Workshop on Clustering High Dimensional
Data and 1ts Applications

April 23, 2005
Sutton Place Hotel
Newport Beach, California

To be Held in Conjunction with the

Fifth SIAM International Conference on Data Mining

(SDM 2005)

Organizing Committee

Inderjit Dhillon Jacob Kogan

Department of Comp. Sciences Dept. of Mathematics and Statistics
University of Texas University of Maryland
Austin, TX 78712-1188 Baltimore, MD 21250
Phone: (512) 471-9725 Phone: (410) 455-3297

Fax: (512) 471-8885 Fax: (410) 455-1066
inderjit@cs.utexas.edu kogan@math.umbc.edu

Joydeep Ghosh
Dept. of Electrical and
Computer Engineering
University of Texas
Austin, TX 78712
Phone:(512)471-8980
Fax: (512) 471-2893

ghosh@ece.utexas.edu

Preview

Clustering, or partitioning of datasets into subsets (also called clusters) so that the members of a cluster are
more similar to each other than to members of other clusters is a long standing problem with rich history
of documented research. Explosive use of the Internet and recent advances in information technology bring
new challenges to this exciting research area. In many important applications the data resides in high
dimensional vector spaces. While processing of high dimensional data represents computational challenges,
in many cases the high dimensional vectors are sparse. The sparsity allows an efficient data clustering. In this
one day workshop papers will be presented by experts from academia and industry. Clustering issues that
will be covered include: high dimensional clustering using both spectral and iterative relocation techniques,
and applications to intrusion detection and text analysis. The workshop held in conjunction with the
Fifth STAM Conference on Data Mining brings together applied mathematicians, computers scientists, and
computational statisticians working toward design of next generation clustering algorithms and software.

Inderjit S. Dhillon Jacob Kogan Joydeep Ghosh

Department of Comp. Sc. Department of Math Stats. Department of Elect. Comp. Engr.

Univ. Texas, Austin Univ.of Maryland Baltimore County = Univ. of Texas, Austin
Acknowledgments

Special thanks to the members of the Program Committee for their diligent efforts in reviewing all the
manuscripts submitted.

Program Committee

Devasis Bassu, Telcordia Research Cliff Behrens, Telcordia Technologies
Mikhail Belkin, University of Chicago Paul Bradley, Bradley Consulting

Tan Davidson, SUNY - Albany Chris Ding, NERSC

Jennifer Dy, Northeastern University = Stratis Gallopoulos, University of Patras
Efim Gendler, iBoogie.tv Thomas Hofmann, Brown University
Latifur Khan, UT Dallas Andrew Knyazev, Univ. Colorado, Denver
Jon Kettenring, Telcordia Research Mei Kobayashi, IBM Research, Tokyo
Shailesh Kumar, Fair Isaac Dharmendra Modha, IBM Almaden

Nick Street, University of Iowa Shi Zhong, Florida Atlantic U

Leonid Zhukov, Overture Zeev Volkovich, Ort Braude, Israel

Workshop on Clustering High Dimensional Data
and its Applications
April 23, 2005

Table of Contents

Clustering by Maximizing Sum-of-Squared Separation Distance 1
Yixin Chen and Jinbo Bi
Deterministic Annealing and a k-Means Type Smoothing Optimization Algorithm for Data

IS OTII g .« oot e e e 13
Marc Teboulle and Jacob Kogan
On the Benefit of Spectral Projection for Document Clustering 23

Santosh Vempala and Grant Wang

Improving Self Organizing Map Performance for Network Intrusion Detection 30
Stefano Zanero

Design of a MATLAB toolbox for term-document matrix generation 38

Dimitrios Zeimpekis and Efstratios Gallopoulos

Clustering by Maximizing Sum-of-Squared Separation Distance

Yixin Chen*

Abstract

Maximizing the separating margin is crucial for the good
generalization performance of Support Vector Machines
(SVMs). Analogous to the definition of separation distance
or separating margin in SVMSs, we propose a definition on
separation distance in clustering tasks when a hyperplane
is used to separate clusters. For given training data and a
given metric distance, by maximizing the proposed separa-
tion distance, our clustering algorithm constructs an “opti-
mal” hyperplane that can be applied to unseen data in the
future. The resulting hyperplane corresponds to a nonlin-
ear decision boundary in the input feature space through
an appropriate distance feature mapping. A graph-theoretic
perspective of the proposed method is discussed. In partic-
ular, we show that, under certain conditions, the proposed
clustering algorithm is equivalent to a spectral relaxed graph
cut. Extensive experimental results are provided to validate
the method.

Keywords: biclustering, optimization, graph partitioning,
spectral relaxation, spectral clustering.

1 Introduction and Overview.

As an important branch in unsupervised learning, clus-
ter analysis aims at partitioning a collection of objects
into groups or “clusters” so that members within each
cluster are more closely related to one another than ob-
jects assigned to different clusters [12]. In a variety of
areas including bio-informatics, computer vision, infor-
mation retrieval, data mining, and VLSI design, clus-
tering algorithms provide automated tools to help iden-
tify a structure from an unlabeled data set. There is a
rich resource of prior work on this subject. The works
reviewed below are most related to ours, which by no
means represent a comprehensive list.

1.1 Related Work. Depending on the underlying
model assumption, clustering algorithms roughly fall

~ *Department of Computer Science, University of New Orleans,
New Orleans, LA 70148. Email: yixin@cs.uno.edu
fThe Research Institute for Children, 200 Henry Clay Avenue,
Research & Education, New Orleans, LA 70118
fComputer-Aided Diagnosis & Therapy Group, Siemens Medi-
cal Solutions, Inc., 51 Valley Stream Parkway, Malvern, PA 19355.

Email: jinbo.bi@siemens.com

Jinbo Bit

into two categories: generative approach and discrim-
inative approach.

A generative clustering algorithm supposes that the
data are independent and identically distributed sam-
ples generated from an unknown probability density
function. This density function is usually parameter-
ized by a mixture model: weighted sum of a collection
of component density functions, each of which char-
acterizes one of the clusters. Consequently, clustering
turns into a density estimation problem, which is com-
monly tackled by Expectation Maximization (EM) algo-
rithm [6]. However, in practice there is usually no a pri-
ori knowledge about the parametric forms of component
density functions. In many applications the Gaussian
assumption does not lead to satisfactory performance.
Moreover, estimation techniques, such as EM algorithm,
only guarantee local optimality. Nonetheless, generative
clustering techniques have several advantages, such as
the scalability to large data sets [4] and the ability to
handle examples outside the training set.

A discriminative clustering algorithm works directly
on the training data without explicitly assuming an un-
derlying probability model. Each training sample is as-
signed to one and only one of the clusters. A “loss” func-
tion is defined over all possible assignments. It measures
the degree to which the clustering goal is met. Optimal
cluster assignments for all training samples are achieved
by optimizing the loss function. Since this optimiza-
tion problem is essentially combinatorial, discriminative
clustering algorithms are also called combinatorial clus-
tering algorithms [14]. Combinatorial optimization is
straightforward in principle: searching all possible as-
signments. Unfortunately, this is feasible only for very
small data sets since the number of distinct assignments
is O(k™), where k is the number of clusters and n is the
sample size. Therefore, practical discriminative clus-
tering algorithms typically seek for a trade-off between
optimality and computational complexity. For exam-
ple, the k-means [13] and k-medoids algorithms [16] use
an iterative greedy descent strategy to search for a sub-
optimal partition. Agglomerative (divisive) clustering
methods [16] generate a hierarchy of clusters via recur-
sively merging (splitting) clusters according to certain
greedy heuristics. Spectral clustering [20, 8, 17] formu-
lates clustering as a graph partitioning problem. The

optimal partition is approximated by eigenvectors of a
properly normalized affinity matrix of the graph. The
relationships between spectral partitioning methods and
kernel k-means are discussed in [7].

Interesting connections between generative and dis-
criminative approaches have been discussed in [2]. The
equivalence between a class of generative and discrimi-
native clustering algorithms were established based on
Bregman Divergence loss function [2]. Unlike generative
approaches, which can predict on examples outside the
training set, many discriminative clustering algorithms,
including those mentioned above, cannot do so without
rerunning the algorithm. In a recent work by Bengio et
al., a family of discriminative clustering methods were
extended to deal with “out-of-sample” examples [3].

The work proposed in this paper is a new discrimi-
native clustering algorithm based on a loss function mo-
tivated by the separating margin of Support Vector Ma-
chines (SVM) [21]. An overview is provided below.

1.2 Overview of Our Approach. In the past
decade, SVM has become an effective and robust tool
for solving supervised classification problems. Loosely
speaking, SVM finds an “optimal” hyperplane, in
a kernel-induced feature space, which separates two
classes of samples with the maximal margin. The char-
acteristics of SVM can be summarized as follows:

1. maximizing a separation distance, i.e., the so-called
separating margin, and

2. applying appropriate feature mappings, i.e., the ker-
nel mapping.

By a kernel mapping, SVM is able to construct non-
linear models using a linear learning mechanism. The
margin concept provides a theoretical basis for SVM
since maximizing margin is related to minimizing up-
per bounds on the generalization error [21]. This paper
proposes a novel clustering algorithm aiming to make
analogous uses of the above two well-established charac-
teristics of SVM in unsupervised learning, in particular,
cluster analysis.

From a basic rationale of clustering, members of
different clusters should be as dissimilar as possible.
In terms of a linear separating boundary, intuitively,
a good bipartition should divide the samples into two
groups, and put them away from the separating hyper-
plane as far as possible. In SVM, the separating margin
of two classes is defined as the shortest distance from
the vectors in either of the two classes to the separating
hyperplane 1. Figure 1 illustrates the definition. Let L

TThe margin defined here refers to the “hard margin” when
separation is perfect. Margin can also be defined when perfect
separation is impossible or undesirable [21]. It is then called the
“soft margin.”

Cluster 1

Cluster 2
° °

Figure 1: The separation distance definition.

denote the geometric distance from an example to the
hyperplane. Assume indices ¢ and j run through ex-
amples from cluster 1 and cluster 2, respectively. The
margin can be written as:

Margin = min L; +min L; .
i J

The use of margin was derived from VC theory for su-
pervised learning tasks. Unfortunately, maximizing the
margin on all examples with unknown labels in unsuper-
vised learning is an NP-complete problem. The evalu-
ation of margin varies for different possible label as-
signments. Hence we propose a different separation dis-
tance, which we call the sum-of-squared (SS) separation
distance and is defined:

SS:ZL§+ZL?:;L3
i J

where ¢ runs through all training examples. We will
show that the sum-of-squared separation distance (SS)
is much easier to evaluate and maximize, and maximiz-
ing SS produces neat properties similar to those ob-
tained for spectral clustering.

For a nontrivial training set, there usually exist clus-
ter assignments under which the samples are not lin-
early separable in the input space. Therefore it is pos-
sible that some bipartitions, which may correspond to
good clustering, could not be realized by hyperplanes
in the input space. This is certainly undesirable since
the model itself may have already eliminated potentially
good bipartitions. To avoid such an intrinsic deficiency,
nonlinear feature mapping is adopted so that a hyper-
plane constructed in the feature space corresponds to a
nonlinear model in the original input space, such as the
kernel mapping used in SVMs. Notice that when per-
fect separation is impossible in supervised learning, a
“soft margin” can be defined in terms of the given class
labels. With unknown labels in unsupervised learning,
no way exists to define a soft margin. Bearing this in
mind, we propose a simple feature mapping, based on
the given data set and the distance (or dissimilarity)

measure, which maps input vectors to a new feature
space where samples are always linearly separable.

The proposed algorithm, Maximal Separation Clus-
tering (MSC), possesses several properties:

e MSC only requires the knowledge of a metric dis-
tance function measuring the dissimilarity between
samples with an assumption that prior knowledge
can be properly incorporated in the chosen metric
distance. For applications where a similarity func-
tion is specified, a transformation is needed to map
the similarity into a metric distance. The transfor-
mation will be discussed in Section 2.1. Note that
a metric distance function is a more general con-
cept than a positive-definite (PD) kernel function
since as long as an inner product (the PD kernel)
is given, the corresponding metric distance can be
induced, but not vice versa.

e Although MSC is a discriminative approach, the
algorithm can predict labels for out-of-sample ex-
amples because it learns an optimal separating hy-
perplane that transforms to a nonlinear decision
boundary in the input space.

e MSC has interesting connections with a class of
graph partitioning methods. Specifically, the opti-
mal bipartition generated by the algorithm can be
viewed as an approximation of an “optimal” graph
partition under spectral relaxation.

e MSC can be formulated as an eigenvalue decompo-
sition problem similar to spectral clustering under
certain circumstances. Hence it does not require
any integer programming solvers.

1.3 Outline of the Paper. The remainder of the
paper is organized as follows: In Section 2, we first
introduce a feature mapping such that any bipartition
of a given training set can be achieved by a hyperplane
in the new feature space. Clustering is then formulated
as maximizing the sum-of-squared separation distance
in the feature space. In Section 3, we propose a
class of graph partitioning problems and prove that
under certain conditions the optimal bipartition given
by a hyperplane is the solution of a graph partitioning
problem with spectral relaxation. Section 4 describes
the experiments we have performed and provides the
results. We conclude in Section 5, together with a
discussion of future work.

2 Maximal Separation Clustering.

We focus on problems of clustering examples into two
clusters. For applications requiring more than two clus-

ters, the proposed method can be recursively applied,
but only local optimality is ensured.

2.1 Distance Feature Mapping. Given a set of n
distinct training samples X = {x; € X :4i = 1,...,n}
and a metric distance function 2 m : X x X = R, we
consider linear separation functions:

(2.1) fx) = wTd(x)

where d : X — R™ realizes a set of features induced by
the metric distance m and w are the model parameters.
An example x; is assigned into one cluster if f(x;) > 0;
the other cluster if f(x;) < 0.

Note that the metric distance m can be any suitable
metric and does not have to be the Euclidean distance
in X. Since the distance function m provides the only
prior knowledge about clustering, m(x;,x;) should be
fully explored in the feature mapping d. We propose
to map any input vector x to an n dimensional space
where the j'" dimension represents d;(x) = m(x, x;).

The mapping dy : X — R" can be written as:

m(x; Xn)

Clearly, dx is data dependent. Now we validate if the
training samples are linearly separable for all possible
label assignments in the new feature space generated
by dx. Let us first stack n cluster assignments made by
(2.1) into a matrix equation:

f(x1)
(2.2) d (fz) —Dw
F(x2)
where
m(x1,%x1) m(X1,X2) m(x1,Xy)
m(xz,x1) m(x2,Xs) m(xa,Xp,)
D=
m(xr‘baxl) m(xr‘L;XQ) m(xnaxn)

is called the distance matriz or the dissimilarity ma-
triz. D is symmetric and nonnegative (all elements are
greater than or equal to zero.) For Euclidean distance
m(-,-), D is always invertible with one positive eigen-
value and n — 1 negative eigenvalues [18]. It has been
" 2A metric distance function, m(-,-), is a nonnegative function
satisfying: 1) m(x,y) > 0, and m(x,y) = 0 iff x = y; 2)
m(x,y) = m(y,x); and 3) m(x,y) + m(y,2) > m(x,2).

proved that this property holds for an arbitrary metric
distance m(-,-) as well [1]. Consequently, for an arbi-
trary label assignment [f(x1), f(x2),- -, f(xn)]T, equa-
tion (2.2) has a unique solution of w. This implies that
dx(x;)’s are always linearly separable.

In some clustering tasks, a distance metric is not
given directly. Instead, a similarity measure is specified.
A commonly used class of similarity measures is defined
by PD kernels [20, 17, 19]. A PD kernel, K : XxX = R,
computes the inner product in a kernel-induced feature
space H via a mapping ¢ : X —» #, ie, K(x,x') =

®(x)T®(x'). Correspondingly,
m(x,x') = \/[‘I’(X) —3(x)]" [B(x) - B(x')]
(2.3) = VK(x,x)+ K(x',x') — 2K (x,x')

defines a metric distance in H. This suggests that d.y
and D can also be constructed from a PD kernel. There-
fore, for the rest of the paper, we assume that either a
metric distance or a similarity measure (described by a
PD kernel) is given.

2.2 Computing the Optimal Partition. In the
space where d v (x) resides, the decision boundary of the
separation function f(x) = wldx(x) is a hyperplane
defined by wfdx = 0. The geometric distance from
|w?d ()|
Twll
where || - || denotes the 2-norm of a vector unless other-
wise stated. If we assume the separation function is nor-
malized such that ||w|| = 1, then the above geometric
distance can be simply calculated as L; = [wldx(x;)|.
The term inside |-| gives the signed distance. The hence
proposed sum-of-squared separation distance is calcu-
lated as follows by taking all samples in X" into consid-
eration:

(2.4)

a point dx(x;) to the hyperplane is L;

n
Z [Wde(Xi)]2 = wlD?w.
i=1
The optimal clustering corresponds to a unit length w
that separates two clusters with maximal value of (2.4).
It is not difficult to see that the unit length eigen-
vector p corresponding to the largest eigenvalue A of
D?, maximizes (2.4). Unfortunately, the resulting sep-
aration function, f(x) = dx(x)7p, assigns all training
samples in X to one cluster because Dp = A;p has
components either all positive or all negative. This is
due to the positivity of D2. The distance matrix D is a
symmetric and non-negative matrix, so the eigenvalue
decomposition exists. The corresponding D? is thus a
positive matrix 2 which has the same eigenvectors as
those of D and eigenvalues equal to the square of the
T %A m

matrix is positive if all it elements are positive [15].

eigenvalues of D. A positive matrix also has the follow-
ing properties(Ch.8.2, [15]):

e The largest eigenvalue); is positive with algebraic
multiplicity 1;

e The corresponding eigenvector satisfies either p >
0 (called the Perron vector if pTe = 1 where e is
a vector of 1’s) or p < 0 %. All other eigenvectors
have elements with mixed signs.

To avoid trivial clustering like p, the following
constraint is imposed:

a"Dw=0.

Here ¢ > 0 is a user-specified normalized weight
vector satisfying a’e = 1. Since Dw contains the
signed distances (cluster membership is indicated by the
sign), the above constraint enforces that the weighted
summation of signed distances is zero. In other words,
neither Dw > 0 nor Dw < 0 is allowed. The clustering
problem is then formulated as below.

DEFINITION 2.1. (Maximal Separation Clustering)
Given a distance matrix D and o normalized weight
vector a > 0 (a’'e = 1), an optimal clustering is given
by a separation function f(x) = w*Tdx(x) where

*

w argmax w!D?w .
w, [[wll=1

aTDw=0

Since the weight vector should be chosen by a user
beforehand, a few insights about different choices of «
will be helpful. Three interesting choices are discussed:

e a; xe
It assumes that all samples are equally important.
Therefore, the signed distances should be weighted
uniformly, i.e., a; =

eTe"

Oy X De

A sample is weighted according to its overall dis-
similarity to the rest of the samples. The weight
for the signed distance w”dy(x;) is proportional
to dx(x;)Te = Y _, m(x;,xx), which is the sum-
mation of the distances between x; and all samples

in X. After normalization, we get a2 = —Pe-.

o3 X Da3

This scheme carries a similar flavor as that of .
Here the weight for the signed distance w’dx(x;)
is proportional to dx(x;)T a3, which is a weighted

TFor a matrix or a vector A, we write A > 0 if all it elements

are positive. This notation can be generalized to >, <, and <.

4

summation of the distances between x; and all
samples in X. In this case, a3 has to be an
eigenvector of D, ie., Aas = Dasz. Hence the
Perron vector p > 0 (satisfying p’e = 1) of D
is the only choice.

Empirical comparisons of the above weighting strategies
are provided in Section 4.

THEOREM 2.1. The optimal solution w* of the MSC

problem described in Definition 2.1 is
(2.5) w" =Ugv,

where Uy, € R ("=1) ¢ ¢ matriz whose columns form
an orthonormal basis of the null space of a™D, and v
is a unit length eigenvector corresponding to the largest
eigenvalue of ULD?U,,.

Proof. The feasible region of the optimization problem
in Definition 2.5 is

F={weR":|w|]=1a’Dw=0}.

It is not difficult to check that F can be equivalently
written as

f={w=Uaz:z€R”_1,||z||=1}.

So the original optimization problem becomes

z* = arg max z' ULD?U,z
llzl=1
w* = Ugz*.

Then (2.5) follows from the fact that z* =v. O

2.3 An Algorithmic View.
ALGORITHM 2.1. (Maximal Separation Clustering)

Input: Set X = {x; € R?:i=1,..,n}, a metric
distance function m(-,-), and weight o.
Output: Separation function f(x)= w*Tdy(x)
where the sign of f(x) defines the cluster
assignment of x.
Method:
1 Compute the n xn distance matrix D
2 Find an orthonormal basis of the null space
of @D and stack them as columns of U,
3 Compute z*, an eigenvector corresponding to
the largest eigenvalue of ULD?U,
4 w* Uaﬁ
5 OUTPUT f(x) = w*Tdx(x)
Note that the input metric distance can be con-

structed from a PD kernel based on (2.3). The orthonor-
mal basis of the null space of @D is computed using the

Symmetric QR Algorithm (Ch.8.3, [10]). Therefore the
computational cost of Step 2 is O(n3). The eigenvalue
problem in Step 3 is solved by a Lanczos method (Ch.9,
[10]). The running time of a Lanczos method is O(kn?)
where k is the maximum number of matrix-vector com-
putations required. Usually, & is much smaller than n.
So the overall running time is O(n® + kn?). It is worth
mentioning a special case where « is given as the Perron
vector of D, i.e., & = a3. Then one can show that w*
is a unit length eigenvector corresponding to the second
largest eigenvalue of D? (a proof will be given in Sec-
tion 3.3). In this case, the computational cost becomes
O(kn?) because there is no need to compute the null
space of aTD.

3 Connections with Graph Partitioning.

This section provides a graph-theoretic view of the MSC
method. We first propose a new graph-theoretic crite-
rion for measuring the goodness of graph bipartition. A
graph partitioning problem divides vertices into groups
so that the between-group dissimilarity is high, and/or
within-group dissimilarity is low. The novel criterion
measures the disparity between the between-group dis-
similarity and the within-group dissimilarity. Thus we
name the resulting bipartition — the disparity cut. The
maximization of the criterion can be formulated as an
eigenvalue problem. Then connections between Algo-
rithm 2.1 and the disparity cut are established.

3.1 Disparity Cut Criterion. Given a set of sam-
ples and a dissimilarity measure, one can construct a
weighted undirected graph G = (V,E) where V =
{1,2,...,n} is the vertex set, E = {(4,j) : 4,5 € V}
is the set of edges. The vertices represent the samples.
An edge is formed between every pair of vertices. The
weight d;; of an edge (i, j) indicates the similarity or dis-
similarity between vertices ¢ and j. The weights can be
organized into an affinity matriz, D. To be consistent
with notations in Section 2, we assume that d;; describes
the dissimilarity. Note that a similarity measure can be
converted to a dissimilarity measure via (2.3).

Let sets A, B C V. In graph theory, a cut is defined
as:

CUt(A,B) = Z dij .
i€A,jEB

Finding a bipartition of the graph that minimizes this
cut value is known as the minimum cut problem °. Ef-
ficient algorithms exist for solving this problem. How-

5In the minimum cut problem, the affinity matrix is defined by
vertex similarities. If affinity matrix captures vertex dissimilari-
ties, as in this paper, the problem should be named the maximum
cut problem instead.

ever the minimum cut criterion tends to group small
sets of isolated nodes in the graph because the cut de-
fined above does not contain any within-group infor-
mation [20]. Many modified graph partition criteria
have been proposed to produce more balanced parti-
tions [11, 20, 8, 17]. Next, we introduce a new criterion,
disparity cut.

Let each vertex 7 be associated with a positive
weight, 3;. Without loss of generality we assume ||3]|| =
1. For A C V, we define a weighted cardinality of A,

|A|g, to be
(3.6) |Als =87
i€EA

If weights are uniform (i.e., 8 = e), then (3.6) is
identical to the standard definition of set cardinality. By
taking vertex weights, B, into consideration, we define
a weighted cut as

CUtﬁ(A,B) = Z Biﬂjdij .

i€A,JEB

It is not difficult to see that cute(A,B) = cut(A,B).
Let A and B form a bipartition of V (i.e., ANB =0,
A UB = V), the disparity cut, Dcut(A,B), is then
defined as

Dcut(A,B) = 2cutg(A,B)—
1Bls |Alg

(3.7 ——cutg(A,A) — cutg(B,B) .
Al Blg~ 7

o cutg(A, B) measures the dissimilarity between ver-
tex sets A and B;

o cutg(A, A) and cutg(B, B) capture the vertex dis-
similarities within A and within B, respectively;

|Blg |Alg
|Alg IBls . o i
groups. An “unbalanced” bipartition will make one

of the ratios a large number.

and indicate the relative size of the two

A “good” bipartition should generate two “balanced”
groups that have high between-group dissimilarity and
low within-group dissimilarity. This goal is achieved in
this article by maximizing the disparity cut criterion.
Finding the maximum disparity cut is NP-complete.
Nevertheless, it is possible to find an approximation via
spectral relaxation. This is described as below.

3.2 Spectral Relaxation. Given a weighted undi-
rected graph G = {V,E} with affinity matrix D and
vertex weights 3, a bipartition of V into A and B can
be defined by a partition vector q € {1, —1}" with ele-

ments
{ 1, i€A,
q;i =

-1, i€eB.

Let I" denote the diagonal matrix formed by the vertex
weights 3, i.e., I';; = B;. Then we have the following
identities:

1
cutp(A,A) = 2(e+q)'TDI(e+q) .
cutp(B,B) = (e-a)TDT(e—q) .
cuts(A,B) = %(Hq)TFDr(e_q).

If we define the ratio of weighted cardinality, r, as
A
. [Als 7
IBlg

then (3.7) is equivalent to
(e+q)" DI (e — q)

Decut(A,B) = 5 -
(e+q)'IDl(e+q) r(e—q)'IDl(e—q)
_ letq) —4: (e—a)]"IDL[r (e - q)4— (e+aq)]
Let "

_(e+q)-r(e—q)
2 b
and y can be viewed as a generalized partition vector
with elements

. — 1’
vi=\

Dcut(A,B) = —

i €A,

1€B.

Then we have

y'I'Dly
—.

In addition, it is straightforward to derive that

BTy = o0,
y'T?y = rlglIP =r.
Therefore, we can write Dcut in terms of the generalized
partition vector y as
y I'DIly
y T2y
Finding the maximum disparity cut can then be stated
as the following discrete optimization problem.

Dcut(A,B) = —

DEFINITION 3.1. (Maximal Disparity Cut) Given a
weighted undirected graph G = {V,E} with affinity ma-
trix D and unit length vertexr weights 3, the mazimum
disparity cut is defined by the generalized partition vec-
tor

T
* _y I'Dl'y
Y = argmax yTT2y °
y,ﬁTFyIO,
ye{l,—r}»

Even though the above discrete optimization prob-
lem is still NP-complete, it is possible to find an approx-
imation by relaxing the condition that y is either 1 or
—r. When we only require y to be continuous and set
z = I'y, the following optimization problem is obtained.

DEFINITION 3.2. (Spectral Relaxation for Maximal
Disparity Cut) Given a weighted undirected graph G =
{V,E} with affinity matric D and unit length vertex
weights B, a continuous approrimation of the optimal
generalized partition vector is

*

z* = argmax -z Dz .

(3.8)

z,872=0,
llzl|=1

The corresponding bipartition is A = {i € V : zf > 0}
and B={i e V: 2z <0}

Since I' is a diagonal matrix with positive diagonal
entries, z* and I'"!z* generate identical bipartitions
because their corresponding elements have identical
signs. This optimization problem is solved as below.

THEOREM 3.1. The optimal solution z* of the problem
described in Definition 3.2 is

(3.9) z* = Upgv,

where Ug € R**("=1) s q matriz whose columns form
an orthonormal basis of the null space of BT, and v is
a unit length eigenvector corresponding to the smallest
eigenvalue of UZDUg.

The proof is similar to that of Theorem 2.1, therefore,
is omitted.

3.3 Connections between MSC and Dcut. As
shown in Theorem 2.1, the maximal separation biparti-
tion relies on the weight vector a. Similarly, the spectral
relaxed maximal disparity cut depends on the choice of
the vertex weights 8 as shown in Theorem 3.1. We
prove that under certain conditions they generate iden-
tical bipartitions.

LEMMA 3.1. Let the affinity matriz D in Definition 3.2
be the distance matriz in Definition 2.1 and p be the
Perron vector of D. If the smallest eigenvalue of
D is algebraically simple and we choose the weight
vectors ¢ = p and B = ﬁ, then the mazimal
separation bipartition in Definition 2.1 is identical to
that generated by the spectral relazed maximal disparity
cut in Definition 3.2.

Proof. Let Ay > Ao > ... > A, be eigenvalues of
D. Since D is a nonnegative distance matrix, from

the properties of (metric) distance matrices [18, 1] and
nonnegative matrices (Ch.8.2,[15]), we have that

)\1>0>/\22...2/\n7

and p is an eigenvector corresponding to A;. Moreover,
since .1 | A; = Trace(D) = 0, we have

)\1>|)\,‘|, 1=2,...,n.

Since A, is algebraically simple, —\, is the largest
eigenvalue of —D and)2 is the second largest eigenvalue
of D2,

Let ua,...,u, be unit length eigenvectors associ-
ated with Aq,...,A,, respectively. Clearly, us,...,u,
form an orthonormal basis of the null space of B7.
Therefore

z¥ =u, .
Note that us, ..., u, also form an orthonormal basis of
the null space of a”D. Since

M>A>A2 >...>)\

are eigenvalues of D? with corresponding eigenvectors
P,Un,Upy_1,...,us, respectively, we get

w*=u, .
The proof then follows from Dw* = \;z*. O

Therefore, the maximal separation bipartition in
Definition 2.1 is equivalent to the spectral relaxed max-
imal disparity cut when the affinity matrix is defined by
the distance matrix and the Perron vector of the dis-
tance matrix is used as the weight vectors. Given an
arbitrary positive weight vector o for maximal separa-
tion bipartition, can we find positive vertex weights 3
such that z* = ¥ je. two bipartitions are identi-

[Dw=>
cal? A necessary condition is presented as below.

LEMMA 3.2. Let the affinity matriz D in Definition 3.2
be the distance matriz in Definition 2.1 and w* be
calculated by (2.5). Let z* be computed by (3.9) and

z* is not an eigenvector of D. If z* = ”g%”, then

_ Dw'w'™D \ p2w*
(I TDwe]2)D w

= * =T
I (1 Byt D2we|

(3.10) B

where 1 is an identity matriz.

Proof. For the constrained optimization problem (3.8),
the Lagrange function is

L(z,01,02) = —2' Dz — 0y (sz — 1) — 02087z

where o1 and o9 are Lagrange multipliers. Setting the
respective derivatives to zero yields

(3.11) 2Dz + 201z + 028 0,
(3.12) 2’z = 1,
(3.13) Bz 0.

Left multiplying both sides of (3.11) with z? and
applying identities (3.12) and (3.13), we obtain

(3.14) 01 =—-2"Dz.
Similarly, we get
287Dz
(3.15) 0y = —————
8112

by multiplying both side of (3.11) with 87 and applying
identities (3.13) and (3.14). Substituting (3.14) and
(3.15) into (3.12) gives

BTDz
1811?

Since z* is not an eigenvector of D, we have 8T Dz* # 0.
Therefore

(I—zzT)Dz: B.

(3.16) B = 181* (I

* _xT
_BTDZ* —z'z)Dz.

By substituting z* into (3.16) and enforcing

— _Dw*
IDw*]|
the unit length constraint on 3, we get (3.10). O

4 Experiments.

Based on an artificial data set, the USPS data set, and
a COREL image data set, we evaluate the performance
of Algorithm 2.1. Comparisons with the normalized
cut (Ncut) method in [20] are provided in some of our
experimental results.

4.1 Artificial Data Set. The artificial data set con-
sists of 200 samples belonging to two classes. Each class
contains 100 samples. The samples in the first class
are distributed as a two dimensional Gaussian with zero
means and identity covariance matrix. The samples in
the second class are generated by the following stochas-

|- I[%]

X1
X
where [Vi, Y2]T is distributed as a two dimensional
Gaussian with means [3, 3]7 and identity covariance
matrix, and 6 is a random variable with uniform dis-
tribution over the interval [0,2r]. Figure 2 shows 200
randomly generated samples from the two classes.

cosf sinf
—sinf cosf

6 T T
o * Class 1
o O Class2
o 0 © o Decision Boundary
n O o ¢}
2 o
o %%)
0o
&6
2 0 o @ 0 0
¢}
o
o o o L I
0 O % K oLx ¥ 0
0 0 K oy ¥ o
o * P, ox ¥ 0
¥R % o
or * & * * % 0
o © g Jor B B ¥
o HE ?{9& . x*
0, *
° o 4 © * ., Qﬁ* 4 o oo o
o} *
L o 00 ¥% % .0 o
-2 ¢} o 0
o
o * * o
o o 00 o
(03] o
o OO 0 00
-4 0. o o o
o Q ©
¢} o@ o °
o © 0©
0

Figure 2: An artificial data set. Samples in Class 1 and
Class 2 are denoted by stars and circles, respectively.
The curve in the middle is the decision boundary of
maximal separation clustering.

We compare the performance of Algorithm 2.1 with
that of Ncut. The affinity matrix in Ncut is defined by

. _ lx—yi? . .
Gaussian kernel K(x,y) = e~ -2 . Since Gaussian

kernel computes the inner produce in a kernel-induced
feature space #H, a metric distance in H can be defined
according to (2.3) and is used in Algorithm 2.1 to
calculate the distance matrix D. Because we know the
“true” class label for each sample, the classification error
is one way to capture the goodness of clustering. Let
C; and C; be a bipartition of the data set C. The
classification error is defined as

1
Err(Cl, Cg) = E min (|Cl,1

+|Cs2],|C1,2] + |C2.1])

where |C]| is the size of the data set C, C; ; consists of
samples in C; that belong to class j (i,7 = 1,2).

The kernel parameter, o2, is allowed to take values
of 1, 3, 5, ..., 29. Under each value, experiments are
repeated over 10 randomly generated data sets for each
algorithm. The minimum of the average classification
errors is listed in Table 1 along with the corresponding
o? values and 95% confidence intervals. Clearly, for
this artificial data set, the MSC algorithm performs
significantly better than Ncut. For the MSC algorithm,
the Perron weight vector works better than the other
two weighting schemes. But the difference is not
statistically significant.

Since the MSC algorithm learns a decision bound-
ary (the curve in the center of Figure 2), the clustering
generalizes to unseen inputs. Each decision boundary is

Table 1: Comparing the MSC algorithm and Ncut on
artificial data sets. The numbers listed are the average
classification errors over 10 randomly generated data
sets and the corresponding 95% confidence intervals.
MSC1: MSC with o weight vector; MSC2: MSC with
oy weight vector; MSC3: MSC with a3 weight vector.

a1, as, and ag are defined in Section 2.2

a2 | Average 95% Confidence
Classification Error | Interval
MSC1 7 3.9% 2.81%, 4.99%
MSC2 15 | 3.6% 2.53%,4.67%
MSC3 7 3.1% 2.47%, 3.73%
Ncut 23 29.95% 27.79%, 32.11%)

Table 2: The generalization performance of the MSC
algorithm on artificial data sets. The numbers listed
are the average generalization errors over 10 randomly
generated testing sets and the corresponding 95% con-
fidence intervals.

o | Average 95% Confidence
Generalization Error | Interval
MSC1 7 4.15% 3.14%,5.16%
MSC2 15 | 4.85% 3.72%,5.98%
MSC3 7 3.90% 2.52%,5.28%

tested over a new set of 200 samples generated by the
above distributions (each class contains 100 samples).
The average generalization errors over 10 testing sets
are reported in Table 2 along with the corresponding
95% confidence intervals.

4.2 TUSPS Data Set. The USPS data set contains
9298 grayscale images of handwritten digits. The
images are size normalized to fit in a 16 x 16 pixel
box while preserving their aspect ratio. The data set is
divided into a training set of 7291 samples and a testing
set of 2007 samples. For each sample, the input feature
vector consists of 256 grayscale values. Since MSC deals
with binary clustering, the training set is divided into
45 subsets, S;;, ¢ =0,...,9, 7 =1,...,9, i # j. The
subset S;; consists of digits 4 and j. In the same way,
the testing set is divided into 45 subsets.

We compare the performance of the MSC algorithm
with that of Ncut using the training set. The affinity
matrix in Ncut is defined by Gaussian kernel. The dis-
tance matrix in Algorithm 2.1 is computed using (2.3).
The kernel parameter, o2, is allowed to take values of
50, 100, ..., 600. For each value of o2, the average
classification error (defined in Section 4.1) is computed
over the 45 subsets. The numbers reported in Table 3
are the minimum average classification errors along with
the corresponding o2 values and standard deviations.

9

Table 3: Comparing the MSC algorithm and Ncut
on the USPS data set. The numbers listed are the
average classification errors over 45 subsets and the
corresponding standard deviations.

a? Average Standard
Classification Error | Deviation
MSC1 || 350 | 7.86% 8.05%
MSC2 || 300 | 7.68% 8.17%
MSC3 || 250 | 7.70% 8.12%
Ncut 100 | 7.05% 8.39%

Table 4: The generalization performance of the MSC
algorithm on the USPS data set. The numbers listed
are the average generalization errors over 45 subsets and
the corresponding standard deviations.

a? Average Standard
Generalization Error | Deviation
MSC1 350 | 9.26% 7.54%
MSC2 300 | 8.91% 7.78%
MSC3 250 | 9.06% 7.67%

As we can see Ncut performs slightly better than the
proposed method for the USPS data set. However, the
difference is not statistically significant. The separation
functions learned from the training sets are also applied
to the testing sets. The average generalization errors
over 45 subsets are reported in Table 4 along with the
corresponding standard deviations.

4.3 COREL Data Set. The image data set em-
ployed in our empirical study consists of 2000 images
taken from 20 CD-ROMs published by COREL Corpo-
ration. Fach COREL CD-ROM of 100 images repre-
sents one distinct topic of interest. Therefore, the data
set has 20 thematically diverse image categories. All
the images are in JPEG format with size 384 x 256 or
256 x 384. The image category names and some ran-
domly selected sample images from each category are
shown in Figure 3. Each image is represented as a col-
lection of regions obtained from image segmentation.
Nine features are extracted from each region. They
capture the color, texture, and shape properties of the
region. For a detailed discussion of the image segmenta-
tion algorithm and imagery features, please refer to [5].
The image data set and region features are available at
http://www.cs.uno.edu/~yixin/ddsvm.html.

Let B; = {x;; € R? : j = 1,...,N;} be the collec-
tion of region features for image 7. The distance between
two images, with respective collection of regions features
By, and By, is defined by the Hausdorff distance [9]

H (B, B;) = max (h(By, By), h(Bi, By))

Category 2: Historical buildings

o SR S

Category 4: Dinosaurs

--

Category 6: Flowers
"

Category 8: Mountains

Category 12: Fashion

Category 14: Cars

1l '] \
@ & PN

Category 3: Buses

Category 5: Elephants

Category 7: Horses

Category 9: Food

~N

Category 11: Lizards

Category 13: Sunsets

Category 15: Waterfalls

= =M

Category 17: Battle ships

Category 19: Desserts

Figure 3: Sample images taken from 20 image categories.

where
h(Bg,B;) = ma i -yl -
(Bi, By) = max min [|lx —]|
Since the Hausdorff distance is a metric, it is applied to
construct the distance matrix in Algorithm 2.1.
The MSC algorithm is recursively applied to the

data set. Each time, the largest cluster is bipartitioned.
Clearly, t iterations produce t+1 clusters. We use purity
and entropy to measure the goodness of image cluster-
ing. Assume we are given a set of n images (n = 2000
in this experiment) belonging to ¢ distinctive classes de-
noted by 0,...,¢—1 (¢ = 20 in this experiment) and the

10

Table 5: Maximal separation clustering of images with Table 6: Maximal separation clustering of images with

o, weight vector.

o, weight vector.

|| Cluster || Size | Purity | Entropy | Dominant Class || || Cluster || Size | Purity | Entropy | Dominant Class ||
1 65 0.2769 | 0.7397 Antiques 1 109 | 0.2844 | 0.7384 Elephants
2 138 | 0.1594 | 0.8709 Horses 2 111 | 0.4865 | 0.5437 Buses
3 90 0.2667 | 0.7445 Cars 3 89 0.2921 | 0.7782 Fashion
4 111 | 0.2162 | 0.8037 Lizards 4 135 | 0.2148 | 0.7078 Mountains
5 120 | 0.1500 | 0.8160 Beach 5 106 | 0.3019 | 0.7481 Waterfalls
6 83 0.2651 | 0.6563 Battle ships 6 100 | 0.2200 | 0.8197 Lizards
7 111 | 0.2613 | 0.7869 Fashion 7 108 | 0.4444 | 0.6142 Horses
8 129 | 0.3333 | 0.7690 Food 8 70 0.3143 | 0.5938 Dinosaurs
9 106 | 0.3868 | 0.6793 Horses 9 84 0.5595 | 0.5252 Flowers
10 83 0.5783 | 0.4564 Dinosaurs 10 134 | 0.1493 | 0.8197 Beach
11 81 0.1852 | 0.7625 Waterfalls 11 41 0.2195 | 0.7470 Lizards
12 123 0.3821 | 0.6062 Buses 12 151 0.2119 | 0.8411 Lizards
13 97 0.2371 | 0.7923 Lizards 13 125 0.3840 | 0.7480 Food
14 101 0.5149 | 0.5440 Sunsets 14 81 0.2716 | 0.6567 Battle ships
15 124 0.2258 | 0.6615 Mountains 15 104 0.1731 | 0.8434 Africa
16 91 0.1868 | 0.8178 Africa 16 91 0.1868 | 0.7654 Sunsets
17 86 0.5930 | 0.4603 Flowers 17 100 | 0.5300 | 0.5323 Sunsets
18 93 0.2258 | 0.7799 Waterfalls 18 78 0.2564 | 0.7555 Antiques
19 98 0.2653 | 0.7582 Elephants 19 90 0.3111 | 0.7150 Cars
20 70 0.3571 | 0.5619 Dinosaurs 20 93 0.5484 | 0.5092 Dinosaurs

images are grouped into ¢+ 1 clusters C;, j = 1,...,
Cluster C;’s purity can be defined as

m.

p(C;j) = |C k|

1
[Chps
where C; 1, consists of images in C; that belong to class
k. Each cluster may contain images of different classes.
Purity gives the ratio of the dominant class size in the
cluster to the cluster size itself. The value of purity is
always in the interval [1,1] with a larger value means
that the cluster is a “purer” subset of the dominant
class. Entropy is another cluster quality measure, which
is defined as follows:

1
log c

CJ,k|
IC; |

|Cj,k|
5lc]

Z |

Since entropy considers the distribution of semantic
classes in a cluster, it is a more comprehensive measure
than purity. Note that we have normalized entropy so
that the value is between 0 and 1. Contrary to the purity
measure, an entropy value near 0 means the cluster is
comprised mainly of 1 category, while an entropy value
close to 1 implies that the cluster contains a uniform
mixture of all categories. For example, if half of the
images of a cluster belong to one class and the rest of
the images are evenly divided into 19 different classes,
then the entropy is 0.7228 and the purity is 0.5.

Table 5, Table 6, and Table 7 show the purity and
entropy of clusters generated by Algorithm 2.1 (with

hC;) =

11

weight vector ay, aa, and ajz, respectively) after 19
bipartitions (i.e., 20 clusters). Size of each cluster and
the name of the dominant class in each cluster are also
listed. Since the images belong to 20 classes, ideally,
each of the 20 clusters should contains 100 images from a
unique classes. In our experiments, the average purities
under a7, a2, and a3 are 0.3034, 0.3180, and 0.3155,
respectively. And the average entropies are 0.7034,
0.6999, 0.6992. Although the results we obtained is far
from perfect, they are significantly better than a random
guess where the average purity would be 0.05 and the
average entropy would be 1.0. It is observed that in each
of the three experiments, there are 4 classes which do
not appear as the dominant class in any of the clusters:
Historical buildings, Dogs, Skiing, and Desserts. It is
interesting to observe that in all three experiments,
Historical buildings is the second largest class in the
cluster where the dominant class is Battle ships; Dogs
is the second largest class in the cluster where Horses
is the dominant class; and Skiing is the second largest
class in the cluster where Beach is the dominant class.
Desserts does not even show up as the second largest
class in any clusters. But it turns out to be the third
largest class in the cluster where the top two largest
classes are Battle ships and Historical buildings.

5 Conclusions and Future Work.

In this paper, we propose a new clustering algorithm
which computes an “optimal” hyperplane maximizing
the sum of squared distance in a feature space induced

Table 7: Maximal separation clustering of images with
a3 weight vector.

|| Cluster || Size | Purity | Entropy | Dominant Class ||
1 100 | 0.5300 | 0.5323 Sunsets
2 50 0.2200 | 0.7720 Lizards
3 101 0.1980 | 0.8214 Africa
4 81 0.2840 | 0.6540 Battle ships
5 100 | 0.2900 | 0.7474 Waterfalls
6 151 0.2053 | 0.8331 Lizards
7 113 | 0.2566 | 0.7616 Elephants
8 93 0.5376 | 0.5128 Dinosaurs
9 86 0.5698 | 0.5057 Flowers
10 129 | 0.1550 | 0.8076 Beach
11 113 0.4779 | 0.5472 Buses
12 101 0.2178 | 0.8167 Lizards
13 125 0.3760 | 0.7439 Food
14 135 0.2148 | 0.7029 Mountains
15 108 | 0.4259 | 0.6345 Horses
16 93 0.2903 | 0.7757 Fashion
17 89 0.1798 | 0.7641 Sunsets
18 74 0.2568 | 0.7462 Antiques
19 88 0.2955 | 0.7222 Cars
20 70 0.3286 | 0.5833 Dinosaurs

by the training data and the given metric distance. The
separating hyperplane transforms to a nonlinear deci-
sion boundary in the input space. Hence the cluster-
ing generalizes to unseen samples. The connection be-
tween the proposed clustering algorithm and spectral
graph partition methods is discussed. Specifically, we
prove that, under proper weight vectors, the proposed
clustering algorithm is equivalent to a spectral relaxed
graph cut — disparity cut. The disparity cut criterion
takes into account the between-cluster dissimilarity, the
within-cluster dissimilarity, and the size of the clusters.
We provide extensive experimental results to verify the
method.

Acknowledgements.

This work was supported in part by the University of
New Orleans, The Research Institute for Children, and
NASA/EPSCoR DART Grant NCC5-573. The authors
would like to thank Bin Fu for valuable discussions.

References

[1] J. W. Auer, An Elementary Proof of the Invertibility
of Distance Matrices, Linear and Multilinear Algebra,
40:119-124, 1995.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh,
Clustering with Bregman Divergences, Proc. 4th SIAM
Int’l Conf. on Data Mining, pages 234-245, 2004.

[3] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau,
N. Le Roux, and M. Ouimet, Out-of-Sample Exten-
sions for LLE, Isomap, MDS, Eigenmaps, and Spectral

12

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

18]

[19]

[20]

[21]

Clustering, Advances in Neural Information Processing
Systems 16, 2003.

P. S. Bradley, U. M. Fayyad, and C. Reina, Scaling
Clustering Algorithms to Large Databases, Proc. 4th
Int’l Conf. on Knowledge Discovery and Data Mining,
pages 9-15, 1998.

Y. Chen and J. Z. Wang, Image Categorization by
Learning and Reasoning with Regions, Journal of
Machine Learning Research, 5:913-939, 2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin,
Maximum Likelihood from Incomplete Data via the
EM Algorithm, Journal of the Royal Statistical Society,
Series B, 39:1-38, 1977.

I. S. Dhillon, Y. Guan, and B. Kulis Kernel k-means,
Spectral Clustering and Normalized Cuts, Proc. ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, 2004.

C. Ding, X. He, H. Zha, M. Gu and H. Simon,
Spectral Min-Max Cut for Graph Partitioning and
Data Clustering, Proc. 1st IEEE Int’l Conf. on Data
Mining, pages 107-114, 2001.

G. B. Folland Real Analysis: Modern Techniques and
Their Applications, 2nd edition, John Wiley & Sons,
Inc., 1999.

G. H. Golub and C. F. Van Loan, Matriz Analysis, 3rd
ed., Johns Hopkins University Press, 1996.

L. Hagen and A. B. Kahng, New Spectral Methods for
Ratio Cut Partitioning and Clustering, IEEE Trans-
actions on Computer-Aided Design, 11(9):1074-1085,
1992.

J. A. Hartigan, Clustering Algorithms, John Wiley &
Sons, 1975.

J. A. Hartigan and M. A. Wong, Algorithm AS136:
A k-means Clustering Algorithm, Applied Statistics,
28:100-108, 1979.

T. Hastie, R. Tibshirani, and J. Friedman, The Ele-
ments of Statistical Learning, Springer-Verlag, 2001.
R. A. Horn and C. R. Johnson, Matriz Analysis,
Cambridge University Press, 1990.

L. Kaufman and P. J. Rousseeuw, Finding Groups in
Data: An Introduction to Cluster Analysis, John Wiley
& Somns, 1990.

A. Y. Ng, M. L. Jordan, and Y. Weiss, On Spectral
Clustering: Analysis and an Algorithm, Advances in
Neural Information Processing Systems 14, 2001.

I. J. Schoenberg, On Certain Metric Spaces Arising
from Euclidean Spaces by a Change of Metric and
Their Imbedding in Hilbert Space, The Annals of
Mathematics, 38(4):787-793, 1937.

N. Shental, A. Zomet, T. Hertz, and Y. Weiss, Pairwise
Clustering and Graphical Models, Advances in Neural
Information Processing Systems 16, 2003.

J. Shi and J. Malik, Normalized Cuts and Image
Segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888-905, 2000.
V. Vapnik, Statistical Learning Theory,
Interscience, 1998.

Wiley-

Deterministic Annealing and a k-Means Type Smoothing Optimization
Algorithm for Data Clustering *

Marc Teboullet

Abstract

The classical k-means clustering algorithm is probably one
of the most popular techniques for data clustering. While
partitioning a dataset into a prescribed number of clusters,
the algorithm alternates between the computation of clusters
and centroids of a dataset partition. The clustering problem
can in fact be formulated as a non-smooth and non-convex
optimization problem. Within such a formulation, the k-
means algorithm can be viewed as an application of a gradi-
ent based method to an exact smooth reformulation of the
clustering optimization problem that leads to a local mini-
mum of the clustering objective function. In this paper we
introduce an alternative approach, whereby we approximate
the original non-smooth clustering optimization problem by
a family of parametrized smooth optimization problems. By
so doing we obtain a new derivation and interpretation of
the Deterministic Annealing (DA) for clustering which was
introduced by Rose, Gurewitz and Fox [20]. The DA was
inspired by principles of statistical mechanics and intended
to deal with non-convex optimization problems. Within the
proposed optimization framework, unlike DA, we focus on
non-smoothness, rather than on non-convexity. This allows
us to obtain the algorithm convergence and other important
properties and provide new insights into the DA method
and its performance. Numerical experiments are given to
indicate the superiority of the algorithm when compared to
known versions of k-means clustering algorithms.

Key words: clustering, k-means algorithms, determin-
istic annealing, mathematical optimization, smoothing
methods, generalized means.

1 Introduction

The clustering problem is fundamental in data analy-
sis, and arises in a great variety of fields, such as pat-
tern recognition, image processing, text mining, and
many others. Given a finite dataset one has to iden-

~ *Supported by the United States—Israel Binational Science
Foundation (BSF).

Tteboulle@post.tau.ac.il, School of Mathematical Sciences, Tel-
Aviv University, Tel-Aviv, Israel.

tkogan@umbc.edu, Department of Mathematics and Statistics,
UMBC, Baltimore, MD 21250. Research of this author was also
supported by the Fulbright Program.

Jacob Kogan?

tify its “best possible” partition into a finite set of
disjoint groups or clusters by optimizing a certain ob-
jective function. More specifically, given a dataset
A = {ai,...,an} C R", a k cluster partition II =

{m1,...,m} of A is a collection of k disjoint subsets
k

(clusters) of A so that U m; = A. Alternatively, by

i=1
identifying a cluster 7; with its centroid x; one has to

select k vectors {x1,...,X;} C R™ to generate a k clus-
ter partition II. For each ¢ = 1,...,m, let
D;(x1,...,%xx) := min d(a;,x;)

1<I<k

be the distance from a; € A to the nearest centroid
from the set {xi,...,xz}, where d(-,-) is a distance—
like function. QOur objective is to minimize the sum of
the distances between the points of the dataset 4 and
the nearest centroids. In other words we are interested
in solving the continuous optimization problem:

(1.1) min

m

) min . f(x1,..., %) = ;Di(xl, ey Xp)-
i=

In this paper, we focus on the classical choice of the
quadratic Euclidean distance d(x,y) = ||x—y]||?. It will
be convenient to introduce the following notations. We
denote the k x n dimensional vector (x7,...,x})T by
x, the function f(xi,...,x;) by F(x), F : RY = R,
with N = kn. Then, for all ¥ > 1, problem (1.1) can
be equivalently written as the following non-convex and
non-smooth optimization problem in R¥:

m

min F(x) =

1.2
() xRN

min ||x; — ag||*.

— 1<i<k

Therefore, the clustering problem (1.1) belongs to
the class of continuous optimization problems which
combines two of the most difficult characteristics one
encounters in optimization: non-convexity and non-
smoothness. In this paper we focus on an approach
handling the second difficulty, namely non-smoothness.

The classical k—means algorithm is probably the
most celebrated and widely used general clustering tech-

nique which attempts to solve this problem by an itera-
tive procedure. It starts with an initial set of k centroids
{x;(0) : I = 1,...,k}, and assigns each point of the
dataset to the the nearest centroid. Then the centroids
are updated. The two step procedure continues until
some stopping criterion is satisfied [11]. The k-means
algorithm is in fact a local search optimization type al-
gorithm, which handles the non-smoothness by using an
ezxact smooth reformulation of the problem on which a
Gauss-Seidel gradient type method [5] is applied (see
e.g., [22] for more details and references therein).

In this paper, we propose to use a smooth approx-
imation approach which replaces the non-smooth ob-
jective F(x) by a family of smooth functions Fs(x) that
depends on a smoothing parameter s. The special struc-
ture of the smoothed objective lends itself to construct
a simple algorithm described via a fixed point explicit
iteration formula. This algorithm is a special case of a
new and general class of smoothing iterative methods
for solving various types of clustering problems we re-
cently introduced in our companion paper [22] where
more details and theoretical analysis can be found. In
this paper we briefly describe the approach that lays
the ground to the proposed clustering algorithm. This
is outlined in Section 3 where we suggest a way to ap-
proximate F(x) by a family of smooth functions. We in-
troduce a particular algorithm, called smoka (SMOothing
K-means Algorithm), to solve the clustering continuous
optimization problem, and we state its main properties.
It turns out that the approach we propose leads to a
new derivation and interpretation of the DA algorithm
introduced by Rose, Gurewitz and Fox [20] and moti-
vated by statistical physics arguments. The DA was
claimed to be very fast and effective to handle the first
difficulty alluded above, namely non-convexity. Our op-
timization approach provides new insights into the DA
method and its performance, and further clarifies the
convergence and other properties of the DA algorithm.
This is discussed in Section 2. To illustrate the validity
of our approach, we first recall in Section 4 the classical
k—means clustering algorithm, as well as its recently
introduced enhancement (see e.g., [25], [12], [15]) and
describe the behavior of smoka and the k—means like
algorithms when applied to a particular scalar dataset.
In section 5 we report on some encouraging numerical
experiments with smoka when applied to several multi-
dimensional datasets and compare its performance with
the k-means type algorithms. The current numerical
experiments indicate the superiority of smoka over the
known versions of k-means clustering algorithms. Sec-
tion 6 concludes the paper.

14

2 Deterministic Annealing and Optimization

In 1990 Rose, Gurewitz and Fox introduced a statistical
mechanics formulation for clustering and derived a re-
markable algorithm called the Deterministic Annealing
(DA). The DA is used in order to avoid local minima
of the given non-convex objective function (see [20]). A
well known method for solving non-convex optimization
problems is the simulated annealing (SA, see e.g. [14]),
which is a stochastic method motivated by its analogy
to statistical physics and is based on the Metropolis al-
gorithm [16]. However, unlike the SA method, the DA
algorithm replaces the stochastic search by a determin-
istic search, whereby the annealing is performed by min-
imizing a cost function (the free energy) directly, rather
than via stochastic simulations of the system dynam-
ics. Building on this procedure, global minima is ob-
tained by minimizing the cost function (the free energy)
while gradually reducing a parameter that plays the role
of “temperature.” Among other things the method of-
fers “the ability to avoid many poor local optima” (see
[19], p. 2210). More recently, (see [19] and references
therein) the DA has been re-interpreted within a purely
probabilistic framework within basic information the-
ory principles. Many reports in the literature have indi-
cated that the DA algorithm outperforms the standard
k—means clustering algorithm, and it can be also used
in the context of other important applications (see [19]
and references therein).

We present a new derivation and interpretation of
the DA algorithm that do not rely on any statistical
physics concepts. Our approach is based solely on math-
ematical optimization techniques. Within this interpre-
tation we derive its convergence properties, provide new
insights into the clustering problem that also re—enforce
the past mentioned studies. Thus not only our approach
can be viewed as complementary, but more importantly
it paves the way to further use of mathematical and
optimization tools for future works.

We complete this background section by mentioning
two additional contributions that treat the k—mean like
clustering as a finite dimensional optimization problem.
Zhang, Hsu and Dayal [24] proposed an algorithm
called the k—harmonic means clustering algorithm. The
algorithm is based on minimizing a cost whereby the
min operator in (1.2) is replaced by the harmonic mean.
In a similar vein, Nasraoui and Krishnapuram [17]
proposed to use other performance measures based on
I, norms. In fact, both approaches have suggested
cost functions for the clustering problem that can be
seen as special cases of the so-called generalized means
introduces by Hardy, Littlewood and Polya in their 1934
monograph [13] (further details will be given in our
forthcoming paper [22]).

3 Smoothing k—Means Algorithm

Consider the clustering optimization problem defined in
RN via:

(3.3) min F(x) =

Jnin min [|x; — a;[|%.

—1<i<k

The underlying idea of this paper is based on combining
a smoothing and successive approximation technique
we now briefly describe. This approach is based on a
general mathematical technique that opens the door
to reformulation of k—means clustering with a wide
variety of distance like functions as finite dimensional
optimization problems.

For any z € R, one has

= 1 1
11<ria<,xNz[jl = im slog

Ze /s | = f,(2).

This can be verified by a direct computation, or by
observing that it is just a reformulation of the definition
of the I, norm of a vector in R¥.

Thus for small s > 0 we can approzimate the non-
smooth max function f(z) = r<nax z[j] by the smooth

function f,(z). This fact is very well known and widely
used in the field of optimization. In fact, this is a special
case of a general smoothing approach introduced by
Ben-Tal and Teboulle [2]. The approach relies on the
use of asymptotic functions which play a central role
in optimization (see the recent book by Auslender and
Teboulle [1] for more details and results, and references
therein). Returning to our problem (3.3), since

pax yli] = — min {-y[l]},
we substitute F(x) by
e LAy
Fy(x) = Z—slog (Ze =)
i=1 =1
so that lim Fy;(x) = F(x). Thus, it is natural
to replace the objective F'(x) by a family of smooth

functions defined by:

m

F,(x) = Z —slog

=1

k
lIxp—a; |17 az [
> e

=1

(3.4)

()

and thus replace problem (3.3) by the approximate
family of smoothed problems parametrized by s > 0:

(3.5) min Fy(x).

x€RN

15

We remark that for each positive and small enough
s, the approximation function Fy is a nonnegative
infinitely differentiable function of x. The function F§
is not necessarily convex, so finding a global minimum
is not guaranteed. Thus the new problem is still not
easy, since there are many local minima. Note that
this difficulty is also not avoided within the standard k-
means algorithm. Furthermore, the proposed smoothed
reformulation of (1.1) can now be solved by standard
smooth optimization techniques, a possibility that will
not be pursued in this paper. Instead, here, we will
fix the smoothing parameter s > 0, and use the very
special structure of Fs to derive a simple algorithm
based on an explicit fixed point iteration formula.
We note that the idea of combining smoothing with
successive approximations is a widely known technique
in optimization that can be traced back to the so-called
Weiszfeld algorithm derived in 1937 for location theory
problems [23]. The algorithm has provided a fertile
ground for many problems in a variety of research areas.
For more recent studies see, for example, Ben—Tal and
Teboulle [3] and Brimberg and Love [7] and references
therein.

Smoothing k—means algorithm—smoka

We fix s > 0 and denote a local minimum of F; by
X(s). To simplify the notations, when it does not lead
to ambiguity, we shall drop the parameter s and denote
— . — —T T
X(s) just by X = (X},...,%})
optimality condition for problem (3.5) is VF; (X)
and thus for each [=1, ...,k we obtain

The necessary local
=0,

_Ix—a;?

(X —ag)e s
(3.6) > =0.
i=1 _Ixj—eili?
3o
j=1
For each | = wkand ¢ = 1,...,m and x =
(x{,... ,XZ)T we define the positive numbers
Clxg—agn?
(3.7) p(x,8) =

llx;—a;l12

Equation (3.6) now becomes

m

(3-8) > ® - ai)p’(%,5) =0,
=1
and yields
> Mx, s)a;
(3.9) % = -
D PR s)
j=1

To simplify the expression for X; we define

il
(3.10) Ni(x,5) = LC98)
> (x,5)
j=1
so that

M (x,s) >0, and Z)\”(x, s)=1.

i=1

Expression for X; can now be written in a compact form
as follows:

(3.11) X = X!(X,s)a;, foreach I =1,....k.

i=1

The fixed point characterization of X suggests to use
successive approximations to compute X. Thus, the
basic algorithm is as follows:

ALGORITHM 3.1. (smoka)
For a user defined non negative tolerance tol, smooth-

ing parameter s > 0, and initial choice of k centroids
x(0) = (x7(0),...,xr (0))T € RN do the following:

1. Set t =0.

2. For each | =1,..., k compute
m .
x(t+1) = Z)\”(X(t)a s)a.
i=1

3. If Fy(x(t)) — Fy(x(t + 1)) > tol
sett=t+1
goto step 2

4. Stop.

The formula for X; is in fact nothing else but
the one derived by Rose, Gurewitz and Fox [20], [21].
Here, the smoothing parameter s plays the role of
the “temperature” there, and the sequence produced
by the DA algorithm with constant “temperature”
coincides with the sequence generated by smoka (see
also Section 2).

Thus, using standard and elementary tools from
optimization theory we have recovered the DA algo-
rithm. It is further interesting to note that while the
derivation of Rose—Gurewitz—Fox relied on Statistical
Physics, which among other things, also requires as-
sumptions concerning the probability distribution for
vector-centroids associations, the proposed derivation is
assumption free, and our approach is very much differ-
ent. It paves the way of developing an analysis based

solely on mathematical optimization techniques. At this
juncture we also mention that the more recent proba-
bilistic interpretation of the DA algorithm within infor-
mation theory principles given in [19] can also be inter-
preted and derived via optimization principles. These
interpretations and derivations together with a detailed
analysis of a general class of algorithms that includes
smoka is developed in our companion paper [22]. The
remaining of this section briefly outlines some of proper-
ties that are obtained as by product of the optimization
approach.

First, note that formula (3.11) indicates that X;
belongs to the interior of the convex hull of the dataset
A. About the convergence of smoka, we have the
following theorem (for a proof, see [22]):

THEOREM 3.1. Let {x(t)}2, be a sequence generated
by smoka. If x(t) # x(t + 1), then

Fy(x(t)) > Fs(x(t + 1)).

Furthermore, every limit point x of {x(t)}2, is a
stationary point of F.

An important property of the function F; is that
it approximates the original objective F' uniformly.
Indeed, (see [2]), for each x € RN and s > 0 one has

(3.12) 0 < F(x) — F5(x) < smlogk.

We focus on the upper bound smlog k for the nonnega-
tive expression F'(x) — F,(x) and pick 4, 1 <i <m. To
simplify the exposition we assume that

(3.13) llx1 — ayll” < llx2 — al*... < [k —aq)?

and denote ||x; —a;||> by A;, I =1,..., k. Then

k llx;—a;1l?
—slog (Z e >
=1
koo
= —slog (ZeT>
=1

A

—slog [e%

A1—As

(1+e s

A1 —Ay
+...+e =)]

Ar1—Ap
+...+e =)

—Ag

A1 —slog (1 + e—Als

IN

min ||x; — az-||2
1<I<k

Ap—Ag Ap—Ay
—slog(1+e = +...+e s)

We remark that in many cases the first inequality in
(3.13) is strict, and as s — 0 the expression

A1—Apg
+o58)

A —A

e,~(s)zlog(1+e i

16

is much smaller than logk. Since

k
(BTt
Ze‘ = >:min [|%¢; — a;]|* — s€(s),

(3.14) —slog (

1<i<k
=1 ='=
one has
7 k llx,—a; 12
Fy(x) = —leog (Ze = >
i=1 1=1

m
min ||x; — a,-||2
0 1<i<k

=

F(x) — sZei(s).

-5 Z €i(s)
i=1

Hence, as s — 0 the nonnegative expression F(x) —
Fy(x) has the potential to be much smaller than
smlogk.

In the next section we review some classical clus-
tering algorithms that will be tested against smoka on
several datasets in Section 5.

4 Classical Clustering Algorithms

In this section we briefly review the classical batch
k—means algorithm [11] and the classical batch k-
means algorithm augmented by the incremental k—
means algorithm [25], [12], [15], [9] (we shall refer
to this algorithm simply as k-means). To illustrate
the behavior of the different algorithms we apply the
k—means algorithms and smoka to a simple scalar
dataset.

We remind the reader how the classical batch
k-means algorithm partitions a dataset A
{a1,...,an} C R" into k clusters. An iteration of
the algorithm oscillates between computing clusters and
centroids of a dataset partition. For a partition II =

{m1,...,m} of A the first step of an iteration computes
the corresponding centroids {x,...,xy} via
(4.15) c(m) = argmin Z d(a,x),

acm

and with d(-,-) being the quadratic Euclidean distance,
the centroid corresponding to cluster 7 is just the
arithmetic mean of the cluster. The second step of
the iteration uses centroids {xi,..., Xy} to build a new
partition II' {m},...,m,} as follows: A vector a
belongs to the new cluster 7} if x; is the centroid nearest
a,ie.,

(4.16) [la —x;|| < |la—x;]|, for each j # .

that

Q(I) > Q (Ir)

where @) (IT) measures the quality of partition and, with
a slight abuse of notations, is given by

(4.17) Q) = Q(m) + ... + Q(mk),

with

Q) == Y lla—xil.

acm;

The algorithm starts with an initial partition II{°) and
generates a sequence of partitions II(1) TI(?) ... The
algorithm runs as long as the decrease in the objective
function

0 (H(i)) -Q <H(i+1))

exceeds a user specified threshold tol. While fast and
memory efficient the batch k—means often gets trapped
at a local minimum (see Example 4.1 below).

ExaMPLE 4.1. Let A = {0,2,3}, and the initial par-
tition IO = {wf’), 0 = {0,2}, and

Wéo)} where m;
wé"’ = {3}.

INITIAL PARTITION
T

0.5

-1.5

-0.5 0.5 3.5

An iteration of the batch k—means algorithm applied to

Using partition II' one can compute the corresponding 19 does not change the partition. On the other hand
centroids {x},...,x}} and it is known (see e.g. [11]) the partition Tl = {{0},{2,3}} is superior to TI®).

17

OPTIMAL PARTITION
T T T

051

-051

I
0

I
0.5

I
1

I
15

I
2

I
25

I
3

-15
-0.5

35
The better partition I1 is undetected by the algorithm.

Note that the decision whether a vector a € 7; should be
moved from cluster 7; with m; vectors to cluster 7; with
m; vectors is made by the batch k—means algorithm
based on examination of the expression |la —x;|| —
[la —x;||. The positive sign of

(4.18) Ap = [la—x|* = [la—x;]I%,

may trigger the move. On the other hand the change in
the value of the objective function caused by the move
is

m;j
m; +1

m;

mi—l

(4.19)A = II?

lla = x; lla — ;]

(see e.g. [10]). The difference between the expressions

A=A = lla—xill” + la—x,|* > 0.

m; — 1 mj+1

In particular, it is possible that Ay is non-positive, and
the batch k—means iteration leaves a in cluster 7;. At
the same time the value of A is positive, and reassigning
a to m; would decrease (). Indeed, for the dataset of
Example 4.1 and a = as one has

Ap = |laz —x1|> — |las = %2> =1-1=0,

and

g 12

2 2
The remark and the example suggest to augment the
batch k—means algorithm with iterations reassigning a
single vector (so—called “incremental” iterations). The
combination of batch and incremental iterations was in-
troduced recently in [25], [12], [15]. The augmented al-
gorithm (that we shall call simply k—means [15], [9]) al-
ways outperforms the batch k—means algorithm. Note

2 1
A= I||32 -x | - §||a2 —x” =

18

that quantities ||a — x;|| needed for (4.19) are computed
by an iteration of the k—means algorithm. An in-
cremental iteration following a batch iteration comes,
therefore, at virtually no additional computational ex-
pense. One application of the batch k—means algorithm
iteration augmented by incremental iterations immedi-
ately leads from II1(9) to II.

Finally we remark that an application of smoka with
parameters s = 0.1 and tol = 0.001 to the partition
(® produces centroids x; = 0 and x, = 2.5, thus
recovering II.

In the next section we apply smoka and the afore-
mentioned clustering algorithms to various datasets.
The obtained results and performance of the algorithms
are reported.

5 Numerical Experiments

In this section we report clustering results for the
following document collections:

1. A merger of the three document collections avail-
able at http://www.cs.utk.edu/"1si/:

e DCO (Medlars Collection, 1033 medical ab-
stracts).

e DC1 (CISI Collection, 1460 information sci-
ence abstracts).

e DC2 (Cranfield Collection, 1398 aerodynam-
ics abstracts).

2. The 20 newsgroups dataset available at
http://kdd.ics.uci.edu/databases/
20newsgroups/20newsgroups.html.

e The “mini” dataset is a subset of the “full”
dataset with 100 documents from each of the
20 Usenet newsgroups.

o The “full” dataset of 19997 messages taken
from 20 Usenet newsgroups.

We remove stop-words (see

ftp://ftp.cs.cornell.edu/pub/smart/english.stop),

and stem the texts (see [18]). We then select n “best”
terms, apply IDFB normalization scheme [8], and build
vectors of dimension n for each document collection (see
[4] for the vector space model description and consult
[9] for selection procedure details, unlike [9] in this
experiment we rate all collection terms). The Principal
Direction Divisive Partitioning (PDDP) introduced in
[6] is applied to a vector set to generate the initial
partition II©). We then apply the batch k—means,
k—means, and smoka to the partition II(®) and report
qualities of the obtained final partitions along with
the number of iterations performed by each algorithm.

Since the first three collections (classic3) are known to
be well separated we also provide confusion matrices
corresponding to partitions of these collections. In
the experiments reported below batch k—means, and
k—means are run with tol = 0, smoka is run with
s = 0.0001 and tol = 0.0001.

We conduct the first experiment with classic3 col-
lection. The confusion matrix for the partition II(®) is
given in Table 1. When the number of terms is relatively
small some documents may contain no selected terms,
and their corresponding vectors are zeros. We always
remove these vectors ahead of clustering and assign the
“empty” documents into a special cluster. This clus-
ter concludes the “confusion” matrix (and is empty in
this experiment). The zero vectors do appear when we
decrease the dimension of the vector space model (see
e.g. Table 6). Application of the batch k—means clus-

[DCO [DC1 [DC2 |

cluster 0 907 91 13
cluster 1 120 7| 1372
cluster 2 6 | 1362 13
“empty” documents

cluster 3 0 0 0

Table 1: Collection: classic3. PDDP generated initial
“confusion” matrix with 250 “misclassified” documents
using 600 best terms,) = 3612.61

tering algorithm to the partition II(?) iterates 3 times
only and generates a partition with confusion matrix
given in Table 2. Application of the k—means clustering

| DCO | DC1 | DC2 |

cluster 0 984 50 12
cluster 1 42 2 | 1368
cluster 2 7 | 1408 18
“empty” documents

cluster 3 0 0 0

Table 2: Collection: classic3. Batch k—means gener-
ated “confusion” matrix with 131 “misclassified” doc-
uments using 600 best terms, Q = 3608.06

algorithm to the partition II(®) produces 87 batch it-
erations and 72 incremental iterations. The confusions
matrix corresponding to the generated final partition
is given in Table 3. Finally, smoka applied to II(*) af-
ter only 7 iterations builds a partition with the confu-
sion matrix given in Table 4. While the quality of final
partitions generated by k—means and smoka are almost

19

[DCO | DCL | DC2 |

cluster 0 1018 21 19
cluster 1 5 1| 1356
cluster 2 10 | 1438 23
“empty” documents
cluster 3 0 0 0

Table 3: Collection: classic3. k—means generated

“confusion” matrix with 79 “misclassified” documents
using 600 best terms,) = 3605.5

| DCO | DC1 | DC2 |

cluster 0 1019 22 15
cluster 1 5 1] 1362
cluster 2 9 | 1437 21
“empty” documents

cluster 3 0 0 0

Table 4: Collection: classic3. smoka generated “con-
fusion” matrix with 73 “misclassified” documents using
600 best terms, () = 3605.5

identical the number of iterations performed by smoka
is significantly smaller. This information is collected in

Table 5. We reduce the vector space dimension to 100
algorithm iterations Q
PDDP 3612.6
batch k—means 3 | 3608.1
k—means 87 | 3605.5
smoka 7 | 3605.5

Table 5: Collection: classic3. Number of iterations
per clustering algorithm applied to the initial partition
generated by PDDP, the vector space dimension is 600

and repeat the experiment with the same dataset. The
confusion matrix for the 3 cluster partition II(®) gener-
ated by PDDP is given in Table 6. Table 7, Table 8§,
and Table 9 present confusion matrices generated from
I(® by batch k—means, k—means, and smoka respec-
tively. Table 10 reports quality of partition generated
and number of iterations performed by the algorithms
applied to I1(0).

We now cluster the “mini” subset of the 20 news-
groups dataset (total of 2000 documents). We first ap-
ply PDDP to 2000 vectors of dimension 600 and gen-
erate the initial partition TI(®) with Q = 1758.4. Ap-
plications of batch k—means, k—means and smoka are

I | DCO | DC1 [DC2 |

cluster 0 384 35 | 1364
cluster 1 3 999 5
cluster 2 642 425 28
“empty” documents

cluster 3 4 1 1

Table 6: Collection: classic3. PDDP generated initial
“confusion” matrix with 880 “misclassified” documents
using 100 best terms, @ = 3379.17

I | DCO | DC1 | DC2 |

cluster 0 193 34 | 1354
cluster 1 11 | 1063 7
cluster 2 825 | 362 36
“empty” documents

cluster 3 4 1 1

Table 7: Collection: classic3. batch k—means gener-
ated initial “confusion” matrix with 643 “misclassified”
documents using 100 best terms, @ = 3365.3

I | DCO | DC1 | DC2 |

cluster 0 154 19 | 1360
cluster 1 116 | 1420 29
cluster 2 759 20 8

“empty” documents
cluster 3 4 1 1

Table 8: Collection: classic3. k—means generated
“confusion” matrix with 346 “misclassified” documents
using 100 best terms, @ = 3341.06

I | DCO | DC1 | DC2 |

cluster 0 150 19 | 1361
cluster 1 115 | 1419 28
cluster 2 764 21 8

“empty” documents
cluster 3 4 1 1

Table 9: Collection: classic3. smoka generated “confu-
sion” matrix with 341 “misclassified” documents using
100 best terms, @) = 3341.07

reported in Table 11. While smoka appears to gener-
ate partitions of quality comparable with k—means it
again performs significantly less iterations. As Table 11

algorithm iterations Q

PDDP 3379.17
batch k-—means 9 | 3365.30
k—means 550 | 3341.06
smoka 31 | 3341.07

Table 10: Collection: classic3. Number of iterations
per clustering algorithm applied to the initial partition
I1(%) generated by PDDP, the vector space dimension is
100

algorithm iterations Q
PDDP 1758.4
batch k-means 11 | 1737.7
k—means 473 | 1721.9
smoka 15 | 1726.3
Table 11: Collection: the “mini” subset of the

20 newsgroups dataset. Number of iterations per
clustering algorithm applied to the initial partition
generated by PDDP, 2000 vectors of dimension 600

shows an application of smoka to ITI(®) leads to the par-
tition IIV) with Q = 1726.3 in 15 iterations only. A
subsequent application of k-means to IIY) stops after
226 batch and 194 incremental iterations that result in
the final partition with) = 1721.9.

The final experiment reported in the paper deals
with the full set of 19997 documents. We build the
vector space model of dimension 1000, generate the
initial 20 cluster partition II(®) with PDDP, and apply
batch k—means, k—means and smoka to II(®). The
clustering results are reported in Table 12.

| algorithm | iterations | Q |
PDDP 18156
batch k-means 47 | 17956
k—means 5862 | 17808
smoka 51 | 17808

Table 12: Collection: the “full” 20 newsgroups
dataset. Number of iterations per clustering algorithm
applied to the initial partition generated by PDDP,
19997 vectors of dimension 1000 from the “full” 20
newsgroups dataset

6 Conclusion

The paper has shown that the DA algorithm can be
derived by simple optimization techniques without re-
course to statistical mechanics and probabilistic argu-
ments. OQur optimization approach provides further in-
sights to the DA method, the way it works, and opens
the door to further improve it within the use of more
powerful optimization techniques.

The motivation for the DA algorithm was to built
an algorithm that eliminates the non-convexity diffi-
culty which arise in the clustering optimization problem,
and to find global optimal solutions. However, thus far
it is not clear that global optimality can be guaranteed
or/and that the quality of a solution produced by DA
can be estimated. On the other hand, in this paper,
we have handled the second difficulty in the clustering
optimization problem, namely the non-smoothness. By
so doing, we have shown that the DA algorithm with
fixed “temperature” in fact coincides with smoka. Thus
from our analysis, it appears that in the context of clus-
tering problems the DA algorithm, which was based on
statistical physics analogies is also handling only the
non-smoothness difficulty and does not mathematically
resolve the non-convexity issue. Nevertheless, it turns
out that the special “Gaussian—like” form of the func-
tion F} tends to eliminate many potential local minima.
Like the many simulations results presented in the past
literature with the DA method, our preliminary numer-
ical experiments indicate that smoka outperforms the
classical batch k—means algorithm, as well as its re-
cently introduced enhanced versions.

Acknowledgments The authors thank anonymous re-
viewers for bringing to their attention works of Zhang,
Hsu and Dayal, Nasraoui and Krishnapuram, and Rose,
Gurewitz, and Fox.

References

[1] A. Auslender and M. Teboulle. Asymptotic Cones and
Functions in Optimization and Variational Inequali-
ties. Springer—Verlag, New York, 2003.

A. Ben-Tal and M. Teboulle. A smoothing tech-
nique for nondifferentiable optimization problems. In
Springer Verlag Lecture Notes in Mathematics, volume
1405, pages 1-11, Berlin, 1989.

A. Ben-Tal and M. Teboulle. A least-squares based
method for a class of nonsmooth minimization prob-
lems with applications in plasticity. Appl. Mathematics
and Optimization, 24:273-288, 1991.

M. Berry and M. Browne. Understanding Search
Engines. STAM, 1999.

D.P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, Massachusetts, second edition,
1999.

2]

21

[6] D. L. Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325-344,
1998.

J. Brimberg and Love R.F. Global convergence of a
generalized iterative procedure for the minisum loca-
tion problem with [, distances. Operations Research,
41:1153-1163, 1993.

E. Chisholm and T. Kolda. New term weighting
formulas for the vector space method in information
retrieval, 1999. Report ORNL/TM-13756, Computer
Science and Mathematics Division, Oak Ridge National
Laboratory.

I. S. Dhillon, J. Kogan, and C. Nicholas. Feature
selection and document clustering. In M.W. Berry,
editor, A Comprehensive Survey of Text Mining, pages
73-100. Springer-Verlag, 2003.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. John Wiley & Sons, second edition,
2000.

E. Forgy. Cluster analysis of multivariate data: Ef-
ficiency vs. interpretability of classifications. Biomet-
rics, 21(3):768, 1965.

P. Hansen and Mladenovic N. J-Means: a new local
search heuristic for minimum sum of squares clustering.
Patern Recognition, 34:405-413, 2001.

G. Hardy, Littlewood J.E., and G. Polya. Inequalities.
Cambridge University Press, Cambridge, 1934.

S. Kirkpatrick, C.D. Gelatt, and Vecchi M.P. Opti-
mization by simulated annealing. Science, 220:671-
680, 1983.

J. Kogan. Means clustering for text data. In
M.W.Berry, editor, Proceedings of the Workshop on
Text Mining at the First SIAM International Confer-
ence on Data Mining, pages 47-54, 2001.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A H. Teller, and E. Teller. Equations of state calcu-
lations by fast computing machines. TJ. Chem. Phys.,
21(6):1087-1091, 1953.

O. Nasraoui and R. Krishnapuram. Crisp interpreta-
tions of fuzzy and possibilistic clustering algorithms.
In Proceedings of 8rd European Congress on Intelli-
gent Techniques and Soft Computing, pages 1312-1318,
Aachen, Germany, April 1995.

M.F. Porter. An algorithm for suffix stripping. Pro-
gram, 14:130-137, 1980.

K. Rose. Deterministic annealing for clustering,
compression, classification, regression, and related
optimization problems. Proceedings of the IEEE,
86(11):2210-2239, 1998.

K. Rose, E. Gurewitz, and C.G. Fox. A deterministic
annealing approach to clustering. Pattern Recognition
Letters, 11(9):589-594, 1990.

K. Rose, E. Gurewitz, and C.G. Fox. Vector quanti-
zation by deterministic annealing. IEEE Trans. Info.
Theory, 38(4):1249-1257, 1992.

M. Teboulle and J. Kogan. A smoothing optimiza-
tion approach to clustering algorithms with general
distance-like functions. In preparation.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

[22]

(23]

[24]

25]

E. Weiszfeld. Sur le point lequel la some de n points
dnnes est minimum. Tohoku Math. J., 43:355-386,
1937.

B. Zhang, M. Hsu, and U. Dayal. K-harmonic means
- a data clustering algorithm. Technical Report HPL-
1999-124 991029, HP Labs, Palo Alto, CA, 1999.

G. Zhang, B. Kleyner and M. Hsu. A local search
approach to k-clustering. Tech Report HPL-1999-119,
1999.

22

On the Benefit of Spectral Projection for Document Clustering

Santosh Vempala*
Mathematics Department and CSAIL,
vempala@math.mit.edu

Abstract

Spectral algorithms have been applied with much ex-
perimental success to the problem of document clus-
tering. However, their success is not fully explained —
why do spectral algorithms perform better than tradi-
tional clustering algorithms such as k-means? In this
paper, we propose that the benefit of spectral projec-
tion is based on two simple properties that aid cluster-
ing and give experimental evidence of these properties.
The first property is that the spectral projection is a
good approximation of the original matrix. The sec-
ond is that the true clustering becomes more apparent
in the spectral projection. We also discuss a connec-
tion between the second property and recent theoretical
work on learning mixtures of distributions.

1 Introduction

Document clustering is a fundamental problem in infor-
mation retrieval; it has been used to organize results of a
query [CKPT92] and produce summaries of documents
[HKH*01]. In this problem, an algorithm is given a set
of documents. The algorithm’s task is to partition the
set of documents so that each subset comprises docu-
ments about the same topic. Spectral clustering algo-
rithms have shown impressive experimental results in
this domain [Bol98, ZDG*01, DHZ"01, Dhi01, ZK02,
XLG03, LMO04, CKVWO05]!. A spectral clustering al-
gorithm is one that partitions a data set using the eigen-
values and eigenvectors of a matrix representation of the
data. Such a description is vague, but a more precise
description cannot be given because spectral methods
have been applied to clustering in many different ways.
The varied uses of spectral methods and their common
experimental success motivate the following question:
do the proposed spectral algorithms share a common
benefit for document clustering?

In this paper, we focus on spectral projection and
give experimental evidence that the answer is yes; clus-

*Both authors are supported in part by NSF Award CCR-
0312339.
1For instance, see http://eigencluster.csail.mit.edu

Grant Wang*
CSATL, MIT

gjw@theory.csail.mit.edu

MIT

tering algorithms that use the spectral projection of a
document-term matrix do indeed share a common ben-
efit in the form of two properties: approrimation and
distinguishability. The second property explains why
traditional clustering algorithms such as k-means per-
form better on the spectral projection of a document-
term matrix than on the document-term matrix itself.
The purpose of this work is not to show that spectral
methods do perform better than or can improve tradi-
tional clustering methods — this is well known. The
goal of this paper is to explain the benefit of spectral
projection by means of two specific properties.

The first property, approximation, means that the
spectral projection of a document-term matrix remains
close to the original document-term matrix. Thus, spec-
tral projection reduces the dimension of the data, which
speeds up clustering algorithms running on the data,
while not incurring too much error. The experiments
and results are described in Section 3.

The second property, distinguishability, is that clus-
ters are more clearly demarcated after spectral projec-
tion. In particular, for natural (and commonly used)
definitions of distance and similarity for documents,
we give experimental evidence that inter-cluster dis-
tance/similarity is substantially more distinguishable
from intra-cluster distance/similarity after spectral pro-
jection. Before spectral projection, these two quanti-
ties are indistinguishable. This explains why cluster-
ing algorithms that work solely on the basis of pair-
wise distances/similarities perform better on the pro-
jection compared to the original document-term matrix.
This property of spectral projection coincides with re-
cent theoretical work on spectral algorithms for learning
mixtures of distributions [VW04, KSV04]. We explain
this connection and the experimental results in Section
4.

1.1 Previous work An early use of spectral tech-
niques in information retrieval was the work of
[DDL*90], which showed that a low rank approxima-
tion to a document-term matrix improved precision and
recall for queries. Much work on spectral techniques

for clustering followed in the text domain, including
[Bol98, SS97, ZDG*01, DHZ 01, Dhi01, ZK02, XLG03,
LMO04, CKVWO05]. Empirical success of spectral meth-
ods has also appeared in other domains such as image
segmentation [SM00, NJWO01]. Theoretical work ex-
plaining the success of spectral methods in clustering
has focused on proposing generative models for data
and showing that particular spectral algorithms per-
form well [PRTV00, AFK+01, KVV04, McS01, VW04,
KSV04]; An exception is the work of [KVV04] that
gives a worst-case approximation guarantee for recur-
sive spectral partitioning. The work done in [DMO1]
and [SS97] is most similar to the work in this paper.
In [DMO1], Dhillon and Modha perform similar ex-
periments investigating the approximation and distin-
guishability properties of concept decomposition, a tech-
nique distinct from SVD that represents a document-
term matrix in a lower-dimensional space. In [SS97],
Schutze and Silverstein empirically study the effect of
projections on clustering speed and efficacy. They con-
clude that spectral projection significantly speeds up
clustering but has no effect on efficacy. However, their
measure of efficacy is respect to a fixed clustering al-
gorithm. Although a fixed clustering algorithm may
not see improved performance after spectral projection,
other clustering algorithms may benefit from spectral
projection. Our work suggests that spectral projection
has a positive effect on efficacy; we measure this effect
independent of any particular clustering algorithm.

2 Preliminaries and Notation

Let A € R™*™ be a document-term matrix; the rows
of A are the documents and the columns of A are
the terms. Let A = UXVT be the singular value
decomposition of A, where ¥ is a diagonal matrix and
U and V are orthonormal matrices. The diagonal
entries of ¥ are the singular values of A, and the
columns of U and V are the left and right singular
vectors, respectively. Let ¥ be a diagonal matrix with
the first k singular values down the diagonal, and let
A, = UZ,VT. We also refer to Ay as the spectral
projection of A of rank k, since it is the projection of
A onto the top k right singular vectors. Ay is the best
rank k approximation to A in the following sense:

THEOREM 2.1. (ECKHART AND YOUNG [EY39])
Ap = argminB;rank(B)§k||A — Bl|r

Ay = afgmi"B:mnk(B)gk”A — B>

Recall that the 2-norm of a matrix is max,.||,||=1 ||Av||2
and the Frobenius norm is the sum of the squares of the
matrix entries. More about the SVD and its properties
can be found e.g., in [GL96].

100 T T T T T T
Frobenius norm
90 2-norm 1

80

701
60

501

percentage error

40t

30F

20f

rank (k)

(a) alt.atheism

100 T T T T T T T
Frobenius norm
0 2-norm 1

80

701

60

501

40r

percentage error

301

20f

101

0

.
0 50 100 150 200 250 300 350 400
rank (k)

(b) rec.sport.hockey

Figure 1: Percentage error vs. rank

3 Approximation

Reducing the dimensionality of data can speed up clus-
tering algorithms computing over the data. However,
a low-dimensional representation of high-dimensional
data typically incurs some error. Thus, for dimension
reduction to be effective, it is desirable that the error
is small. We conducted an experiment to measure the
error incurred by spectral projection of document-term
matrices. From Theorem 2.1, we know that the spec-
tral projection Ay, is the best approximation to A for the
Frobenius norm and 2-norm. The results show that this
best approximation is indeed a good one — spectral pro-
jection to low dimensions introduces manageable error,
even when the initial dimension is very high.

The data set we used was the 20 Newsgroups data
set [Lan], which consists of 20,000 articles from 20

24

rank (k)

dataset | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128
alt.atheism | 98.5% | 97.7% | 96.2% | 93.7% | 89.5% | 82.3% | 70.9% | 52.4%
comp.graphics | 98.7% | 98.1% | 97.1% | 95.5% | 92.5% | 87.4% | 78.7% | 63.5%
comp.os.ms-windows.misc | 98.7% | 98.0% | 96.8% | 94.7% | 91.1% | 85.5% | 76.2% | 60.5%
comp.sys.ibm.pc.hardware | 98.5% | 97.6% | 96.4% | 94.4% | 91.0% | 85.5% | 76.2% | 60.4%
comp.sys.mac.hardware | 98.8% | 98.1% | 96.8% | 94.7% | 91.2% | 85.2% | 75.1% | 58.5%
comp.windows.x | 98.9% | 98.3% | 97.2% | 95.5% | 92.5% | 87.2% | 78.2% | 62.9%
misc.forsale | 98.9% | 98.2% | 97.1% | 95.3% | 92.2% | 87.0% | 78.0% | 62.3%
rec.autos | 98.8% | 98.0% | 96.6% | 94.5% | 91.0% | 85.3% | 75.5% | 59.6%
rec.motorcycles | 98.9% | 98.2% | 97.0% | 94.8% | 91.2% | 85.0% | 74.6% | 58.1%
rec.sport.baseball | 98.7% | 97.9% | 96.5% | 94.3% | 90.8% | 84.6% | 74.4% | 58.1%
rec.sport.hockey | 98.6% | 97.9% | 96.5% | 94.2% | 90.6% | 84.6% | 74.7% | 58.7%
sci.crypt | 98.6% | 97.9% | 96.8% | 94.6% | 91.1% | 85.2% | 75.1% | 58.8%
sci.electronics | 98.9% | 98.1% | 96.7% | 94.6% | 91.1% | 85.3% | 75.2% | 58.5%
scimed | 99.0% | 98.2% | 97.0% | 94.8% | 91.4% | 85.7% | 76.0% | 59.9%
sci.space | 98.7% | 98.0% | 96.7% | 94.6% | 91.0% | 84.9% | 75.2% | 59.3%
soc.religion.christian | 98.5% | 97.8% | 96.6% | 94.6% | 91.3% | 85.9% | 77.2% | 62.8%
talk.politics.guns | 98.5% | 97.7% | 96.4% | 94.3% | 90.7% | 84.7% | 74.5% | 58.0%
talk.politics.mideast | 98.4% | 97.3% | 95.7% | 93.0% | 88.9% | 82.5% | 72.4% | 56.2%
talk.politics.misc | 98.3% | 97.1% | 95.5% | 93.0% | 89.0% | 82.2% | 70.8% | 51.9%
talk.religion.misc | 98.5% | 97.5% | 95.8% | 92.9% | 88.3% | 80.3% | 66.6% | 43.5%

Table 1: Percentage error (Frobenius norm) vs. rank for all 20 newsgroups

Usenet newsgroups. Each newsgroup contains roughly
1,000 articles divided into a training subset and a test
subset. For each of the newsgroups, we constructed the
document-term matrix for all the articles in the test
subset of the newsgroup. We used the following common
pre-processing steps.

e Stemming (using Porter’s algorithm [Por80]).

e Removal of terms that appear too infrequently (less
than two times).

o TF*IDF normalization.

e Normalization of term vectors to have Euclidean
length one.

The document-term matrix was roughly 400 by 4,000
for each newsgroup and contained roughly 24, 000 non-
zero entries. The singular value decomposition was
computed for each document-term matrix, and the
percentage error
1A — Axl|
[l

was measured for values of the rank (k) from 1 to 250
for both the Frobenius norm and the 2-norm.

The plots of percentage error vs. k for the news-
groups alt.atheism and rec.sport.hockey appear in

25

Figures 1(a) and 1(b). The percentage error for the
Frobenius norm for all 20 newsgroups is shown in Table
1 for k (rank) in powers of two. Table 2 contains the
same information but for the 2-norm.

In Figures 1(a) and 1(b), the percentage error drops
to 0% when k& = 319 and k = 399, respectively. This
is because alt.atheism consists of 319 documents and
rec.sport.hockey consists of 399 documents. Thus,
spectral projection to 319 and 399 dimensions results in
perfect reconstructions of the document-term matrices
for alt.atheism and rec.sport.hockey, respectively.
Both plots show that the error for the Frobenius norm
drops off roughly linearly, whereas the error for the 2-
norm drops off more quickly initially. For high dimen-
sions, though, the percentage error for the Frobenius
norm is lower than that of the 2-norm.

The best low-rank approximations with respect
to the Frobenius norm and 2-norm are indeed good
approximations. When the dimensionality of the data
was reduced from roughly 400 to 128, the percentage
error for the Frobenius norm was less than 60% for
all but two newsgroups (see Table 1). For the 2-
norm (Table 2), we have even better results: when the
dimensionality was reduced to just 32, the percentage
error for all but three newsgroups was under 50%.
It is interesting to note that all newsgroups behaved

rank (k)

dataset | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128
alt.atheism | 75.4% | 71.6% | 66.7% | 61.2% | 54.9% | 47.3% | 39.5% | 31.3%
comp.graphics | 69.6% | 63.7% | 57.6% | 54.0% | 50.9% | 45.4% | 40.2% | 33.5%
comp.os.ms-windows.misc | 74.1% | 71.2% | 65.0% | 59.1% | 53.0% | 45.7% | 39.8% | 33.0%
comp.sys.ibm.pc.hardware | 72.3% | 64.8% | 58.2% | 52.9% | 47.8% | 42.1% | 36.6% | 30.3%
comp.sys.mac.hardware | 74.4% | 70.6% | 67.9% | 60.9% | 55.1% | 49.0% | 42.2% | 33.8%
comp.windows.x | 73.2% | 70.9% | 64.8% | 59.8% | 55.0% | 49.5% | 43.5% | 36.2%
misc.forsale | 78.7% | 74.2% | 64.7% | 61.1% | 55.1% | 49.2% | 43.7% | 36.5%
rec.autos | 82.4% | 77.2% | 69.7% | 63.9% | 55.4% | 49.3% | 42.8% | 34.5%
rec.motorcycles | 76.8% | 72.2% | 69.4% | 64.9% | 57.8% | 52.2% | 43.8% | 34.5%
rec.sport.baseball | 74.7% | 71.7% | 67.7% | 58.2% | 52.3% | 47.4% | 40.0% | 31.6%
rec.sport.hockey | 70.3% | 69.2% | 64.7% | 57.1% | 51.4% | 45.1% | 38.4% | 30.8%
sci.crypt | 66.1% | 63.2% | 61.5% | 57.1% | 50.6% | 45.1% | 39.1% | 30.8%
sci.electronics | 87.1% | 81.2% | 71.1% | 63.7% | 58.6% | 51.7% | 45.4% | 36.1%
scimed | 83.7% | 80.2% | 71.7% | 64.5% | 58.1% | 51.7% | 45.4% | 36.3%
sci.space | 74.0% | 73.5% | 65.5% | 60.3% | 55.4% | 47.8% | 40.8% | 33.0%
soc.religion.christian | 66.6% | 62.2% | 56.6% | 53.2% | 47.4% | 41.3% | 35.4% | 29.4%
talk.politics.guns | 71.5% | 65.4% | 59.1% | 54.1% | 49.5% | 43.9% | 37.7% | 30.3%
talk.politics.mideast | 78.8% | 74.9% | 65.1% | 56.2% | 49.6% | 42.5% | 35.3% | 28.5%
talk.politics.misc | 85.3% | 69.5% | 60.9% | 55.7% | 50.2% | 43.7% | 37.3% | 29.7%
talk.religion.misc | 77.7% | 76.8% | 69.4% | 62.5% | 55.2% | 49.6% | 40.9% | 31.6%

Table 2: Percentage error (2-norm) vs. rank for all 20 newsgroups

similarly with respect to percentage error versus rank,
despite the difference in content in the newsgroups. For
most values of k (rank), the maximum percentage error

difference between any two newsgroups was roughly
10%.

4 Distinguishability

Many document clustering algorithms are based on a
pairwise distance or similarity function. The distance
function maps two documents to any non-negative num-
ber; the larger the distance, the more unlike the two
documents are. On the other hand, a similarity func-
tion maps two documents to the interval [0, 1]; the closer
to 1, the more like the two documents are. Many dif-
ferent distance and similarity functions have been used
when documents are represented as term vectors. We
consider two commonly used candidates for a distance
function and similarity function. The distance between
two term vectors u,v will be their Euclidean distance:

d(u,v) = [|lu—v||.
For similarity, we use the Gaussian kernel:
e~ llu=vll”

s(u,v) =

We give experimental evidence that under these mea-
sures, intra-cluster distance/similarity becomes sub-

stantially more distinguishable from inter-cluster dis-
tance/similarity after spectral projection.

4.1 Experiment and results The data set we used
for this experiment was also the 20 Newsgroup data set
[Lan]. The general experimental setup was as follows:
we formed the document-term matrix A of a random
sample of the articles from k random newsgroups, where
k ranged from 2 to 10. We measured the inter/intra
newsgroup distance/similarity of these documents. We
then computed Ay, the spectral projection of A to k
dimensions, and measured the inter/intra newsgroup
distance/similarity in the new representation. The
exact experimental details follow.

We chose 10 random sets of k different newsgroups.
For a random set of £ newsgroups, we chose 10 random
samples S; ..., S10- Each random sample consisted of
50 articles from each of the k newsgroups. Clearly, the
articles in each random sample, S;...Si9 can be par-
titioned into k clusters according to the newsgroup to
which they belong (we will refer to the collection of doc-
uments from the same newsgroup as a cluster). We then
computed the document-term matrix A for each random
sample S;, using the pre-processing steps described in
Section 3. The singular value decomposition of A was
computed and we formed the spectral projection Ag.

26

Each row vector in A; was then normalized so that its
Euclidean length was 1 (note that in A, each row vector
was also normalized to 1).

For the distance function d(u,v) = [Ju — v||, we
measured the following two quantities both before and
after projection:

e Average distance between cluster means.

o Average distance between cluster mean and a vec-
tor from the same cluster.

The cluster mean is simply the vector that is the average
of all the term vectors from a newsgroup. Table 3
shows the results averaged together for each value of
k. The key property is that the ratio of average
distance between cluster means, d(u;,p;), to average
distance between a cluster mean and a term vector
from the same cluster, d(u,u), increases to the point
that the two quantities become distinguishable. The
factor by which this ratio increases after projection is
the magnification factor (the last column in the table).
Consider a situation in which the ratio d(p;, ;) /d(u, p)
is at least 2 for every pair of clusters; then we can put a
ball around each cluster mean so that 1) the balls do not
intersect each other, and 2) each ball contains only the
term vectors from a single cluster. In our experiments,
the ratio was at least 2 only for £ < 6. Nevertheless,
the magnification factor shows that it is easier to cluster
the points in balls after spectral projection (most points
can be clustered).

For the similarity function s(u,v) = e~llu=vl”) we
measured the following quantities both before and after
spectral projection:

e Average intra-cluster similarity, s(C;, C;).
o Average inter-cluster similarity, s(C;, C;).

The results appear in Table 4. The ratio between the
average intra-cluster similarity and average inter-cluster
similarity (s(Cj, C;)/s(Ci, C;)) is the key quantity. Be-
fore projection (4th column), the ratio is roughly 1. Af-
ter projection (7th column), the ratio approaches 2 —
meaning that, on average, documents from the same
cluster are twice as similar as documents from different
clusters. The magnification factor, the last column in
the table, shows the increase in this ratio after projec-
tion. It is interesting that the magnification factor stays
roughly constant as k increases. This is not true for dis-
tance; the magnification factor drops as k increases (see
Table 3).

4.2 Connection to learning mixtures of distri-
butions Measuring the effect of spectral projection on

inter-cluster distance and intra-cluster distance was mo-
tivated by recent theoretical work on the problem of
learning mixtures of distributions. In this problem, we
are given a random sample from a mixture of k distri-
butions Fi, ..., F with mixing weights wy, ..., w; that
sum to 1, i.e.), w; = 1. A random sample is gener-
ated from the mixture by first choosing a distribution
F; according to its mixing weight w;, and then choosing
a random sample according to F;. We say that an algo-
rithm learns a mizture of distributions if it can classify
each random sample according to the distribution from
which it was sampled.

Recent work has shown that spectral algorithms can
provably learn mixtures of distributions for some impor-
tant special cases. In [VWO04], a spectral algorithm is
given that correctly classifies a random sample from a
mixture of spherical Gaussians, assuming a weak sepa-
ration between the means of the Gaussians. This was
generalized in [KSV04] using a stronger separation con-
dition to mixtures of logconcave distributions, a class
of distributions which includes general Gaussians. The
key insight to both algorithms was relating the spectral
projection subspace V, spanned by the top & right sin-
gular vectors of the sample matrix A (the rows of A are
simply the sample points), to the subspace W spanned
by the mean vectors of the distributions Fi,..., F;. In
[VWO04], it is shown that, in expectation, V is the same
subspace as W, but only when the distributions are
spherical. This is not true when the distributions are
arbitrary, but an approximate theorem holds.

THEOREM 4.1. ([KSV04]) Let S = S1US,...U Sk be
a sample from a mixture with k distributions such that
S; is from the ith distribution F; and let V be the k-
dimensional SVD subspace of S. For each i, let p; be
the mean of S; and o? be the mazimum variance of S;
along any direction in V. Then,

k

k
Do 1Sild(ui, V)? < kY |Silo}
i=1

i=1

where d(p;, V') is the orthogonal distance between u; and
V.

The theorem upper bounds the average distance be-
tween means and their projection to V. Thus a lower
bound on the distance between any two means (i.e.,
d(pi, 1)), gives a lower bound on the distance between
the means of any two projected distributions by the tri-
angle inequality. Roughly speaking, the theorem says
that, on average, the inter-mean distances do not de-
crease much.

On the other hand, it is reasonable to expect that
the distance between a random point and the mean

27

before projection after projection magnification
B | i py) | d(u) | Tt | dQuipg) | du,p) | Gl | factor
2| 0.2902 | 0.9690 | 0.2995 0.8985 | 0.2197 | 4.0889 13.6524
3| 0.2858 | 0.9701 | 0.2945 0.8222 | 0.3269 | 2.5151 8.5402
4| 02842 | 09714 | 0.2925 0.8259 | 0.3860 | 2.1396 7.3149
5| 0.2801 | 0.9703 | 0.2980 | 0.9124 | 0.4122 | 2.2137 7.4285
6| 0.2876 | 0.9707 | 0.2963 | 0.8325 | 0.4439 | 1.8755 6.3297
7| 0.2876 | 0.9717 | 0.2960 | 0.7731 | 0.4627 | 1.6709 5.6449
81 0.2863 | 0.9719 | 0.2946 | 0.8376 | 0.4953 | 1.6909 5.7396
91 0.2863 | 0.9714 | 0.2947 | 0.8716 | 0.5202 | 1.6756 5.6858
10 | 0.2847 | 0.9725 | 0.2928 | 0.8348 | 0.5374 | 1.5534 5.3053

Table 3: Average distances before and after spectral projection to k dimensions

before projection after projection magnification
k| s(CiCi) | s(CiCy) | HE2E3 | 8(Ci,Ca) | 8(C,Cy) | 2E2E) factor
2| 0.1485 0.1407 1.0556 0.8709 0.4460 1.9530 1.8501
3| 0.1479 0.1404 1.0534 0.7836 0.4450 1.7609 1.6716
4] 0.1471 0.1398 1.0524 0.7282 0.4025 1.8093 1.7192
5| 0.1478 0.1400 1.0553 0.7007 0.3643 1.9235 1.8227
6| 0.1475 0.1399 1.0543 0.6686 0.3444 1.9410 1.8410
7| 0.1470 0.1393 1.0546 0.6513 0.3334 1.9533 1.8522
8 | 0.1468 0.1394 1.0532 0.6144 0.3099 1.9825 1.8824
91 0.1471 0.1396 1.0535 0.5889 0.3061 1.9271 1.8292
10 | 0.1464 0.1391 1.0525 0.5695 0.2948 1.9359 1.8393

Table 4: Average intra-cluster and inter-cluster similarity before and after spectral projection to k¥ dimensions

of its distribution shrinks when projected to a lower
dimension. As the ratio of the inter-mean distance to
the distance between a random sample and the mean of
its distribution increases, clustering based on pairwise
distances becomes more effective. The assumption of
Gaussian (or logconcave) distributions with separated
means is sufficient to be able to classify the entire sample
with high probability.

Table 3 suggests that this is indeed occurring for
document clusters. Note that the average distance
between means before and after spectral projection is
roughly the same. This corresponds to the lower bound
on the distance between means from Theorem 4.1.
Meanwhile, the distance between a document and the
mean of its cluster drops considerably. It is interesting
that text corpora, which we have no reason to believe
are mixtures of logconcave distributions benefit from
spectral projection.

5 Conclusion

We have described two properties, approximation and
distinguishability, that aid clustering and have given

experimental evidence that the spectral projection of
a document-term matrix has these properties. Besides
more extensive experiments, several other questions also
arise from this work: To what extent do the pre-
processing steps aid the inter-cluster/intra-cluster dis-
tinguishability? What other definitions of distance and
similarity can spectral projection magnify? The connec-
tion to the problem of learning mixtures of distribution
also suggests a data-driven method of designing algo-
rithms for document clustering. In this method, prop-
erties of real-world data are first experimentally veri-
fied and then an algorithm that provably works on data
with such properties is designed. With this method,
one might avoid having to use generative models (which
may not be accurate) to show that an algorithm works
on real-world data.

References

[AFKT01] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and
J. Saia. Spectral analysis of data. In Proceedings of

28

the Thirty-Third Annual ACM Symposium on Theory
of Computing, pages 619—626, 2001.

[Bol98] D. Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325-344,
1998.

[CKPT92] D. R. Cutting, D. R. Karger, J. O. Pedersen,
and J. W. Tukey. Scatter/gather: a cluster-based
approach to browsing large document collections. In
Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 318-329, 1992.

[CKVWO05] D. Cheng, R. Kannan, S. Vempala, and
G. Wang. A divide-and-merge methodology for clus-
tering. In Proceedings of the 24th Annual ACM Sym-
posium on Principle of Database Systems, page To Ap-
pear, 2005.

[DDL*90] S.C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of
Information Science, 41(6):391-407, 1990.

[Dhi01] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In Pro-
ceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 269-274, 2001.

[DHZ101] C. Ding, X. He, H. Zha, M. Gu, and H. Simon.
Spectral min-max cut for graph partitioning and data
clustering. In Proceedings of the First IEEE Inter-
national Conference on Data Mining, pages 107-114,
2001.

[DMO01] I.S. Dhillon and D. S. Modha. Concept decompo-
sitions for large sparse text data using clustering. Ma-
chine Learning, 42(1):143-175, 2001.

[EY39] C. Eckhart and G. Young. A principal axis trans-
formation for non-hermitian matrices. Bulletin of the
American Mathematical Society, 45:118-121, 1939.

[GL96] G. Golub and C. Van Loan. Matriz Computations.
The Johns Hopkins Press, third edition, 1996.

[HKH'01] V. Hatzivassiloglou, J. Klavans, M. Holcombe,
R. Barzilay, M. Kan, and K. McKeown. Simfinder: A
flexible clustering tool for summarization. In NAACL
Workshop on Automatic Summarization, pages 41-49,
2001.

[KSV04] R. Kannan, H. Salmasian, and S. Vempala. The
spectral method for mixture models. In Electronic Col-
loquium on Computational Complezity, pages Report
TR04-067, 2004.

[KVV04] R. Kannan, S. Vempala, and A. Vetta. On
clusterings: Good, bad, and spectral. Journal of the
ACM, 51(3):497-515, 2004.

[Lan] K. Lang. 20 newsgroups data set. http://www.ai.
mit.edu/people/jrennie/20Newsgroups/.

[LMOO04] T. Li, S. Ma, and M. Ogihara. Document clus-
tering via adaptive subspace iteration. In Proceedings
of the 27th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, pages 218-225, 2004.

[McS01] F. McSherry. Spectral partitioning of random

29

graphs. In Proceedings of the 42nd IEEE Annual Sym-
posium on Foundations of Computer Science, pages
529-537, 2001.

[NJWO01] A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Neural
Information Processing Systems, pages 849-856, 2001.

[Por80] M.F. Porter. An algorithm for suffix stripping.
Program, 14(3):130-137, 1980.

[PRTV00] C. Papdimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabalistic
analysis. Journal of Computer and System Sciences,
61:217-235, 2000.

[SM00] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888-905, 2000.

[SS97] H. Schutze and C. Silverstein. Projections for ef-
ficient document clustering. In Proceedings of the
20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 74-81, 1997.

[VWO04] S. Vempala and G. Wang. A spectral algorithm
for learning mixture models. Journal of Computer and
System Sciences, 68(4):841-860, 2004.

[XLGO03] W. Xu, X. Liu, and Y. Gong. Document clus-
tering based on non-negative matrix factorization. In
Proceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in In-
formaion Retrieval, pages 267273, 2003.

[ZDG'01] H. Zha, C. Ding, M. Gu, X. He, and H. Simon.
Spectral relaxation for k-means clustering. In Neu-
ral Information Processing Systems, pages 1057-1064,
2001.

[ZK02] Y. Zhao and G. Karypis. Evaluation of hierarchical
clustering algorithms for document datasets. In Pro-
ceedings of the Eleventh International Conference on
Information and Knowledge Management, pages 515—
524, 2002.

Improving Self Organizing Map Performance for Network Intrusion Detection

Stefano Zanero*

Abstract

The continuous evolution of the types of attacks against com-
puter networks suggests a paradigmatic shift from misuse
based intrusion detection system to anomaly based systems.
Unsupervised learning algorithms are natural candidates for
this task, but while they have been successfully applied in
host-based intrusion detection, network-based applications
are more difficult, for a variety of reasons, including per-
formance. We propose an architecture which implements a
network-based, anomaly based intrusion detection system,
which uses unsupervised learning algorithms. In this paper
we describe the improvements and modifications needed in
order to increase the throughput of a Self Organizing Map
algorithm and make it able to handle high dimensional input
data at a rate suitable for Intrusion Detection purposes at
network speed.

1 Introduction and motivations

The continuous evolution of the threats against com-
puter networks requires a paradigmatic shift from mis-
use based intrusion detection system to anomaly based
systems. The “misuse detection” approach, which tries
to define what constitutes an attack in order to detect
it directly, has been widely successful. Most modern in-
trusion detection tools are misuse based, but they are
increasingly showing the limits of this paradigm.

Whenever a new attack is discovered, the knowledge
base of misuse IDSs must be updated in order to
keep the systems effective. In addition, there is also
an unknown number of discovered, but undisclosed,
vulnerabilities (the so called “zero-days”) that are not
available to the experts for analysis and inclusion in the
knowledge base [1]. Most attacks are also polymorph,
and skilled attackers can exploit this polymorphism to
evade detection [2, 3].

Since, by their own nature, Intrusion Detection Sys-
tems are intended to be a complementary security mea-
sure, which can detect the failures of other measures,
the inability to detect unknown attacks or new ways to
exploit an old vulnerability is an unacceptable limita-
tion. The obvious solution seems then to implement an
anomaly detection approach, modeling what is normal

*Dipartimento di Elettronica e Informazione - Politecnico di
Milano. E-mail: zanero@elet.polimi.it

instead than what is anomalous. This is surprisingly
similar to the earliest conceptions of what an IDS should
do [4].

However, while a number of host based intru-
sion detection systems have been proposed and imple-
mented, both in literature and in practice, network
based anomaly detection is still an open field for re-
search. In a previous work [5], we proposed a novel ar-
chitecture for applying unsupervised learning and data
mining techniques to a network based IDS. Unsuper-
vised learning techniques are natural candidates for this
type of task, but while they have been successfully ap-
plied in host based intrusion detection [6], their appli-
cation to network based systems is still troublesome,
mainly due to the problems of input selection, data di-
mensionality and throughput.

In this paper we describe the improvements and
modifications we applied to a Self Organizing Map
algorithm in order to increase its throughput to handle
high dimensional data at a speed suitable for Network
Intrusion Detection purposes. We describe various
heuristics that can be used, and their effect on the
accuracy of the algorithms. We also propose some
performance tests that demonstrate that our heuristics
do not diminish the overall effectiveness of the IDS.

The remainder of the paper is organized as follows:
in Section 2 we describe the proposed architecture of
our IDS; in Section 3 we describe how the curse of di-
mensionality affects the performance of the first stage
of the architecture; in Section 4 we describe our heuris-
tics and the associated performance improvements; in
Section 5 we discuss the problem of significance of eu-
clidean metrics in our high-dimensional space; in Sec-
tion 6 we report on the experimental validation results
for the improved algorithms; finally, in Section 7 we
draw our conclusions and outline some future work.

2 The proposed architecture

In [5] we proposed an innovative architecture for a
network based anomaly detection system, based on
unsupervised learning algorithms. We chose to focus on
this class of algorithms because they exhibit properties
that are particularly well suited for anomaly detection,
in particular the ability of detecting outliers and of
building a model of “normality” without the need of

a priori knowledge input.

If we think of the network packet flow as a stream
of observations (packets), then anomaly detection is
an instance of the outlier detection problem. An
outlier is classically defined as follows: “an observation
that deviates so much from other observations as to
arouse suspicions that it was generated by a different
mechanism” [7]. Here, the “different mechanism” is an
attacker who is trying to subvert a network service.

However, outlier detection on the flow of TCP/IP
packets is not an easy task. Fach packet has a vari-
able dimension (which over an Ethernet link for instance
varies between 20 and 1500 bytes), while unsupervised
learning algorithms work well on multivariate data with
a fixed number of features. The network and transport
layer headers can be easily normalized and translated to
a fixed number of features. It is important to note, how-
ever, that in the case of connection-oriented protocols
(most notably TCP) the transport layer headers may
need inter-correlation in order to be fully deciphered.

On the contrary, the data carried by the packet
(the payload) cannot be easily translated into a fixed
set of features, since each different application layer
protocol would require its own set of features, increasing
complexity and decreasing generality. In addition it
would require a full reconstruction of traffic sessions,
which would expose the IDS to reconstruction problems,
possibly leading to attack windows [2].

In addition, the computational complexity of unsu-
pervised learning algorithms scales up steeply with the
number of considered features, and the detection capa-
bilities decrease correspondingly (this is known as the
curse of dimensionality). Only a few algorithms can
be optimized to treat data with many thousands of di-
mensions, but only in the case that they are sparse (for
instance, a word/document incidence matrix in a doc-
ument classification and retrieval problem [8]). We are
instead dealing with dense data.

Most of the existing researches on the use of unsu-
pervised learning algorithms for network intrusion de-
tection purposes solve this problem by discarding the
payload and retaining only the information in the packet
header (e.g. [9, 10, 11, 12]) . This is clearly not an op-
timal solution, since it leads to an unacceptable infor-
mation loss: most attacks, in fact, are detectable only
by analyzing the payload of a packet, not the headers
alone. These algorithms show nevertheless interesting,
albeit obviously limited, intrusion detection properties.

In order to solve this problem, we developed the
concept of a two-tier intrusion detection system (shown
in Figure 1), which allows us to retain at least part
of the information related to the payload content. In
the first tier of the system, an unsupervised clustering

31

algorithm classifies the payload of the packets, observing
one packet at a time and “compressing” it into a single
byte of information. This classification can be added
to the information decoded from the packet header (or
to a subset of this information), and passed on to the
second tier. On most networks, the traffic belongs to
a relatively small number of services and protocols,
regularly used, and a good learning algorithm can map
it onto a relatively small number of clusters.

The second tier algorithm instead takes into consid-
eration the anomalies, both in each single packet and in
a sequence of packets. It is worth noting that most of
the solutions proposed by previous researchers in order
to analyze the sequence of data extracted by the packet
headers could be used as a second tier algorithm, com-
plemented by our first tier of unsupervised clustering.

3 The curse of dimensionality in the first stage

The first tier algorithm receives in input the payload of
a TCP or UDP over IP packet: on an Ethernet segment
this means up to 1460 bytes of data. Its role is to clas-
sify such information in a “sensible” way, which means
that it should, in principle, keep as much information as
possible for the second tier algorithm about the “simi-
larity” between packets. Obviously, since our end goal
is to detect intrusions, the classification should show
mainly the property to separate packets with anoma-
lous or malformed payload from normal packets, and
should also divide the payloads reflecting the divisions
between protocols as closely as possible. “The group-
ing of similar objects from a given set of inputs” [13] is
obviously a typical clustering problem.

We have shown [5] that a Self Organizing Map
(SOM) algorithm [14] is indeed able to sensibly cluster
payload data, discovering interesting information in an
unsupervised manner. Our research is the first attempt
to cluster packet payloads to obtain meaningful results.
A previous research showed that neural algorithms can
recognize protocols automatically [15], while another
paper later independently confirmed that the payload
of the packets indeed shows some interesting statistical
properties [16].

There are multiple reasons for choosing a SOM for
this purpose. A SOM is a hard-competitive, neural
based algorithm, which is capable to map a high-
dimensional input space onto a low-dimensional (usually
bi-dimensional) neuron space. The algorithm is robust
with regard to the choice of the number of classes to
divide the data into, and is also resistant to the presence
of outliers in the training data, which is a desirable
property: in real-world situations, the training data
could already contain attacks or anomalies and the
algorithm must be capable of learning regular patterns

A
LAYER3 LAYER4 PAYLOAD Decoded Payload
header eader (upper layer protocol data) Header Dat: Classification
13 TCP/UDP/ICMP... Ethernet: max. 1460 byte (IP, ports, flags) | (from first stage)
A
An unsupervised
learning algorithm ——
classifies the payload
Headers are decoded
using domain knowledge L
- LAYER3 LAYER 4 PAYLOAD (D Decoded Payload
= header header (upper layer protocol data) Header Data Classification
H 13 TCPIUDP/ICMP... Ethernet: max. 1460 byte < (IP, ports, flags) | (from first stage)
|_ Yy T
LAYER3 LAYER4 PAYLOAD o Decoded Payload
header header (upper layer protocol data) Header Data Classification
P TCP/UDP/ICMP... Ethernet: max. 1460 byte _ (IP, ports, flags) | (from first stage)
A T
Decoded Payload Decoded Payload Decoded Payload
Header Data Classification Header Data Classification Header Data Classification
(IP, ports, flags) | (from first stage) | (IP, ports, flags) | (from first stage) | (IP,ports, flags) | (from first stage)
< A rolling window of packets >

p—

——

SECOND STAGE
(time correlation and anomaly detection)

L

Figure 1: The two-tier architecture of the IDS, comprising a tier of unsupervised clustering followed by a tier of

outlier detection.

out of a “dirty” training set. In addition, we have
compared various algorithms and shown that the SOM
had the best performance trade-off between speed and
classification quality.

Unluckily, the curse of dimensionality hits heavily
against the first tier. The second tier is not a problem,
being required to handle a multivariate time series with
a comparably small number of features (up to a maxi-
mum of about 30). There are alternative algorithms for
clustering which are much faster in the learning phase
than SOM; for example, the well known K-means algo-
rithm is one of the fastest. But at runtime even K-means
is not more efficient than a SOM, so we cannot solve the
problem by choosing a different algorithm.

A traditional approach to the problem would use di-
mension reduction techniques such as dimension scaling
algorithms [17] or Principal Component Analysis [18].
But our experiments demonstrated that they are quite
ineffective in this particular situation, since by their na-
ture they tend to “compress” outliers onto normal data,
and this is exactly the opposite of what we want to
achieve.

32

4 Improving the performance of the SOM
algorithm

Since no alternative solution was viable, we developed
various approximate techniques to speed up the SOM
algorithm. The reference machine for our tests is an
Athlon-XP 3200 based computer with 1 GB of DDR
RAM, running GNU/Linux with a 2.6 kernel. All the
tests, unless otherwise stated, refer to a SOM with
square topology, and a size in the space of neurons of
10 x 10. The test are conducted on TCP packets, as
they constitute over 85% of Internet traffic.

The data used for training and testing the proto-
type are subsets of the “1998 DARPA IDS Evaluation
dataset”, which is well commented and described by a
master’s thesis [19]. In [20] there is a detailed analysis of
the shortcomings of this traffic sample set, and we share
many of the author’s observations: no detail is available
on the generation methods, there is no evidence that the
traffic is actually realistic, and that spurious packets, so
common on the Internet today, are not taken into ac-
count. On the other hand, whenever we need to test the
capability of our prototype of detecting attacks mixed
in background data, we need to do this under test condi-

tions, with clearly labeled background data, and in spite
of its shortcomings the DARPA dataset fulfills this func-
tion very well. However, we positively validated most
of our results using also smaller dumps collected on our
own internal network.

As we can see from the first line of values in Table
1, the throughput of an implementation of the Kohonen
algorithm on our hardware and software configuration
is on average of 3400 packets per second, which is not
acceptable for an IDS monitoring a modern network.

We tried to develop heuristics for speeding up the
computation, introducing minimal errors in the classi-
fication. The idea behind our heuristic is simple. Let
N be the number of classes, and d the number of di-
mensions of the data. At runtime, the SOM algorithm
consists simply of N evaluations of the distance func-
tion: in our test implementation, an euclidean distance
function over d dimensions. Since the number of com-
putations is N -d, in order to speed up the computation
we can try to reduce d by applying any dimensional-
ity reduction technique: this, as we said before, can-
not be done meaningfully via dimensionality reduction
techniques. However, since just a few packets contain
a high number of bytes of payload, we can try to use
just the first d' < d dimensions. Further experimental
evaluation would then of course be required in order to
understand if the “reduced” payloads carry the same
information value as the complete packets.

If we do not want to reduce d, we must try to reduce
the number of evaluations N. A way to do this is
to pre-compute a grouping of the N centroids of the
classes in K < N super-clusters, and then to select
the winning neuron in a two-step procedure. First, we
determine which of the super-clusters the observation
belongs to; and then we evaluate the distance function
just over the N’ < N neurons belonging to the winning
super-cluster. The algorithm is heuristic, since it can
happen that the best matching neuron is not in the best
matching super-cluster, but as we will see the error rate
is very low. Obviously the best performance gain with
this heuristic happens if each of the K super-clusters is
formed by ~ N/K neurons, since the average number
of computations becomes d - (K + N/K) which has a
minimum for n = v/N. If the clusters are not balanced
the worst case computational cost is higher, and this
leads to a lower overall throughput. For smaller values
of K the algorithm would be on average slower, and the
error rate statistically would be slightly lower.

To form the super-clusters, a first naive idea would
be to exploit the map structure, which tends to keep
“close” to each other the neurons which are close in the
map space. However, this does not work very well ex-
perimentally, probably because of the high dimension-

33

ality of the feature space, causing a 35% error rate with
N = 3, and even 60% with N = 10. Thus we resort to
a K-means approach.

However, we must overcome two different issues in
doing this. A first issue has to do with the nature of
K-means, which is inherently initialization dependent,
and prone to create very unbalanced cluster. Experi-
mentally, with N = 100, using K > 4 does not create
a balanced structure of clusters, unless we correct the
randomness of the algorithm. Some authors proposed,
in order to eliminate these weaknesses, the “global K-
means” algorithm [21], which repeats K-means with all
the possible initializations. We use a different and faster
approach, by using the algorithm a fixed number m of
times, and choosing the distribution in classes which
minimizes the average expected number of operations,
roughly approximating the probability that an observa-
tion falls into the i-th super-cluster as proportional to
the fraction N;/N (where N; is the number of neurons
in the i-th super-cluster). In Table 1 we refer to our
variant of the K-means algorithm as “K-means+”, and
the column labeled “Crossv.” reports the parameter m
(number of runs of the K-means algorithm).

A second, more difficult issue, is how to deal with
the training phase. During the training phase the
neurons change their position, so theoretically we should
repeat the K-means algorithm once for each training
step. We can avoid to do so, and fix an arbitrary
update frequency, a number of step after which we will
recalculate the position of the centroid. As an additional
attempt to reduce the cost of the K-means step, we
decided to initialize the position of the K centroids to
the same position they held before, even if this could
lead the convergence to a local optimum, creating a
non-optimal clustering. Our tests showed that in each
case the cumulative approximations introduced by the
algorithm make the training very unstable, leading to
results which are not compatible with the ones obtained
by normal training, and in which the properties of
outlier resilience and robustness of the SOM algorithm
are impaired. We are working to find a way to overcome
these problems without sacrificing the throughput gain,
but for now, the only way to speedup the throughput is
to lower the number of dimensions.

In Table 1 we report the runtime throughput and
the error rate of the algorithm, evaluated in packets
per second, depending on different combination of the
parameters, namely the number of bytes considered for
each packet, the usage of an heuristic, the parameter
K for the K-means algorithm used in the heuristic and
the use of cross-validation repetitions. The results have
been validated over multiple “days” of the DARPA
dataset.

Max bytes per packet | Heuristics | K | Crossv. | Packets/sec. | Error %
1460 None - - 3464.81 -
1460 K-means | 10 No 8724.65 0.8
1460 K-means+ | 5 10 5485.95 04
1460 K-means+ | 10 10 10649.20 0.8
800 None - - 4764.11 -
800 K-means+ | 5 10 9528.26 0.5
800 K-means+ | 10 10 15407.36 1.0
400 None - 8400.45 -
400 K-means+ | 5 10 28965.84 0.6
400 K-means+ | 10 10 30172.65 1.2
200 None - - 10494.87 -
200 K-means+ | 5 10 51724.70 0.8
200 K-means+ | 10 10 65831.45 2.3

Table 1: Throughput and errors during runtime phase, calculated over multiple runs of the algorithm over different

days of the DARPA dataset.

In order to evaluate the results, we refer to a well
known study of the statistical properties of Internet traf-
fic [22]. Analyzing the traffic flowing through an Inter-
net Exchange datacenter, they show that approximately
85% of the traffic is constituted by TCP packets, and
that a large proportion of TCP packets are 40 bytes
long acknowledgments which carry no payload (30% to
40% of the total TCP traffic). Zero-size UDP pack-
ets, on the contrary, are almost non-existant. Since the
first stage analyzes only packets with a non-null pay-
load, almost 30% of the total traffic on the wire will not
even enter it. The average size of a TCP packet is 471
bytes, of a UDP packet 157, and the overall average is
approximately 420 bytes. It is also known from theoret-
ical modeling and practical experience that an Ethernet
network offers approximately 2/3 of its nominal capac-
ity as its peak capacity. This means that a saturated
10 Mbps Ethernet LAN carries about 2.000 packets per
second. Other statistics suggest that this value could
be higher, up to 2.500 pps.

From Table 1, we can see that the original SOM
algorithm, considering the full payload of 1460 maxi-
mum bytes per packet, with no heuristics, operates at a
speed that is acceptable for use on a 10 Mb/s Ethernet
network, but insufficient for a 100 MB/s network. How-
ever, using the K-means algorithm with 10 classes and
no cross-validation, we obtain a much higher through-
put (more than three times higher than the original
one) but also a 0.7% error rate. Introducing K-means+
and crossvalidation, we obtain a better tradeoff between
throughput and error rate, improving the former with-
out compromising the latter. A speed of 10.500 pack-
ets/second is enough to handle a normal 100 Mbps link
(considering also the presence of empty packets).

34

If necessary, performance could also be improved
by reducing the number of bytes of the payload. This
could evidently impact heavily against the recognition
capabilities of the algorithm.

5

In recent researches, the effect of the curse of dimen-
sionality on the concept of “distance metrics” has been
studied in detail. In high dimensional spaces such as the
one we are considering, the data becomes very sparse.
Recent research results [23, 24] show that in high di-
mensional spaces the concept of proximity and distance
may not be meaningful, even qualitatively.

Let Dmax4 be the maximum distance of a query
point to the points in a d-dimensional dataset, and
Dming the minimum distance, and let X; be the
random variable describing the data points. It has been
shown, under broad conditions, that if

Choosing a meaningful metric

Il Xa |l

limg_oo var <7
- E[l X4 [

then .
Dmaxg — Dming

Dming

This means, plainly, that in high dimensional space
the difference between the distance of a query point to
the farthest and to the nearest point in the dataset
tends to be of a smaller order of magnitude than
the minimum distance: in other words, the nearest
neighbor identification is unstable and does not give
much information.

Most of the hypotheses used in the demonstration
do not hold for our type of variables. We have exper-
imentally observed that in our setup the described ef-

x 10

Number of Packets
w >

N

0 10 20 30 40 60 70 80 90 100

50
Class

1400

1200 q

1000 - 4

800 - b

600 - q

Number of Packets

400 - q

200+ b

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

Class

100

Figure 2: Comparison between the classification of a window of traffic and the traffic destined to port 21/TCP

by a 10x10 SOM

fect does not happen: most points are extremely well
characterized into dense and compact clusters. In or-
der to better understand if this condition applied to our
dataset, we recursively filtered out the most compact
clusters and the ”farthest” centroids, and analyzed the
results, and in each case the difference between Dmin
and Dmax was still significant. We thus concluded that
the effect observed in the cited articles does not apply to
our particular situation, probably because we are work-
ing in a compact region where the maximum possible
distance between two different points is v/2552 x 1460.

It has also been reported that in high dimensional
spaces the L; metric, or “Manhattan distance”, behaves
considerably better than the usual euclidean metric we
applied [24]. In [25] distance metrics with a fractional
index fe(0,1) are also proposed.

On the basis of these suggestions, we explored
the application of different distance metrics and their
effects on the classification of packets. However, in our
particular application the use of these alternate distance
seems to lump all the data in a few cluster, diminishing
the overall recognition capabilities of the algorithm.

6 Recognition capabilities of the modified
algorithm

In order to evaluate the recognition capabilities of the
new algorithm, we must see if it can still usefully charac-
terize traffic payloads for different protocols, and detect
anomalous attack payloads from normal payloads. In
Figure 2 we present a demonstration of the recognition
capabilities of a 10 x 10 Self Organizing Map that creates
a division of the data in 100 clusters. The network was

trained for 10.000 epochs on TCP packet payloads. The
histograms represent the number of packets (on y-axis)
present in each cluster (on x-axis). Here and in the fol-
lowing, for graphical reasons, the number of packets on
y-axis may be differently scaled in the various graphs.
In Figure 2 we suppressed from the output the represen-
tation of classes 90 and 93, which are the most crowded
and less characterized clusters in the classification, for
better display.

On the left handside, we can see the classification of
a whole window of traffic. On the right handside, we can
see how the network classifies the subset of the packets
with the destination port set to 21/TCP (FTP service
command channel). It can be observed how all the
packets fall in a narrow group of classes, demonstrating
a strong, unsupervised characterization of the protocol.

In Figure 3 we present the result of the same test
using the modified algorithm for runtime recognition.
Also in this case, we can see the same strong characteri-
zation of the protocol (the similarity between the graphs
is striking, but not surprising, since the error rate is ap-
proximately 1%). The same situation happens for all
the cases we examined and compared, granting that the
protocol characterization property is well preserved by
the heuristics.

The capability to detect anomalous packets is also
preserved. We analyzed how the SOM classifies packets
from the attacks contained in the DARPA datasets.
For example, let us discuss the case of a race condition
and buffer overflow bug in the “ps” command, which is
exploited over a perfectly legitimate telnet connection.
99.76 % of packets destined to TCP port 23 fall in classes

35

x 10

Number of Packets
w >

N

0 10 20 30 40 60 70 80 90 100

50
Class

1400

1200 T

1000 q

800 T

600 - q

Number of Packets

400 T

200 q

0 10 20 30 40 50 60 70 80 90
Class

100

Figure 3: Comparison between the classification of a window of traffic and the traffic destined to port 21/TCP

by a 10x10 SOM with our modified algorithm.

91 and 95, and all of them fall between class 90 and 95.
The packets containing the attack fall instead in classes
45, 54, 55, 65, 71, 73 and 82, which are not normally
associated with DPORT 23. This happens consistently
over each instance of the attack.

A similar, albeit less defined, situation happens in
the case of a buffer overflow in the “sendmail” MTA
daemon. The packets destined to port 25 are less
characterized, but over 90 % of them fall into 7 classes.
The attack packets fall instead into three different
classes that contain less than 3% of the normal packets
destined to port 25. This helps us to understand that
an important requirement for the second stage detection
algorithm will be to keep track of anomaly scores in the
recent past.

In order to test the algorithms on newer attacks, we
ran the same SOM on the packet captures of some FTP
server attacks (a format string wu-ftpd bug exploit, a
globbing denial-of-service, a buffer overflow attack). In
each case the anomalous payloads fall outside of the
narrow characterization we have seen in Figures 2 and
3. The results we presented in [5] are thus preserved
while using the modified, faster algorithm.

7 Conclusions and future work

We have described the challenges we met while imple-
menting an innovative model of anomaly based network
intrusion detection system, completely based on unsu-
pervised learning techniques. We have described the
overall architecture of the system and how the curse of
dimensionality requires an appropriate resolution for a
working implementation of the first stage of unsuper-

vised clustering. By the means of various techniques,
we improved the runtime efficiency of the algorithm,
obtaining a throughput rate almost three times higher
than the original one, if we are willing to accept a mis-
classification rate of about 0.8%, and twice as high than
the original one with a very small misclassification rate
of 0.4%, without truncating the number of the bytes
of the payload examined by the algorithm. We have
studied how these errors affect the algorithm detection
capabilities, and concluded that our heuristically modi-
fied implementation works as well as the original version
of the SOM. Having thus solved most of the challenges
for the design of the first tier, our future work will fo-
cus on the choice and implementation of the second tier
of learning, and on the empirical evaluation of the IDS
under practical workloads.

Acknowledgments

This work was partially supported by the Italian FIRB
Project “Performance evaluation for complex systems”.
We need to thank prof. Sergio M. Savaresi, prof.
Salvatore J. Stolfo and the colleagues Giuliano Casale
and Roberto Turrin for their precious suggestions for
improvement over our previous work. We also need
to thank warmly our student Matteo F. Zazzetta for
his invaluable support in software development and lab
testing, and the anonymous reviewers for their helpful
and knowledgeable comments.

References

[1] Stefano Zanero. Detecting 0-day attacks with learning

36

(3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

intrusion detection systems. In Blackhat Briefings USA
2004, 2004.

Thomas H. Ptacek and Timothy N. Newsham. Inser-
tion, evasion, and denial of service: Eluding network
intrusion detection. Technical Report T2R-0Y6, Se-
cure Networks, Calgary, Canada, 1998.

Giovanni Vigna, William Robertson, and Davide
Balzarotti. Testing network-based intrusion detection
signatures using mutant exploits. In CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and
communications security, pages 21-30. ACM Press,
2004.

J. P. Anderson. Computer security threat monitoring
and surveillance. Technical report, J. P. Anderson Co.,
Ft. Washington, Pennsylvania, Apr 1980.

Stefano Zanero and Sergio Savaresi. Unsupervised
learning techniques for an intrusion detection system.
In Proceedings of the 14th Symposium on Applied
Computing, ACM SAC 2004, 2004.

C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On
the detection of anomalous system call arguments. In
Proceedings of ESORICS 2003, Oct. 2003.

D. Hawkins. Identification of Outliers. Chapman and
Hall, London, 1980.

Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A. Harsh-
man. Indexing by latent semantic analysis. Jour-
nal of the American Society of Information Science,
41(6):391-407, 1990.

M.V. Mahoney and P.K. Chan. Detecting novel at-
tacks by identifying anomalous network packet head-
ers. Technical Report CS-2001-2, Florida Institute of
Technology, 2001.

Dit-Yan Yeung and Calvin Chow. Parzen-window
network intrusion detectors. In Proceedings of the
16th International Conference on Pattern Recognition,
volume 4, pages 385-388, aug 2002.

K. Labib and R. Vemuri. NSOM: A real-time network-
based intrusion detection system using self-organizing
maps. Technical report, Dept. of Applied Science,
University of California, Davis, 2002.

T. Lane and C.E. Brodley. Temporal sequence learning
and data reduction for anomaly detection. ACM
Trans. on Information and System Security, 2(3):295—
331, 1999.

J. A. Hartigan. Clustering Algorithms. Wiley, 1975.
T. Kohonen. Self-Organizing Maps. Springer-Verlag,
Berling, 3 edition, 2001.

K.M.C. Tan and B.S. Collie. Detection and classifi-
cation of TCP/IP network services. In Proc. of the
Computer Security Applications Conf., pages 99-107,
1997.

Ke Wang and Salvatore J. Stolfo. Anomalous payload-
based network intrusion detection. In RAID Sympo-
sium, September 2004.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Monographs on Statistics and Applied Probability.
Chapman & Hall, 1995.

37

(18]

[19]

20]

[21]

[22]

23]

[24]

[25]

1. T. Jolliffe. Principal Component Analysis. Springer
Verlag, 1986.

K. Kendall. A database of computer attacks for the
evaluation of intrusion detection systems. Master’s
thesis, Massachussets Institute of Technology, 1998.
John McHugh. Testing intrusion detection systems:
a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and
System Security, 3(4):262-294, 2000.

A. Likas, N. Vlassis, and J. J. Verbeek. The global
k-means clustering algorithm. Pattern Recognition,
36(2), 2003.

S. McCreary and K. Claffy. Trends in wide area ip
traffic patterns - a view from ames internet exchange.
In Proceedings of ITC’2000, 2000.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrish-
nan, and Uri Shaft. When is “nearest neighbor” mean-
ingful? Lecture Notes in Computer Science, 1540:217—
235, 1999.

Alexander Hinneburg, Charu C. Aggarwal, and
Daniel A. Keim. What is the nearest neighbor in high
dimensional spaces? In The VLDB Journal, pages
506-515, 2000.

Charu C. Aggarwal, Alexander Hinneburg, and
Daniel A. Keim. On the surprising behavior of dis-
tance metrics in high dimensional space. Lecture Notes
in Computer Science, 1973, 2001.

Design of a MATLAB toolbox for term-document matrix generation*

Dimitrios Zeimpekis

Abstract

Data clustering and many other fundamental operations in data
mining and information retrieval are built using computational
kernels from numerical linear algebra and operate on very large,
sparse term-document matrices. To facilitate these tasks, we have
built TMG, a toolbox for the generation and incremental modifica-
tion of term-document matrices from text collections. The toolbox
is written entirely in MATLAB, a powerful and popular problem
solving environment for linear algebra. It can be used in research
and education contexts to streamline document preprocessing and
prototyping of algorithms for information retrieval. We outline
the design and use of TMG and present results, from standard and
readily available datasets of moderate size, concerning the effect of
stemming and term weighting on clustering algorithms based on
the vector space model.

Keywords: Indexing, term-document matrix, Vector Space
Model, Clustering, MATLAB

1 Introduction

Two central tasks in Data Mining (DM) and Information Re-
trieval (IR) models are a preprocessing, “indexing” phase, in
which the index of terms is built, and a “search” phase, dur-
ing which the index is used in the course of queries, cluster-
ing and other operations. This paper outlines TMG, a toolbox
that i) preprocesses documents to construct an index in the
form of a sparse “term-document matrix”, hereafter abbre-
viated by “tdm”, and ii) preprocesses user queries so as to
make them ready for further IR and DM. TMG is written en-
tirely in MATLAB [4] and runs on any computer system that
supports this environment. TMG parses single or multiple
files or entire directories containing text, performs the neces-
sary preprocessing, such as stopword removal and stemming
and constructs a tdm according to parameters set by the user.

" *Work conducted in the context of and supported in part by a University
of Patras KARATHEODORI grant. Consult also [22] for an extended
version of this work.

fComputer Engineering & Informatics Department, University of Patras,
Greece. Supported in part by a Bodossaki Foundation graduate fellowship.
Email: dsz@hpclab.ceid.upatras.gr.

fComputer Engineering & Informatics Department, University of Pa-
tras, Greece. Also supported in part, as external collaborator, by a Re-
search Academic Computer Technology Institute travel grant. Email:
stratis @ceid.upatras.gr.

Efstratios Gallopoulos*

It is also able to renew existing tdm’s by performing efficient
updates or downdates corresponding to the incorporation of
new or deletion of existing documents. Therefore, TMG is
expected to be particularly useful in the context of algorithm
development for research and instruction in the blossoming
area of Text Mining [31].

There exist already several tools for constructing tdm’s
since IR systems that are based on vector space techniques
(e.g. Latent Semantic Indexing) are obliged to operate on
rows and columns of such matrices; see e.g. [3, 25, 29].
The Telcordia LSI Engine, the General Text Parser (GTP)
([2, 18]), the PGTP (an MPI-based parallel version of GTP),
the DOC2MAT [1] developed in the context of the CLUTO IR
package [21] and the scripts mc [5, 16] and countallwords
(included in the PDDP package [13]), are examples of useful
tools for the construction of tdm’s, implemented in high
level or scripting languages (e.g. C, C++, Java, Perl).
In view of the significant presence of computational linear
algebra (CLA) kernels in vector space techniques for IR,
we felt that there was a “market need” for a MATLAB-
based tdm generation system, as MATLAB is a highly popular
problem solving environment for CLA that enables the rapid
prototyping of novel IR algorithms.

TMG assumes that documents are to be represented as
term vectors and can be used to complement algorithms and
tools that work with tdm’s, e.g. [9, 12, 16]. For example,
TMG was used in recent experiments included in [23, 28],
and in our work with a generalization ([33]) of the Principal
Direction Divisive Partitioning (PDDP) clustering algorithm
[12, 13] and in [32]. Even though TMG is not tied to specific
algorithms of the vector space model, it includes related
MATLAB templates to facilitate the development of routines
for querying and clustering. The toolbox makes heavy use
of the sparse matrix infrastructure of MATLAB; on the other
hand, in its current form, TMG does not employ term data
compression techniques. As a result, we expect that the
system will be most useful for datasets of moderate size,
whereas, a system such as GTP would probably be a better
choice for much larger ones. TMG and its documentation are
available from

http://scgroup.hpclab.ceid.upatras.gr/
scgroup/Projects/TMG/

This paper is organized as follows. Section 2 outlines

TMG, its core functions and the various options provided in
the package. Section 3 discusses implementation issues, in
particular the utilization of MATLAB’s sparse matrix tech-
nology. In Section 4 we demonstrate the use of TMG while
providing experimental results concerning the effect of stem-
ming and term weighting in clustering. Finally, Section 5
provides concluding remarks.

2 The Text to Matrix Generator

2.1 Outline. TMG is designed to perform the preprocess-
ing and filtering steps that are typically performed in the con-
text of IR applications [6]. Specifically, TMG can be used for
the following typical IR steps (in parentheses are the names
of the relevant MATLAB m-functions):

e creation of the tdm corresponding to a set of documents
(tmg);

e creation of query vectors from user input (tmp_query);

e update existing tdm by incorporation of new documents
(tdm_update);

e downdate existing tdm by deletion of specified docu-
ments (tdm_downdate).

The document preprocessing steps encoded by TMG are
the following: i) Lexical analysis; ii) stopword elimination,
that is the removal of very frequent words such as articles,
prepositions, conjunctions, etc. that carry little information
about the contents of the processed documents; iii) stem-
ming, that is the replacement of all variants of a word with
a single common stem; iv) index-term selection, that is the
selection of a subset of words encountered in the documents
to form the document index; v) index construction. These
steps are tabulated in Table 1.

2.2 User interface. The user interacts with TMG by means
of any of the aforementioned basic functions or a graphical
interface (GUI) implemented in function tmg_gui. The GUI
facilitates user selection of the appropriate options amongst
the many alternatives available at the command-line level.

A user that desires to construct a tdm from text will
either use tmg or tmg_gui. The specific invocation of the
former is of the form:

[outargs]=tmg(‘fname’, OPTIONS);
where outargs is the output list:

[A, dictionary, global_wts, norml_factors,
words_per_doc, titles, files, update_struct].

The tdm is stored in A, while dictionary is a char array con-
taining the collection’s distinct words, and update_struct

Function tmg
Input: filename, OPTIONS
Output: tdm, dictionary, and several optional outputs;
parse files or input directory;
read the stoplist;
for each input file,
parse the file (construct dictionary);
end
normalize the dictionary (remove stopwords and too long
or too short terms, stemming);
construct tdm;
remove terms as per frequency parameters;
compute global weights;
apply local weighting function;
form final tdm;

Table 1: Steps in function tmg

contains the essential information for the collection’s re-
newal (see Section 3.2). The other output arguments store
statistics for the collection.

Argument ‘fname’ specifies the file or directory that
contains the raw ASCII text. If the argument is a directory,
TMG processes all files in the directory and recursively in
all its subdirectories. TMG assumes that all files are valid
inputs. Files suffixed with html [s] are assumed to be ASCII
files written in the implied markup languages and are filtered
to eliminate their corresponding tags. If a utility such as
Ghostscript’s ps2ascii is available, TMG is also able to
process Adobe Acrobat PDF and POSTSCRIPT documents.
Furthermore, it is not difficult for the user of TMG to enable it
to process other types of documents as long as the necessary
filters are in place.

The options available at the command line are set via the
fields of the MATLAB OPTIONS structure; these are tabulated
in Table 2 together with their default values. OPTIONS field
delimiter specifies the delimiter that separates individual
documents within the same file. The default delimiter
is a blank line, in which case TMG is likely to generate
more “documents” than the number of files given as input.
OPTIONS field line_delimiter specifies if the delimiter
takes a whole line of text. Field stoplist specifies the file
containing the stopwords, i.e. the terms excluded from the
collection’s dictionary [10]. We note that the current release
of TMG contains the sample stoplist contained in the GTP
[2]. Field stemming controls the application of stemming,
currently performed via a MATLAB implementation of a
version of Porter’s stemmer [26, 27].

The next two parameters are thresholds used to exclude
from the dictionary’s construction terms that exceed or fall
below them; this is typical in IR filtering. Terms that are
too short are likely to be articles and conjunctions that are

delimiter

String specifying the “end-of-document” marker for tmg. Possible values are emptyline (default),
none_delimiter (treats each file as a single document) or any other string

line_delimiter

Variable specifying if the delimiter takes a whole line of text (default, 1)

stoplist Filename for stopwords (default no name, meaning no stopword removal)

stemming A flag that indicates if stemming is to be applied (1) or not (0) (default stemming=0)
min_length Minimum term length (default 3)

max_length Maximum term length (default 30)

min_local_freq

Minimum term local frequency (default 1)

max_local_freq

Maximum term local frequency (default Inf)

min_global_freq

Minimum number of documents for a term to appear to insert it in the dictionary (default 1)

max_global_freq

Maximum number of documents for a term to appear to insert it in the dictionary (default Inf)

local_weight

Local term weighting function (default ‘t’, possible values ‘t’, ‘b’, ‘1’, ‘a’, ‘n’)

global_weight

Global term weighting function (default no global weighting used, ‘x’, possible values ‘x’, ‘e’, ‘f’,
6g” ‘n7, 6p’)

normalization

Flag specifying if document vectors are to be normalized (‘c’) or not (‘x’) (default)

dsp

Flag specifying if results are to be printed in the command window (1, default) or not (other)

Table 2: OPTIONS fields.

of little value as indexing terms while terms that are too
long are likely to be misprints. The next four parameters
are also thresholds that serve a similar purpose, but using a
“frequency of occurrence” criterion.

Each element ;; of the tdm A measures the importance
of term i in document j and in the entire collection. There has
been proposed various term weighting schemes using alter-
native functions for the local and global weighting for a term.
Another usual practice is the use of normalization for each
document vector. This normalization factor is used for the
obliteration of bias towards longer documents [30]. OPTIONS
fields local_weight, global_weight and normalization
define the term weighting and normalization schemes used
for the construction of the tdm [10, 24]. The weighting func-
tions available in TMG are listed in Table 3.

The last OPTIONS field, dsp indicates if the intermedi-
ate results are printed on the MATLAB command window.
Function tmg_query uses the dictionary returned by tmg and
constructs, using the same processing steps as TMG, a “term
query” array whose columns are the (sparse) query vectors
for the text collection. The function is invoked by means of
the command:

[Q, wds_per_query, titles,files]=
tmg_query (‘fname’,dictionary, OPTIONS) ;

2.2.1 Graphical User Interface. As described so far, the
main toolbox functions tmg and tmg_query offer a large
number of options. Moreover, it is anticipated that future
releases will further increase this number to allow for addi-
tional flexibility in operations and filetypes handled by TMG.
In view of this, a GUI, we would be calling TMG_GUI, was
created to facilitate interaction with these functions. The in-

terface window (see Fig. 1) is invoked at the command line
by means of command tmg_gui. The GUI was constructed
by means of the interactive MATLAB tool GUIDE. TMG_GUI
consists of two frames: One provides an edit box so that the
user can specify the input filename expected by tmg; the
other provides radio buttons, edit boxes, lists and toggle but-
tons for the optional arguments of tmg, tmg_query and up-
date routines. After specifying all necessary parameters, and
the Continue button is clicked, TMG_GUI invokes the appro-
priate function. The progress of the program is shown on the
screen; upon finishing the user is queried if and where he
wants the results to be saved; results are saved in MATLAB-
mat file(s), i.e. the file format used by MATLAB for saving
and exchanging data.

3 Implementation issues

We next address some issues that relate to the design choices
made regarding the algorithms and data structures used in
TMG.

3.1 Sparse matrix infrastructure. Our objectives were to
build data structures that would achieve i) efficient process-
ing of the kernel operations in the expected IR tasks; ii) low
cost of creating and updating them; iii) low storage require-
ments. The “end product” produced by TMG is the tdm rep-
resenting the data provided to the tool. Tdm’s are usually ex-
tremely sparse. Therefore, a natural object for representing
tdm’s are MATLAB sparse arrays. It is worth noting that with
the popularity of vector space models (VSM’s) such as LSI,
sparse matrix representations have become popular for IR
applications; for example, GTP and the Telcordia LSI Engine
use the Harwell-Boeing format ([2, 15, 18]), while the mc

40

| Symbol —Name Type |
Local term-weighting (/;;)
t Term frequency fij
b Binary b(fi;)
1 Logarithmic log, (1+ fi)
a Alternate log [24] b(fij)(1+log, fij)
n Augmented normalized (b(fij) + (fij/ maxx fx;))/2
term frequency
Global term-weighting (g;)
None 1
e Entropy 1+ (¥ (pijlog,(pij))/log n)
f Inverse document log,(n/ Y, j b (fij)
frequency(IDF)
g Gfldf (X fi)) [(E;0(fi)
Normal 1/4/¥%; ,‘3’
P Probabilistic Inverse logy ((n=Y;b(fi;))/ X,;b(fi)))
Normalization factor (n;;)
None 1
Cosine (X, (gilij)*)~'/?

Table 3: Term-weighting and normalization schemes [10, 24].

toolkit ([5]) uses the compressed sparse column format also
used by TMG. Furthermore, recent studies indicate the ad-
vantage of sparse matrix over traditional IR representations
such as inverted indexes [19].

Another data structure popular in the context of Boolean
searches for representing document collections is the “in-
verted index”. Such a structure typically consists of a term
dictionary and a “posting list” associated with each term; for
each term ¢, the posting list consists of pairs (doc_id,n;),
where doc_id is an integer document identifier and n, is
an integer recording the number of occurrences of the term
in the document. Restricting the representation to an in-
verted index, however, complicates the implementation of
non-Boolean searches (e.g. in the form of incremental com-
putations, cf. [6]), especially dimensionality reduction trans-
formations that are at the core of LSI. On the other hand,
an inverted index becomes useful as a transient data struc-
ture, when building the sparse tdm. In particular, to build
directly the target tdm as a MATLAB sparse array, one would
require very fast concatenation and access to new rows and
columns. This would become inefficient at the matrix cre-
ation phase since, typically, it is not possible to have a good a
priori estimate of the matrix size and total number of nonze-
ros. We represent the inverted index by means of two MAT-
LAB cell arrays, one for the dictionary and the other for the
posting list. Each element of the latter cell array is a nu-
meric array of size 2 x d;, where d; is the number of doc-
uments containing the corresponding term, containing the

41

pairs (doc_id, n;). After parsing the collection, cleaning and
stemming the dictionary, each cell array for the posting list is
copied to another cell array each element of which is a MAT-
LAB sparse column vector of size n. Finally this cell array is
converted to the sparse array that contains the tdm by means
of the cell2mat command. We note that TMG uses MAT-
LAB functions such as unique and ismember that improve
significantly the efficiency of the parsing phase.

MATLAB provides an effective environment for sparse
computations (cf. [17]) that is utilized by TMG. Matrices
classified as sparse are stored in the compressed sparse col-
umn format (CSC) (cf. [7]). MATLAB 6.5 uses 8§ byte re-
als and 4 byte integers, and the total workspace occupied
by a sparse non-square tdm A is approximately Mem(A) =
12nnz+4(n+ 1) bytes (the exact value depends on a MAT-
LAB estimate of the total number of nonzeros of the sparse
matrix [17]. Therefore, for non-square matrices, the space
requirements are asymmetric, in the sense that Mem(A) #
Mem(AT), though the storage difference is 4|m — n|, which
is small relative to the total storage required. MATLAB is
known to be much more efficient when operations are ex-
pressed in matrix or vector format rather than using loops
operating on each element!; single element access takes time
at least proportional to the logarithm of the length of its con-
taining column and inserting or removing a nonzero may re-
quire extensive data movement. By expressing and coding

TNote that this difference has been less pronounced in recent versions of

MATLAB that implement more advanced compilation techniques.

<) Text to Matrix Generator

Help A
Text to Term-Document Matrix
(tdm) Generator

Input FileDirectory

Dictionary | I {E
(33 Create Mew tdm) 2
() Create Quety Matrix tlopal ekt)
() Upclate tolm Update Struct |
() Downdate tom =

Document Indices . Browese
— OPTIOMNS

Dielitniter fgl_’ﬂpt_)f_l_ipz_a

Stoplist |

(%) Line Delimiter

| [Browse

Min Length |

reely

|

Min Local Frecuency: :

Wit Global Freguency '

Local Termm Weighting E:Ferm Freguency ;J

[use Marmalization

Display Results

Max Lergth [30

Maix Local Fregquency finf

Max Global Freguency !‘inf |

Global Term Yyeighting EI_\Ione :j

[] uze Stemming

[Cortinue] [

Resst | [Ext]

Figure 1: TMG_GUL

the more intensive manipulations in TMG in terms of MAT-
LAB sparse matrix operations, the cost of operating on tdm
becomes proportional to the number of nonzeros in the tdm.
We can demonstrate such a linearity for an operation such as
the multiplication of the tdm with any vector, a kernel op-
eration in vector space techniques, including LSI based on
iterative methods. The plots in Figure 2 depict the time re-
quired by TMG for the construction of tdm’s corresponding
to three standard data collections, namely MEDLINE, CRAN-

FIELD and CISI, relative to the number of their nonzerosZ.

3.2 TMG for document renewal. The problem of effective
updating or downdating tdm’s is of importance as it is key
to the effective maintenance of document collections in an
IR system. For example, the problem of updating and
downdating of a collection in an IR system based on LSI
leads to interesting CLA questions related to the design
of effective algorithms for the update of the SVD; see
for example [25, 34]. In our case, we are interested in
the simpler problem of modifying the tdm so as to retain
independence from the underlying vector space technique.
To that effect, TMG includes routines (functions tdm_update

ZAll experiments were conducted on a 2.8GHz Pentium 4 PC with

512MB RAM running Windows XP and MATLAB 6.5.

MEDLINE
20 T
151 B
g
5 101 B
E
£l |
0 L L L L L
0 1 2 3 4 5 6
CRANFIELD 4
30 : ; x10
fg 20+ B
Y
£ 1ot 4
0 1 2 3 4 5 6 7 8 9
6 CIsI ¥ 10
g 4ot 1
[}
£ 201 4
0 L L L L L L
0 1 2 3 4 5 6 7
Nonzero elements x 10"
Figure 2: Runtimes (sec) of TMG versus the number of

nonzeros in the tdm.

42

and tdm_downdate) for modifying an existing tdm so as to
take into account the arrival or deletion of documents. Note
that the addition of new documents, will not only cause
an increase of the number of columns of the tdm, but can
also cause an increase in the number of rows and a change
of existing tdm entries. The latter can change because the
parameters defining the weights change to reflect the new
term frequencies, etc. The number of rows can increase
either because i) new terms are encountered and satisfy
the filtering requirements; and/or ii) terms in the original
dictionary that were excluded by filtering suddenly become
valid entries. This means that to update properly, we need
to keep the entire dictionary of terms encountered during
parsing (before any filtering steps have been performed) as
well as the term frequencies of all terms. In that case, we
would also be able to update the matrix when parameters
such as the maximum and/or minimum global frequencies
change; note that in the latter case, some terms might become
invalid causing row removal from the tdm.

To perform updates, the first time TMG is run, it must
keep the entire dictionary as well as the sparse tdm resulting
before any filtering; this is done in a MATLAB structure array
object (struct) denoted by update_struct. We avoid us-
ing one full and one normalized (post-filtering) dictionary by
working only with the full dictionary and a vector of indices
indicating those terms active in the normalized dictionary,
stored in the same struct object. Function tdm_downdate
operates in the same way, by removing documents from the
collection. The user has to specify the update_struct and a
vector of integers denoting the document indices of the nor-
malized data matrix that he wants be remove.

4 TMG in clustering experiments

4.1 The BIBBENCH dataset To illustrate the use of TMG
we created a new dataset, we call BIBBENCH consist-
ing of three source files from publicly accessible bibli-
ographies® in BIBTEX (the bibliography format for IATEX
documents), with characteristics shown in Table 4. The
first, we call BKN, is a 651 entry bibliography contained
in the book [22], though loaded sometime before printing
and therefore not corresponding exactly to the final edition.
The major theme is clustering. The second bibliography,
BEC is from http://jilawww.colorado.edu/bec/bib/,
a repository of BIBTEX references from topics in
Atomic and Condensed Matter Physics on the topic of
Bose-Einstein condensation. ~ When downloaded (Jan.
24, 2005) the bibliography contained 1,590 references.
The last bibliography, GVL, was downloaded from
http://www.netlib.org/bibnet/subjects/ and con-
tains the full 861 item bibliography of the 2nd edition (1989)
of a well-known treatise on Matrix Computations [20]. The

°The bibliographies are directly accessible from the TMG web site.

43

file was edited to remove the first 350 lines of text that con-
sisted of irrelevant header information. All files were stored
in a directory named BibBench. It is worth noting that, at
first approximation, the articles in BEC could be thought
as belonging in one cluster (‘“physics”) whereas those in
BKN and GVL in another (“linear algebra and information
retrieval”).

We first used TMG to assemble the aforementioned
bibliographies using term weighting, no global weighting,
no normalization and stemming (txx_s) thus setting as non-
default OPTIONS

OPTIONS.delimiter='Q’;
OPTIONS.line_delimiter=0;
OPTIONS.stoplist='"bibcommon_words’;
OPTIONS.stemming=1;
OPTIONS.min_global_freq =2; OPTIONS.dsp=
0

therefore, any words that appeared only once globally were
eliminated (this had the effect of eliminating one docu-
ment from GVL). The remaining packet had 3,101 bibli-
ographical entries across three plain ASCII files KNB.bib,
BEC.bib, GVL.bib. The stoplist file was selected to con-
sist of the same terms found in [18] augmented by keywords
utilized in BIBTEX and referring to items that are not use-
ful for indexing, such as author, title, editor, year,
abstract, keywords, etc.
The execution of the following commands

varargout=tmg (’BibBench’,OPTIONS) ;

has the following effect (compacting for some pretty-
printing):

Applying TMG for directory C:/TMG/BibBench...

Results:

Number of documents = 3101

Number of terms = 3154

Avg number terms per document (before
normalization) = 36.9987

Avg number of indexing terms per
document = 11.9074

Sparsity = 0.362853%

Removed 302 stopwords...
Removed 964 terms using the
stemming algorithm...

Removed 2210 numbers...

Removed 288 terms using the
term-length thresholds...

Removed 6196 terms using the
global thresholds...

[feature | BEC | BKN | GVL | BIBBENCH txx.s |
documents 1,590 651 860 3,101
terms (indexing) 1712 | 1159 720 3,154
stemmed terms 372 389 221 964
avg. terms/document 41 38 28 37
avg. terms/document (indexing) 13 13 | 8.40 12
tdm nonzeros (%) 0.74 1.00 1.15 0.36

Table 4: BIBBENCH dataset.

T
| O cluster2
+ cluster 1

BEC BKN GVL

-0.06

5‘00 10‘00 } 15‘00 20‘00 2500 3000
Figure 3: Values of each of the 3101 components of the max-
imum right singular vector vy,x of the BIBBENCH dataset vs.
their location in the set. The vertical lines that separate the

three BIBTEXfiles and the labels were inserted manually.

Removed 0 elements using the
local thresholds...

Removed 0 empty terms...

Removed 1 empty documents...

A simple combination of commands depicts the frequencies
of the most frequently occurring terms. After running TMG
as above, the commands

f=sum(A,2); plot(f,’."); [F,I]=sort(f);
t=20; dictionary(I(end:-1l:end-t+1),:)

plot the frequencies of each term (Fig. 4) and return the
top ¢ = 20 terms of highest frequency in the set, listed in
decreasing order of occurrence below:

phy rev os condens instein lett atom
trap comput algorithm cluster method
data ga usa system matrix linear matric
mar

We next use TMG to modify the tdm so that it uses a different
weighting scheme specifically tnc and stemming. This can
be done economically with the update_struct computed
earlier as follows:

update_struct.normalization='c’;
update_struct.global_weight='n"’;
A=tdm_update ([],update_struct);

Using MATLAB’s spy command we visualize the sparsity
structure of the tdm A in Fig. 4 (right). In the sequel we
apply two MATLAB functions produced in-house, namely
pddp and block_diagonalize. The former implements the
PDDP(/) algorithm for clustering of term-document matrices
[33]. We used [= 1 and partitioned in two clusters only,
so that results are identical with the original PDDP algorithm
[12]. In particular, classification of each document into one
of the two clusters is performed on the basis of the sign of the
corresponding element in the maximum right singular vector
of matrix A — Aee' /n, where e is the vector of all 1’s. The
MATLAB commands and results are as follows:

>> clusters = pddp(A, 'svds’, 'normal’,’1’,2);
Running PDDP(1) for k=2...
Using svds method for the SVD...
Splitting node #2 with 3101 documents
and 55.558 scatter value
Leaf 3 with 1583 documents
Leaf 4 with 1518 documents
Number of empty clusters 0
PDDP (1) terminated with 2 clusters

Fig. 3 plots the maximum singular vector vy, correspond-
ing to the BIBBENCH dataset. Even though our goal here
is not to evaluate clustering algorithms, it is worth noting
that PDDP was quite good at revealing the two “natural clus-
ters”. Fig. 3 shows that there are some documents from BEC
(marked with ‘+”) that were classified in the “clustering and
matrix computations” cluster and very few documents from
BKN and GVL that were classified in the “physics” cluster.

Finally, function block_diagonalize implements and
plots the results from a simple heuristic for row reordering
of the term-document matrix based on pddp. In particular,
running

44

Benchbib tdm

1200

1000

800

600

400

200

e
1500

2000 2500

500 1000 1500

nz = 35489

2000 2500 3000

Figure 4: BIBBENCH term frequencies (left); tdm sparsity structure using spy (right).

>> block_diagonalize (A, clusters);

we obtain Fig. 5 (left), while the other plot of Fig. 5 depicts
the same result when running PDDP(1) for k = 4. This il-
lustrates the improvement made by the clustering procedure.
We note here that experiments of this nature, in the spirit
of work described in [11], are expected to be useful for in-
struction and research, e.g. to visualize the effect of novel
reordering schemes. Finally, Table 5, shows the size and ten
top most frequent terms (after stemming) for each of the four
clusters obtained using PDDP(1) for k = 4. There were two
“physics” clusters, the theme of another appears to be “lin-
ear algebra” while the theme of the last one is “data mining”.
The terms also reveal the need for better data cleaning ([14]),
e.g. by normalizing or eliminating journal names, restoring
terms, etc.: For instance, numermath, siamnum were gen-
erated because of non-standard abbreviations of the journals
“Numerische Mathematik™ and “SIAM Journal of Numerical
Analysis”. Terms instein and os were generated because
of entries such as {E}instein and {B}ose, where the brack-
ets were used in the BIBTEX to avoid automatic conversion
to lower case.

4.2 Evaluating term-weighting and stemming We next
use the flexibility of the toolbox to study the effect of dif-
ferent term weighting and normalization schemes and stem-
ming on clustering text collections. We used part of col-
lection REUTERS-21578, that is composed of 21,578 docu-
ments, 8,654 of which belong to a single topic. We applied
TMG in three parts of REUTERS-21578 comprising of 22, 9
and 6 classes of documents. Table 6 gives the features of
the three parts labeled as REUT1, REUT2 and REUT3, as re-
ported by TMG. We experimented on the aforementioned

45

1(1,033) | 11 (553) III (633) IV (885)
phy phy matric cluster
rev instein | numermath usa

0s rev matrix data
condens | condens | eigenvalu comput
trap 0s siamnuman mine
instein lett symmetr | algorithm
ga ketterl linalgapp york
atom atom problem analysi
lett optic linear parallel
interact mar solut siam

Table 5: Ten most frequent terms for each of the four clusters
of BIBBENCH using PDDP(1). In parentheses are the cluster
sizes. We applied stemming but only minimal data cleaning.

collections with all possible schemes available in TMG and
recorded the entropy values using two representative clus-
tering algorithms: Spherical k-means (Skmeans) [16] as a
representative partitioning method and PDDP [12], as a rep-
resentative hierarchical partitioning technique based on spec-
tral information.

The stoplist file was the default obtained from GTP,
while stemming was enabled. As shown in Table 6, stem-
ming causes a significant - up to 30% - reduction in dictio-
nary size.

There are 60 possible combinations for term weighting
and normalization in constructing the term document matrix.
Taking into account the use or not of stemming, there are a
total of 120 parameter combinations. We ran all of them on
the aforementioned data collections and recorded the results

BibBench tdm after document clustering with PDDP(1) and simple row reordering
v

0z 3 IR T w——

BibBench tdm after simple reordering using PDDP(1), I=1, k=4

500

1000

1500

1 [
1500
nz = 35489

L TR 2.
500 1000 2000

2000

2500

3000

-3

1000

1500 2000
nz = 35489

3000

Figure 5: spy view of BIBBENCH tdm’s for k = 2 (left) and k = 4 (right) clusters.

| feature | REUTI [REUT2 | REUT3 |

documents 880 900 1,200
terms (ind.) 4,522 4,734 5,279
avg. terms/doc. 179 180 175
avg. terms/doc. (ind.) 81 83 81
tdm nonzeros (%) 0.20 0.20 0.81
terms (after stemming) 3,228 3,393 3,691
dict. size reduction (%) 29 28 30

Table 6: Characteristics of document collections used in the
clustering experiments

for PDDP and Skmeans. Table 7 lists the entropy values
obtained using the 5 weighting and normalization schemes
that returned the best results. An “_s” symbol implies
the application of stemming whereas “_ns” means that no
stemming was used.

Table 7 indicates some results, concerning the perfor-
mance of PDDP and Skmeans in the context of stemming
and the variety of term weighting options that are worth
reporting. First, note that Skmeans returns good entropy
values, about 45% better than PDDP for REUT2. Further-
more, stemming seems to improve quality in clustering in
most cases resulting in lower entropy values, while it is clear
from Table 7 that cosine normalization improves clustering
in all cases (Skmeans normalizes the document vectors by
default). Although Table 7 does not provide clear guidance
regarding the selection of specific term weighting schemes
we can see that ‘logarithmic’ and ‘alternate log’ local func-
tions and ‘entropy’ and ‘IDF’ global functions appear to re-

| REUTI | REUT2 | REUT3 |
PDDP
tpc-s 1.46 | lecns | 1.11 | aec_s 0.85
tec_s 1.54 | afcns | 1.13 | lec_s 0.90
tfc_s 1.58 | aecns | 1.14 | tec_s 0.92
tecns | 1.59 | tec_s 1.17 | tecns | 0.93
lec_s 1.61 | tfcns | 1.18 | bxcns | 0.96
Skmeans
tpc-s 1.18 | axcs | 0.61 | bxcns | 0.66
tpcns | 1.23 | aec.s | 0.73 | lecns | 0.67
tfc_s 1.28 | leccns | 0.73 | Ixcns | 0.73
tec_s 1.30 | Ixc_s 0.73 | axc_s 0.74
afc_s 1.31 | tfc_s 0.73 | bxcs 0.74

Table 7: Entropy values for PDDP and Skmeans.

turn good results. More interestingly, we get high quality re-
sults using the simple ‘term frequency’ local function, while
weighting terms globally does not improve necessarily the
quality of clustering.

5 Conclusions

We outlined the design of a MATLAB toolbox for the con-
struction of tdm’s from text collections. TMG makes heavy
use of MATLAB’s sparse matrix infrastructure. Our moti-
vation was to facilitate users, such as researchers in com-
putational linear algebra who use MATLAB to build algo-
rithms for textual information retrieval and are interested in
the rapid preparation of test data. We demonstrate the use
and performance of our system for several publicly available

46

datasets, including REUTERS-21578 and on BIBBENCH, an
easy to construct dataset of bibliography entries in BIBTEX
format. Extensive experiments with TMG over the REUTERS-
21578 collection and an exhaustive combination of term
weighting and normalization schemes and stemming indi-
cate the success of specific weighting schemes. They show
that stemming can improve quality and efficiency of clus-
tering but also underline that such benchmarking becomes
easy with TMG. To the best of our knowledge, TMG is the
first MATLAB toolbox possessing the range of capabilities
described herein. We expect the system to become useful in
several research and educational contexts and point users to
[22] and the tool’s website for more information. In addi-
tion to operating the tool for our experiments in the field of
IR, we are currently working in enabling the tool to process
a variety of other document types as well as in distributed
implementations. Finally, we expect that MATLAB 7.0 will
permit an even more efficient implementation because of its
support for integer and single-precision floating-point arith-
metic.

Acknowledgments TMG was conceived after a motivating
discussion with Andrew Knyazev regarding a collection of
MATLAB tools we had put together to aid in our cluster-
ing experiments. We thank Michael Berry for discussions
and for including the software in the LSI web site [3], Efi
Kokiopoulou and Constantine Bekas for many helpful sug-
gestions, Dan Boley for his help regarding preprocessing in
PDDP. We also thank Inderjit Dhillon, Pavel Berkhin and Ja-
cob Kogan for providing us with a component of BIBBENCH
and Elias Houstis for his help in the initial phases of this re-
search. Special thanks are due to many of the users for con-
structive criticism of the tool and to the reviewers of this sub-
mission for their comments that not only helped us improve
the paper but constitute useful advice for further enhance-
ments.

References

[1] Doc2mat.
~karypis/cluto/files/doc2mat-1.0.tar.gz.

General Text Parser. Available from www.cs.utk.
edu/~1si/soft.html.

Latent Semantic Indexing Web Site.
Berry and S. Dumais at,
www.cs.utk.edu/~1si/.
MATLAB: The Language of Technical Computing. In
http://www.mathworks.com/products/matlab/.

Mc Toolkit. Available from,
www.cs.utexas.edu/users/dml/software/mc/.

R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Informa-
tion Retrieval. ACM Press / Addison-Wesley, 1999.

R. Barrett, M. Berry, T. Chan, J. Demmell, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst.

Available from www-users.cs.umn.edu/
[2]

[3] Maintained by M.W.

(4]
(5]
(6]

(7]

47

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, 1993.

M.W. Berry, editor. Survey of Text Mining: Clustering,
Classification, and Retrieval. Springer Verlag, New York,
2004.

M. Berry, Z. Drmac, and E. Jessup. Matrices, Vector Spaces,
and Information Retrieval. SIAM Review, 41:335-362, 1998.
M.W. Berry and M. Brown. Understanding Search Engines.
SIAM, Philadelphia, 1999.

M.W. Berry, B. Hendrickson, and P. Raghavan. Sparse matrix
reordering schemes for browsing hypertext. In J. Renegar,
M. Shub, and S. Smale, editors, The Mathematics of Numer-
ical Analysis, volume 32 of Lectures in Applied Mathematics
(LAM), pages 99-123. American Mathematical Society, 1996.
D. L. Boley. Principal direction divisive partitioning. Data
Mining and Knowledge Discovery, 2(4):325-344, 1998.

D.L. Boley. Principal direction divisive partition-
ing software (experimental software, version 2-
beta), Feb. 2003. Available from www-users.

cs.umn.edu/~boley/Distribution/PDDP2.html.

M. Castellanos. Hot-Miner: Discovering hot topics from
dirty text. In Berry [8], pages 123-157.

C. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and
C. Behrens. Telcordia LSI engine: Implementation and scal-
ability issues. In Proc. 11th Workshop on Research Issues
in Data Engineering (RIDE 2001): Doc. Management for
Data Intensive Business and Scientific Applications, Heidel-
berg, Germany, Apr. 2001.

I. S. Dhillon and D. S. Modha. Concept decompositions for
large sparse text data using clustering. Machine Learning,
42(1):143-175, 2001.

J.R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in
MATLAB: Design and implementation. Technical Report
Tech. Report CSL 91-4, Xerox Palo Alto Research Center,
1991. This work was later published revised in SIAM J. Matrix
Anal. Appl., 13(1):333-356, 1992.

J.T. Giles, L. Wo, and M. Berry. GTP (General Text Parser)
software for text mining. Statistical Data Mining and Knowl-
edge Discovery, pages 455-471, 2003.

N. Goharian, T. El-Ghazawi, and D. Grossman. Enterprise
text processing: A sparse matrix approach. In Proc. IEEE In-
ternational Conference on Information Techniques on Coding
& Computing (ITCC 2001), Las Vegas, 2001.

G. H. Golub and C. E. Van Loan. Matrix Computations. The
Johns Hopkins University Press, 2nd edition, 1989.

G. Karypis. CLUTO. A clustering toolkit. Technical Report
02-017, University of Minnesota, Department of Computer
Science, Minneapolis, MN 55455, Aug. 2002.

J. Kogan, C.Nicolas and M. Teboulle, eds. Grouping Multidi-
mensional Data: Recent Advances in Clustering. Springer, to
appear.

E. Kokiopoulou and Y. Saad. Polynomial filtering in latent
semantic indexing for information retrieval. In Proc. ACM
SIGIR 04, pages 104111, 2004.

T.G. Kolda. Limited-Memory Matrix Methods with Appli-
cations. PhD thesis, University of Maryland, College Park,
1997. Technical Report CS-TR-3806.

T.A. Letsche and M.W. Berry. Large-scale information re-

[26]
(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

trieval with latent semantic indexing. Information Sciences,
100(1-4):105-137, 1997.

M.E. Porter. The Porter stemming algorithm. See
www.tartarus.org/~martin/PorterStemmer.

M.F. Porter. An algorithm for suffix stripping. Program,
(3):130-137, 1980.

J. Quesada. Creating your own LSA space. In T. Landauer,
D. McNamara, S. Dennis, and W. Kintsch, editors, Latent
Semantic Anlysis: A road to meaning. Erlbaum, in press.

G. Salton, J. Allan, and C. Buckley. Automatic structuring
and retrieval of large text files. Comm. ACM, 37(2):97-108,
1994.

A. Singhal, C. Buckley, and M. Mitra. Pivoted document
length normalization. ACM SIGIR’96, pages 21-29, 1996.

S. Sirmakessis, editor. Text Mining and its Applications
(Results of the NEMIS Launch Conference). Springer, Berlin,
2004.

D. Zeimpekis and E. Gallopoulos. CLSI: A flexible approx-
imation scheme from clustered term-document matrices. In
Proc. SIAM 2005 Data Mining Conf. (to appear), Philadel-
phia, April 2005.

D. Zeimpekis and E. Gallopoulos. PDDP(/): Towards a
flexible principal direction divisive partitioning clustering
algorithm. In D. Boley, I. Dhillon, J. Ghosh, and J. Kogan,
editors, Proc. Workshop on Clustering Large Data Sets (held
in conjunction with the Third IEEE Int’l. Conf. Data Min.),
pages 26-35, Melbourne, FL, Nov. 2003.

H. Zha and H. Simon. On updating problems in latent
semantic indexing. SIAM J. Sci. Comput., 21:782-791, 1999.

48

