCRA, BSVD and Algorithms 1, 2, need
to reach a specific error in the approximation achieved by
the truncated SVD. Each table entry contains the number of
factors required for such an approximation error as well as
the precision in the querying process. Here we only present

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of factors

P
re

ci
si

on

TDM cran_lec

SVD
SPQR
SCRA
BSVD
CM
ALG.1
ALG.2, l=k
ALG.2, l=2
ALG.2, l=3

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Singular value #

S
in

gu
la

r v
al

ue

illc1850

SVD
SPQR
SCRA
BSVD
ALG.1
ALG.2, l=k
ALG.2, l=2
ALG.2, l=3

Figure 2: Precision (top); approximate singular values (bot-
tom) for methods under review (l = 2, 3, k)

results for the cran lec tdm, with k = 70, 80. It ap-
pears that SPQR is the fastest, BSVD and SCRA the slowest,
while Algorithms 1 and 2 take time comparable with SPQR
(for l = k). SPQR, SCRA and BSVD lead to larger val-
ues of k before the sought error threshold is reached. We
also considered matrices unrelated to IR: Fig. 2(bottom) il-
lustrates the 50 largest singular values of matrix illc1850
(from www.nist.gov/MatrixMarket) approximated
using SPQR, SCRA, BSVD and Algorithm 1 and 2. The
latter two appear to return the best approximations.

Alg.-k 70 80

SVD 15.3, 70, 0.44 17.7, 80, 0.45
SPQR 2.7, 200, 0.30 3.3, 220, 0.31
SCRA 16.4, 310, 0.34 17.7, 330, 0.35
BSVD 8.9, 200, 0.28 9.4, 230, 0.27
Alg.1 6.1, 110, 0.38 6.8, 130, 0.39
Alg.2, l = k 6.1, 110, 0.39 6.4, 120, 0.40
Alg.2, l = 2 11.4, 80, 0.44 12.3, 90, 0.44
Alg.2, l = 3 8.0, 80, 0.44 9.8, 90, 0.44

Table 2: Results for SVD, SPQR, SCRA, BSVD, Algorithm
1 and 2 (runtime, k, precision) for the same approximation
error in cran lec tdm.

We next examine the effectiveness of the schemes for
IR. Fig. 2(top) illustrates the N = 11-point interpolated av-

634

erage precision for the algorithms. Centroids and Algorithm
1 appear to be competitive with LSI. Interestingly, for small
values of l, Algorithm 2 can return better precision than LSI.
Table 3 tabulates the maximum precision and corresponding
k for each method and confirms that Centroids and Algo-
rithms 1 and 2 can be quite effective for IR. Furthermore, for
small l, Algorithm 2 may achieve higher precision than LSI.

Alg.-Tdm med lfx cran lec cisi lfc
LSI 0.70, 100 0.46, 100 0.25, 90
SPQR 0.56, 150 0.28, 150 0.17, 150
SCRA 0.51, 150 0.26, 150 0.18, 120
BSVD 0.46, 150 0.25, 150 0.14, 150
CM 0.65, 120 0.40, 150 0.20, 110
Alg.1 0.65, 110 0.40, 150 0.20, 140
Alg.2, l = k 0.65, 110 0.41, 150 0.20, 140
Alg.2, l = 2 0.70, 70 0.46, 130 0.23, 110
Alg.2, l = 3 0.69, 80 0.45, 120 0.23, 110

Table 3: Best precision and corresponding value of k pairs
for LSI, SPQR, SCRA, BSVD, Centroids Method and Algo-
rithms 1-2. Boldface indicates best precision/dataset.

Overall, it appears that our methodology can produce
approximations with good performance. All proposed meth-
ods require smaller runtimes than partial SVD. Our exper-
iments also indicate that CLSI is suitable for the querying
process as in some cases it gives better results, faster than
LSI. Therefore, CLSI could be used as basis of new algo-
rithmic suites for IR from large and dynamic collections and
merits additional study.

Acknowledgements We thank M. Berry, P. Drineas, E.
Kokiopoulou and C. Bekas for helpful discussions and the re-
viewers for their comments regarding this work; due to lack
of space, however, several issues and further experiments
must be addressed in the full version of the paper; see also
our group’s website http://scgroup.hpclab.ceid.upatras.gr.

References

[1] D. Achlioptas and F. McSherry, Fast computation of low
rank matrix approximations, Proc. 33rd Annual ACM STOC,
2001, pp. 611–618.

[2] M.W. Berry, Large scale singular value decomposition, Int. J.
Supercomp. Appl. 6 (1992), 13–49.

[3] M.W. Berry, S. A. Pulatova, and G. W. Stewart, Comput-
ing sparse reduced-rank approximations to sparse matrices,
Tech. Rept. No. CS-04-525, Dept. Comput. Sci., Univ. Ten-
nessee, Knoxville, May 2004.

[4] V. Castelli, A. Thomasian, and C.-S. Li, CSVD: Clustering
and singular value decomposition for approximate similarity

search in high-dimensional spaces, IEEE Trans. Knowl. Data
Eng. 15 (2003), no. 3, 671–685.

[5] M. Chu and R. Funderlic, The centroid decomposition: Re-
lationships between discrete variational decompositions and
SVDs, SIAM J. Matrix Anal. Appl. 23 (2002), no. 4, 1025–
1044.

[6] I. S. Dhillon and D. S. Modha, Concept decompositions for
large sparse text data using clustering, Machine Learning 42
(2001), no. 1, 143–175.

[7] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay,
Clustering of large graphs via the singular value decomposi-
tion, Machine Learning 56 (2004), 9–33.

[8] P. Drineas, R. Kannan, and M. Mahoney, Fast Monte Carlo
algorithms for matrices II: Computing a low-rank approxi-
mation to a matrix, Tech. Report TR-1270, Yale University,
Department of Computer Science, February 2004.

[9] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo
algorithms for finding low-rank approximations, Proc. 39th
Annual Symp. FOCS, ACM, 1998, pp. 370–378.

[10] J. Gao and J. Zhang, Clustered SVD strategies in latent
semantic indexing, Tech. rept. no. 382-03, Dept. Comput.
Science, Univ. Kentucky, Lexington, KY, 2003.

[11] L. Guttman, General Theory and Methods for Matrix Factor-
ing, Phychometrica 9 (1944), 1–16.

[12] L. Hubert, J. Meulman, and W. Heiser, Two purposes for
matrix factorization: A historical appraisal, SIAM Rev. 42
(2000), no. 1, 68–82.

[13] E. Kokiopoulou and Y. Saad, Polynomial filtering in latent
semantic indexing for information retrieval, Proc. 27th ACM
SIGIR (New York), ACM, 2004, pp. 104–111.

[14] T. Kolda and D. O’Leary, A semidiscrete matrix decomposi-
tion for latent semantic indexing information retrieval, ACM
Trans. Inform. Sys. 16 (1998), 322–346.

[15] D. D. Lee and H. S. Seung, Algorithms for non-negative ma-
trix factorizations, Advances in Neural Information Process-
ing Systems 13 (2001), 556–562.

[16] H. Park and L. Elden, Matrix rank reduction for data analysis
and feature extraction, Tech. report, University of Minnesota
CSE Tech. Rept., 2003.

[17] H. Park, M. Jeon, and J.B. Rosen, Lower dimensional repre-
sentation of text data based on centroids and least squares,
BIT 43-2 (2003), 1–22.

[18] G. Salton, C. Yang, and A. Wong, A Vector-Space Model for
Automatic Indexing, CACM 18 (1975), no. 11, 613–620.

[19] G. W. Stewart, Four algorithms for the efficient computation
of truncated pivoted QR approximations to a sparse matrix,
Numer. Math. 83 (1999), 313–323.

[20] D. Zeimpekis and E. Gallopoulos, TMG: A MATLAB toolbox
for generating term-document matrices from text collections,
Technical Report, HPCLAB-SCG 1/6-04, Comput. Eng. &
Inform. Dept., U. Patras, Greece, June 2004.

[21] Z. Zhang and H. Zha, Structure and perturbation analysis
of truncated SVD for column-partitioned matrices, SIAM J.
Matrix Anal. Appl. 22 (2001), 1245–1262.

[22] Z. Zhang, H. Zha, and H. Simon, Low-rank approximations
with sparse factors I: Basic algorithms and error analysis,
SIAM J. Matrix Anal. Appl. 23 (2002), no. 3, 706–727.

635

WFIM: Weighted Frequent Itemset Mining
with a weight range and a minimum weight

Unil Yun and John J. Leggett
Department of Computer Science

Texas A&M University

College Station, TX 77843, U.S.A.

{yunei, leggett@cs.tamu.edu}

ABSTRACT
Researchers have proposed weighted frequent itemset mining
algorithms that reflect the importance of items. The main focus
of weighted frequent itemset mining concerns satisfying the
downward closure property. All weighted association rule
mining algorithms suggested so far have been based on the
Apriori algorithm. However, pattern growth algorithms are more
efficient than Apriori based algorithms. Our main approach is to
push the weight constraints into the pattern growth algorithm
while maintaining the downward closure property. In this paper,
a weight range and a minimum weight constraint are defined and
items are given different weights within the weight range. The
weight and support of each item are considered separately for
pruning the search space. The number of weighted frequent
itemsets can be reduced by setting a weight range and a
minimum weight, allowing the user to balance support and
weight of itemsets. WFIM generates more concise and important
weighted frequent itemsets in large databases, particularly dense
databases with low minimum support, by adjusting a minimum
weight and a weight range.

1. Introduction

Before the FP-tree based mining method [7] was developed,
Apriori approaches [13, 14] were usually used based on the
downward closure property. That is, if any length k pattern is not
frequent in a transaction database, superset patterns can not be
frequent. Using this characteristic, Apriori based algorithms
prune candidate itemsets. However, Apriori based algorithms
need to generate and test all candidates. Moreover, they must
repeatedly scan a large amount of the original database in order
to check if a candidate is frequent or not. This is inefficient and
ineffective. To overcome this problem, pattern growth based
approaches [7, 8, 9, 10] were developed. FP-tree based methods
mine the complete set of frequent patterns using a divide and
conquer method to reduce the search space without generating
all the candidates. An association mining algorithm generates
frequent patterns and then makes association rules satisfying a
minimum support. One of the main limitations of the traditional
model for mining frequent itemsets is that all the items are
treated uniformly, but real items have different importance. For
this reason, weighted frequent itemset mining algorithms [1, 2,
5] have been suggested. The items are given different weights in
the transaction database. The main focus in weighted frequent

itemset mining concerns satisfying the downward closure
property. The downward closure property is usually broken
when different weights are applied to the items according to
their significance. Most of the weighted association rule mining
algorithms such as [1, 2, 5] have adopted an Apriori algorithm
based on the downward closure property. They have suggested
the sorted closure property [4], the weighted closure property [1]
or other techniques [2, 3, 5] in order to satisfy the downward
closure property. However, Apriori based algorithms use
candidate set generation and test approaches. It can be very
expensive to generate and test all the candidates. Performance
analyses [11, 12] have shown that frequent pattern growth
algorithms are efficient at mining large databases and more
scalable than Apriori based approaches. However, there has
been no weighted association rule mining using the pattern
growth algorithm because the downward closure property is
broken by simply applying the FP growth methodology.

We propose an extended model to tackle these problems of
previous frequent itemset mining. Our main goal in this
framework is to push weight constraints into the pattern growth
algorithm while keeping the downward closure property. The
remainder of the paper is organized as follows. In section 2, we
describe the problem definition of weighted association rules. In
Section 3, we develop a WFIM (Weighted Frequent Itemset
Mining). Section 4 shows the extensive experimental results.
Finally, conclusions are presented in section 5.

2. Problem definition
Let I = {i1, i2..., in} be a unique set of items. A transaction
database, TDB, is a set of transactions in which each
transaction, denoted as a tuple <tid, X>, contains a unique tid
and a set of items. An itemset is called a k-itemset if it contains
k items. An itemset {x1, x2, ..., xn} is also represented as x1, x2,
..., xn. The support of itemset A is the number of transactions
containing itemset A in the database. A weight of an item is a
non-negative real number that shows the importance of each
item. We can use the term, weighted itemset to represent a set of
weighted items. A simple way to obtain a weighted itemset is to
calculate the average value of the weights of the items in the
itemset. As defined by previous studies [1, 2, 5], the problem of
weighted association rule mining is to find the complete set of
association rules satisfying a support constraint and a weight
constraint in the database.

636

TID Set of items Frequent Item list

100 a, c, d, f, i, m c, d, f, m

200 a, c, d, f, m, r c, d, f, m, r

300 b, d, f, m, p, r d, f, m, p, r

400 b, c, f, m, p c, f, m, p

500 c, d, f, m, p, r c, d, f, m, p, r

600 d, m, r d, m, r

Table 1: transaction database TDB.

3. WFIM (Weighted Frequent Itemsets Mining)
We suggest an efficient weighted frequent itemset mining
algorithm in which the main approach is to push weight
constraints into the pattern growth algorithm and provide ways
to keep the downward closure property. WFIM adopts an
ascending weight ordered prefix tree. The tree is traversed
bottom-up because the previous matching can not maintain the
downward closure property. A support of each itemset is usually
decreased as the length of an itemset is increased, but the weight
has a different characteristic. An itemset which has a low weight
sometimes can get a higher weight after adding another item
with a higher weight, so it is not guaranteed to keep the
downward closure property. We present our algorithm in detail
and show actual examples in order to illustrate the steps in the
FP-tree construction for weighted frequent itemset mining and
the mining of a weighted frequent itemset from the FP-tree.

3.1 Preliminaries

Definition 3.1 Weight Range (WR)

The weight of each item is assigned to reflect the importance of
each item in the transaction database. A weight is given to an
item with a weight range, Wmin ≤ W ≤ Wmax.

Definition 3.2 minimum weight constraint (min_weight)

 In the WFIM, we want to give a balance between the two
measures of weight and support. Therefore, we define a
minimum weight constraint like a minimum support (min_sup)
in order to prune items which have lower weights. Itemset X is
defined as a useless itemset if the support of itemset X is less
than a minimum support and its weight is also less than a
minimum support.

Definition 3.3 Maximum Weight and Minimum Weight

The maximum weight (MaxW) is defined as the value of the
maximum weight of items in a transaction database or a
conditional database. The minimum weight (MinW) is defined
as the value of the minimum weight of items in a transaction
database or a conditional database. In WFIM, a MaxW is used
in a transaction database and a MinW is used in a conditional
database.

Definition 3.4 Weighted Frequent Itemset (WFI)

 An itemset X is a weighted infrequent itemset if following
pruning, condition 1 or condition 2 below is satisfied. If the
itemset X does not satisfy both of these, the itemset X is called a
weighted frequent itemset.

Table 2: example of sets of items with different WRs.

Pruning condition 1 (support < min_sup && weight <
min_weight) The support of an itemset is less than a minimum
support and the weight of an itemset is less than a minimum
weight constraint.

Pruning condition 2 (support * MaxW (MinW) < min_sup)

 In a transaction database, the value of multiplying itemset’s
support with a maximum weight (MaxW) among items in the
Transaction database is less than a minimum support. In
conditional databases, the value of multiplying the support of
an itemset with a minimum weight (MinW) of a conditional
pattern in the FP-trees is less than a minimum support.

TID WFI list
(1.0 ≤ WR 1 ≤ 1.5)

MinW = 1.0

WFI list
(0.7 ≤ WR2 ≤ 1.3)

MinW = 0.7

WFI list
(0.7 ≤ WR3 ≤ 0.9)

MinW = 0.7

WFI list
(0.2 ≤ WR4 ≤ 0.7)

MinW = 0.2

100 a, c, d, f, m c, d, f, m c, d, f, m d, f, m

200 a, c, d, f, m, r c, d, f, m, r c, d, f, m, r d, f, m

300 b, d, f, m, p, r d, f, m, p, r d, f, m, r d, f, m

400 b, c, f, p, m c, f, p, m c, f, m f, m

500 c, d, f, m, p, r c, d, f, m, p, r c, d, f, m, r d, f, m

600 d, m, r d, m, r d, m, r d, m

Table 3: weighted frequent itemsets with different WRs.

Example 1: Table 1 shows transaction database TDB. Table 2
shows example sets of items with different weights. Assume that
the minimum support threshold is 3. The frequent list is:
Frequent_list = <a:2, b:2, c:4, d:5, f:5, i:1, m:6, p:3, r:4>. The
columns in Table 3 show the set of weighted frequent itemsets
after pruning weighted infrequent itemsets using pruning
condition1 and pruning condition 2 in definition 3.4 by applying
different WRs. For example, when WR3 is applied, item p’s
support is 3, MaxW is 0.9 and the value (2.7) of multiplying
item’s support (3) with a MaxW (0.9) of an itemset in the TDB
is less than minimum support (3) so item “p” can be removed.
Meanwhile, the number of WFI can be increased when WR1 is
used as the weight range. The support of Item “a” in the
transaction database is 2. However, a maximum weight is 1.5 so
the value (3) of multiplying item’s support (2) with a MaxW
(1.5) of an itemset is greater than or equal to a minimum support
(3) so this item is added in the WFI list.

Example 2: Let us show another example by changing a WR
and a min_weight. In this example, Table1 and Table 2 are used
and pruning condition 1 in definition 3.4 is applied using WR2

as a weight range. If the min_weight is 1.2, items “a”, “b” and
“i” are pruned because the support of these items is less than a
minimum support and the weight of these items is also less than
a minimum weight.

Item (min_sup = 3) a b c d f i m p r

Support 2 2 4 5 5 1 6 3 4

Weight (1.0 ≤ WR1 ≤ 1.5) 1.3 1.1 1.4 1.2 1.5 1.1 1.3 1.0 1.5

Weight (0.7 ≤ WR2 ≤ 1.3) 1.1 1.0 0.9 1.0 0.7 0.9 1.2 0.8 1.3

Weight (0.7 ≤ WR3 ≤ 0.9) 0.85 0.75 0.8 0.9 0.75 0.7 0.85 0.7 0.9

Weight (0.2 ≤ WR4 ≤ 0.7) 0.5 0.3 0.6 0.4 0.7 0.3 0.5 0.2 0.7

637

Fig. 1. The global FP tree

In a similar way, we can get the following results by changing
min_weight. If min_weight is 1.1, items “i” and “b” are pruned
and if min_weight is 1.0, item “i” is pruned. As a result, the
number of weighted frequent items can be changed according to
different min_weights. When pruning condition 2 of definition
3.4 is considered, if a weight range is 1.0 ≤ WR1 ≤ 1.5, only
item i is pruned because the value of multiplying item i’s
support (1) with a maximum weight (1.5) is less than a
minimum support (3). However, the items “a” and “b” with 2 as
a support are not pruned because the value of multiplying the
support (2) of item “a” and “b” with a maximum weight (1.5) is
equal to a minimum support (3). In a similar fashion, we can get
the following results by changing WRs. If the weight range is
0.7 ≤ WR3 ≤ 0.9, item “a”, “b”, “i” and “p” are pruned and if the
weight range is 0.2 ≤ WR4 ≤ 0.7, item “a”, “b”, “c”, “i”, “p” and
“r” are pruned. Thus, the number of weighted frequent items can
be adjusted by using the different WRs.

3.2 FP (Frequent Pattern) tree structure

WFIM uses FP-trees as a compression technique. FP-trees are
mainly used in pattern growth algorithms. WFIM computes local
frequent items of a prefix by scanning its projected database.
The FP-trees in our algorithm are made as follows. Scan the
transaction database one time and count the support of each item
and check the weight of each item. After this, sort the items in
weight ascending order. Although supports of items may be
lower than the minimum support and infrequent, the items can
not be deleted since infrequent items may become weighted
itemsets in the next step. The weighted infrequent items are
removed according to pruning conditions 1 and 2 in definition
3.4. For instance, assume that WR3 is used as a WR, min_sup is
3 and min_weight is 0.7. Then, items “a”, “b”, “p”, and “i” are
removed. When an item is inserted in the FP-tree, as already
discussed, a weighted infrequent item is removed and the rest,
weighted frequent items and itemsets, are sorted by weight
ascending order. As shown in [7], each node in the FP-tree has
item-id, a weight, count and node link. Separate header tables
exist for each FP tree and there is an entry for each item in the
header table. Fig.1 presents the global FP-tree and corresponding
header table for this example in WFIM.

Fig. 2. Conditional FP trees.

3.3 Bottom up Divide and Conquer

After a global FP-tree is generated from the transaction database,
WFIM mines frequent itemsets from the FP-tree. The weighted
frequent itemsets are generated by adding items one by one.
WFIM adapts the divide and conquer approach for mining
weighted frequent itemsets. It divides mining the FP-tree into
mining smaller FP trees. In the above example of Fig 1, WFIM
mines (1) the patterns containing item “r” which has the highest
weight, (2) the patterns including “d” but not “r”, (3) the
patterns containing “m” but no “r” nor “d”, (4) the patterns
containing “c” but no “r”, “d” nor “m”, and finally the patterns
containing item “f”. WFIM can find all the subsets of weighted
frequent itemsets.

To begin with, for node r, we generate a conditional database by
starting from r’s head and following r’s node link. The
conditionaldatabase for prefix “r:4” contains three transactions:
<dmcf:2>,<dmf:1>and<dm:1>. Previous FP-growth algorithms
only consider a support in each conditional database so an item
“c” is only pruned because the support (2) of item “c” is less
than a minimum support (3). However, in WFIM, before
constructing the FP-tree, conditions in definition 3.4 are applied
in order to check whether it is a weighed frequent itemset. From
Table 2, we know that the weights of item “r”, “d”, “m”, “c”,
and “f” are 0.9, 0.9, 0.85, 0.8 and 0.75 respectively. There is
only one item “r” in the conditional pattern, so the MinW of the
conditional pattern is 0.9. By applying pruning conditions, we
can see that not only an item “c” but also an item “f” are pruned
because the value (2.7) of multiplying item f’s support (3) with a
minimum weight (0.9) is less than a minimum support (3).
Although the support of item “f” is equal to the minimum
support, the item “f” with a lower weight can be deleted. After
that, Fig. 2 (a) shows a FP- tree with prefix “r”. As you can see,
the conditional FP-tree for prefix “r:4” is a single path tree
<md:4>. We can generate all kinds of combinations of items
including a conditional pattern “r”. That is, “r”, “rm”, “rd” and
“rmd”. The important point is that we can use the minimum
weight (MinW) of conditional patterns instead of the maximum

f

m

d

r

0.75

 0.8

0.85

 0.9

5

4

6

5

4

C : 4

m : 4

 d : 3

 r : 2

 m : 1

 d : 1

 r : 1

 m : 1

 d : 1

 r : 1

 Root

c

 0.9

f : 5

d

0.85

 0.9

4

4

m

d

 Root

 m

 (a) projected FP-tree

 with prefix r

0.75 4
 f

 Root

 f

 Root

0.75

 0.8

5

4

 f

c

 f

c

0.75

 0.85

4

5

 f

 m

 Root

 f

 m

 m

 (b) projected FP-tree

 with prefix d

 (c) projected FP-tree

 with prefix m

 (d) projected FP-tree

 with prefix c

638

weight (MaxW) of the conditional database or the MaxW of a
conditional pattern to prune weighted infrequent itemsets
because WFIM uses an ascending weight ordered prefix tree
structure to construct conditional databases and the MinW of a
prefix is always greater than or equal to the weights of all the
items in a conditional database. Hence, the minimum weight of
a conditional pattern in the conditional database can be used for
applying pruning conditions in definition 3.4.

For node “d”, WFIM derives a frequent pattern (d:5) and three
paths in the FP-tree : <mcf:3>, <mf:1> and <m:1>. In the FP-
growth algorithm, no item is pruned. However, in WFIM, item
“c” is pruned in this conditional database with prefix “d”, since
the value (2.7) of multiplying item c’s support (3) with the
minimum weight (0.9) is less than minimum support (3)
although the supports of these items are greater than a minimum
support. However, item “m” and item “f” are not pruned. After
removing weighted infrequent itemsets in the conditional
database, the projected FP-tree for the prefix “d:5” is
constructed. Fig 2 (b) shows a conditional FP-tree for prefix d:5.
It’s not a single FP-tree, so we divide the conditional FP-tree to
mine even smaller conditional FP-trees recursively. As a result,
after a recursive process, we obtain weighted frequent itemsets
based on conditional pattern “d”: “d:5”, “dm:5”, “df:4” and
“dmf:4”. Similarly, we can build projected FP-trees from the
global FP-tree and mine weighted frequent itemsets from them
recursively. These FP-trees are shown in Fig. 2(c)-(d). (The FP-
tree for prefix f:5 is empty and not shown here).

3.4 WFIM algorithm

WFIM can push weight constraints into the pattern growth
algorithm and show how to keep the downward closure
property. A weight range and a minimum weight are defined and
items are given different weights within the weight range. Now,
we summarize the weighted frequent itemset mining process and
present the mining algorithm.

ALGORITHM. (WFIM): Weighted frequent itemset mining with
a weight range and a minimum weight constraint in a large
transaction database.

Input: (1) A transaction database : TDB,

 (2) minimum support threshold : min_sup,

 (3) weights of the items within weight range : wi,

 (4) minimum weight threshold : min_weight

Output: The complete set of weighted frequent itemsets.

Method:

1. Scan TDB once to find the global weighted frequent items
satisfying the following definition: An itemset X is a weighted
frequent itemset if the following pruning conditions 1 and 2 are not
satisfied.
Condition 1.1: (support < min_sup && weight < min_weight)

Condition 1.2: (support * MaxW < min_sup)

2. Sort items in weight ascending order. The sorted weighted
frequent item list forms the weight_order and header of FP tree.

3. Scan the TDB again and build a global FP-tree using
weight_order.

4. Mine a global FP-tree for weighted frequent itemset mining in a
bottom up manner. Form conditional databases for all remaining

Table 4: Data Characteristics

items in weight_list and complete local weighted frequent itemsets
for the conditional databases. (An itemset X is a weighted frequent
itemset if the following pruning conditions 1 and 2 are not
satisfied).

Condition 4.1: (support < min_sup && weight < min_weight)

Condition 4.2: (support * MinW < min_sup)

5. When all the items in the global header table have been
mined, WFIM is finished.

4. Performance Evaluation
In this section, we present our performance study over various
datasets. In our experiments, we compared WFIM with FP-
growth. We used two real datasets and one synthetic dataset
which have been used in pervious experiments [7, 8, 9, 10, 11,
12]. Table 4 shows the characteristic of these datasets. The two
real datasets used are connect, and BMS-webView-1. The
connect dataset is very dense and includes game state
information. The BMS-webView-1 dataset is a very sparse
dataset with a web log. These real datasets can be obtained from
the UCI machine learning repository [15]. The synthetic datasets
were generated from the IBM dataset generator. We use
T10I4D100k which is very sparse and contains 100,000
transactions. However, the synthetic datasets T10I4Dx contain
100k to 1000k transactions. These datasets have been used to
test scalability in the previous performance evaluations [9, 10,
11, 12]. WFIM is written in C++. In our experiment, a random
generation function generates weights for each item. All
experiments were performed on a Unix machine. First, we show
how the number of weighted frequent itemsets in dense databases
and sparse databases with very low minimum support can be
adjusted by user’s feedback. Second, we show how WFIM has
good scalability against the number of transactions in the
datasets. In Fig. 3, we can see that the number of WFI is
decreased as the weight range is decreased. In addition, WFIM
can adjust the number of weighted frequent itemsets in the
dense database with very low minimum support. For instance, in
the connect dataset with 10% minimum support, WFIM generates
11003 with a WR: 0.05 – 0.15 and 1989 with a WR: 0.05 –
0.14. Therefore, the number of weighted frequent itemsets can
be adjusted by user’s feedback. From Fig. 4, the runtime of
WFIM is shown under different WRs.

0

20000

40000

60000

80000

100000

120000

140000

0.05 –
0.17

0.05 –
0.16

0.05 –
0.15

0.05 –
0.14

0.05 –
0.13

0.05 –
0.12

Weight Range

N
u

m
b

er
 o

f
W

F
I Min_Sup = 10%

0

5
10

15
20

25
30

35
40

45

0.05 –
0.17

0.05 –
0.16

0.05 –
0.15

0.05 –
0.14

0.05 –
0.13

0.05 –
0.12

Weight Range

R
el

at
iv

e
ti

m
e

fo
r

fi
n

d
in

g
 W

F
I

Min_Sup = 10%

Fig. 3. Num of WFI (Connect dataset) Fig. 4. Runtime (Connect dataset)

Data sets Size #Trans #Items A.(M.) t. l.

Connect 12.14M 67557 150 43 (43)

BMS-webView-1 1.28M 59601 497 2.51 (267)

T10I4Dx 5.06-
50.6M

200k-
1000k

1000 10 (31)

639

0

50

100

150

200

250

300

350

400

450

1.0 - 1.0 0.1 - 1.0 0.1- 0.8 0.1- 0.6 0.1- 0.4 0.1- 0.2

Weight Range

N
um

be
r

of
 W

FI

M in_Sup = 0.04%
M in_Sup = 0.06%
M in_Sup = 0.08%
M in_Sup = 0.10%
M in_Sup = 0.12%
M in_Sup = 0.14%

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

WR : 1.0
- 1.0

WR : 0.1
- 1.0

WR :
0.1- 0.8

WR :
0.1- 0.6

WR :
0.1- 0.4

WR :
0.1- 0.2

Weight Range

R
el

at
iv

e
ti

m
e

fo
r

fi
n

d
in

g
 W

F
I 0.04%

0.06%
0.08%
0.10%
0.12%
0.14%

Fig. 5. Num of WFI (BMS-WebView-1) Fig. 6. Run time (BMS-WebView-1)

0

20

40

60

80

100

120

140

160

180

200

100K 200K 400K 600K 800K 1000K

Number of Transactions

R
el

at
iv

e
T

im
e

fo
r

fi
nd

in
g

W
F

I

Min_Sup = 0.1%

Min_Sup = 0.5%

Min_Sup = 1%

Min_Sup = 2%

Min_Sup = 5%

0

50000

100000

150000

200000

250000

300000

350000

400000

100K 200K 400K 600K 800K 1000K

Number of transactions

N
u
m

b
er

 o
f
fr
eq

u
en

t
it
em

se
ts

WFI Min_Sup = 0.1%
FI Min_Sup = 0.1%

Fig. 7. Runtime (T10I4DxK) (WR: 0.2–0.8) Fig. 8.Num of WFI (T10I4DxK) (WR: 0.2–0.8)

The runtime is sharply reduced even in the connect dataset with
a low minimum support as the weight range becomes lower. Fig.
5 and Fig. 6 demonstrate the results of using sparse dataset
BMS-WebView-1. In Fig. 5, we can see that the number of WFI
is reduced as the minimum support becomes lower in the sparse
dataset with the same WR. Moreover, the number of weighted
frequent itemsets becomes smaller by diminishing WRs
although the minimum support is the same. In Fig. 6, the
runtime for finding weighted frequent itemsets is shown
according to different WRs as the minimum support is lower.
We can see that the run time also can be reduced by diminishing
WRs. In the several datasets, WFIM can generate smaller
weighted frequent itemsets. It is difficult to reduce frequent
itemsets without changing a minimum support. However, WFIM
can reduce only the number of frequent itemsets by adjusting
WRs when giving weights to each item. In addition, WFIM can
generate orders of magnitude fewer patterns than the
traditional weighted frequent itemset mining algorithms. To test
the scalability with the number of transactions, the T10I4DxK
dataset was used. WFIM scales much better than previous
weighted frequent itemset mining algorithms which are based on
Apriori like approaches [13, 14] since WFIM is based on FP-
growth algorithms. In this scalability test, WFIM is compared
with FP-growth. Both WFIM and FP-growth show linear
scalability with the number of transactions from 100k to 1000k.
However, WFIM is much more scalable than FP-growth. In Fig.
7 and Fig. 8, the difference between WFIM and FP-growth
becomes clear. We first tested the scalability in terms of base
size from 100K tuples to 1000K tuples and different minimum
support of 0.1% to 5%. From Fig. 7, we can see that WFIM has
much better scalability in terms of base size. The slope ratio for
each different minimum support is almost similar. We can also
compare WFIM with the FP-growth algorithm in terms of run
time. In Fig. 7, you can see that WFIM is faster than FP-growth.
More importantly, WFIM can reduce the runtime by adjusting
WRs. That is, users can diminish the runtime and the number of
WFI by reducing a WR. From Fig. 8, we compared WFIM with
FP-growth in order to show that WFIM can generate a more
concise result set considering not only frequency of itemsets but
also their importance. Our above experiments showed that
WFIM can generate smaller but important weighted frequent
itemset with various WRs.

Support of
connect
dataset

Number of
W.F.I

WR: 0.5 –1.5
MW : 1.5

Number of
W.F.I

WR : 0.5 – 1.5
MW : 1.0

Number of
W.F.I

WR : 0.5 – 1.5
MW : 0.5

Num
of

F.C.I
Num of

F.I

64179 (95%) 125 784 1471 812 2205

60801 (90%) 690 2346 5312 3486 27127

54046 (80%) 2769 2989 3044 15107 533975

47290 (70%) 3997 4089 4093 35875 4129839

Table 5. Comparison of frequent itemsets.

The Table 5 lists the number of weighted frequent itemsets
(WFI) with various WRs and min_weights, frequent itemsets
(FI) and frequent closed itemsets (FCI). From Table 5, WFIM
can generate smaller WFI by using different WRs and
min_weights. For example, in Table 4, the number of WFI at a
minimum support: 90%, a WR: 0.5 – 1.5 and a min_weight: 0.5,
is 5312. However, the number of WFI can be reduced to 2346
with a min_weight: 1.0 and can be further reduced to 690 with a
MW: 0.5. The numbers of frequent closed itemsets and frequent
itemsets are 3486 and 27127 respectively. In this way, the
proper number of weighted frequent itemsets can be found by
adjusting a minimum weight.

5. Conclusion
In this paper, we developed WFIM which focuses on weighted
frequent itemset mining based on a pattern growth algorithm.
The extensive performance analysis shows that WFIM is
efficient and scalable in weighted frequent itemset mining.
Many improved algorithms using divide and conquer methods
have been suggested. In future work, the WFIM can be extended
by using a combination of FP-growth based algorithms with
better performance.

6. REFERENCES
[1] Feng Tao, Weighted Association Rule Mining using Weighted Support
and Significant framework. ACM SIGKDD, Aug 2003.

[2] Wei Wang, Jiong Yang, Philip S. Yu, Efficient mining of weighted
association rules (WAR), ACM SIGKDD, Aug 2000.

[3] K. Wang, Y. He and J. Han, Mining Frequent Itemsets Using Support
Constraints, VLDB, Sep 2000.

[4] Bing Liu, Wynne Hsu, Yiming Ma, Mining Association Rules with
Multiple Minimum Supports. ACM SIGKDD, June 1999.

[5] C. H. Cai, Ada Wai-Chee Fu, C. H. Cheng, and W. W. Kwong. Mining
association rules with weighted items. IDEAS'98, July 1998.

[6] J. Han and Y. Fu, Mining Multiple-Level Association Rules in Large
Databases, IEEE TKDE, September/October 1999, pp. 798-805.

[7] Jiawei Han, Jian Pei, Yiwen Yin, Mining frequent patterns without
candidate generation, ACM SIGMOD, May 2000.

[8] Guimei Liu, Hongjun Lu, Yabo Xu, Jeffrey Xu Yu: Ascending
Frequency Ordered Prefix-tree: Efficient Mining of Frequent Patterns.
DASFAA 2003: 65-72.

[9] Jian Pei, Jiawei Han, CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets, DMKD, May 2000.

[10] Jianyong Wang, Jiawei Han, Jian Pei, CLOSET+: searching for the best
strategies for mining frequent closed itemsets, ACM SIGKDD, Aug 2003.

[11] Zijian Zheng, Real World Performance of Association Rule
Algorithms. ACM SIGKDD, 2001.

[12] Bart Goethals, Mohammed J. Zaki, FIMI ’03: Workshop on Frequent
Itemset Mining Implementations. FIMI’03, 2003.

[13] Rakesh Agrawal, Tomasz Imieliński, Arun Swami, Mining association
rules between sets of items in large databases, ACM SIGMOD, May 1993.

[14] Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining
Association Rules in Large Databases, VLDB, September, 1994.

[15] http://www.ics.uci.edu/~mlearn/MLRepository.html.

640

http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=170072&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=170072&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=956779&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=956779&dl=GUIDE&coll=GUIDE&CFID=27128501&CFTOKEN=33355813
http://portal.acm.org/citation.cfm?id=347149&dl=GUIDE&coll=GUIDE&CFID=26968240&CFTOKEN=50711240
http://portal.acm.org/citation.cfm?id=347149&dl=GUIDE&coll=GUIDE&CFID=26968240&CFTOKEN=50711240

Model-based Clustering With Probabilistic Constraints

Martin H. C. Law∗ Alexander Topchy∗ Anil K. Jain∗

Abstract

The problem of clustering with constraints is receiv-
ing increasing attention. Many existing algorithms as-
sume the specified constraints are correct and consis-
tent. We take a new approach and model the uncer-
tainty of constraints in a principled manner by treat-
ing the constraints as random variables. The effect of
specified constraints on a subset of points is propagated
to other data points by biasing the search for cluster
boundaries. By combining the a posteriori enforcement
of constraints with the log-likelihood, we obtain a new
objective function. An EM-type algorithm derived by
variational method is used for efficient parameter esti-
mation. Experimental results demonstrate the useful-
ness of the proposed algorithm. In particular, our ap-
proach can identify the desired clusters even when only
a small portion of data participates in constraints.

1 Introduction

The goal of (partitional) clustering [8] is to discover the
“intrinsic” grouping of a data set without any class la-
bels. Clustering is an ill-posed problem because the ab-
sence of class labels obfuscates the goal of analysis: what
is the proper definition of “intrinsic”? In some applica-
tions, however, there is a preference for certain cluster-
ing solutions. This preference or extrinsic information is
often referred to as side-information. Examples include
alternative metrics between objects, orthogonality to a
known partition, additional labels or attributes, rele-
vance of different features and ranks of the objects.

Perhaps the most natural type of side-information
in clustering is a set of constraints, which specify the
relationship between cluster labels of different objects.
Constraints are naturally available in many clustering
applications. For instance, in image segmentation
one can have partial grouping cues for some regions
of the image to assist in the overall clustering [20].
Clustering of customers in market-basket database can
have multiple records pertaining to the same person.
In video retrieval tasks different users may provide
alternative annotations of images in small subsets of

∗Department of Computer Science and Engineering, Michigan
State University, East Lansing, MI 48823, USA. This research was
supported by ONR contract # N00014-01-1-0266.

−2 0 2 4 6 8 10 12

−2

0

2

4

6

8

x
1
 x

2

x
3
 x

4

Figure 1: A counter-intuitive clustering solution with
pairs (x1, x2) and (x3, x4) in must-link constraints. The
cluster labels of the neighbors of x2 and x3 are different
from those of x2 and x3. This is the consequence of
computing cluster labels instead of cluster boundaries.

a large database [2]; such groupings may be used for
semi-supervised clustering of the entire database.

A pairwise must-link/positive constraint corre-
sponds to the requirement that two objects should
be placed in the same cluster. A pairwise must-not-
link/negative constraint, on the contrary, means that
two objects should be placed in different clusters. Pos-
itive constraints tend to be more informative, and the
experimental results in [17] suggest that negative con-
straints only help the clustering results marginally, at
the expense of increased computation. Therefore, in this
paper we shall focus on positive constraints, though neg-
ative constraints can also be incorporated in our model
[14]. Note that clustering with constraints is different
from learning with unlabelled data, because constraints
only specify the relative relationship between labels.

It is important that the effect of constraints be
propagated: not only the labels of points involved
with constraints should be affected, but also their
neighbors [12]. Without this, one can obtain a weird
clustering solution, as shown in Figure 1. This intuitive
requirement of constraint propagation, unfortunately,
is not satisfied by many existing approaches, which
estimate the cluster labels directly. Our algorithm
instead searches for cluster boundaries that are most
consistent with the constraints and the data.

Different algorithms have been proposed for clus-
tering with constraints. COBWEB and k-means with
constraints were proposed in [18] and [19], respectively.
Spectral clustering has also been modified to work with

641

constraints [11, 20]. Metric-learning and clustering with
constraints in k-means were considered simultaneously
in [4], and was extended to a Hidden Markov random
field formulation in [3]. Correlation clustering [1] uses
only constraints for clustering. Coordinated conditional
information bottleneck [6] discovers novel cluster struc-
ture in a data set.

We earlier had proposed a graphical model to repre-
sent constraints in model-based clustering [13]. In this
paper, we extend that model by (i) incorporating a pos-
terior term in the objective function that corresponds to
the enforcement of constraints, (ii) introducing tradeoff
parameters of such terms as the strengths of constraints,
and (iii) deriving an EM-like algorithm for parameter
estimation based on variational method.

2 Method

Let Y = {y1, . . . ,yN} be the set of d-dimensional data
to be clustered by mixture model-based clustering [5]
with K clusters. Let zi ∈ {1, 2, . . . , K} be the iid (hid-
den) cluster label of yi, and let qj(.|θj) be the probabil-
ity distribution of the j-th component with parameter
θj , which is assumed to be Gaussian. Extensions to
other type of component distributions are straightfor-
ward. Let αj be the prior probability of the j-th cluster.
Consider group constraints, a generalization of pairwise
constraints, where multiple data points (possibly more
than two) are constrained to be in the same cluster. Let
wl be the cluster label of the l-th constraint group, with
L as the total number of groups. The random variable
zi takes the value of wl when the constraint on yi is
enforced. Introduce the random variable vi, which cor-
responds to the constraint on yi. When it is “on” (non-
zero), the constraint is enforced, i.e., zi = wl. When it
is “off” (zero), the constraint is disabled, and zi is dis-
tributed independently according to its prior probabili-
ties. The probability that the constraint is “on” corre-
sponds to the certainty of the constraint. For example,
to represent the constraints for the data in Figure 3, we
should assign y1,y2,y3,y4 to the first group and y5,y6

to the second group. Since there are two groups, L = 2.
If we assume the confidence of all the constraints to be
0.5, the first group constraint is represented by setting
the parameters γi2 = 0 and γi1 = 0.5 for i = 1, 2, 3, 4,
whereas the second group constraint is represented by
γi1 = 0 and γi2 = 0.5 for i = 5, 6. The meaning of γil

will be defined shortly after.
The presence of constraints introduces dependence

only among zi. Different yi are still independent given
zi. Therefore, our model can be factorized as

P (Y) =
∑
z,v,w

(∏

i

P (yi|zi)P (zi|vi,w)P (vi)
) L∏

l=1

P (wl).

y
1

y
2

y
3

y
4

y
5

y
6

Figure 3: An example set of constraints. Points that
should be put in the same cluster are joined by lines.

The rest of the model is specified as follows:

P (wl = j) = αj , 1 ≤ l ≤ L, 1 ≤ j ≤ K,

P (vi = l) = γil, 1 ≤ i ≤ N, 1 ≤ l ≤ L,

P (zi = j|vi,w) =

{
αj if vi = 0
δwl,j if vi = l

,

P (yi|zi = j) = qj(yi),

(2.1)

where z = (z1, . . . , zn), v = (v1, . . . , vn) and w =
(w1, . . . , wL) are the hidden variables. Here, γil denotes
the probability that the constraint of tying yi to the
l-th group is “on”. The values of γil are either specified
by the user to represent the confidence of different con-
straints, or they can be set to 0.5 when the certainties
of the constraints are unknown. An example of such a
model with seven data points and three group labels is
shown in Figure 2. The model in [17] is a special case
of this model when all γil are binary.

An EM algorithm can be derived to learn the
parameters of this model by maximizing the data log-
likelihood [13]. The M-step is described by

aj =

L∑

l=1

P (wl = j|Y) +

N∑
i=1

P (vi = 0, zi = j|Y),(2.2)

α̂j =
aj∑K

j′=1 aj′
,(2.3)

µ̂j =

∑N
i=1 P (zi = j|Y)yi∑N

i=1 P (zi = j|Y)
,(2.4)

Ĉj =

∑N
i=1 P (zi = j|{yi})(yi − µ̂j)(yi − µ̂j)

T

∑N
i=1 P (zi = j|Y)

.(2.5)

Here, the j-th component is assumed to be a Gaussian
with mean µj and covariance Cj , θj = (µj ,Cj). The
E-step consists of computing the probabilities P (wl =
j|Y), P (zi = j|Y) and P (vi =0, zi = j|Y), which can be
done by standard Bayesian network inference algorithms
like belief propagation or junction tree [10]. Because of
the simplicity of the structure of the graphical model,
inference can be carried out efficiently. In particular,
the complexity is virtually the same as the standard

642

v6mz6m

y6
®
­

©
ª

v5mz5m

y5
®
­

©
ª

l
l

l
¡

¡
¡

©©©©©©

HHHHHH

l
l

l
,

,
,

v4

w2m w3mw1m

z7m

y7
®
­

©
ª

v1mz1m

y1
®
­

©
ª

®
­

©
ª

mz4m

y4
®
­

©
ª

v3mz3m

y3
®
­

©
ª

v2mz2m

y2

Figure 2: An example of the graphical model with constraint uncertainties for 9 points in 3 groups. Note that
each connected component in the graph is a polytree and hence the belief propagation algorithm can be used to
calculate the probabilities exactly.

EM algorithm when there are only positive constraints
that tie each of the zi to one group label.

2.1 Modification of the Objective Function The
proposed graphical model can handle the uncertainties
of constraints elegantly. However, the tradeoff between
the constraint information and the data information
cannot be controlled explicitly. To cope with this, an
additional term that represents the a posteriori enforce-
ment of constraints is included in the objective func-
tion. This is a distinct characteristic of the proposed
model: since each constraint is represented as a random
variable, we can consider its posterior probability. The
posterior probability that a constraint is “on” reflects
how strongly a constraint is enforced by the current pa-
rameter estimate. Instead of the binary statement that
a constraint is satisfied or violated, we can now con-
sider the partial degree of satisfaction of a constraint.
This way, the violation of constraints is measured more
accurately. Formally, the new objective function is

(2.6) E = log P (Y|Θ) +
∑

i,l

βil log P (vi = l|,Y, Θ),

with the convention that βil is zero when P (vi = l) = 0.
The posterior enforcement of the constraint on yi is
represented by log P (vi = l|,Y,Θ), because the event
vi = l corresponds to the constraint that zi is tied to
wl. The strengths of the constraints are represented
by βil, which are the user-specified tradeoff parameters
between the influence of the posterior probability and
the data log-likelihood. In this paper, we set βil = ατil,
where α is a global constraint strength parameter and
τil represents the goodness of the constraint tying yi to
the l-th group. If τil is unknown, we can assume that
all constraints are equally important and set τil to one.
The only parameter that needs to be specified is α.

Direct optimization of E is difficult and we resort
to variational method. Due to limitation of space, we
defer the derivation and the update formulae in the
long version of the paper [14]. In brief, there is no
change in the E-step, whereas the M-step (Equations

(2.3) to (2.5)) is modified by replacing the cluster
label probabilities with a weighted sum of constraint
satisfaction and cluster label probabilities.

3 Experiments

3.1 Synthetic Data Set Four 2D Gaussian distri-
butions with mean vectors [1.5

6],
[−1.5

6

]
,
[−1.5
−6

]
,
[

1.5
−6

]
,

and identity covariance matrix are considered. 150 data
points are generated from each of the four Gaussians.
The number of target clusters (K) is two. In the absence
of any constraints, two horizontal clusters are success-
fully discovered by the EM algorithm (Figure 4(d)). Ten
multiple random restarts were used to avoid poor local
minima. Now suppose that prior information favors two
vertical clusters instead of the more natural horizontal
clusters. This prior information can be incorporated by
constraining a data point in the leftmost (rightmost) top
cluster to belong to the same cluster as a data point in
the leftmost (rightmost) bottom cluster. To determine
the strength of a constraint, τil is randomly drawn from
the interval [0.6,1], and we set βil = ατil, where α is
the global constraint strength specified by the user. To
demonstrate the importance of constraint uncertainty,
the constraints are corrupted with noise: a data point is
connected to a randomly chosen point with probability
1− τil. An example set of constraints with 15% of data
points involved in the constraints is shown in Figure
4(a). Different portions of points participating in con-
straints are studied in the experiment. In all cases, the
proposed algorithm can recover the desired two “ver-
tical” clusters, whereas other algorithms (such as [17])
fail. It is worthy of note that our algorithm can recover
the target structure with as few as 2.5% of the data
points participating in constraints. If a clustering with
constraint algorithm that deduces cluster labels directly
is used, the anomaly illustrated in Figure 1 can happen,
because of the small number of constraints.

3.2 Real World Data Sets Experiments are also
performed on three data sets in the UCI machine learn-
ing repository (Table 1). For each data set, K is set

643

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) The constraints

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

(b) α=10, 15% of data in constraints

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

(c) α=20, 5% of data in constraints

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Result without constraints

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

(e) α=20, 10% of data in constraints

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

(f) α=40, 2.5% of data in constraints

Figure 4: Results of the proposed algorithm when different number of data points participate in constraints.

Full name N D K d m

wdbc Wisconsin breast cancer 569 30 2 10 6

derm Dermatology 366 33 6 5 12

image Image Segmentation 2410 18 7 10 14

Table 1: Data sets used in the experiments. N : size of
data. D: no. of features. K: no. of classes. d: PCA
dimension. m: no. of points labelled by a teacher.

to the true number of classes. The distributed learn-
ing scenario described in [17], where different teachers
label a small subset of the data, is used to generate
the constraints. Each teacher labels 2K or 3K data
points, depending on the size of the data. The labels
assigned by the teachers are corrupted with noise with
probability based on the confidence of those labels. The
confidence is used as constraint strengths as in the case
for synthetic data. The number of teachers is deter-
mined by the percentage of points in constraints. PCA
is used to reduce the dimensionality of the data sets to
d to ensure there are a sufficient number of data points
to estimate the covariance matrix, with d determined
by the size of the data. For each data set, half of the
data is used for clustering, while the other half is used
to evaluate the clusters based on the ground truth la-
bels. We compare the performance of soft constraints
[13], hard constraints (equivalent to [17]) and the pro-
posed method in Table 2. The proposed algorithm leads
to superior clusters when compared with the results of

hard and soft constraints. The improvement due to con-
straints is not very significant for the Dermatology data
set, because the standard EM algorithm is able to find
a good quadratic cluster boundary. The degradation of
performance in image for hard constraints is due to the
existence of erroneous constraints.

4 Discussion

The proposed algorithm can be viewed from alternative
perspectives. It can be regarded as training a mixture
of Gaussians in a discriminative manner [9], with the
constraints serving as relaxed label information. If
different Gaussians share the same covariance matrix,
EM algorithm is related to performing discriminant
analysis with posterior probabilities as weights [7]. This
provides an alternative justification of our approach
even when the Gaussian assumption is not satisfied,
because the EM algorithm finds the clusters that are
best separated.

The global constraint strength α is the only param-
eter that requires tuning. In practice, α is chosen au-
tomatically by setting apart a set of “validation con-
straints” or “validation teachers”, which are not used
to estimate the clusters. The smallest value of α that
leads to clusters that violate the validation information
the least is chosen. Note that we do not observe signifi-
cant overfitting in our experiments. So, one may as well
use the value of α that leads to the smallest violation of
the training constraints.

644

20% of data in constraints 10% of data in constraints 5% of data in constraints

H S P P≥H P≥S H S P P≥H P≥S H S P P≥H P≥S

wdbc 6.5 1.9 16.7 9 10 2.8 1.5 13.3 9 9 3.4 -1.1 9.4 9 10

derm 0.5 1.0 3.5 5 6 2.9 2.5 5.2 5 6 1.4 2.3 4.5 6 9

image -2.6 2.6 6.1 8 10 -3.1 0.5 9.0 9 8 -5.8 2.2 5.0 9 6

Table 2: Results on real world data sets. Average improvements in accuracy (in %) with respect to no constraints
for soft constraints (S), hard constraints (H), posterior constraints, i.e., the proposed algorithm, (P), are shown.
The number of times that the proposed algorithm outperforms the other two constraint algorithms in 10 runs is
also shown.

5 Conclusion

We have proposed a graphical model with the con-
straints as random variables. This principled approach
enables us to state the prior certainty and posterior en-
forcement of a constraint. The model is more robust
towards noisy constraints, and it provides a more gen-
eral approach to estimate constraint violation. Metric
learning is automatic because covariance matrices are
estimated. The use of variational method provides an ef-
ficient approach for parameter estimation. Experimen-
tal results show the utility of the proposed method. For
future work, we plan to estimate the number of clusters
automatically. Can traditional criteria like AIC, BIC or
MDL be modified to work in the presence of constraints?
A kernel version of this algorithm can be developed for
clusters with general shapes.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation clus-
tering. In Proc. Annual IEEE Symp. on Foundations
of Computer Science, 2002.

[2] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning via equivalence constraints, with applications
to the enhancement of image and video retrieval. In
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2003.

[3] S. Basu, M. Bilenko, and R.J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proc.
ACM SIGKDD, Intl. Conf. on Knowledge Discovery
and Data Mining, 2004.

[4] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised clus-
tering. In Proc. Intl. Conf. on Machine Learning, 2004.

[5] M. A. T. Figueiredo and A. K. Jain. Unsupervised
learning of finite mixture models. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(3):381–
396, 2002.

[6] D. Gondek and T. Hofmann. Non-redundant data
clustering. In Proc. Intl. Conf. on Data Mining, 2004.

[7] T. Hastie and R. Tibshirani. Discriminant analysis by
Gaussian mixtures. Journal of the Royal Statistical
Society series B, 58:158–176, 1996.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data cluster-
ing: A review. ACM Computing Surveys, 31(3):264–
323, September 1999.

[9] T. Jebara and A. Pentland. Maximum conditional like-
lihood via bound maximization and the CEM algo-
rithm. In Advances in Neural Information Processing
Systems 11, pages 494–500. MIT Press, 1998.

[10] M. I. Jordan. Learning in Graphical Models. Institute
of Mathematical Statistics, 1999.

[11] S. Kamvar, D. Klein, and C. D. Manning. Spectral
learning. In Proc. Intl. Joint Conf. on Artificial
Intelligence, pages 561–566, 2003.

[12] D. Klein, S. D. Kamvar, and C. D. Manning. From
instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clustering.
In Proc. Intl. Conf. on Machine Learning, pages 307–
314, 2002.

[13] M. H. Law, A. Topchy, and A. K. Jain. Clustering
with soft and group constraints. In Proc. Joint IAPR
International Workshops on Structural, Syntactic, And
Statistical Pattern Recognition, 2004.

[14] M. H. C. Law, A. P. Topchy, and A. K. Jain. Model-
based clustering with soft and probabilistic constraints.
Technical report, Michigan State University, 2004.

[15] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference: an empirical
study. In Proc. Conf. on Uncertainty in Artificial
Intelligence, San Francisco, 1999.

[16] S. T. Roweis, L. K. Saul, and G. E. Hinton. Global
coordination of local linear models. In Advances in
Neural Information Processing Systems 14, pages 889–
896. MIT Press, 2002.

[17] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall.
Computing gaussian mixture models with EM using
equivalence constraints. In Advances in Neural Infor-
mation Processing Systems 16. MIT Press, 2004.

[18] K. Wagstaff and C. Cardie. Clustering with instance-
level constraints. In Proc. Intl. Conf. on Machine
Learning, pages 1103–1110, 2000.

[19] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In Proc. Intl. Conf. on Machine Learning,
pages 577–584, 2001.

[20] S. X. Yu and J. Shi. Segmentation given partial group-
ing constraints. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 26(2):173–183, 2004.

645

AUTHOR INDEX

647

Aggarwal, C. C., 56, 80, 115
Alhajj, R., 496
Alhammady, H., 481
Arunasalam, B., 173
Atallah, M., 404

Bailey-Kellogg, C., 427
Barker, K., 496
Bar-Or, A., 466
Barr, S., 161
Berrospi, C., 581
Beygelzimer, A., 626
Bhatnagar, R., 591
Bi, J., 476
Bian, H., 591
Biswas, H., 546
Brand, M., 12
Brodley, C. E., 439

Calders, T., 250
Casas-Garriga, G., 380
Castelli, V., 449
Chang, C.-H., 501
Chang, E., 611
Chang, E. Y., 322
Chawla, S., 173
Chen, A. L. P., 68
Chen, Z., 262
Cheng, H., 601
Cheung, D. W., 461
Chi, Y., 346
Chiu, D.-Y., 68
Cho, M., 461
Choy, T. -S., 161
Chung, S. M., 415
Cormode, G., 44

Davidson, I., 138
Ding, C., 32, 606
Domeniconi, C., 217
Dundar, M. M., 476

Elisseeff, A., 581
Erdogan, E., 626

Fan, W., 486
Fern, X. Z., 439
Friedl, M. A., 439
Fu, A. W.-C., 516
Fung, G., 476

Gallopoulos, E., 631
Garg, A., 126

Goethals, B., 239, 250
Gondek, D., 126
Greco, G., 561
Guzzo, A., 561
Gwadera, R., 404

Han, J., 286, 601
Han, Y., 227
Hauskrecht, M., 370
He, X., 606
Hu, Q., 195
Huang, K.-Y., 501
Huang, S., 541

Idé, T., 571
Inoue, K., 571

Jain, A. K., 641
Jin, R., 616

Kabán, A., 183
Kalashnikov, D. V., 262
Kang, F., 616
Karypis, G., 205, 358, 556
Keogh, E., 506, 531
Keren, D., 466
Kokiopoulou, E., 511
Kumar, M. B., 566
Kumar, N., 531

Labbi, A., 581
Lam, W., 227, 298
Lane, T., 334
Law, M. H. C., 641
Lee, C.-H., 596
Leggett, J. J., 636
Lemire, D., 471
Li, T., 521, 526
Li, X.-Y., 551
Li, Y., 103
Lin, C.-H., 68
Lin, K.-Z., 501
Liu, C., 286
Liu, S., 1
Liu, Y., 496
Lolla, V. N., 531
Lonardi, S., 531
Lu, C.-t., , 486
Luo, C., 415

Ma, S., 626
Machiraju, R., 161
Maclachlan, A., 471

Manco, G., 561
Mathuria, J., 486
Mehrotra, S., 262
Mehta, S., 161
Mitchell, T. M., 310
Muhonen, J., 239
Muntz, R. M., 346
Muthukrishnan, S., 44

Niculescu, R. S., 310
Nolan, L. A., 183

Obradovic, Z., 621
Özyer, T., 496

Pal, S., 546
Panda, N., 322
Pandey, V. N., 427
Pang, K.-P., 392
Parthasarathy, S., 161
Pearson, R. K., 20
Pei, J., 461
Peng, J., 150
Peng, K., 621
Perng, C.-S., 586

Qiu, S., 334

Ramakrishnan, N., 427
Ramamohanarao, K., 481
Rao, B., 476
Rao, R. B., 310
Rashid, A. M. , 556
Ratanamahatana, C. A., 506,

531
Ravi, S. S., 138
Raychaudhury, S., 183
Riedl, J., 556
Rish, I., 626

Saad, Y., 511
Saccà, D., 561
Sathyakama, S., 476
Schuster, A., 466
She, R., 536, 576
Shen, X., 1
Simon, H. D., 606
Singliar, T., 370
Smyth, P., 274
Srikant, Y. N., 566
Sun, P., 173
Sun, Z., 551
Szpankowski, W., 404

Tadepalli, S., 427
Ting, K.-M., 392
Tirenni, G., 581
Toivonen, H., 239
Topchy, A., 641
Tseng, V. S.-M., 596

Vaithyanathan, S., 126
Vlachos, M., 449
Vucetic, S., 621

Wang, H., 346, 586
Wang, J., 205
Wang, K., 536, 576
Wang, Y., 103
Webb, G. I., 541
Wei, L., 531
White, S., 274
Wilkins, J., 161
Wolff, R., 466
Wong, R. C.-W., 516
Wong, T.-L., 298
Wong, W. H, 1
Wright, R. N., 92
Wu, G., 611
Wu, X., 103
Wu, Y., 103
Wu, Y.-H., 68

Xia, Y., 150
Xie, Z., 195
Xu, S., 491
Xu, Y., 536, 576

Yan, B., 217
Yan, X., 286, 601
Yang, H., 161
Yang, Z., 92
Ye, J., 32
Yu, D., 195
Yu, H., 286
Yu, P., 449
Yu, P. S., 56, 115, 286, 346, 536,

551, 576, 586
Yun, U., 636

Zeimpekis, D., 631
Zhang, J., 491
Zhang, Z., 611
Zhao, Y., 358
Zhong, S., 92
Zhu, S., 521, 526

648 Index

	02CameraReady_323.pdf
	02CameraReady_323.pdf
	Introduction
	Markov chain statistics
	Random walk correlations

	Recommending as semi-supervised classification
	Expected profit
	Experiments
	Recommendation to maximize satisfaction
	Recommendations to maximize profit
	Market analysis

	Conclusion
	Computational strategies

	05cormodeg.pdf
	Introduction
	Map.

	Model and Queries
	The CM Sketch
	Skew in Data Stream Distributions
	Point Queries
	Upper Bounds
	Lower Bounds
	An example application: Top-k items

	Second Frequency Moment Estimation
	Skewed Data
	Moderate Skew
	Light Skew Case and Summary

	Experimental Study
	Synthetic Data
	Text Data
	Network Data
	Timing Results

	Conclusions

	43lemire.pdf
	Introduction
	Related Work
	Memory-Based and Model-Based Schemes

	CF Algorithms
	Notation
	Baseline Schemes
	The Pearson Reference Scheme
	The Slope One Scheme
	The Weighted Slope One Scheme
	The Bi-Polar Slope One Scheme

	Experimental Results
	Conclusion

	68CameraReady_293.pdf
	1. Introduction
	2. Problem Definition
	3. The CBS Method
	4. Experimental Evaluation
	References

	76YunU.pdf
	Introduction
	Problem definition
	WFIM (Weighted Frequent Itemsets Mining)
	WFIM can push weight constraints into the pattern growth algorithm and show how to keep the downward closure property. A weight range and a minimum weight are defined and items are given different weights within the weight range. Now, we summarize the weighted frequent itemset mining process and present the mining algorithm.

	1. Scan TDB once to find the global weighted frequent items satisfying the following definition: An itemset X is a weighted frequent itemset if the following pruning conditions 1 and 2 are not satisfied.
	Performance Evaluation
	6. REFERENCES

