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Abstract

We use a low-dimensional linear model to describe the
user rating matrix in a recommendation system. A
non-negativity constraint is enforced in the linear model
to ensure that each user’s rating profile can be repre-
sented as an additive linear combination of canonical
coordinates. In order to learn such a constrained linear
model from an incomplete rating matrix, we introduce
two variations on Non-negative Matrix Factorization
(NMF): one based on the Expectation-Maximization
(EM) procedure and the other a Weighted Non-
negative Matrix Factorization (WNMF). Based on
our experiments, the EM procedure converges well
empirically and is less susceptible to the initial starting
conditions than WNMF, but the latter is much more
computationally efficient. Taking into account the
advantages of both algorithms, a hybrid approach is
presented and shown to be effective in real data sets.
Overall, the NMF-based algorithms obtain the best
prediction performance compared with other popular
collaborative filtering algorithms in our experiments;
the resulting linear models also contain useful patterns
and features corresponding to user communities.
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1 Introduction

Collaborative Filtering (CF) algorithms are currently
quite popular in recommendation systems. Generally,
they can be divided into two categories: memory based
algorithms [1, 6, 16, 17] and model based algorithms |2,
3,5, 7,11, 15, 18, 19, 20]. Marlin’s thesis [12] compares
a number of algorithms from these two categories for
accuracy on available data sets.

It is shown in [3] that a low-dimensional linear
model of user preferences is powerful, and why this ap-
proach has been popular for CF algorithms. Many CF
algorithms [2, 3, 19, 20] also incorporate a noise genera-
tion process so that observed ratings are combinations of
ratings from the linear model and Gaussian noise (with

zero mean). If the rating matrix is complete, finding
the linear model that maximizes the log-likelihood of
the ratings is thus reduced to a low rank approxima-
tion problem, which can be solved by Singular Value
Decomposition (SVD). When the rating matrix is in-
complete, as is the case in real-world recommendation
systems, a better objective is to find the linear model
that maximizes the log-likelihood of the observed rat-
ings. Both [3] and [19] address this problem; they use
the Expectation-Maximization (EM) procedure to max-
imize this objective from different perspectives—[3] is
based on factor analysis, and [19] is based on weighted
low rank approximation.

In this work, we also assume that ratings are gen-
erated from a low-dimensional linear model followed by
a noise generation process. Moreover, a non-negativity
constraint is enforced in the linear model so that each
user’s rating profile is an additive linear combination
of k canonical coordinates, and each coordinate is in
the range of the normal rating space. Therefore, each
coordinate can be regarded as a representative rating
profile from a user community or interest group, and
each user’s ratings can be modeled as an additive mix-
ture of rating profiles from user communities or inter-
est groups. A user community can be thought of as
an expression of a particular statistical pattern in the
opinions of users, and typically has some kind of real
world meaning. For example, a user community might
be characterized by giving high ratings to programming
books and low ratings to other books, and thus consti-
tute a “computer” group.! A user may have a large
affinity for the computer group based on his or her
work, a somewhat smaller affinity for a fishing-centered
group based on leisure interests, and negligible affinities
for the remainder. Introducing the non-negativity con-
straint brings us two benefits. First, the result is easy

TNote that because user communities are generated from sta-
tistical patterns, they do not necessarily have distinct conceptual
boundaries and may include multiple topics for which users ex-

press similar preferences.
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to explain since it is natural to consider that users have
non-negative affinities for a certain set of user communi-
ties based on their interests. Second, the features (e.g.,
the top ranked items) of these user communities are ex-
plicitly represented, making them easier to understand
intuitively.

We will show (in Section 2) that Non-negative Ma-
trix Factorization (NMF) [8, 9] is a method for finding
the linear model with the non-negativity constraint that
maximizes the log-likelihood of the rating matrix if it
is complete. Because a real rating matrix is typically
incomplete and sparse, we introduce an EM-based algo-
rithm (Section 3.1) and Weighted Non-negative Matrix
Factorization (WNMF) (Section 3.2) as approaches for
obtaining the model that maximizes the log-likelihood
of observed ratings. Experiments show that the pro-
posed NMF-based algorithms obtain the best prediction
results in real data sets when compared with several ex-
isting CF algorithms (Section 4).

2 Owur Model

In this section, we define our non-negativity constrained
linear model for collaborative filtering. Denote the rat-
ing matrix as A (n items-by-m users); then AY) (the
jth column of A) is user j’s rating profile and A;; rep-
resents the rating given by user j on item ¢. Define
matrix X (n-by-m and with rank at most k) as a low-
dimensional linear model that approximates the rating
matrix A. Let column vectors U = (UM, ..., U®) be
the representative rating profiles from k user communi-
ties so that the rating given by the jth user community
to item ¢ is characterized as U;;. We assume that user
j’s rating profile X can be modeled as an additive
mixture of those k basic vectors in U. More precisely,
XU = v, in which V) is a column vector that
represents the user j’s affinities for all user communi-
ties, and all the affinities in V should take only non-
negative values. Furthermore, the matrix U should also
take only non-negative values, assuming user ratings are
in a non-negative range. In case that original ratings
can take negative values, we can simply shift all ratings
into a non-negative range by subtracting the minimum
of the original range (and finally shift the obtained lin-
ear model back to the original range).? Now the low
rank linear model can be represented by the product of
these two non-negative matrices, i.e., X =UV.

Taking into account possible noise in the rating
process, the rating matrix A can be represented as the

2Note that users often make the same shift themselves given
two different rating ranges; for example, they use rating 0 to
express a strong dislike on a 0-10 range and give rating -5 for

the same purpose if the range is from -5 to 5.

linear model X plus a Gaussian distributed noise matrix
Z (Zi; are iid. N(0,0?)). If the rating matrix A is
fully observable, maximizing log Pr(A|X) is equivalent
to minimizing the sum of the squared difference between
A and X. In other words, given the rating matrix A, the
model X can be obtained by finding the non-negative
matrix U (n-by-k) and the non-negative matrix V' (k-
by-m) that minimize ||A—UV||%, where |- || ¢ represents
the Frobenius norm. This is the objective function of
non-negative matrix factorization [8, 9]. The problem
setting of NMF was presented in [13, 14].

Using the technique of Lagrange multipliers with
non-negative constraints on U and V gives us the
updating formulas for U;; and Vj;:
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In order to standardize while keeping the factorization
unique, the resulting U is normalized such that the norm
of each column vector is equal to one. More precisely,
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3 Learning From Incomplete Ratings

(22) Uy =

In this section, we show how to find the desired model
when the rating matrix is incomplete, as is typically the
case in real-world systems. A better objective function
for a rating matrix A with missing entries is to find
the linear model X that maximizes the log-likelihood of
the observed data (denoted as A°), i.e., log Pr(A°|X).
We introduce two algorithms to maximize this objective
function: one is based on the EM procedure and the
other uses Weighted Non-negative Matrix Factorization
(WNMF).

After X is obtained, X;; is the best prediction for
user j’s rating on item 4; this is because A;; is assumed
to be from a Gaussian distribution with X;; as its mean,
and given X;;, Pr(A;;]X;;) obtains its maximum when
A;j is equal to Xj;.

3.1 EM procedure The EM algorithm [4] is a gen-
eral method for finding the maximum likelihood pa-
rameters of a model when data are incomplete. The
goal of the Ezxpectation step in the tth iteration of the
EM procedure is to compute the expected expression
of the complete-data log-likelihood with respect to the
unknown data (denoted as A*) given the observed data
A° and the current parameter estimate X *=1) that is,

Q(X, XD = E[log Pr(A°, A*|X)|A°, X =1,

Then in a subsequent Maximization step, the goal is to
find the updated model parameter X *) that maximizes
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the most recently computed expectation Q(X, X (*#~1),
that is,
X® = argy max Q(X, X~V).

We start by computing Q(X, X *~1), based on the
observed A;;:

1
E[log PI‘(Aij|X)|AO,X(t71)] = —272(1417' - Xz‘j)z + C
g
In this and subsequent equations, C is a constant. If A;;

is unknown, then since A;; ~ N(X;;,0?), the expected
expression of A;; given the current parameter estimate

Xi(;fl) is equal to that estimate. Therefore, we have
B[4 XV = X5V and

- 1 -
Ellog Pr(Ai;|X)|4%, X7V = — 5 (X" = Xi)* + C.

By combining these two cases, it follows that
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If we denote A’ as a matrix in which observed entries in
A are unchanged and unknown entries are replaced with
corresponding entries in the current model estimate,
then maximizing Q(X, X *~1) is equivalent to minimiz-
ing >, (A7 — (UV);;)?* with non-negativity constraints
on U and V. The latter objective, as we have shown
above, can be solved by performing NMF on A’.

In summary, in each iteration the missing entries are
replaced with the corresponding values in the current
model estimate in the expectation step and the updated
model parameter is obtained by performing NMF on
that filled-in matrix in the maximization step.

3.2 WNMF As an alternative to the above, we
introduce a second approach: weighted non-negative
matrix factorization. We note that this method has
previously been applied in [10] to deal with missing
values in a matrix of network distances. The log-
likelihood of observed data can be expressed as follows:

1
Z (Aij — X35)° + C.

log Pr(A°|X) = —-—
20 A;;€A0

Therefore, maximizing the log-likelihood of observed
data is equivalent to minimizing Zij Wii(Ay; —
(UV);)?, where W;; is equal to one if A;; is the ob-
served entry and zero otherwise. W;; can be taken as
the weight of the entry A;;.

If we repeat the Lagrange multiplier on this ob-
jective function and use the non-negativity part of the

Kuhn-Tucker condition, we obtain the following updat-
ing formulas for WNMEF:

) _ g WAV,
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where % denotes element-wise multiplication. Equation
(2.2) can be used to standardize U and V after WNMF
is conducted.

Like the NMF algorithm, the WNMF algorithm
is also guaranteed to converge, but may not lead to
a global optimum. As we will show in Section 4, the
actual performance of the WNMF algorithm is highly
dependent on the initial values of U and V. WNMF is
much simpler compared with the EM procedure: each
round of WNMF only needs one update to U and V,
whereas each iteration of the EM procedure needs to
perform NMF once, which usually takes from hundreds
to thousands of rounds of updates on U and V.

4 Experiments

For our experiments, we use a 1426-by-2945 (items-by-
users) rating matrix from the MovieLens data set and a
100-by-3000 rating matrix from Jester. Available rating
entries in each data set were randomly divided into five
partitions for fivefold cross-validation. Algorithms are
then performed on training cases to make predictions
for test cases. The two experimental measures used are
Normalized Mean Absolute Error (NMAE) and ROC-
4 area. The NMAE is the average of the absolute
values of the difference between the real ratings and
the predicted ratings divided by the ratings range.
The ROC-4 area is the area underneath a Receiver
Operating Characteristic (ROC) curve when ratings
of 4 and above are considered signal and those below
are considered noise. In our experiments, ROC-4 area
averaged per-user is used.

4.1 EM procedure vs. WNMF We first compare
the performance of the NMF-based EM approach with
that of the SVD-based EM approach. In both algo-
rithms, item averages are used as initial values for miss-
ing entries in the first iteration of the EM procedure.
In the SVD approach, the rating matrix is normalized
by calculating the z-scores for each user profile, as sug-
gested in [18]. The rank of the linear model k is chosen
as 10 in SVD and 20 in NMF based on the performance
of our preliminary experiments. Figure 1 displays the
results of these two algorithms on MovieLens. Both al-
gorithms get almost the same performance in terms of
NMAE while NMF obtains a better result on ROC-4

area.
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Figure 1: NMAE and ROC-4 area of the SVD-based
and the NMF-based EM approaches on MovieLens.
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Figure 2: NMAE and ROC-4 area of the WNMF
algorithm on MovieLens
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Figure 2 displays the results of a trial on MovieLens
using the WNMF algorithm in which the initial values
of U and V are randomly chosen. The figure shows that
both the NMAE result and the ROC-4 area of this trial
eventually converge to different values from those in the
results obtained by the EM approach. Based on our
experiments, we observe that it is highly likely that the
performance of the WNMF approach with randomized
initial values is worse than the performance of the EM
procedure, which suggests that an approach based on
running many trials with different randomized initial
values and picking the best will be unhelpful. However,
we also observe that if the initial values of U and V are
chosen as the values obtained after several iterations of
the EM procedure, the performance of WNMF' is much
better.

Although the performance of the WNMF approach
is dependent on the initial values used, it runs much
faster than the EM approach.®> This motivates us to
a hybrid approach that combines these two algorithms
together. In our hybrid approach, the EM procedure is
performed first on the rating matrix for several itera-
tions to obtain a preliminary linear model (a pair of U
and V), and then this pair of U and V are taken as the
initial values of the WNMF approach. Compared with a

SEach iteration in the EM approach takes 303.3s and each
updating round in WNMF takes 1.27s. The algorithms are
implemented in Matlab R14, and the experiment was performed
on a 2.8GHz Intel XEON machine with 4GB RAM.

5 10 15 20 25 30
rounds of WNMF updating

(b) ROC-4 area

° rour:dos of W;\ISMF upggling ®
(a) NMAE
Figure 3: NMAE and ROC-4 area of the hybrid ap-

proach that combines the EM approach (with 1,3, and
5 iterations) and the WNMF approach.

Table 1: Performance of CF algorithms on MovieLens.

Pearson | SVD EM | NMF EM | Hybrid NMF
NMAE | 0.1707 0.1629 0.1623 0.1634
ROC-4 | 0.7471 0.7682 0.7723 0.7691

randomized model, the preliminary model obtained af-
ter several iterations of the EM procedure is more likely
to be accurate, so that the WNMF approach is more
likely to obtain a good local (or global) optimum. In
short, such an approach not only has a high likelihood
of obtaining accurate predictions, but reduces the com-
putational cost as well. The performance of this hybrid
approach appears promising based on our experiments.
Figure 3 shows the results of combining the EM ap-
proach (with 1, 3, and 5 iterations) and the WNMF
approach.

4.2 Results of the NMF based algorithms Ta-
ble 1 summarizes the NMAE and ROC-4 area results
obtained using different CF algorithms on MovieLens.
The results show that the NMF-based EM approach
and the SVD-based EM approach achieve the best result
in NMAE, and the NMF-based EM approach achieves
the best performance in ROC-4 area. The hybrid ap-
proach (with five iterations of the EM procedure plus
the WNMF approach) also works very well. Table 2
shows the results obtained on Jester. Since the origi-
nal rating range in Jester is from -10 to 10, we shift its
range to [0, 20] for the NMF algorithm.

One advantage of the NMF-based CF algorithms is
that the coordinates obtained via NMF directly reflect
the features of the user communities. By simply sorting
each column in U, we get a characterization of each
community in terms of the ranked list of preferences
it has on all items. As an example, Figure 4 displays
the five top ranked movies for five of the 20 user
communities extracted from MovieLens. Generally, the

Table 2: Performance of CF algorithms on Jester.

Pearson | SVD EM | NMF EM | Hybrid NMF
NMAE | 0.1634 0.1605 0.1599 0.1599
ROC-4 | 0.7539 0.7588 0.7612 0.7608
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Interest Group 5 Interest Group 8 Interest Group 9

Interest Group 17 Interest Group 19

Austin Powers: International ban of My Tetrinator 2 Judgrnent Da Dumb & Durnber Pretty Warnan Sound of Music

(Comedy) {Action|Sei-Fi|Thriller) (Comedy) (Comedy |Romance) (Musical)

Austin Powers: The Spy Who Shagged Die Hard Ace Ventura: When Mature Calls Datting Hill Grease

(Comedy) (Action|Thriller) (Comedy) (Comedv | Romance) (Comedy |Musical |Romance)
Clerks Independence Day (ID4) Ace Ventura; Pet Detective Steel Magnolias Little Mermaid

(Comedy) (Action|Sci-Fi|War) (Comedy) (Drama) (fnimation|Children = |Comedy
Big Lebowski Itatrix Horne Alone 2: Lost in Mew Yark Erin Brockovich Wizard of Oz

(Comedy |Crime [Mystery |Thrilli (Action|Seci-Fi|Thriller) (children’ = |Comedy) [Drama) (Adventure |Children s |Dramall
Happy Gilmore Speed Mutty Professor Sleepless in Seattle Cinderella

(Comedy) {hction|Romance |[Thriller) (Comedy |Fantasy |Romance | Sci- (Comedy |Romance) {Animation|Children’ s|Musical

Figure 4: The top five ranked movies in five of the 20 user communities extracted from MovieLens with NMF.
The genres of movies as given by MovieLens are in parentheses. Some movies may have more than one genre.

top movies in a given user community are in the same
genre. For example, all the movies in group 8 are action
movies, and all the movies in group 19 are musicals.
We also see movies from the same series in some user
groups— “Austin Powers” in group 5 and “Ace Ventura”
in group 9. More surprisingly, some interesting features
can be observed among movies in the same group, e.g.,
“Pretty Woman”, “Notting Hill”, “Steel Magnolias”,
and “Erin Brockovich” in group 17 all feature Julia
Roberts. The patterns and features extracted by NMF
can be helpful in understanding shared interests of users
and similarities among different items.
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