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Abstract

Defining outliers by their distance to neighboring data

points has been shown to be an effective non-parametric ap-

proach to outlier detection. Existing algorithms for min-

ing distance-based outliers do not scale to large, high-

dimensional data sets. In this paper, we present RBRP,

a fast algorithm for mining distance-based outliers, particu-

larly targeted at high-dimensional data sets. RBRP scales

log-linearly as a function of the number of data points and

linearly as a function of the number of dimensions. Our

empirical evaluation demonstrates that we outperform the

state-of-the-art, often by an order of magnitude.

Keywords: Outlier detection, high-dimensional data sets,

approximate k-nearest neighbors, clustering.

1 Introduction

A common problem in data mining is that of automati-
cally finding outliers or anomalies in a data set. Outliers
are those points that are highly unlikely to occur given
a model of the data. Since outliers and anomalies are
rare, they can be indicative of bad data, faulty collec-
tion, or malicious content.

There are several approaches to outlier detection.
One approach is that of model-based outlier detection,
where the data is assumed to follow a parametric (typi-
cally univariate) distribution [2]. Such approaches do
not work well in even moderately high dimensional
spaces and finding the right model is often a difficult
task in its own right. To overcome these limitations,
researchers have turned to various non-parametric ap-
proaches that use a point’s distance to its nearest neigh-
bor as a measure of unusualness [1, 10, 11]. The fol-
lowing (among others [3]) is a popular definition of
distance-based outliers:

• Outliers are the top n data points whose distance
to the kth nearest neighbor is greatest [11].

While distance-based outlier detection has proven
to be useful, the process continues to be time con-
suming. The nested loop (NL) algorithm for mining
distance-based outliers [10] typically requires O(N 2)
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time, where N is the numbers of data points. To over-
come this problem, in the past few years, researchers
have proposed several solutions ranging from the use
of spatial index structures (KD-trees [4], R-trees [7],
or X-trees [5]) for fast nearest neighbor computation to
partitioning the feature space with clustering [11]. Un-
fortunately, these approaches do not scale well with the
number of dimensions [3, 10]. Consequently, for high di-
mensional data sets, solutions based on the simple NL
algorithm are known to provide the best performance
[10, 3].

The algorithm, in its simplest form, is presented
in Table 1. The main idea in the NL algorithm is
that for each data point in D, we keep track of its
k closest neighbors as we scan the data set. When a
data point’s kth closest neighbor has a distance that
is less than the cutoff threshold, c, the data point is no
longer an outlier, and we can proceed with the next data
point. As we process more data points, the algorithm
finds more extreme outliers, and the cutoff increases
giving us improved pruning efficiency. The state-of-the-
art distance-based outlier detection algorithm, ORCA

[3], uses the NL algorithm with a preprocessed data
set. ORCA randomizes the data set (D) in linear time
with constant amount of memory using a disk-based
shuffling algorithm. This randomization allows the NL
algorithm to process non-outlier points, which are the
large majority, relatively quickly. The authors report
sub-quadratic time performance in the number of data
points (often well below quadratic but not log-linear)
on several real and synthetic data sets.

In this paper, we further improve the scaling behav-
ior of distance-based outlier detection on large, high-
dimensional data sets. Specifically, we make the follow-
ing contributions. First, we study the conditions under
which the state-of-the-art distance-based outlier detec-
tion algorithm, ORCA (due to Bay and Schwabacher
[3]), is unable to provide near-linear time performance.
Second, we present RBRP, an algorithm for fast min-
ing of distance-based outliers. The algorithm facilitates
fast convergence to a point’s approximate nearest neigh-

bors. As we shall see, only a point’s approximate near-

est neighbors (and not its nearest neighbors) are needed
for efficient distance-based outlier detection. Finally,
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Procedure: Find Outliers
Input: k, the number of nearest neighbors;

n, the number of outliers to be returned;
D, the set of data points.

Output: O, the set of outliers.
begin

c = 0 (c is the cutoff threshold)
O = {}
for each d in D

Neighbors(d) = {}
for each b in D such that b 6= d

if |Neighbors(d)| < k or
Distance(b, d) < Maxdist(d, Neighbors(d))

Neighbors(d) = Closest(d, Neighbors(d) ∪ b, k)
endif
if |Neighbors(d)| ≥ k and c > Distance(b, d))

break
end if

end for
O = TopOutliers(O ∪ b, n)
c = MaxThreshold(O)

end for
end
Note:

Maxdist(d, S) returns the maximum distance between d

and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on
the distance to their kth nearest neighbor

MaxThreshold(S) returns the distance between the weakest
outlier in S and its kth nearest neighbor

Table 1: The Simple Nested Loop Algorithm

we demonstrate that our algorithm scales well to high-
dimensional data sets with millions of data points, and
outperforms the state-of-the-art distance-based outlier
detection algorithm, often by over an order of magni-
tude. Empirically, we show that the algorithm scales
log-linearly as a function of the number of data points,
and linearly as a function of the number of dimensions.

2 Outlier Detection Algorithm

Shortcomings of ORCA:
For expository simplicity, let us assume that we are
interested in finding the top n data points whose
distance to the nearest neighbor is the greatest. Let
us examine the number of distance computations that
are required to process a data point (say x) that is
not an outlier. One can think of this problem as a
set of independent Bernoulli trials where one keeps
drawing instances until one has a single success (one
data point within the cutoff threshold). Let Π(x) be
the probability that a randomly selected data point lies
within the cutoff threshold. Let Y be a random variable
representing the number of trials required until we have
a single success. The probability of obtaining a success
on trial y, P (Y = y), is given by:

P (Y = y) = Π(x) × (1 − Π(x))(y−1)(2.1)

Therefore, the expected number of distance computa-
tions for the data point (x) that is not an outlier is
given by:

E[Y ] =
N∑

y=1

P (Y = y) × y =
1

Π(x)
(2.2)

In order to achieve near-linear time scaling behavior,
E[Y ], and hence Π(x), must be a constant. This is
the central premise behind ORCA’s near-linear time
performance. However, as we shall see next, this does
not always hold.

Again, for expository simplicity, let us assume that
we have N uniformly distributed data points in an area
of size

√
N ×

√
N . We seek to answer the following

question: If we randomly pick a point x in this area,

what is the expected value of the cutoff threshold, c,

such that Π(x) will be constant? Intuitively, for Π(x)
to be constant, the area of the circle with radius = c

and center = x, πc2, should scale as O(N). In other
words, c should scale as O(

√
N). The cutoff threshold

in unlikely to converge to such a large value quickly, not
just for a uniformly distributed data set, but for any
arbitrary data set. In summary, ORCA delivers near-
linear scaling behavior only when the cutoff distance
can quickly converge to a large value. This can occur
only when the data set has a large number of outlying
points. When the data set consists of a mixture of a few
distributions, with not many outlying points, ORCA’s
complexity is near quadratic [3].
Algorithm RBRP (Recursive Binning and Re-
Projection): As pointed out in Section 1, in order to
find distance-based outliers using the NL algorithm, one
needs to find k data points that are within the cutoff
threshold, c. We call these k data points approximate

nearest neighbors. The key to fast outlier detection is
to efficiently find the k approximate nearest neighbors
of a data point. This goal is different from most
existing approaches that attempt to find the k nearest
neighbors efficiently, which is more expensive. We now
present RBRP (Recursive Binning and Re-Projection),
a two-phase algorithm for fast mining of distance-based
outliers in high dimensional data sets.

Phase 1: The goal of the first phase of RBRP is to
partition the data set into bins such that points that are
close to each other in space are likely to be assigned to
the same bin. One natural candidate to generate such
bins is to cluster the data using an algorithm such as
K-means [8] to find a large number of small clusters.
Each of the clusters can constitute a bin. However, this
process requires us to specify the number of clusters,
and does not guarantee equal-frequency binning, mak-
ing it ineffective for our uses. Another possibility is to
use a clustering algorithm such as BIRCH [12]. This
is in some senses similar to the approach proposed by
Ramaswamy et al. [11]. However, this approach will
not scale to high-dimensional data.

Our approach to partitioning the data set into bins
is shown in Table 2. It is a recursive procedure known
as divisive hierarchical clustering. At each stage in
the recursion, we iteratively partition the data into k

partitions. This iterative partitioning is akin to the
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partitioning step employed in the k-means [8] algorithm.
Essentially, we start with k random centers, and assign
each point to its closest center, creating k partitions.
Next, we find k centers for these k partitions, and
continue iteratively for a fixed number of iterations.
Once we have finished with these iterations, for each
of these partitions, we proceed recursively if the size of
the partition is greater than a user-defined threshold
(Binsize). Such a binning strategy ensures that points
that are close to each other in space are likely to be
collocated in the same bin. In Phase 2 of RBRP,
we will sequentially scan through each bin to find the
approximate nearest neighbors of a data point. To
facilitate fast convergence to the approximate nearest
neighbors during a sequential scan, we reorganize the
data points in each bin as per their order in the
projection along the principal component [9] of the
points in the bin. The principal component of a
bin represents the axis of maximal variance. Such a
reorganization within bins allows for fast convergence
to approximate nearest neighbors when sequentially
scanning through a bin. This is because we expect to
find the approximate nearest neighbors of a data point
in its neighborhood when data points are ordered as per
their projection along the principal component.
Complexity analysis: We expect Phase 1 to scale as
O(NlogN × d) in the average case [6].

Phase 2: In Phase 2, we use an extension of the
NL algorithm to find outliers in the data set that has
been organized into bins. For each data point, we start
searching for approximate nearest neighbors beginning
at the next consecutive location in the bin. Once the
end of the bin has been reached, we wrap around to the
start of the bin, and continue searching in the remainder
of the bin. If the entire bin has been searched and k

approximate nearest neighbors have not been discovered
within this bin, we switch to the next closest bin, and
continue searching for approximate nearest neighbors.
This search continues iteratively until k approximate
nearest neighbors are discovered.
Complexity analysis: The worst case time complexity
of Phase 2 is O(N2). However, we expect to find the
approximate nearest neighbors of a normal point in the
very same bin. For outliers, we need to scan all of the
bins, but this is expected to be a rare event, as number
of desired outliers (n) is much smaller that the data
set size (N). Therefore, we expect Phase 2 to scale as
O(N × d). As Phase 1 scales as O(NlogN × d), we
expect RBRP to scale close to O(NlogN × d).

At this juncture, we would like to point out that
RBRP will always discover the exact same set of out-

liers as ORCA. The key difference between RBRP and
ORCA is that when processing normal points, RBRP

will discover the k approximate nearest neighbors in far
less time than ORCA. For outliers, both ORCA and

RBRP will need to scan the entire data set.

3 Experimental Results

Setup: We evaluate our algorithm’s performance on
a Linux-based system with a 2.4 GHz Intel Pentium 4
processor and 1 GB of main memory. We report the
wall clock time in order to capture both CPU and I/O
time. All of the algorithms were implemented using
C. We use several real and synthetic data sets for our
analysis. These data sets are summarized in Table 4.
They span a range of problems and have different types
of features. Please refer to [6] for more details on the
data sets and implementations.
Scalability with increasing data set size: Figures
1-2 show the total execution time to mine outliers on
the six data sets as we vary the number of data points.
Here, total execution time accounts for both the phases
of RBRP. Each graph shows four lines. Two of these
lines represent the expected execution time to mine the
data set given a linear time algorithm and an NlogN

time algorithm. These lines are extrapolated from the
first point in the line representing ORCA’s execution
time. The two remaining lines show the actual running
times for RBRP and ORCA. The runs were set to mine
the top 30 outliers with k set to 2.

RBRP outperforms ORCA on all the considered
data sets. On the Covertype, Mixed 30D, and Uniform
30D data sets, RBRP outperforms ORCA by an
order of magnitude. Furthermore, it shows improved
scalability with increasing data set size when compared
with ORCA. We can attribute these results to the fact
that while RBRP incurs an O(NlogN) pre-processing
overhead, it can find outliers in near constant time per
data point. For data sets that have a larger number
of outlying data points, the cutoff threshold is able
to increase quickly, and ORCA is able to give fairly
good performance. This behavior can be seen on the
Ipums data set. However, when the data set has a
fewer number of outliers, the cut-off threshold does
not grow fast. As a result, we get near quadratic
scaling performance for ORCA. This can be seen on
the remaining data sets. The performance of RBRP

is not affected as much by the slow decay in the cutoff
threshold because of its improved search space, resulting
in improved performance in all cases. Furthermore,
Figures 1-2 indicate that RBRP does indeed scale as
O(NlogN). We note that on the Ipums and KDDCup
1999 data sets, it appears as though RBRP scales
marginally better than O(NlogN). This is simply due
to the errors introduced during extrapolation [6].
Scalability with increasing number of nearest
neighbors: Figures 3-4 show the total time to mine
outliers on the six data sets as the number of nearest
neighbors (k) are varied. For all these experiments, we
mine outliers in the entire data set. Each graph shows
the actual running times for RBRP and ORCA. The
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Procedure: Bin
Input: Binsize, the maximum size of a bin;

k, the number of partitions; it, no. of iterations;
D, data points to be binned.

Output: B, the set of bins.
begin

c = {c1, c2, ..., ck} (the set of k random centers)
p = {p1, p2, ..., pk} (the set of k partitions of D)
for it iterations

Empty all k partitions in p

for each d in D

j = Closest(c, d)
Insert(d, j)

end for
c = {}
RecomputeCenters(c, p)

end for
for each pi in p

if size of pi > Binsize

Bin(Binsize, k, it, pi)
else

Reorganize data points in pi, ordered as per their
projection along the principal component of pi

Add pi to B

end if
end for

end
Note:

Closest(c, d) returns the index of the nearest elements in c to d

Insert(d, j) inserts point d in jth partition in p

RecomputeCenters(c, p) inserts k centers of partitions
in p into c

Table 2: RBRP Phase 1

Procedure: Find Outliers
Input: k, the number of nearest neighbors;

n, the number of outliers to be returned;
D, the set of data points.

Output: O, the set of outliers.
begin

c = 0 (c is the cutoff threshold)
O = {}
for each bin b in B

for each d in b

Neighbors(d) = {}
for each t in B, ordered
by increasing distance to b

for each p in t such that p 6= d

if |Neighbors(d)| < k or
Distance(d, p) < Maxdist(d, Neighbors(d))

Neighbors(d) =
Closest(d, Neighbors(d) ∪ p, k)

endif
if |Neighbors(d)| ≥ k and c > Distance(p, d))

break
end if

end for
end for

end for
O = TopOutliers(O ∪ b, n)
c = MaxThreshold(O)

end for
end
Note:

Maxdist(d, S) returns the maximum distance between d

and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on
the distance to their kth nearest neighbor

MaxThreshold(S) returns the distance between the weakest
outlier in S and its kth nearest neighbor

Table 3: RBRP Phase 2

Data set Continuous Attributes No. of Points
Corel Histogram 32 68,040

Covertype 55 5,81,012
KDDCup 1999 24 4,898,430

Mixed 30D 30 2,000,000
Uniform 30D 30 1,000,000

Ipums 128 2,000,000

Table 4: Data sets

runs were set to mine the top 30 outliers.
Both RBRP and ORCA exhibit linear scalability

on all the considered data sets. Moreover, RBRP ex-
hibits better scalability than ORCA with increasing
k. This is attributed to the localized search for ap-
proximate nearest neighbors employed by RBRP. As
k increases, for each normal point, we expect to see a
constant increase in the number of bins that need to
be searched. Unlike ORCA, RBRP is not affected by
the slow decay in the cutoff threshold that occurs on
most data sets. This is evident on all data sets except
the Ipums data set. On the Ipums data set, the cutoff
threshold converges to a large value relatively quickly.
Therefore ORCA and RBRP have comparable scaling
performance on this data set.

4 Conclusion

In this paper, we presented RBRP, a two phase
distance-based outlier detection algorithm targeted at
high-dimensional data sets. RBRP improves upon the
scaling behavior of the state-of-the-art by employing an
efficient pre-processing step that allows for fast deter-
mination of approximate nearest neighbors. RBRP is
expected to scale as O(NlogN × d) on d-dimensional
data sets with N data points. We validated its scal-
ing behavior on several real and synthetic data sets.
RBRP consistently outperforms ORCA, the state-of-
the-art distance-based outlier detection algorithm, often
by an order of magnitude.
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Figure 1: (a) Covertype (b) Corel histogram (c) Ipums
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Figure 2: (d) KDDCup 1999 (e) Mixed 30D (f) Uniform 30D
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Figure 3: (a) Covertype (b) Corel histogram (c) Ipums
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Figure 4: (d) KDDCup 1999 (e) Mixed 30D (f) Uniform 30D
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