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ABSTRACT  
Since tree-structured data such as XML files are 
widely used for data representation and exchange on 
the Internet, discovering frequent tree patterns over 
tree-structured data streams becomes an interesting 
issue. In this paper, we propose an online algorithm to 
continuously discover the current set of frequent tree 
patterns from the data stream. A novel and efficient 
technique is introduced to incrementally generate all 
candidate tree patterns without duplicates. Moreover, 
a framework for counting the approximate frequencies 
of the candidate tree patterns is presented. Combining 
these techniques, the proposed approach is able to 
compute frequent tree patterns with guarantees of 
completeness and accuracy. 
Keywords: Data Mining, Data streams, Tree patterns 

1. INTRODUCTION 
Depending on various application domains, the 
frequent tree patterns discovered from tree-structured 
data streams can be of extensive use. Consider an 
online shopping website, which is browsed by 
thousands of people every few minutes. The web 
access log is produced in the form of trees to record 
the browsing behavior of each user. The large-volume 
and fast-accumulation of data constitute a tree-
structured data stream. Frequent tree patterns 
discovered from this data stream can facilitate decision 
making for the website management. For the reason, 
Asai et al. [2] propose an online algorithm, StreamT, to 
continuously discover frequent subtrees on data 
streams by using a subtree generation scheme like the 
rightmost expansion techniques in [1][6]. It adopts a 
method similar to the one for online association rule 
mining in [3] to store all candidate subtrees. However, 
it neither provides any accuracy guarantee on the result 
set nor the error bound on the estimated frequency 
count of a subtree. 

Yang et al. [5] present another result on frequency 
counting for tree-structured data streams. By grouping 
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the query patterns that are in the form of trees into 
batches, an Apriori-based method for candidate 
generation is designed. Since it needs a lot of 
containment tests to compute the frequency count of 
each candidate subtree, the proposed algorithm, 
XQSMiner, limits the search space of candidates and 
allows that only some of these candidates should be 
examined. These strategies highly improve the 
performance and the experimental results also show its 
scalability. However, XQSMiner aims at discovering 
only the rooted subtrees due to its purpose for 
particular applications. As a result, it cannot be 
directly applied to the problem considered in this paper. 

In this paper, we investigate the problem of mining 
all frequent labeled ordered subtrees over a tree-
structured data stream. Instead of mining frequent 
subtrees in a static dataset, we propose an online 
algorithm named STMer (Stream-Tree-Miner) for the 
streaming environment. The result set can be derived 
without storing or performing multiple scans over the 
data stream. 

The remainder of this paper is organized as follows. 
In Section 2, the basic terminologies and the problem 
formulation are presented. Section 3 describes the 
main components of STMer. Section 4 shows the 
experiment result and then we conclude the paper in 
Section 5. 

2. PRELIMINARIES 
2.1 Basic Terminologies 
A labeled ordered tree T stands for a tree that is 
identified by not only the labels on its nodes but also 
the order among the siblings. As a result, switching 
any two siblings in T can result in a different tree. 

In STMer, we represent such tree as a string to 
enable efficient subtree generation. Initially, an empty 
string is given. During the preorder traversal of a tree, 
whenever a node is visited, the label and the level 
associated with it are combined into a pair and 
appended to the string. In this way, the string 
representing a given tree can be uniquely determined 
and vice versa. 

Similarly, since a tree can be represented as a string 
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consisting of its nodes by a preorder traversal, the data 
stream composed of trees can be viewed as an 
unbounded node sequence. For the sake of generality, 
STMer works in a node-by-node manner, although it is 
easy to adapt STMer to work in a tree-by-tree manner. 

2.2 Problem Formulation 
Let the set of trees recovered from the node sequence 
Nu be denoted as Di, where the variable i indicates the 
number of nodes received so far. It is obvious that the 
volume of Di increases as the data stream in. Figure 1 
shows an example of an unbounded node sequence Nu 
and the set D6, corresponding to the first six nodes 
(two trees) of Nu. 
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Figure 1: An unbounded node sequence 

Definition 2.1 Frequency count 
Let MatTree(S,T) be the number of matches of tree S 
in tree T. The frequency count of S on the node 
sequence Ni is defined as follows: 

∑
∈ ⎩
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In other words, the frequency count of S on Ni is 
equal to the number of trees in Di in which S occurs. 

Definition 2.2 Support 
The support of S on Ni is defined as freq(S,Ni)/|Di|, 
where |Di| is the number of trees in Di. 

A subtree S is frequent if its support satisfies the 
user-specified threshold (minimum support) θ, where 
0≤θ≤1. Based on these definitions, the problem we are 
solving in this paper can be defined as follow: 

Given θ and an unbounded node sequence Nu, how 
can we discover all the frequent subtrees on Ni when 
the first i nodes are received, for any i? 

Consider the data stream in Figure 1 and let θ be 
set as 0.6. Since the first three nodes form a single tree 
encoded as A1B2C2, the result set for N3 contains all 
the subtrees of the first tree. The result set then turns to 
be {B1} when the first six nodes are received. Note 
that the supports of all the subtrees except the subtree 
B1 are reduced to 0.5 at this moment. 

3. STREAM TREE MINER 
3.1 An Overview 
The framework of STMer is shown in Figure 2. The 
subtree inventor is in charge of the candidate subtree 
generation according to the nodes received so far. 
More precisely, when a node v is received from the 
data stream, it will generate all the subtrees in which 
node v is involved. All these subtrees are then used to 
update the candidate pool, named GPT (Global Prefix 
Tree), from which the result set can be derived. 
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GPT managerGPT manager
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Figure 2: The framework of STMer 

The GPT is a prefix tree constructed by sharing the 
common prefix of the strings converted from candidate 
subtrees. Each node in the GPT stands for a candidate 
subtree whose string corresponds to the path from the 
root of the GPT to the node. In this way, a node at the 
ith level of GPT refers to a candidate subtree with i 
nodes. Moreover, each of the candidate subtrees, is 
associated with its frequency count. Note that the root 
of the GPT, denoted as Φ, is a virtual node and its 
level is set as 0. 

The GPT manager is responsible for keeping the 
GPT from excessive expansion due to the huge 
number of distinct subtrees. In order to limit the 
memory usage, the GPT manager has to keep pruning 
the infrequent subtrees. However, this method may 
lead to the underestimation of frequency counts. 
Consider the candidate subtree T in the GPT with 
frequency count f as an example. If T is removed from 
the GPT, STMer will lose its frequency count 
accumulated in the GPT. If T is generated as a 
candidate again, the frequency count of T in the GPT 
will be underestimated by f. To address this issue, we 
adopt the concept of Lossy Counting [4] while 
designing the pruning policy of the GPT. As a result, 
the estimation error of a frequency count can be 
limited to a range specified by a user-given error 
parameter. 
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Finally, while STMer keeps performing the loop to 
manipulate the subtrees generated from the incoming 
data, the user can acquire the result set on demand in 
the meantime. The GPT is examined to find the results, 
i.e. the subtrees with frequency counts that are not 
smaller than (θ-δ)N. The value (θ-δ)N is derived from 
the theoretical basis of Lossy Counting where N is the 
total number of trees currently received. 

3.2 Subtree Generation 
The process of subtree generation is started whenever 
a new node is received. The subtrees generated are 
added to the APT (Augmented Prefix Tree), which is 
used to temporarily store all the subtrees of the tree 
currently received. The structure of the APT is similar 
to that of the GPT, except that it merely stores the 
subtrees of a single tree. 

The basic idea is to generate all the subtrees having 
node v from tree TD at the moment node v is received, 
where TD is the current tree recovered from the node 
sequence ending at node v. Every node triggers off the 
above operation exactly once when it arrives and at 
that moment it is called the tail. The parent of the tail 
in TD is called the branching point. The subtrees that 
are previously generated and contain the branching 
point are called the extensible subtrees. The strategy 
named tail-expansion appends the tail to each of the 
extensible subtrees to generate new subtrees. 

STMer carries out the above procedure by storing 
the subtrees in the APT as a well-organized structure. 
First, the subtrees stored in the APT are in the form of 
strings so that the common prefix among strings can be 
shared. Figure 4 shows the APT after the node (B,2) in 
Figure 3 has been processed. 
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Figure 3: An illustration of subtree generation 
 The three nodes in the APT mean the subtrees A1, 

A1B2, and B1, respectively. Note that the node A1 in 
the APT is created when the node (A,1) is received.  

Second, to enforce the tail-expansion strategy, 
searching the APT for the extensible subtrees can be 
time-consuming. Therefore, in the APT the nodes with 
the same label are linked together to facilitate not only 

the searching but also the insertion of new subtrees. As 
a result, each label is associated with a sequence of 
horizontal links as Figure 4 depicts. 
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Figure 4: The APT with horizontal links 

Figure 5 continues the process in Figure 3. For the 
node (C,2) received at t3, STMer finds the branching 
point A1 in the buffer to locate the corresponding node 
on the APT by using the horizontal links of label A. 
The nodes in the subtree rooted at node A1 correspond 
to exactly all the extensible subtrees. To append the 
tail to each of these subtrees, STMer just adds a node 
C2 to be a descendant of each of the corresponding 
nodes. As indicated in Figure 5, the new nodes stand 
for the two subtrees A1C2 and A1B2C2 respectively. 
After the tail-expansion, the single-node tree C1 is also 
inserted to produce the APT with six nodes. 
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Figure 5: The use of horizontal links in the APT 

Based on the concepts, we design an advanced 
procedure of subtree generation, outlined in Algorithm 
1, which allows the entire scope, i.e. the string segment 
in which the node levels are increasing, to be the tail. 
First of all, the subtree generation is postponed until all 
the nodes in the same scope are gathered in the buffer 
(getscope). Once a scope is obtained, the scope is 
regarded as the tail to generate the subtrees with 
respect to the entire scope (in line 1). After that, all the 
suffix strings of the scope are enumerated (in line 2) 
and then inserted into the APT (in line 3). In this way, 
the subtrees can be generated in a scope-by-scope 
manner. Note that for the first scope the tail-expansion 
is skipped since at that moment the APT is empty. 
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Algorithm 1 Advanced sub-tree-generation
Input:

A data node vt = (label, level) and the local candidate pool APT.
Output:

A set of candidate sub-trees maintained in APT.
Variable:

A set S for storing the suffix paths.
Method:

/* append incoming node to the buffer and obtain the scope */
B[vt] = (vt.lable, vt.level);
vt.scope = getscope(B, vt);
/* scope expansion */
If not first scope do

1. APT = tail-expansion(vt.scope, APT);
End
/* suffix path enumeration */

2. S = suffix(vt.scope);
/* insert suffix paths into APT */

3. APT = insertion(S, APT);
return APT;

 

3.3 Subtree Maintenance 
The management of candidate subtrees in the GPT can 
be conceptually divided into two phases⎯the merging 
phase for inserting the subtrees in the APT into the 
GPT and the maintenance phase for preventing the 
GPT from excessive expansion. The policy for pruning 
the candidates in the GPT follows the theoretical basis 
of Lossy Counting. For this reason, we first introduce 
its underlying concept and then describe how STMer 
uses it in the mechanisms for the two phases. 

The goal of Lossy Counting proposed in [4] is to 
keep monitoring the data streams composed of items to 
report the ones with frequency counts exceeding the 
user-specified threshold. A data stream is conceptually 
divided into buckets of w=⎡1/δ⎤items, where δ stands 
for the error parameter. Each time the last item of a 
bucket is received, all the counters of the items in the 
candidate pool are decreased by one. If there are N 
items received, the frequency counts of the items in the 
candidate pool are underestimated by at most 
⎣N/w⎦=⎣δN⎦. To ensure the completeness of the result 
set, all the items with the estimated frequency counts 
exceeding (θ-δ)N are outputted, where θ is the 
minimum support specified by the user. 

The maintenance of the candidate pool in the Lossy 
Counting is described as follows. When an item d is 
received, the candidate pool C is looked up to find and 
increase the corresponding counter by one. If it does 
not exist, a new counter in the form of (d, d.f, d.Δ) is 
added to C, where d.f is the accumulated frequency 
count (=1) of d and d.Δ holds the maximum possible 
error (=⎣δN⎦) in d.f due to the underestimation. Note 
that d.Δ remains unchanged once it is assigned, while 
d.f is increased as more copies of d are received from 
the data stream. In order to prevent the candidate pool 
from excessive expansion, whenever a bucket 
boundary is reached (N mod w = 0), all the items in C 

are examined once and an item d is pruned if (d.f + d.Δ)
≦δN. 

The above policy is adopted by the GPT manager 
in STMer. Consequently, the GPT is controlled in a 
reasonable size and can give the following guarantees 
on the result set: 
1. Every subtree with support exceeding the minimum 

support θ is included in the result set. 
2. The estimated frequency count of each subtree is 

less than the true count by at most δN, where δ is 
the error parameter and N is the number of trees 
received so far (rather than the number of nodes). 

In the following, we describe how STMer performs 
like the Lossy Counting in the two phases respectively. 
For the merging phase, the entire APT is regarded as 
single item as that in the scenario of Lossy Counting 
and the GPT can be viewed as the candidate pool C. 
The steps of merging phase are outlined in Algorithm 
2. When a subtree T in the APT is inserted into the 
GPT, the GPT is looked up to find the corresponding 
node. If the node exists, it is increased by one. 
Otherwise, a new node associated with the counter in 
the form of (T, T.f, T.Δ) is added to the GPT, where T.f 
(=1) keeps the accumulated frequency count of T and 
T.Δ holds the maximum possible error (=⎣δN⎦) in T.f. 
This process is repeated until all the subtrees in the 
APT are processed. At last, the GPT size, i.e. the 
number of trees received so far, is increased by one. 
Algorithm 2 Sub-tree-storage
Input:

The local candidate pool APT.
Output:

The global candidate pool GPT.
Method:

/* merging phase */
For each sub-tree S in APT do

/* insertion */
If T in GPT && T = S do

T.frequency ++;
Else

GPT = insert-sub-tree(S, 1, [δ*GPT.size]);
End

End
/* update data trees received over data stream */
GPT.size ++;
return GPT;

 
The maintenance phase is also based on the 

pruning policy of Lossy Counting. Whenever the GPT 
size can be divided by 1/δ, the GPT manager traverses 
the GPT once and prunes the node T if (T.f + T.Δ)≦δN. 
Consider the node T that is pruned due to the 
inequality (T.f + T.Δ)≦δN. The estimated frequency 
count T.f merely accumulates the counts after the 
creation of this counter. Therefore, the true frequency 
count T.ftrue must be smaller than or equal to (T.f +T.Δ), 
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where T.Δ is the maximum possible error due to the 
underestimation. By combining the above two 
inequalities, the fact T.ftrue≦δN≦θN reveals that if the 
node T is pruned, it must be infrequent. According to 
the Apriori property, saying that all the supersets of an 
infrequent set are infrequent, it can be proved that all 
the super-trees of an infrequent tree must be infrequent 
as well. We incorporate this property into the pruning 
policy so that all the descendants (super-trees) of the 
node that is pruned can also be pruned. 

4. EXPERIMENT 
In this section, we evaluate the processing time of 
STMer on a synthetic data set produced from a data 
generator provided by Zaki [6]. The generator first 
constructs a mother tree based on the given parameters 
including the maximum fan-out of a node (=10), the 
maximum depth of a tree (=10), and the number of 
nodes in the mother tree (=100). After that, 1,000,000 
subtrees of the mother tree are extracted to constitute 
the dataset for experiments. The average size of a tree, 
i.e. the number of nodes, in the dataset is about 7.3. 

Base on the experiment setting, we compare 
STMer with the previously proposed method, StreamT. 
The main idea of StreamT is to generate candidates 
using a technique of sweeping the right-most branch in 
a virtual tree, which is constructed according to the 
nodes previously received. This idea is similar to the 
tail-expansion presented in this paper. However, since 
STMer adopts the advanced tail-expansion to deal with 
the subtree generation scope by scope, its performance 
is expected to be superior to that of StreamT. Figure 6 
demonstrates the results, indicating that STMer merely 
requires about 70% of the processing time compared 
with StreamT. 

0

5

10

15

20

0 20 40 60 80 100 120 140 160
Number of nodes (unit: 1000)

Ti
m

e 
(s

)

StreamT
STMer

 
Figure 6: The comparison with StreamT 

On the accuracy, StreamT tends to prune away all 
the candidates that are infrequent in order to keep the 
number of candidates in the pool as small as possible. 
In this way, the result set derived from the candidate 
pool cannot provide guarantees of an error bound on 
the estimated frequency counts and the completeness 

of the valid results. All these issues are addressed in 
STMer. Therefore, compared with StreamT, STMer is 
a more efficient and effective approach. 

5. CONCLUSION 
The main contributions of this paper are as follows: 
1. Novel techniques for candidate subtree generation 

are proposed to incrementally generate the subtrees 
without duplicates in an efficient way. 

2. A compact structure is designed to store all the 
candidate subtrees. It enables not only an efficient 
access of candidate subtrees but also an efficient 
candidate generation. 

3. A framework providing estimated frequency counts 
of candidate subtrees is constructed. The result set 
returned from STMer is provided with a bound on 
the estimation error. Advanced pruning techniques 
are also provided to reduce the storage costs. 
As a next step, it is interesting to extend STMer to 

discover frequent query patterns on a query engine for 
more intelligent caching policy. Besides, the 
generation of closed frequent subtrees is another 
challenging topic. 
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