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Abstract. Water tanks can be seen in communities all across the country, but how well are
they designed? In this work, we study the optimal shape of water tanks to find the fastest emptying
time. In particular, we compare emptying the efficiency for different shaped water towers with the
same volume, height, and cross-sectional outlet area. We first review a formula for the emptying time
as a function of the volume and the tank’s height and then compute the emptying time for several
specific tank shapes. The question of whether there exists a tank with a minimal emptying time is
also considered in the context of prior work. Finally, our added contribution is to fix the volume of a
typical water tank and compute the area and the emptying time for different tank shapes, including
composites, in order to develop an understanding for how an optimal tank might be designed.
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1. Introduction. Since the dawn of civilization, the retrieval of water has been
a fundamental problem for humanity. To address this problem, early humans would
be forced to settle near a body of water. Water was primarily used for drinking,
sanitation, and watering crops [10]. However, as cities were built and infrastructure
became more common, the need for water in each individual building became more
apparent along with the rise of the amount of uses of water. Thus, the need to
efficiently move water from one place to another quickly arose. One such solution
came in the form of an aqueduct in the Roman times. However, the Minoans, who
were much before their time in terms of water systems, used aqueducts before the
Romans during the Bronze age [2]. The Minoans had aqueducts, a filtration system,
harvested rain water, sewage pipes, etc. Specfically, the aqueduct made it possible
for humans to live farther away from bodies of water; however, this range remained
limited. The logistics of water remains an issue due to the necessity of water for
human life. Storing water for immediate use at specific times has become the modern
day equivalent of these logistical issues. The most common way to store water is to
use a water tower [2].

Water towers are basic water storage devices capable of holding hundreds of thou-
sands to millions of gallons of water at a time. We can think of water towers as simply
water tanks that are elevated off the ground. This is done to allow gravity to enhance
water pressure in order to get the water where it needs to go [7]. For each foot of the
water tower, the tower increases its water pressure by roughly 0.43 pounds per square
inch. An essential feature in the present day is the ability of a water tower to hold a
day’s worth of water in case of emergency. For example during a power outage, the
mechanical pumps cannot work and the people must rely on the backup water supply
the water tower provides. Water towers are also used during parts of the day when
water demand is high to alleviate strain on the system. Usually the busiest time is in
the mornings, when people are getting ready for their day. At night when little water
is used, the water tower is refilled for the next day [7]. Marshall says that in general,
a town gets their water from a well, river, or lake. The water is cleaned at a water
treatment plant and pressurized by the pump to allow the water to travel through
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the pipes. From there, it will either go to the consumers or the water tank depending 
on the demand [3].

Most water supplies run between 50 to 100 PSI [3], thus requiring most water 
towers to have a height of about 120 feet to satisfy that requirement. In regions where 
the land is elevated, the tank will not have to be as high because the natural elevation 
will act as the tower’s height. In general, a water tank can hold approximately 
1,000,000 gallons of water, which is usually enough water for a given town for one 
day. That is about 50 times as much water as a backyard swimming pool (e.g., 20,000 
to 30,000 gallons). Since water towers can be used during higher demand periods, 
pumps are designed for the size of the average demand and not the peak demand. 
The combination of the pumps and towers can save a town significant amounts of 
money [3]. Thus, the optimal shape of the water tower for efficient distribution of 
its contents in a minimal amount of time has become an interesting problem from a 
societal prospective. Moreover, the optimal shape of a water tower is the shape that 
can empty its contents in the shortest time. Equivalently, the optimal shape has the 
smallest emptying efficiency coefficient as discussed later in Section 2.

As an example, let us say a pumping station averages 500 gallons per minute or 
720,000 gallons per day. In the morning the water consumption is much greater than 
the average, we assume the demand is 2,000 gallons per minute. The cost between a 
pump that can support 500 gallons per minute compared to 2,000 gallons per minute 
is huge [3]. Therefore, it is cheaper to build and maintain a water tower to help the 
pump during the peak times. Thus, the emptying efficiency is the most important 
quality. In the following sections we show that the emptying efficiency turns out to 
only depend on the shape of the tank. Therefore, picking the right shape is crucial. 
Though there are many different and uniquely shaped water tanks we restrict this 
work to focus on the cone, hemisphere, sphere, cylinder, inverse cone, and composite 
of these.

The goal of this work is to investigate an optimal shape for a water tank. In 
Section 2, we begin with a review of results for basic shapes such as a cone, cylinder, 
or frustum and once a basic understanding for the important quantities is developed 
we move on to composite tank shapes. To analyze the best tank, we start with a 
formula for the emptying time T of a tank as posed by Hanin in [8]. We then consider 
the emptying efficiency of different shaped water tanks and investigate whether a 
minimal emptying time exists. This provides a brief overview of [8] and highlights 
some additional details. In Section 3, we provide new insight on the efficiency of 
composite tanks by calculating the emptying efficiency using piecewise functions and 
the emptying time for various tanks. Our predictions are consistent with and help to 
explain observations about the prevalence of certain shaped water tanks in the present 
day throughout local communities.

2. Mathematical Model. Let V and H be the volume and height of a tank 
respectfully. We start with the tank filled to the top with liquid. The liquid will 
eventually exit the tank through a small hole at the bottom with a cross-sectional 
area S. However, we need to know the cross-sectional area A(h) as function of the 
height of the liquid h. Hence A(h), 0 ≤ h ≤ H will denote cross-sectional area at 
h (e.g., A(0) = S). We assume A(h) to be continuous because we need the cross-
sectional area at any time t and any height h. This cannot be done discretely.
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As time passes some small amount ∆t, the height of the liquid will decrease some
amount ∆h. We can take the cross-sectional area of the tank at every height drop ∆h
to find an approximation for the volume of the tank. Thus, ∆V ≈ A(h)∆h. Note that
the velocity of the flowing liquid depends on the height of the liquid (i.e., v = v(h)).
Hence, for every time step ∆t the liquid travels at a velocity v(h) through the area of
the hole S. Recall from physics that d = v · t. So the change in volume is

(1) ∆V ≈ Sv(h)∆t.

Therefore, A(h)∆h ' Sv(h)∆t by our previous observations of ∆V . Rearranging
and differentiating with respect to t gives us the differential equation for the change
in the liquid height as a function of time

(2) h′ = − S

A(h)
v(h).

We proceed in the next subsection to use laws of physics to gain greater insight into
the emptying velocity function v(h).

2.1. Torricelli’s Law. The liquid leaving the tank during the time ∆t will have
some mass ∆m. This results in a potential energy loss of ∆Π = ∆(mgh) where g is
the acceleration due to gravity. Also, the kinetic energy of the liquid flowing out of
the tank during the time ∆t is ∆K = ∆(mv2/2). Using conservation of energy and
setting ∆Π and ∆K equal to each other gives us

(3) v(h) =
√

2gh.

Torricelli was the person who introduced (3) to the world back in 1640 [5].
In reality, due to the viscosity of the liquid within the water tank, (3) is not

accurate enough for us to use. Through experiments

(4) v(h) = α
√
gh,

where the constant α depends on the physical properties of the liquid (e.g., for water
α = 0.84) [8]. Let ∆V = V and ∆t = T ∗ in (1) and assume the liquid is flowing
from the tank at the constant initial rate v0 = v(H) = α

√
gH. Then the theoretical

emptying time T ∗ would be

(5) T ∗ =
V

Sv0
=

V

Sα
√
gH

.

However, according to Torricelli’s law (3), the outflow rate is decreasing with the 
decrease of height of the liquid. Thus the true emptying time T will increase by some
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coefficient k as the height of the liquid decreases. Therefore, the true emptying time
T is

(6) T = kT ∗ = k
V

Sα
√
gH

,

where k > 1. In general, the coefficient k depends on the height H and the shape of
the tank. Since the shape affects the value of k, we will focus on various shapes of
tanks. In the proceeding sections, k will be a constant, since it is defined as the ratio
of T/T ∗.

2.2. Emptying Time. Plugging in the velocity from Torricelli’s Law (4) into
the differential equation (2) gives the change in height as

(7) h′ = −Sα√g
√
h

A(h)
.

Our differential equation must satisfy two boundary conditions. The first being
at t = 0, the height of the liquid h is equal to the height of the tank H. The second
is that at the empty time T , there is no water left in the tank, i.e. h = 0. After
separating the variables and integrating, we obtain the implicit solution

(8)

∫ H

h

A(u)√
u
du = Sα

√
gt.

Notice (8) satisfies h(0) = H. As h(T ) = 0, we obtain from (8) that

(9) T =
1

Sα
√
g

∫ H

0

A(h)√
h
dh.

Next, we want find an expression for efficiency constant k, implicitly defined in
(6). First note that the integral of the area of a shape along its height is the volume.
So

(10) V =

∫ H

0

A(h) dh.

By equating (6) and (9) as well as using (10), we derive an expression for k

(11) k = k(H) =
√
H

∫H
0

(A(h)/
√
h) dh∫H

0
A(h) dh

.

Next, we want to find a general area formula for a given tank. We rotate the
graph of a non-negative continuous function f(h), 0 ≤ h ≤ H, about the h axis to
obtain

(12) A(h) = πf2(h).

Notice from (11) that k depends on A and from (12) A depends on f . This leads 
to the important result that in this case the coefficient k depends only on f . In other 
words, k is only dependent on the shape of the tank. We will compute the coefficient k 
for a few simple and widely used tank shapes and then use those emptying efficiency in 
formula (6) to obtain the emptying time. In the proceeding sections we now consider 
some basic shapes for water tanks and compute the corresponding emptying efficiency.
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2.2.1. Cylinder. First consider a cylindrical water tank often referred to as a
drum.

H

R

Let the cylinder tank have a height H with base radius R, where R2 = V/πH. Then,
f(h) = R, 0 ≤ h ≤ H. Thus, A(h) = πR2. So by (11),

k =

√
H

∫H
0
πR2h−1/2 dh∫H

0
πR2 dh

=

√
H 2h1/2|H0
h|H0

= 2.

2.2.2. Cone. Next, we consider a cone-shaped tank.

H

R

Let a cone- or funnel-shaped tank have a height H and radius R, where R2 = 3V/πH.
So f(h) = γh with γ = H/R. We have A(h) = πf2(h) = πγ2h2. From (11),

k =

√
H

∫H
0
πγ2h3/2 dh∫H

0
πγ2h2 dh

= 1.2

2.2.3. Frustum of a cone. Next, consider the frustum of a cone.

R2

R1
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Let a frustum of a cone have a lower base radius R1 and upper base radius R2. Then
f(h) = a+ bh, where a = R1 and b = (R2 −R1)/H, and A(h) = π(a+ bh)2. Thus,

k =

√
H

∫H
0
π(a2h−1/2 + 2abh1/2 + b2h3/2)dh∫H
0
π(a2 + 2abh+ b2h2)dh

k =
2a2H + (4/3)abH2 + (2/5)b2H3

a2H + abH2 + (1/3)b2H3

k =
2R2

1 + (4/3)R1(R2 −R1) + (2/5)(R2
2 − 2R1R2 +R2

1)

R2
1 +R1(R2 −R1) + (1/3)(R2

2 − 2R1R2 +R2
1)

.

Further simplification gives us

(13) k =
2

5

8R2
1 + 4R1R2 + 3R2

2

R2
1 +R1R2 +R2

2

.

Notice all the H’s cancel out. Thus k is independent of H. When R1 = 0, we get
a cone shape tank where k = 1.2. For R2 = 0, we obtain an inverse cone in which
k = 3.2. When R1 = R2, we get a cylinder with k = 2. The only new information
learned here was the k value for the inverse cone.

2.2.4. Spherical tanks. Finally, we consider a spherical tank.

H

R

Let the spherical tank of heightH and radiusR have a volume V = πH2(R−H/3).
Then f2(h) = h(2R− h), 0 ≤ h ≤ H. Hence A(h) = πh(2R− h). Thus,

k(H) =

√
H

∫H
0

(2Rπh1/2 − πh3/2) dh∫H
0

(2Rπh− πh) dh
=

(4/3)R− (2/5)H

R− (1/3)H
=

2

5

10R− 3H

3R−H
.

Since the height of a sphere equals its diameter, we have H = 2R for a spherical 
tank. We obtain k = 1.6. Then H = R for a hemispherical tank because a hemisphere 
is half a sphere. We find that k = 1.4. The table below summarizes our results of 
the emptying efficiency for the previous tanks. The cone shaped tank turns out to be 
the most efficient. This explains why funnels are cone-shaped to allow for the fastest 
emptying time. Formula (6) and the table below allows one to compare emptying 
times of tanks of various shapes with variable volume and height.

For physical reasons, the coefficient k is always larger than 1. This is because 
the outflow rate cannot be faster than the input rate. We can think of energy with a 
simple machine. When we input energy into a machine we cannot extract more
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Table 1
Emptying Efficiencies of Various Tanks

Tank Shape Cone Hemisphere Sphere Cylinder Inverse Cone
k 1.2 1.4 1.6 2 3.2

energy out of the machine than we put in. This fact is an application of the law of
conservation of energy and a result of the first law of thermodynamics. In the next
section, we will next explore if there is another shape, possibly a composite, that gives
us a k < 1.2. If we can, what is the smallest value can we achieve? This in turn would
indicate the optimal shape for a water tank.

2.3. Are there Tanks with the Minimal Emptying Time? To answer the
question if a minimal emptying time exists, we start with the function for the shape
of a circularly symmetric tank from Hanin [8]. This general function takes the form

(14) f(h) = Chµ, 0 ≤ h ≤ H,

with some constants , µ ≥ 0 and C > 0. Given µ, the value of C can be found from
the volume equation V = πC2H2µ+1/(2µ + 1). From (12) and (14) we find the area
A(h) = πC2h2µ. Using (11) we obtain

(15) k =

∫H
0

(πC2h2µ−
1
2 ) dh∫H

0
(πC2h2µ) ds

=
√
H

2µ+ 1

2µ+ 1
2

h2µ+
1
2 |H0

h2µ+1 |H0
=

4µ+ 2

4µ+ 1
.

For µ = 0 and µ = 1, we find k = 2 for the cylinder and k = 1.2 for the cone, 
respectively. For µ = 2, we have k = 10/9, which is a parabolic tank.

Hence, we can get a k lower than 1.2. If we take the limit as µ → ∞ of (15) and using 
L’Hôpital’s rule we get k = 1. However, this is a theoretical minimum. Therefore, the 
minimum of k = 1 cannot be practically realized as the absolute minimal emptying 
time. Let us see graphically what happens as µ becomes large. The volume and height 
of the water tower are held constant. To obtain greater understanding of the effect 
on the shape of changing µ, we take H = 60 and V = 100, 000 while varying µ. We 
vary 0 ≤ µ ≤ 100 and 0 ≤ h ≤ H. Next, we solve for C and f(h) respectfully. Notice 
h is represented by the vertical axis and f(h) is represented by the horizontal axis.
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As µ becomes large, the function gets closer to the h axis. We rotate the graph about
the h axis to obtain a vertical horn or trumpet with the bell pointed up. Theoretically,
this is the most optimal shape tank.

H R

In the next section we explore how composites tanks formed by combining the basic
shapes investigated above can help one get as close as possible to an optimal emptying
time. From (15) we can see that there are many possible shapes based on µ. It does
not, however, consider the combination of different shaped tanks as one can observe
in the real world.
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3. Results on Composite Tanks.

3.1. Composite Tank 1.

Now we will explore composite tank shapes that can readily be observed in local
communities. The first tank under consideration consists of a hemisphere at the
bottom, a cylinder in the middle, and an inverse cone at the top. To calculate the
emptying efficiency, we can use a piecewise fuction f(h) from the previous tanks.
Thus f2(h) = h(2R− h), 0 ≤ h ≤ 1

3H, f(h) = R, 1
3H < h ≤ 2

3H, and f(h) = a+ bh,
2
3H < h ≤ H. Hence the cross-sectional area is

A(h) =


πh(2R− h), if 0 ≤ h ≤ 1

3H

πR2, if 1
3H < h ≤ 2

3H

π(a+ bh)2, if 2
3H < h ≤ H

.

Then by (11),

k(H) =

√
H
∫ 1

3
H

0 (2Rπh1/2 − πh3/2) dh+
√
H
∫ 2

3
H

1
3
H

(πR2h−1/2) dh+
√
H
∫H

2
3
H
π(a2h−1/2 + 2abh1/2 + b2h3/2)dh∫ 1

3
H

0 (2Rπh− πh) dh+
∫ 2

3
H

1
3
H

(πR2) dh+
∫H

2
3
H
π(a2 + 2abh+ b2h2)dh

=
k1

k2
where

k1 =

(
4

3

)
1

3

3
2
RH −

(
2

5

)
1

3

5
2
H2 + 2

(
2

3

1
2
−

1

3

1
2

)
R2 + 2

(
1−

2

3

1
2

)
R2

1 +
4

3

(
1−

2

3

3
2

)(
R1R2 −R2

1

)
+

2

5

(
1−

2

3

5
2

)(
R2

2 − 2R2R1 +R2
1

)

and

k2 =
1

9
RH −

1

81
H2 +

1

3
R2 +

1

3
R2

1 +

(
1−

2

3

2)(
R1R2 −R2

1

)
+

1

3

(
1−

2

3

3)(
R2

2 − 2R2R1 +R2
1

)
.

We want an inverse cone. So, let R2 = 0. A hemispere has a radius of R; let H = R. Also, we 
need the radius of the bottom circle of the cone be the same has the hemisphere and cylinder. Let 
R1 = R. Using the above conditions we get a emptying efficiency of k ≈ 1.63. The emptying efficient 
for composite tank 1 is smaller than the emptying efficient for the cylinder and inverse yet bigger 
than the hemisphere. Let us try to improve on the efficiency by removing the tank shape with the 
highest k value, the inverse cone.
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3.2. Composite Tank 2.

Now consider another composite tank where we have a hemisphere at the bottom and a cylinder
above. Similar to composite tank 1, we can compute the emptying efficiency with a piecewise
function. So f2(h) = h(2R − h), 0 ≤ h ≤ 1

2
H, f(h) = R, 1

2
H < h ≤ H. Thus we obtain the

cross-sectional area

A(h) =

{
πh(2R− h), if 0 ≤ h ≤ 1

2
H

πR2, if 1
2
H < h ≤ H

.

Then by (11),

k(H) =

√
H
∫ 1

2
H

0 (2Rπh1/2 − πh3/2) dh+
√
H
∫H

1
2
H

(πR2h−1/2) dh∫ 1
2
H

0 (2Rπh− πh) dh+
∫H

1
2
H

(πR2) dh

=
( 4
3

)( 1
8

)
1
2RH − ( 2

5
)( 1

32
)
1
2H2 + 2R2 + 2( 1

2
)
1
2R2

( 1
4

)RH − ( 1
24

)H2 + ( 1
2

)R2

A hemispere has a radius of R; let H = R. Hence we get a emptying efficiency of k ≈ 1.39. The
emptying efficiency for composite tank 2 is smaller than the emptying efficiency for composite tank
1. Interestingly, composite tank 2 has approximately the same efficiency as a hemisphere. However,
the tank shape with the most efficient emptying time is still the cone.

3.3. Composite Tank 3.

Composite tank 3 is constructed with a cone making up the bottom half and cylinder making
up the top half. Admittedly, composite tank 3 does not seem common as the others, however, it
should be considered as the cone has the best emptying efficiency of all the conic-shaped tanks. By
construction, f(h) = R, 0 ≤ h ≤ 1

2
H and f(h) = γh, 1

2
H < h ≤ H where γ = H/R. Hence, we

obtain the cross-sectional area

A(h) =

{
πγ2h2, if 0 ≤ h ≤ 1

2
H

πR2, if 1
2
H < h ≤ H

.
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By (11),

k(H) =

√
H
∫ 1

2
H

0 (πγ2h3/2) dh+
√
H
∫H

1
2
H

(πR2h−1/2) dh∫ 1
2
H

0 (πγ2h2) dh+
∫H

1
2
H

(πR2) dh

=
( 2
5

)( 1
2

)
5
2H5/R2 + 2(1− ( 1

2
)
1
2 )R2H

( 1
2

)4H5/R2 + ( 1
2

)R2H

Let H = R. Then k ≈ 1.17. Composite tank 3 has the best emptying efficiency of all the
tanks considered. For composite tank 2, adding the cylinder to the hemisphere had virtually no
improvement on the empty efficiency. For composite tank 3, adding the cylinder to the cone had
minor improvement of about 0.03 or 2.5%.

3.4. Compare tanks with example. A natural question to ask at this point is why
don’t we see more cone shaped tanks? They clearly have the optimal emptying efficiency according
to the mathematical model. We will explore this question by starting with an example. First, we
need to calculate the volume and surface area of the composite tanks.

We want composite tank 1 to be at a height 2R to be consistent with the other tanks and so we
let H = (2/3)R for each individual tank that makes up our composite tank to achieve our desired
height. Note that we will have to adjust the hemisphere’s height by multiplying the volume and area
by 2

3
.

Vcone =
1

3
πR2H −→

2

9
πR3 SAcone = πR

(
R+

√
R2 +H2

)
−→

(
1 +

√
13

9

)
πR2

2

3
Vhemi =

2

3
·

2

3
πR3 −→

4

9
πR3 2

3
SAhemi =

2

3
2πR2 −→

4

3
πR2

Vcylinder = πR2H −→
2

3
πR3 SAcylinder = 2πR(R+H) −→

10

3
πR2

We add the volumes of the individual tanks to obtain the volume of our composite tank (below).
An interesting note is that the volume equation for the composite tank is the same as the volume
equation for a sphere. We cannot simply add the surface areas of each individual tank shape to
obtain the surface area of the composite tank like we did with the volume. The reason is we have
extra surface area that should not be there namely circles inside the composite tank (see picture
above). For example, when we computed the surface area of the cylinder we counted the circles on
the top and the bottom of it. We can see this as 2πR2 in the surface area of the cylinder. Turns
out we have four circles we must subtract from the surface area of the composite tank. We get two
circles from the cylinder, one from the cone, and one from the hemisphere. Hence, adding the surface
areas of the cylinder, cone, and hemisphere as well as subtracting the area of the four circles (done
above) gives us the surface area of the composite tank

Vcomposite1 =
4

3
πR3 SAcomposite1 =

5 +
√

13

3
πR2.
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Similarly, we want composite tank 2 to be at a height 2R so we let H = R for each individual
piece that make up our composite tank to achieve our desired height. This works out well since a
hemisphere’s height is naturally R.

Vhemi =
2

3
πR3 →

2

3
πR3 SAhemi = 2πR2 → 2πR2

Vcylinder = πR2H → πR3 SAcylinder = 2πR(R+H)→ 4πR2

We add the volumes of the individual tanks to achieve the volume of our composite tank (below).
Similar to the first composite tank, we must remove the unwanted area of a circle from the hemisphere
and from the cylinder (see picture below). Thus, to obtain the surface area of the composite tank
we subtract the area of the two circles 2πR2 from the surface area of each piece.

Vcomposite2 =
5

3
πR3 SAcomposite2 = 4πR2

By a similar process we find that the volume and surface area of composite tank 3 are

Vcomposite3 =
4

3
πR3 SAcomposite3 = (3 +

√
3)πR2.

Now we look at the volume and surface area of the cone, sphere, and cylinder shaped tanks.
Since we want all the tanks to have the same height, we will let the height of each tank be 2R.
This works well because the sphere’s height is naturally 2R. Then we obtain new volume and area
equations for our tanks [1].

Vcone =
1

3
πR2H →

2

3
πR3 · 1, SAcone = πR

(
R+

√
(R2 +H2)

)
→ πR2 · (1 +

√
5)

Vsphere =
4

3
πR3H →

2

3
πR3 · 2, SAsphere = 4πR2 → 2πR2 · 2

Vcylinder = πR2H →
2

3
πR3 · 3, SAcylinder = 2πR(R+H)→ 2πR2 · 3

A water tower is only useful if it has enough supply of water for the area it governs. Hence,
we will use the fact that a typical water tank holds 1, 000, 000 gallons. Let V = 1, 000, 000 gallons
or V = 133, 680.556 cubic feet. We first solve for the required radius R in each volume equation in
order for the tank to hold the given volume. Then we find the surface area SA for each tank with
the newly acquired radii.

Shape R (ft) SA (ft2)

Cone 39.96 16,237
Sphere 31.72 12,643
Cylinder 27.71 14,473
Composite 1 31.72 9,067
Composite 2 29.45 10,896
Composite 3 31.72 14,957

Observe that the sphere has the smallest surface area of the original three tanks. So the spherical 
tank will need less material for being built. Thus, the spherical tank will cost less than the other 
original two tanks to be built even though it is less efficient. This makes sense since spherical tanks 
are fairly common, but they are not the only ones used. The composite tanks are much more common 
due to the low surface area and high efficiency. The cone-shaped tank is most likely used very little 
because it has a high surface area making the building cost higher than the other shapes.
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3.5. Computing emptying time T for different tanks. Let us look at the
emptying times for these tanks. We will use the emptying time equation (6)

T = k
V

Sα
√
gH

.

Let V = 133, 680.556 ft3, H = 2R, g = 32.174 ft/s2, α = 0.84, S = 1 ft2. Then we obtain the
following.

Shape k R (ft) T (s) T (hrs)

Cone 1.2 39.96 3,766 1.04
Sphere 1.6 31.72 5,636 1.56
Cylinder 2.0 27.71 7,538 2.09
Composite 1 1.63 31.72 5,742 1.59
Composite 2 1.39 29.45 5,118 1.42
Composite 3 1.17 31.72 4,121 1.14

Consider the cone, cylinder, and sphere. Given the same volume, the emptying time T will follow the
same pattern (Tcone < Tsphere < Tcylinder) as the emptying efficiencies (kcone < ksphere < kcylinder).
This pattern also holds for any Rcylinder = Rsphere = Rcone. To see this we first look at the
denominator of the right hand side of the formula of T , which is the same for all the tanks. Thus,
the only difference is the numerator. With the 1:2:3 ratio of the volumes of a cone, sphere, and
cylinder, we see the cone will have the smallest or fastest emptying time, then the sphere, and
finally the cylinder. Observe when we add the composite tanks, we see composite tank 1 has the
fifth fastest time, composite tank 2 has the third fastest time, and composite tank 3 has the second
fastest emptying time. Thus, when one observes composite 1 the cone on top may serve another
purpose than efficiency such as keeping rain water from collecting on top. It is interesting that even
though composite tank 3 has the best efficiency the cone still has the best emptying time. The cone
emptying time is approximately 0.1 hours or about 355 seconds faster than composite 3. Clearly the
only difference between the two other than the emptying efficiency is the radius. By construction,
the greater radius gives the cone a greater height. Thus, the velocity of is also greater, which explains
why the cone has a faster emptying time.

4. Conclusion. Overall, we have presented a formula for emptying time

T = k
V

Sα
√
gH

based on volume, emptying efficiency, cross-sectional spout area and height first derived in [8]. To
use this formula we needed to find the emptying efficiency for various tank shapes as summarized in
the table below.

Tank Shape k

Composite 3 1.17
Cone 1.2
Composite 2 1.39
Hemisphere 1.4
Sphere 1.6
Composite 1 1.63
Cylinder 2
Inverse Cone 3.2

We verified the emptying efficiency as well as the emptying times for the above tanks and 
observed that cone-shaped water tank has the best emptying time. This naturally gave rise to a 
question as to why we do not see cone-shaped tanks more often, but this is due to the fact that 
among single-shaped tanks the spherical tank is more commonly used due to its smaller surface area 
for the same volume capacity. Thus, a spherical tank will cost less in materials to build. However, 
the composite tanks are in reality the most abundant because of its small emptying efficiency along 
with the fact that they use little surface area requiring the least amount of material. Composite 
tank 1 in particular is designed to help keep rain water off the top of the tank. Further study may 
include expanding the range of tank shapes considered and finding the emptying time, emptying 
efficiency, or a focus on the cost of building the tank. Also, one could focus on what materials are 
required for different shaped tanks since we assumed that the same material is used for all tanks. 
This assumption leads to the predictions about the relation between the cost and the abundance of 
the tanks observed in local communities.
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Appendices
Code.

Listing 1
General Function for a Circularly Symmetric Tank

1 c l c ; c l e a r
2 H=60; V=100000; h=0:1 :H;
3 n=100;
4 f o r mu = 0 : 1 : n
5 C = s q r t ( (V∗(2∗mu+1))/( p i ∗Hˆ(2∗mu+1))) ;
6 f = C∗h . ˆ (mu) ;
7 p lo t ( f , h ) ; x l a b e l ( ’ f (h ) va lue s ’ ) ; y l a b e l ( ’h va lue s ’ ) ;
8 t i t l e ( ’ General Function f o r a C i r c u l a r l y Symmetric Tank ’ ) ;
9 hold on ;

10 end
11 pr in t −depsc myfig . eps
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