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Abstract 

 
Data sets of very high dimensionality, such as 

microarray data, pose great challenges on efficient 
processing to most existing data mining algorithms.  
Recently, there comes a row-enumeration method that 
performs a bottom-up search of row combination 
space to find corresponding frequent patterns.  Due to 
a limited number of rows in microarray data, this 
method is more efficient than column enumeration-
based algorithms.  However, the bottom-up search 
strategy cannot take an advantage of user-specified 
minimum support threshold to effectively prune search 
space, and therefore leads to long runtime and much 
memory overhead.  

In this paper we propose a new search strategy, 
top-down mining, integrated with a novel row-
enumeration tree, which makes full use of the pruning 
power of the minimum support threshold to cut down 
search space dramatically. Using this kind of 
searching strategy, we design an algorithm, TD-Close, 
to find a complete set of frequent closed patterns from 
very high dimensional data.  Furthermore, an effective 
closeness-checking method is also developed that 
avoids scanning the dataset multiple times.  Our 
performance study shows that the TD-Close algorithm 
outperforms substantially both Carpenter, a bottom-up 
searching algorithm, and FPclose, a column 
enumeration-based frequent closed pattern mining 
algorithm. 
 
1 Introduction 
 

With the development of bioinformatics, microarray 
technology produces many gene expression data sets, 

i.e., microarray data.  Different from transactional 
data set, microarray data usually does not have so 
many rows (samples) but have a large number of 
columns (genes).  This kind of very high dimensional 
data needs data mining techniques to discover 
interesting knowledge from it.  For example, frequent 
pattern mining algorithm can be used to find co-
regulated genes or gene groups [2, 14].  Association 
rules based on frequent patterns can be used to build 
gene networks [9].  Classification and clustering 
algorithms are also applied on microarray data [3, 4, 
6].   Although there are many algorithms dealing with 
transactional data sets that usually have a small number 
of dimensions and a large number of tuples, there are 
few algorithms oriented to very high dimensional data 
sets with a small number of tuples.  Taking frequent-
pattern mining as an example, most of the existing 
algorithms [1, 10, 11, 12, 13] are column enumeration-
based, which take column (item) combination space as 
search space.  Due to the exponential number of 
column combinations, this method is usually not 
suitable for very high dimensional data. 

Recently, a row enumeration-based method [5] is 
proposed to handle this kind of very high dimensional 
data.  Based on this work, several algorithms have 
been developed to find frequent closed patterns or 
classification rules [5, 6, 7, 8].   As they search through 
the row enumeration space instead of column 
enumeration space, these algorithms are much faster 
than their counterparts in very high dimensional data.  
However, as this method exploits a bottom-up search 
strategy to check row combinations from the smallest 
to the largest, it cannot make full use of the minimum 
support threshold to prune search space. As a result, 
experiments show that it often cannot run to 
completion in a reasonable time for large microarray 
data, and it sometimes runs out of memory before 
completion. To solve these problems, we propose a 
new top-down search strategy for row enumeration-
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based mining algorithm.  To show its effectiveness, we 
design an algorithm, called TD-Close, to mine a 
complete set of frequent closed patterns and compare it 
with two bottom-up search algorithms, Carpenter [5], 
and FPclose [15]. Here are the main contributions of 
this paper: 
(1) A top-down search method and a novel row-

enumeration tree are proposed to take advantage 
of the pruning power of minimum support 
threshold.  Our experiments and analysis show 
that this cuts down the search space dramatically. 
This is critical for mining high dimensional data, 
because the dataset is usually big, and without 
pruning the huge search space, one has to 
generate a very large set of candidate itemsets for 
checking.  

(2) A new method, called closeness-checking, is 
developed to check efficiently and effectively 
whether a pattern is closed.  Unlike other existing 
closeness-checking methods, it does not need to 
scan the mining data set, nor the result set, and is 
easy to integrate with the top-down search 
process. The correctness of this method is proved 
by both theoretic proof and experimental results. 

(3) An algorithm using the above two methods is 
designed and implemented to discover a complete 
set of frequent closed patterns. Experimental 
results show that this algorithm is more efficient 
and uses less memory than bottom-up search 
styled algorithms, Carpenter and FPclose. 

The remaining of the paper is organized as follows. 
In section 2, we present some preliminaries and the 
mining task.  In section 3, we describe our top-down 
search strategy and compare it with the bottom-up 
search strategy.  We present the new algorithm in 
section 4 and conduct experimental study in section 5.  
Finally, we give the related work in section 6 and 
conclude the study in section 7. 
 
2 Preliminaries 
 

Let T be a discretized data table (or data set), 
composed of a set of rows, S  = {r1, r2, …, rn}, where ri 

(i = 1, …, n) is called a row ID, or rid in short.  Each 
row corresponds to a sample consisting of k discrete 
values or intervals, and I is the complete set of these 
values or intervals, I = {i1, i2, …, im}.  For simplicity, 
we call each ij an item.  We call a set of rids S ⊆ S a 
rowset, and a rowset having k rids a k-rowset. 
Likewise, we call a set of items I ⊆ I an itemset. Hence, 
a table T is a triple (S, I, R), where R  ⊆ S × I is a 

relation.  For a ri ∈ S, and a ij ∈ I, (ri, ij) ∈ R denotes 
that ri contains ij, or ij is contained by ri.  

Let TT be the transposed table of T, in which each 
row corresponds to an item ij and consists of a set of 
rids which contain ij in T.  For clarity, we call each 
row of TT a tuple.  Table TT is a triple (I, S, R), where 
R  ⊆ S × I is a relation.  For a rid ri ∈ S, and an item ij ∈ 
I, (ri, ij) ∈ R denotes that ij contains ri, or ri is contained 
by ij. 

Example 2.1 (Table and transposed table) Table 2.1 
shows an example table T with 4 attributes (columns): 
A, B, C and D. The corresponding transposed table TT 
is shown in Table 2.2.  For simplicity, we use number i 
(i = 1, 2, …, n) instead of ri to represent each rid.  In 
order to describe our search strategy and mining 
algorithm clearly, we need to define an order of these 
rows.  In this paper, we define the numerical order of 
rids as the order, i.e., a row j is greater than k if j > k.  

Let minimum support (denoted minsup) be set to 2. 
All the tuples with the number of rids less than minsup 
is deleted from TT.  Table TT shown in Table 2.2 is 
already pruned by minsup.  This kind of pruning will 
be further explained in the following sections. 

In this paper we aim to discover the set of the 
frequent closed patterns.  Some concepts related to it 
are defined as follows. 

Table 2.1 An example table T 

ri A B C D 
1 a1 b1 c1 d1 
2 a1 b1 c2 d2 
3 a1 b1 c1 d2 
4 a2 b1 c2 d2 
5 a2 b2 c2 d3 

Table 2.2 Transposed table TT of T 

itemset rowset 
a1 1, 2, 3 
a2 4, 5 
b1 1, 2, 3, 4 
c1 1, 3 
c2 2, 4, 5 
d2 2, 3, 4 

Definition 2.1 (Closure) Given an itemset I ⊆ I and a 
rowset S ⊆ S, we define  

r(I) = { ri  ∈ S | ∀ij ∈ I , (ri, ij) ∈ R } 
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i(S) = { ij  ∈ I | ∀ri ∈ S , (ri, ij) ∈ R } 
Based on these definitions, we define C(I) as the 

closure of an itemset I, and C(S) as the closure of a 
rowset S as follows: 

C(I) = i(r(I)) 
C(S) = r(i(S)) 

Note that definition 2.1 is applicable to both table T 
and TT. 

Definition 2.2 (Closed itemset and closed rowset) An 
itemset I is called a closed itemset iff I = C(I). 
Likewise, a rowset S is called a closed rowset iff S = 
C(S).  

Definition 2.3 (Frequent itemset and large rowset)  
Given an absolute value of user-specified threshold 
minsup, an itemset I is called frequent if |r(I)| ≥ minsup, 
and a rowset S is called large if |S| ≥ minsup, where 
|r(I)| is called the support of itemset I and minsup is 
called the minimum support threshold. |S| is called the 
size of rowset S, and minsup is called minimum size 
threshold accordingly. Further, an itemset I is called 
frequent closed itemset if it is both closed and frequent. 
Likewise, a rowset S is called large closed rowset if it 
is both closed and large. 

Example 2.2 (Closed itemset and closed rowset) In 
table 2.1, for an itemset {b1, c2}, r({b1, c2}) = {2, 4}, 
and i({2, 4}) = {b1, c2, d2}, so C({b1, c2}) = {b1, c2, d2}. 
Therefore, {b1, c2} is not a closed itemset. If minsup = 
2, it is a frequent itemset.  In table 2.2, for a rowset {1, 
2}, i({1, 2}) = {a1, b1} and r({a1, b1}) = {1, 2, 3}, then 
C(S) = {1, 2, 3}.  So rowset {1, 2} is not a closed 
rowset, but apparently {1, 2, 3} is. 

Mining task: Originally, we want to find all of the 
frequent closed itemsets which satisfy the minimum 
support threshold minsup from table T. After 
transposing T to transposed table TT, the mining task 
becomes finding all of the large closed rowsets which 
satisfy minimum size threshold minsup from table TT. 

 
3 Top-down Search Strategy 
 

Before giving our top-down search strategy, we will 
first look at what is bottom-up search strategy used by 
the previous mining algorithms [5, 6, 7, 8]. For 
simplicity, we will use Carpenter as a representative 
for this group of algorithms since they use the same 
kind of search strategy. 

 
3.1 Bottom-up Search Strategy 
 

Figure 3.1 shows a row enumeration tree that uses 
the bottom-up search strategy. By bottom-up we mean 

that along every search path, we search the row 
enumeration space from small rowsets to large ones.  
For example, first single rows, then 2-rowsets, …, and 
finally n-rowsets. Both depth-first and breadth-first 
search of this tree belong to this search strategy. 

In Figure 3.1, each node represents a rowset.  Our 
mining task is to discover all of the large closed 
rowsets. So the main constraint for mining is the size 
of rowset. Since it is monotonic in terms of bottom up 
search order, it is hard to prune the row enumeration 
search space early.  For example, suppose minsup is 
set to 3, although obviously all of the nodes in the first 
two levels from the root cannot satisfy this constraint, 
these nodes still need to be checked [5, 6, 7, 8].  As a 
result, as the minsup increases, the time needed to 
complete the mining process cannot decrease rapidly.  
This limits the application of this kind of algorithms to 
real situations.   

In addition, the memory cost for this kind of 
bottom-up search is also big.  Take Carpenter as an 
example. Similar to several other algorithms [6, 7, 8], 
Carpenter uses a pointer list to point to each tuple 
belonging to an x-conditional transposed table.  For a 
table with n rows, the maximum number of different 
levels of pointer lists needed to remain in memory is n, 
although among which the first (minsup – 1) levels of 
pointer lists will not contribute to the final result.   

These observations motivate the proposal of our 
method. 
 
3.2 Top-down Search Strategy 
 

Almost all of the frequent pattern mining algorithms 
dealing with the data set without transposition use the 
anti-monotonicity property of minsup to speed up the 
mining process.  For transposed data set, the minsup 
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Figure 3.1 Bottom-up row enumeration tree
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constraint maps to the size of rowset.  In order to stop 
further search when minsup is not satisfied, we 
propose to exploit a top-down search strategy instead 
of the bottom-up one. To do so, we design a row 
enumeration tree following this strategy, which is 
shown in Figure 3.2.  Contrary to the bottom-up search 
strategy, the top-down searching strategy means that 
along each search path the rowsets are checked from 
large to small ones. 

In Figure 3.2, each node represents a rowset. We 
define the level of root node as 0, and then the highest 
level for a data set with n rows is (n – 1).  

It is easy to see from the figure 3.2 that for a table 
with n rows, if the user specified minimum support 
threshold is minsup, we do not need to search all of 
rowsets which are in levels greater than (n – minsup) 
in the row enumeration tree.  For example, suppose 
minsup = 3, for data set shown in Table 2.1, we can 
stop further search at level 2, because rowsets 
represented by nodes at level 3 and 4 will not 
contribute to the set of frequent patterns at all. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With this row enumeration tree, we can also mine 
the transposed table TT by divide-and-conquer method. 
Each node of the tree in Figure 3.2 corresponds to a 
sub-table.  For example, the root represents the whole 
table TT, and then it can be divided into 5 sub-tables: 
table without rid 5, table with 5 but without 4, table 
with 45 but without 3, table with 345 but without 2, 
and table with 2345 but without 1.  Here 2345 
represents the set of rows {2, 3, 4, 5}, and same holds 
for 45 and 345. Each of these tables can be further 
divided by the same rule.  We call each of these sub-
tables x-excluded transposed table, where x is a rowset 
which is excluded in the table. Tables corresponding to 
a parent node and a child node are called parent table 

and child table respectively. Following is the definition 
of x-excluded transposed table. 

Definition 3.1 (x-excluded transposed table) Given a 
rowset x = {ri1, ri2, …, rik} with an order such that ri1 > 
ri2 > … > rik, a minimum support threshold minsup and 
its parent table TT|p, an x-excluded transposed table 
TT|x is a table in which each tuple contains rids less 
than any of rids in x, and at the same time contains all 
of the rids greater than any of rids in x.  Rowset x is 
called an excluded rowset.  

Example 3.1 (x-excluded transposed table) For 
transposed table TT shown in Table 2.2, two of its x-
excluded tranposed tables are shown in Tables 3.1 and 
3.2 respectively, assuming minsup = 2. 
    Table 3.1 shows an x-excluded tranposed table TT|54, 
where x = {5, 4}.  In this table, each tuple only 
contains rids which are less then 4, and contains at 
least two such rids as minsup is 2.  Since the largest rid 
in the original data set is 5, it is not necessary for each 
tuple to contain some other rids.  Procedures to get this 
table are shown in Example 3.2. 

Table 3.2 is an x-excluded transposed table TT|4, 
where x = {4}.  Its parent table is the table shown in 
Table 2.2. Each tuple in TT|4 must contain rid 5 as it is 
greater than 4, and in the meantime must contain at 
least one rid less than 4 as minsup is set to 2.  As a 
result, in Table 2.2 only those tuples containing rid 5 
can be a candidate tuple of TT|4. Therefore, only tuples 
a2 and c2 satisfy this condition.  But tuple a2 does not 
satisfy minsup after excluding rid 4, so only one tuple 
left in TT|4.  Note, although the current size of tuple c2 
in TT|4 is 1, its actual size is 2 since it contains rid 5 
which is not listed explicitly in the table. 

Table 3.1 TT|54 

itemset rowset 

a1 1, 2, 3 

b1 1, 2, 3 

c1 1, 3 

d2 2, 3 

Table 3.2 TT|4 

itemset rowset 

c2 2 

The x-excluded transposed table can be obtained by 
the following steps.  

(1) Extract from TT or its direct parent table TT|p 
each tuple containing all rids greater than ri1. 
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Figure 3.2 Top-down row enumeration tree
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(2) For each tuple obtained in the first step, keep 
only rids less than rik. 

(3) Get rid of tuples containing less than (minsup 
– j) number of rids, where j is the number of 
rids greater than ri1 in S. 

The reason of the operation in step 3 will be given 
in section 4. Note that the original transposed table 
corresponds to TT|φ, where φ is an empty rowset.  

Figure 3.3 shows the corresponding excluded row 
enumeration tree for the row enumeration tree shown 
in Figure 3.2. This tree shows the parent-child 
relationship between the excluded rowsets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 3.2 (Procedure to get x-excluded 
transposed table) Take TT|54 as an example, here is the 
step to get it. Table TT|5 shown in Table 3.3 is its 
parent table. 

Table 3.3 TT|5 

itemset rowset 
a1 1, 2, 3 
b1 1, 2, 3, 4 
c1 1, 3 
c2 2, 4 
d2 2, 3, 4 

(1) Each tuple in table TT|5 is a candidate tuple 
of TT|54 as there is no rid greater than 5 for 
the original data set. 

(2) After excluding rids not less than 4, the table 
is shown in Table 3.4. 

(3) Since tuple c2 only contains one rid, it does 
not satisfy minsup and is thus pruned from 

TT|54.  Then we get the final TT|54 shown in 
Table 3.1. 

Table 3.4 TT|54 without pruning 

itemset rowset 

a1 1, 2, 3 
b1 1, 2, 3 
c1 1, 3 
c2 2 
d2 2, 3 

 
From definition 3.1 and the above procedure to get 

x-excluded transposed table we can see that the size of 
the excluded table will become smaller and smaller due 
to the minsup threshold, so the search space will shrink 
rapidly.  

As for the memory cost, in order to compare with 
Carpenter, we also use pointer list to simulate the x-
excluded transposed table.  What is different is that 
this pointer list keeps track of rowsets from the end of 
each tuple of TT, and we also split it according to the 
current rid. We will not discuss the detail of 
implementation due to space limitation. However, what 
is clear is that when we stop search at level (n –
minsup), we do not need to spend more memory for all 
of the excluded transposed tables corresponding to 
nodes at levels greater than (n – minsup), and we can 
release the memory used for nodes along the current 
search path. Therefore, comparing to Carpenter, it is 
more memory saving.  This is also demonstrated in our 
experimental study, as Carpenter often runs out of 
memory before completion. 
 
4 Algorithm 
 

To mining frequent closed itemsets from high 
dimensional data using the top-down search strategy, 
we design an algorithm, TD-Close, and compare it 
with the corresponding bottom-up based algorithm 
Carpenter.  In this section, we first present our new 
closeness-checking method and then describe the new 
algorithm. 

 
4.1 Closeness-Checking Method 
 

To avoid generating all the frequent itemsets during 
the mining process, it is important to perform the 
closeness checking as early as possible during mining. 
Thus an efficient closeness-checking method has been 
developed, based on the following lemmas. 
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Lemma 4.1 Given an itemset I ⊆ I and a rowset S ⊆ S, 
the following two equations hold:  

r(I) = r(i(r(I)))            (1) 
i(S) = i(r(i(S)))           (2) 

Proof.  Since r(I) is a set of rows that share a given set 
of items, and i(S) is a set of items that is common to a 
set of rows, according to this semantics and definition 
2.1, these two equations are obviously correct. 

Lemma 4.2 In transposed table TT, a rowset S ⊆ S is 
closed iff it can be represented by an intersection of a 
set of tuples, that is: 

∃I ⊆ I, s.t. S = r(I) = ∩
j 
r({ij})   

 where ij ∈ I, and I = {i1, i2, …, il}          
Proof.  First, we prove that if S is closed then s = r(I) 
holds. If S is closed, according to definition 2.2, S = 
C(S) = r(i(S)), we can always set I = i(S), so S = r(I) 
holds.  Now we need to prove that if s = r(I) holds then 
S is closed.  If s = r(I) holds for some I ⊆ I , according 
to definition 2.1, C(S) = r(i(S)) = r(i(r(I))) holds.  Then 
based on Lemma 4.1 we have r(i(r(I))) = r(I) = S, so 
C(S) = S holds.  Therefore S is closed. 

Lemma 4.3 Given a rowset S ⊆ S, in transposed table 
TT, for every tuple ij containing S, which means ij ∈ 
i(S), if S ≠ ∩

j
r({ij}), where ij ∈ i(S), then S is not 

closed.  
Proof. For tuple ij ∈ i(S), ∩

j
r({ij}) ⊇ S apparently 

holds.  If S ≠ ∩
j
r({ij}) holds, then ∩

j
r({ij}) ⊂ S holds, 

which means that there exists at least another one item, 
say y, such that S∪y = ∩

j
r({ij}).  So S ≠ r(I), that is S 

≠ r(i(S)).  Therefore S is not closed. 
 

Lemmas 4.2 and 4.3 are the basis of our closeness-
checking method.  In order to speed up this kind of 
checking, we add some additional information for each 
x-excluded transposed table.  The third column of the 
table shown in Tables 4.1 or 4.3 is just it.  The so-
called skip-rowset is a set of rids which keeps track of  
of the rids that are excluded from the same tuple of all 
of its parent tables. When two tuples in an x-excluded 
transposed table have the same rowset, they will be 
merged to one tuple, and the intersection of 
corresponding two skip-rowsets will become the 
current skip-rowset.  

Example 4.1 (skip-rowset and merge of x-excluded 
transposed table) In example 3.2, when we got TT|54 
from its parent TT|5, we excluded rid 4 from tuple b1 
and d2 respectively.  The skip-rowset of these two 
tuples in TT|5 should be empty as they do not contain 
rid 5 in TT|φ.  Therefore, the skip-rowset of these two 

tuples in TT|54 is 4. Table 4.1 shows TT|54 with this 
kind of skip-rowsets. 

In Table 4.1, the first 2 tuples have the same rowset 
{1, 2, 3}.  After merging these two tuples, it becomes 
Table 4.2. The skip-rowset of this rowset becomes 
empty because the intersection of an empty set and any 
other set is still empty.  If the intersection result is 
empty, it means that currently this rowset is the result 
of intersection of two tuples.  When it is time to output 
a rowset, this skip-rowset will be checked.  If it is 
empty, then it must be a closed rowset. 

Table 4.1 TT|54 with skip-rowset 

itemset rowset skip-rowset 

a1 1, 2, 3  

b1 1, 2, 3 4 

c1 1, 3  

d2 2, 3 4 

Table 4.2 TT|54 after merge 

itemset rowset skip-rowset 

a1 b1 1, 2, 3  

c1 1, 3  

d2 2, 3 4 

Table 4.3 TT|4 with skip-rowset 

itemset rowset skip-rowset 

c2 2 4 
 
4.2 The TD-Close Algorithm 
 

Based on the top-down search strategy and the 
closeness-checking method, we design an algorithm, 
called TD-Close, to mine all of the frequent closed 
patterns from table T.  

Figure 4.1 shows the main steps of the algorithm. It 
begins with the transposition operation that transforms 
table T to the transposed table TT. Then, after the 
initialization of the set of frequent closed patterns FCP 
to empty set and excludedSize to 0, the subroutine 
TopDownMine is called to deal with each x-excluded 
transposed table and find all of the frequent closed 
itemsets.  The General processing order of rowsets is 
equivalent to the depth-first search of the row 
enumeration tree shown in Figure 3.2. 
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Subroutine TopDownMine takes each x-excluded 
transposed table and another two variables, cMinsup 
excludedSize, as parameters and checks each candidate 
rowset of the x-excluded transposed table to see if it is 
closed.  Candidate rowsets are those large rowsets that 
occur at least once in table TT.  Parameter cMinsup is 
a dynamically changing minimum support threshold as 
indicated in step 5, and excludedSize is the size of 
rowset x.  There are five main steps in this subroutine, 
which will be explained one by one as follows. 

Algorithm TD-Close                                        
Input: Table T, and minimum support threshold, minsup 
Output: A complete set of frequent closed patterns, FCP
Method: 

1. Transform T into transposed table TT 
2. Initialize FCP =Φ and excludedSize = 0 
3. Call TopDownMine(TT|Φ, minsup, excludedSize) 

Subroutine TopDownMine(TT|x, cMinsup, excludedSize) 
Method:  

1. Pruning 1: if excludedSize >= (n–minsup) return;
2. Pruning 2: If the size of TT|x is 1, output the 

corresponding itemset if the rowset is closed, and 
then return. 

3. Pruning 3: Derive TT|x∪y and TT|x’, where  
y is the largest rid among rids in tuples of TT|x,  
TT|x’  = {tuple ti | ti ∈ TT|x and ti contains y}, 
TT|x∪y = {tuple ti | ti ∈ TT|x and if ti contains y, 
size of ti must be greater than cMinsup} 
Note, we delete y from both TT|x∪y and TT|x’ . 

4. Output: Add to FCI itemset corresponding to 
each rowset in TT|x∪y with the largest size k and 
ending with rid k. 

5. Recursive call:   
TopDownMine(TT|x∪y, cMinsup, excluedSize+1)
TopDownMine(TT|x’, cMinsup–1, excluedSize) 

Figure 4.1 Algorithm TD-Close 

In step 1, we apply pruning strategy 1 to stop 
processing current excluded transposed table. 

Pruning strategy 1: If excludedSize is equal to or 
greater than (n–minsup), then there is no need to do 
any further recursive call of TopDownMine. 
ExcludedSize is the number of rids excluded from 
current table.  If it is not less than (n–minsup), the size 
of each rowset in current transposed table must be less 
than minsup, so these rowsets are impossible to 
become large.  

 In step 2, we apply pruning strategy 2 to stop 
further recursive calls. 

Pruning strategy 2:  If an x-excluded transposed table 
contains only one tuple, it is not necessary to do 
further recursive call to deal with its child transposed 
tables. 

The reason for this pruning strategy is apparent. 
Suppose the rowset corresponds to this tuple is S.  
From the itemset point of view, any child transposed 
table of this current table will not produce any 
different itemsets from the one corresponding to 
rowset S.  From the rowset point of view, each rowset 
Si corresponding to each child transposed table of S is 
a subset of S, and Si cannot be closed because r(i(Si)) 
⊇ S holds, and therefore Si ≠ r(i(Si)) holds. 

Of course, before return according to pruning 
strategy 2, the current rowset S might be a closed 
rowset, so if the skip-rowset is empty, we need to 
output it first. 
Example 4.2 (pruning strategy 2) For table TT|4 
shown in Table 4.3, there is only one tuple in this table.   
After we check this tuple to see if it is closed (it is not 
closed apparently as its skip-rowset is not empty), we 
do not need to produce any child excluded transposed 
table from it.  That is, according to excluded row 
enumeration tree shown in Figure 3.3, all of the child 
nodes of node {4} are pruned.  This is because all of 
the subsets of the current rowset cannot be closed 
anymore since it is already contained by a larger 
rowset. 

Step 3 is performed to derive from TT|x two child 
excluded transposed tables: TT|x∪y and TT|x’, where y is 
the largest rid among all rids in tuples of TT|x.  These 
two tables correspond to a partition of current table 
TT|x. TT|x∪y is the sub-table without y, and TT|x’ is the 
sub-table with every tuple containing y. Since every 
rowset that will be derived from TT|x’ must contain y, 
we delete y from TT|x’ and at the same time decrease 
cMinsup by 1.  Pruning strategy 3 is applied to shrink 
table TT|x∪y.  

Pruning strategy 3: Each tuple t containing rid y in 
TT|x will be deleted from TT|x∪y if size of t (that is the 
number of rids t contains) equals cMinsup. 

Example 4.3 (pruning strategy 3)  Suppose currently 
we have finished dealing with table TT|54 which is 
shown in Table 4.2, and we need to create TT|543 with 
cMinsup being 2.  Then, according to pruning strategy 
2, tuples c1 and d2 will be pruned from TT|543, because 
after excluding rid 3 from these two tuples, their size 
will become less than cMinsup, although currently they 
satisfy the minsup threshold.  As a result, there is only 
one tuple {a1b1} left in TT|543, as shown in Table 4.4. 
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We can get these two tables, TT|x∪y and TT|x’, by 
steps as follows.  First, for each tuple t in TT|x 
containing rid y, delete y from it, and copy it to TT|x’. 
And then check if the size of t is less than cMinsup.  If 
not, keep it and in the meantime put y in the skip-
rowset, otherwise get rid of it from TT|x.  Finally, TT|x 
becomes TT|x∪y, and at the same time TT|x’ is obtained. 

Step 4 is the major output step.  If there is a tuple 
with empty skip-rowset and the largest size, say k, and 
containing rid k in TT|x∪y, then output it.  Since this 
tuple has the largest size among all of the tuples in  
TT|x∪y, there is no other tuple that will contribute to it. 
Therefore, it can be output.  For example, in table 
TT|54 shown in Table 4.2, itemset a1b1 corresponding 
to rowset {1,2,3} can be output as its size is 3 which is 
larger than the size of the other two tuples, and it also 
contains the largest rid 3. 

Step 5 conducts two recursive calls to deal with  
TT|x∪y and TT|x’ respectively.  
 
5 Experimental Study 
 

In this section, we will study the performance of the 
algorithm TD-Close. Experiments for both synthetic 
data sets and real microarray data sets were conducted. 
Carpenter has already shown its much better 
performance than those column enumeration based 
algorithms such as CLOSET [10] and CHARM [11], 
so we only compare our algorithm with Carpenter and 
another column enumeration-based algorithm FPclose, 
which won the FIMI’03 best implementation award 
[15, 16].  All experiments were performed on a PC 
with a Pentium-4 1.5 Ghz CPU, 1GB RAM, and 30GB 
hard disk.  All of the runtimes plotted in the figures 
include both computation time and I/O time. 

For algorithm FPclose, we downloaded the source 
of the implementation from the FIMI repository [17]. 

For algorithm Carpenter, we implement it to our 
best knowledge according to paper [5] and its 
subsequent papers [6, 7, 8], and we also improve it by 
using a faster closeness-checking method, backward 
pruning, which is used in several other algorithms 
dealing with microarray data [6, 8].  The original 
closeness-checking method is that before outputting 
each itemset found currently, we must check if it is 
already found before.  If not, output it.  Otherwise, 
discard it.  This method is slower than the backward 
pruning method, because itemset from very high 
dimensional data set usually contains large number of 
items, and it is not in specific order, so comparison 
with a large number of large itemsets takes long time.  
This is also the reason why some algorithms proposed 
after Carpenter use backward checking method.  

However, when dealing with every rowset, Carpenter 
with backward pruning strategy still needs to scan the 
corresponding conditional transposed table to find the 
largest common rowset, and also needs to scan the 
original transposed table to do backward pruning, so it 
needs lots of scan of the transposed table.  In addition, 
to make the comparison fair, we just use a flat table to 
represent the transposed table TT instead of other data 
structure such as FP-tree that may speed up search to 
some extent. 

5.1 Synthetic Data Sets  

In order to test the performance of our top-down 
strategy based algorithm TD-Close with respect to 
several aspects, we use synthetic data set first.  Figures 
5.1 to 5.8 illustrate the change of running time as 
minsup decreases for data sets with different 
dimensions, tuples, and cardinalities.  We use D#T#C# 
to represent specific dataset, where D# stands for 
dimension, the number of attributes of each data set, 
T# for number of tuples, and C# for cardinality, the 
number of values per dimension (or attribute).  All   
data are generated randomly.  In these experiments, D# 
ranges from 4000 to 10000, T# varies from 100, 150 to 
200, and C# varies from 8, 10 to 12. 

To test the performance of three algorithms with 
respect to the number of dimensions, we created 5 data 
sets with 4000, 6000, 8000 and 10000 dimensions 
respectively.  Figures 5.1 to 5.4 show the effect of 
changing dimensionality on the runtime of these three 
algorithms.   

We can see from Figure 5.1 that as minsup 
decreases, runtime of these three algorithms increases, 
and TD-Close is the fastest among these algorithms. 
Apparently, the increase speed of algorithm TD-Close 
and Carpenter is not fast, while when minsup reaches 
10, the runtime of FPclose increases dramatically.  
This is because when minsup reaches 10, the number 
of frequent one items increases dramatically.  Since 
FPclose is a column enumeration-based algorithm, the 
increase of the number of frequent items will lead to 
the explosion of the number of frequent itemsets which 
are needed to be checked one by one.  On the other 
hand, row enumeration-based algorithms, such as TD-
Close and Carpenter, search the row combination 
space. The number of rows influences the runtime of 
these algorithms much more than the number of 
frequent items does.  The reason that TD-Close uses 
less time than Carpenter is that TD-Close can prune 
the search space much more than Carpenter, and can 
stop search much earlier than Carpenter. 

Figures 5.2 to 5.4 also indicate the same trend as 
shown in Figure 5.1.  What is different is that we 
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cannot get all runtimes for Carpenter and FPclose for 
some datasets. For example, for dataset 
D6000T100C10, we cannot get the runtime for 
Carpenter when minsup is less than 13, and for 
FPclose when minsup is less than 11, which is either 
because it can not run to the end in reasonable time (in 
several hours) or due to memory error occurred during 
running.  Same situations also happen in some of the 
following figures.  
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Figure 5.1 Runtime for D4000T100C10 
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Figure 5.2 Runtime for D6000T100C10 
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Figure 5.3 Runtime for D8000T100C10 

From Figures 5.1 to 5.4, one can clearly see that all 
of these algorithms need more time for data sets with 
more dimensions for the same minsup value, and this is 

due to the rise of the number of itemsets as the number 
of dimensions increases. 
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Figure 5.4 Runtime for D10000T100C10 
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Figure 5.5 Runtime for D4000T150C10 
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Figure 5.6 Runtime for D4000T200C10 
 

To test the runtime of these algorithms with respect 
to the number of tuples, two more data sets are 
produced. One contains 150 tuples and the other 200 
tuples, while dimension is 4000 and cardinality is 10.  
Figures 5.5 and 5.6 show the experimental results.  For 
these two data sets, Carpenter cannot run to 
completion due to too long time needed.  As for TD-
Close and FPclose, we can see that for some relatively 
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high values of minsup, FPclose runs a little faster than 
TD-Close.  However, when minsup becomes relatively 
small, TD-Close runs much faster than FPclose.  The 
reason is the same as explained above.  That is, when 
minsup is high, FPclose can cut the itemset space to 
very small by minsup threshold so the search time is 
limited. But once the number of frequent items 
becomes large, the search space increases 
exponentially, while the number of rows remains 
relative stable. 

In the above two groups of experiments, the 
cardinality of each data set is set to 10, which means 
each dimension of each dataset has 10 distinct values. 
To test the performance regarding different 
cardinalities, two other datasets are created, which 
correspond to 12 distinct values and 8 distinct values 
respectively.  The number of dimension is 4000 and 
the number of tuples is 100.  Experimental results are 
shown in Figures 5.7 and 5.8. 
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Figure 5.7 Runtime for D4000T100C12 
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Figure 5.8 Runtime for D4000T100C8 

Figure 5.7 shows us that when minsup becomes 
small, for example, less than 9, both TD-Close and 
Carpenter spend less time than FPclose.  When 
minsup reaches 6, the runtime of TD-Close and 
Carpenter become almost the same.  This is because 
when minsup becomes very low, the search space can 

be pruned by minsup becomes small, so the time saved 
by this kind of pruning in algorithm TD-Close 
becomes less. 

Comparing with data set D4000T100C12, data set 
D4000T100C8 is relatively denser.  With the same 
minsup threshold, the latter data set will produce more 
frequent patterns.  Figure 5.8 shows almost the same 
features of TD-Close and FPclose.  But obviously, it 
took them much more time than the former data set for 
the same minsup threshold.  That is also the reason 
why we cannot get the exact runtime of Carpenter on 
it. 

From these experimental results, one may see that 
for some relatively high minsup, FPclose is a little bit 
faster than TD-Close.  But in that case, the runtime for 
both TD-close and FPclose is usually less than one 
minute, or only several minutes.  So, the difference is 
not that significant.  However, when minsup becomes 
low, it is obvious that TD-Close outperforms FPclose 
and Carpenter much. 

5.2 Real Data Sets 
Besides testing on the synthetic data sets, we also 

tested our algorithm on three real microarray data sets.  
They are clinical data on ALL-AML leukemia, lung 
cancer and breast cancer [5, 6].  We take the 
corresponding training data sets for experiments. ALL-
AML has 38 rows and 7129 dimensions, Lung Cancer 
has 32 rows and 12533 dimensions, and Breast Cancer 
has 78 rows and 24481 dimensions.  Before using 
frequent pattern mining algorithms, they are all 
discretized using the equi-depth binning method. To 
test the performance on different cardinality, we 
produce two sets of discretized data sets, one with five 
bins for each dimension, and another with 10 bins for 
each dimension.   

The first group of experiments is done for these 
three data sets with 5 bins per dimension. Figures 5.9 
to 5.11 show the runtime of TD-Close, Carpenter, and 
FPclose at different minsup values. Note that the y-
axes in these figures are in logarithmic scale, and we 
plot the figure as minsup increase so that we can see 
the pruning power of minsup clearly.  

Figure 5.9 shows that as minsup increases the 
runtime of both TD-Close and Fpclose reduces 
dramatically, while the runtime of Carpenter remains 
relatively stable.  This is because Carpenter still needs 
to search the rowset space in which the size of each 
rowset is less than minsup although apparently they 
will not satisfy minsup.  This figure also indicates that 
among these three algorithms, TD-Close is the fastest. 
We did not get the runtime of FPclose when minsup is 
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7, because when minsup is 8, it already spends much 
longer time than the other two algorithms. 
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Figure 5.9 ALL-AML Leukemia 
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Figure 5.10 Lung Cancer 
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Figure 5.11 Breast Cancer 

Figure 5.10 tells us almost the same situation as 
Figure 5.9 does. What is different is that FPclose 
cannot run successfully when minsup is 6 due to a 
memory error.  This is because for this dataset, the 
number of dimensions is large.  When minsup is 6, the 
number of itemsets needed to check is huge.  While for 

row enumeration algorithms TD-Close and Carpenter, 
they only check rowsets instead of itemsets, and the 
number of rowsets does not change that dramatically. 

For breast cancer data set, we cannot get the 
rumtime for FPclose when minsup is equal to or less 
than 16 because of memory error (run out of memory). 
Similarly, Carpenter cannot run to completion when 
minsup is 18 after about 11 hours of running.  
Therefore, in Figure 5.11, we can only see the runtime 
for Carpenter when minsup is not less than 71, and the 
runtime for FPclose when minsup is greater than 17. 
For FPclose and TD-Close, when the value of minsup 
is between 20 and 70, the runtime is less than one 
second, so these values are not shown in the x-axis. 

The results of these experiments for the real world 
microarray data sets illustrate that TD-Close and 
Fpclose can make use of the anti-monotonic constraint 
minsup to prune the search space dramatically, while 
Carpenter cannot.  Since the pruning strategies used in 
TD-Close benefit from the top-down search strategy, 
we can conclude that this search strategy is more 
effective and useful compared to the bottom-up search 
strategy for row enumeration-based search algorithms. 
Also, for very high dimensional dataset, row 
enumeration-based algorithm TD-Close outperform 
column enumeration-based algorithm FPclose very 
much. 

 
6 Related Work 
 

Since the last decade, many algorithms [1, 10, 11, 
12, 13, 18, 19] have been proposed to find frequent 
itemsets from not very high dimensional data sets, such 
as transactional data sets.  Suppose there are n different 
items in data set, these algorithms usually adopt a 
bottom-up strategy to search the itemset space that 
could be as large as 2n.  By bottom-up search, these 
algorithms can use the minsup threshold to stop further 
search the superset of an itemset once this itemset does 
not satisfy the minsup threshold.  However, for very 
high dimensional data sets, since n becomes very large, 
the search space becomes huge.  This leads to the low 
performance of these algorithms for very high 
dimensional data. As a result, a new group of 
algorithms [5, 6, 7, 8] were proposed to deal with long 
microarray data.  Our work is directly related to these 
algorithms.  In [5], an algorithm called Carpenter was 
proposed to find all of the frequent closed itemsets.  
Carpenter conducts a depth-first order traversal of the 
row-enumeration as shown in Figure 3.1, and checks 
each rowset corresponding to the node visited to see if 
it is frequent and closed. In [6], an algorithm called 
Farmer is developed to find the set of association-
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based classification rules. Farmer also searches the row 
enumeration tree by depth-first order. In [7], 
Algorithm Cobbler is proposed to find frequent closed 
itemsets by integrating row enumeration method with 
column enumeration method. It shows its high 
performance by conducting experiments on a data set 
with high dimension and a relatively large number of 
rows.   In [8], an algorithm is proposed to find the top-
k classification rules for each row of the microarray 
data set. All of these algorithms aim to facilitate the 
mining of frequent pattern by searching the row 
enumeration space, and they all search the space in a 
top-down style. 
 
7 Conclusions 
 

In this paper we propose a top-down search strategy 
for mining frequent closed patterns from very high 
dimensional data such as microarray data.  Existing 
algorithms, such as Carpenter and several other related 
algorithms, adopt a bottom-up fashion to search the 
row enumeration space, which makes the pruning 
power of minimum support threshold (minsup) very 
weak, and therefore results in long mining process, 
even for high minsup, and much memory cost.  To 
solve this problem, based on our top-down search 
strategy, a top-down style row enumeration method 
and an effective closeness-checking method are 
proposed.  A new algorithm, TD-Close, is designed 
and implemented for mining a complete set of frequent 
closed itemsets from high dimensional data.  Several 
pruning strategies are developed to speed up searching.  
Both analysis and experimental study show that these 
methods are effective and useful.  Future work 
includes integrating top-down row enumeration 
method and column row enumeration method for 
frequent pattern mining from both long and deep large 
datasets, and mining classification rules based on 
association rules using top-down searching strategy. 
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