
Mining frequent closed itemsets out of core

Claudio Lucchese∗ Salvatore Orlando† Raffaele Perego‡

Abstract
Extracting frequent itemsets is an important task in many
data mining applications. When data are very large, it
becomes mandatory to perform the mining task by using
an external memory algorithm, but only a few of these
algorithms have been proposed so far.

Since also the result set of all the frequent itemsets is
likely to be undesirably large, condensed representations,
such as closed itemsets, have recently gained a lot of atten-
tion. In this paper we discuss the limitations of the partition-
ing techniques adopted by external memory algorithms for
extracting all the frequent itemsets, when applied to closed
itemsets mining. The main issue is that the closedness of an
itemset cannot be evaluated only using the local knowledge
available in a single partition of the input dataset. A further
step is thus needed to correctly merge the partial results. We
introduce the first algorithm for mining closed itemsets out
of core. The algorithm exploits a divide-et-impera approach,
where the input dataset is split into smaller partitions, such
that not only they can be loaded, but also they can be mined
entirely into the main memory. Moreover, we devised a sim-
ple technique based on a new theoretical result that allows
us to reduce the problem of merging partial solutions to an
external memory sorting problem.

1 Introduction
Frequent Itemsets Mining (FIM) is a demanding task com-
mon to several important data mining applications that looks
for interesting patterns within databases (e.g., association
rules, correlations, sequences, episodes, classifiers, clusters).
The problem can be stated as follows. Let I = {a1, ..., aM}
be a finite set of items, andD a dataset containing N transac-
tions, where each transaction t ∈ D is a list of distinct items
t = {i1, ..., iT }, ij ∈ I. We call k-itemset a sequence of k
distinct items I = {i1, ..., ik} | ij ∈ I. Given a k-itemset I ,
let supp(I) be its support, defined as the number of trans-
actions in D that include I . Mining all the frequent itemsets
from D requires to discover all the itemsets having a support
higher than (or equal to) a given threshold min supp. This

∗University Ca’ Foscari of Venice, Department of Computer Science.
Via Torino 155, 30172 Mestre (VE), Italy. clucches@dsi.unive.it.

†University Ca’ Foscari of Venice, Department of Computer Science.
Via Torino 155, 30172 Mestre (VE), Italy. orlando@dsi.unive.it.

‡High Performance Computing Laboratory, ISTI-CNR. Via G. Moruzzi
1, 56126 Pisa (PI), Italy. r.perego@isti.cnr.it.

requires to browse the huge search space given by the power
set of I.

The FIM problem has been extensively studied in the
last years. Several variations to the original Apriori algo-
rithm [1], as well as completely different approaches, have
been proposed [12, 6, 14, 21, 2, 17, 7, 11, 3]. Unfortu-
nately, the collection of frequent itemsets extracted from a
dataset is often very large. This makes the task of the analyst
hard, since s/he has to extract useful knowledge from a huge
amount of frequent patterns.

Closed itemsets are a solution to this problem. They
are a condensed, i.e. both concise and lossless, representa-
tion of a collection of frequent itemsets. They are concise
since a collection of closed itemsets is orders of magnitude
smaller than the corresponding collection of frequents. This
allows to use very low minimum support thresholds, which
would make the extraction of all the frequent itemsets in-
tractable. Moreover, they are lossless, because it is possi-
ble to derive the identity and the support of every frequent
itemset in the collection from them. Since when we mine
closed itemsets, we implicitly discard redundancies, extract-
ing association rules directly from them has been proven to
be more meaningful for analysts [18, 20]. Hence, many ef-
ficient Frequent Closed Itemsets Mining (FCIM) algorithms
have been recently proposed [10, 15, 19, 4, 13, 22, 20].

Several efficient mining algorithms that solve the FIM
problem work in-core. Unfortunately, real world datasets
may be huge, so that these algorithms cannot store all the
data in main memory. To address this issue, a few FIM out-
of-core algorithms have been designed [16, 5]. They exploit
a divide-et-impera approach, by subdividing the original
dataset into partitions that can be separately loaded and
mined in the main memory. Such out-of-core techniques can
be profitably utilized also in case of severe space constraints,
e.g. because users have limited capabilities in resource
utilization. Consider, for example, a multi-user server, in
which single user programs are disallowed to allocate all the
main memory available, to avoid swapping all the others.

The problem of mining frequent closed itemsets out-of-
core is even tougher. The property of being closed is, in fact,
a global property of an itemset in the context of the whole
collection of frequent itemsets of the dataset. Itemset closed-
ness can not be thus decided on the basis of the knowledge
available in a single partition of the input dataset only. This
means that the partitioning-based divide-et-impera approach

417



is harder to apply than in the FIM case. By separately mining
with a FCIM algorithm the partitions of a dataset we may in
fact generate frequent itemsets that are not globally closed
in the whole dataset. These itemsets are to some extent
spurious, since their existence could be inferred from the
closed ones. A further step is thus needed in the FCIM case
to correctly merge the partial results obtained, by removing
redundancies from the final result.

Another important issue is that most of the in-core
FCIM algorithms usually keep the entire collection of fre-
quent closed itemsets mined so far in main memory, for
checking whether an itemset is globally closed or not. This
makes the realization of an out-of-core FCIM algorithm even
more challenging, since it has to deal with strict and pre-
dictable memory constraints.

Our final goal is thus to design an intelligent partitioning
technique that allows to mine small subsets of the original
datasets entirely in main memory, and a merging strategy
able to derive the whole collection of closed itemsets from
the local results obtained from each partition.

Contribution With this paper we contribute the first algo-
rithm for mining closed itemsets in external memory. We
base our algorithm on DCI CLOSED, a previously proposed,
in-core FCIM algorithm [10]. Given a dataset and a mini-
mum support threshold, DCI CLOSED efficiently performs
the mining task using a bounded and predictable amount
of memory. This allow us to determine precise bounds
on the size of partitions, and to be sure that they can be
surely stored and processed separately in main memory us-
ing DCI CLOSED as a mining engine.

To merge partial local results in an efficient way, by
fulfilling the requirement concerning memory occupation,
we devised a simple technique based on a new theoretical
result. This allows the problem of discarding spurious
itemsets to be reduced to the problem of external memory
sorting.

2 Towards an Out-of-Core Closed Itemsets Mining
Algorithm

To design a new out-of-core FCIM algorithm, we used the
same framework adopted by state-of-the-art FIM out-of-core
algorithms. Since we assume that the whole dataset cannot
be mined in the main memory available, we exploit a divide-
et-impera approach through the following steps:

1. Subdivide the original dataset into smaller datasets that
can be separately processed entirely in main memory.

2. Independently mine each partition in main memory
by using a FCIM algorithm, with low and predictable
memory requirements.

3. Merge in external memory the local results obtained

from each dataset partition by removing redundancies.

It is clear that the overall effectiveness of this three-
phase algorithm depends on the partitioning strategy. The
challenge is to devise a partitioning which creates as few
subproblems as possible from the original dataset, and that,
at the same time, allows a fast merging of the local results in
order to get the actual solution of the mining task.

In the following, we will investigate the above three
phases of our ideal algorithm. First, in Section 3 we
introduce closed itemsets and related issues, and we motivate
the choice of an algorithm well suited for mining closed
itemsets in-core using bounded amounts of memory. Then,
Section 4 discusses some out-of-core FIM algorithm, and
their partitioning strategies. One of these strategies will be
chosen, by showing its advantages in the context of FCIM.
In Section 5 we then describe how to merge local results by
removing redundancies. Note that it is important to reduce
the size of partitions as much as possible, by pruning from
them any unnecessary items and transactions. Section 6 thus
discusses how to prune partitions and determine their sizes
before subdividing the dataset. Finally, experimental results
and concluding remarks are discussed in Section 9.

3 Closed Itemsets Mining Algorithms
The concept of closed itemset is based on the two following
functions f and g:

f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}
g(I) = {t ∈ D | ∀i ∈ I, i ∈ t}.

where T and I , T ⊆ D and I ⊆ I, are subsets of all the
transactions and items appearing in D, respectively.

Function f returns the set of items included in all the
transactions belonging to T , while function g returns the set
of transactions (called tid-list) supporting a given itemset I .

DEFINITION 1. An itemset I is said to be closed iff

c(I) = f(g(I)) = f ◦ g(I) = I

where the composite function c = f ◦ g is called Galois
operator or closure operator.

The closure operator defines a set of equivalence classes
over the lattice of frequent itemsets: two itemsets belong to
the same equivalence class iff they have the same closure,
i.e. they are supported by the same set of transactions. We
can also show that an itemset I is closed if no superset of I
with the same support exists. Therefore mining the maximal
elements of all the equivalence classes corresponds to mining
all the closed itemsets.

Fig. 1(b) shows the lattice of frequent itemsets derived
from the simple dataset reported in Fig. 1(a), mined with

418



TID items
1 B D
2 A B C D
3 A C D
4 C

D
3

ABCD
1

ACD
2ABC 1 ABD 1 BCD 1

AC 2 AD 2AB 1
BD

2BC 1 CD 2

A 2 B 2 C
3

D
3

∅ 4

Frequent Closed
Itemset ABD 1

Frequent Itemset

Support Equivalence
Class

(a) (b)

Figure 1: (a) The input transactional dataset D, represented in its horizontal form. (b) Lattice of all the frequent itemsets
(min supp = 1), with closed itemsets and equivalence classes.

min supp = 1. We can see that the itemsets with the same
closure are grouped in the same equivalence class. Each
equivalence class contains elements sharing the same sup-
porting transactions, and closed itemsets are their maximal
elements. Note that closed itemsets (six) are remarkably less
than frequent itemsets (sixteen).

3.1 Visiting the FCIM Search Space and Detecting Du-
plicates. The goal of an effective visiting strategy should
be to identify exactly a single itemset for each equivalence
class. We could in fact mine all the closed itemsets by com-
puting the closure of just this single representative itemset
for each equivalence class. Let us call these representative
itemsets closure generators.

The most efficient FCIM algorithms use a technique
that we call closure climbing. As soon as a generator is
devised, its closure is computed, and new generators are
built as supersets of the closed itemset discovered so far.
Since closed itemsets are the maximal elements of their own
equivalence classes, this strategy always guarantees to jump
from an equivalence class to another. Unfortunately, it does
not ensure that the new generator belongs to an equivalence
class that was not yet visited. Hence, it may happen to visit
multiple times the same equivalence class. For example,
in Fig. 1 we can see that both {A,C} and {C,D} are
generators of the same closed itemset {A,C, D}, and they
can be obtained as supersets of the closed itemsets {C} and
{D}, respectively.

We need thus to introduce some duplicate checking

technique in order to avoid generating multiple times the
same closed itemset. The following Subsumption Lemma can
be used to identify duplicate generators:

LEMMA 3.1. (SUBSUMPTION LEMMA) Given two item-
sets X and Y , if X ⊂ Y and supp(X) = supp(Y ) (i.e.,
|g(X)| = |g(Y )|), then c(X) = c(Y ).

Proof. If X ⊂ Y , then g(Y ) ⊆ g(X). Since |g(Y )| =
|g(X)| then g(Y ) = g(X). g(X) = g(Y ) ⇒ f(g(X)) =
f(g(Y )) ⇒ c(X) = c(Y ).

Therefore, given a generator X , if we find an already
mined closed itemsets Y that set-includes X , where the
supports of Y and X are identical, we can conclude that
c(X) = c(Y ) = Y . In this case we also say that Y subsumes
X . If this holds, we can safely prune the generator X without
computing its closure. Otherwise, we have to compute c(X)
in order to obtain a new closed itemset.

Several algorithms, like CHARM, CLOSET, and
CLOSET+ [22, 15, 19, 4], base their duplicate avoidance
technique on this Lemma. For example, CHARM exploits a
hash table to quickly individuate all the already mined closed
itemsets Y that subsume a given itemset X .

Unfortunately, this technique may become expensive,
both in time and space. In time, because it requires searching
the possibly huge set of closed itemsets mined so far for
the inclusion of each generator. In space, because in order
to efficiently perform set-inclusion checks, all the closed

419



itemsets have to be kept in the main memory, which means
that the size of the output is a lower bound to the space
complexity of the algorithm. Unfortunately, when low
minimum support threshold are used, it may happen to
extract a huge number of closed itemsets, so that maintaining
them in main memory for searching purposes may become
unfeasible.

3.2 DCI CLOSED: our Mining Engine. In our context
we need an FCIM algorithm that meets two important re-
quirements: the amount of memory used must be as low
as possible and, more importantly, it must be predictable.
Meeting both these requirements is a prerequisite to the pos-
sibility of devising an effective partition strategy able to pro-
duce dataset partitions that can be mined respecting a given
maximum memory constraint. To the best of our knowledge,
the only FCIM algorithm respecting the above requirements
is DCI CLOSED [8, 10].

DCI CLOSED exploits a divide-et-impera strategy and
a bitwise vertical representation of the database. It has been
proven to outperforms other state-of-the-art algorithms on
most dataset, and furthermore, due to its space efficiency,
it completes successfully the mining tasks on large input
datasets and with low support thresholds that cause all the
other algorithms to fail.

Moreover, since DCI CLOSED does not need to store
the set of closed itemsets mined so far in the main memory,
it turns out to have memory requirements much lower than
other algorithms. This is because it is based on an innovative
strategy to visit the search space, which is derived from an
original theoretical framework that formalizes the problem
of mining closed itemsets in detail. Differently from other
algorithms, DCI CLOSED exploits duplicate checking just
looking at a subset of the original dataset stored in a vertical
bitwise format. Thanks to its optimizations, this subset turns
out to be pretty small, and experiments have shown that
this duplicate checking technique is faster than those directly
based on Lemma 3.1.

Lastly, the space complexity of the algorithm depends
only on the dataset and can be easily upper bounded.
DCI CLOSED just need the original dataset and the tid-lists
of the nodes along the path of the depth first visit along
the lattice. This path can be long at most M nodes. Since
DCI CLOSED projects the dataset at the first level of the
visit, it requires at most (3M)×N bits to run over a dataset
D with a minimum support threshold equal to one.

4 Partitioning Strategies
One common feature of FCIM algorithms is that they need
to exploit a global knowledge on the dataset at any time of
the computation.

This is a tough problem which we have to consider with
attention when discussing partitioning strategies suitable

for closed itemsets mining algorithms. In fact, the global
knowledge required regards the whole dataset, and not just
the single partition currently considered. This is because,
by definition, to state whether an itemset is closed or not,
we need all the transactions supporting it. In the following
we analyze the different partitioning strategies of two out-
of-core FIM algorithms, Partition and DiskMine, and discuss
their advantages and disadvantages with particular regards to
the FCIM problem.

4.1 Partitioning of the Input Dataset. This is the ap-
proach adopted by Partition, a level-wise apriori-like FIM
algorithm that reads the database at most twice to generate
all frequent itemsets. Partition is based on two main ideas.
The first one is to divide the dataset in disjoint partitions that
can fit in main memory one at the time, and the second one
is that every frequent itemset must be frequent in at least one
of these partitions.

Firstly, the dataset is partitioned horizontally, and local
frequent itemsets are mined separately from each partition.
By summing up the local supports of itemsets we can deter-
mine their global support in the original dataset. Unfortu-
nately, some frequent itemsets may happen to be infrequent
in some partitions, and thus their precise support is not re-
turned by the algorithm. If this is the case, a second scan
is required to calculate the correct global support of these
itemsets.

Partition exploits a proper partitioning of the dataset,
since it splits the dataset into disjoint subsets of transactions
which cover the whole dataset. Each subset can be mined
separately, but false positives, i.e. itemsets that are locally
frequent in some partition but result to be globally infre-
quent, may be created. Returning to the FCIM problem, if
we adopt a similar partitioning strategy an even worse prob-
lem arises with the closed-ness property. In fact, an item-
set which is not closed in a partition may be closed when
considering the whole dataset. This means that not only we
have to discriminate between false and true positives (local
and global frequent patterns), but also between false and true
negatives, i.e., globally closed itemsets that result not to be
closed in some of the partitions of the dataset.

In [9], we have shown that it is however possible to
reconstruct the whole set of global closed itemsets even if
some closed itemset is not present in any of the sets of local
results. Suppose we have two partitions D1 and D2, and
the two collection, C1 and C2, of the closed itemsets mined
from them. In this case, the global solution is made by
all the closed itemsets mined locally, plus the result of the
intersections between any couple of itemsets in the cartesian
product C1 × C2. This result can be easily generalized to the
case of P partitions by first merging the two collections C1

and C2, then merging this partial result with C3 and so on.
The cost of the merging step is however very high. As-

420



suming that a naı̈ve algorithm for merging two sets of partial
results takes |C∗|2 time, where |C∗| is the average number
of local closed itemsets, we will have an overall complex-
ity of about |C∗|P . The merging phase thus becomes rapidly
intractable as the number of partitions increases. The last
disatvantage of this approach is that in order to perform the
mergin efficiently, each local collection of closed itemsets
should be stored in main memory.

4.2 Partitioning the Search Space. DiskMine is an FP-
GROWTH based FIM algorithm. FP-GROWTH stores the
transactions in a trie-like data structure named FP-tree. The
initial FP-tree is then recursively projected item by item,
thus visiting the whole lattice of frequent itemsets. The idea
behind DiskMine is that, even if the whole dataset may be
large, every projection on single items is likely to be very
small. Therefore instances of FP-GROWTH can be run on
these projections in main memory. Differently from the
horizontal partitioning technique, the set of itemsets mined
from each projection produce a proper partitioning of the
global collection of frequent itemsets with complete support
information. Therefore there is no need for a post processing
phase for merging the results or a second scan for calculating
correct supports, but it is enough to gather local results.

The projection-based partitioning strategy used by FP-
GROWTH may be used within any FIM algorithm. It works
as follows. Given a total order ≺ among single items I, we
put all transactions containing the first item i1 in the first
projection Di1 , then all the transactions containing the sec-
ond item i2 in the second projection Di2 , but deleting every
occurrence of i1, and so on. Finally, we independently mine
frequent itemsets starting with i1 from Di1 , then itemsets
starting with i2 from Di2 , and so on. Note that the results
sets generated from the various projections are disjoint by
construction.

More formally, let Di be a projection-based partition of
D over the item i ∈ I, defined as follows:

Di = {t′ = t \ {j ∈ t | j ≺ i} |
t ∈ D ∧ i ∈ t}.

Di is thus built only from those transaction t in the
original dataset that contain i by removing all the items
preceding i according to the total order ≺.

DiskMine merges many of such projections together in
order to minimize the number of partitions and therefore the
number of disk accesses. A possible way is to combine par-
titions of datasets which have been projected over contigu-
ous items in the total order ≺. We thus indicate with D[x,y)

the projected dataset obtained by merging all the projected
datasets Di, ∀ i ∈ [x, y). Formally, we have that:

D[x,y) ≡ {t′ = t \ {j ∈ t | j ≺ x} |
t ∈ D ∧ ∃i ∈ t|x � i ≺ y}.

Given the sorted set of single items I = {i1, . . . , iM},
we can thus create P partitions D[p0,p1), D[p1,p2), . . . ,
D[pP−1,pP ] of the dataset where i1 = p0 ≺ p1 ≺ · · · ≺ pP =
iM , such that each partition can be mined entirely in main
memory. Note that during the mining phase, a FIM algorithm
must extract only those (lexicographically ordered) itemsets
starting with an item in [x, y).

The above strategy guarantees the possibility of inde-
pendently mining each projection in order to get the whole
set of frequent itemsets. Unfortunately this does not hold
when mining closed itemsets. This is because each parti-
tion does not enclose knowledge about the global collection
of closed itemsets, and therefore it is not possible to locally
understand whether an itemset is globally closed or not.

TID items
2 A B C D
3 A C D

(a)

ABCD
1

ACD
2ABC 1 ABD 1

AC 2 AD 2AB 1

A 2

∅ 2

(b)

Figure 2: (a) The projected transactional dataset D[A,B),
represented in its horizontal form. (b) The lattice of all the
frequent itemsets in D[A,B) (min supp = 1), with closed
itemsets and equivalence classes highlighted.

For example, consider Figure 1, which shows a
dataset D and its frequent closed itemsets extracted with
min supp = 1. Note that the items are lexicographically
ordered. Consider now that from D, we can build two pro-
jected datasetsD[A,B) ≡ DA (see Figure 2), andD[B,D] (see
Figure 3), where D[B,D] is the projected dataset obtained
by merging DB , DC , and DD. When we extract frequent
closed itemsets from the two projections, the closed itemsets
mined from D[B,D] are incorrect. We can see that itemsets

421



TID items
1 B D
2 B C D
3 C D
4 C

(a)

BCD 1

BD
2BC 1 CD 2

B 2 C
3

D
3

∅ 4

(b)

Figure 3: (a) The projected transactional dataset D[B,E),
represented in its horizontal form. (b) The lattice of all the
frequent itemsets in D[B,E) (min supp = 1), with closed
itemsets and equivalence classes evidenced.

{B,C,D} and {C,D} are locally closed in D[B,D], but they
are not globally closed in D since they are subsumed (see
Lemma 3.1) by {A,B, C, D} and {A,C, D}, extracted from
D[A,B).

It is clear that, we can decide locally whether an item-
set in D[B,D] is globally closed or not, becaues there is no
knowledge about the occurrences of items preceeding B in
the ordering ≺. Note that this is different than with hori-
zontal partitioning, where we do not have information about
other transaction outside the current projection. Conversely,
in this case we just miss information about the items pruned
out from the current projection.

It is easy to show that eventually every frequent closed
itemset is mined in some of the projections. Given one closed
itemset X ∈ C, where i′ = min≺(i ∈ X), there must exist
one D[x,y) such that x � i′ ≺ y. Since such projected
partition contains by construction all the items of X and all
its supporting transactions, X will be returned as a closed
itemset from D[x,y).

If we denote with C the set of closed itemsets of D,
and with C1, . . . , CP the closed itemsets extracted from P
partitions of the original dataset D, then the following surely
holds:

C ⊆ (C1 ∪ . . . ∪ CP ) ∪ {∅}.
Note that, since during the mining of each partition D[x,y),
the mining algorithm must extract only those lexicographi-
cally (based on ≺) ordered itemsets starting with an item in
[x, y), the empty set can not be extracted from any projected
partition, and therefore must be considered separately.

At first glance, it seems easier to use such projection-
based partitioning and to remove some non-closed itemset
from the result set, rather than using the horizontal partition-
ing and constructively derive the solution set. In the next
section, we will show that this intuition is true, by reducing
the problem of finding such spurious itemsets to the one of
external memory sorting.

5 Spurious Itemsets Setection in Search Space
Partitioning Approaches

We have seen that some locally closed itemset may be non-
closed globally. We referred to these non-closed itemsets
as spurious. Every spurious itemset X is simply a frequent
itemset such that X 6= c(X), and therefore it is an additional
representative of the equivalence class of c(X).

In order to detect such redundant itemsets, we could
use the usual duplicate detection technique based on the
subsumption Lemma 3.1, once that we have mined all the
partitions. Given a itemset X which is closed in the partition
D[x,y), we must check whether it is subsumed by some other
itemset Y mined in some other partitions. Since we left out
from D[x,y) only those items preceeding x according to our
ordering ≺, we need to look for such Y only among itemsets
mined from those projections D[s,t) where t � x.

Unfortunately, also in this case, in order to perform fast
searches, it would be necessary to store itemsets mined from
those partitions D[s,t) in memory resident data structures,
like the one proposed in [22]. But, even if we analyze those
partitions D[s,t) one at time, we have no guarantee that they
would fit in main memory.

In the following, we introduce Lemma 5.1, which sug-
gests a different and innovative technique for detecting spu-
rious itemsets that can be efficiently implemented in an ex-
ternal memory algorithm.

LEMMA 5.1. Let C be the collection of closed itemsets in
the input dataset D, and let C1, . . . , CP be the collections of
closed itemsets mined from the P partitions of the original
dataset D, respectively D[p0,p1),D[p1,p2), . . . ,D[pP−1,pP ],
where I = {i1, . . . , iM} are sorted ascendingly according
to some order ≺ and i1 = p0 ≺ p1 ≺ · · · ≺ pP = iM .

If X ∈ Ci and X is not globally closed in D, then
there must exist an itemset Y ∈ Cj 6=i with Y ⊃ X and
supp(X) = supp(Y ) such that X is a suffix of Y .

Proof : If X ∈ Ci is not closed in D, then there must exist an
itemset Y ∈ C such that Y ⊃ X and supp(X) = supp(Y ).

422



Since C ⊆ {C1, . . . , CP } ∪ {∅} and since X is closed in Ci,
then there exist Cj 6=i such that Y ∈ Cj . Let us focus on the
items in {Y \X}. By construction of the various partitions,
these items may only preceed the items in X . Thus, since
∀i ∈ {Y \X}, i ≺ j, ∀j ∈ X , we have that X is a suffix of
Y . �

The above Lemma simply says that if X belongs to
some local result set Ci but it is not globally closed in D,
then a superset Y of X with the same support must have
been mined in some other partition, and X is a suffix of Y .

EXAMPLE 1. Consider C1 the closed itemsets extracted
from D[A,B) (see Figure 2), and C2 the closed itemsets ex-
tracted from D[B,D] (see Figure 3).

Given a non globally closed itemset X ∈ C2, e.g.
X = {B,C,D}, by applying Lemma 5.1, we know that there
must exists an itemset Y ∈ C1 such that X is subsumed by
Y , and X is a suffix of Y . This itemset actually exists, and it
is Y = {A,B, C, D}.

The above lemma suggests a very simple method to
identify spurious closed itemsets extracted from distinct par-
titions. This method is not expensive and can be efficiently
implemented by using an external memory algorithm.

First of all, it is worth noting that given any two itemsets
X ∈ Ci and Y ∈ Cj such that X is subsumed by Y , if
we sort X and Y in descending order rather than ascending,
than X is a prefix of Y . Thus, let us consider the list LX

made with the descendingly sorted items of the itemset X
preceded by its support value. We can easily show that if LX

is a prefix of LY , than X is subsumed by Y . This condition
in fact ensures that both the subsumption conditions, Y ⊃ X
and supp(X) = supp(Y ), actually holds.

In order to detect spurious itemsets, we materialize such
lists LX from the sets of all the locally mined itemsets, and
then we sort all the lists in ascending lexicographic order.
This sorting is done in external memory by using a multiway
merge-sort algorithm. We read chunks of lists LX in a
buffer of predefined size. When the buffer is full, we sort
it in-core before dumping it to the disk. Finally, a multi-
way merge algorithm is applied to get a single sorted set
of lists. Detection and removal of spurious itemsets can be
done easily during the multi-way merge step: if itemset X is
spurious, then the itemset Y that subsumes X can only have
an associated LY that comes immediately after LX .

EXAMPLE 2. Consider the sets C1 and C2 of the closed
itemsets extracted from D[A,B) (see Figure 2), and D[B,D]

(see Figure 3), respectively. From them we obtain the
following lists LX :

D[A,B)

supp Closed itemset List
2 ACD LACD = 2, D, C, A
1 ABCD LABCD = 1, D, C, B, A

D[B,D]

supp Closed itemset List
3 C LC = 3, C
3 D LD = 3, D
2 BD LBD = 2, D, B
2 CD LCD = 2, D, C
1 BCD LBCD = 1, D, C, B

Once the lists LX associated with the various itemsets
X are built and stored on disk, we can sort them by using an
external memory algorithm. In our example, we eventually
obtain:

LBCD = 1, D, C, B non closed
LABCD = 1, D, C, B, A
LBD = 2, D, B
LCD = 2, D, C non closed
LACD = 2, D, C, A
LC = 3, C
LD = 3, D

Since the two lists LBCD and LCD result to be prefixes
of lists LABCD and LACD, respectively, which occur in the
next two positions, the two associated itemsets {B,C,D}
and {C,D} can be safely discarded being spurious itemsets.

As we mentioned before, the closure of the empty set
must be considered separately. Since if c(∅) 6= ∅, then c(∅)
would be mined from some partition, we must only consider
the case corresponding to c(∅) = ∅. Note that c(∅) 6= ∅ only
if the most frequent itemset appears in all the transactions of
D, i.e. ∀i ∈ c(∅), supp(i) = |D|. Therefore we must add the
empty set to the collection of globally closed itemsets only
when no item has support equal to |D|.

6 Creating Partitions
The choice of the projected partitions is actually the first step
of our out-of-core algorithm. Given a dataset D, a minimum
support threshold min supp, and a maximum memory size
Memsize, we must create the minimum number of partitions
such that they can be entirely mined in at most Memsize

bytes. Since partitions are built by merging dataset pro-
jections of contiguous single items, we can reformulate the
problem as follows: given an item k ∈ I, we have to find the

423



largest n such that the size of D[k,k+n) is less than (or equal
to) Memsize.

Before starting to subdivideD, we scan the input dataset
in order to find the frequent single items F1, |F1| = M .
Since infrequent items will not contribute to the collection
of frequent closed itemsets, we can remove them without
affecting the correctness of the algorithm. In this way we
obtain a much smaller initial dataset. Moreover, relative
frequencies of frequent single items are used to set the global
order ≺. In fact, it has been shown that by sorting items per
ascending frequency order, we better balance the size of the
projected partitions and reduce the search space [5].

Hereinafter, we thus assume that the dataset D to be
subdivided does not contain infrequent items, while the
frequent items have been re-mapped to [0,M), where 0
(M − 1) corresponds to the least (most) frequent item in F1.

Given a dataset and a minimum support threshold, the
amount of memory required for mining frequent closed
itemsets depends, of course, on the specific algorithm ex-
ploited. DCI CLOSED uses a limited amount of memory,
very close to the size of the bitwise vertical representation
of the dataset. As discussed in Section 3.2, DCI CLOSED
memory usage can be accurately estimated. Let I[k,k+n) be
the set of frequent single items in the projection D[k,k+n),
then the memory required by DCI CLOSED is bounded by
(3 · |I[k,k+n)| × |D[k,k+n)|) bits.

Therefore, given Memsize, we must estimate the cardi-
nality of D[k,k+n) and I[k,k+n) for every potential partition
in order to choose the most suitable partition schema. We
can easily compute the size of D[k,k+n), for every possible
value of k and n, during the second scan of D by using a
fixed number of counters. Note that for any given k, we have
M−k distinct possible choices for n. We thus need a number
of counters equal to

∑M−1
k=0 (M − k) = M · (M + 1)/2.

We also need an estimate for the number of frequent
single items I[k,k+n) appearing in every possible partition.
A broad over-estimation of this number is obviously M − k.
The estimate can be however more precise if we exploit the
knowledge of F2, i.e. the frequent 2-itemsets in D. During
the second dataset scan, we can also compute F2, by using
further

(
M
2

)
counters.

In particular, given a projected dataset Dh = D[h,h+1),
only h and those items x, h < x < M such that {h, x} ∈ F2,
may belong to frequent closed itemsets mined from Dh. All
the other items x corresponding to infrequent pairs can be
pruned from Dh. thus:

I[h,h+1) = {h} ∪ {x | h < x < M ∧ {h, x} ∈ F2}.

Moreover, if there are no pairs {h, x}, h < x < M ,
such that {h, x} ∈ F2, we can avoid mining Dh at all, since
we can not surely extract any frequent closed itemset other
than {h}.

Finally, when we merge n consecutive projected
datasets in the partition D[k,k+n), the number of items that
can appear in the transactions of D[k,k+n) are:∣∣∣∣∣∣∣∣∣

⋃
∀h∈[k,k+n) s.t.

I[h,h+1) 6={h}

I[h,h+1)

∣∣∣∣∣∣∣∣∣
Note that the above technique requires that M2 counters

be stored in main memory. If M is very large, it may happen
that the memory required to implement such technique ex-
ceeds Memsize. In this case, to fulfill memory constraints,
it is however possible to partition the set of counters, and
perform more scans of the dataset.

7 An Algorithm for Mining Frequent Closed Itemsets
from Secondary Memory

The pseudo-code of DCI CLOSED OOC, our out-of-core
FCIM algorithm, is illustrated in Algorithm 1.

The first step relies on two scans of the dataset, during
which the horizontal dataset is pruned, and decisions are
taken concerning the number and size of partitions.

In the second step the various partitions D[k,k+n) are
mined by using DCI CLOSED as FCIM mining engine. Note
that DCI CLOSED must extract from each partitionD[k,k+n)

only the frequent closed itemsets whose first item belong to
[k, k +n). Moreover the list LX associated with each closed
itemset mined are written to disk for the following step.

Finally, the third step deals with removing non closed
itemsets in order to obtain the exact result. It is carried out
by means of the external memory sorting algorithm depicted
in Section 5.

8 Experimental Evaluation
We conducted a bunch of experiments on a Linux PC
equipped with a 2GHz Pentium Xeon processor and 1GB
of random-access memory. Three large datasets were used:

• Webdocs. It contains 5,267,657 distinct items in
1,692,082 transactions. The dataset is about 1.4 GB
large, and is available from the FIMI repository.

• USCensus1990. It contains 397 distinct items in
2,458,285 transactions. The dataset is about 520 MB
large, and is available from the UCI machine learning
repository.

• Artificial2GB. The last dataset was synthetised
using the IBM generator. It contains 3,000 distinct
items in 1,330,293 transactions, and it is about 2 GB
large.

In Figure 4(a,b) we compare on the Webdocs dataset
the performance of DCI CLOSED OOC with FP-CLOSE (a

424



running time - wedocs

100

1000

10000

100000

1000000

10 15 20 25 30 35 40
support %

se
c

DCI-Closed
FP-Close
DCI-Closed-OOC

memory usage - wedocs

1

10

100

1000

10000

10 15 20 25 30 35 40
support %

M
B

DCI-Closed
FP-Close
DCI-Closed-OOC

(a) (b)

wedocs @ 10%

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120
memory threshold MB

se
c

0

20

40

60

80

100

120

M
B

running time
memory usage
memory limit

wedocs @ 10%

0

20

40

60

80

100

120

0 20 40 60 80 100 120
memory threshold MB

M
B

/#
 o

f p
ar

t.

memory usage
memory limit
# of partitions

(c) (d)

USCensus1990 @ 60%

0

100

200

300

400

500

600

700

20 25 30 35 40 45 50
memory threshold MB

se
c

0

10

20

30

40

50

60

M
B

running time
memory usage
memory limit

artificial 2GB dataset @ 30%

0

100

200

300

400

500

600

700

5 25 45 65 85 105
memory threshold MB

se
c

0

20

40

60

80

100

120

M
B

running time
memory usage
memory limit

(e) (f)

Figure 4: Results of the experiments conducted on two real world datasets and an artificial one.

425



Algorithm 1 DCI CLOSED OOC pseudocode

Step 1: Partitioning. Scan D twice to make decisions
about projected partitions.

1: Scan D for the first time to find out the set of frequent
items F1 and their supports, where |F1| = M .

2: Scan D for the second time. During the scan: (a) prune
transactions on-the-fly by removing infrequent items,
and re-map frequent items into the interval [0,M); (b)
compute F2 and collect the information about memory
occupancy of all possible partitions.

3: Choose the most suitable partitioning schema by consid-
ering the given memory constraint Memsize, and save
such information for the following step.

Step 2: Mining. Run DCI CLOSED to extract frequent
closed itemsets from all the partitions.

1: For each partition D[k,k+n), DCI CLOSED scan D, cre-
ate on the fly an in-core (bitwise) vertical representa-
tion ofD[k,k+n), and mine from it all the closed itemsets
whose first item belong to [k, k+n). All closed itemsets
mined are written to disk as lists LX .

Step 3: Merging. Remove spurious itemsets, and returns
the final set of closed itemsets.

1: Run the external memory sorting algorithm to lexico-
graphically order all the lists LX stored on disk.

2: Remove non closed itemsets by discarding every list LX

that is a prefix of the list that occurs immediately after,
and output the final result.

fast implementation of CLOSET+ available from the FIMI
repository), and our in-core FCIM algorithm DCI CLOSED.
Note that we imposed DCI CLOSED OOC to run by using
at most 30MB of memory. The aim of this test is to
quantify the overhead introduced by our three-steps mining
approach: partitioning, separate mining, and merging. From
the plot reported in Figure 4(a) we can see that the execution
times of the three algorithms are comparable for most of
the support thresholds experimented. This means that the
overhead introduced does not affect the overall performance
remarkably, thus making our out-of-core approach not only
viable in the cases where severe memory constraints really
exist, but also efficient. Note that in the test conducted
with the lowest support threshold, FP-CLOSE resulted very
slow due to disk swapping activity. On the other hand,
DCI CLOSED always ran by using remarkably less memory
than FP-CLOSE, thus justifying its choice as mining engine.

In Figure 4(c,d), we plotted the execution times, the
number of partitions, and the amount of memory actually
used by DCI CLOSED OOC for mining dataset Webdocs
as a function of the memory threshold imposed. The perfor-
mances of the algorithm resulted always to be very stable,
since executions times did not increase significatively with
the number of partitions. On the other hand, given the par-
titioning technique adopted, the number of partitions grows
more than linearly as expected. More importantly, the plots
show that the amount of memory actually used during exe-
cution always resulted lower than the memory threshold im-
posed.

Finally, Figure 4(e,f) reports the results of the
tests conducted on datasets USCensus1990 and
Artificial2GB. Also in these tests the memory
threshold was always respected by DCI CLOSED OOC.

9 Conclusion and Future Work
We have presented a novel algorithm able to mine all the
frequent closed itemsets from a transactional database using
a limited amount of main memory. To our best knowledge,
this is the first external memory algorithm for mining closed
itemsets.

The two main contributions of this paper are, on the
one hand, the optimization of an already known projected-
based partitioning technique adapted to our framework, and,
on the other hand, an innovative merging technique of the
local results extracted from each partition.

We have shown how exploitating such partitioning tech-
nique requires a double scan of the dataset to collect enough
information to decide how to subdivide it in order to obtain
projected partitions that fit the available memory. Such in-
formation is also used to prune further the dataset and its
partitions.

The main issue we have had to solve regards the pos-
sible generation of spurious frequent itemsets, which can
be obtained if we simply combine the local results obtained
from the separate mining of the partitions. We may in fact
generate some additional frequent itemsets besides the truly
closed ones. This unpleasant behavior is due to the partial
knowledge available in each projected partition. This does
not permit us to check, during the local mining of a parti-
tion, whether a produced itemset is globally closed or not.
We have solved this problem in an elegant way. We have
devised a novel out-of-core technique, based on a new the-
oretical insight, for merging the various local results and re-
moving spurious itemsets. In particular, we have reduced the
problem of merging partial solutions to an external memory
sorting problem.

The experiments showed that DCI CLOSED OOC is
able to run by using a very limited amount of main memory.
Moreover, its performance is very similar to those of FP-
CLOSE and its in-core counterpart. This is mainly due to

426



the fact that although DCI CLOSED OOC performs many
more I/O operations, it subdivides and prunes the dataset
effectively, thus producing very compact and cache-friendly
in-core data structures for each partition.

Acknowledgements We acknowledge the financial support
of the Project Enhanced Content Delivery, funded by the
Ministero Italiano dell’Università e della Ricerca.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of VLDB ’94, pages 487–499,
September 1994.

[2] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom
Tsur. Dynamic itemset counting and implication rules for
market basket data. In Proc. of the 1997 ACM SIGMOD
International Conference on Management of Data, pages
255–264. ACM Press, 1997.

[3] Bart Goethals and Mohammed J. Zaki. Advances in Fre-
quent Itemset Mining Implementations: Report on FIMI’03.
SIGKDD Explorations, 6(1):109–117, 2004.

[4] Gosta Grahne and Jianfei Zhu. Efficiently using prefix-
trees in mining frequent itemsets. In Proc. of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementa-
tions (FIMI’03), November 2003.

[5] Gösta Grahne and Jianfei Zhu. Mining frequent itemsets
from secondary memory. In Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM 2004), 1-
4 November 2004, Brighton, UK, pages 91–98, 2004.

[6] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In Proc. of the 2000
ACM SIGMOD International Conference on Management of
Data, pages 1–12, 2000.

[7] Junqiang Liu, Yunhe Pan, Ke Wang, and Jiawei Han. Mining
frequent item sets by opportunistic projection. In Proc. of the
8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’02), pages 229–238. ACM
Press, 2002.

[8] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego.
Dci closed: A fast and memory efficient algorithm to mine
frequent closed itemse. In Proc. of the IEEE ICDM
2004 Workshop on Frequent Itemset Mining Implementations
(FIMI’04), 2004.

[9] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego.
On distributed closed itemsets mining: some preliminary
results. In Proc. of the SIAM SDM 2005 Workshop on High
Performace Distributed Data Mining, 2005.

[10] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego.
Fast and memory efficient mining of frequent closed itemsets.
IEEE Transactions on Knowledge and Data Engineering,
18(1):21–36, 2006.

[11] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive
and resource-aware mining of frequent sets. In Proc. The
2002 IEEE International Conference on Data Mining (ICDM
’02), pages 338–345, 2002.

[12] J. S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash Based
Algorithm for Mining Association Rules. In Proc. of the 1995
ACM SIGMOD International Conference on Management of
Data, pages 175–186, 1995.

[13] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi
Lakhal. Efficient mining of association rules using closed
itemset lattices. Information Systems, 24(1):25–46, 1999.

[14] J. Pei, J. Han, H. Lu, S. Nishio, and D. Tang, S. amd Yang.
H-Mine: Hyper-Structure Mining of Frequent Patterns in
Large Databases. In Proc. of the 2001 IEEE International
Conference on Data Mining (ICDM’01), San Jose, CA, USA,
2000.

[15] Jian Pei, Jiawei Han, and Runying Mao. Closet: An efficient
algorithm for mining frequent closed itemsets. In Proc. of
the SIGMOD International Workshop on Data Mining and
Knowledge Discovery, May 2000.

[16] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Na-
vathe. An efficient algorithm for mining association rules in
large databases. In Umeshwar Dayal, Peter M. D. Gray, and
Shojiro Nishio, editors, VLDB’95, Proceedings of 21th Inter-
national Conference on Very Large Data Bases, September
11-15, 1995, Zurich, Switzerland, pages 432–444. Morgan
Kaufmann, 1995.

[17] Rafik Taouil, Nicolas Pasquier, Yves Bastide, Lotfi Lajhal,
and Gerd Stumme. Mining freqent patterns with counting
inference. SIGKDD Explorations, 2(2):66–75, December
2000.

[18] Rafik Taouil, Nicolas Pasquier, Yves Bastide, and Lotfi
Lakhal. Mining bases for association rules using closed sets.
In Proc. of the 16th International Conference on Data Engi-
neering (ICDE’00), page 307. IEEE Computer Society, 2000.

[19] Jianyong Wang, Jiawei Han, and Jian Pei. Closet+: searching
for the best strategies for mining frequent closed itemsets.
In Proc. of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’03), pages
236–245. ACM Press, 2003.

[20] Mohammed J. Zaki. Mining non-redundant association rules.
Data Mining Knowledge Discovery, 9(3):223–248, 2004.

[21] Mohammed J. Zaki and Karam Gouda. Fast vertical mining
using diffsets. In Proc. of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD’03), pages 326–335. ACM Press, 2003.

[22] Mohammed J. Zaki and Ching-Jui Hsiao. Charm: An effi-
cient algorithm for closed itemsets mining. In Proc. of the 2nd
SIAM International Conference on Data Mining (SDM’02),
April 2002.

427


