

Mining Frequent Patterns from Very High Dimensional Data:
A Top-Down Row Enumeration Approach*

Hongyan Liu1 Jiawei Han2 Dong Xin2 Zheng Shao2
1Department of Management Science and Engineering, Tsinghua University

hyliu@tsinghua.edu.cn
2Department of Computer Science, University of Illinois at Urbana-Champaign

 {hanj, dongxin, zshao1}@uiuc.edu

Abstract

Data sets of very high dimensionality, such as

microarray data, pose great challenges on efficient
processing to most existing data mining algorithms.
Recently, there comes a row-enumeration method that
performs a bottom-up search of row combination
space to find corresponding frequent patterns. Due to
a limited number of rows in microarray data, this
method is more efficient than column enumeration-
based algorithms. However, the bottom-up search
strategy cannot take an advantage of user-specified
minimum support threshold to effectively prune search
space, and therefore leads to long runtime and much
memory overhead.

In this paper we propose a new search strategy,
top-down mining, integrated with a novel row-
enumeration tree, which makes full use of the pruning
power of the minimum support threshold to cut down
search space dramatically. Using this kind of
searching strategy, we design an algorithm, TD-Close,
to find a complete set of frequent closed patterns from
very high dimensional data. Furthermore, an effective
closeness-checking method is also developed that
avoids scanning the dataset multiple times. Our
performance study shows that the TD-Close algorithm
outperforms substantially both Carpenter, a bottom-up
searching algorithm, and FPclose, a column
enumeration-based frequent closed pattern mining
algorithm.

1 Introduction

With the development of bioinformatics, microarray
technology produces many gene expression data sets,

i.e., microarray data. Different from transactional
data set, microarray data usually does not have so
many rows (samples) but have a large number of
columns (genes). This kind of very high dimensional
data needs data mining techniques to discover
interesting knowledge from it. For example, frequent
pattern mining algorithm can be used to find co-
regulated genes or gene groups [2, 14]. Association
rules based on frequent patterns can be used to build
gene networks [9]. Classification and clustering
algorithms are also applied on microarray data [3, 4,
6]. Although there are many algorithms dealing with
transactional data sets that usually have a small number
of dimensions and a large number of tuples, there are
few algorithms oriented to very high dimensional data
sets with a small number of tuples. Taking frequent-
pattern mining as an example, most of the existing
algorithms [1, 10, 11, 12, 13] are column enumeration-
based, which take column (item) combination space as
search space. Due to the exponential number of
column combinations, this method is usually not
suitable for very high dimensional data.

Recently, a row enumeration-based method [5] is
proposed to handle this kind of very high dimensional
data. Based on this work, several algorithms have
been developed to find frequent closed patterns or
classification rules [5, 6, 7, 8]. As they search through
the row enumeration space instead of column
enumeration space, these algorithms are much faster
than their counterparts in very high dimensional data.
However, as this method exploits a bottom-up search
strategy to check row combinations from the smallest
to the largest, it cannot make full use of the minimum
support threshold to prune search space. As a result,
experiments show that it often cannot run to
completion in a reasonable time for large microarray
data, and it sometimes runs out of memory before
completion. To solve these problems, we propose a
new top-down search strategy for row enumeration-

*This work was supported in part by the National Natural Science
Foundation of China under Grant No. 70471006 and 70321001, and by
the U.S. National Science Foundation NSF IIS-02-09199 and IIS-03-
08215.

280

based mining algorithm. To show its effectiveness, we
design an algorithm, called TD-Close, to mine a
complete set of frequent closed patterns and compare it
with two bottom-up search algorithms, Carpenter [5],
and FPclose [15]. Here are the main contributions of
this paper:
(1) A top-down search method and a novel row-

enumeration tree are proposed to take advantage
of the pruning power of minimum support
threshold. Our experiments and analysis show
that this cuts down the search space dramatically.
This is critical for mining high dimensional data,
because the dataset is usually big, and without
pruning the huge search space, one has to
generate a very large set of candidate itemsets for
checking.

(2) A new method, called closeness-checking, is
developed to check efficiently and effectively
whether a pattern is closed. Unlike other existing
closeness-checking methods, it does not need to
scan the mining data set, nor the result set, and is
easy to integrate with the top-down search
process. The correctness of this method is proved
by both theoretic proof and experimental results.

(3) An algorithm using the above two methods is
designed and implemented to discover a complete
set of frequent closed patterns. Experimental
results show that this algorithm is more efficient
and uses less memory than bottom-up search
styled algorithms, Carpenter and FPclose.

The remaining of the paper is organized as follows.
In section 2, we present some preliminaries and the
mining task. In section 3, we describe our top-down
search strategy and compare it with the bottom-up
search strategy. We present the new algorithm in
section 4 and conduct experimental study in section 5.
Finally, we give the related work in section 6 and
conclude the study in section 7.

2 Preliminaries

Let T be a discretized data table (or data set),
composed of a set of rows, S = {r1, r2, …, rn}, where ri

(i = 1, …, n) is called a row ID, or rid in short. Each
row corresponds to a sample consisting of k discrete
values or intervals, and I is the complete set of these
values or intervals, I = {i1, i2, …, im}. For simplicity,
we call each ij an item. We call a set of rids S ⊆ S a
rowset, and a rowset having k rids a k-rowset.
Likewise, we call a set of items I ⊆ I an itemset. Hence,
a table T is a triple (S, I, R), where R ⊆ S × I is a

relation. For a ri ∈ S, and a ij ∈ I, (ri, ij) ∈ R denotes
that ri contains ij, or ij is contained by ri.

Let TT be the transposed table of T, in which each
row corresponds to an item ij and consists of a set of
rids which contain ij in T. For clarity, we call each
row of TT a tuple. Table TT is a triple (I, S, R), where
R ⊆ S × I is a relation. For a rid ri ∈ S, and an item ij ∈
I, (ri, ij) ∈ R denotes that ij contains ri, or ri is contained
by ij.

Example 2.1 (Table and transposed table) Table 2.1
shows an example table T with 4 attributes (columns):
A, B, C and D. The corresponding transposed table TT
is shown in Table 2.2. For simplicity, we use number i
(i = 1, 2, …, n) instead of ri to represent each rid. In
order to describe our search strategy and mining
algorithm clearly, we need to define an order of these
rows. In this paper, we define the numerical order of
rids as the order, i.e., a row j is greater than k if j > k.

Let minimum support (denoted minsup) be set to 2.
All the tuples with the number of rids less than minsup
is deleted from TT. Table TT shown in Table 2.2 is
already pruned by minsup. This kind of pruning will
be further explained in the following sections.

In this paper we aim to discover the set of the
frequent closed patterns. Some concepts related to it
are defined as follows.

Table 2.1 An example table T

ri A B C D
1 a1 b1 c1 d1
2 a1 b1 c2 d2
3 a1 b1 c1 d2
4 a2 b1 c2 d2
5 a2 b2 c2 d3

Table 2.2 Transposed table TT of T

itemset rowset
a1 1, 2, 3
a2 4, 5
b1 1, 2, 3, 4
c1 1, 3
c2 2, 4, 5
d2 2, 3, 4

Definition 2.1 (Closure) Given an itemset I ⊆ I and a
rowset S ⊆ S, we define

r(I) = { ri ∈ S | ∀ij ∈ I , (ri, ij) ∈ R }

281

i(S) = { ij ∈ I | ∀ri ∈ S , (ri, ij) ∈ R }
Based on these definitions, we define C(I) as the

closure of an itemset I, and C(S) as the closure of a
rowset S as follows:

C(I) = i(r(I))
C(S) = r(i(S))

Note that definition 2.1 is applicable to both table T
and TT.

Definition 2.2 (Closed itemset and closed rowset) An
itemset I is called a closed itemset iff I = C(I).
Likewise, a rowset S is called a closed rowset iff S =
C(S).

Definition 2.3 (Frequent itemset and large rowset)
Given an absolute value of user-specified threshold
minsup, an itemset I is called frequent if |r(I)| ≥ minsup,
and a rowset S is called large if |S| ≥ minsup, where
|r(I)| is called the support of itemset I and minsup is
called the minimum support threshold. |S| is called the
size of rowset S, and minsup is called minimum size
threshold accordingly. Further, an itemset I is called
frequent closed itemset if it is both closed and frequent.
Likewise, a rowset S is called large closed rowset if it
is both closed and large.

Example 2.2 (Closed itemset and closed rowset) In
table 2.1, for an itemset {b1, c2}, r({b1, c2}) = {2, 4},
and i({2, 4}) = {b1, c2, d2}, so C({b1, c2}) = {b1, c2, d2}.
Therefore, {b1, c2} is not a closed itemset. If minsup =
2, it is a frequent itemset. In table 2.2, for a rowset {1,
2}, i({1, 2}) = {a1, b1} and r({a1, b1}) = {1, 2, 3}, then
C(S) = {1, 2, 3}. So rowset {1, 2} is not a closed
rowset, but apparently {1, 2, 3} is.

Mining task: Originally, we want to find all of the
frequent closed itemsets which satisfy the minimum
support threshold minsup from table T. After
transposing T to transposed table TT, the mining task
becomes finding all of the large closed rowsets which
satisfy minimum size threshold minsup from table TT.

3 Top-down Search Strategy

Before giving our top-down search strategy, we will
first look at what is bottom-up search strategy used by
the previous mining algorithms [5, 6, 7, 8]. For
simplicity, we will use Carpenter as a representative
for this group of algorithms since they use the same
kind of search strategy.

3.1 Bottom-up Search Strategy

Figure 3.1 shows a row enumeration tree that uses
the bottom-up search strategy. By bottom-up we mean

that along every search path, we search the row
enumeration space from small rowsets to large ones.
For example, first single rows, then 2-rowsets, …, and
finally n-rowsets. Both depth-first and breadth-first
search of this tree belong to this search strategy.

In Figure 3.1, each node represents a rowset. Our
mining task is to discover all of the large closed
rowsets. So the main constraint for mining is the size
of rowset. Since it is monotonic in terms of bottom up
search order, it is hard to prune the row enumeration
search space early. For example, suppose minsup is
set to 3, although obviously all of the nodes in the first
two levels from the root cannot satisfy this constraint,
these nodes still need to be checked [5, 6, 7, 8]. As a
result, as the minsup increases, the time needed to
complete the mining process cannot decrease rapidly.
This limits the application of this kind of algorithms to
real situations.

In addition, the memory cost for this kind of
bottom-up search is also big. Take Carpenter as an
example. Similar to several other algorithms [6, 7, 8],
Carpenter uses a pointer list to point to each tuple
belonging to an x-conditional transposed table. For a
table with n rows, the maximum number of different
levels of pointer lists needed to remain in memory is n,
although among which the first (minsup – 1) levels of
pointer lists will not contribute to the final result.

These observations motivate the proposal of our
method.

3.2 Top-down Search Strategy

Almost all of the frequent pattern mining algorithms
dealing with the data set without transposition use the
anti-monotonicity property of minsup to speed up the
mining process. For transposed data set, the minsup

{}

1

2

3

4
5

12

13
14
15
23

24
25

123
124
125
134
135
145
234
235
245

345 34
35
45

1234
1235

1345

2345

12345

1245

Figure 3.1 Bottom-up row enumeration tree

282

constraint maps to the size of rowset. In order to stop
further search when minsup is not satisfied, we
propose to exploit a top-down search strategy instead
of the bottom-up one. To do so, we design a row
enumeration tree following this strategy, which is
shown in Figure 3.2. Contrary to the bottom-up search
strategy, the top-down searching strategy means that
along each search path the rowsets are checked from
large to small ones.

In Figure 3.2, each node represents a rowset. We
define the level of root node as 0, and then the highest
level for a data set with n rows is (n – 1).

It is easy to see from the figure 3.2 that for a table
with n rows, if the user specified minimum support
threshold is minsup, we do not need to search all of
rowsets which are in levels greater than (n – minsup)
in the row enumeration tree. For example, suppose
minsup = 3, for data set shown in Table 2.1, we can
stop further search at level 2, because rowsets
represented by nodes at level 3 and 4 will not
contribute to the set of frequent patterns at all.

With this row enumeration tree, we can also mine
the transposed table TT by divide-and-conquer method.
Each node of the tree in Figure 3.2 corresponds to a
sub-table. For example, the root represents the whole
table TT, and then it can be divided into 5 sub-tables:
table without rid 5, table with 5 but without 4, table
with 45 but without 3, table with 345 but without 2,
and table with 2345 but without 1. Here 2345
represents the set of rows {2, 3, 4, 5}, and same holds
for 45 and 345. Each of these tables can be further
divided by the same rule. We call each of these sub-
tables x-excluded transposed table, where x is a rowset
which is excluded in the table. Tables corresponding to
a parent node and a child node are called parent table

and child table respectively. Following is the definition
of x-excluded transposed table.

Definition 3.1 (x-excluded transposed table) Given a
rowset x = {ri1, ri2, …, rik} with an order such that ri1 >
ri2 > … > rik, a minimum support threshold minsup and
its parent table TT|p, an x-excluded transposed table
TT|x is a table in which each tuple contains rids less
than any of rids in x, and at the same time contains all
of the rids greater than any of rids in x. Rowset x is
called an excluded rowset.

Example 3.1 (x-excluded transposed table) For
transposed table TT shown in Table 2.2, two of its x-
excluded tranposed tables are shown in Tables 3.1 and
3.2 respectively, assuming minsup = 2.
 Table 3.1 shows an x-excluded tranposed table TT|54,
where x = {5, 4}. In this table, each tuple only
contains rids which are less then 4, and contains at
least two such rids as minsup is 2. Since the largest rid
in the original data set is 5, it is not necessary for each
tuple to contain some other rids. Procedures to get this
table are shown in Example 3.2.

Table 3.2 is an x-excluded transposed table TT|4,
where x = {4}. Its parent table is the table shown in
Table 2.2. Each tuple in TT|4 must contain rid 5 as it is
greater than 4, and in the meantime must contain at
least one rid less than 4 as minsup is set to 2. As a
result, in Table 2.2 only those tuples containing rid 5
can be a candidate tuple of TT|4. Therefore, only tuples
a2 and c2 satisfy this condition. But tuple a2 does not
satisfy minsup after excluding rid 4, so only one tuple
left in TT|4. Note, although the current size of tuple c2
in TT|4 is 1, its actual size is 2 since it contains rid 5
which is not listed explicitly in the table.

Table 3.1 TT|54

itemset rowset

a1 1, 2, 3

b1 1, 2, 3

c1 1, 3

d2 2, 3

Table 3.2 TT|4

itemset rowset

c2 2

The x-excluded transposed table can be obtained by
the following steps.

(1) Extract from TT or its direct parent table TT|p
each tuple containing all rids greater than ri1.

1
2
3
4

5

12
13

14

15

23

24

25

123

124

125

134

135

145

234

235

245

345

34

35

45

1234

1235

1345
2345

12345

1245

Figure 3.2 Top-down row enumeration tree

283

(2) For each tuple obtained in the first step, keep
only rids less than rik.

(3) Get rid of tuples containing less than (minsup
– j) number of rids, where j is the number of
rids greater than ri1 in S.

The reason of the operation in step 3 will be given
in section 4. Note that the original transposed table
corresponds to TT|φ, where φ is an empty rowset.

Figure 3.3 shows the corresponding excluded row
enumeration tree for the row enumeration tree shown
in Figure 3.2. This tree shows the parent-child
relationship between the excluded rowsets.

Example 3.2 (Procedure to get x-excluded
transposed table) Take TT|54 as an example, here is the
step to get it. Table TT|5 shown in Table 3.3 is its
parent table.

Table 3.3 TT|5

itemset rowset
a1 1, 2, 3
b1 1, 2, 3, 4
c1 1, 3
c2 2, 4
d2 2, 3, 4

(1) Each tuple in table TT|5 is a candidate tuple
of TT|54 as there is no rid greater than 5 for
the original data set.

(2) After excluding rids not less than 4, the table
is shown in Table 3.4.

(3) Since tuple c2 only contains one rid, it does
not satisfy minsup and is thus pruned from

TT|54. Then we get the final TT|54 shown in
Table 3.1.

Table 3.4 TT|54 without pruning

itemset rowset

a1 1, 2, 3
b1 1, 2, 3
c1 1, 3
c2 2
d2 2, 3

From definition 3.1 and the above procedure to get

x-excluded transposed table we can see that the size of
the excluded table will become smaller and smaller due
to the minsup threshold, so the search space will shrink
rapidly.

As for the memory cost, in order to compare with
Carpenter, we also use pointer list to simulate the x-
excluded transposed table. What is different is that
this pointer list keeps track of rowsets from the end of
each tuple of TT, and we also split it according to the
current rid. We will not discuss the detail of
implementation due to space limitation. However, what
is clear is that when we stop search at level (n –
minsup), we do not need to spend more memory for all
of the excluded transposed tables corresponding to
nodes at levels greater than (n – minsup), and we can
release the memory used for nodes along the current
search path. Therefore, comparing to Carpenter, it is
more memory saving. This is also demonstrated in our
experimental study, as Carpenter often runs out of
memory before completion.

4 Algorithm

To mining frequent closed itemsets from high
dimensional data using the top-down search strategy,
we design an algorithm, TD-Close, and compare it
with the corresponding bottom-up based algorithm
Carpenter. In this section, we first present our new
closeness-checking method and then describe the new
algorithm.

4.1 Closeness-Checking Method

To avoid generating all the frequent itemsets during
the mining process, it is important to perform the
closeness checking as early as possible during mining.
Thus an efficient closeness-checking method has been
developed, based on the following lemmas.

{}

5

4

3

2
1

54

53

52
51
43

42

41

543
542
541
532
531
521
432
431
421

321 32
31
21

5432
5431

5321

4321

54321

5421

Figure 3.3 Excluded row enumeration tree

284

Lemma 4.1 Given an itemset I ⊆ I and a rowset S ⊆ S,
the following two equations hold:

r(I) = r(i(r(I))) (1)
i(S) = i(r(i(S))) (2)

Proof. Since r(I) is a set of rows that share a given set
of items, and i(S) is a set of items that is common to a
set of rows, according to this semantics and definition
2.1, these two equations are obviously correct.

Lemma 4.2 In transposed table TT, a rowset S ⊆ S is
closed iff it can be represented by an intersection of a
set of tuples, that is:

∃I ⊆ I, s.t. S = r(I) = ∩
j
r({ij})

 where ij ∈ I, and I = {i1, i2, …, il}
Proof. First, we prove that if S is closed then s = r(I)
holds. If S is closed, according to definition 2.2, S =
C(S) = r(i(S)), we can always set I = i(S), so S = r(I)
holds. Now we need to prove that if s = r(I) holds then
S is closed. If s = r(I) holds for some I ⊆ I , according
to definition 2.1, C(S) = r(i(S)) = r(i(r(I))) holds. Then
based on Lemma 4.1 we have r(i(r(I))) = r(I) = S, so
C(S) = S holds. Therefore S is closed.

Lemma 4.3 Given a rowset S ⊆ S, in transposed table
TT, for every tuple ij containing S, which means ij ∈
i(S), if S ≠ ∩

j
r({ij}), where ij ∈ i(S), then S is not

closed.
Proof. For tuple ij ∈ i(S), ∩

j
r({ij}) ⊇ S apparently

holds. If S ≠ ∩
j
r({ij}) holds, then ∩

j
r({ij}) ⊂ S holds,

which means that there exists at least another one item,
say y, such that S∪y = ∩

j
r({ij}). So S ≠ r(I), that is S

≠ r(i(S)). Therefore S is not closed.

Lemmas 4.2 and 4.3 are the basis of our closeness-
checking method. In order to speed up this kind of
checking, we add some additional information for each
x-excluded transposed table. The third column of the
table shown in Tables 4.1 or 4.3 is just it. The so-
called skip-rowset is a set of rids which keeps track of
of the rids that are excluded from the same tuple of all
of its parent tables. When two tuples in an x-excluded
transposed table have the same rowset, they will be
merged to one tuple, and the intersection of
corresponding two skip-rowsets will become the
current skip-rowset.

Example 4.1 (skip-rowset and merge of x-excluded
transposed table) In example 3.2, when we got TT|54
from its parent TT|5, we excluded rid 4 from tuple b1
and d2 respectively. The skip-rowset of these two
tuples in TT|5 should be empty as they do not contain
rid 5 in TT|φ. Therefore, the skip-rowset of these two

tuples in TT|54 is 4. Table 4.1 shows TT|54 with this
kind of skip-rowsets.

In Table 4.1, the first 2 tuples have the same rowset
{1, 2, 3}. After merging these two tuples, it becomes
Table 4.2. The skip-rowset of this rowset becomes
empty because the intersection of an empty set and any
other set is still empty. If the intersection result is
empty, it means that currently this rowset is the result
of intersection of two tuples. When it is time to output
a rowset, this skip-rowset will be checked. If it is
empty, then it must be a closed rowset.

Table 4.1 TT|54 with skip-rowset

itemset rowset skip-rowset

a1 1, 2, 3

b1 1, 2, 3 4

c1 1, 3

d2 2, 3 4

Table 4.2 TT|54 after merge

itemset rowset skip-rowset

a1 b1 1, 2, 3

c1 1, 3

d2 2, 3 4

Table 4.3 TT|4 with skip-rowset

itemset rowset skip-rowset

c2 2 4

4.2 The TD-Close Algorithm

Based on the top-down search strategy and the
closeness-checking method, we design an algorithm,
called TD-Close, to mine all of the frequent closed
patterns from table T.

Figure 4.1 shows the main steps of the algorithm. It
begins with the transposition operation that transforms
table T to the transposed table TT. Then, after the
initialization of the set of frequent closed patterns FCP
to empty set and excludedSize to 0, the subroutine
TopDownMine is called to deal with each x-excluded
transposed table and find all of the frequent closed
itemsets. The General processing order of rowsets is
equivalent to the depth-first search of the row
enumeration tree shown in Figure 3.2.

285

Subroutine TopDownMine takes each x-excluded
transposed table and another two variables, cMinsup
excludedSize, as parameters and checks each candidate
rowset of the x-excluded transposed table to see if it is
closed. Candidate rowsets are those large rowsets that
occur at least once in table TT. Parameter cMinsup is
a dynamically changing minimum support threshold as
indicated in step 5, and excludedSize is the size of
rowset x. There are five main steps in this subroutine,
which will be explained one by one as follows.

Algorithm TD-Close
Input: Table T, and minimum support threshold, minsup
Output: A complete set of frequent closed patterns, FCP
Method:

1. Transform T into transposed table TT
2. Initialize FCP =Φ and excludedSize = 0
3. Call TopDownMine(TT|Φ, minsup, excludedSize)

Subroutine TopDownMine(TT|x, cMinsup, excludedSize)
Method:

1. Pruning 1: if excludedSize >= (n–minsup) return;
2. Pruning 2: If the size of TT|x is 1, output the

corresponding itemset if the rowset is closed, and
then return.

3. Pruning 3: Derive TT|x∪y and TT|x’, where
y is the largest rid among rids in tuples of TT|x,
TT|x’ = {tuple ti | ti ∈ TT|x and ti contains y},
TT|x∪y = {tuple ti | ti ∈ TT|x and if ti contains y,
size of ti must be greater than cMinsup}
Note, we delete y from both TT|x∪y and TT|x’ .

4. Output: Add to FCI itemset corresponding to
each rowset in TT|x∪y with the largest size k and
ending with rid k.

5. Recursive call:
TopDownMine(TT|x∪y, cMinsup, excluedSize+1)
TopDownMine(TT|x’, cMinsup–1, excluedSize)

Figure 4.1 Algorithm TD-Close

In step 1, we apply pruning strategy 1 to stop
processing current excluded transposed table.

Pruning strategy 1: If excludedSize is equal to or
greater than (n–minsup), then there is no need to do
any further recursive call of TopDownMine.
ExcludedSize is the number of rids excluded from
current table. If it is not less than (n–minsup), the size
of each rowset in current transposed table must be less
than minsup, so these rowsets are impossible to
become large.

 In step 2, we apply pruning strategy 2 to stop
further recursive calls.

Pruning strategy 2: If an x-excluded transposed table
contains only one tuple, it is not necessary to do
further recursive call to deal with its child transposed
tables.

The reason for this pruning strategy is apparent.
Suppose the rowset corresponds to this tuple is S.
From the itemset point of view, any child transposed
table of this current table will not produce any
different itemsets from the one corresponding to
rowset S. From the rowset point of view, each rowset
Si corresponding to each child transposed table of S is
a subset of S, and Si cannot be closed because r(i(Si))
⊇ S holds, and therefore Si ≠ r(i(Si)) holds.

Of course, before return according to pruning
strategy 2, the current rowset S might be a closed
rowset, so if the skip-rowset is empty, we need to
output it first.
Example 4.2 (pruning strategy 2) For table TT|4
shown in Table 4.3, there is only one tuple in this table.
After we check this tuple to see if it is closed (it is not
closed apparently as its skip-rowset is not empty), we
do not need to produce any child excluded transposed
table from it. That is, according to excluded row
enumeration tree shown in Figure 3.3, all of the child
nodes of node {4} are pruned. This is because all of
the subsets of the current rowset cannot be closed
anymore since it is already contained by a larger
rowset.

Step 3 is performed to derive from TT|x two child
excluded transposed tables: TT|x∪y and TT|x’, where y is
the largest rid among all rids in tuples of TT|x. These
two tables correspond to a partition of current table
TT|x. TT|x∪y is the sub-table without y, and TT|x’ is the
sub-table with every tuple containing y. Since every
rowset that will be derived from TT|x’ must contain y,
we delete y from TT|x’ and at the same time decrease
cMinsup by 1. Pruning strategy 3 is applied to shrink
table TT|x∪y.

Pruning strategy 3: Each tuple t containing rid y in
TT|x will be deleted from TT|x∪y if size of t (that is the
number of rids t contains) equals cMinsup.

Example 4.3 (pruning strategy 3) Suppose currently
we have finished dealing with table TT|54 which is
shown in Table 4.2, and we need to create TT|543 with
cMinsup being 2. Then, according to pruning strategy
2, tuples c1 and d2 will be pruned from TT|543, because
after excluding rid 3 from these two tuples, their size
will become less than cMinsup, although currently they
satisfy the minsup threshold. As a result, there is only
one tuple {a1b1} left in TT|543, as shown in Table 4.4.

286

We can get these two tables, TT|x∪y and TT|x’, by
steps as follows. First, for each tuple t in TT|x
containing rid y, delete y from it, and copy it to TT|x’.
And then check if the size of t is less than cMinsup. If
not, keep it and in the meantime put y in the skip-
rowset, otherwise get rid of it from TT|x. Finally, TT|x
becomes TT|x∪y, and at the same time TT|x’ is obtained.

Step 4 is the major output step. If there is a tuple
with empty skip-rowset and the largest size, say k, and
containing rid k in TT|x∪y, then output it. Since this
tuple has the largest size among all of the tuples in
TT|x∪y, there is no other tuple that will contribute to it.
Therefore, it can be output. For example, in table
TT|54 shown in Table 4.2, itemset a1b1 corresponding
to rowset {1,2,3} can be output as its size is 3 which is
larger than the size of the other two tuples, and it also
contains the largest rid 3.

Step 5 conducts two recursive calls to deal with
TT|x∪y and TT|x’ respectively.

5 Experimental Study

In this section, we will study the performance of the
algorithm TD-Close. Experiments for both synthetic
data sets and real microarray data sets were conducted.
Carpenter has already shown its much better
performance than those column enumeration based
algorithms such as CLOSET [10] and CHARM [11],
so we only compare our algorithm with Carpenter and
another column enumeration-based algorithm FPclose,
which won the FIMI’03 best implementation award
[15, 16]. All experiments were performed on a PC
with a Pentium-4 1.5 Ghz CPU, 1GB RAM, and 30GB
hard disk. All of the runtimes plotted in the figures
include both computation time and I/O time.

For algorithm FPclose, we downloaded the source
of the implementation from the FIMI repository [17].

For algorithm Carpenter, we implement it to our
best knowledge according to paper [5] and its
subsequent papers [6, 7, 8], and we also improve it by
using a faster closeness-checking method, backward
pruning, which is used in several other algorithms
dealing with microarray data [6, 8]. The original
closeness-checking method is that before outputting
each itemset found currently, we must check if it is
already found before. If not, output it. Otherwise,
discard it. This method is slower than the backward
pruning method, because itemset from very high
dimensional data set usually contains large number of
items, and it is not in specific order, so comparison
with a large number of large itemsets takes long time.
This is also the reason why some algorithms proposed
after Carpenter use backward checking method.

However, when dealing with every rowset, Carpenter
with backward pruning strategy still needs to scan the
corresponding conditional transposed table to find the
largest common rowset, and also needs to scan the
original transposed table to do backward pruning, so it
needs lots of scan of the transposed table. In addition,
to make the comparison fair, we just use a flat table to
represent the transposed table TT instead of other data
structure such as FP-tree that may speed up search to
some extent.

5.1 Synthetic Data Sets

In order to test the performance of our top-down
strategy based algorithm TD-Close with respect to
several aspects, we use synthetic data set first. Figures
5.1 to 5.8 illustrate the change of running time as
minsup decreases for data sets with different
dimensions, tuples, and cardinalities. We use D#T#C#
to represent specific dataset, where D# stands for
dimension, the number of attributes of each data set,
T# for number of tuples, and C# for cardinality, the
number of values per dimension (or attribute). All
data are generated randomly. In these experiments, D#
ranges from 4000 to 10000, T# varies from 100, 150 to
200, and C# varies from 8, 10 to 12.

To test the performance of three algorithms with
respect to the number of dimensions, we created 5 data
sets with 4000, 6000, 8000 and 10000 dimensions
respectively. Figures 5.1 to 5.4 show the effect of
changing dimensionality on the runtime of these three
algorithms.

We can see from Figure 5.1 that as minsup
decreases, runtime of these three algorithms increases,
and TD-Close is the fastest among these algorithms.
Apparently, the increase speed of algorithm TD-Close
and Carpenter is not fast, while when minsup reaches
10, the runtime of FPclose increases dramatically.
This is because when minsup reaches 10, the number
of frequent one items increases dramatically. Since
FPclose is a column enumeration-based algorithm, the
increase of the number of frequent items will lead to
the explosion of the number of frequent itemsets which
are needed to be checked one by one. On the other
hand, row enumeration-based algorithms, such as TD-
Close and Carpenter, search the row combination
space. The number of rows influences the runtime of
these algorithms much more than the number of
frequent items does. The reason that TD-Close uses
less time than Carpenter is that TD-Close can prune
the search space much more than Carpenter, and can
stop search much earlier than Carpenter.

Figures 5.2 to 5.4 also indicate the same trend as
shown in Figure 5.1. What is different is that we

287

cannot get all runtimes for Carpenter and FPclose for
some datasets. For example, for dataset
D6000T100C10, we cannot get the runtime for
Carpenter when minsup is less than 13, and for
FPclose when minsup is less than 11, which is either
because it can not run to the end in reasonable time (in
several hours) or due to memory error occurred during
running. Same situations also happen in some of the
following figures.

0

1000

2000

3000

4000

5000

6000

7000

8000

12 11 10 9 8

minsup

ru
nt

im
e

(s
)

TD-Close
Carpenter
FPclose

Figure 5.1 Runtime for D4000T100C10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

13 12 11 10 9

minsup

ru
nt

im
e

(s
)

TD-Close
Carpenter
FPclose

Figure 5.2 Runtime for D6000T100C10

0

500

1000

1500

2000

2500

13 12 11 10 9

minsup

ru
nt

im
e

(s
)

TD-Close
FPclose

Figure 5.3 Runtime for D8000T100C10

From Figures 5.1 to 5.4, one can clearly see that all
of these algorithms need more time for data sets with
more dimensions for the same minsup value, and this is

due to the rise of the number of itemsets as the number
of dimensions increases.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

13 12 11 10 9

minsup

ru
nt

im
e

(s
)

TD-Close
FPclose

Figure 5.4 Runtime for D10000T100C10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

19 18 17 16 15 14 13

minsup

ru
nt

im
e

(s
)

TD-Close
FPclose

Figure 5.5 Runtime for D4000T150C10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

25 23 22 20 19 18

minsup

ru
nt

im
e

(s
)

TD-Close
FPclose

Figure 5.6 Runtime for D4000T200C10

To test the runtime of these algorithms with respect
to the number of tuples, two more data sets are
produced. One contains 150 tuples and the other 200
tuples, while dimension is 4000 and cardinality is 10.
Figures 5.5 and 5.6 show the experimental results. For
these two data sets, Carpenter cannot run to
completion due to too long time needed. As for TD-
Close and FPclose, we can see that for some relatively

288

high values of minsup, FPclose runs a little faster than
TD-Close. However, when minsup becomes relatively
small, TD-Close runs much faster than FPclose. The
reason is the same as explained above. That is, when
minsup is high, FPclose can cut the itemset space to
very small by minsup threshold so the search time is
limited. But once the number of frequent items
becomes large, the search space increases
exponentially, while the number of rows remains
relative stable.

In the above two groups of experiments, the
cardinality of each data set is set to 10, which means
each dimension of each dataset has 10 distinct values.
To test the performance regarding different
cardinalities, two other datasets are created, which
correspond to 12 distinct values and 8 distinct values
respectively. The number of dimension is 4000 and
the number of tuples is 100. Experimental results are
shown in Figures 5.7 and 5.8.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

11 10 9 8 7 6

minsup

ru
nt

im
e

(s
) TD-Close

Carpenter
FPclose

Figure 5.7 Runtime for D4000T100C12

0

500

1000

1500

2000

2500

3000

3500

4000

15 14 13 12 11 10

minsup

ru
nt

im
e

(s
)

TD-Close

FP_close

Figure 5.8 Runtime for D4000T100C8

Figure 5.7 shows us that when minsup becomes
small, for example, less than 9, both TD-Close and
Carpenter spend less time than FPclose. When
minsup reaches 6, the runtime of TD-Close and
Carpenter become almost the same. This is because
when minsup becomes very low, the search space can

be pruned by minsup becomes small, so the time saved
by this kind of pruning in algorithm TD-Close
becomes less.

Comparing with data set D4000T100C12, data set
D4000T100C8 is relatively denser. With the same
minsup threshold, the latter data set will produce more
frequent patterns. Figure 5.8 shows almost the same
features of TD-Close and FPclose. But obviously, it
took them much more time than the former data set for
the same minsup threshold. That is also the reason
why we cannot get the exact runtime of Carpenter on
it.

From these experimental results, one may see that
for some relatively high minsup, FPclose is a little bit
faster than TD-Close. But in that case, the runtime for
both TD-close and FPclose is usually less than one
minute, or only several minutes. So, the difference is
not that significant. However, when minsup becomes
low, it is obvious that TD-Close outperforms FPclose
and Carpenter much.

5.2 Real Data Sets
Besides testing on the synthetic data sets, we also

tested our algorithm on three real microarray data sets.
They are clinical data on ALL-AML leukemia, lung
cancer and breast cancer [5, 6]. We take the
corresponding training data sets for experiments. ALL-
AML has 38 rows and 7129 dimensions, Lung Cancer
has 32 rows and 12533 dimensions, and Breast Cancer
has 78 rows and 24481 dimensions. Before using
frequent pattern mining algorithms, they are all
discretized using the equi-depth binning method. To
test the performance on different cardinality, we
produce two sets of discretized data sets, one with five
bins for each dimension, and another with 10 bins for
each dimension.

The first group of experiments is done for these
three data sets with 5 bins per dimension. Figures 5.9
to 5.11 show the runtime of TD-Close, Carpenter, and
FPclose at different minsup values. Note that the y-
axes in these figures are in logarithmic scale, and we
plot the figure as minsup increase so that we can see
the pruning power of minsup clearly.

Figure 5.9 shows that as minsup increases the
runtime of both TD-Close and Fpclose reduces
dramatically, while the runtime of Carpenter remains
relatively stable. This is because Carpenter still needs
to search the rowset space in which the size of each
rowset is less than minsup although apparently they
will not satisfy minsup. This figure also indicates that
among these three algorithms, TD-Close is the fastest.
We did not get the runtime of FPclose when minsup is

289

7, because when minsup is 8, it already spends much
longer time than the other two algorithms.

1

10

100

1000

10000

7 8 9 10

minsup

ru
nt

im
e

(s
)

TD-Close
Carpenter
FPclose

Figure 5.9 ALL-AML Leukemia

1

10

100

6 7 8 9 10

minsup

ru
nt

im
e

(s
)

TD-Close
Carpenter
FPclose

Figure 5.10 Lung Cancer

1

10

100

1000

10000

16 17 18 19 71 72 74

minsup

ru
nt

im
e

(s
)

TD-Close
Carpenter
FPclose

Figure 5.11 Breast Cancer

Figure 5.10 tells us almost the same situation as
Figure 5.9 does. What is different is that FPclose
cannot run successfully when minsup is 6 due to a
memory error. This is because for this dataset, the
number of dimensions is large. When minsup is 6, the
number of itemsets needed to check is huge. While for

row enumeration algorithms TD-Close and Carpenter,
they only check rowsets instead of itemsets, and the
number of rowsets does not change that dramatically.

For breast cancer data set, we cannot get the
rumtime for FPclose when minsup is equal to or less
than 16 because of memory error (run out of memory).
Similarly, Carpenter cannot run to completion when
minsup is 18 after about 11 hours of running.
Therefore, in Figure 5.11, we can only see the runtime
for Carpenter when minsup is not less than 71, and the
runtime for FPclose when minsup is greater than 17.
For FPclose and TD-Close, when the value of minsup
is between 20 and 70, the runtime is less than one
second, so these values are not shown in the x-axis.

The results of these experiments for the real world
microarray data sets illustrate that TD-Close and
Fpclose can make use of the anti-monotonic constraint
minsup to prune the search space dramatically, while
Carpenter cannot. Since the pruning strategies used in
TD-Close benefit from the top-down search strategy,
we can conclude that this search strategy is more
effective and useful compared to the bottom-up search
strategy for row enumeration-based search algorithms.
Also, for very high dimensional dataset, row
enumeration-based algorithm TD-Close outperform
column enumeration-based algorithm FPclose very
much.

6 Related Work

Since the last decade, many algorithms [1, 10, 11,
12, 13, 18, 19] have been proposed to find frequent
itemsets from not very high dimensional data sets, such
as transactional data sets. Suppose there are n different
items in data set, these algorithms usually adopt a
bottom-up strategy to search the itemset space that
could be as large as 2n. By bottom-up search, these
algorithms can use the minsup threshold to stop further
search the superset of an itemset once this itemset does
not satisfy the minsup threshold. However, for very
high dimensional data sets, since n becomes very large,
the search space becomes huge. This leads to the low
performance of these algorithms for very high
dimensional data. As a result, a new group of
algorithms [5, 6, 7, 8] were proposed to deal with long
microarray data. Our work is directly related to these
algorithms. In [5], an algorithm called Carpenter was
proposed to find all of the frequent closed itemsets.
Carpenter conducts a depth-first order traversal of the
row-enumeration as shown in Figure 3.1, and checks
each rowset corresponding to the node visited to see if
it is frequent and closed. In [6], an algorithm called
Farmer is developed to find the set of association-

290

based classification rules. Farmer also searches the row
enumeration tree by depth-first order. In [7],
Algorithm Cobbler is proposed to find frequent closed
itemsets by integrating row enumeration method with
column enumeration method. It shows its high
performance by conducting experiments on a data set
with high dimension and a relatively large number of
rows. In [8], an algorithm is proposed to find the top-
k classification rules for each row of the microarray
data set. All of these algorithms aim to facilitate the
mining of frequent pattern by searching the row
enumeration space, and they all search the space in a
top-down style.

7 Conclusions

In this paper we propose a top-down search strategy
for mining frequent closed patterns from very high
dimensional data such as microarray data. Existing
algorithms, such as Carpenter and several other related
algorithms, adopt a bottom-up fashion to search the
row enumeration space, which makes the pruning
power of minimum support threshold (minsup) very
weak, and therefore results in long mining process,
even for high minsup, and much memory cost. To
solve this problem, based on our top-down search
strategy, a top-down style row enumeration method
and an effective closeness-checking method are
proposed. A new algorithm, TD-Close, is designed
and implemented for mining a complete set of frequent
closed itemsets from high dimensional data. Several
pruning strategies are developed to speed up searching.
Both analysis and experimental study show that these
methods are effective and useful. Future work
includes integrating top-down row enumeration
method and column row enumeration method for
frequent pattern mining from both long and deep large
datasets, and mining classification rules based on
association rules using top-down searching strategy.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases (VLDB’94), pp. 487–499, Sept. 1994.

[2] C. Niehrs and N. Pollet. Synexpression groups in
eukaryotes. Nature, 402: 483-487, 1999.

[3] Y. Cheng and G. M. Church. Biclustering of
expression data. In Proc of the 8th Intl. Conf.
Intelligent Systems for Mocular Biology, 2000.

[4] J. Yang, H. Wang, W. Wang, and P. S. Yu. Enhanced
Biclustering on Gene Expression data. In Proc. of the
3rd IEEE Symposium on Bioinformatics and
Bioengineering (BIBE), Washington DC, Mar. 2003.

[5] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J.
Zaki. CARPENTER: Finding closed patterns in long
biological datasets. In Proc. 2003 ACM SIGKDD Int.
Conf. On Knowledge Discovery and Data Mining,
2003.

[6] G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang.
FARMER: Finding interesting rule groups in
microarray datasets. In Proc. 23rd ACM Int. Conf.
Management of Data, 2004.

[7] F Pan, A. K. H. Tung, G. Cong, X. Xu. COBBLER:
Combining column and Row Enumeration for Closed
Pattern Discovery. In Proc 2004 Int. Conf. on
Scientific and Statistical Database Management
(SSDBM'04), Santorini Island, Greece, June 2004. pp.
21-30.

[8] G. Cong, K.-L. Tan, A. K. H. Tung, X. Xu. Mining
Top-k covering Rule Groups for Gene Expression Data.
In 24th ACM International Conference on
Management of Data, 2005.

[9] C. Creighton and S. Hanash. Mining gene expression
databases for association rules. Bioinformatics, 19,
2003.

[10] J. Pei, J. Han, and R. Mao. CLOSET: An efficient
algorithm for mining frequent closed itemsets. In Proc.
2000 ACM-SIGMOD Int. Workshop Data Mining and
Knowledge Discovery (DMKD'00), pp. 11-20, Dallas,
TX, May 2000.

[11] M. Zaki and C. Hsiao. CHARM: An efficient algorithm
for closed association rule mining. In Proc. of 2002
SIAM Data Mining Conf., 2002.

[12] J. Han and J. Pei. Mining frequent patterns by pattern
growth: methodology and implications. KDD
Exploration, 2, 2000.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In Proc. 7th Int. Conf. Database Theory
(ICDT’99), Jan. 1999.

[14] J. Li and L. Wong. Identifying good diagnostic genes
or genes groups from gene expression data by using the
concept of emerging patterns. Bioinformatics, 18:725–
734, 2002.

[15] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in
Mining Frequent Itemsets. In Proc. of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations. Melbourne, Florida, Nov., 2003

[16] http://fimi.cs.helsinki.fi/fimi03/
[17] http://fimi.cs.helsinki.fi/.
[18] M. J. Zaki. Scalable algorithms for association mining.

IEEE Trans. Knowledge and Data Engineering,
12:372{390, 2000.

[19] J. Wang, J. Han, and J. Pei. Closet+: Searching for the
best strategies for mining frequent closed itemsets. In
Proc. 2003 ACM SIGKDD Int. Conf. On Knowledge
Discovery and Data Mining (KDD'03), Washington,
D.C., Aug 2003.

291

