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Abstract

Sequential patterns mining received much attention in
recent years, thanks to its various potential application
domains. A large part of them represent data as col-
lections of time-stamped itemsets, e.g., customers’ pur-
chases, logged web accesses, etc. Most approaches to
sequence mining focus on sequentiality of data, using
time-stamps only to order items and, in some cases, to
constrain the temporal gap between items. In this pa-
per, we propose an efficient algorithm for computing
(temporally-)annotated sequential patterns, i.e., sequen-
tial patterns where each transition is annotated with
a typical transition time derived from the source data.
The algorithm adopts a prefix-projection approach to
mine candidate sequences, and it is tightly integrated
with an annotation mining process that associates se-
quences with temporal annotations. The pruning capa-
bilities of the two steps sum together, yielding signifi-
cant improvements in performances, as demonstrated by
a set of experiments performed on synthetic datasets.

1 Introduction

Frequent Sequential Pattern mining (FSP) deals with
the extraction of frequent sequences of events from
datasets of transactions; those, in turn, are time-
stamped sequences of events (or sets of events) observed
in some business contexts: customer transactions, pa-
tient medical observations, web sessions, trajectories of
objects moving among locations.

As we observe in the related work section, time in
FSP is used as a user-specified constraint to the purpose
of either preprocessing the input data into ordered se-
quences of (sets of) events, or as a pruning mechanism
to shrink the pattern search space and make computa-
tion more efficient. In either cases, time is forgotten
in the output of FSP. For this reason, in our previous
work [4] we introduced a form of sequential patterns an-
notated with temporal information representing typical
transition times between the events in a frequent se-
quence. Such a pattern is called Temporally-Annotated
Sequence, TAS in short.

In principle, this form of pattern is useful in several
contexts: (i) in web log analysis, different categories of

users (experienced vs. novice, interested vs. uninter-
ested, robots vs. humans) might react in similar ways
to some pages — i.e., they follow similar sequences of
web access — but with different reaction times; (ii) in
medicine, reaction times to patients’ symptoms, drug
assumptions and reactions to treatments are a key in-
formation.

In all these cases, enforcing fixed time constraints
on the mined sequences is not a solution. It is desirable
that typical transition times, when they exist, emerge
from the input data.

The contributions of this paper are the following:

1. We provide a new algorithm for mining frequent
TAS, that is efficient and correct and complete w.r.t.
the formal definition of TAS– whereas the algorithm
given in [4] provides approximate solutions.

2. We propose a new way for concisely representing
sets of frequent TAS’s, making them readable for
the user.

3. We provide an empirical study of the performances
of our algorithm, focusing on the overall compu-
tational cost and on some of the central and most
interesting sub-tasks.

The paper is organized as follows: Section 2 pro-
vides an overview of related work and background in-
formation; Section 3 briefly summarizes the formal def-
inition of the TAS mining problem; Section 4 describes
in detail the proposed algorithm, and then Section 5
provides an empirical evaluation of the system. Finally,
Section 6 closes the paper with some conclusive remarks.

2 Background and related work

In this section we summarize a few works related
to the topic of this paper, and will introduce some
relevant basic concepts and related works on sequential
pattern mining, clustering and estimation of probability
distributions.

2.1 Sequence mining. The frequent sequential pat-
tern (FSP) problem is defined over a database of se-
quences D, where each element of each sequence is a
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time-stamped set of items — i.e., an itemset. Time-
stamps determine the order of elements in the sequence.
E.g., a database can contain the sequences of visits
of customers to a supermarket, each visit being time-
stamped and represented as the set of items bought
together. Then, the FSP problem consists in finding
all the sequences that are frequent in D, i.e., appear as
subsequence of a large percentage of sequences of D.
A sequence α = α1 → · · · → αk is a subsequence of
β = β1 → · · · → βm (α ¹ β) if there exist integers
1 ≤ i1 < . . . < ik ≤ m such that ∀1≤n≤k αn ⊆ βin .
Then we can define the support suppD(S) of a sequence
S as the percentage of transactions T ∈ D such that
S ¹ T , and say that S is frequent w.r.t. threshold smin

if suppD(S) ≥ smin .
Recently, several algorithms were proposed to effi-

ciently mine sequential patterns, among which we men-
tion PrefixSpan [8], that employs an internal represen-
tation of the data made of database projections over se-
quence prefixes, and SPADE [11], a method employing
efficient lattice search techniques and simple joins that
needs to perform only three passes over the database.
Alternative methods have been proposed, which add
constraints of different types, such as max-gap con-
straints and regular expressions describing a subset of
allowed sequences. We refer to [13] for a wider review
of the state-of-art on sequential pattern mining.

2.2 Sequences with time. In [10], Yoshida et al.
propose a notion of temporal sequential pattern very
similar to ours (see [4] or the summary provided in
Section 3). It is called delta pattern, and integrates
sequences with temporal constraints in the form of
bounding intervals. An example of a delta pattern is the

following: A
[0,3]−→B

[2,7]−→C, denoting a sequential pattern
A → B → C that frequently appears in the dataset
with transition times from A to B that are contained
in [0, 3], and transition times from B to C contained
in [2, 7]. While our work shares similar general ideas,
the formulation of the problem is different, and this
leads to different theoretical issues. However, Yoshida
et al. simply provide an heuristics for finding some
frequent delta patterns, do not investigate the problem
of finding all of them, do not provide any notion of
maximal pattern, and do not work out the theoretical
consequences of their problem definition.

Another work along the same direction is [9], where
an extension of delta patterns is proposed, with the
name of chronicles. Essentially, a chronicle represents
a general set of temporal constraints between events,
whereas delta patterns were limited to sequential con-
straints. The former is represented as a graph, its ver-
tices being events and its edges being temporal con-

straints between couples of events. As for delta pat-
terns, constraints are represented as intervals.

Finally, several approaches can be found in litera-
ture for mining temporal patterns from different per-
spectives. Among the others, we mention the following:
[6] defines temporal patterns as a set of states together
with Allen’s interval relationships, for instance “A be-
fore B, A overlaps C and C overlaps B”; [12] proposes
methods for extracting temporal region rules of the form
EC [a, b] ⇒ ET , meaning that any instance of condition
EC is followed by at least one instance of ET between
future a and b time scope. We refer also to [7] for a gen-
eral overview of temporal phenomena in rule discovery.

2.3 Probability distribution estimation and
clustering. Given a continuous distribution, estimat-
ing its probability density function (PDF) from a rep-
resentative sample drawn from the underlying density
is a task of fundamental importance to all aspects of
machine learning and pattern recognition. As it will be
clear from Section 3, also the mining of frequent TAS’s
involves similar problems.

The most widely followed approaches to solve the
density estimation problem can be divided into two cat-
egories: finite mixture models and kernel density esti-
mators. In the former case we assume to be able to
model the PDF as sum of a fixed number of simple
components (usually normally distributed), thus reduc-
ing the PDF estimation problem to the parallel estima-
tion of the statistics of each of the mixture components
and their respective mixing weights. Kernel density
estimators, on the contrary, estimate PDFs as a sum
of contributions coming from all the available sample
points — in some sense, it can be considered a mix-
ture model with as many components as the number
of sample points. Each sample point contributes with
a different weight that is computed by applying a ker-
nel function to the distance between the data point and
the estimation point. Usually a distance threshold is
introduced, called bandwidth, and data points beyond
such distance give a null contribution. Each of these
general estimation approaches gives rise to a family of
clustering methods based on density estimation. Among
the others, we mention the some of the most common
ones: Expectation-Maximization (EM [2]) is a proba-
bilistic model-based clustering method, i.e., a method
which uses mixture models to estimate distributions;
DENCLUE [5] and DBSCAN [3] are two clustering algo-
rithms which estimate density by means of kernel func-
tions (the former approach using any kernel function,
the latter implicitly adopting a spherical, uniform one)
and define clusters through density-connectivity: adja-
cent dense regions fall in the same cluster, thus yielding
arbitrary-shaped clusters such that any two points of a
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cluster are reachable traversing only dense regions.

3 Problem definition

In this section we briefly present the definition of TAS’s
and frequent TAS’s, as described in [4]. As in the case
of ordinary sequential patterns, frequency is based on
a notion of sequence containment relationship which,
in our case, takes into account also temporal similarity.
Finally, we observe that frequent TAS’s are in general too
many (possibly infinite), and formalize our novel mining
problem as the discovery of an adequate clustering of
frequent TAS’s.

Definition 1. (TAS) Given a set of items I, a
temporally-annotated sequence of length n > 0, called
n−TAS or simply TAS, is a couple T = (s̄, ᾱ), where
s̄ = 〈s0, . . . , sn〉, ∀0≤i≤nsi ∈ 2I is called the sequence,
and ᾱ = 〈α1, . . . , αn〉 ∈ Rn

+ is called the (temporal)
annotation. TAS’s will also be represented as follows:

T = (s̄, ᾱ) = s0
α1−→ s1

α2−→ · · · αn−→ sn

Example 1. In a weblog context, web pages (or
pageviews) represent items and the transition times
from a web page to the following one in a user session
represent annotations. E.g.:

( 〈 {’/’}, {’/papers.html’}, {’/kdd.html’} 〉 , 〈 2, 90 〉 )
≡ {’/’} 2−→ {’/papers.html’} 90−→ {’/kdd.html’}

represents a sequence of pages that starts from the root,
then after 2 seconds continues with page ’papers.html’
and finally, after 90 seconds ends with page ’kdd.html’.
Notice that in this case all itemsets of the sequence are
singletons.

Similarly to traditional sequential pattern mining,
we define a containment relation between annotated
sequences:

Definition 2. (τ-containment (¹τ )) Given a time
threshold τ , a n−TAS T1 = (s̄1, ᾱ1) and a m−TAS
T2 = (s̄2, ᾱ2) with n ≤ m, we say that T1 is τ -contained
in T2, denoted as T1 ¹τ T2, if and only if there exists a
sequence of integers 0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. s1,k ⊆ s2,ik

2. ∀1≤k≤n. |α1,k − α∗,k| ≤ τ

where ∀1≤k≤n. α∗,k =
∑

ik−1<j≤ik
α2,j. As special

cases, when condition 2 holds with the strict inequality
we say that T1 is strictly τ -contained in T2, denoted with
T1 ≺τ T2, and when T1 ¹τ T2 with τ = 0 we say that
T1 is exactly contained in T2. Finally, given a set of
TAS’s D, we say that T1 is τ -contained in D (T1 ¹τ D)
if T1 ¹τ T2 for some T2 ∈ D.

2 { a } { c }
43

{ b,d }
7

{ f }

{ a } { b } { c }4 9

7+4=113

T :

T :

1

Figure 1: Example of τ -containment computation

Essentially, a TAS T1 is τ -contained into another
one, T2, if the former is a subsequence of the latter
and its transition times do not differ too much from
those of its corresponding itemsets in T2. In particular,
each itemset in T1 can be mapped to an itemset in
T2. When two itemsets are consecutive in T1 but
their mappings are not consecutive in T2, the transition
time for the latter couple of itemsets is computed
summing up the times of all the transitions between
them, which is exactly the definition of annotations α∗.
The following example describes a sample computation
of τ -containment between two TAS’s:

Example 2. Consider two TAS’s:

T1 = (〈{a}, {b}, {c}〉, 〈4, 9〉) and
T2 = (〈{a}, {b, d}, {f}, {c}〉, 〈3, 7, 4〉)

also depicted in Figure 1, and let τ = 3. Then, in order
to check if T1 ¹τ T2, we verify that:

• s̄1 ⊆ s̄2: in fact the first and the last itemsets of
T1 are equal, respectively, to the first and the last
ones of T2, while the second itemset of T1 ({b}) is
strictly contained in the second one of T2 ({b, d}).

• The transition times between T1 and its correspond-
ing subsequence in T2 are similar: the first two
itemsets of T1 are mapped to contiguous itemsets in
T2, so we can directly take their transition time in
T2, which is equal to α∗,1 = 3 (from {a} 3−→{b, d}
in T2). The second and third itemsets in T1, in-
stead, are mapped to non-consecutive itemsets in
T2, and so the transition time for their mappings
must be computed by summing up all the transi-
tion times between them, i.e.: α∗,2 = 7 + 4 = 11
(from {b, d} 7−→ {f} and {f} 4−→ {c} in T2).
Then, we see that |α1,1 − α∗,1| = |4 − 3| < τ and
|α1,2 − α∗,2| = |9− 11| < τ .

Therefore, we have that T1 ¹τ T2. Moreover, since all
inequalities hold strictly, we also have T1 ≺τ T2.

Now, frequent sequential patterns can be easily
extended to the notion of frequent TAS:
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Definition 3. (τ-support, Frequent TAS) Given a
set D of TAS’s, a time threshold τ and a minimum
support threshold smin ∈ [0, 1], we define the τ -support
of a TAS T as

τ−supp(T ) =
|{T ∗ ∈ D | T ¹τ T ∗}|

|D|
and say that T is frequent in D if τ−supp(T ) ≥ smin .

It should be noted that a frequent sequence s̄
may not correspond to any frequent TAS T = (s̄, ᾱ):
indeed, its occurrences in the database could have highly
dispersed annotations, thus not allowing any single
annotation ᾱ ∈ Rn

+ to be close (i.e., similar) enough
to a sufficient number of them. That essentially means
s̄ has no typical transition times.

Now, introducing time in sequential patterns gives
rise to a novel issue: intuitively, for any frequent
TAS T = (s̄, ᾱ), we can usually find a vector ε̄ of
small, strictly positive values such that T ′ = (s̄, ᾱ + ε̄)
is frequent as well, since they are approximatively
contained in the same TAS’s in the dataset, and then
have very similar τ -support. Since any vector with
smaller values than ε̄ (e.g., a fraction ε̄/n of it) would
yield the same effect, we have that, in general, the raw
set of all frequent TAS is highly redundant (and also not
finite, mathematically speaking), due to the existence of
several very similar — and then practically equivalent
— frequent annotations for the same sequence.

Example 3. Given the following toy database of
TAS’s:

a
1−→b

2.1−→c a
1.1−→b

1.9−→c

a
1.2−→b

2−→c a
0.9−→b

1.9−→c

if τ = 0.2 and smin = 0.8 we see that T = a
1−→ b

2−→ c
is a frequent TAS, since τ−supp(T)=1. However, we see
that the same holds also for a

1.1−→ b
2−→ c and a

1−→
b

2.1−→ c. In general, we can see that any a
α1−→ b

α2−→ c is
frequent whenever α1 ∈ [1, 1.1] and α2 ∈ [1.9, 2.1].

A similar, more complex example is graphically de-
picted in Figure 2, where all frequent TAS’s for the se-
quence s̄ = a → b → c over a toy dataset are plotted:
the dataset is assumed to contain 10 transactions and
each one contains exactly one occurrence of s̄. The an-
notations of each occurrence are plotted as stars and
called dataset points, adopting a terminology that will
be introduced and better explained in later sections.
Then, the darkest (blue) regions correspond to the in-
finitely many annotations ᾱ that make (s̄, ᾱ) a frequent
TAS for smin = 0.3 and τ = 0.1; analogously, the
lighter (green) shaded regions (plus the darkest/blue
ones, implicitly) represent frequent TAS’s for smin = 0.2,
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Figure 2: Sample dataset points and frequent annota-
tions for a

α1−→b
α2−→c

and outlined regions correspond to frequent TAS’s for
smin = 0.1. Obviously enough, smaller smin values gen-
erate larger sets of frequent TAS’s and then correspond
to larger regions in Figure 2.

A natural step towards a useful definition of fre-
quent TAS’s, then, is the summarization of similar anno-
tations (relative to the same sequence) through a single,
concise representation.

The problem of discovering the frequent TAS’s for
some fixed sequence can be formalized within a density
estimation setting in the following way. Each sequence
s̄ = 〈s0, . . . , sn〉 can be associated with the space Rn

+

of all its possible annotations, and so each TAS T =
(s̄, ᾱ∗) (ᾱ∗ ∈ Rn

+) exactly contained in some TAS of our
database corresponds to a point in such space, that we
can call a dataset point. Then, each annotation ᾱ ∈ Rn

+

can be associated with a notion of frequency freq(ᾱ)
that counts the dataset points close to ᾱ, more precisely
defined as the number of dataset points that fall within
a n-dimensional hyper-cube centered on ᾱ and having
edge 2τ . Figure 2 depicts a simple example with 10
dataset points (the stars) over R2

+ and τ = 0.1 (notice
the squares of side length 2τ around each dataset point):
dark regions represent annotations having frequency
equal to 3; lighter regions correspond to frequency 2;
finally, empty outlined regions contain annotations with
frequency 1, while all the remaining points have null
frequency.

We introduce a formal definition and notation for
the two notions mentioned above:

Definition 4. (Dataset points, Annot. freq.)
Given a set D of TAS’s, an integer n ≥ 1, a sequence s̄
of n + 1 elements and a threshold τ , we define the set
of dataset points, denoted as An

D,s̄, as follows:

An
D,s̄ = {ᾱ∗ ∈ Rn

+ | (s̄, ᾱ∗) ¹0 D}
and the frequency of any annotation ᾱ ∈ Rn

+, denoted
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as freqD,s̄,τ (ᾱ), as follows:

freqD,s̄,τ (ᾱ) =
∣∣{ᾱ∗ ∈ An

D,s̄ | ‖ᾱ− ᾱ∗‖∞ ≤ τ}
∣∣

where ‖ᾱ− ᾱ∗‖∞ = maxi |ᾱi − ᾱ∗i |.

We notice that such frequency notion considers all
the possible (annotated) instances of a sequence in
the database transactions and then, in general, differs
from the τ -support of T = (s̄, ᾱ), since a TAS of the
dataset can τ -contain more than one instance of the
same sequence s̄ and thus can yield multiple annotations
for s̄. Viceversa, any number of instances of s̄ appearing
in different transactions and having exactly the same
annotation would be mapped in Rn

+ to the same point,
thus contributing to freqD,s̄,τ only as a single unit.

The notion of frequency described above, essen-
tially corresponds to the estimated probability distribu-
tion that any kernel-based density estimation algorithm
would compute on Rn

+ from the set An
D,s̄ of all dataset

points if it adopted a uniform hypercube Parzen win-
dow (sometimes simply called Parzen window or näıve
estimator) as kernel function, with bandwidth 2τ , i.e., a
kernel computed as product on n independent uniform
(i.e., constant-valued) univariate kernels having band-
width 2τ — which is equivalent to compute a normal-
ized count of the elements contained in a hypercube with
sides of length 2τ . Therefore, the problem of grouping
frequent TAS’s having similar annotations can be ap-
proximatively mapped to the problem of detecting dense
regions on Rn

+.
In the rest of the paper, we will present an algorithm

for discovering and concisely represent frequent TAS’s,
that is based on the above described correspondence
between frequency of TAS’s in a dataset and density of
annotations in an annotation space.

4 The algorithm

The pattern generation schema presented in this paper
adopts and extends the PrefixSpan [8] projection-based
method: for each frequent item a, a projection of the
initial dataset D is created, denoted as D|a, i.e., a
simplification which (i) contains only the sequences of
D where a appears, (ii) contains only frequent items,
and (iii) on each sequence the first occurrence of a and
all items that precede it are removed. In this case, the
single-element sequence a is called the prefix of D|a. The
fundamental idea is that any pattern starting with a can
be obtained by analyzing only D|a, which in general
is much smaller than D. Then, each item b which is
frequent in D|a will correspond to a frequent pattern
ab in D (or (ab), depending on how b is added to the
existing prefix), and a new, smaller projection D|ab (or
D|(ab)) can be recursively computed and used for finding

longer patterns starting with ab (or (ab))1.
In order to take full profit of the temporal con-

straints implicit in the definition of TAS’s, prefix-
projections are enriched with some information related
to time and annotations. In particular, projected se-
quences are replaced by T-sequences:

Definition 5. (T-sequence) Given a projected,
time-stamped sequence S = 〈(s1, t1), . . . , (sn, tn)〉, ob-
tained as projection of sequence S0 w.r.t. prefix s∗ (i.e.,
S = S0|s∗), we define a T-sequence for S as the couple
(S, A), where S will be called the temporal sequence,
and A = 〈(a1, e1), . . . , (am, em)〉 is the annotation
sequence: each couple (ai, ei) represents an occurrence
of the prefix s∗ in the original sequence S0, ai being
the sequence of time-stamps of such an occurrence2,
and ei being a pointer to the element of S where the
occurrence terminates, or the symbol ∅ if such element
is not in S. Pointers ei will be called entry-points.

As described in Section 3, given a sequence each
transaction of the dataset is mapped into a set of anno-
tations, corresponding to all the possible occurrences of
the sequence in the transaction. T-sequences explicitly
incorporate such information in the sequence, together
with the exact point in the sequence where the occur-
rence ends.

Example 4. Given the time-stamped sequence S =
〈({a}, 1), ({a, b}, 2), ({b, c}, 3), ({a}, 4)〉, the T-sequence
obtained for prefix a will be the couple (S|a, A), where:

S|a = 〈({a, b}, 2), ({b, c}, 3), ({a}, 4)〉
A = 〈(〈1〉, ∅), (〈2〉,→ 2), (〈4〉,→ 4)〉

Here, for readability reasons, the notation → 2 stands
for “pointer to element having time = 2”. The first
occurrence of ’a’ was moved into the prefix, so it
does not appear in S|a, and therefore its corresponding
pointer is set to ∅. In this case, only a single time-stamp
appears in each element of the annotation sequence,
since the prefix has length 1. Now, if we project S|a
w.r.t. b, we obtain prefix ’ab’ and:

S|ab = 〈({b, c}, 3), ({a}, 4)〉
A = 〈(〈1, 2〉, ∅), (〈1, 3〉,→ 3), (〈2, 3〉,→ 3)〉

We notice that (i) now we have two time-stamps for
each occurrence of the prefix; (ii) projecting w.r.t. ’(ab)’

1Hereafter, adopting quite standard conventions, we will call
each itemset of a sequence an element of the sequence. Moreover,
sequences are also represented as strings of items, with parenthesis
around items in the same element, e.g.: a(abc)(ac).

2Notice that annotation sequences contain time-stamps and
not transition times (as opposed to TAS’s): when needed, the
latter are simply computed on-the-fly from the former.
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would yield a single occurrence having only one time-
stamp, because the two items fall in the same element
of the sequence; (iii) in the example the last two oc-
currences end at the same sequence location, but with
different time-stamps, reflecting two different paths for
reaching the same point.

As it will be clearer at the end of this section, the
advantage of using T-sequences is twofold:

• the annotation sequence corresponding to a prefix
can be exploited to incrementally compute the
annotation sequence of longer prefixes;

• the results of the frequent annotation search step
can be exploited to eliminate some occurrences of
the prefix (i.e., some elements of its annotation
sequence). As an effect, it can (i) make faster the
above mentioned computation of annotations, and
(ii) allow, in the cases where all elements in the
annotation sequence are deleted, to eliminate the
whole T-sequence from the projection.

Algorithm: MiSTA
Input: A dataset Din of time-stamped sequences, a
minimum support smin , a temporal threshold τ
Output: A set of couples (S,D∗) of sequences with
annotations

1. L = 0, P0 = {Din × {〈〉}}; //Empty annotations

2. while PL 6= ∅ do
3. PL+1 = ∅;
4. for each P ∈ PL do
5. if P.length ≥ 2 then
6. A= Extract annotation blocks(P );
7. D= Compute density blocks(A);
8. D∗ = Coalesce density blocks(D);
9. P ∗ = Annotation-based prune(P , D∗);

10. Output (P.prefix,D∗);
11. else P ∗ = P ; //No annotations, yet

12. for each item i ∈ P ∗ do
13. if P∗.enlarge support(i) ≥ smin then
14. PL+1 = PL+1 ∪ { enlarge proj(P ∗, i) };
15. if P∗.extend support(i) ≥ smin then
16. PL+1 = PL+1 ∪ { extend proj(P ∗, i) };
17. L++;

Figure 3: Main algorithm for TAS mining

The overall algorithm is summarized in Figure 3.
Steps 5–11 handle annotations, while all the others are
essentially the same of PrefixSpan. In particular, steps
12–16 generate all sub-projections of the actual pro-
jection, separately performing enlargement projections,
that add the new item to the last element of the prefix

(therefore not changing the length of the sequence, but
only making its last element one item larger), and exten-
sion projections, that add a new element to the prefix –
a singleton containing only the new item. When a sub-
projection P is computed, some data structures used in
the main program are updated:

• P.prefix: the prefix of projection P ;

• P.length: the length of P’s prefix, computed as
number of elements;

• P.enlarge support(i): support of item i within P ,
only counting occurrences of i that can be used in
a enlargement projection;

• P.extend support(i): support of item i within P ,
only counting occurrences of i that can be used in
a extension projection.

Briefly, annotations are processed as follows: first
(step 6), annotations are extracted from the projec-
tion, by scanning all annotation sequences, and their
(hyper-cubical) areas of influence are computed; then
(step 7), by combining them the space of annotations is
partitioned into hyper-rectangles of homogeneous den-
sity, and such density is explicitly computed; therefore
(step 8), such hyper-rectangles are merged together try-
ing to maximize a quality criterium discussed in a later
section; finally (steps 9-10), such condensed annotations
are outputted and annotation sequences are filtered by
eliminating all occurrences whose area of influence is
not of any use in computing dense annotations. The
steps listed above and the enlargement/extension pro-
jection procedure are discussed in detail in the following
sections.

We remark that the objectives and results of
density-based clustering differ from those of the density
estimation task we are involved here. Indeed, the for-
mer focuses on partitioning the input set of points, and
the density information is only a means for establish-
ing a notion of connectivity between points. Therefore,
existing density-based algorithms (and sub-space clus-
tering algorithms in particular) cannot be applied for
our purposes.

4.1 T-sequences projection. As already men-
tioned, our projections are composed of T-sequences,
that differ from simple sequences in that they carry
complete information on the location and annotation
of each (useful) occurrence of the projection prefix in
the sequence. That means, in general, that computing
projections will require extra steps to keep annotation
sequences up-to-date. That is especially true for exten-
sion projections, as summarized in Figure 4. In this
case (steps 4–6), each annotation has to be extended
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with each occurrence of the projecting item successive
to the entry-point of the former – that becomes another
step appended to the path described by the annotation
element. That can be seen in Example 4 when project-
ing S|a w.r.t. b: the first annotation has a ∅ entry-point,
and so it can be extended with both the occurrences of
b in S|a, yielding two annotation elements with time-
stamps 〈1, 2〉 and 〈1, 3〉. The second annotation, in-
stead, could be extended only with the second occur-
rence – the only one to be located after the entry-point
(2). Finally, there is no occurrence after location 4, so
the last annotation could not be extended at all.

This step has a O(mn) complexity, m being the
number of occurrences of the item in the sequence,
and n being the length of the annotation sequence. In
situations with an high repetition of the same item in a
sequence, that can become a quite expensive task.

Algorithm: extend proj(P,i)
Input: A projection P and an item i
Output: A projection of P w.r.t. i
1. P ′ = ∅;
2. for each T-sequence T = (S,A) ∈ P : i ∈ T do
3. S′ = S|i and A′ = 〈〉;
4. for each annotation (a, e) ∈ A do
5. for each (s, t) ∈ S s.t. i ∈ s ∧ t > e do
6. A′ = append(A′, (append(a, t),→ t));
7. P ′ = P ′ ∪ {(S′, A′)};
8. return P ′;

Figure 4: Extension projection procedure

The case of enlargement projections (Figure 5) is
much simpler: for each annotation of the T-sequence
to project, we just need to check if the sequence
element (s, t) pointed by the corresponding entry-point
contains the projecting item i. Indeed, performing an
enlargement projection w.r.t. i, essentially means to
enlarge the last element of the projection prefix with i.
Since (s, t), for construction, already contains such last
prefix element, we need to check only the presence of i.
Therefore, the cost is simply linear in the length of the
annotation sequence, reflected by the fact that step 5
here is a simple condition check, while in the extension
projection a scan of (part of) the sequence was needed3.
Notice that in case of positive result (step 6), the old
annotation is simply kept unchanged.

3We remark that annotations make this kind of projection eas-
ier than what happens in the standard PrefixSpan algorithm: al-
though the authors in [8] omit this detail, enlargement extensions
in general would require a scan of the whole sequence, searching
for an element that contains both the last element of the prefix
and the projecting item.

Algorithm: enlarge proj(P,i)
Input: A projection P and an item i
Output: A projection of P w.r.t. i
1. P ′ = ∅;
2. for each T-sequence T = (S,A) ∈ P : i ∈ T do
3. S′ = S|i and A′ = 〈〉;
4. for each annotation (a, e) ∈ A do
5. if e points to element (s, t) ∈ S and i ∈ s
6. then A′ = append(A′, (a, e));
7. P ′ = P ′ ∪ {(S′, A′)};
8. return P ′;

Figure 5: Enlargement projection procedure

4.2 Extracting annotation blocks. As discussed
in Section 3, an annotation makes a sequential pattern
frequent when it is similar to at least smin dataset
points, i.e., annotations taken directly from the input
data. Therefore, the general method adopted in this
work for discovering frequent TAS’s, given a sequence,
is the following: (i) collect all dataset points and build
their corresponding influence areas, i.e., the hyper-cubes
centered in each dataset point and having edge 2τ ;
then, (ii) define the frequency (or support, or density)
of an annotation as the number of such hyper-cubes
it intersects; (iii) all areas (that, for construction, will
have a hyper-rectangular shape) having frequency not
smaller than smin are outputted as frequent annotations.

Now, as previously noticed, more than one dataset
point can arise from a single input sequence while, on
the other hand, the definition of τ -support requires to
count the number of matching input sequences – and
not dataset points. In order to fix this mismatch,
the algorithm builds the set of hyper-cubes as follows
(see Figure 6): for each T-sequence in the projection,
first (step 5) collect all its dataset points for the given
sequence to annotate; then build the corresponding
hyper-cubical influence areas and merge them (steps
6–7); finally, partition the resulting area into disjoint
hyper-rectangles, and add them to the collection of
influence areas (steps 8–9). This way, redundancy in the
area coverage is eliminated, and each annotation that is
covered by the processed T-sequence will intersect only
one hyper-rectangle.

The “normalized” (disjoint) hyper-rectangles ob-
tained in this step are called annotation blocks, and are
the input for the successive steps of the algorithm, de-
scribed in the next sections.

4.3 Computing annotation densities. In order to
be able to discover and represent all the frequent an-
notations for a given sequence, we divide the annota-
tion space in regions of homogeneous density, and select
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Algorithm: Extract annotation blocks(P)
Input: A projection P
Output: A set of hyper-rectangles, representing the
influence areas of each T-sequence in P .

1. A = ∅;
2. for each T-sequence T = (S,A) ∈ P do
3. AT = ∅;
4. for each annotation (a, e) ∈ A do
5. Derive annotation ᾱ from time-stamps a;
6. h = hyper-cube with center ᾱ and edge 2τ ;
7. Merge h with AT ;
8. Partition AT into a set of hyper-rectangles A′;
9. A = A ∪A′;

10. return A;

Figure 6: Extracting annotation blocks

those with a sufficiently high density. From an abstract
viewpoint, that can be achieved by simply collecting
the extreme coordinates of each annotation block along
some dimension d, then split the space in correspon-
dence of such values, and recursively re-apply the same
process on the result for all the other dimensions. In
Figure 7 we report an algorithm that performs such op-
eration dimension by dimension, exploiting the known
(decreasing) monotonicity property of density w.r.t. di-
mensionality of space. Thanks to this property, if a
(segment of) space is not dense, all of its subspaces
will be not dense: since we are looking for dense hyper-
rectangles, in those cases we can safely stop the splitting
process, avoiding to perform it along all the remaining
dimensions.

More in detail, steps 1–2 set up the boundaries for
the splits along the d-th dimension. Each boundary and
the successive one locate an interval: step 4 performs a
split for each interval, and step 5 checks the density
threshold (equal to smin). The splitting is recursively
applied (step 12) to all intervals that pass the density
check, until all dimensions have been split (step 7).
In the latter case, all the intervals collected along the
recursive calls of the procedure (see step 6) are combined
to extract the hyper-rectangle they locate (step 8),
which is added to the output (D) and is associated with
its density measure (steps 9–10). Figure 8(a) depicts
a sample 2-dimensional result obtained by applying
the algorithm to a synthetic dataset: darker regions
represent higher densities, and the extracted blocks are
artificially divided by white lines to better locate them.

This algorithm has a high worst case complexity,
essentially equal to O(nd), n being the number of input
annotation blocks and d their dimensionality. However,
the concrete cost of the method strongly depends on the
overall density of the space searched. Empirical tests

Algorithm: Compute density blocks(A)
Input: A set of hyper-rectangles in Rd

Output: A set of hyper-rectangles and their density.
1. D = ∅;
2. Recursive density(A, d, 〈〉,D);
3. return D;

Algorithm: Recursive density(A, d, Ĥ,D)
1. B = {x|[l1, h1]× · · · × [ln, hn] ∈ A, x ∈ {ld, hd}};
2. B̂ =sorted sequence(B);
3. for(i = 1; i < |B̂|; i + +) do
4. Ai = {[l1, h1]× · · · × [ln, hn] ∈ A |

[ld, hd] ∩ [B̂i, B̂i+1] 6= ∅};
5. if |Ai| ≥ smin then
6. Ĥ ′ = append((ld , hd), Ĥ );
7. if d=1 then
8. ĥ = [l1, h1]× · · · × [ln, hn] given that

Ĥ ′ = 〈(l1, h1), . . . , (ln, hn)〉;
9. D = D ∪ {ĥ};

10. ĥ.density = |Ai|;
11. else
12. Recursive density(Ai, d− 1, Ĥ ′,D);

Figure 7: Computing dense annotation blocks

show that in several situations such cost remains under
control, especially thanks to the fact that the maximal
dimensionality of the space is typically limited, seldom
above 10, and almost never above 20.

4.4 Coalescing annotation densities. The output
of the task described in the previous section is a
set of hyper-rectangles, each compactly representing a
(infinite) set of frequent annotations (i.e., annotations
that make the given candidate sequence a frequent
TAS). As implicitly shown in Figure 7 (steps 4 and 8
of the recursive procedure), the n-dimensional hyper-
rectangles obtained by the algorithm can be nicely
written as the cartesian product of n 1-dimensional
intervals: h = [l1, h1] × · · · × [ln, hn]. Therefore, each
output sequence A0 → · · · → An with any of its dense
hyper-rectangles h = [l1, h1]×· · ·× [ln, hn] is essentially
ready for presentation to the user in a compact, written
form as follows:

A0
[l1,h1]−→ A1

[l2,h2]−→ · · · [ln,hn]−→ An

meaning that any annotation having components within
the specified intervals is frequent. In the rest of the
paper we will call such writing a elementary TAS-set.

However, the output of the Compute density blocks
algorithm is typically composed of a large number of
small hyper-rectangles, even in the cases in which they
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(a) (b)

Figure 8: Sample result of Compute density blocks (a)
and refinement obtained by Coalesce density blocks (b)

completely cover large regions of space. It is the case,
for example, of the upper-right, darker colored section
of Figure 8(a): there, a large rectangular region can be
easily spotted, but it is divided into many sub-rectangles
of slightly variable density. Outputting such result in a
tabular format as shown above, would yield a long and
quite unreadable list of patterns. The problem can be
solved by performing some form of simplification of the
structure of hyper-rectangles, trying to maximize some
quality criterium.

In this paper we will follow a simple idea: the user
should receive a sequence of elementary TAS-sets to be
interpreted as a series of successive approximations of
the real set of dense annotations. Moreover, such ap-
proximation could disregard the exact density informa-
tion, so that adjacent regions with different densities
(yet always beyond the minimum support) could col-
lapse if that yields a better result. Therefore, the dense
hyper-rectangles obtained so far should be reorganized
(merged and/or split) in order to build a sequence of el-
ementary TAS-sets such that the first outputted should
provide the best possible approximation of the complete
output, the second one should refine the approximation
at the best, and so on. The key quality criterium we will
adopt for evaluating an approximation is the coverage,
i.e., the percentage of annotations (in a volumetrical
sense) that is represented by the approximation.

Figure 9 shows a simple greedy algorithm that tries
to solve the above mentioned problem. A initial dense
hyper-rectangle is randomly chosen (step 3), and is
repeatedly extended along the dimension and direction
that yields the maximum increase in volume (steps 4–
11). At each iteration, the hyper-rectangles covered this
way are merged together and removed from the input

Algorithm: Coalesce density blocks(D)
Input: A set of dense hyper-rectangles
Output: A sequence of hyper-rectangles, covering the
same volume as D but yielding a better approximation
series.

1. S = ∅;
2. while D 6= ∅ do
3. Select a random h ∈ D and let D = D − {h};
4. for each extension direction dir for h do
5. Vdir = volume of hyper-rectangle obtained

by extending h along direction dir;
6. Ddir = set of hyper-rectangles of D covered

by the extension along dir;
7. if one extension was found then
8. ext = arg maxdir Vdir;
9. h = h ∪ (⋃

h′∈Dext
h′

)
;

10. D = D −Dext;
11. goto step 4.
12. S = append(S, h);
13. return A;

Figure 9: Coalescing dense annotation blocks

rectangle set (steps 9–10). When no more extensions
are possible, the obtained rectangle is added to the
output (step 12). Then, the process is repeated on
the remaining input rectangles, until all rectangles have
been processed.

Figure 8(b) shows the result obtained by applying
the method described above to the dense rectangle of
Figure 8(a). As we can see, the dense region was highly
simplified, reducing the number of rectangles from 89 to
only 10. We notice, moreover, that there is no more the
information on density, since heterogeneous rectangles
were merged together. Alternative solutions may leave
an approximate density information in the coalesced
rectangles, such as the average, minimum or maximum
density in the rectangle.

4.5 Annotation-based projection pruning. By
knowing the dense annotations associated with a pro-
jection and its prefix, it is possible to divide the set of all
the occurrences of the prefix in the projection into two
categories: (i) the occurrences that contributed to form
dense annotations, and (ii) those that did not. Each
occurrence corresponds to a dataset point, that con-
tributes to define the density in the annotation space
within its hyper-cubical neighborhood. If no annota-
tion within such neighborhood is dense, that means that
such dataset point could have safely been disregarded in
the density evaluation process, since no interesting re-
gion would have been affected, and no dense annotation
would have been missed. Now, sub-projecting a pro-
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jection means (also) to extend all its annotations by a
temporal component – unless we are performing an en-
largement projection, in which case annotations are left
unchanged (see Section 4.1). Therefore, by means of
projections all dataset points move from an annotation
space to a higher-dimensional one: dense regions can
become, in the new space, rarefied, while rarefied re-
gions will always remain so. Therefore, dataset points
that do not contribute to any dense region for a given
projection/prefix, will always do the same for any ex-
tension of such prefix. That is to say, occurrences (i.e.,
their corresponding dataset points) that become useless
at some stage of the computation, will remain useless till
the end, and therefore can be safely eliminated before
performing any new projection. Finally, we notice that
a T-sequence that does not contain any useful occur-
rence of the prefix can only generate (larger) useless oc-
currences when projected. Therefore, when all dataset
points of a T-sequence are eliminated, the T-sequence
itself can be safely deleted.

The filtering process described above yields two
main (positive) effects: (i) it reduces the number of
dataset points to check in each T-sequence, making the
successive annotation updates and density estimation
processes faster; (ii) a number of T-sequences of the
processed projection can be deleted, thus shortening the
projection itself. In particular, if the projection remains
with less than smin T-sequences, the projection process
can be safely stopped, since no item can be frequent in
such projection, and then no sub-projection could be
performed later.

5 Experiments

In this section we show some experimental results
obtained on synthetic datasets and aimed at assessing
the performances of our algorithm. We will analyze
the effects of input parameters on execution times,
compare the performances with those of the PrefixSpan
algorithm, and finally provide some details related to
the extraction and treatment of dense annotations.
Where not otherwise specified, experiments use datasets
having around 100k sequences, smin=0.5% and τ = 1.
The algorithm, implemented as a C++ command line
application4, was tested on a 2GHz Intel Xeon dual
processor with 1GB RAM, running a RedHat 7.3 Linux
operating system.

5.1 Synthetic dataset generation. In this work we
extended the sequential pattern generator of [1] in or-
der to enforce also typical transition times in the oc-
currences of the patterns. In particular, our genera-
tor associates each pattern with a random number of

4Downloadable at http://ercolino.isti.cnr.it/software.

typical annotations, chosen between 1 and 4. Then, a
time-stamp is assigned to each element of the generated
dataset sequences. In particular, transition times be-
tween consecutive elements in each sequence vary from
0 to 1, assuming randomly distributed values. Then,
each time the original data generator inserts a sequen-
tial pattern into a dataset sequence, the annotation as-
sociated with the pattern is perturbed by a normally
distributed noise and the results are used as transition
times of the actual instance of the pattern.

5.2 Relative global performances. As we can see
in Figure 10, the algorithm scales almost linearly w.r.t.
the dataset size and, as expected for any frequent
pattern mining tool, performances quickly decrease
when smaller minimum support thresholds are applied.
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Figure 10: Exec. time vs. dataset size and smin

Another key characteristic of data for sequential
pattern algorithms is the average length of dataset
sequences, which influences the number of frequent
patterns present in the dataset, and, in our specific
case, determines the quantity of annotations to be
generated/updated at each projection. As Figure 11
shows, execution times quickly grow (apparently more
than linearly) as the average sequence length grows,
confirming our expectations.

5.3 Comparison with PrefixSpan. Being an ex-
tension of the PrefixSpan approach, it is natural to com-
pare our algorithm with it. That is expected to clarify
if and in which cases the overhead introduced by han-
dling annotations is balanced by the additional pruning
it allows. Experiments were performed by means of an
implementation of PrefixSpan written by us, which later
became the core prefix-projection engine at the base of
our algorithm. Figure 12 summarizes the results of the
comparison, where our algorithm was run with different
values of the τ parameter.
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Figure 11: Exec. time vs. average sequence length
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Figure 12: Comparison vs. PrefixSpan, with various τ

The graph essentially says that for small values
of τ the pruning power of annotations overcomes its
overhead, while the opposite happens with larger values
of τ . That can be easily explained by observing that
a large τ makes the area of influence of datapoints big,
and therefore larger parts of the annotation space will
be dense. As a consequence, a smaller number of dataset
points will be eliminated, making the pruning strategy
less effective. On the opposite, smaller values for τ
produce a more rarefied annotation space, and therefore
a larger quantity of dataset points become useless.

5.4 Computing annotations. Since the greatest
novelty of our approach lies in the treatment of frequent
annotations, special attention will be paid to the proce-
dures that implement that aspect. In particular, we will
analyze the cost of computing dense annotation blocks
(Section 4.3) and the cost of simplifying them through
coalescing (Section 4.4). Moreover, we will quantify
both the fragmentation of the dense annotation blocks

outputted by the first step, and the simplification power
of the second one.
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Figure 13: Computing density blocks
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Figure 14: Coalescing density blocks

Figures 13 and 14 plot the average execution time of
both tasks at three successive stages of the computation,
i.e., the three curves in each plot represent the time
required (on average) to discover dense annotations and
to simplify them on a d-dimensional annotation space,
with d varying from 1 to 3. Comparing the two graphs
(notice the log-scale on the vertical axis) we can derive
that coalescing is a much cheaper operation than the
discovery of dense annotation areas (around 1-2 orders
of magnitude cheaper). However, the cost of both tasks
grows quite smoothly with the size of the dataset, while
they are heavily affected by the dimensionality of the
annotation space – a unit increment in d apparently
causes a growth of an order of magnitute in execution
times.

We end the experimental evaluation by measuring
the average number of dense hyper-rectangles found
for each size of the annotation space dimensionality.
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Figure 15: Raw density blocks generated per pattern

The objective is to give an idea of how fragmented the
dense areas are before performing the coalescing step:
the higher the dispersion, the more motivated is the
coalescing step – although, in any case, it was shown
to be a quite inexpensive task. As shown in Figure
15, the average number of (dense) hyper-rectangles
generated for each pattern grows linearly with the
dataset size, and increases faster on lower dimensions.
In our experiments, such number of hyper-rectangles
varies approximatively from 500 to 3000, and therefore
is definitely too large for presenting the output to the
user without any postprocessing.

Finally, we evaluate the impact of the coalescing
procedure of the raw set of dense hyper-rectangles,
by measuring the ratio of rectangles that survive the
coalescing step. The smaller the ratio, the stronger the
simplification power. Figure 16 clearly summarizes the
results: the simplification power is very high on the
1-dimensional annotation spaces, but quickly shrinks
at higher dimensionalities, yet always remaining at
moderately good values – in our experiments, the
survival ratio never exceeded 1/7. Moreover, the larger
is the dataset, the stronger is the impact of coalescing.

6 Conclusions

In this paper we presented an efficient algorithm for
computing frequent TAS’s, based on the tight coupling
of a prefix-projection strategy with a dense annotation
discovery and pruning phase. Then, an experimental
section was provided, that described in detail its be-
havior w.r.t. different parameters settings and different
(synthetic) datasets.

The future work along this line of research includes
several aspects, among which we mention the following:
(i) validation on large, real datasets; (ii) low-level opti-
mization of the algorithm, including support for paral-
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Figure 16: Survival ratio of blocks after coalescing

lel computation; and (iii) extension of the paradigm to
other, non temporal-only, contexts, such as spatial and
spatio-temporal ones.
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