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Abstract
This paper addresses a central problem of Proteomics: esti-

mating the amounts of each of the thousands of proteins in

a cell culture or tissue sample. Although laboratory meth-

ods involving isotopes have been developed for this problem,

we seek a method that uses simpler laboratory procedures.

Specifically, our aim is to use data-mining techniques to infer

protein levels from the relatively cheap and abundant data

available from high-throughput tandem mass spectrometry

(MS/MS). We have developed and evaluated several tech-

niques for tackling this problem, including the development

of three generative models of MS/MS data, and methods

for efficiently fitting the models to data. In addition, we

tested each method on three real-world datasets generated

by MS/MS experiments performed on various tissue sam-

ples taken from Mouse. This paper outlines the biological

problem and presents a selection of our results.

1 Introduction.
Proteomics is the large-scale study of the thousands
of proteins in a cell [7]. In a typical Proteomics
experiment, the goal might be to compare the proteins
present in a certain tissue under different conditions.
For instance, a biologist might want to study cancer
by comparing the proteins in a cancerous liver to those
in a healthy liver. Modern mass spectrometry makes
this possible by enabling the identification of thousands
of proteins in a complex mixture [11, 3]. However,
identifying proteins is only part of the story. It is
also important to quantify them, that is, to estimate
how much of each protein is present in a cell [1, 4].
To this end, a number of laboratory methods have
been developed, notably those based on mass tagging
with isotopes [5, 10]. However, simpler methods may
be possible, methods that do not require additional
laboratory procedures but are simply based on the data
from tandem mass spectrometers [8]. This paper is an
initial exploration of this possibility. In particular, we
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investigate the use of data-mining techniques to infer
protein quantity from tandem mass spectrometry data.

1.1 Tandem Mass Spectrometry. Tandem mass
spectrometry involves several phases in which proteins
are broken up and the pieces separated by mass [7, 11].
First, a complex mixture of thousands of unknown
proteins is extracted from a cell culture or tissue sample.
Since proteins themselves are too large to deal with,
they are fragmented, producing a mixture of tens of
thousands of unknown peptides. The peptides are
then ionized and passed through a mass spectrometer.
This produces a mass spectrum in which each spectral
peak corresponds to a peptide. From this spectrum,
individual peptides are selected for further analysis.
Each such peptide is further fragmented and passed
through a second mass spectrometer, to produce a
so-called tandem mass spectrum. The result is a
collection of tandem mass spectra, each corresponding
to a peptide. Each tandem mass spectrum acts as a
kind of fingerprint, identifying the peptide from which it
came. By searching a database of proteins, it is possible
to identify the protein that produced the peptide that
produced the tandem mass spectrum. In this way, the
proteins in the original tissue sample are identified.

A peptide mixture is not analyzed all at once. In-
stead, to increase sensitivity, the peptides are “smeared
out” over time (often using liquid chromatography), so
that different kinds of peptides enter the mass spectrom-
eter at different times. A typical MS/MS experiment
may last many hours, with proteins and peptides being
identified each second. Copies of a particular peptide
may continue to enter the mass spectrometer for sev-
eral seconds or minutes. As the copies enter, the pep-
tide will be repeatedly identified, once a second. In this
way, a peptide may be identified and re-identified many
times, increasing the confidence that the identification
is correct. Each identification of a peptide is called a
spectral count , since it requires the generation of a tan-
dem mass spectrum. A large spectral count indicates
that a peptide has been confidently identified.

In general, as protein abundance increases, so does
spectral count [8]. However, the exact relationship is
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not clear and seems to depend on many factors, includ-
ing the amino acid sequence of the peptides and the
properties of the experimental set up. At present, there
is no complete quantitative theory relating a protein’s
abundance to the spectral counts of its peptides. This
paper is an initial attempt at using data-mining tech-
niques to develop such a theory, and using the theory
to estimate protein abundance.

1.2 Data Mining. We develop and evaluate three
generative models of MS/MS data, and for each, we de-
velop a family of methods for efficiently fitting the model
to data. Because this is an initial study, the models were
chosen for their simplicity and tractability, and the goal
is to see how well (or poorly) they fit the data, and to
quantify the error. Each model predicts the spectral
count of a peptide based on two factors: its amino-acid
sequence, and the abundance of the protein from which
it was derived. The three models differ in their treat-
ment of peptide ionization. However, they each provide
an explanation for a recently observed linear relation-
ship between protein abundance and spectral count [8].
More importantly, we show how to use each model to
estimate protein abundance from spectral count.

To evaluate the models, the Emili Laboratory at
the Banting and Best Department of Medical Research
at the University of Toronto has provided us with
datasets of several thousand proteins and peptides. The
datasets were derived from MS/MS experiments on
protein mixtures extracted from various tissue samples
of Mouse. Each mixture contains tens of thousands of
proteins, and each protein is present in the mixture with
a specific (but unknown) abundance. A small sample
of the data is shown in Table 1. (Details on how this
data was generated can be found in [6].) Each row in
the table represents a peptide ion. The first (left-most)
column is the Swissprot accession number identifying a
protein. The second column is the amino-acid sequence
of the peptide. The third column is the spectral count
of the peptide, and the last column is its charge. Notice
that there may be many entries for the same protein,
since a single protein can produce many peptides, and
each peptide can produce ions with different amounts
of charge. Protein ID, Peptide and Charge define a key
for the table, that is, they uniquely identify a row.

Table 1: A fragment of a data file

Protein ID Peptide Count Charge

Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAV HV K 3 2

· · · · · · · · · · · ·

High-throughput MS/MS experiments can provide
a large amount of data of this kind on which to train
and test data-mining methods. However, they also
introduce a complication, since the amount of protein
input to the mass spectrometer is unknown. This can
be seen in Table 1, where spectral count is provided, but
protein abundance is not. Thus, it is in general unclear
whether a low spectral count for a peptide is due to the
properties of the peptide or to a small amount of protein
at the input. One of the challenges is to untangle these
two influences. What makes the problem approachable
is that we have data on spectral counts for peptides
from the same protein, so differences in their counts
cannot be due to differences in protein abundance. The
models and methods developed here were chosen, in
part, because of their ability to exploit this information.
In addition, they lead to efficient algorithms based on
well-developed operators of linear algebra.

The rest of this paper outlines our methods and
experimental results. Details are available in a technical
report [2].

2 Modeling the Data.

This sections presents our three models of MS/MS data.
Each model represents a different hypothesis about the
way MS/MS data is generated, and the main difference
between them is their treatment of peptide ionization.
Section 4 evaluates the effectiveness of the models using
the datasets supplied by the Emili laboratory.

2.1 Modeling Spectral Counts. To keep track of
different proteins and peptides, we use two sets of in-
dices, usually i for proteins and j for peptides. Proteins
are numbered from 1 to N, and the peptides for the ith

protein are numbered from 1 to ni. In addition, we use
y to denote spectral count, and in to denote the amount
of protein input to the mass spectrometer. Each protein
has a unique abundance, and each peptide has a unique
spectral count. Thus, ini is the abundance of protein
i, and yij is the spectral count of peptide j of protein
i. With this notation, the following equation provides a
simple model of spectral count:

yij = ini · ieij(2.1)

This equation divides spectral count into two fac-
tors: ini, the amount of protein from which peptide ij
was generated; and ieij, the ionization efficiency of the
peptide. Ionization efficiency can be thought of as the
propensity of the peptide to ionize and contribute to a
mass spectrum, though in this paper, we are using it to
refer to all factors that contribute to a peptide’s spec-
tral count other than the amount of protein. In this
way, we hope to untangle the amount of protein (which
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we want to estimate) from all other factors. Note that
yij is observed, while ini and ieij are both unknown.
Of course, Equation 2.1 is not exact. It provides at best
an approximate description of the data, and it is not
yet clear what the errors look like. The rest of the pa-
per develops the model in three different ways, fits each
model to real MS/MS data, quantifies the errors, and
estimates values for in i and ieij in the process.

It should be noted that with the model and data de-
scribed above, we can only learn relative values of pro-
tein abundance and ionization efficiency, not absolute
values. This is because any solution to Equation 2.1 is
unique only up to a constant: multiplying all the ini

by a constant, and dividing all the ieij by the same
constant gives another, equally good solution. How-
ever, estimating the relative amounts of protein is an
extremely useful biological result. Moreover, by using
a small amount of calibration data, the relative values
can all be converted to absolute values.

It is also worth noting that the model already
accounts for an experimentally observed property of
MS/MS data. Specifically, the abundance of a protein is
known to be directly proportional to the total spectral
count of its peptides [8]. Formally, ini = bi

∑
j yij ,

where bi is an (unknown) proportionality constant that
depends on the protein. Our model provides an expla-
nation for this proportionality and a way of computing
the constants bi. In particular, it follows immediately
from Equation 2.1 that

ini =

∑
j yij∑
j ieij

(2.2)

In other words, bi = 1/
∑

j ieij .

2.2 Modeling Ionization Efficiency. In order to
estimate relative values of protein abundance, we need
a model of the ionization efficiencies, ieij. In this paper,
we investigate three relatively simple models:

Linear : ieij = xij • β
Exponential : ieij = exij•β

Inverse : ieij = 1/(xij • β)
(2.3)

Here, β is a vector of parameters (to be learned),
xij is a vector of (known) peptide properties, and •
denotes the dot product (or inner product) of the two
vectors. The peptide properties are all derived from
the amino-acid sequence and charge of the peptide ion.
They could include such things as length, mass, amino-
acid composition, and estimates of various biochemical
properties such as hydrophobicity, chargeability, pH
under the experimental conditions, etc. Section 4
describes the specific properties used in this study.

We investigate linear models because they are di-
rectly amenable to the techniques of linear algebra. We
investigate exponential models because, by taking logs,
they become linear. In addition, exponential models
have the advantage that the ionization efficiency is guar-
anteed to be positive.

The inverse model has a different motivation. Spec-
tral counts have a very skewed distribution of values,
ranging over several orders of magnitude, with most of
the values concentrated at the very low end of the spec-
trum. In fact, as we show in [2], the distribution is
O(1/y2), where y denotes spectral count. It can be dif-
ficult to fit a linear model to data with this kind of
distribution, since a small number of very large values
tends to dominate the fit. However, 1/y has a uniform
distribution, thus eliminating all skew and transforming
the data into a more-manageable form. In addition, all
the methods we develop for fitting the linear model are
easily adapted to fit the inverse model.

3 Fitting the Models to Data.

The models described above each require the estimation
of a parameter vector, β. For each model, this problem
would reduce to multivariate linear regression if the
amounts of protein, ini, were included in the training
data. Unfortunately, they are not. This makes the
models non-linear in the unknowns. We have developed
a number of methods for transforming these non-linear
models into linear ones and for efficiently fitting them
to data. In some cases, the problem still reduces
to multivariate linear regression, but in most cases it
reduces to generalized eigenvector problems. In all,
we have developed three methods for fitting the linear
model to data (denoted LIN1, LIN2 and LIN3), three
methods for the inverse model (denoted INV1, INV2
and INV3), and two methods for the exponential model
(denoted EXP1 and EXP2). To give a taste of what
is involved, we discuss here the methods for the linear
model and develop one of them in detail. The remaining
methods are developed in [2].

3.1 Linear Models. Of our three methods for linear
models, the first two divide learning into two phases.
The first phase estimates a value for β, and the second
phase uses β to help estimate values for the amounts of
protein, ini. The two methods differ in the optimization
criteria used to fit the model to the data. In contrast,
the third method has only one learning phase, in which
all parameters are estimated simultaneously.

Recall that the linear model is given by equations
of the form:

yij = ini · (xij • β)(3.4)
where the parameter vector β and all the ini are un-
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known and must be learned. Of course, these equations
are not exact, and provide at best an approximate de-
scription of the data. The goal is to see how closely
they fit the data, and to estimate values for β and ini

in the process. From the discussion in Section 2.1, we
know it is only possible to estimate relative values for
these quantities. This effectively means we can deter-
mine the direction of β but not its magnitude. In fact,
in the absence of calibration data, the magnitude of β
is meaningless. For this reason, all the methods for the
linear model impose constraints on the magnitude of β
in order to obtain a unique solution. We now develop
the first (and simplest) of these methods.

3.1.1 LIN1: Two-Phase Learning. From Equa-
tions 3.4, we see that protein i gives rise to the following
equations, one equation for each peptide:

yi1 = ini · (xi1 • β)
yi2 = ini · (xi2 • β)

· · ·
yini = ini · (xini • β)

(3.5)

By dividing each equation by the previous one, we can
eliminate the unknown value, ini. That is, yij/yi,j−1

= (xij • β)/(xi,j−1 • β), for j from 2 to ni. Cross
multiplying gives yij(xi,j−1 • β) = yi,j−1(xij • β), and
rearranging terms gives the following equation:1

zij • β = 0(3.6)

where zij = yijxi,j−1 − yi,j−1xij , for j from 2 to ni,
and i from 1 to N . This equation is a restatement
of Equation 3.4 with the unknown values ini removed.
Like Equation 3.4, it is an approximation, and our goal
is to see how closely it fits the data.

A simple approach is to choose β so that the values
of zij • β are as close to 0 as possible. That is, we can
try to minimize the sum of their squares,

∑
i,j(zij •β)2.

Of course, this sum can be trivially minimized to 0 by
setting β = 0. But, as described above, the magnitude
of β is meaningless, and only its direction is important.
So, without loss of generality, we minimize the sum of
squares subject to the constraint that the magnitude of
β is 1. To do this, we use Lagrange multipliers. That
is, we minimize the following function:

F (β, λ) =
∑

i,j

(zij • β)2 − λ(‖β‖2 − 1)(3.7)

1Of course, we could generate many more equations of this
form by cross multiplying all possible pairs of equations from 3.5,
instead of just the successive ones. However, only ni − 1 of the
resulting equations would be linearly independent.

Taking partial derivatives with respect to β and setting
the result to 0, the algebra leads to the following
equations [2]:

∑

ij

zijzT
ij β = λβ λ =

∑

ij

(zij • β)2

In the left equation, all multiplications are matrix
multiplications, with all vectors interpreted as column
vectors. The left equation says that β is an eigenvector
of the matrix

∑
ij zijzT

ij , and the right equation says
that its eigenvalue is just the sum of squares we want to
minimize. We should therefore choose the eigenvector
with the smallest eigenvalue. This provides an estimate
of the parameter vector β, and completes the first phase
of learning.

In the second phase, we use β to estimate the
abundance of each protein, ini. This can be done in
a number of ways, such as using Equation 2.2.

4 Experimental Evaluation.

We conducted an extensive evaluation of the models and
methods developed above using both real and simulated
datasets [9]. This section presents a small sample of
results based on the real data, which consists of tables
similar to Table 1. We used three such datasets, derived,
respectively, from tissue samples of the brain, heart and
kidney of Mouse. The datasets were provided by the
Emili Laboratory at the Banting and Best Department
of Medical Research at the University of Toronto. Each
dataset contains about 8,000 peptides and over 1,200
proteins. We divided each dataset randomly into two
subsets, training data and testing data, in a 2:1 ratio.

To use the models and methods developed in this
paper, each peptide must be represented as a vector, x.
We evaluated several ways of doing this, using vectors
with 22, 42, 62 and 232 components, respectively. The
22-component vector captures the charge and amino-
acid composition of a peptide. In addition, the 42- and
62-component vectors capture some sequential informa-
tion, and the 232-component vector has additional fea-
tures that are non-linear combinations of the others.
Complete details are available in [2].

We used each of the four peptide representations
with each of our eight fitting methods, LIN1, LIN2,
LIN3, INV1, INV2, INV3, EXP1 and EXP2. We ap-
plied each combination to the training data to estimate
a value for the parameter vector, β. We then used β
to predict the spectral counts of all the peptides in the
testing data, and then compared the predictions to the
observed values by measuring the correlation between
them. Table 2 shows a selection of experimental results
for every combination of the eight fitting methods, and
four peptide representations. The columns of each table
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Table 2: Spearman rank correlation coefficients on the testing portion of the Mouse heart dataset.

LIN1 LIN2 LIN3 INV1 INV2 INV3 EXP1 EXP2
22 0.2039 0.4965 0.4965 0.2386 0.5635 0.5635 0.5669 0.5699
42 0.1721 0.1844 0.4243 0.0106 0.5611 0.5556 0.5658 0.5656
62 0.1355 0.1691 0.4974 0.0621 0.0667 0.5605 0.5867 ******
232 0.1477 0.1399 0.3285 0.0048 0.0307 0.4713 0.5634 ******
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Figure 1: Log-log plots of observed vs. estimated spectral counts for the Mouse kidney dataset. From left to right,
the panels show the results of the EXP1, LIN3 and INV3 fitting methods.

represent fitting methods, and the rows represent vec-
tor representations of peptides (identified by the num-
ber of features in the vectors). Each table entry is the
Spearman rank correlation coefficient of observed and
estimated spectral counts. (An entry of ****** means
that the method could not be used because a matrix
turned out to be singular.)

In addition, Figure 1 provides log-log plots of
observed and estimated spectral counts. Due to space
limitations, we show plots only for EXP1, INV3 and
LIN3, the best methods for each of our three models.
The strong horizontal lines in these plots are due to the
discrete nature of the observed spectral counts, most of
which take on small, positive integer values.
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