
A Framework for Clustering Massive Text and Categorical Data

Streams

Charu C. Aggarwal

IBM T. J. Watson Research Center

charu@us.ibm.com

Philip S. Yu

IBM T. J.Watson Research Center

psyu@us.ibm.com

Abstract

Many applications such as news group filtering, text
crawling, and document organization require real time
clustering and segmentation of text data records. The
categorical data stream clustering problem also has a
number of applications to the problems of customer
segmentation and real time trend analysis. We will
present an online approach for clustering massive
text and categorical data streams with the use of a
statistical summarization methodology. We present
results illustrating the effectiveness of the technique.

Keywords: text, categorical data, clustering, streams

1 Introduction

The clustering problem has recently been studied in
the context of numeric data streams [2, 3]. In this
paper, we will study this problem in the context of text
and categorical data streams. In addition, the natural
evolution [1] of stream data presents several challenges
to the clustering process. Most real applications often
exhibit temporal locality which is not taken into account
by most batch processing algorithms. The clustering
problem presents a number of unique challenges in an
evolving data stream environment. For example, the
continuous evolution of clusters makes it essential to be
able to quickly identify new clusters in the data. While
the clustering process needs to be executed continuously
in online fashion, it is also important to be able to
provide end users with the ability to analyze the clusters
in an offline fashion. In order to achieve this goal,
we will provide a framework in which carefully chosen
statistical summary data is stored at regular intervals.
This results in a system in which it is possible to
diagnose different characteristics of the clusters in an
effective way. The methodology used in this paper
is similar to online analytical processing algorithms in
which summary information is created for the purpose
of repeated querying. In the context of a data stream,
such a methodology seems quite convenient, since a fast

data stream cannot be repeatedly processed in order to
answer different kinds of queries.

This paper is organized as follows. In section 2, we
will discuss the process of storing and maintaining the
data structures necessary for the clustering algorithm.
We will also discuss the differences which arise from
using different kinds of data. Section 3 describes the
empirical results. The conclusions and summary are
discussed in section 4.

2 Maintaining Cluster Statistics

The data stream consists of a set of multi-dimensional
records of dimensionality denoted by d. The format of
the attribute values for each data point is defined based
on the domain at hand. For the case of the categorical
stream domain, each of these d dimensions corresponds
to a categorical attribute value. It is assumed that the
ith categorical dimension contains vi possible values.
For the case of text records, each dimension corresponds
to the numeric frequency of a given word in the vector
space representation.

In order to account for the evolution of the data
stream, we assign a time-sensitive weightage to each
data point. It is assumed that each data point has
a time-dependent weight defined by the function f(t).
The function f(t) is also referred to as the fading
function. The fading function f(t) is a non-monotonic
decreasing function which decays uniformly with time
t. In order to formalize this concept, we will define the
half-life of a point in the data stream.

Definition 1. The half life t0 of a point is defined as
the time at which f(t0) = (1/2)f(0).

Conceptually, the aim of defining a half life is to define
the rate of decay of the weight associated with each data
point in the stream. Correspondingly, the decay-rate is
defined as the inverse of the half life of the data stream.
We denote the decay rate by λ = 1/t0. In order for
the half-life property to hold, we define the weight of
each point in the data stream by f(t) = 2−λ·t. From

477



the perspective of the clustering process, the weight
of each data point is f(t). It is easy to see that this
decay function creates a half life of 1/λ. It is also
evident that by changing the value of λ, it is possible to
change the rate at which the importance of the historical
information in the data stream decays. The higher the
value of λ, the lower the importance of the historical
information compared to more recent data. By changing
the value of this parameter, it is possible to obtain
considerable control on the rate at which the historical
statistics are allowed to decay. For more stable data
streams, it is desirable to pick a smaller value of λ,
whereas for rapidly evolving data streams, it is desirable
to pick a larger value of λ.

For the purpose of achieving greater accuracy in the
clustering process, it is necessary to maintain a high
level of granularity in the underlying data structures.
In order to achieve this goal, we will use a process in
which condensed clusters of data points are maintained.
We will refer to such groups as cluster droplets. This
is analogous to the summary cluster feature statistics
stored in [2, 4]. We will discuss and define the cluster
droplet differently for the case of text and categorical
data streams respectively. First, we will define the
cluster droplet for the categorical data domain:

Definition 2. A cluster droplet D(t, C) for a set of
categorical data points C at time t is referred to as
a tuple (DF2, DF1, n, w(t), l), in which each tuple
component is defined as follows:

• The vector DF2 contains
∑

i∈{1...d},j∈{1,...d},i 6=j vi ·
vj entries. For each pair of dimensions, we main-
tain vi · vj values. We note that vi is number of
possible categorical values of dimension i and vj is
the number of possible values of dimension j. Thus,
for each of the vi · vj categorical value pairs i and
j, we maintain the (weighted) counts of the number
of points for each value pair which are included in
cluster C. In other words, for every possible pair of
categorical values of dimensions i and j, we main-
tain the weighted number of points in the cluster in
which these values co-occur.

• The vector DF1 contains
∑d

i=1 vi entries. For each
i, we maintain a weighted count of each of the vi

possible values of categorical attribute i occurring
in the cluster.

• The entry n contains the number of data points in
the cluster.

• The entry w(t) contains the sum of the weights of
the data points at time t. We note that the value
w(t) is a function of the time t and decays with

time unless new data points are added to the droplet
D(t).

• The entry l contains the time stamp of the last time
that a data point was added to the cluster.

We note that the above definition of a droplet assumes
a data set in which each categorical attribute assumes
a small number of possible values. (Thus, the value of
vi for each dimension i is relatively small.) However,
in many cases, the data might actually be somewhat
sparse. In such cases, the values of vi could be relatively
large. In those instances, we use a sparse representation.
Specifically, for each pair of dimensions i and j, we
maintain a list of the categorical value pairs which have
non-zero counts. In a second list, we store the actual
counts of these pairs. In many cases, this results in
considerable savings of storage space. For example,
consider the dimension pairs i and j, which contain vi

and vj possible categorical values. Also, let us consider
the case when bi ≤ vi and bj ≤ vj of them have non-
zero presence in the droplet. Thus, at most bi · bj

categorical attribute pairs will co-occur in the points
in the cluster. We maintain a list of these (at most)
bij < bi · bj value pairs along with the corresponding
counts. This requires a storage of 3 · bij values. (Two
entries are required for the identities of the value pairs
and one is required for the count.) We note that if
the number of distinct non-zero values bi and bj are
substantially lower than the number of possible non-
zero values vi and vj respectively, then it may be more
economical to store 3 ·bij values instead of vi ·vj entries.
These correspond to the list of categorical values which
have non-zero presence together with the corresponding
weighted counts. Similarly, for the case of DF1, we only
need to maintain 2 · bi entries for each dimension i.

Next, we consider the case of the text data set which
is an example of a sparse numeric data set. This is
because most documents contain only a small fraction
of the vocabulary with non-zero frequency. The only
difference with the categorical data domain is the way
in which the underlying cluster droplets are maintained.

Definition 3. A cluster droplet D(t, C) for a set of
text data points C at time t is defined to as a tuple
(DF2, DF1, n, w(t), l). Each tuple component is defined
as follows:

• The vector DF2 contains 3 ·wb · (wb−1)/2 entries.
Here wb is the number of distinct words in the clus-
ter C. For each pair of dimensions, we maintain a
list of the pairs of word ids with non-zero counts.
We also maintained the sum of the weighted counts
for such word pairs.

478



• The vector DF1 contains 2 · wb entries. We
maintain the identities of the words with non-zero
counts. In addition, we maintain the sum of the
weighted counts for each word occurring in the
cluster.

• The entry n contains the number of data points in
the cluster.

• The entry w(t) contains the sum of the weights of
the data points at time t. We note that the value
w(t) is a function of the time t and decays with
time unless new data points are added to the droplet
D(t).

• The entry l contains the time stamp of the last time
that a data point was added to the cluster.

The concept of cluster droplet has some interesting
properties that will be useful during the maintenance
process. These properties relate to the additivity and
decay behavior of the cluster droplet.

Observation 2.1. Consider the cluster droplets
D(t, C1) =
(DF21, DF11, n1, w(t)1, l1) and D(t, C2) =
(DF22, DF12, n2, w(t)2, l2). Then the cluster droplet
D(t, C1 ∪ C2) is defined by the tuple (DF21 +
DF22, DF11+DF12, n1+n2, w(t)1+w(t)2,max{l1, l2}).

The cluster droplet for the union of two clusters is
the sum of individual entries. The only exception is the
last entry which is the maxima of the two last-update
times. We note that the additivity property provides
considerable convenience for data stream processing
since the entries can be updated efficiently using simple
additive and maxima operations.

The second observation relates to the rate of decay
of the condensed droplets. Since the weights of each
data point decay with the passage of time, the corre-
sponding entries also decay at the same rate. Corre-
spondingly, we make the following observation:

Observation 2.2. Consider the cluster droplet
D(t, C) =
(DF2, DF1, n, w(t), l). Then the entries of of the same
cluster droplet C at a time t′ > t are given by D(t′, C) =
(DF2 · 2−λ·(t′−t), DF1 · 2−λ·(t′−t), n, w(t) · 2−λ·(t′−t), l).

The above observation is important in regulating the
rate at which the data points in the cluster decay
over time. The combination of the two observations
discussed above are essential in maintaining the clusters
over time.

2.1 Cluster Droplet Maintenance In this sub-
section, we will discuss the process of cluster droplet
maintenance. The maintenance algorithm continuously
maintains the droplets C1 . . . Ck, which it updates as new
data points arrive. For each cluster, the entire set of
statistics in the droplet is maintained. The maximum
number ki of droplets maintained is dependent upon
the amount of available main memory. Even if mod-
est memory resources are available, the statistics can
be maintained at a relatively high level of granularity.

At the beginning of algorithmic execution, we start
with an empty set of clusters. As new data points
arrive, unit clusters containing individual data points
are created. Once a maximum number k of such clusters
have been created, we can begin the process of online
cluster maintenance. Thus, we initially start off with a
trivial set of k clusters. These clusters are updated over
time with the arrival of new data points.

When a new data point X arrives, its similarity
to each cluster droplet is computed. For the case of
text data sets, the cosine similarity measure between
DF1 and X is used. For the case of categorical data
sets, the similarity measure is computed as follows: for
each attribute i, we calculate the (weighted) percentage
of the records in the clusters which contain the same
categorical value as the data point X . We note that for
the cluster Cj , this percentage can be computed from
the summary information contained in cluster droplet
D(t, Cj). This is because the vector DF1 contains the
weighted counts of each value for attribute i. The
relevant weighted count is divided by the total weight
w(t) in order to calculate the corresponding fractional
presence of a particular categorical value of attribute
i. Let the weighted fraction for attribute i and cluster
Cj be denoted by wfi(X, Cj). The average weighted
fraction over all attributes for cluster Cj is given by the

similarity value S(X, Cj) =
∑d

i=1 wfi(X, Cj)/d.
The similarity value S(X, Cj) is computed over

all clusters. The cluster with the maximum value
of S(X, Cj) is chosen as the relevant cluster for data
insertion. Let us assume that this cluster is Cmindex. If
the value of S(X, Cmindex) is larger than the threshold
thresh, then the point X is assigned to the cluster
Cmindex. Otherwise, we check if some inactive cluster
exists in the current set of cluster droplets. If no
such inactive cluster exists, then the data point X is
added to Cmindex. On the other hand, when an inactive
cluster does exist, a new cluster is created containing
the solitary data point X. This newly created cluster
replaces the inactive cluster.

In the event that X is inserted into the cluster
Cmindex, we need to perform two steps:

• We update the statistics to reflect the decay of

479



the data points at the current moment in time.
This updating is performed using the computation
discussed in Observation 2.2. Thus, the relevant
updates are performed in a “lazy” fashion. In other
words, the statistics for a cluster do not decay, until
a new point is added to it. Let the corresponding
time stamp of the moment of addition be t. The
last update time l is available from the cluster
droplet statistics. We multiply the entries in the
vectors DC2, DC1 and w(t) by the factor 2−λ·(t−l)

in order to update the corresponding statistics. We
note that the lazy update mechanism results in
stale decay characteristics for most of the clusters.
This does not however affect the afore-discussed
computation of the similarity measures.

• In the second step, we add the statistics for each
newly arriving data point to the statistics for
Cmindex by using the computation discussed in
Observation 2.2.

In the event that the newly arriving data point does
not naturally fit in any of the cluster droplets and an
inactive cluster does exist, then we replace the most
inactive cluster by a new cluster containing the solitary
data point X. In particular, the replaced cluster is
the least recently updated cluster among all inactive
clusters. We also associate an id with each cluster when
it is created. This id is unique to each cluster and
is helpful in book keeping while comparing the set of
droplets at two different time periods. We will discuss
more details on this issue in the next section.

At a given moment in time, we maintain only the
current snapshot of clusters in main memory. We also
periodically store the statistical information about the
clusters on disk. The main reason behind the storage of
the snapshots of clusters at different moments in time
is to be able to create and analyze the clusters over
different time horizons. This can be done at regular
time intervals, or it can be done by using a pyramidal
time frame concept discussed in [2]. In the pyramidal
time frame concept, the cluster droplets are stored at
intervals which decrease exponentially with greater level
of recency. Conceptually, the uniform time interval and
the pyramidal time frame concepts provide no difference
in terms of functionality. The only difference is in terms
of a better level of approximation of a user specified time
horizon using the pyramidal time frame. Therefore, we
will refer the discussion of the pyramidal time frame
to [2], and proceed with a (simpler) description using
regular intervals of storage.

0 1 2 3 4 5 6 7 8 9 10

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Progression

C
lu

st
er

 P
ur

ity

MStream1(S)
MStream1(R)
MStream1(E)

Figure 1: Cluster Purity with Stream Progression
(Market1 Data Stream)

3 Experimental Results

We tested the approach for a variety of market basket
and text data sets. The market basket data sets were
constructed from the Apriori data generator, and then
converted into a stream for the testing process. The
conversion process was performed as follows: A total
of n′ = 10 different random settings of the data set
T20.I10.D10K footnoteWe use same notation as the
Apriori data generator were generated. Each such
“instance” of the data set was generated by using a
different random seed. A continuous stream of records
was created by concatenating the different instances of
the data sets with one another. Since each data set
contained b = 10, 000 records, the corresponding stream
consisted of 100, 000 records. The market basket data
stream was referred to as MStream1(S). We note that
this stream has a very high level of temporal locality in
its behavior. A second stream was generated from the
same set of records, but in this case, the order of the
records from the different data sets was randomized.
Thus, a data point at a given stage of the stream
could be generated from any of the sets of data. We
refer to this stream as MStream1(R). This stream has
almost no temporal locality. A third stream was created
which continuously evolves over time. In order to create
this smoothly evolving data stream, we applied a block
mixing procedure in a sequential fashion. In the first
step, the first 2 · b records were randomized. In the next
step, the block of records in the range (b, 3 · b) were
randomized. This process was repeated sequentially
for each contiguous block of 2 · b records, at intervals
of b records. The result was a data stream in which
the evolution was more continuous than the original
data. This stream exhibits a medium level of temporal
locality. We refer to this data set as MStream1(E).

For the text data sets, we utilized a number of

480



0 5 10 15

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Progression

C
lu

st
er

 P
ur

ity

Text(S)
Text(R)
Text(E)

Figure 2: Cluster Purity with Stream Progression (Text
Data Stream)

documents obtained from a 1996 scan of the Y ahoo!
taxonomy. The Y ahoo! hierarchy was truncated in order
to create 251 classes. A stream was synthetically created
from this scan by creating an order which matched a
depth-first traversal of the Y ahoo! hierarchy. Since web
pages at a given node in the hierarchy are crawled at
one time, the web pages are also contiguous by their
particular class as defined by the Y ahoo! labels. This
corresponds to the Text(S) data stream. As in the
case of the market basket data sets, we also generated
analogous data streams corresponding to Text(R) and
Text(E).

We tested how well the algorithm grouped records
corresponding to a given class or category in a cluster.
For the case of the market basket data sets, a class
was defined as the set of records created by a particular
instantiation of the random seed. Therefore, there were
10 “classes” in the case of the market basket data set.
For each cluster, we defined the birthing class as the
class label of the record which created the cluster. The
fraction of the records in the cluster which belong to
the birthing class is defined as the class purity of the
cluster. We note that the value of the class purity can
be computed only for those clusters which have more
than one data point.

We have illustrated the cluster purity results using
the different data sets in Figures 1 and 2 respectively. In
Figure 1, the S-Class stream is on top with the highest
level of cluster purity, whereas the R-class stream is
on the bottom with the lowest level of cluster purity.
We note that in the case of the MStream1(S) data
set, the effect of the evolution of the data stream
are quite pronounced and periodic. It is interesting
to see that there is a considerable reduction in the
class purity at each interval of b = 10, 000 records
for the MStream1(S) data set. In the case of the

Text(S) data set, the cluster purity behavior was much
more irregular. This is because some of the classes
in the original Y ahoo! taxonomy do not correspond to
coherent sets of documents. In such cases, it was not
possible to easily put a document in the cluster with the
correct birthing class. The overall level of cluster purity
was higher in the Text(S) data set because of the greater
level of temporal locality in the document data stream.
The Text(S) data set showed a higher level of overall
cluster purity as compared to the Text(E) and Text(R)
data sets. This was also the case with the market basket
data set. In the case of the Text(R), and MStream1(R)
data sets, there was no significant change in the cluster
purity over the course of the data stream computation.
This was also the case for the smoothly evolving data
streams Text(E), and MStream1(E) data sets in which
there was no significant change in the cluster purity
during stream progression. In each case, the S-class
streams had the highest cluster purity, whereas the
R-class streams had the lowest cluster purity. The
reason for this was that the R-class streams had a larger
number of classes running in parallel. This resulted in
a greater number of available possibilities in the class
labels of the current clusters. On the other hand, the
S-Class streams were pure within a given local segment.
As a result, the corresponding cluster purity was much
higher in this case.

4 Conclusions and Summary

In this paper, we discussed a method for clustering text
and categorical data streams with the use of compact
summary representation of cluster statistics. The pro-
posed algorithm can be used for both text and categori-
cal data mining domain with minor modifications of the
underlying summary statistics. Our experimental tests
show that the algorithm is effective in quickly adapting
to temporal variations in the data stream.

References

[1] C. C. Aggarwal, A Framework for Diagnosing Changes

in Evolving Data Streams, ACM SIGMOD Conference,
(2003), pp. 575–586.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. Yu, A Frame-

work for Clustering Evolving Data Streams, VLDB
Conference, (2003), pp. 81–92.

[3] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani, Streaming-Data Algorithms For High-

Quality Clustering, ICDE Conference, (2002), pp. 685–
696.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH:

An Efficient Data Clustering Method for Very Large

Databases, ACM SIGMOD Conference, (1996), pp.
103–114.

481


