
Discovering Frequent Tree Patterns over Data Streams
Mark Cheng-Enn Hsieh

BenQ Corporation
Hsinchu, Taiwan 30078, R.O.C.

Mark.Hsieh@BenQ.com

Yi-Hung Wu
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan 30013, R.O.C.

dr824349@cs.nthu.edu.tw

Arbee L.P. Chen*
Department of Computer Science

National Chengchi University
Taipei, Taiwan 11605, R.O.C.

alpchen@cs.nccu.edu.tw

ABSTRACT
Since tree-structured data such as XML files are
widely used for data representation and exchange on
the Internet, discovering frequent tree patterns over
tree-structured data streams becomes an interesting
issue. In this paper, we propose an online algorithm to
continuously discover the current set of frequent tree
patterns from the data stream. A novel and efficient
technique is introduced to incrementally generate all
candidate tree patterns without duplicates. Moreover,
a framework for counting the approximate frequencies
of the candidate tree patterns is presented. Combining
these techniques, the proposed approach is able to
compute frequent tree patterns with guarantees of
completeness and accuracy.
Keywords: Data Mining, Data streams, Tree patterns

1. INTRODUCTION
Depending on various application domains, the
frequent tree patterns discovered from tree-structured
data streams can be of extensive use. Consider an
online shopping website, which is browsed by
thousands of people every few minutes. The web
access log is produced in the form of trees to record
the browsing behavior of each user. The large-volume
and fast-accumulation of data constitute a tree-
structured data stream. Frequent tree patterns
discovered from this data stream can facilitate decision
making for the website management. For the reason,
Asai et al. [2] propose an online algorithm, StreamT, to
continuously discover frequent subtrees on data
streams by using a subtree generation scheme like the
rightmost expansion techniques in [1][6]. It adopts a
method similar to the one for online association rule
mining in [3] to store all candidate subtrees. However,
it neither provides any accuracy guarantee on the result
set nor the error bound on the estimated frequency
count of a subtree.

Yang et al. [5] present another result on frequency
counting for tree-structured data streams. By grouping

*Contact author

the query patterns that are in the form of trees into
batches, an Apriori-based method for candidate
generation is designed. Since it needs a lot of
containment tests to compute the frequency count of
each candidate subtree, the proposed algorithm,
XQSMiner, limits the search space of candidates and
allows that only some of these candidates should be
examined. These strategies highly improve the
performance and the experimental results also show its
scalability. However, XQSMiner aims at discovering
only the rooted subtrees due to its purpose for
particular applications. As a result, it cannot be
directly applied to the problem considered in this paper.

In this paper, we investigate the problem of mining
all frequent labeled ordered subtrees over a tree-
structured data stream. Instead of mining frequent
subtrees in a static dataset, we propose an online
algorithm named STMer (Stream-Tree-Miner) for the
streaming environment. The result set can be derived
without storing or performing multiple scans over the
data stream.

The remainder of this paper is organized as follows.
In Section 2, the basic terminologies and the problem
formulation are presented. Section 3 describes the
main components of STMer. Section 4 shows the
experiment result and then we conclude the paper in
Section 5.

2. PRELIMINARIES
2.1 Basic Terminologies
A labeled ordered tree T stands for a tree that is
identified by not only the labels on its nodes but also
the order among the siblings. As a result, switching
any two siblings in T can result in a different tree.

In STMer, we represent such tree as a string to
enable efficient subtree generation. Initially, an empty
string is given. During the preorder traversal of a tree,
whenever a node is visited, the label and the level
associated with it are combined into a pair and
appended to the string. In this way, the string
representing a given tree can be uniquely determined
and vice versa.

Similarly, since a tree can be represented as a string

628

consisting of its nodes by a preorder traversal, the data
stream composed of trees can be viewed as an
unbounded node sequence. For the sake of generality,
STMer works in a node-by-node manner, although it is
easy to adapt STMer to work in a tree-by-tree manner.

2.2 Problem Formulation
Let the set of trees recovered from the node sequence
Nu be denoted as Di, where the variable i indicates the
number of nodes received so far. It is obvious that the
volume of Di increases as the data stream in. Figure 1
shows an example of an unbounded node sequence Nu
and the set D6, corresponding to the first six nodes
(two trees) of Nu.

... Y3 B2 A1 , E2 D2 B1 , C2 B2 A1

Nu

STMerSTMer

D6 A

B C

B

D E

... Y3 B2 A1 , E2 D2 B1 , C2 B2 A1

Nu

STMerSTMer

D6 A

B C

A

B C

B

D E

B

D E

Figure 1: An unbounded node sequence

Definition 2.1 Frequency count
Let MatTree(S,T) be the number of matches of tree S
in tree T. The frequency count of S on the node
sequence Ni is defined as follows:

∑
∈ ⎩

⎨
⎧ >

==
iDT

i otherwise 0,
0T), MatTree(Sif 1,

T)ind(S, whereT),ind(S,)Nfreq(S,

In other words, the frequency count of S on Ni is
equal to the number of trees in Di in which S occurs.

Definition 2.2 Support
The support of S on Ni is defined as freq(S,Ni)/|Di|,
where |Di| is the number of trees in Di.

A subtree S is frequent if its support satisfies the
user-specified threshold (minimum support) θ, where
0≤θ≤1. Based on these definitions, the problem we are
solving in this paper can be defined as follow:

Given θ and an unbounded node sequence Nu, how
can we discover all the frequent subtrees on Ni when
the first i nodes are received, for any i?

Consider the data stream in Figure 1 and let θ be
set as 0.6. Since the first three nodes form a single tree
encoded as A1B2C2, the result set for N3 contains all
the subtrees of the first tree. The result set then turns to
be {B1} when the first six nodes are received. Note
that the supports of all the subtrees except the subtree
B1 are reduced to 0.5 at this moment.

3. STREAM TREE MINER
3.1 An Overview
The framework of STMer is shown in Figure 2. The
subtree inventor is in charge of the candidate subtree
generation according to the nodes received so far.
More precisely, when a node v is received from the
data stream, it will generate all the subtrees in which
node v is involved. All these subtrees are then used to
update the candidate pool, named GPT (Global Prefix
Tree), from which the result set can be derived.

STMer

Sub-tree inventorSub-tree inventor

GPT managerGPT manager

BufferBuffer

GPT

User requests

Frequent sub-trees

Data stream

GPT manager

Sub-tree inventor

STMer

Sub-tree inventorSub-tree inventor

GPT managerGPT manager

BufferBuffer

GPT

User requests

Frequent sub-trees

Data stream

GPT manager

Sub-tree inventor

Figure 2: The framework of STMer

The GPT is a prefix tree constructed by sharing the
common prefix of the strings converted from candidate
subtrees. Each node in the GPT stands for a candidate
subtree whose string corresponds to the path from the
root of the GPT to the node. In this way, a node at the
ith level of GPT refers to a candidate subtree with i
nodes. Moreover, each of the candidate subtrees, is
associated with its frequency count. Note that the root
of the GPT, denoted as Φ, is a virtual node and its
level is set as 0.

The GPT manager is responsible for keeping the
GPT from excessive expansion due to the huge
number of distinct subtrees. In order to limit the
memory usage, the GPT manager has to keep pruning
the infrequent subtrees. However, this method may
lead to the underestimation of frequency counts.
Consider the candidate subtree T in the GPT with
frequency count f as an example. If T is removed from
the GPT, STMer will lose its frequency count
accumulated in the GPT. If T is generated as a
candidate again, the frequency count of T in the GPT
will be underestimated by f. To address this issue, we
adopt the concept of Lossy Counting [4] while
designing the pruning policy of the GPT. As a result,
the estimation error of a frequency count can be
limited to a range specified by a user-given error
parameter.

629

Finally, while STMer keeps performing the loop to
manipulate the subtrees generated from the incoming
data, the user can acquire the result set on demand in
the meantime. The GPT is examined to find the results,
i.e. the subtrees with frequency counts that are not
smaller than (θ-δ)N. The value (θ-δ)N is derived from
the theoretical basis of Lossy Counting where N is the
total number of trees currently received.

3.2 Subtree Generation
The process of subtree generation is started whenever
a new node is received. The subtrees generated are
added to the APT (Augmented Prefix Tree), which is
used to temporarily store all the subtrees of the tree
currently received. The structure of the APT is similar
to that of the GPT, except that it merely stores the
subtrees of a single tree.

The basic idea is to generate all the subtrees having
node v from tree TD at the moment node v is received,
where TD is the current tree recovered from the node
sequence ending at node v. Every node triggers off the
above operation exactly once when it arrives and at
that moment it is called the tail. The parent of the tail
in TD is called the branching point. The subtrees that
are previously generated and contain the branching
point are called the extensible subtrees. The strategy
named tail-expansion appends the tail to each of the
extensible subtrees to generate new subtrees.

STMer carries out the above procedure by storing
the subtrees in the APT as a well-organized structure.
First, the subtrees stored in the APT are in the form of
strings so that the common prefix among strings can be
shared. Figure 4 shows the APT after the node (B,2) in
Figure 3 has been processed.

Data stream
t1t2

Buffer A1B2

A

B

TD

B1

B

A

B

A1B2

Buffer A1

A

TD

A1
A

A,1B,2 Data stream
t1t2

Buffer A1B2

A

B

TD

B1

B

A

B

A1B2

Buffer A1B2

A

B

TD

B1

B

A

B

A1B2

Buffer A1

A

TD

A1
A

Buffer A1

A

TD

A1
A

A,1B,2

Figure 3: An illustration of subtree generation
 The three nodes in the APT mean the subtrees A1,

A1B2, and B1, respectively. Note that the node A1 in
the APT is created when the node (A,1) is received.

Second, to enforce the tail-expansion strategy,
searching the APT for the extensible subtrees can be
time-consuming. Therefore, in the APT the nodes with
the same label are linked together to facilitate not only

the searching but also the insertion of new subtrees. As
a result, each label is associated with a sequence of
horizontal links as Figure 4 depicts.

A1 B1

B2

Φ

APT
B1
B

A

B

A1B2 B

A A1 B1

B2

Φ

APT
B1
B

A

B

A1B2 B

A

Figure 4: The APT with horizontal links

Figure 5 continues the process in Figure 3. For the
node (C,2) received at t3, STMer finds the branching
point A1 in the buffer to locate the corresponding node
on the APT by using the horizontal links of label A.
The nodes in the subtree rooted at node A1 correspond
to exactly all the extensible subtrees. To append the
tail to each of these subtrees, STMer just adds a node
C2 to be a descendant of each of the corresponding
nodes. As indicated in Figure 5, the new nodes stand
for the two subtrees A1C2 and A1B2C2 respectively.
After the tail-expansion, the single-node tree C1 is also
inserted to produce the APT with six nodes.

Data streamA,1

t1

Buffer A1B2 C2

TD

C,2

t3

C1

B,2

t2

A

B C

sc2

C

A1 B1

B2

Φ

B C2

A

C2

Branching
point

Data streamA,1

t1

Buffer A1B2 C2

TD

C,2

t3

C1

B,2

t2

A

B C

sc2

C

A1 B1

B2

Φ

B C2

A

C2

Branching
point

Figure 5: The use of horizontal links in the APT

Based on the concepts, we design an advanced
procedure of subtree generation, outlined in Algorithm
1, which allows the entire scope, i.e. the string segment
in which the node levels are increasing, to be the tail.
First of all, the subtree generation is postponed until all
the nodes in the same scope are gathered in the buffer
(getscope). Once a scope is obtained, the scope is
regarded as the tail to generate the subtrees with
respect to the entire scope (in line 1). After that, all the
suffix strings of the scope are enumerated (in line 2)
and then inserted into the APT (in line 3). In this way,
the subtrees can be generated in a scope-by-scope
manner. Note that for the first scope the tail-expansion
is skipped since at that moment the APT is empty.

630

Algorithm 1 Advanced sub-tree-generation
Input:

A data node vt = (label, level) and the local candidate pool APT.
Output:

A set of candidate sub-trees maintained in APT.
Variable:

A set S for storing the suffix paths.
Method:

/* append incoming node to the buffer and obtain the scope */
B[vt] = (vt.lable, vt.level);
vt.scope = getscope(B, vt);
/* scope expansion */
If not first scope do

1. APT = tail-expansion(vt.scope, APT);
End
/* suffix path enumeration */

2. S = suffix(vt.scope);
/* insert suffix paths into APT */

3. APT = insertion(S, APT);
return APT;

3.3 Subtree Maintenance
The management of candidate subtrees in the GPT can
be conceptually divided into two phases⎯the merging
phase for inserting the subtrees in the APT into the
GPT and the maintenance phase for preventing the
GPT from excessive expansion. The policy for pruning
the candidates in the GPT follows the theoretical basis
of Lossy Counting. For this reason, we first introduce
its underlying concept and then describe how STMer
uses it in the mechanisms for the two phases.

The goal of Lossy Counting proposed in [4] is to
keep monitoring the data streams composed of items to
report the ones with frequency counts exceeding the
user-specified threshold. A data stream is conceptually
divided into buckets of w=⎡1/δ⎤items, where δ stands
for the error parameter. Each time the last item of a
bucket is received, all the counters of the items in the
candidate pool are decreased by one. If there are N
items received, the frequency counts of the items in the
candidate pool are underestimated by at most
⎣N/w⎦=⎣δN⎦. To ensure the completeness of the result
set, all the items with the estimated frequency counts
exceeding (θ-δ)N are outputted, where θ is the
minimum support specified by the user.

The maintenance of the candidate pool in the Lossy
Counting is described as follows. When an item d is
received, the candidate pool C is looked up to find and
increase the corresponding counter by one. If it does
not exist, a new counter in the form of (d, d.f, d.Δ) is
added to C, where d.f is the accumulated frequency
count (=1) of d and d.Δ holds the maximum possible
error (=⎣δN⎦) in d.f due to the underestimation. Note
that d.Δ remains unchanged once it is assigned, while
d.f is increased as more copies of d are received from
the data stream. In order to prevent the candidate pool
from excessive expansion, whenever a bucket
boundary is reached (N mod w = 0), all the items in C

are examined once and an item d is pruned if (d.f + d.Δ)
≦δN.

The above policy is adopted by the GPT manager
in STMer. Consequently, the GPT is controlled in a
reasonable size and can give the following guarantees
on the result set:
1. Every subtree with support exceeding the minimum

support θ is included in the result set.
2. The estimated frequency count of each subtree is

less than the true count by at most δN, where δ is
the error parameter and N is the number of trees
received so far (rather than the number of nodes).

In the following, we describe how STMer performs
like the Lossy Counting in the two phases respectively.
For the merging phase, the entire APT is regarded as
single item as that in the scenario of Lossy Counting
and the GPT can be viewed as the candidate pool C.
The steps of merging phase are outlined in Algorithm
2. When a subtree T in the APT is inserted into the
GPT, the GPT is looked up to find the corresponding
node. If the node exists, it is increased by one.
Otherwise, a new node associated with the counter in
the form of (T, T.f, T.Δ) is added to the GPT, where T.f
(=1) keeps the accumulated frequency count of T and
T.Δ holds the maximum possible error (=⎣δN⎦) in T.f.
This process is repeated until all the subtrees in the
APT are processed. At last, the GPT size, i.e. the
number of trees received so far, is increased by one.
Algorithm 2 Sub-tree-storage
Input:

The local candidate pool APT.
Output:

The global candidate pool GPT.
Method:

/* merging phase */
For each sub-tree S in APT do

/* insertion */
If T in GPT && T = S do

T.frequency ++;
Else

GPT = insert-sub-tree(S, 1, [δ*GPT.size]);
End

End
/* update data trees received over data stream */
GPT.size ++;
return GPT;

The maintenance phase is also based on the

pruning policy of Lossy Counting. Whenever the GPT
size can be divided by 1/δ, the GPT manager traverses
the GPT once and prunes the node T if (T.f + T.Δ)≦δN.
Consider the node T that is pruned due to the
inequality (T.f + T.Δ)≦δN. The estimated frequency
count T.f merely accumulates the counts after the
creation of this counter. Therefore, the true frequency
count T.ftrue must be smaller than or equal to (T.f +T.Δ),

631

where T.Δ is the maximum possible error due to the
underestimation. By combining the above two
inequalities, the fact T.ftrue≦δN≦θN reveals that if the
node T is pruned, it must be infrequent. According to
the Apriori property, saying that all the supersets of an
infrequent set are infrequent, it can be proved that all
the super-trees of an infrequent tree must be infrequent
as well. We incorporate this property into the pruning
policy so that all the descendants (super-trees) of the
node that is pruned can also be pruned.

4. EXPERIMENT
In this section, we evaluate the processing time of
STMer on a synthetic data set produced from a data
generator provided by Zaki [6]. The generator first
constructs a mother tree based on the given parameters
including the maximum fan-out of a node (=10), the
maximum depth of a tree (=10), and the number of
nodes in the mother tree (=100). After that, 1,000,000
subtrees of the mother tree are extracted to constitute
the dataset for experiments. The average size of a tree,
i.e. the number of nodes, in the dataset is about 7.3.

Base on the experiment setting, we compare
STMer with the previously proposed method, StreamT.
The main idea of StreamT is to generate candidates
using a technique of sweeping the right-most branch in
a virtual tree, which is constructed according to the
nodes previously received. This idea is similar to the
tail-expansion presented in this paper. However, since
STMer adopts the advanced tail-expansion to deal with
the subtree generation scope by scope, its performance
is expected to be superior to that of StreamT. Figure 6
demonstrates the results, indicating that STMer merely
requires about 70% of the processing time compared
with StreamT.

0

5

10

15

20

0 20 40 60 80 100 120 140 160
Number of nodes (unit: 1000)

Ti
m

e
(s

)

StreamT
STMer

Figure 6: The comparison with StreamT

On the accuracy, StreamT tends to prune away all
the candidates that are infrequent in order to keep the
number of candidates in the pool as small as possible.
In this way, the result set derived from the candidate
pool cannot provide guarantees of an error bound on
the estimated frequency counts and the completeness

of the valid results. All these issues are addressed in
STMer. Therefore, compared with StreamT, STMer is
a more efficient and effective approach.

5. CONCLUSION
The main contributions of this paper are as follows:
1. Novel techniques for candidate subtree generation

are proposed to incrementally generate the subtrees
without duplicates in an efficient way.

2. A compact structure is designed to store all the
candidate subtrees. It enables not only an efficient
access of candidate subtrees but also an efficient
candidate generation.

3. A framework providing estimated frequency counts
of candidate subtrees is constructed. The result set
returned from STMer is provided with a bound on
the estimation error. Advanced pruning techniques
are also provided to reduce the storage costs.
As a next step, it is interesting to extend STMer to

discover frequent query patterns on a query engine for
more intelligent caching policy. Besides, the
generation of closed frequent subtrees is another
challenging topic.

REFERENCES
[1] T. Asai, K. Abe, S. Kawasoe, et al., “Efficient

Substructure Discovery form Large Semi-
structure Data,” Proc. of SIAM Intl. Conf. on
Data Mining, 2002.

[2] T. Asai, K. Abe, S. Kawasoe, et al., “Online
Algorithms for Mining Semi-structured Data
Streams,” Proc. of IEEE Intl. Conf. on Data
Mining, 2002.

[3] C. Hidber, “Online Association Rule Mining,”
Proc. of ACM Intl. Conf. on Management of Data,
1999.

[4] G.S. Manku and R. Motwani, “Approximate
Frequency Counts over Data Streams,” Proc. of
Intl. Conf. on Very Large Data Bases, 2002.

[5] L.H. Yang, M.L. Lee, and W. Hsu, “Finding Hot
Query Patterns over an XQuery Stream,” VLDB
Journal⎯Special Issue on Data Streams, 2004.

[6] M.J. Zaki, “Efficiently Mining Frequent Trees in
a Forest,” Proc. of ACM Intl. Conf. on
Knowledge Discovery and Data Mining, 2002.

632

