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ABSTRACT 

Motivation: Although manual curation of protein-
protein interactions from literature resulted in several 
large databases, many interactions are still available 
only in manuscripts.  Though PubMed does include a 
search engine, protein-protein interactions remain diffi-
cult to find in an automated manner.  

Results: OPHID Text Miner (OTM) is an information 
extraction system dedicated to finding specific protein-
protein interactions in PubMed abstracts.  Originally 
designed to validate predicted interactions, it can be 
used to provide additional support for researchers.  Us-
ing several layers of pattern matching, OTM can extract 
proof for interactions between two proteins with 47% 
recall and 93% precision.  

Availability: OTM’s results have been integrated into 
OPHID (Online Predicted Human Interaction Database; 
http://ophid.utoronto.ca).  Additional information re-
garding interaction terms and synonym databases are 
available upon request.  Contact: juris@ai.utoronto.ca 

Keywords: Protein-protein interactions; information 
extraction. 

1 INTRODUCTION  
Knowledge about protein-protein interactions 

(PPIs) is rapidly growing, with results from ex-
periments available in diverse databases such as 
BIND, DIP, GRID, HPRD, and MINT.  However, 
large number of PPIs is still available only in text 
format in PubMed, 
(http://www.ncbi.nlm.nih.gov/entrez), which is a 
centralized database that contains links to over 16 
million papers in several languages.  Attempts to 
manually curate such data resulted in BIND, DIP, 
HPRD, and MINT databases.  Although accurate, 
manual curation does not provide optimum cover-
age, and is resource intensive.  BIND for example 
had many curators devoted to the task of extract-
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ing information from PubMed articles.  They esti-
mated that approximately 2,000 interactions were 
reported gper month in the text of papers released 
on PubMed.  For a researcher interested in specific 
interactions, finding information is compounded 
by the limitations of querying PubMed.  For ex-
ample, a search for tgf-beta produces over 29,000 
matches.  Attempting to reduce this to a more 
manageable number, a researcher could create a 
query for ‘tgf-beta interactions’, which still returns 
in excess of 2,000 articles, many of which will be 
irrelevant, but importantly, it may not cover all 
known interactions.  Even for a single protein, 
finding PPIs in PubMed is difficult, further com-
pounding the problem of finding supporting evi-
dence for high-throughput experiments.  

OTM (OPHID Text Mining) was designed to 
find supporting evidence for interaction prediction 
algorithms, such as those used in the Online Pre-
dicted Human Interaction Database (OPHID; 
http://ophid.utoronto.ca) [3].  OPHID contains 
human PPIs predicted by several methods from 
model organism PPI databases [1, 8, 9, 10, 14, 17, 
26, 18], combined with human PPIs from high-
throughput experiments [24, 21, 2, 13, 15] and 
from curated databases [28, 27, 20, 1].  Combined, 
it comprises 47,656 interactions among 10,652 
proteins (February, 2006). 

Several methods have been developed to make 
manual curation of PPI data from PubMed more 
manageable. PreBIND speeds up manual expert 
reviewing by providing confidence data for the 
existence of interactions in retrieved abstracts us-
ing a Support Vector Machine (SVM) algorithm 
[6].  SVM is a statistical approach, which appears 
to perform well in recognition and classification of 
phrases, without focusing on actual meaning. Pre-
BIND is able to identify phrases containing inter-
actions with 92% recall and 90% accuracy, al-
though the details of the interactions are then ex-
tracted by human analysis [6].  By streamlining 
the tedious task of reviewing articles rather than 
fully-automating information extraction, PreBIND 
greatly improves the volume of information that 
can be retrieved in a given period of time.  A step 
further is the iHOP system (Information Hyper-
liked Over Proteins), which implements a seman-
tic network for PubMed, by linking genes and pro-
teins to sentences and abstracts [11]. 
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To reduce the challenge of manual curation, 
one can use a combination of methods to directly 
extract PPI data from abstracts or full text.  Some 
recent notable information extraction methods in-
clude GENIES [7], MedScan [19] and BioRAT 
[5], all of which implement a semantic approach.  
Generally, these are rule-based systems, relying on 
human-generated patterns to recognize phrases. 
This results in high precision rates, often in excess 
of 90%; however, this is sometimes at the expense 
of lower recall, which may range from 20% (Bio-
RAT, MedScan) to 53% (GENIES), depending on 
the relationship to be extracted. Importantly, these 
systems can provide more in-depth information 
regarding the interactions they have found, such as 
the specific proteins involved, or the interaction 
type.  It is clear that better tagging improves preci-
sion and recall (e.g., GENIES system that uses 
human-generated patterns achieves high both re-
call and precision).  However, scalability of auto-
mated information extraction systems requires that 
all steps in the process are automated. 

2 SYSTEM AND METHODS 

2.1 System Overview 

OPHID Text Miner (OTM) was developed to 
support validation of predicted interactions in the 
OPHID database, by automatically extracting hu-
man protein interactions from PubMed for protein 
pairs.  OTM is implemented in Java.  A local ver-
sion of PubMed is stored in an IBM DB2 database, 
which also provides local versions of the Swis-
sProt and Entrez Gene databases for the identifica-
tion of proteins. OTM’s general architecture has 
five basic modules (see also Figure 1): 

1. Synonym Generation.  We retrieve all syno-
nyms for all the proteins listed in SwissProt, 
and also add gene names from the available 
data in Entrez Gene.  

2. Abstract retrieval.  Using OPHID’s list of 
synonyms, OTM queries PubMed’s abstract 
database to search for protein pair co-
occurrences.  In the case of OPHID, abstracts 
retrieved are limited to articles containing the 
MeSH term ‘Humans’ and synonyms related to 
Swiss-Prot proteins listed as human, OTM can 
also limit it’s search by other organisms in this 
manner. 

3. Tagger.  Words in each abstract are classified 
using a series of dictionaries. 

4. Parser.  Individual phrases of interest are iden-
tified by passing the tagged abstracts through 
several layers of pattern recognition. 

5. Human Review (optional).  An expert may 
analyze tagged phrases, and update both the 
dictionaries and the patterns involved in tag-
ging and parsing. 

Information extraction in OTM comprises two 
parts: a tagger and a parser.  Both components use 
a vocabulary, originally developed using ideas 
from Temkin and Gilder [25].  In order to improve 
both precision and recall, we have modified the 
vocabularies and the grammar, as explained later 
in the manuscript. 

2.2 Synonym Generation 

The use of protein name synonyms represents a 
major challenge in the tagging of proteins.  The 
lack of standards in research writing allows refer-
encing a single protein in multiple ways, produc-
ing many-to-many relationships.  For example: 
ppif, cyclophilin 3, cyclophilin III and cyp3 are all 
valid references to the same protein, immediately 
understandable to the researcher, but requiring 
extra effort to catalogue for information extrac-
tion.  Making protein name recognition robust re-
quires collecting all available synonyms.  We have 

Figure 1.  System architecture.  OTM workflow 
starts with generating synonyms for a given inter-
action pair, retrieving abstracts from PubMed, tag-
ging and parsing the abstracts. 



created our synonym list by integrating synonyms 
from Swiss-Prot (http://us.expasy.org/sprot) and 
Entrez 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?d
b=gene).  However, even at 5 synonyms per pro-
tein on average, it does not provide full coverage. 
OTM still encounters abstracts where a protein is 
referenced by a name that isn’t in our database.  In 
some cases this is merely a formatting issue, in-
volving arbitrary placement of dashes or spaces 
(tgf-beta vs. tgfbeta) or capital/lowercase lettering 
(TGF-beta vs. tgf-beta).  We diminish this simple 
problem in the tagging stage by using a basic ap-
proximate string-matching algorithm, which ig-
nores dashes, case, commas and spaces.  OTM 
also produces additional synonyms by expanding 
arabic into roman numerals.  However, in cases 
where authors use a yet undocumented synonym, 
such matching is not possible (tgf-b vs. tgf-beta). 

Further hampering the generation of useable 
synonyms is the use of English language words in 
the creation of protein names.  This is pronounced 
in numerous cases, such as ‘in’, ‘and’, ‘pre’, etc.  
These synonyms result in false positive matches 
and interfere in some cases with the tagging of 
other words necessary for parsing.  Another unfor-
tunate byproduct is the unnecessary examination 
of articles that likely have little to do with an in-
teraction.  There are several methods available to 
isolate and remove such overlaps with the English 
language, e.g., using a non-biological corpus.   

Tagging a corpus that is unlikely to contain 
protein names, such as the Reuters or Brown cor-
pus, and tracking incidences of retrieved matches 
provides useful indicators of false positives.  The 
following examples were found with a fair amount 
of regularity (numbers correspond to word inci-
dences in the Brown corpus: ‘of’ (5,210), ‘in’ 
(3,262), ‘for’ (1,881).  For practical purposes, this 
is culled into a more accurate list by human re-
view.  The tagger then uses this list, and identifies 
false positives by capitalization and spacing fea-
tures, allowing words more likely to be synonyms 
(‘OF”, ‘FOR’, etc.) to still be recognized. 

In addition to tagging a corpus outside of the 
biomedical domain, the tagging of PubMed and 
counting word incidence can yield useable lists of 
impractical synonyms.  In addition, the first inci-
dence of a word within PubMed can be indicative 

of it’s usefulness as a synonym.  Words discov-
ered earlier in PubMed can often be discarded, as 
they are fairly often generic English or biomedical 
terms.  This approach again results in a human 
produced list of possible false positives, which is 
combined with the list produced from non bio-
medical corpus. 

2.3 Abstract Retrieval 

Although abstracts are less rich compared to a 
full article, they often contain the paper’s most 
important interaction information [22].  OTM in-
dexes PubMed abstracts using relevant MeSH 
(Medical Subject Headings) terms and synonyms 
found in each one.  Abstracts with PPIs are printed 
out in either html or a tab-delimited text file, with 
their corresponding PubMed ID and the phrase 
that was detected. 

2.4 Tagging 

The parser relies on being limited to parsing 
single clauses, as the subject of a separate clause 
might be elusive.  Thus, at the tagging stage, sen-
tences and clauses are treated as separate entities 
and are parsed individually.  Sentences are recog-
nized as ending with a period followed by a space, 
and clauses are identified as being separated by a 
series of phrases called subordinating conjunc-
tions, e.g., after, although, because, etc.  

After separating a document into sentences, 
OTM uses several dictionaries to tag words and 
phrases for parsing with its hierarchical pattern 
recognition parser.  They are divided into three 
primary categories: molecule names, interaction 
keywords, context indicators and category for 
miscellaneous nouns and verbs.  As in Temkin and 
Gilder’s context-free grammar (CFG) [25], unrec-
ognized words are ignored. 

To address issues of protein name formatting 
discussed in the synonym retrieval section, an ap-
proximate string matching algorithm was used.  In 
the first stage of identifying words, OTM ignores 
commas, spaces, dashes, and uppercase/lowercase 
formatting.  Beyond this, the algorithm is essen-
tially an optimized naïve method that searches a 
tree of possible matches.  While progressing char-
acter by character through the sentence string, if a 
match is found, the string must immediately ter-
minate with a space or punctuation, or be consid-



 

ered a partial match and ignored. In addition, pref-
erence is given to longer matches. 

To improve performance, tagging is performed 
hierarchically, as some protein names may overlap 
with other parts of the tagger’s vocabulary: 

1. Proteins – Synonyms for the proteins being 
searched by. 

2. Keywords – Protein interaction keywords 
(see Table 1) 

3. Miscellaneous nouns and verbs. 
4. Context indicators. 

For example: ‘Protein Kinase A’ could have the 
letter ‘A’ identified as the grammatical determi-
nant ‘a’ as in ‘Thyrotropin-dependent Complex 
Formation of Protein Kinase A Catalytic Subunit 
with IΚB’.  Some protein names overlap with 
keywords (e.g., TAT-binding protein).  Having all 
protein names tagged in advance eliminates this 
possibility, and also increases the need to ensure 
minimal synonym overlap with general English 
language words, particularly context indicators. 

2.5 Parsing 

We have initially implemented the parser using 
CFG from [25], which identified sentences con-
taining any interaction, regardless of the proteins 
involved. Our intention was to alter the grammar 
to focus on specific interactions, and to achieve 
both a high precision and high recall.  Initial modi-
fication of the grammar provided less than ade-
quate results, largely due to ambiguities, and the 
difference of aims of each project. 

Parsing of tagged abstracts is performed by lay-
ered pattern matching (Figure 2).  Each successive 
layer serves to group information into more easily 
managed tags for processing by the next layer.  
For example, ‘Molecule A AND Molecule X’ is a 
set of tokens that can be combined into a single 
tag, ‘Group A’, which represents groups of mole-
cules containing Molecule A. This overcomes the 
difficulties encountered with using a CFG, in that 
rules are constrained to certain levels of parsing, 
removing the ambiguities that created problems 
with the original implementation.  For example, 
the phrase ‘KIAA0380 and LARG could bind 
plexin-B1’ would be misinterpreted by a CFG, 
resulting in a parse that recognized the interaction 
as only ‘LARG could bind plexin-B1’ excluding 

KIAA0380.  In addition, patterns were produced 
with automated tagging in mind, and in some 
cases account for errors in the tagging process. 

Table 1.  Common keywords.  Words are also 
identified in other grammatical forms.  For exam-
ple, ‘acetylate’ is also recognized by ‘acetylated’, 
‘acetylates’, ‘acetylating’ and ‘acetylation’. 
KEYWORDS 
acetylate, (co)activate 
transactivate 
associate, add 
bind, link 
catalyze, cleave 
coimmunoprecipitate 
demethylate 
dephosphorylate 
methylate 
phosphorylate 

produce, modify 
impair, inactivate 
interact, react 
disassemble 
discharge, modulate 
substitute, dissociate 
ubiquitinate 
heterodimerize 
heterotrimerize 
immunoprecipitate 

Molecule names: All molecules are identified 
via an approximate string matching algorithm. 
Interaction Keywords: These words (verbs or 
nouns describing an interaction), are largely 
based on the list from [25].  Some keywords 
were removed from the original set as they were 
not suitable for our own definition of an interac-
tion (e.g., ‘cleaves’, ‘expressed’, ‘severed’). 
Additional tags (e.g., ‘heterodimerize’, ‘co-
activate’) were added during the human review 
process upon observation of interaction phrases. 
Each tag maintains the grammatical tense/type 
of verb used.  This expands on the original vo-
cabulary [25], which treated each interaction 
keyword the same way, regardless of grammati-
cal tense.  Our approach makes it easier to dis-
tinguish between several types of phrases, which 
in turn allow more complex sentences to be cor-
rectly parsed.  This is necessary for most of the 
rules involved in the earlier stages of parsing, 
and a parse of the testing set using only one tag 
for all verbs resulted in a significant increase in 
the rate of false positives with no increase in 
recall (56% accuracy, 47% recall). 
Context Indicators: Words such as ‘the’, ‘and’, 
‘to’ are commonly referred to as a closed class 
in parts of speech identification.  While interac-
tion keywords are used to give a phrase general 
meaning, closed class words specify contexts 
that make that meaning more specific. 

The selection of phrases is performed by a hid-
den Markov model (HMM) trained only on 
phrases containing interactions.  The emission 



states of the model are used to tag the beginnings 
and ends of phrases.  The emission at each stage of 
the model is not weighted as in a traditional 
HMM; instead, all probable phrase endpoints are 
weighted by the probability of the region they en-
velop, based on a bi-gram Markov model trained 
with the same data: 

 (∑i=0
i≤n P(ai →ai + 1)) ⁄ #S, 

where  S={a1,a2,…,an} is the sequence of to-
kens/tags produced by a given sentence; 
P(ai→ai+1) is the probability of token ai being fol-
lowed by token ai+1. 

 
Figure 2.  Layered pattern matchers. 

Molecule formatting and unidentified string 
handling – Organizes molecules into discreet 
units, and resolves some common issues regard-
ing unidentified molecules. 

Molecule group identification – Identifies and 
tags proteins that function as a single grammati-
cal entity. 

Unidentified string handling – Resolves com-
mon issues regarding unidentified molecules. 

Region identification – Identifies references to 
domains and regions and binds them to their re-
spective proteins. 

Interaction identification – Identifies PPIs. 

Out of possible combinations of endpoints in a 
sentence, the most probable arrangement is se-
lected.   This is particularly useful in sentences 
containing multiple interactions, where several 
parts of the sentence may be considered valid end-

points for interaction phrases, based on the tri-
gram model.  The value of each phrase is defined 
by an average as opposed to a true probability to 
account for differences in phrase length. 

The use of a tri-gram model for initial phrase 
tagging and a bi-gram model for its evaluation 
proved optimal, since lower values for either re-
sulted in excessive drops in precision, and higher 
values required far greater system resources with 
no substantial increase in either precision or recall. 

Parsed results can be output at any stage into a 
human-readable plain-text file, with a format that 
is interchangeable with the files used to program 
the parser itself.  If a file contains an interaction, 
the corresponding record in the local abstract da-
tabase is updated, flagging it as containing an in-
teraction, and recording the sentence found. The 
output to tagged plain-text was done to ensure ver-
satility, and to provide as much opportunity for the 
iterative growth and debugging of the parse 
grammar as possible.  The reviewer could at this 
stage simply copy a phrase from the output and 
insert it into the pattern matching configuration, or 
add a new keyword into the dictionaries.  It also 
allows for the use of regular expression text proc-
essing to perform tasks on the parse grammar.  An 
effort was made during development to isolate 
basic rules, most of them relating directly to Eng-
lish grammatical rules, and separate them from the 
actual interaction phrases. 

The final results from OTM are records com-
prising the pairs of interacting synonyms com-
bined with the PubMed ID’s of the abstract in 
which they were found, a record of the interaction 
phrase, and a record of the parsing process that 
resulted in the interaction being identified.  The 
synonyms can be linked to their corresponding 
SwissProt ID’s, allowing more precise identifica-
tion and comparison to PPI databases. 

3 RESULTS AND ANALYSIS 

3.1 Evaluation 

OTM was tested on an expert reviewed corpus 
of 2,093 randomly selected abstracts from the su-
perset of abstracts retrieved from PubMed for the 
purposes of validating OPHID predictions.  It was 
observed that only 253 or 12% of the articles con-
taining protein pairs actually contained interac-
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tions. Articles retrieved were found to contain 
synonyms referring to a pair of proteins predicted 
to interact by OPHID.  To ensure good estimate of 
OTM’s actual performance, the corpus was ran-
domly split into testing and training sets (998 and 
1,095 abstracts), with an approximately equal pro-
portion of abstracts containing an interaction and 
abstract without an interaction per set. 

To measure OTM’s performance we used pre-
cision and recall, as defined bellow [23]: 

Recall 
iveFalseNegatveTruePositi

veTruePositi
+

=  

Precision ⋅
+

=
iveFalsePositveTruePositi

veTruePositi
 

True positive results were defined as abstracts 
that contained interaction phrases recognized by 
both OTM and the human reviewer.  False posi-
tives comprised articles that did not contain a 
specified interaction but had phrases improperly 
identified as containing interactions.  False nega-
tives contained interactions that were not recog-
nized by the OTM. 

The current version of OTM achieves 93% pre-
cision and 47% recall on our testing set.  Figure 3 
suggests that increasing the size of the training set 
minutely affects precision, but has dramatic effects 
on recall.  

To further improve recall, we have analyzed 
characteristics of false negative results.  The larg-
est group (65%) comprised phrases either not yet 
seen in the training set, or too complex to be han-
dled. Improper tagging of molecules, where one of 
the two molecules searched by was not present 
resulted in 22% of false negatives.  Finally, words 
not yet seen in the training set resulted in 7%, and 
interaction phrases spread among multiple sen-
tences in 6% of false negatives. 

False negative results are mostly due to sen-
tence structure, and to a lesser extent improper 
tagging. Some interactions are split between two 
sentences, where in the one containing the interac-
tion phrase, the protein in question is only implied 
as the subject.  The more common case is simply 
the variety of ways an interaction can be stated 
using the English language.  Commonly, this oc-
curs because of compound or complex sentences, 

which contain multiple clauses and pronouns.  For 
example “Molecule A interacts with Molecule C 
but under other conditions it interacts with Mole-
cule B” or “Molecule A interacts with Molecule C 
and was not bound to phosphorylated Molecule B” 
would require far deeper understanding of the 
general English language.  Since the OTM is lim-
ited in its language domain to protein interactions, 
certain constructs in the English language will 
elude it.  Clearly, further training examples will 
help to reduce false negatives. 

False positive results occur for similar reasons; 
however, the ambiguity of the English language 
often plays a much larger role.  For example, the 
grammatical function of the word ‘associated’ is 
different in the cases: “BRCA1 and BRCA2 asso-
ciated” and “BRCA1 and BRCA2 associated car-
cinomas”.  

Figure 3.  Precision and recall of OTM, as vali-
dated on an independent set of 998 abstracts. 
Three samples were randomly selected from the 
training set at each number of training sentences. 

3.2 Results 

OTM was used to extract human PPIs from 
PubMed (2005 baseline database), and resulted in 
330,000 interaction phrases.  1,057 verified PPIs 
from OPHID. Of those, 50 were not previously 
documented, and are supported by 233 abstracts. 

To further evaluate OTM’s performance, we 
manually analyzed 80 of the novel interaction 
phrases returned from its overlap with OPHID, 
and found it retained an accuracy of 78%. In addi-
tion, we compared our results to several large 



manually curated resources (see Table 2).  Manu-
ally curated PPI databases review full-text articles, 
which contain much more interaction information 
than the abstract itself, giving them a distinct ad-
vantage over OTM’s abstract searches.  To iden-
tify the overlap, the interacting pairs for each da-
tabase were translated into SwissProt format to 
match the output of OTM.  Totals represent PPI 
pairs that exist both in OTM’s abstract database 
and the database in question. 

Table 2. Comparing DIP, MINT, HPRD and OTM 
based on articles retrieved per interaction.  Indi-
vidual versions are as follows: MINT:2005-02-02, 
DIP:2004-02-11, HPRD:2004-09-30, BIND:2004-
02-11. 

Human Curated PPI Databases 
 HPRD BIND MINT DIP 
Unique PPIs 12,272 5,737 3,219 989 
Evidence 12,398 

Articles 
7,531 

Articles 
3,354 

Articles 
1,102 

Articles 
Articles/PPI 1.0 1.3 1.0 1.1 
                                                        OPHID                                 .   
Unique PPIs 
Overlap 

875 
(7%) 

263 
(5%) 

164 
(5%) 

159 
(16%) 

Evidence 2,919 
Articles 

1,228 
Articles 

749 
Articles 

994 
Articles 

Articles/PPI 3.8 5.0 5.0 6.4 

The relatively small overlap seems indicative 
of two features: OTM’s recall, and the distribution 
of interaction phrases between abstracts and full 
text papers.  Corney et al. similarly discovered that 
their recall was cut by half when their searches 
were restricted to abstracts as opposed to full-text 
papers [5].  The total numbers of articles found by 
OTM indicate that many of the human curated 
databases are not comprehensive.  The discovery 
of multiple references to a single interaction may 
seem unnecessary at first, but a review of some 
manually extracted interactions suggests that this 
approach can advantageously be used to increase 
confidence, and thus precision.  There is also evi-
dence that regardless of precision achieved by the 
automated text mining system, the overall “qual-
ity” of discovered interactions cannot be guaran-
teed, and human review is beneficial filtering step.  

The automated discovery of protein-protein in-
teractions in literature, especially with high preci-
sion, is beneficial, directing researchers to articles 
referencing interactions they are researching or 
that they have predicted.  High precision and full 

automation also make it possible to verify larger 
scale experiments and predictions with a greater 
degree of confidence in situations where the quan-
tity of data makes it impractical to review manu-
ally (for example, OPHID with almost 50,000 hu-
man PPIs).  Increasing the recall would make the 
body of data retrieved by text-mining more com-
prehensive, and in turn more useful to researchers.   

3.3 Performance 

OTM was run as a multi-threaded application 
on an IBM server under Linux, running 4 3.06 
GHz Intel® Xeon™ CPU’s with 1 Gb of RAM.  
OTM processes PubMed in individual files con-
taining 30,000 abstracts each, with each file taking 
just over 30 minutes to tag and parse (in the local 
PubMed distribution, files representing articles 
entered earlier in PubMed’s history may not have 
abstracts, resulting in faster processing times), and 
roughly a week to process all of PubMed.  This 
highlights one of the major advantages of our 
method over human curation.  As previously dis-
cussed, manual analysis of PubMed records for 
protein-protein interactions is not practical, while 
automated methods such as our own can cover the 
entirety of the literature in a relatively short time.  
Text mining still cannot replace a team of expert 
curators, but fine-tuning the information extraction 
system to either providing high precision or high 
recall enables useful applications.  The first sce-
nario is best suited for validation of predicted 
PPIs, while the second scenario is useful for inte-
grated data mining and interpretation. 

4   FUTURE DIRECTIONS 
Our focus is on high precision retrieval.  To 

improve OTM’s recall without sacrificing preci-
sion, we are developing new approaches, mainly 
by expanding the diversity of sentence structures 
recognizable by the parser through additional 
training.  However, continuous expansion of PPI 
phrases from the training set is a time-consuming 
process, and limited in its application.  Some in-
teresting headway has been made into automating 
it through the use of local alignment algorithms 
[12], but given the almost limitless variety of the 
English language, simple pattern matching may 
still fall short. 



 

Continued development will focus on including 
a general English parser that can be adapted to 
finding interaction phrases.  Many of the rules in-
volved in the earlier stages of parsing need only to 
be mapped onto English language terms.  Groups 
of molecules and phrases describing molecules are 
merely noun phrases.  Producing parse rules on the 
same principles, and then applying domain knowl-
edge could expand the usefulness and versatility of 
such a system.  WordNet provides a vast amount 
of information [4], which will be used to expand 
our current dictionaries to better encompass the 
rest of the English language. 

Improper tagging is another major problem, 
and can be handled in a number of ways.  More 
complete synonym lists are only a partial solution, 
as long as the researchers use inconsistent naming 
conventions.  Without standardization in the re-
search world, this will continue to be a challenge.  
Tools such as BLAST, an alignment application 
devised for comparing strings of DNA, have 
proven successful as a means of identifying unrec-
ognizable molecule names [16].  Customizing the 
algorithm for the task of protein identification 
could be taken further by assigning domain spe-
cific replacement rules, such as:  b  beta, 2  II.  

Also of interest is the use of abstracts versus 
full text articles.  Systems such as GENIES were 
tested on full articles, which contained multiple 
instances of interaction phrases, providing more 
possibilities for interaction extraction. PubMed 
now has the option of automated download of full 
articles, creating a richer data set, and great prom-
ise for improving recall. 
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