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Abstract

In clinical trials, pharmaceutical companies test the
efficacy and safety of a new drug for the treatment of
a disease by comparing the results from a large number
of diseased and healthy patients exposed to either the
new drug, an existing drug that treats the disease, or a
placebo. One primary concern is liver toxicity, which
is usually diagnosed by blood analyte tests. Often,
such signals of toxicity lead to the discontinuation of
drug development or the withdrawal of the drug from
the market. Early detection of liver toxicity can save
lives and also save such companies billions of dollars.
Existing approaches for detecting liver toxicity typically
ignore correlations between blood analyte values, but in
this work we present novel dissimilarity measures based
on principal component analysis which can be used for
detecting liver toxicity and identifying subpopulations
who may be susceptible by taking into account the
correlations structure of the data. Experimental results
on real clinical trial data validate our approach.

Keywords: Drug efficacy and safety analysis,
outlier detection, clustering, dissimilarity measures.

1 Introduction

Drug safety issues have received much attention in the
past year. Several large pharmaceutical companies have
issued warnings or removed their drugs from the market
following reports of severe or deadly side-effects. Such
events are harmful to the companies’ public image,
and their financial status. Each company invests large
amounts of money in developing and testing new drugs.
Any drug under development or clinical trials that does
not make it to the market represents a huge loss for
the company. Also, any drug that makes it to market
but must be withdrawn represents a double loss for
the company, as it is unable to recoup development
costs, and may be held liable for any harmful effects of
that drug. Therefore, pharmaceutical companies have
an intense interest in discovering any harmful effects
of their drugs as early as possible, so they can cease
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development or sales in order to save both lives and
money.

The safety and efficacy of new drugs are determined
using a set of clinical trials. Clinical trials occur in four
phases. The ability to identify harmful drugs and cease
development at least one phase or a couple of years ear-
lier than usual can save a pharmaceutical company bil-
lions of dollars. In pharmaceutical clinical trials, the
efficacy and safety of a drug for treating a particular
disease is studied by comparing the results from sev-
eral groups of subjects. These include groups of healthy
subjects and groups of unhealthy subjects who are ran-
domly assigned to the experimental drug, existing ther-
apies for the disease, or a placebo. Safety is studied
in many ways; serial clinical laboratory blood tests are
used commonly to monitor biochemical changes in the
body. A common reason for stopping a drug develop-
ment project or causing discontinuation in a particular
patient or group of patients are abnormal blood test val-
ues related to the liver, as it has has a major detoxifying
function. When liver tests are high, it is assumed that
hepatotoxicity, or liver toxicity, is present. However,
the rules for determining the presence of drug-induced
hepatotoxicity are mostly qualitative and involve con-
siderable clinical judgment. The current state-of-the-
art in pharmaceutical research uses ad-hoc univariate
rules applied to multiple analytes. For example, “Hy’s
Rule” [2] requires the crossing of at least two univariate
thresholds. The problem of misclassification should be
obvious, since hepatotoxicity may not be so much cor-
related with absolute elevated blood analyte values as it
is with how the analytes move together. Our hypothesis
is that Hy’s rule is not sufficient, and that correlations
between analytes are extremely important for under-
standing the effects of a drug on liver toxicity.

Clinical trial data is usually in the form of a set
of multivariate time series, where each variable corre-
sponds to a blood analyte and each series corresponds
to a different patient. In this paper we examine the
notion of quantifying the dissimilarity between different
sets of data with the goal of detecting hepatotoxicity.
We propose dissimilarity measures that can be used to
quantify the differences between two data sets. Other
applications of our measure for clinical trial data in-
volve characterizing the differences between the differ-
ent subsets of patients and discovering subpopulations
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that have a greater risk of hepatotoxicity. The measures
we propose are based on principal component analysis
(PCA). Our measures consists of components that sepa-
rately take into account differences in the locations and
correlations of the data sets being compared. It is also
possible to weight the components differently, so one
can incorporate domain knowledge into the measure.
Finally, our measure is robust towards noise and miss-
ing data. We demonstrate the efficacy of the proposed
measures using clinical trial data provided by Pfizer that
is known to contain subjects exhibiting hepatic changes.

2 Related Work

There have been many metrics proposed that find the
distance or similarity between the records (e.g. the
Euclidean distance) or between the attributes of a
data set (e.g. correlation). However, these metrics
are not suitable for comparing two different data sets.
Similarity metrics for comparing two data sets have
been used in image recognition [6], and hierarchical
clustering [7]. However, these metrics do not explicitly
take into account the correlations between attributes
in the data sets. Parthasarathy and Ogihara [12]
propose a similarity metric for clustering data sets
based on frequent itemsets. This metric takes into
account correlations between the attributes, but it is
only applicable for data sets with categorical or discrete
attributes. There has also been work on defining
distance metrics that take into account the correlations
present in continuous data. The most popular metric is
the Mahalanobis distance [13], which accounts for the
covariances of the attributes of the data. However this
can only be used to calculate the distance between two
points in the same data set.

3 Algorithms

As we discussed in Section 1, clinical trial data are
presented in the form of a multivariate time series for
each subject in the trial. At each time point, the
values of various blood analytes are recorded. While
there are many techniques for analyzing (multiple)
times series data [1, 3, 5], clinical trial time series
data is quite challenging. Clinical trial time series
data sets suffer from irregular sampling, missing data,
and varying lengths. This may be due to a variety
of reasons, including missed appointments, unexplained
absences, and drop outs. Furthermore, there are also
several potential sources of noise. Measurement errors,
laboratory bias 1, and circadian effects on analyte values
(depending on when the blood sample was drawn) can

1Different laboratories, where these tests are often
analyzed, often have different protocols resulting in
a significant variation in analyte values for the same
subject.

be contributing factors to noise.
The basis of Hy’s rule, and the typical signal physi-

cians look for when evaluating liver toxicity, is usually
a significant and consistent departure from the normal
levels of one or more liver analytes. Moreover, it is
usually the case that not all the analytes are affected
simultaneously. A conclusion one can draw from these
two statements is that the correlation among analytes
should be capable of identifying such significant depar-
tures from the norm.

This key intuition leads us to use correlation or co-
variance matrices to represent patient data. We sub-
sequently use principal component based methods for
computing dissimilarity measures for such datasets. We
note that correlation and covariance matrices can eas-
ily be imputed in the presence of missing data by using
the Expectation-Maximization algorithm [4] to find the
maximum-likelihood values of the covariance or corre-
lation matrices. Moreover, principal components based
techniques have been shown in the literature to be noise-
tolerant [11]. We note that such measures are general-
purpose, and can be used to compare any two data sets,
so long has they have the same dimensionality [9].

3.1 Dissimilarity Measures Our goal is to quantify
the dissimilarity of two k-dimensional data sets X and
Y. Our measures take into account the correlations
between the attributes of the two data sets. In general,
the dissimilarity of two data sets X and Y is denoted
as D(X,Y). We define the function D in terms of
two dissimilarity functions that take into account the
differences the magnitude and direction of the variance
in the data sets. These components are combined by
means of a weighted sum, which allows one to weight
the components differently, so as to incorporate domain
knowledge.

The first step in using our dissimilarity measures is
to the find the principal components of the data sets
being compared. The principal components of a data
set are the set of orthogonal vectors such that the first
vector points in the direction of greatest variance in the
data, the second points in the orthogonal direction of
the second greatest variance in the data, and so on [14].
We consider X and Y to be most similar to each other
when their principal components, paired according to
their ranks, are aligned and have the same magnitude,
and most dissimilar when all of the components of X

are orthogonal to those of Y.
Using the principal components, we can represent

each data set X as a single feature vector F
X

:

(3.1) F
X

=
√

λ1 × X1

where X1 is the first principal component of the data
set, and λ1 is its corresponding eigenvalue. That is to
say each data set is represented by the scaled primary
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principal component vector pointing in the direction of
greatest variance.

Having such a feature vector, we can then apply
any standard distance metric. For example, applying
the Euclidean distance metric:

(3.2) De(FX
, F

Y
) = |F

X
− F

Y
|2

on the first principal component derived from the covari-
ance matrix of the data would result in a value that si-
multaneously measures differences in direction and mag-
nitude of the vector.

This measure can be extended to account for the
differences in the mean of the data sets. First we define
the dissimilarity of the means of the data sets as follows:

(3.3) Dµ(X,Y) = |µ
X
− µ

Y
|2.

that is to say, the Euclidean distance between the
centroids of the two data sets. We can then define the
extended De measure as follows:

(3.4) De(X,Y) = β0 + β1 × Dµ + β2 × De.

This formulation allows us to weight differences in the
means and correlations according to domain informa-
tion. For example, in clinical trial data, differences in
the means of the observations of two different subjects
may be caused more by differences in demographic char-
acteristics (e.g. sex, age, weight) than by any effect of
the drug, and so one would want to weight the differ-
ences in correlations higher.

Finally, we note that we can generalize these mea-
sures to account for all the principal components as fol-
lows. Let F i

X
be the feature vector for the ith compo-

nent:

(3.5) F i

X
=

√

λi × Xi.

Then the De measure can be generalized as:

(3.6) D′

e(X,Y) =

k
∑

i=1

De(F
i

X
, F i

Y
).

3.2 Applications

3.2.1 Anomaly Detection Detection of anomalies
or outliers in clinical trial data is very important. Sub-
jects’ analyte values may be anomalous for many rea-
sons related to sample processing including subject in-
gestion of interfering substances, sampling handling
conditions, analyzer error, and transcription error. If
these data points can be identified and the cause at-
tributed to a non-treatment-related event, then the data
point may need to be removed from a particular anal-
ysis. Subjects’ values may be anomalous because they
are having abnormal reactions to the drug. If this is the
case, the drug maker may want to study more subjects

similar to the anomalous ones to see if they are true
anomalies or indicative a small sub-populations that
may have toxic reactions to the drug. Using our dissim-
ilarity measures, it is straightforward to implement ba-
sic outlier detection algorithms such as those described
in [8]. These are nested-loop approaches that calculate
the dissimilarity between each pair of data points (or
in our case, each pair of subjects). Having calculated
these values one can rank the data points (subjects) ac-
cording to the sum of the dissimilarities from the k most
similar subjects.

3.2.2 Clustering The dissimilarity measures we
present above allow us to easily perform clustering of
the subjects. Finding clusters of subjects in clinical
trial data is helpful in that it allows us to identify sub-
populations who may have a greater risk of hepatotoxi-
city, sub-populations on whom the drug may have little
or no effect, sub-populations that may have a higher risk
of severe side-effects, et cetera. This allows the drug
makers to determine the efficacy of the drug, to deter-
mine dosage levels for different patients, and to deter-
mine if the side-effects are too severe or widespread to
continue development of the drug. It is straightforward
to perform agglomerative hierarchical clustering of data
sets using our dissimilarity measures. If one has n data
sets, one can construct an n by n table containing the
pairwise dissimilarities of the data sets. Once this table
has been constructed, one can use any distance metric
(e.g. single-link) to perform the hierarchical clustering.

4 Experimental Results

4.1 Setup The first dataset we use, henceforth re-
ferred to as D1, consists of a set of subjects suffering
from diabetes, who, in addition to their regular dia-
betes therapy, were receiving either a placebo or the
study drug (drug A) for a diabetic complication. Since
we are primarily concerned with hepatotoxicity, follow-
ing suggestions from our domain experts, we only con-
sider eight serum analytes (often referred to in the lit-
erature as the liver panel): ALT (alanine aminotrans-
ferase), AST (aspartate aminotransferase), GGT (γ-
glutamyltransferase), LD (lactate dehydrogenase), ALP
(alkaline phosphatase), total bilirubin, total protein,
and albumin. Using advice from a domain expert, we
use the logarithm transformation of the first six ana-
lytes’ values (total protein and albumin are excepted).
There is strong evidence that the data after this trans-
form is multi-variate Gaussian [10]. This dataset con-
sists of 446 patients on placebo and 680 patients on
drug. Development on this drug was discontinued in
Phase III for various reasons including possible hepato-
toxicity.

The second dataset we use, henceforth referred to
as D2, consists of a set of post-menopausal women, who

509



again were given either a placebo or one of two drugs
(B, C) (both are different from drug A). Again, we limit
our focus to the liver panel. This dataset consists of
201 patients on placebo, 41 patients on drug B, and
126 patients on drug C. Both drugs B and C are
on the market, and are expected to have little or no
hepatotoxicity.

Both datasets suffer from the problems we men-
tioned earlier. They contain missing data, unequally
spaced time series data for different patients, some pa-
tients had many readings over a period of time, others
had much fewer etc. Since the differences in the mean
are not significant in these data sets, we use the basic
forms of the De measure defined in equation 3.2 in these
experiments. All of our implementations are done using
Octave, an open-source version of Matlab.

4.2 Anomaly Detection In our first experiment, we
want to see how our dissimilarity measures perform on
the clinical trial data set of diabetic patients. As noted
earlier we have two groups of patients: one on placebo,
and another on the drug under study. The experiment
we conduct is to flag outliers from the dataset using the
dissimilarity measures discussed in the previous section.
Note that previous to drug intake the distributions of the

two groups are nearly identical, according to standard
Q-Q plots. If the people on drug tend to be flagged as
outliers with a greater probability than expected, then a
reasonable conclusion is that there may be a hepatotoxic
effect resulting from drug intake.

We rank the subjects according to the approach
presented in section 3.2.1. Once we have these outlier
rankings for all the subjects in a given study, we can
use them to determine not only which subjects are
the most anomalous, but also to determine if the drug
being studied has any appreciable effect. For example,
if we examine a ranking of the subjects, we would
expect the hepatotoxic patients to be highest-ranked,
followed by the remaining subjects who were on the
drug, and finally the patients who were given a placebo.
However, a drug that has little or no effect on the
liver tests is less likely to cause hepatotoxicity, and
subjects on such a drug should not be very dissimilar
from those on placebo, meaning that the ranking would
be random. To examine the effects of the drug being
studied, we use graphs such as those in Figure 1, where
we plot the cumulative number of subjects on drug
and on placebo given the outlier ranking using thick
lines. The thin lines express the expected cumulative
number of subjects on drug or placebo for a given
ranking assuming the ranking is random. For more
details see [10].

In Figure 1 (A) we plot the outlier ranking arising
from both the De measure for the top 10% (113) of the
outliers in D1. We observe that the expected number of

outliers from the drug group is exceeded by the actual
number indicating a clear signal that the drug under
question is causing a change in analyte behavior in the
patients being flagged as outliers. We would like to note
that Phase III continued for approximately two more
years after these cases were completed. Had this signal
been detected at that time, Pfizer might have been able
to save on the resources it expended to continue Phase
III.

In our second experiment we evaluate the perfor-
mance of our method on the second dataset composed
of healthy post-menopausal women. In Figure 1 (B) and
(C), we plot the top 10% of the outliers for both drugs
using the De measure. As expected, since these are
healthy women taking either a placebo or drugs with
no known hepatotoxic effects, the mixture of subjects
on drug and placebo marked as outliers are near the
expected levels.

These experiments demonstrate an advantage of our
approach over Hy’s rule. They show that we are capable
on not only finding important differences in magnitude,
but also in direction (correlation) that may be missed
by Hy’s rule.

4.3 Data Set Clustering In our final experiment
we demonstrate the utility of using our dissimilarity
measures to perform clustering. In this case we use
a subset of the subjects corresponding to all males in
dataset D1 with diabetes who were taking drug A,
for a total of 450 subjects. We use the Euclidean
dissimilarity measure De and the covariance matrices
and performing single-link hierarchical clustering. We
find that clustering results in an intuitive grouping of
the subjects.

One branch of the resulting cluster dendrogram
corresponds to a cluster of subjects with relatively small
spikes in analyte values, as can be seen in Figure 2
(A). Another branch contained subjects with spikes an
order of magnitude larger, such as the subject seen in
Figure 2 (B). These spikes may not be large enough to
be considered a sign of hepatotoxicity according to Hy’s
rule. Still another branch contained subjects with spikes
two orders of magnitude larger than those in the first
branch.low spikes in analyte values, such as the one in
Figure 2 (C). Although we only plot the ALT levels here,
we note these spikes extend to the other blood analytes
as well and affect the overall covariances. Many of the
other branches contain subjects with only small random
fluctuations in analyte values. Such fluctuations are
not indicative of hepatotoxicity, but the subjects may
cluster together due to demographic or other health
attributes, which may aid in determining dosage levels.

5 Conclusion

Efficient and precise analysis of clinical trial data is very
important to pharmaceutical companies, as it allows
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Figure 1: Outlier rankings using (A) De on Drug A in D1; (B) De on Drug B in D2; (C) De on Drug C in D2.
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Figure 2: Subject with (A) a small spike, (B) a medium spike, and (C) a large spike in analyte values.

them to determine the efficacy and safety of a drug.
Current approaches for detecting hepatotoxicity in clin-
ical trial data sets have limited effectiveness, since they
typically ignore correlations between blood analytes. In
this paper we presented several dissimilarity measures
for data sets that takes into account the means and
covariance structures of the data sets. Our results on
real clinical trial data show that our measures can be
very helpful in detecting true hepatotoxicity and find-
ing subpopulations of subjects who may have different
reactions to the drug under study.
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