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Abstract. Mathematical models have proven useful in planning conservation ef-
forts for threatened species. In this paper, we develop a model based on the Macquarie
Island ecosystem, where native seabirds were threatened by invasive pest species. In
particular, European rabbits (Oryctolagus cuniculus) destroyed seabird nesting sites,
while feral cats (Felis catus) preferentially hunted rabbits but also consumed seabirds.
Management strategies included releasing a rabbit-killing disease and shooting feral
cats. We investigate the interactions between species in the ecosystem as well as con-
servation practices using analytical techniques such as the basic reproductive ratio
(R0) and partial rank correlation coefficient analysis. The results of this study reveal
that the important factors to disease establishment change depending on the ecological
interactions present in the system. Additionally, we show that the interaction between
disease and predation sometimes produces surprising outcomes. Overall, the results
of the study demonstrate the need for mathematical modelling in the conservation
process in order to anticipate the complex responses of an ecosystem to management
practices. We conclude with a brief list of considerations for conservation planners
dealing with ecologically complex systems in the future.

Key words. Disease model, predator–prey, conservation

AMS subject classifications. 92D30, 92D40, 34C60

1. Introduction. Macquarie Island is a small strip of land nestled between New
Zealand and Antarctica. At just under 50 square miles, this UNESCO World Heritage
Site has been subject to numerous invasive species since it was first discovered two
centuries ago [19]. These species include rodents, cats, rabbits, pigs, goats, weka, and
other non-native animals. The inevitable victims of each new introduced pest are the
island’s native seabird populations. Although the island’s pest eradication program
has seen success in recent years [6], the island’s history has been fraught with missteps
that have only worsened the ecological situation [1, 6, 19].

In 1978, the flea-borne Myxoma virus was released on Macquarie Island to control
the population of European rabbits (Oryctolagus cuniculus). Rabbits threatened the
nesting locations of native seabirds by decimating the vegetation of the island. Also
present were feral cats (Felis catus) that preyed preferentially on rabbits, although
they would also prey on seabirds in the absence of sufficient leporid prey. Thus the
fate of the seabirds hung in a delicate balance: with too few rabbits, the cats preyed
on the seabirds, but with too few cats, the rabbits would destroy the habitat the
seabirds use to nest [1].
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This was not the first time Myxoma virus had been used to control rabbit popula-
tions. In European rabbits, the virus causes the disease myxomatosis. Infected rabbits 
develop skin tumours and usually die within 8–12 days [12]. This virus was inten-
tionally released in Australia and France in the 1950s and led to dramatic reductions 
of rabbit populations in these countries and other European nations. However, host-
pathogen co-evolution and rising genetic resistance to the disease limits the disease’s 
use as an ongoing control measure in Australia and other places [12].

The Macquarie Island ecosystem presents an interesting opportunity to model the 
effects of using a virus for the purpose of conservation in a complex predator–prey 
system. Myxoma virus is able to be spread either through direct contact with an 
infected rabbit or through contact with an infected flea vector [12]. Annual release 
of the virus was done from 1978 until stocks were depleted in the mid-2000s [17]. 
Brothers et al. (1982) (as cited in [8]) suggest that the reason for annual release was 
due to unfavourable environmental conditions. These factors and the aforementioned 
emergence of attenuated strains and genetic immunity make this a complicated disease 
system.

Mathematical models have previously been used to inform conservation decisions, 
for example during the successful restoration of the Channel Island fox [23]. This 
model aims to combine traditional predator–prey modelling (with rabbits and seabirds 
as prey and feral cats as predators) and disease modelling with declining disease 
mortality and/or host susceptibility (Myxoma virus in rabbits) in order to provide 
insight on management practices, including the use of diseases, in complex ecosystems 
like Macquarie Island.

In this paper, we analyse the model component-by-component in order to make 
inferences about the entire system, culminating with simulations of the full model. 
In section 2, we develop the Macquarie Island model by building on simple ecological 
and disease models. In section 3, we establish the minimum conditions allowing the 
potential long-term persistence of predators and disease in the absence of seabirds. In 
section 4, we demonstrate that ecological interactions modify the importance of the 
different parameters that determine whether a disease establishes or dies out. Section 
5 shows the effects of rabbits on seabirds, providing context to the subsequent section. 
Section 6 explores the importance of considering all aspects of an ecosystem before 
making conservation decisions. Section 7 summarizes the conclusions of the model 
and provides practical suggestions for conservation planning.

We use several common disease-modelling techniques in this paper, including the 
Jacobian, R0, and Latin hypercube sampling (LHS)/partial rank correlation coeffi-
cient (PRCC) analysis. Briefly, the Jacobian allows the conditions for the stability 
of the steady states of an ODE to be computed. R0, the basic reproductive ratio, 
is a fundamental concept in epidemiology that represents the average number of sec-
ondary cases produced by a single infectious individual over their infectious lifetime in 
a completely susceptible population. R0 acts as a threshold: if R0 > 1, the disease is 
able to invade a susceptible population, if R0 < 1, the disease cannot invade and dies 
out. There are many ways of calculating R0 (with differing results), but all methods 
share this threshold at 1 [13]. In this paper, we use the next-generation method [7]. 
PRCC allows us to test the sensitivity of R0 to changes in various model parameters, 
with parameter combinations selected from a defined range using LHS. The purpose 
of LHS is to explore the whole parameter space with the least number of simulations. 
The final output is a diagram showing the positive or negative effects (and their rel-
ative magnitudes) on R0 of increasing each parameter. The aim of this paper is to 
apply these tools to the Macquarie Island model to provide insight on conservation
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strategies in systems with complex ecological interactions.

2. Model Development. We begin with a step-by-step development of the
model.

The model builds upon the basic Lotka–Volterra predator–prey equations [14]
and the ubiquitous SIR model of disease:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(2.1)

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI

(2.2)

In the predator–prey model, prey (x) grow exponentially according to their growth
rate (α) and are consumed by predators (y), where β is the predation rate, δ is the
growth rate from predation, and γ is the natural mortality rate of the predator. In
general, this model predicts sinusoidal cycles for both predator and prey, where the
predator’s cycle lags behind the prey’s. In the SIR model, susceptible individuals
(S) are infected through contact with infected individuals (I), which is influenced
by the contact rate (β, a product of encounter rate and probability of infection upon
encounter). Individuals recover (or are otherwise “removed”) (R) after γ−1 time units.

In the present model, susceptible and infected rabbits (S and I, respectively) are
prey and cats (C) are predators (see Table 1 for a full list of model variables and
parameters). The first modification to the basic model is to make rabbit growth lo-
gistic; that is, the population of rabbits proceeds asymptotically toward a carrying
capacity K, with maximum per capita growth rate α. This reflects both the Eu-
ropean rabbit’s capacity for explosive growth and the very real resource and space
limitations of the modestly-sized Macquarie Island (128 km2). We assume rabbits
are born sexually mature, as rabbit kittens reach adulthood after only 3–6 months.
A key feature of the logistic growth equation is that per capita growth rate declines
linearly as the number of individuals increases, whereas population rate of change is
parabolic, peaking when the population size is K/2. In essence, logistic growth assumes
perfectly density-dependant reproduction. First-year mortality of rabbits in the wild
can be as high as 90% [26]. Since only sexually mature rabbits are represented in the
model, density-dependant growth effectively accounts for most natural mortality and
mortality before maturity, allowing us to neglect a natural death term for uninfected
rabbits. This gives us:

dS

dt
= αS

(
1− S

K

)
(2.3)

Next, we add disease dynamics, beginning with β, the contact rate of infected 
rabbits. The mean survival time (and thus infectious period) of infected rabbits is 

µI
−1. The literature fails to mention transplacental (vertical) transmission of Myxoma 

virus in rabbits, so we assume all rabbits are born uninfected. We add a function f(t) 
to represent the decay in rabbit susceptibility to infection (due to genetic immunity 
and the emergence of benign strains). Fleas are not modelled explicitly, instead we 
model Myxoma transmission from fleas to rabbits with the function g(t). Finally,
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Symbol Definition Unit
B Number of seabirds birds
S Number of susceptible rabbits rabbits
I Number of infected rabbits rabbits
C Number of cats cats
Λ Constant birth rate of seabirds birds years−1

α Maximum per capita growth rate per susceptible rabbit years−1

K Carrying capacity of rabbit population rabbits
β Contact rate of an infected rabbit rabbits−1 years−1

σ Maximum effectiveness of flea transmission years−1

δ Minimum effectiveness of flea transmission (proportion of max.) dimensionless
Ω Maximum decrease in seabird births by rabbits (by division) dimensionless
µB Mortality rate of seabirds years−1

µI Mortality rate of infected rabbits years−1

µC Mortality rate of cats years−1

pB Predation rate on seabirds rabbits cats−1 years−1

pS Predation rate on susceptible rabbits cats−1 years−1

pI Predation rate on infected rabbits cats−1 years−1

eB Seabird conversion efficiency (cats born per seabird consumed) cats birds−1

eR Rabbit conversion efficiency (cats born per rabbit consumed) cats rabbits−1

r Long-term proportion of rabbits susceptible to disease dimensionless
x Time for rabbit susceptibility to disease to decay by half years
kB Constant for logarithmic effect of rabbits on seabird births rabbits

Table 1
List of model variables and parameters with definitions and units.

we introduce predation by cats, with separate predation rates on infected (pI) and
uninfected (pS) rabbits. Although diseased rabbits should be easier to catch than
healthy rabbits, they may also be less likely to leave their burrows, so the relative
values for pI and pS are not immediately obvious.

dS

dt
= αS

(
1− S

K

)
− pSSC − f(t)βSI − f(t)g(t)σS

dI

dt
= f(t)βSI + f(t)g(t)σS − pIIC − µII

(2.4)

Equation (2.5) gives f(t), the disease susceptibility function, which declines asymp-
totically through time from 1 (completely susceptible) at time tψ= 0 toward some 
minimum susceptible proportion r, where 0 < r < 1. This function also has the prop-
erty that it decays by half by time x. Equation (2.6) gives g(t), the flea transmission 
function, which varies seasonally in a sinusoidal manner. This function has a period 
of 1 year, representing the annual re-release of the virus. Transmission effectiveness 
oscillates between σψ(maximum effectiveness) and δσ, where δψis some proportion of 
the maximum effectiveness. Maximum transmission effectiveness is achieved halfway 
through the period. Of course, the proportion of rabbits susceptible to infection by 
fleas is modulated by f(t).

43



f(t) =
(1− r)/r

(1− r)/r + eqt
+ r

q =
1

x
ln
(1 + r

r

) (2.5)

g(t) = −
(1− δ

2

)
cos(2πt) +

1 + δ

2
(2.6)

Next, we consider the seabirds (B) of Macquarie Island, which we abstract as
one homogeneous population. For simplicity, we assume the seabird birth rate (Λ) is
independent of population size. The seabird population is modulated by three things:
habitat destruction by rabbits, predation by cats, and natural death. The natural
death term is simple, with µB

−1 being the mean life span of a seabird. Predation
by cats is given by the predation rate pB . Since cats tend to prey on seabirds only
when there are few rabbits available, pB is divided by the total number of rabbits
(S + I + 1).

Rabbits affect seabirds by destroying nesting sites, reducing seabird births. To
eliminate the possibility of negative births, rabbits reduce seabird birth rates by di-
vision rather than subtraction. We assume the existence of refuges, nesting sites that
rabbits cannot destroy; this prevents the birth rate from being reduced to 0. The
effect of new rabbits on births should decline as the number of rabbits increases, as
undamaged nesting sites become harder to find. We then introduce Ω, the maximum
divisive effect of rabbits on number of seabird births and kB , the logarithmic constant.
Seabird birth rate is equal to Λ when there are no rabbits (S + I = 0) and converges
to Λ/Ω as the number of rabbits approaches infinity. Bringing together the seabird
terms:

dB

dt
= Λ÷ Ω

S + I + kB/Ω

kB + S + I
− pBBC

S + I + 1
− µBB (2.7)

Finally, we consider feral cats, which grow by consuming rabbits and seabirds and
have a mean survival time of µC

−1. We ignore cat predation of mice and rats, which
is less frequent and less nutritious than rabbit predation [4]. We introduce the terms
eR, the conversion efficiency (number of cats born per prey consumed) for consumed
rabbits and eB , the conversion efficiency for consumed birds. We assume susceptible
and infected rabbits are equally nutritious. Predation on birds is mediated by the
rabbit population: too few rabbits and cats will attack more birds. For example,
when the rabbit population was severely reduced by myxomatosis in the 1980s, the
number of burrow-nesting seabird colonies dropped by almost 50% due to increased
cat predation [4]. The cat eradication program that led to the extirpation of cats in
2000 did not begin in earnest until 1985, and so will not be explicitly inserted into the
model (although the implications of predator removal will be considered). Bringing
together the cat terms:

dC

dt
= eRC(pSS + pII) + eBC

( pBB

S + I + 1

)
− µCC (2.8)

This leaves us with the full system of equations given in (2.9). The model can 
also be described visually using a state transition diagram, which shows the movement 
into, out of, and between classes (Figure 1).
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dB

dt
= Λ÷ Ω

S + I + kB
Ω

kB + S + I
− pBBC

S + I + 1
− µBB

dS

dt
= αS

(
1− S

K

)
− pSSC − f(t)βSI − f(t)g(t)σS

dI

dt
= f(t)βSI + f(t)g(t)σS − pIIC − µII

dC

dt
= eRC(pSS + pII) + eBC

( pBB

S + I + 1

)
− µCC

(2.9)

where f(t) is a function defined: f(t) =
(1− r)/r

(1− r)/r + eqt
+ r

with q =
1

x
ln
(1 + r

r

)
where g(t) is a function defined: g(t) = −

(1− δ
2

)
cos(2πt) +

1 + δ

2

Fig. 1. State transition diagram of the model.

3. No Seabirds. The full model is too complex to examine analytically all at 
once. For example, we find that steady states where the predator exists (i.e. C 6= 0) 
are implicit. Thus we begin by removing the most complex element of the model: 
seabirds. We also ignore transmission by fleas, since a disease-free steady state is only 
possible in their absence. We analyse the following simplified model:
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dS

dt
= αS

(
1− S

K

)
− pSSC − f(t)βSI

dI

dt
= f(t)βSI − pIIC − µII

dC

dt
= eRC(pSS + pII)− µCC

(3.1)

This model has four equilibria (ignoring the trivial case). We replace f(t) with r,
since f(t) tends toward r in the long-term.

S = K

I = 0 (No disease, no predators)

C = 0

(3.2)

S =
µC
eR pS

I = 0 (No disease)

C =
α

pS

(
1− µC

K eR pS

) (3.3)

S =
µI
r β

I =
α

r β

(
1− µI

K r β

)
(No predators)

C = 0

(3.4)

S =
pI C + µI

r β

I =
µC − eR pS

(
pI C+µI
r β

)
eR pI

(Endemic equilibrium with predators)

C =
α

pS

(
1− pI C + µI

K r β

)
−
r β
(
µC − eR pS

(
pI C+µI
r β

))
pS eR pI

(3.5)

The Jacobian for this model is the following:

 −C pS − α ( SK − 1
)
− I β f(t)− S α

K −S β f(t) −S pS
I β f(t) S β f(t)− pI C − µI −pI I
C eR pS pI C eR eR (S pS + pI I)− µC


(3.6)

The local stability of the four steady states can be assessed using the Jacobian.
Unfortunately, the eigenvalues are far too complex to comment on for all but the
simplest case. For the equilibrium with 0 cats and 0 infected rabbits:

(3.7)λ1 = Kψrψβ − µI , λ2 = KψeRψpSψ− µC , λ3 = −αψ 
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Thus the local stability of this equilibrium (i.e. long-term persistence or extirpa-
tion of cats and infected rabbits in the system) depends only upon λ1 and λ2 being
negative, as λ3 is always negative. This gives us two conditions for this equilibrium
to be locally stable:

µI > K r β, µC > K eR pS (3.8)

The death rate of infected rabbits must be greater than a function of the available
pool of rabbits to be infected (K and f(t)) and the speed at which they can be infected
(β). Also, the death rate of cats must be greater than a function of the available pool
of prey (K) and the ability to convert them into new cats (eR and pS). Interestingly,
the growth rate of rabbits (α) is not present in either condition. As long as at least
one of these conditions is not met, both disease and predators have the potential to
persist long-term in a system without seabirds.

4. Rabbit Infection Dynamics. Next, we investigate the infection dynamics
of rabbits and the effect of predatory cats on the disease. We will analyse increasingly
complex versions of the infection model.

4.1. R0 with no predators. We begin with the simplest possible set of equa-
tions, ignoring both predators and flea transmission, as the cyclical nature of the
latter component would mean that the system has no true non-trivial steady states.

dS

dt
= αS

(
1− S

K

)
− f(t)βSI

dI

dt
= f(t)βSI − µII

(4.1)

This system has two equilibria; the disease-free equilibrium and the endemic
equilibrium, respectively:

S = K

I = 0
(4.2)

S =
µI
rβ

I =
α

rβ

(
1− µI

Krβ

) (4.3)

We use the next-generation method to calculate R0 (see Appendix A for com-
plete R0 calculations). Remember that f(t) = 1 initially:

R0 =
βK

µI
(4.4)

The disease is more likely to thrive with a higher contact rate (β) and in a 
denser population (K) and less likely to take hold with a higher disease mortality rate 
(µI). We can use PRCC analysis to determine which parameters (within a plausible 
range) exert the greatest influence on the R0 for the disease (see Appendix B for 
a discussion of how parameter values were obtained). The disease parameters exert 
a larger influence on R0 than carrying capacity, but a larger carrying capacity still 
has a positive effect on the probability that the disease will spread (Figure 2). These 
general observations are intuitive but do not capture what is interesting and unique 
about the Macquarie Island system: the interaction between disease and predators.
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Fig. 2. Partial Rank Correlation Coefficient analysis using Latin Hypercube Sampling (n =
1000) for the rabbit infection dynamics model with no predators and fixed predators. See Appendix
C for parameter value ranges.

4.2. R0 with fixed predators. We make our first attempt at incorporating
predators by treating cats (C) as a constant value.

The equations are as follows:

dS

dt
= αS

(
1− S

K

)
− pSSC − f(t)βSI

dI

dt
= f(t)βSI − pIIC − µII

(4.5)

The disease-free equilibrium and the endemic equilibrium, respectively:

S = K
(

1− pSC

α

)
I = 0

(4.6)

S =
pIC + µI

rβ

I =
α
(

1− pIC+µI
Krβ

)
− pSC

rβ

(4.7)

The disease-free equilibrium is simple to understand. The rabbit population tends 
toward some proportion of the carrying capacity of the population (K); this propor-
tion is smaller when cats are more numerous (C) and hunt more often (pS) and larger 
when the rabbit growth rate is high (α).

The endemic equilibrium is more interesting. First, we see that the populations of 
both susceptible and infected rabbits are dependent upon the susceptibility of rabbits 
to disease (f(t), which begins at 1 and tends toward r in the long-term) and the 
contact rate of the disease (β). For susceptible rabbits, the lower the contact rate 
and proportion of susceptible rabbits, the higher the stable population of susceptible 
rabbits; with declining susceptibility over time, we expect to see more susceptible 
rabbits. Secondly, we see that the stable value of susceptible rabbits is independent of 
growth rate (α) and predation on susceptible rabbits (pS), and is instead determined 
by predation on infected rabbits (pI), the mortality rate of infected rabbits (µI), and 
the aforementioned disease parameters. The stable population of infected rabbits is 
determined by the growth rate, predation on infection and susceptible rabbits, the 
carrying capacity of susceptible rabbits (K), and the two disease terms.
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R0 =
βK
(

1− pSC
α

)
pIC + µI

(4.8)

R0 depends on every parameter except r (which influences the number of infected
rabbits in the long-term, as seen previously). R0 is influenced positively by the contact
rate (β), the carrying capacity of susceptibles (K), and the growth rate of rabbits
(α); R0 is negatively influenced by predation on either form of rabbit (C, pS , pI) and
mortality caused by the disease (µI).

The two most important parameters are the contact rate (β) and the mortality
rate of infected rabbits (µI) (Figure 2). This makes sense because the diseased rabbits
must live long enough and be sufficiently infectious for the disease to be able to take
hold. We also see that the disease is more likely to spread when there is a large
population of rabbits available to infect—that is, when the rabbit population is dense,
fast-growing, and relatively unmolested by predators. The least important parameter
is predation on infected rabbits, likely because the speed of infected rabbit death from
disease greatly outpaces the speed of predation on diseased rabbits. Importantly,
predation on susceptible rabbits matters much more.

We will see in the next section that including dynamic predators significantly
changes the results. In this sense, we can view the fixed predators scenario as more
applicable to a static human control measure, such as shooting a certain proportion
of rabbits, rather than a dynamic, responsive biological control like the cats on Mac-
quarie Island.

4.3. R0 with dynamic predators. We re-add rate of change for cats and find
the disease-free equilibrium:

dS

dt
= αS

(
1− S

K

)
− f(t)βSI

dI

dt
= f(t)βSI − pIIC − µII

dC

dt
= eRC(pSS + pII)− µCC

(4.9)

S =
µC
eR pS

I = 0

C =
α

pS

(
1− µC

K eR pS

) (4.10)

R0 =
βµC

eRpS

(
pIα
pS

(
1− µC

KeRpS

)
+ µI

) (4.11)

Additionally, we test the effects of the assumption that rabbit growth is logistic by
contrasting the logistic growth equation in (4.9) with the exponential growth equation
in (4.12):

dS

dt
= αS − pSSC − f(t)βSI

dI

dt
= f(t)βSI − pIIC − µII

dC

dt
= eRC(pSS + pII)− µCC

(4.12)

S =
µC
eRpS

I = 0

C =
α

pS

(4.13)

49



R0 =
βµCpS

eRpS

(
pIα+ pSµI

) (4.14)

Fig. 3. Partial Rank Correlation Coefficient analysis using Latin Hypercube Sampling (n =
1000) for the rabbit infection dynamics model with dynamic predators and logistic or exponential
growth. See Appendix C for parameter value ranges.

We find that the growth rate (α) and carrying capacity (K) of rabbits matter much
less under these conditions, because the cat population is able to respond accordingly
to the greater availability of prey (Figure 3). We still find β and µI to be important
parameters, but the cat parameters (µC , pS , eR vs. C) are more important than
they were in the fixed predator model. The predation rate on infected rabbits still
contributes minimally to R0.

With exponential growth, the results of PRCC analysis are very similar, indicating
that dynamic predators are able to control the susceptible rabbits despite their less
constrained growth in such a way that disease establishment is minimally affected
(Figure 3). Thus the question of logistic versus exponential growth of the disease host
with respect to disease establishment is not that important in a system where the
host is controlled by a dynamic predator.

4.4. Myxomatosis and other diseases. The disease analysis leaves us with
several conclusions:

• In general, diseases are more likely to be successful in denser, fast-growing
populations. However, the presence of a predator whose growth is dependent
on the disease host can mitigate the advantages to disease establishment of
a fast-growing, densely-populated host. When the predator population is
static in size (more akin to a human control measure, like hunting), the host
population parameters maintain their importance.
• Increased predation reduces the chance that the disease will successfully es-

tablish. When predators are dynamic, predation parameters reduce the rel-
ative importance of disease parameters such as contact rate and infectious
period to establishment.
• For a relatively fast-killing disease like myxomatosis, predation on infected

individuals directly is much less important to disease establishment than pre-
dation on the supply of susceptible hosts.
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Myxomatosis is not the only disease that has been used to control rabbits. Like
myxomatosis, rabbit haemorrhagic disease (RHD) was deliberately released to con-
trol the Europeans rabbit in New Zealand and Australia [10]. Similar to the initial
introduction of myxomatosis, RHD has been brutally effective in killing rabbits; the
first outbreak killed 14 million domesticated rabbits within 9 months in China [10].
Research suggests that RHD is most effective in certain situations and under cer-
tainly environmental conditions, particularly in denser rabbit populations (Story et
al., 2004, as cited in [9]). How this density-dependant disease would interact with the
presence of an abundant, effective predator remains to be investigated.

Theoretical research has also considered the interaction between RHD and myxo-
matosis. Although myxomatosis may suppress the prevalence of RHD during concur-
rent outbreaks, in other situations, myxomatosis may allow RHD to establish where
it otherwise would not be able to [9]. Depending on conditions, it may be beneficial
to simultaneously use multiple viruses as part of a biological pest control strategy.

4.5. Fleas and cats. Finally, we consider the addition of fleas to the rabbit
infection model, with and without predators. As previously described, flea infection is
described by a sinusoidal function to reflect the “unfavourable conditions” for Myxoma
virus that required annual release:

g(t) = −
(1− δ

2

)
cos(2πt) +

1 + δ

2
(4.15)

where the δ is the minimum effectiveness. The function is multiplied by the
maximum flea contact rate, σ.

We can use a simplified model simulation (ignoring seabirds), to test the effect of
flea addition with and without (i.e. C0 = 0) predators:

dS

dt
= αS

(
1− S

K

)
− pSSC − f(t)βSI − f(t)g(t)σS

dI

dt
= f(t)βSI + f(t)g(t)σS − pIIC − µII

dC

dt
= eRC(pSS + pII)− µCC

(4.16)

We make several observations from the simulations in Figure 4:
• Flea transmission increases seasonal variability in the susceptible rabbit pop-

ulation.
• In the presence of predators, the disease eventually becomes functionally ex-

tinct. This process takes longer in the presence of flea transmission.
• In the absence of predators, the disease can be maintained long-term. The

presence of flea transmission causes oscillations to be sustained at a higher
level.

Flea transmission causes greater seasonal variability in the population of suscepti-
ble rabbits. If the goal is protecting vegetation and seabird nesting sites, this property 
could be exploited in order to strategically reduce the rabbit population during the 
mating season for seabirds. Allowing the vegetation time to recover should improve 
the mating success of seabirds.

We also notice that the susceptible rabbit population actually drops following the 
functional extinction of the disease. In this case, releasing susceptible rabbits from 
the cycle of infection and quick death due to the disease gives the cats a functionally 
larger population to prey on, allowing their numbers to grow and forcing the rabbit
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Fig. 4. 2x2 factorial series of numeric plots of the rabbit infection model with and without fleas
and with and without predators. Susceptible rabbits (blue); infected rabbits (red); cats (black). See
Appendix C for parameter values.

population toward a lower equilibrium. In the real Macquarie Island system, the
virus release program was compromised around the same time the last feral cat on
the island was shot (in 2000), so the above scenario was never played out in the real
world. Still, this is a potential consideration for future pest control efforts.

5. Seabirds and Rabbits. To investigate the interaction between seabirds and
rabbits, we ignore predation and disease and add a natural mortality term for rabbits,
µS . Equations (5.1) and (5.2) describe the system and its equilibrium:

dB

dt
= Λ÷ Ω

S + I + kB
Ω

kB + S + I
− µBB

dS

dt
= αS

(
1− S

K

)
− µSS

(5.1)

B =
Λ

µB
÷

(
Ω
K
(

1− µS
α

)
+ kB

Ω

kB +K
(

1− µS
α

))

S = K
(

1− µS
α

) (5.2)

The absence of predators is a realistic scenario, as the explosion of rabbits and 
subsequent decline of seabird nesting sites following the elimination of feral cats on 
Macquarie Island in 2000 (and apparent widespread resistance to myxomatosis) is 
what prompted the creation of this model. We can plot the equilibrium number of 
seabirds as a function of the carrying capacity of rabbits in both scenarios.
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Fig. 5. Numeric plot of the equilibrium value of seabirds as a function of the equilibrium value
of rabbits (K(1− µS

α
),K = 0–200,000). See Appendix C for parameter values.

In the absence of predators and disease, rabbit populations explode and seabirds 
crash. Since the reduction in seabird births by rabbits is logarithmic, a great reduction 
in rabbits is required to see a large benefit to seabirds (Figure 5). These kinds of 
shifts are possible, at least temporarily, as the initial introduction of myxomatosis 
reduced the rabbit population precipitously; the rabbit population went from 130,000 
before release (in 1978) to a minimum of approximately 5,000–10,000 in 1988 [1, 25]. 
However, these dramatic shifts in prey populations can have unintended consequences, 
as demonstrated in the next section.

6. Simulations. Simulations of the full model allow us to integrate what we 
have learned and ask more questions.

6.1. Disease versus predators. In the real Macquarie Island system, seabirds 
suffered greatly after the extirpation of cats due to the explosion of rabbits. In the 
following plot, we compare the outcome with respect to the seabird population of 
having only a single control measure: disease (with flea transmission) or predators.

As shown in Figure 6, the contact rate of the disease (β) must be tripled in order 
to achieve the same long-term population of seabirds as in the system with only preda-
tors. Although cats are certainly harmful to seabirds, they may represent the lesser 
of two evils by helping to keep other pests under control. A “trophic cascade” is a 
phenomenon in food webs where a change in abundance in one level of the system has 
indirect effects on other levels. For example, the removal of a top predator releases 
lower predators from predation, potentially allowing their populations to increase. 
This may in turn cause lower-down prey species to suffer in their populations sizes. 
Although rabbits are not strictly “predators”, they act like them by negatively influ-
encing seabird reproduction. On Macquarie Island and similar islands, the elimination 
of top predators can have the opposite effect on conservation goals than intended by 
“releasing” species lower down on the food chain [1, 22].

It should be noted, however, that the shape of the seabird decline is significantly 
different under the disease-only scenarios versus the predator-only scenario. Even if 
the long-term stable value for seabird populations is the same or less in the disease-
only scenarios, the actual number of seabirds is significantly higher for the first 50 
or so years compared to the predator-only scenario, where the bird decline occurs
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Fig. 6. Series of numeric plots of the Macquarie Island model with three different parameter
combinations: no disease (1); no predators (2); no predators and triple β (3). Susceptible rabbits
(blue); infected rabbits (red); cats (black); seabirds (purple, dashed). See Appendix C for parameter
values.

much earlier. If more complex birth dynamics for seabirds were incorporated into the
model, this property could become very important.

6.2. Full model and carrying capacity. Finally, we come to a simulation of
the full model—with seabirds, disease, and predators.

Fig. 7. Series of numeric plots of the entire Macquarie Island model with three different pa-
rameter combinations: Kψ= 200,000 (1); Kψ= 75,000 (2); Kψ= 12,940 (3). Susceptible rabbits 
(blue); infected rabbits (red); cats (black); seabirds (purple, dashed). See Appendix C for parameter 
values.

We see from the first plot in Figure 7 that having both predators and disease
could give us the best of both worlds for each control measure. We have the same
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higher long-term outcome for seabirds as in the predator-only scenario and a similar 
delayed reduction of seabirds in the first 50 years as in the disease-only scenario. In 
practical terms, this favours simultaneous elimination of both pests, as having one 
without the other may do more damage than having both. In the disease modelling 
section, we identified carrying capacity (K) as a relatively unimportant parameter 
for disease establishment. In these simulations, we find that the long-term number of 
seabirds (and even the general shape of the curve) is somewhat robust to changes in 
K, although changing K does affect how the equilibrium is achieved. In the middle 
plot, there are fewer predators and fewer diseased rabbits—but the lower carrying 
capacity means that the number of susceptible rabbits ends up being similar, along 
with the seabirds. In the final plot, with a very reduced K, cats decimate seabird 
populations before going extinct due to a lack of rabbits. Historically, the introduction 
of a deadly disease like myxomatosis has shown the capability to produce sudden, 
prolonged plunges in the host population, highlighting the delicate balance between 
cats, rabbits, and seabirds. While it is unlikely that a drastically reduced effective 
carrying capacity of rabbits could be sustained over a long period of time, there may 
be significant short-term consequences for cats and seabirds.

7. Conclusions. The most challenging component of this system to model was 
also the most critical: the seabirds, the target of conservation. In the real Macquarie 
Island system, the unintended consequences on seabirds of eliminating cats were simi-
larly difficult to foresee. This highlights the issues facing agencies in charge of making 
conservation and management decisions affecting a complex web of ecosystem inter-
actions. Owing to the assumptions and compromises necessarily made as part of the 
modelling process, this Macquarie Island model is certainly flawed, and as a result 
may be unable to capture the true dynamics of the system, potentially in important 
ways. For example, the different species of seabird should be modelled individually, 
and their growth equations should be more reflective of their individual life history 
traits and mating patterns. Some parameters were more difficult to estimate than 
others. Additionally, other pest species like rats, which interact with both cats and 
seabirds, could be included.

The great statistician George Box said that “all models are wrong, but some are 
useful.” Despite the limitations of the model, the various analyses undertaken revealed 
interesting qualitative trends that could inform future conservation efforts in complex 
predator–prey ecosystems, especially when considering the use of an infectious disease. 
The model demonstrated that the most important parameters to disease establishment 
changed depending on the nature of the other controls on the rabbit population. 

Unsurprisingly, contact rate (β) and mean infectious period (µI
−1) were consistently 

very important parameters in the disease model. When combined with a static, non-
disease control (e.g. hunting by humans), carrying capacity (K) and growth rate (α) 
of the host population were also important; however, they were much less so in the 
presence of a dynamic predator (e.g. feral cats). With a dynamic predator, predation 
on the susceptible host population (but not infected hosts) became very important. 
Whether the hosts grew logistically or exponentially made little difference in this 
situation.

Analysis of seabirds and rabbits showed that reductions in rabbits must be sub-
stantial in order to provide the maximum benefit to seabird populations. Disease, 
predators, or some combination thereof can be used to this end. Simulations showed 
that these forces can interact in positive or negative ways. Predators can suppress 
disease spread and vice versa, but these two can also act in conjunction to slow the
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decline of seabird populations. Seasonal vector-based transmission of a disease may
be particularly useful when the seasonal breeding patterns of seabirds are accounted
for.

Ultimately, the point is moot for Macquarie Island in particular. Although the
extermination of cats from the island was initially disastrous, recent intensive efforts
to eliminate rabbits, mice, and rats have proved successful, leading to a remarkable
recovery for seabirds [19]. But the fraught ecological history of Macquarie Island,
along with the results of this paper, should motivate future conservation efforts to
thoughtfully consider the potential indirect consequences of management decisions on
the ecosystem as a whole. In closing, we present a short list of important consider-
ations for ecosystem managers who find themselves in a similar position to those in
charge of Macquarie Island in 1978:

• If the conservation goal is the protection of a particular species or groups of
species, identify the organism(s) that influence their abundance. If there is
more than one, identify how these organisms interact with each other, as well.
There may be unintended consequences on other organisms (and eventually
on the species to be protected) from control measures targeting a particular
organism (e.g. trophic cascades).
• When considering a disease to control an organism, identify the character-

istics of the disease that are most relevant to its successful establishment in
the ecosystem at hand. If the host organism is uncontrolled by a predator,
a disease that thrives in a densely-populated or fast-growing host may be
preferable; these characteristics are less important if the host organism is
also controlled by a predator. The presence of a predator may have serious
implications on a disease’s ability to establish and its long-term viability.
• Consider the effects of a disease on the potential host’s predator(s), as well

as other organisms interacting with it. Depending on conditions, the disease
may indirectly influence the predator’s population size or the primary target
of its predation (which may become the species intended to be conserved).
Changes in the population size of the predator may have long-term impacts
on the predator’s ability to control the host organism independent of the
disease.
• Some predators control other predators. While these top predators may do

harm to the target of conservation, eliminating them may cause the growth
of some of their prey species to become unconstrained. These species may
have the potential to do even greater harm to the conservation effort.
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Appendix A: R0 calculations.

The basic reproductive ratio (R0) describes the average number of secondary cases
produced by a single infectious individual over their infectious lifetime in a completely
susceptible population. R0 acts as a threshold wherein a disease is able to invade an
uninfected population if R0 > 1 and is unable to invade if R0 < 1.

The calculate R0 for each version of the model using the next-generation method
[7]. In short, the next-generation begins by defining the vector x̄ = xi, where xi gives
the number of individuals in the ith infective class. In our model, there is only a single
infective class, I. Next, we define Fi(x̄) as the rate of new infections in the ith class
from the susceptible class (in our model, S). Finally, we define Vi(x̄) = V −

i (x̄)−V +
i (x̄),

where V +
i is the transfer of individuals into the ith infective class from all other classes

excluding the susceptible class and V −
i is the transfer of individuals out of the ith

infective class.

F =
[
∂Fi(x0)
∂xj

]
, V =

[
∂Vi(x0)
∂xj

]
The value for R0 is given as the dominant eigenvalue of the matrix FV −1.

R0 with no predators.

F =
[
f(t)βS

]
=
[
βK

]
, V −1 =

[ 1
µI

]
FV −1 = R0 =

βK

µI

R0 depends on the rabbit disease susceptibility function (f(t)), the contact rate
of an infected rabbit (β), the number of susceptible rabbits (S), the carrying capacity
of the rabbit population (K), and the mortality rate of infected rabbits (µI).

R0 with fixed predators.

F =
[
f(t)βS

]
=
[
βK(1− pSC

α )
]

, V −1 =
[ 1
pIC+µI

]
FV −1 = R0 =

βK
(

1− pSC
α

)
pIC + µI

R0 depends on the predation rate on susceptible rabbits (pS), the number of cats
(C), the maximum per capita growth rate per susceptible rabbit (α), the predation
rate on infected rabbits (pI), and terms already mentioned above.

R0 with dynamic predators.

F =
[
f(t)βS

]
=
[

βµC
eRpS

]
, V −1 =

[ 1
pIC+µI

]
=

[
1

pIα

pS

(
1− µC

KeRpS

)
+µI

]

FV −1 = R0 =
βµC

eRpS

(
pIα
pS

(
1− µC

KeRpS

)
+ µI

)
R0 depends on the mortality rate of cats (µC), the rabbit conversion efficiency 

(eR), and terms already mentioned above.
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R0 with exponential growth.

F =
[
f(t)βS

]
=
[

βµC
eRpS

]
, V −1 =

[ 1
pIC+µI

]
=
[ pS
pIα+pSµI

]
FV −1 = R0 =

βµCpS

eRpS

(
pIα+ pSµI

)
R0 depends on terms already mentioned above.

Appendix B: Parameter values & initial conditions.

A great many sources were used to estimate parameter values and initial condi-
tions. Simulations were also used in some cases to help determine reasonable values.

Symbol Value Sources
B0 500,000–1,500,000 [18]
Initial number of seabirds (birds)
The main breeding seabirds on Macquarie Island are penguins. Petrels are also important
birds. Approximately 3.5 million seabirds visit the island annually to breed and moult.
Many of these birds do not stay on the island year-round. The most populous bird, the
Royal Penguin, is estimated at 1.7 million and stay on the island for seven months of the
year, whereas 200,000 King Penguins stay all year. Some birds may be too large for cats to
effectively hunt. We estimate the number of birds available to interact with the Macquarie
Island system to be between 500,000 and 1.5 million.
S0 130,000 [1]
Initial number of susceptible rabbits (rabbits)
The rabbit population just before virus release in 1978.
I0 100 [2]
Initial number of infected rabbits (rabbits)
We begin with a small population of infected rabbits.
C0 350–550 [1]
Initial number of cats (cats)
Based on the eradication program described in [1], we can assume a cat population any-
where from 300–550.
Λ 75,000–125,000 [18]; [16]; [3]
Constant birth rate of seabirds (birds)
Some seabirds breed every year, some do not. A King Penguin produces only a single
egg per year while breeding (although breeding is not always successful) [3]. Other birds
produce more eggs, so the base number of new birds every year is difficult to estimate.
A conservative estimate of breeding pairs from [16] would put the number of new birds
each year at approximately 150,000; however, not all of these birds would be be eligible to
interact with the model. Also, not all birds would survive to maturity.
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α 0.5–5.5 [1]; Skira (1978) as cited in [8]; [26]
Maximum per capita growth rate per susceptible rabbit (years−1)
Skira (1978) reported 19.3 rabbit kittens per breeding female per year during the 1974–1975
breeding season, with as many as 57% of females being pregnant in a season. This suggests
a per capita birth rate of 5.5 (remember, only half of the population is reproductive);
however, high early mortality must also be taken into account [26]. Cats were eliminated
in 2000 and the rabbit population increased from approximately 10,000 in that year to an
estimated 130,000 in 2006 [1]. Assuming logistic growth with K = 187,500 in the absence of
cats and with a largely ineffective virus, growth over six years suggests α = 0.62. Of course,
we must also remember that only half of the rabbit population (females) is reproductive.
K 150,000–225,000 [24]; Terauds (2009) as cited in [21]
Carrying capacity of rabbit population (rabbits)
The rabbit population was estimated at 150,000 in 1966 (before Myxomatosis but with cat
predation). Estimates of the rabbit population in 1978 right before virus release range from
130,000–150,000 [1, 4]. Cats were eliminated in 2000 and the rabbit population increased
from approximately 10,000 in that year to an estimated 130,000 in 2006 [1]. We use a
range of 150,000 to 50% more in the absence of cats.
β 0.0001–0.01 [9]
Contact rate of an infected rabbit (rabbits−1 years−1)
Investigating this value will be a key component of the analysis. [9] references a per-hectare
contact rate for myxomatosis.
σ 0.5–3 [17]
Maximum effectiveness of flea transmission (years−1)
It is difficult to estimate the relative effectiveness of fleas versus other rabbits in the spread
of myxomatosis. [17] reports on the release program.
δ 0.25
Minimum effectiveness of flea transmission (proportion of max.) (dimensionless)
We set minimum flea effectiveness to 25% of maximum.
Ω 10
Maximum decrease in seabird births by rabbits (by division) (dimensionless)
This value is difficult to estimate. We assume rabbits can reduce bird births by an order
of magnitude at maximum. See kB for how this reduction works in practice.
µB 1/20–1/15 [20]; [5]
Mortality rate of seabirds (years−1)
Some of the birds on Macquarie Island are relatively long-lived: e.g. King Penguin (15–20
years) and Southern Giant Petrel (some live more than 30 years). We take this value to
be 15–20 years.
µI 365/12–365/10 [12]
Mortality rate of infected rabbits (years−1)
The average survival time for non-attenuated strains is 10–12 days.
µC 1/2–1/10 AVMA (2003) as cited in [11]
Mortality rate of cats (years−1)
Estimates of feral cat mortality vary and high infant mortality is noted. We vary the
number from a low estimate of 2 years to a high estimate of 10 years.
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pB 0.025–0.1 [17]
Predation rate on seabirds (rabbits cats−1 years−1)
In the 1970s, cats were killing 60,000 burrowing seabirds a year. Given that abundant
rabbits suppress cat predation of birds, then cat predation of birds would be much higher
in the absence of rabbits. Since there were only several hundred cats at this time, we might
expect that the base predation rate would be on the order of 1000 birds per cat per year.
pS 0.00025–0.00075 [1]
Predation rate on susceptible rabbits (cats−1 years−1)
[1] conservatively estimate that the 157 cats shot in 1997 consumed at least 4000 adult-
sized rabbits per year, or the equivalent of up to 13,700 rabbit kittens per year. This places
the number of rabbits consumed per cat per year at 25 or greater.
pI 0.00025–0.00075 [1]
Predation rate on infected rabbits (cats−1 years−1)
Although infirm rabbits may be easier to catch than healthy rabbits, they may also be less
likely to leave their burrows, so we will assume that pI is roughly equal to pS .
eB 0.0075 [17]
Seabird conversion efficiency (cats born per seabird consumed) (cats birds−1)
See pB , eR, pS ; these suggest eB < eR, at least for the seabirds that most frequently
became the cat’s prey.
eR 0.015 Copson (2002) as cited in [1]
Rabbit conversion efficiency (cats born per rabbit consumed) (cats rabbits−1)
Copson (2002) estimated cat recruitment rate at 124 cats/year between 1985–1995, equal
to the kill rate of the eradication program. Based about what we know about the predation
rate of cats on rabbits, this suggests a conversion efficiency in the neighbourhood of 0.015.
r 0.2 [12]
Long-term proportion of rabbits susceptible to disease (dimensionless)
Reported fatality rates in various natural systems suggest the long-term fatality rate may
be around 20%.
x 20 [12]; [8]
Time for rabbit susceptibility to disease to decay by half (years)
[12] records significant resistance and attenuation arising in the first decade after release in
other locations. [8] notes apparent widespread resistance to Myxoma on Macquarie Island
after 26 years.
kB 100,000
Constant for logarithmic effect of rabbits on seabird births (rabbits)
With Ω = 10, rabbits reach a 6-fold reduction in seabird births at around 150,000 rabbits.

Appendix C: Parameter values tested.

Rabbit Infection Dynamics

R0 with fixed predators

Symbol Definition Parameter range
K Carrying capacity of rabbit population 50,000–300,000
β Contact rate of an infected rabbit 0.0001–0.01
µI Mortality rate of infected rabbits 365⁄50–365⁄2
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R0 with fixed predators

Symbol Definition Parameter range
α Maximum per capita growth rate per susceptible rabbit 0.5–10
K Carrying capacity of rabbit population 50,000–300,000
β Contact rate of an infected rabbit 0.0001–0.01
µI Mortality rate of infected rabbits 365⁄50–365⁄2
C Constant number of cats 50–1000
pS Predation rate on susceptible rabbits 0.00005–0.005
pI Predation rate on infected rabbits 0.00005–0.005

R0 with dynamic predators

Symbol Definition Parameter range
α Maximum per capita growth rate per susceptible rabbit 0.5–10
K Carrying capacity of rabbit population 50,000–300,000
β Contact rate of an infected rabbit 0.0001–0.01
µI Mortality rate of infected rabbits 365⁄50–365⁄2
µC Mortality rate of cats 1⁄12–1
eR Rabbit conversion efficiency 0.15–0.0015
pS Predation rate on susceptible rabbits 0.00005–0.005
pI Predation rate on infected rabbits 0.00005–0.005

R0 with exponential rabbit growth

Symbol Definition Parameter range
α Maximum per capita growth rate per susceptible rabbit 0.5–10
β Contact rate of an infected rabbit 0.0001–0.01
µI Mortality rate of infected rabbits 365⁄50–365⁄2
µC Mortality rate of cats 1⁄12–1
eR Rabbit conversion efficiency 0.15–0.0015
pS Predation rate on susceptible rabbits 0.00005–0.005
pI Predation rate on infected rabbits 0.00005–0.005

Fleas and cats

Symbol Definition Value
S0 Initial number of susceptible rabbits 130,000
I0 Initial number of infected rabbits 100
C0 Initial number of cats 0, 350
α Maximum per capita growth rate per susceptible rabbit 2.5
K Carrying capacity of rabbit population 200,000
β Contact rate of an infected rabbit 0.001
σ Maximum effectiveness of flea transmission 0, 3
δ Minimum effectiveness of flea transmission (proportion of max.) 0.25
µI Mortality rate of infected rabbits 365/12

Table continued on next page...
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Fleas and cats cont.

µC Mortality rate of cats 1/4
pS Predation rate on susceptible rabbits 0.0005
pI Predation rate on infected rabbits 0.0005
eR Rabbit conversion efficiency (cats born per rabbit consumed) 0.015
r Long-term proportion of rabbits scscueptible to disease 0.2
x Time for rabbit susceptibility to disease to decay by half 20

Birds and Rabbits

Symbol Definition Parameter value
Λ Constant birth rate of seabirds 100,000
Ω Maximum decrease in seabird births by rabbits (by division) 10
µB Mortality rate of seabirds 1⁄15
α Maximum per capita growth rate per susceptible rabbit 2.25
K Carrying capacity of rabbit population 0–200,000
µS Mortality rate of susceptible rabbits 1⁄1.5
kB Constant for logarithmic effect of rabbits on seabird births 100,000

Simulations

Disease versus predators

Symbol Definition Value
B0 Initial number of seabirds 1,000,000
S0 Initial number of susceptible rabbits 130,000
I0 Initial number of infected rabbits 0, 100
C0 Initial number of cats 0, 350
Λ Constant birth rate of seabirds 100,000
α Maximum per capita growth rate per susceptible rabbit 2.25
K Carrying capacity of rabbit population 200,000
β Contact rate of an infected rabbit 0, 0.001, 0.003
σ Maximum effectiveness of flea transmission 0, 3, 3
δ Minimum effectiveness of flea transmission (proportion of max.) 0.25
Ω Maximum decrease in seabird births by rabbits (by division) 10
µB Mortality rate of seabirds 1/15

µI Mortality rate of infected rabbits 365/12

µC Mortality rate of cats 1/4
pB Predation rate on seabirds 0.075
pS Predation rate on susceptible rabbits 0.0005
pI Predation rate on infected rabbits 0.0005
eB Seabird conversion efficiency (cats born per seabird consumed) 0.0075
eR Rabbit conversion efficiency (cats born per rabbit consumed) 0.015
r Long-term proportion of rabbits scscueptible to disease 0.2
x Time for rabbit susceptibility to disease to decay by half 20
kB Constant for logarithmic effect of rabbits on seabird births 100,000
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Full model and carrying capacity

Symbol Definition Value
B0 Initial number of seabirds 1,000,000
S0 Initial number of susceptible rabbits 130,000
I0 Initial number of infected rabbits 0, 100
C0 Initial number of cats 350
Λ Constant birth rate of seabirds 100,000
α Maximum per capita growth rate per susceptible rabbit 2.25
K Carrying capacity of rabbit population 200,000; 75,000; 12,940
β Contact rate of an infected rabbit 0.001
σ Maximum effectiveness of flea transmission 3
δ Minimum effectiveness of flea transmission (proportion of max.) 0.25
Ω Maximum decrease in seabird births by rabbits (by division) 10
µB Mortality rate of seabirds 1/15

µI Mortality rate of infected rabbits 365/12

µC Mortality rate of cats 1/4
pB Predation rate on seabirds 0.075
pS Predation rate on susceptible rabbits 0.0005
pI Predation rate on infected rabbits 0.0005
eB Seabird conversion efficiency (cats born per seabird consumed) 0.015
eR Rabbit conversion efficiency (cats born per rabbit consumed) 0.0075
r Long-term proportion of rabbits scscueptible to disease 0.2
x Time for rabbit susceptibility to disease to decay by half 20
kB Constant for logarithmic effect of rabbits on seabird births 100,000
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