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Abstract

The use of effective distance functions has been explored
for many data mining problems including clustering, near-
est neighbor search, and indexing. Recent research results
show that if the Pearson variation of the distance distribu-
tion converges to zero with increasing dimensionality, the
distance function will become unstable (or meaningless) in
high dimensional space even with the commonly used L,
metric on the Euclidean space. This result has spawned
many subsequent studies. We first comment that although
the prior work provided the sufficient condition for the un-
stability of a distance function, the corresponding proof has
some defects. Also, the necessary condition for unstability
(i.e., the negation of the sufficient condition for the stabil-
ity) of a distance function, which is required for function
design, remains unknown. Consequently, we first provide
in this paper a general proof for the sufficient condition of
unstability. More importantly, we go further to prove that
the rapid degradation of Pearson variation for a distance
distribution is in fact a necessary condition of the resulting
unstability. With the result, we will then have the neces-
sary and the sufficient conditions for unstability, which in
turn imply the sufficient and necessary conditions for sta-
bility. This theoretical result derived leads to a powerful
means to design a meaningful distance function. Explicitly,
in light of our results, we design in this paper a meaning-
ful distance function, called Shrinkage-Divergence Proximity
(abbreviated as SDP), based on a given distance function. It
is empirically shown that the SDP significantly outperforms
prior measures for its being stable in high dimensional data
space and robust to noise, and is thus deemed more suitable
for distance-based clustering applications than the priorly
used metric.

1 Introduction

The curse of dimensionality has recently been studied
extensively on several data mining problems such as
clustering, nearest neighbor search, and indexing. The
curse of high dimensionality is critical not only with re-
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gards to the performance issue but also to the quality
issue. Specifically, on the quality issue, the design of
effective distance functions has been deemed a very im-
portant and challenging issue. Recent research results
showed that in high dimensional space, the concept of
distance (or proximity) may not even be qualitatively
[1]]2][3][5][6][11]. Explicitly, the theorem in [6] showed
that under a broad set of conditions, in high dimensional
space, the distance to the nearest data point approaches
the distance to the farthest data point of a given query
point with increasing dimensionality. For example, un-
der the independent and identically distributed dimen-
sions assumption, the commonly used L, metrics will
encounter problems in high dimensionality. This the-
orem has spawned many subsequent studies along the
same line [1][2][3][11][13].

The scenario is shown in Figure 1 where € denotes a
very small number. From the query point, the ratio of
the distance to the nearest neighbor to that to the far-
thest neighbor is almost 1. This phenomenon is called
the unstable phenomenon [6] because there is poor dis-
crimination between the nearest and farthest neighbors
for proximity query. As such, the nearest neighbor prob-
lem becomes poorly defined. Moreover, most indexing
structures will have a rapid degradation with increasing
dimensionality which leads to an access to the entire
database for any query [3]. Similar issues are encoun-
tered by distance-based clustering algorithms and classi-
fication algorithms to model the proximity for grouping
data points into meaningful subclasses. In this paper, a
distance function which will result in this unstable phe-
nomenon is referred to as a meaningless function in high
dimensional space, and is called meaningful otherwise.
The result in [6] suggested that the design of a mean-
ingful distance function in high dimensional space is a
very important problem and has significant impact to a
wide variety of data mining applications.

In [6], it is proved that the sufficient condition
of unstability is that “the Pearson variation of the
corresponding distance distribution degrades to 0 with
increasing dimensionality”. For example, if “under
the independent and identically distributed dimensions
assumption and the use an L, metric, the Pearson
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Figure 1: An example of unstable phenomenon.
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Figure 2: Example minimum and maximum of functions
which are not continuous.

variation of distance distribution rapidly degrades to
0 with increasing dimensionality in high dimensional
space,” then the unstable phenomenon occurs. (This
distance function is hence called meaningless.) Note
that in light of the equivalence between “p — ¢”
and “-q¢ — —p”, the negative of above sufficient
condition for unstability is equivalent to the necessary
condition of stability (where we have a meaningful
distance function). However, the sufficient condition for
stability remains unknown.

In fact, the important issue is how to design a mean-
ingful distance (or proximity) function for high dimen-
sional data space. The authors in [1] provided some
practical desiderata for constructing a meaningful dis-
tance function, including (1) contrasting, (2) statisti-
cally sensitive, (3) skew magnification, and (4) compact-
ness. These properties are in essence design guidelines
for a meaningful distance function. However, we have
no guarantee that a distance function which satisfies
those needs will avoid the unstable phenomenon (since
these properties are not sufficient condition for stabil-
ity). Consequently, neither the result in [6] nor that
in [1] provides the necessary condition for unstability
which is required for us to design a meaningful distance
function in high dimensional space. The design of a
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meaningful distance (or proximity) function hence re-
mains as an open problem. This is the issue we shall
solve in this paper.

We first comment that although the work in [6] pro-
vided the sufficient condition for unstability, the corre-
sponding proof has some defects. [6] used the property
that the minimum and maximum are continuous func-
tions to deduce the sufficient condition for unstability,
which, however, does not hold always. For example,
consider the scenario of two functions f and g, as shown
in Figure 2 where both the minimum and the maximum
of functions f and g are discontinuous. In general, the
minimum and maximum functions of random sequence
are not continuous, especially for discontinuous random
variables [8]. To remedy this, we will first provide in
this paper a general proof for the sufficient condition of
unstability. More importantly, we go further to prove
that the rapid degradation of Pearson variation for a
distance distribution is a necessary condition of the re-
sulting unstability. With the result, we will then have
the necessary and sufficient conditions for unstability,
whose negatives in turn imply the sufficient and neces-
sary conditions for stability. Note that with the suffi-
cient condition for stability which was unsolved in prior
works and is first derived in this paper, one will then be
able to design a meaningful distance function for high
dimensional space. Explicitly, this new result means
that a distance function for which the degradation of
Pearson variation does not approach zero rapidly will be
guaranteed to be meaningful (i.e., stable) in high dimen-
sional space. The estimation of variation is a guideline
for testing the distance function is unstable or not. As
such, this theoretical analysis leads a powerful means to
design a meaningful distance function.

Explicitly, in light our results, we design in this
paper a meaningful distance function, called Shrinkage-
Divergence Proximity (abbreviated as SDP), based on
a given distance function. Specifically, the SDP defines
an adaptive proximity function of two data points
on individual attributes separately. The proximity
of two points is the aggregation of each attributive
proximity. SDP magnifies the variation of the distance
to detect and avoid the unstable phenomenon attribute
by attribute. For each attribute of two data points,
we will shrink the proximity of this attribute to zero if
the projected attribute of two data points falls into a
small interval. If they are more similar to each other
than to others on an attribute, we are then not able
to significantly discern among them statistically. On
the other hand, if some projected attributes of two
data points are apart from one to another for a long
original distance, then they are viewed dissimilar to
each other. Therefore, we will be able to spread them



out to increase the degree of discrimination. Note that
since we define the proximity between two data points
separately on individual attributes, the noise effects of
some attributes will be mitigated by other attributes.
This accounts for the reason that SDP is robust to noise
in our experiments.

The contributions of this paper are twofold. First,
as a theoretical foundation, we provided and proved
the necessary and sufficient conditions of unstable phe-
nomenon in high dimensional space. Note that the neg-
ative of necessary condition of unstability is in essence
the sufficient condition of stability, which provides an
innovative and effective guideline for the design of a
meaningful (i.e., dimensionality resistant) distance func-
tion in high dimensional space. Second, in light of the
theoretical results derived, we developed a new dimen-
sionality resistant proximity function SDP. It is em-
pirically shown that the SDP significantly outperforms
prior measures for its being stable in high dimensional
data space and robust to noise, and is thus deemed more
suitable for distance-based clustering applications than
the commonly used L, metric.

The rest of the paper is organized as follows.
Section 2 describes related works. Section 3 provides
theoretical results for our work where the necessary
and sufficient conditions for unstable phenomenon are
derived. In Section 4, we devise a meaningful distance
function SDP. Experimental results are presented in
Section 5. This paper concludes with Section 6.

2 Related Works

The use of effective distance functions has been ex-
plored in several data mining problems, including near-
est neighbor search, indexing, and so on. As described
earlier, the work in [6] showed that under a broad set
of conditions the neighbor queries become unstable in
high dimensional spaces. That is, from a given query
point, the distance to the nearest data point will ap-
proach that to the farthest data point in high dimen-
sional space. For example, under the commonly used
assumption that each dimension is independent, the L,
metric will be unstable for many high dimensional data
spaces. For constant p (p > 1), the L, metric for
two m-dimensional data points = = (z1,T2, " ,Zy,)
and ¥ = (y1,Y2, " ,Ym) is defined as L,(7,7)
S (|lzi — yiP)YP. The result in [6] has spawned
many subsequent studies along this direction. [11] and
[2] specifically examined the behavior of L, metric and
showed that the problem of stability (i.e., meaningful-
ness) in high dimensionality is sensitive to the value
of p. A property of L, presented in [11] is that the
value of extremal difference |Dmax,, — Dmin,,| grows
as m!'/P~1/2 with increasing dimensionality m, where
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Dmazx,, and Dmin,, are the distances to the farthest
point and that to the nearest point from the origin, re-
spectively. As a result, the L; metric is the only metric
of the L, family for which the absolute difference be-
tween nearest and farthest neighbor increases with the
dimensionality. For the Ly metric, |Dmax,, — Dmin,,|
converges to a constant, and for distance metrics Ly for
k > 3, |Dmax,, — Dmin,,| converges to zero with di-
mensionality m. This means that the L; metric is more
preferable than the Lo for high dimensional data min-
ing applications. In [2], the authors also extended the
notion of a L, metric to a fractional distance function
where a fractional distance function dist!, for I € (0,1)
is defined as:

(z- B y)l> 1/1 |

In [3], the authors proposed the IGrid-index which
is a method for similarity indexing. The IGrid-index
used grid-based approach to redesign the similarity
function from L,. In order to perform the proximity
thresholds, the IGrid-index method discretize the data
space into kg equidepth ranges. Specifically, R [, j]
denotes the jth range for dimension ¢. For dimension
i, if both z; and y; belong to the same range R [i, j],
then the two data points are said to be in proximity
on dimension i. Let S[7', ¥, kq] be the proximity set
for two data points Z° and ¥ with a given level of
discretization kg, then the similarity between = and

1/p

Y is given by:
P
(=) |

where m; and n; are the upper and lower bounds for
the corresponding range in the dimension ¢ in which
the data points = and ¥ are in proximity to one
another. Note that these results while being valuable
from various perspectives do not provide the sufficient
condition for a meaningful distance function that can be
used for the distance function design in high dimensional
data space.
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3 On a Meaningful Distance Function

In this section, we shall derive theoretical properties for
a meaningful distance function. Preliminaries are given
in Section 3.1. In Section 3.2, we first provide a new
proof for the sufficient condition of unstability in Theo-
rem 1 (since, as pointed out earlier, the proof in [6] has
some defects). Then, we derived the necessary condition
for unstability (i.e., the negative of the sufficient condi-
tion for stability) in Theorem 2. We state the complete



results (the necessary and sufficient conditions for un-
stability) in Theorem 3. For better readability, we put
the proofs of all theorems in Section 3.3. Remarks on
the valid indices for a distance function to be meaningful
are made in Section 3.4.

3.1 Definitions We now introduce several terms to
facilitate our presentation. Assume that d,, is a
real-value distance function ' defined on a certain
m-~dimensional space. d,, is well defined as m in-
creases. For example, the L, metric defined on the
m-~dimensional Euclidean space is well defined as m in-
creases for any p in (0,00). Let P, ; ¢ = 1,2,--- ,N
be N independent data points which are sampled from
some m-variate distribution F,,,. F,, is also well defined
on some sample space as m increases. (Note that we do
not assume that the attributes of data space are inde-
pendent. Essentially, many of the attributes are corre-
lated with one another [1].) If @,, is an arbitrary (m-
dimensional) query point chosen independently from all
P,,;. Let DMAX,, = max{dm(Pmni, Qm)|l <i < N}
and DM IN,, = min{dm (P, i, Qm)|1 <i < N}. Hence
DMAX,, and DMIN,, are random variables for any
m.

DEFINITION 3.1. A family of well defined distance
functions {dm|m = 1,2,---} is d-unstable (or 6-
meaningless) if 6 = sup{d*|limy,—oc P{DMAX,, <
(1+€)DMIN,,} > 6* for any e > 0}.

For ease of exposition, we also refer to 1-unstable as
unstable (or with a meaningless distance function). As
0 approaches 1, a small relative change in any query
point in a direction away from the nearest neighbor
could change the point into the farthest neighbor. For
the purpose of this study, we shall explore the extremal
case: unstable phenomenon (i.e., § = 1). A distance
function is called stable if it is not unstable (i.e., § < 1).
A list of symbols used is given in Table 1.

3.2 Theoretical Properties of Unstability From
the probability theory, the unstable phenomenon is
equivalent to the case that % converges in prob-
ability to one as m increases. The work in [6]

proved that under the condition that Pearson variation

var ( dm(Pm,lyQTn)
E[dm(Pm,hQnL)]

to 0 with increasing dimensionality, the extremal ratio

DMAX,, . . . . .
DMINE will also converge to one with increasing di-

mensionality. Formally, we have the following theorem.

) of distance distribution converges

TIn this paper, the distance function need not be a metric. A
nonnegative function d : X XX — R is a metric for data space X if
it satisfies the following properties: (1) d(z,y) > 0 Vz,y € X, (2)
d(z,y) = 0 if and only if x =y, (3) d(z,y) = d(y,z) Vz,y € X,
and (4) d(z,2) +d(z,y) > d(z,y) Vz,y,z € X
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Table 1: List of Symbols

] Notation \ Definition
m Dimensionality of the data space
N Number of data points
P{e} Probability of an event e
XY, X, Y, | Random variables defined on some
probability space
E[X] Expectation of a random variable X
var(X) Variance of a random variable X
iid Independent and identically
distribution
dm A distance function of a m-
dimensional data space m = 1,2, -
x~F x is a random sample point from the
distribution F'
A sequence of random variables X1,
X, I x X5 -+ converges in probability to a
random variable X if
Ve limp—ooP{|Xn — X| <€} =1

Recall that this theorem was rendered in [6] and we
mainly provide a correct and more general proof in this

paper.

THEOREM 3.1. (Sufficient condition of unstability [6])
Let p be a constant (0 < p < o).

If lim,, o var(%) = 0, then for every
e>0 7
lim P{DMAX,, < (1+¢)DMIN,,} =1.

From Theorem 3.1, a distance function is unstable
in high dimensional space if its Pearson variation of dis-
tance distribution approaches 0 with increasing dimen-
sionality. This phenomenon leads poor discrimination
between the nearest and farthest neighbor for proxim-
ity query in high dimensional space. Note that as men-
tioned in [6], the condition of Theorem 3.1 is applicable
to a variety of data mining applications.

Example 1. Suppose that we have the data whose
distribution and query are iid from some distribution
with finite fourth moments in all dimensions [6]. If
Py, and Q,,, are, respectively, the jth attribute of
1th data point and the jth attribute of the query point.
Hence, (Ppnq; — Qmj)Q, j 1,2,--- ,m are iid with
some expectation y and some nonnegative variance o
that are the same regardless of the values of ¢ and
m. If we use the Ly metric for proximity query, then
A (P iy Qm) = (30721 (Prni; — Qm;)?)*/2. Under the
iid assumptions, we have E[d, (P, Qm)?] = mu and

var (dm(Pm,i,Qm)Q) = mo?. Therefore, the Pearson

st



fos A (Prn,1,Qm)?
variation var( [ (Prn.1,Qm)

m) = 02/mu? converges to
0 with increasing dimensionality. Hence, the corre-
sponding L, is meaningless under such a data space. In
general, if the data distribution and query are iid from
some distribution with finite 2pth moments in all dimen-
sions, the L, metric is meaningless for all 1 < p < oo[6].
O
We next prove in Theorem 3.2 that “the condition
for the Pearson variation of the distance distribution
to any given target to converge to 0 with increasing
dimensionality” is not only the sufficient condition (as
stated in Theorem 3.1) but also the necessary condition
of unstability of a distance function in high dimensional
space.

THEOREM 3.2. (Necessary condition of unstability)
If limy, oo P{DMAX,, < (1+€)DMIN,,} =1
every € > 0, then

m(Pm,la Qm)p
E[dm (Pm,la Qm)p]

With Theorem 3.2, we will then have the necessary
and the sufficient conditions for unstability, whose neg-
atives in turn imply the sufficient and necessary con-
ditions for stability. The statement that the Pearson
variation of the distance distribution to any given target
should converge to 0 with increasing dimensionality is
equivalent to the unstable phenomenon. Following The-
orems 3.1 and 3.2, we reach Theorem 3.3 below which
provides a theoretical guideline for designing dimension-
ality resistant distance functions.

for

lim wvar(

m—00

)

=0 (0 <p<o0).

THEOREM 3.3. (Main Theorem)
Let p be a constant (0 < p < 00).
For every e > 0,

lim P{DMAX,, < (1+ ¢ DMIN,,} =1

m—0o0

if and only if
. d ( mlan) _
i B Q)]

Example 2. Theorem 3.3 shows that we have to in-
crease the variation of distance distribution for redesign-
ing a dimensionality resistant distance function. As-
sume that the data points and query are iid from some
distribution in all dimension, and E[dy, (P, Qm)?] =
mp, var (Do (Ppm.1,Qm)P) = mo? for some constant p
and (> 0), as in Example 1. Since the exponential
function e* (for x > 0) is strictly convex, hence the
Jensen’s inequality [4] [15] suggests that the variation
of distance distribution can be magnified by applying
the exponential function. Let f(z) = e* for x > 0. We
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obtain some interesting results by applying f to some
well-known distance distributions, as shown in Table 2.

The above results show that the transformations of
distance functions by the exponential function can rem-
edy the meaningless behaviors on some high dimensional
data spaces, especially for those cases that distance dis-
tributions have long tails. However, in such case, the
stable property of distance functions may not be useful
for application needs. In addition, the large variation
makes data sparsely, and then the concept of proximity
will also be difficult to visualize. From our experimental
results, it is shown that the Pearson variations, whose
distance functions are translated from L; metric or Lo
metric by exponential function f, will start to diverge
even when encountering only 10 dimensions on many
data spaces. We make some remarks on the valid in-
dices for a distance function to be meaningful in Section
3.4.

3.3 Proof of Main Theorem In order to prove
our main theorem, we need to drive some properties
of unstable phenomenon. For interest of space, those
properties and some important theorems of probability
are presented in Appendix A.

Proof for Theorem 3.1:

_ dn (Prm,i,Qm)? 5 _
Let = Vin Bldn (PG 20d - Xmo =
(Vm,lavm,27"' )Vm,N)'
Hence, Vi, i = 1,2,--- | N are non-negative iid

random variables for all m and V,,, ; L 1 as m — oo.
Since for any € > 0,

RN

LMy — oo P{| max(X,,) — 1| >
—

= liMn— oo P{max(X,,) > ( +

+ limpy, 0o P{0 < max(Xm) <

14+¢€

€)

€}
)}
(1-e)}

=limy, oo (1 = P{Vp; < ( ) Vji=1,2,---,N})
+1limy, oo P{Vin; < (1—¢) Vj=1,2,--- N}

( by Theorem A.4)

= limy oo (1 I P{Viy < (1 —i—e)})

+ Lm0 T2y P{Viy < (1—€)}
(by Vin; j=1,2,---,N areiid and Theorem A.4)
=0 (bymejglasmHoo),and
1Moo P{Imin(Xm) — 1| > ¢}
= LMoo P{min(X,n) > (1+€)}
F limm oo PI0 < min(Xm) < (1 — )}
=limy, oo P{Vin; > (1+¢) Vj=1,2,--- , N}
iy oe (1= P{Vp ;> (1—€) Vj=1,2,--
( by Theorem A.4)
= limy, o0 [}y P{Vinj > (1 +¢€)}
iy oo (1= TT0, P{Vins > (1-)})
(by Vim,; j=1,2,---, N are iid and Theorem A.4)

N



Table 2: The Pearson variation of some translated distance functions.

] Distance distribution \ Binomial \ Uniform \ Normal \ Gamma \ Exponential ‘
’ lim var( H(dm (P2, Qm)7) ) ‘ 0 ‘ 0 ‘ 00 ‘ 00 ‘ 00 ‘
m—oo E[f(d7n(Pm lyQ'm)p)]
=0 (by Vi 2 1 asm — o), as m — 0.
then mam(X—m)) and mm(X—n;) converge in probability ¢t % = Eldy(Ppn.i, @m)P]; hence we have
to 1 as m — oo. ) v (Priy Qm )P ]
Further, by Slutsky’s theorem, proposition 2 of ,,}E)noo UW(E[dm(pm . Qm)p]) =0 for any 4.
Theorem A.1, and '
, Then a,.(P Q)P
> 1/p . m\L'm,1, m
DMAX,, <E[(dm(Pm7i,Qm)p]maa:( m)) n}gnoovar( Eld (P, 11 Q)7 ]) =0.
El(dm(Prm.is Qm)PImin(X,,) (Note that W,,,; ¢ =1,2,--- areiid for all m.) Q.E.D.
max(X—>m) p The main theorem, i.e., Theorem 3.3, thus follows
=l ) from Theorem 3.1 and 3.2.
min(X,,)
then PMAXw P oo oo Q.E.D. 3.4 Remarks on Indices to Test Meaningful

DMIN,

Proof for Theorem 3.2:
Let Wm,i = dm(Pm,ia Qm)p

By third property of Lemma A.1 and the second prop-

erty of Theorem A.1, we have VVK’" :

Hence, an application of Theorem A. 3 and the forth
property of Lemma A.1, we have

Wmi m,i
var \ ——

23) = Lo (o)

Win

—>1foranyzg

i)
and -
li m,i =0
Jim war (mej > .
respectively.
Furthermore, since E [var (VVK"‘ mej)} and
m,j
var (E {VVKT] mej]) are nonnegative for all m,
hence .
(3.1) lim E {var (VMI;ZJ |Wm,j)] =0
and
. Wini
3.2 1 E =Wl | =0.
S )
Also, var (W’" LW, = x) > 0 for all z and for all m,

therefore Equation (3.1) implies that the probability of
this set {x|var (x— Wi, = m) > 0} must be 0 or

var (

Wi
Winj

(Wi = :c) =0 for all z,
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Functions Many researchers used the extremal ratio
% [6] or the relative contrast DMAL))(M;UD{%INW
[2] to test the stable phenomenon of distance functions.
However, as shown by our experimental results, these
indices are sensitive to outliers and found inconsistent
for many cases. Here, we will comment on the reason
that Pearson variation is a valid index to evaluate the
stable phenomenon of distance functions.

In light of Theorem 3.3 devised, we have the rela-
tionship shown in Figure 3, which leads to the following
four conceivable indices to test the stable (or unstable)
phenomenon:

Index 1. (Extremal ratio) %Q
Index 2. (Pearson variation) var (%)

DMIN,,

Index 3. (Mean of extremal ratio) E [m

I

DMIN,,
DMAX,, )

(
(
(
Index 4. (Variance of extremal ratio) var (

A robust meaningful distance function needs to
. . de(Pm, aQ’nL) 3
satisfy lim,, o0 var(m) > 0 indepen-
dently of the distribution of data set. Suppose that
we use those indices to evaluate the meaningless

behavior, for some given distance functions, through

all possible data sets. If limmﬁm% = 12
or Tt (L GLY =0 e can
conclude that this distance function is mean-
ingless. On the other hand, we can say that
it is stable if lim,,_ . var (%) >

ZNote that DMAX,, and DMIN,, are random variables.
Therefore, this convergence is much stronger than convergence
in probability [4][7][14][15].



DMAX " DMAX. . . k lim E{ o } -1
lim n_1 > M ey | ] " LDMN,
m—>o DMINm | DMINm | lim var DMAXm =0
|\_ gnita_blf lihingm_en_a B m-e DMIN
Figure 3: The convergent relationships of extremal ratio.
0, limpm—ooF [M} #* 1, or
_ " O;MINDMAX"L 0 ifo<z<a,
limy,—.ocvar M) > 0. fap(x)=¢ = fa<az<b
If we decide to apply some distance-based data e” otherwise.
mining algorithms to explore a given high dimensional ) ) . _
data set. We first need to select a meaningful distance For any m—dlmensgnal data points 'z -
function depending on our applications. Therefore, (21,22, @) and Y = (y1,¥2, 0 Ym), We de-

we may compute those indices for each candidate of
distance function, using the whole data set or a sampling
subset, to evaluate its meaningful behavior. However,
both the mean of extremal ratio (Index 3) and the
variance of extremal ratio (Index 4) are invalid to
estimate in this case. Also, though one can deduce that
the distance is meaningless if its %{I)\QL value is very
close to one, it is not decided whether the function is
meaningful or not if its value of extremal ratio (Index
1) is apart from one. In addition, the extremal ratio
(Index 1) is sensitive to outliers. On other hand, if we
apply some resampling techniques, such as bootstrap
[10], to test the stable property of distance functions
for some given high dimensional data set. The extremal
ratio (Index 1) could be inconsistent for many sampling
subsets. Consequently, in light of the theoretical results
derived and also as will be validated, Pearson variation
(Index 2) emerges as the index to use to evaluate the
meaningfulness of distance function.

4 Shrinkage-Divergence Proximity

As deduced before, the unstable phenomenon is rooted
in the variation of the distance distribution. In light
of Theorem 3.3 devised, we will next design a new
proximity function, called SDP (Shrinkage-Divergence
Proximity), based on some well defined family of dis-
tance functions {d,,|m =1,2,---}.

4.1 Definition of SDP Let f be a non-negative

real function defined on the set of non-negative real
numbers such that
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fine the SDP function as

SDPY(Z, ) = wife, s (da(zi,ys))-
i=1

The general form of SDP, denoted by SDP® defines
a distance function fs,, s, between 7 and 7 on each
individual attribute. Parameters w; ¢ = 1,2,---,m
are determined by the domain knowledge subject to the
importance of attribute i for application needs. Also,
parameters s;; and s;o for attribute i are dependent
on the distribution of the data points projected on ith
dimension.

In many situations, we have no prior knowledge on
the weights of importance among attributes, and do not
know the distribution of each attribute either. In such
a case, the general SDP function, i.e., SDP%, will be
degenerated to,

SDP31752( )= Zfsl,SQ(dl(xivyi))-
i=1

In this paper, we only discuss the properties and
applications on this SDP. The parameters s; and ss
are, respectively, called as shrinkage threshold and
divergence threshold.  For illustrative purposes, we
present in Figure 4 some 2-dimensional balls of center
(0,0) with different radius for SDP, fractional function,
L1 metric, and Ly metric.

4.2 Properties of SDP We next discuss the prop-
erties of SDP for similarity search and data clustering
problems.
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ProprosITION OF SDP 1.

1. If d,, is the L1 metric defined on Fuclidean space,
then SDP;, o, is equivalent to Ly as s; — 0 and
So — OQ.

2. SDP,, ., (7,
sy for alli.

3. SDPy, 4, (7,

Y) =0 if and only if 0 < dy(z4, ;) <
Y) > me®2 if dy(zi,y;) > so for all i.

The first property shows that SDP is a general form
of L1 metric. The second property means that the SDP
is similar to grid approaches [3] in that all data points
within a small rectangle are more similar to each other
than to others. Thus, we cannot significantly discern
among them statistically. Therefore, it is reasonable
to shrink the proximity of them to zero. In order to
construct a noise insensitive proximity function, and to
avoid over magnifying the distance variation, the SDP
defines an adaptive proximity of two data points on
individual attributes. For two data points, if values
of any attribute are projected into the same small
interval, we will shrink the proximity of this attribute
to zero. On the other hand, if all projected attributes
of two data points are apart from one to another for
a long original distance, then they are dissimilar to
each other. As such, we are able to spread them out
to increase discrimination. The SDP can remedy the
edge effects problem of grid approach [3] caused by two
adjacent grids which may contain data points very close
to one another. It is worth mentioning that same as
the fractional function [2] and PIDist function of the
IGrid-index [3], the SDP function is in essence not a
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metric with triangle inequality. It can be verified that
SDP;, s,(7, %) = 0 does not imply @ = ¥ for s; > 0
and the triangle inequality does not hold in general.
However, the influence of triangle inequality is usually
insignificant in many clustering applications [9][12], in
particular for high dimensional space.

Statistical View. Here, we examine the perspectives
of SDP for clustering applications statistically. Assume
that the data distributions are independent in all dimen-
sions of attributes. Given a small nonnegative number e,
let s;1 be the maximum value (or supremum) such that
P{dy(x;,y:) < si} < eif T and ¥ belong to distinct
clusters. Similarly, let s;» be the minimum value (or
infimum) such that P{d;(z;,v;) > si2} < e if @ and
Y belong to the same cluster. Set s; = min{s;|i =
1,2,---,m} and so = max{s;2|i = 1,2, -- ,m}. Then,
both

P{SDP,, .,(7,%) =07 and ¥ belong to
p< (@™

distinct clusters
and

P{SDP;, ,(7,7) > me*|T and ¥ belong to

the same cluster} < (¢)™

will approach 0 as m is large.

Furthermore, SDP is insensitive to noise in high di-
mensional space, because SDP disposes individual at-
tribute separately. The noise effects of some attributes
will be mitigated by other attributes. Also, the SDP
is able to avoid spreading data points too sparsely for
discrimination. Overall, SDP has better discrimination
power than the original distance function, and is hence
more proper for distance-based clustering algorithms.

5 Experimental Evaluation

To assess the stableness and the performance of SDP
function, we have conducted a series of experiments.
We compare in our study the stable behaviors and
the performances for distance-based clustering of SDP
with several well-known distance functions, including
L1 metric, Ly metric, and fractional distance function
dist,

Meaningful Behaviors. First we compared the stable
behavior of SDP, which is based on Lp metric, with sev-
eral widely used of distance functions. We use the Pear-

Py, Qum)
Eldm (Prm,1,Qm)] ) , the mean

DMIN,,
DMAX,,

son variation (Index 2): var (

of the extremal ratio (Index 3): E [ }, and the

DMIN,, )

variance of the extremal ratio (Index 4): var (W



to evaluate the stability of those distance functions. Re-
call that comments on these indices and their use are
given in Section 3.4.
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Figure 5: The average value of Pearson variation.

The synthetic m-dimensional sample data sets and
query points of our experiments were generated as fol-
lows. Each data set includes 10 thousand independent
data points. For each data set, the jth entry z;; of
ith data point z; = (21,22, ,%;m) was randomly
sampled from uniform distribution U(a,b + a), or ex-
ponential distribution Exzp(A), or normal distribution
N(u,0). In each generation for x;;, the parameters a,
b, A\, i, and o are randomly sampled from uniform dis-
tributions with range (0, 100), (0,100), (0.1, 2), (0, 100),
and (0.1,10), respectively. Formally, for each data set,
for any ¢ = 1,2,---,10000, for any j =1,2,--- ,m,

U(a,a+b) with probabilityl/3,
zij ~ & Exp(X) with probability1/3,
N(p,0) with probabilityl/3,

where a, b, p ~ U(0,100), A ~ U(0.1,2), and o ~

20

U(0.1,10). The query points were also generated by the
same manner. We repeated such process to generate
100 data sets for each dimensionality m. Dimensional-
ity m varied from one to 1000. The shrinkage thresh-
old and divergence threshold of SDP are s1=0.005 and
$2=0.6, respectively. The parameter [ for the fractional
distance function dis!, was set as 0.5. The estimations

of £ [M}, var (%) and the average value

DMAX, DMAX,
A (Prm,1,Qm) ; _
of var <7E[dm(Pm,1,Qm)] were computed in natural log

arithm scale to measure the meaningful behavior.
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Figure 6: The estimations of the mean of the extremal
ratio (in logarithmic scale).

Those results are shown from Figure 5 to Figure
7. (In order to perceive the differences among these
performances easily, we only present the outputs of the
first 400 (or 200) dimensions.) As shown in these fig-
ures, the SDP is an effective dimensionality resistant



distance function. It is noted that L, and Lo metric
become unstable with as few as 20 dimensions. The
fractional distance function is more effective at preserv-
ing meaningfulness of proximity than L, and Lo, but
starts to suffer from unstability after the dimensional-
ity exceeds 80. In contrast, the SDP remains stable even
if the dimensionality is greater than 1000, showing the
prominent advantage of using SDP.
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Figure 7: The estimations of the variance of the ex-
tremal ratio (in logarithmic scale).

Clustering Applications. In order to compare the
qualitative performances, we applied the SDP function
and Lo metric for clustering on multivariate mixture
normal models. We synthesized many mixtures of two
m-variate Gaussian data sets with diagonal covariance
matrix. All dimensions of Cluster 1 and Cluster 2 are
sampled iid from normal distribution N(u1,0?) and
N(uz,03), respectively. We applied matrix powering
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Table 3: The matrix powering algorithm.
Algorithm: Matrix Powering Algorithm
Inputs: A(pairwise distance matrix), e
Output: A partition of data points into clusters
1. Compute A2 = A x A
2. for each pair of yet unclassified points 1, j

a. If /(A2 — 42) x (A2 - A2)T < ¢,
then 7 and j are in the same cluster.
b. If \/(Ag — A2) x (A2 - A2)T > ¢,

then ¢ and j are in different clusters.

algorithm [16] on those generated data sets to compare
the performances of SDP with Lo metric. The outline
of matrix powering algorithm is given in Table 3 [16].

For any matrix M, we use M;, M;;, and MT to
denote, respectively, the j-th row of M, the ij-th entry
of M and the transpose of M. Let the precision ratio
of the algorithm be the percentage of the (1;/ ) pairwise
relationship (classified as same or different cluster) that
it partitions correctly. Suppose that the expectation
of A;; is p (respectively, ¢) for data points ¢ and j in
the same cluster (respectively, different clusters). Also,
q > p. Then, the optimal threshold given in [16] is
e = (g — p)2N?3/2/\/2. However, the knowledge of ¢ — p
is usually unavailable. In addition, the scales of SDP
and Lo metric varied. We then modify the threshold
as e(k) = kmN(DMAX,, — DMIN,,)/2 for variant k,
and search the r-feasible range which is defined as the
maximal interval of k such that the precision ratio is at
least r with threshold e(k).

We empirically investigated the behaviors of Lo and
SDP by using the above matrix powering algorithm.
The shrinkage and divergence thresholds of SDP were
set to 0.005 and 6(o1 + 02), respectively. First, we used
100-dimensional synthetic data sets drawn from the
mixture of two normal distributions in variant clusters
for mean difference p; — po. KEach data set has 200
data points, and each cluster contains 100 data points.
The results are shown in Figure 8a. We also considered
the 100-dimensional multivariate mixture models with
several variance ratios o1/09, and showed the results
in Figure 8b. Finally, we tested both SDP and Lo
metric for searching feasible ranges with increasing
dimensionality. The empirical results are shown in
Figure 9.

Note that for using matrix powering algorithm to
solve our data clustering problems, we first need to
choose an optimal threshold. A wider feasible range
offers more adequate solution space to this problem.
As shown in these figures, the feasible ranges of Lo
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Figure 8: (a) The feasible ranges for SDP and Lo with
varied mean difference of two clusters, (b) the feasible
ranges for SDP and Ly with varied variance ratios of
two clusters.

metric are much narrower and the boundary points
of feasible ranges are very close to 0. On the other
hand, the feasible ranges of SDP are much wider than
Lo even in high dimensional space. Further, the SDP
obtains appropriate response to varying characters of
clusters. A larger mean difference (or variance) ratio
of two clusters implies a better discrimination between
them. As shown in Figure 8, the feasible range of SDP
becomes wider with magnifying the mean difference or
the variance ratios of two clusters. Also, the width
of feasible ranges for SDP increase with increasing
dimensionality as in Figure 9. On the other hand,
due to the unstable phenomenon, the width of feasible
ranges for Lo rapidly degrades to 0 with increasing
dimensionality. From Figure 8 and Figure 9, it is shown

that SDP significantly outperforms the priorly used Lo
metric.
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Figure 9: The feasible range for SDP and Ly with varied
dimensionality. ((u1 = 8,01 =1) v.s. (u1 = 3,01 =4))

6 Conclusions

In this paper, we derived the necessary and the suffi-
cient conditions for the stability of a distance function
in high dimensional space. Explicitly, we proved that
the rapidly degraded Pearson variation of distance dis-
tribution with increasing dimensionality is equivalent
to (i.e., being necessary and sufficient conditions of)
unstable phenomenon. This theoretical result on the
sufficient condition of a meaningful distance function
design derived in this paper leads a powerful means to
test the stability of a distance function in high dimen-
sional data space. Explicitly, in light of our results,
we have designed a meaningful distance function SDP
based on a certain given distance function. It was em-
pirically shown that the SDP significantly outperforms
prior measures for its being stable in high dimensional
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data space and also robust to noise, and is thus deemed
more suitable for distance-based clustering applications
than the priorly used L, metric.
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Appendix A: Related Theorems on Probability

In order to prove our main theorem, we present some
important theorems from the probability theory [15] [7]
[8]. The proofs are omitted for interest of space.
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THEOREM A. 1. If X, Lt X, Y, 2y and g is a
continuous function defined on real numbers, then we
have the following properties:

1. X,—Xx25o.

2. 9(Xon) % g(X).

3. aXy, £Y, Lax+y for any constant a.

4. XY EXY

5 Xum/Ym Eit X/a, provided Y = a(#£ 0)  (Slutsky’s
theorem,).

THEOREM A. 2. If X,, L1 then X1 L]

THEOREM A. 3. If E[X?
var(E[X|Y]) + E[var(X|Y)].

< oo then wvar(X)

THEOREM A. 4. If X; j=1,2...,m are independent,
then P{maxz(X1,..., X)) < €} = P{X; < ¢ X5 <
y Xm Se}:HTzlp{Xj < 6}'

In order to prove the necessary condition, we also
need to derive the following lemma.

LEMMA A. 1. For every e > 0, if
lim,, oo P{DMAX,, < (14 ¢)DMIN,,} =1
then we have the following properties:

DMIN, P
1. DMAXm —1—=0.

2. limy, oo B[2MAXS] —

BN = 1 and
lim,, o var (DMAXM) =0.

DMIN,,
3. For any 1,7,

hmmaoo P{dm(Pm,uQm) = (1+6) ( ,jan)} =1
4. For any 1,7, lim,,_ o E[d:gizi;’g:g] =1 and
dim(Pm.i:Qm) \ _

):0.

Proof. 1. The first proposition follows from Theorem
A2
2. From the probability theory [15]
properties are all equivalent:

a. lim,, oo P{DMAX,, < (1+¢)DMIN,,} =1,

llmmﬁoo var (d'mr(Pwn,ijm)

,the following

DMAX, P
b. 537 i 1-0,
%‘?X”L — 1 converges in distribution to the

degenerate distribution D(z), where D(z) =1if 2 >0
and D(z) =0if x <0.

Hence, we have lim,;, E[%] =1 and
lim,, 00 var (7%%’?])\[(2) = 0.
R R o
7%%‘?])5”’ for any i, j, hence we have 7325 o ;g:; K]
4.The third proposition also leads to the fourth one.
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